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Abstract

Mathematical models of biological systems are beginning to be used for safety-
critical applications, where large numbers of repeated model evaluations are
required to perform uncertainty quantification and sensitivity analysis. Most
of these models are nonlinear both in variables and parameters/inputs which
has two consequences. First, analytic solutions are rarely available so repeated
evaluation of these models by numerically solving differential equations incurs a
significant computational burden. Second, many models undergo bifurcations in
behaviour as parameters are varied. As a result, simulation outputs often contain
discontinuities as we change parameter values and move through parameter/input
space.

Statistical emulators such as Gaussian processes are frequently used to reduce
the computational cost of uncertainty quantification, but discontinuities render
a standard Gaussian process emulation approach unsuitable as these emulators
assume a smooth and continuous response to changes in parameter values.

In this article, we propose a novel two-step method for building a Gaussian
Process emulator for models with discontinuous response surfaces. We first use
a Gaussian Process classifier to detect boundaries of discontinuities and then
constrain the Gaussian Process emulation of the response surface within these
boundaries. We introduce a novel ‘certainty metric’ to guide active learning for
a multi-class probabilistic classifier.

We apply the new classifier to simulations of drug action on a cardiac
electrophysiology model, to propagate our uncertainty in a drug’s action through
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to predictions of changes to the cardiac action potential. The proposed two-step
active learning method significantly reduces the computational cost of emulating
models that undergo multiple bifurcations.

1 Introduction

Mathematical models are used ubiquitously to develop a mechanistic under-
standing of complex biological systems. However, the efficacy of these models in
safety-critical applications depends on their ability to capture the interactions of
several physical variables in detail in order to reproduce biological phenomena
accurately [1]. These models are often defined as complex nonlinear dynamical
systems of parameterised equations that can become intensive to computationally
simulate. Tasks such as uncertainty quantification and sensitivity analysis that
require repeated evaluation with different parameter sets thus become computa-
tionally burdensome. A computationally cheaper alternative, an emulator, that
gives a close approximation to the responses (output) of these models is thus
extremely useful for the above mentioned tasks (we refer the reader to previous
work [2, 3] for a detailed introduction to this topic).

Mathematical models are beginning to be used in pre-clinical drug safety
and toxicology studies to learn about a compound’s action on electrophysiology
and associated risk [4–6]. The underlying mathematical models are dynamical
systems described as coupled nonlinear ordinary or partial differential equations
(ODEs/PDEs) that depict intra- or inter-cellular ionic exchanges and the state of
cell electrophysiological components. Such simulations predict the occurrence of
changes to the cellular action potential (time trace for the cell’s transmembrane
voltage). Often drug-induced changes are summarised by their influence on
action potential biomarkers. One such commonly used marker is the action
potential duration (APD) which quantifies the time lag between depolarisation
and repolarisation of membrane voltage. Commonly the output of a simulation
is summarised by one or more such biomarkers that can be compared with
experimental recordings.

Drug effects can be modelled by scaling the conductance parameter of multiple
ion channels [7]. The degree of scaling depends on compound concentration, and
is deduced from High Throughput Screening (HTS) of multiple ion channels,
which is subject to considerable variability that should be taken into account
as it has large effects on predictions of drug-induced changes to whole-cell
electrophysiology [8, 9].

This propagation of uncertainty, from experimental assay results (that form
simulation inputs) through to simulation results, is computationally expensive,
as repeated simulations involving numerical solution of differential equations
have to be carried out for various input parameters. Statistical emulators can be
built that model the response surfaces spanned by the simulation outputs. Such
an emulator can be trained using a small number of input-output pairs of the
simulator; the input being the scalings applied to conductances and output being
the action potential biomarkers such as APD. Once trained, the emulator can
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then be used as a computationally cheaper alternative to predict the simulation
output for a large number of drug blocks. In previous work [9] a simple emulator
based on linear interpolation from a multi-dimensional look-up table was used
to speed up the uncertainty quantification analysis we had previously performed
using a ‘brute force’ Monte Carlo method in our earliest work on this topic [8].

A more efficient emulator was proposed more recently [10] (in terms of the
number of training points required for a given accuracy) for various biomarkers
obtained from simulated action potential time courses of the Luo-Rudy cardiac
action potential model [11]. This emulator used Gaussian Processes (GPs) to
statistically model the output response surfaces of the biomarkers. Despite
their computationally attractive properties, designing an emulator for cardiac
electrophysiology models is extremely challenging since many of these models
undergo bifurcations resulting in discontinuous response surfaces, as we show
in Fig. 1 for the widely-used O’Hara (or ‘ORd’ model) for human ventricular
action potentials [12].

In this paper we will present an emulator of APD at 90% repolarisation,
APD90, in the O’Hara model, designed to work in spite of the discontinuities
in the response surface. Our proposed emulator consists of a two-step method
in which we use a boundary detector to segment the response surface along the
discontinuities and then apply statistical regression to emulate the responses.
We formulate the boundary detection as a classification problem. In both these
steps we use Gaussian Processes. The proposed emulator builds upon the work
in [10] and [13] with improvements to deal with these bifurcations in model
behaviour. Fig. 2 shows the main steps in both simulation and emulation of
cardiac biomarkers.

1.1 Concentration-effect curves

Our ODE system for cardiac action potentials has certain parameters that we
can modify to simulate drug action. Typically these are the maximal current
densities, or maximal conductances, of certain ion currents, denoted G, for
various ion currents e.g. GKr, GCaL, GNa etc.. Simulating the action of drug
block typically means scaling a G parameter by multiplying by a factor R which
is in the range [0, 1], as described below. In what follows, the vector R (scaling
factors R for each channel j) then defines our parameter set or point in simulator
input space.

A concentration-effect curve maps the concentration of a compound to an
effect or response. The percentage of the peak ionic current, following a voltage
step, is repeatedly recorded and the proportion that remains is the recorded
effect or response R ([C]). Usually such curves are described by a Hill function:

R ([C]) = 1− [C]
n

[C]
n

+ [IC50]
n . (1)

This function of concentration [C], has two parameters: [IC50], the half-maximal
inhibitory concentration; and the Hill coefficient n. These parameters are
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estimated by fitting the concentration-effect curve to screening results. The
effect of the conductance block by a specific compound is then studied (in
simulation) using a cardiac action potential (AP) model by scaling the maximal
channel conductance G of a particular channel j:

Gj = Gj,controlRj ([C]) , (2)

where Rj ([C]) ∈ [0, 1] is the conductance scaling given by the concentration-effect
curve (equation (1)) for ion channel j, and Gj,control is the maximal conductance
of that channel in control (drug free) conditions. This conductance scaling Rj is
related to the degree of ion channel block as

% block = 100×
(
1−Rj ([C])

)
. (3)

1.2 Handling discontinuities

In Chang et al. [10] the range of conductances used as input was chosen around
the maximal conductances of the Luo-Rudy model in drug free (control) condition.
Extending this range, using equation (2), introduces other effects such as absence
of depolarisation or repolarisation of the membrane voltage. This is caused due to
the dynamical system going through bifurcations as the conductance parameters
are set to values beyond a limited range around the maximal points. Examples
of such voltage time courses are shown in Fig. 1 for the O’Hara model [12].

For uncertainty propagation, the effect of drug block on APs [9] may span the
entire domain of conductance scalings Rj ∈ [0, 1], where j denotes any specific
channel, which are applied following equation (2). It is evident from Fig. 1 that
such a task poses a severe challenge to any emulator, as it needs to learn the
location of the discontinuity of the emulated surface, as well as the value of the
surface, from limited evaluations of an underlying model simulator.

Applying GPs to model discontinuous functions is largely an open problem.
Although many advances (see the discussion about non-stationarity in [14] and
the references in there) have been made towards solving this problem, a common
solution has not yet emerged. In the recent GP literature there are two specific
streams of work that have been proposed for modelling non-stationary response
surfaces including those with discontinuities. The first approach is based on
designing non-stationary processes [15] whereas the other approach attempts to
divide the input space into separate regions and build separate GP models for
each of the segmented regions. Such input domain segmentation algorithms use
a tree based GP model [16,17]. In such a GP model the individual nodes (leaves)
of the tree are built using a smaller subset of the inputs. Furthermore, the model
is constrained in such a way that inputs between discontinuous regions are not
shared among the nodes. Our work is motivated by the latter approach of space
partitioning which we turn to next.

We want the emulator to return the APD90 for a valid AP only (see Fig 1).
Although our emulator is general purpose and can be used with any summary
statistic we concentrated on the APD90 because its significance in drug induced
cardiac toxicity studies – the application for this emulator. Using a two-step
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emulator we can use a classifier to label any queried input into one of three
categories according to the generated AP trace: 1) no-depolarisation, 2) a valid
action potential (AP) and 3) no-repolaristaion. If the input falls under the
second category then we can use GP regression to predict the corresponding
output APD90 value, and associated emulator uncertainty [18]. Augmenting the
response surface prediction step with a boundary detection we can circumvent
the discontinuity while maintaining all the benefits of emulation as performed by
Chang et al. [10]. Using Gaussian processes for both classification and surface
prediction enables us to use the uncertainty associated with the prediction to
carry out sequential design of the input space. Thus we use ‘active learning’
to choose training data for building the emulator which can further reduce the
need for expensive space-filling designs. For the surface regression GP we use
conditional entropy [19] as a measure of uncertainty, and for the classifier GP we
propose a novel metric to measure the uncertainty associated with its prediction
step.

Using a two-step emulator and carrying out sequential design for both these
steps enables us to use the proposed emulator as a viable alternative at a fraction
of the computational expense of solving ODEs numerically for Monte Carlo
samples.

In the following section we will briefly review the fundamentals of GP re-
gression and classification. We will then proceed to explain how we use GP
regression and classification to build an emulator of the APD90 response surface.

1.3 Brief review of Gaussian processes for regression and
classification

In the following sections we will review Gaussian processes for regression and
classification. We will also mention briefly the approximation methods required
to apply GP to larger datasets.

1.3.1 Gaussian processes regression

Consider the regression problem where we have the dataset D = {(Xi, yi), i =
1, . . . , n} consisting of input Xi ∈ RD and noisy scalar observations yi. In the
simplest case we assume that the noise is independent and Gaussian such that
the latent function f : RD → R and the (possibly) noisy observations are related,
using the notation in [20], as

yi = f(Xi) + εi, (4)

where εi ∼ N (0, σ2
noise). In our application the ‘latent function’ is the simulator

output that we wish to emulate. Also, in the context of our application we
consider the noise term ε to be very small indeed as we are emulating the output
of a deterministic ODE system, but it could represent inaccuracies introduced
by numerical solution of the cardiac model. In a probabilistic framework we are
interested in the probability distribution of function values f∗ (or the noisy y∗)
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at test locations (where we have not run the simulator but wish to infer values
from the emulator) that we call X∗.

Definition 1. A Gaussian process is a collection of random variables, any finite
number of which have consistent joint Gaussian distributions

Gaussian process regression is a Bayesian approach where we place a prior
over functions. For the regression problem we assume a priori that the function
values behave according to

p(f |X1,X2, . . . ,Xn) = N (0,K), (5)

where f = (f1, . . . , fn)T is a vector of latent function values fi = f(Xi) and
K is a covariance matrix whose entries are given by the covariance function
Ki,j = k(Xi,Xj ;φ), where φ is a vector of hyperparameters for the covariance
function. A common example of a covariance function is the squared exponential
function:

k(Xi,Xj) = ν2 exp

(
‖Xi −Xj‖2

l2

)
, (6)

with the hyperparameters φ = {ν, l}, where ν is the prior variance and l is a
lengthscale parameter that defines the decay rate in space of the covariance
between points on the response surface.

Inference of latent function values for test locations is carried out by first
placing a joint prior on the training and test latent function values f and f∗[

f
f∗

]
∼ N

(
0,

[
Kf ,f Kf ,∗
K∗,f K∗,∗

])
, (7)

where K is subscripted by the variables between which the covariance is computed
(and we use the asterisk ∗ as shorthand for f∗). We then combine the prior with
a likelihood p(y|f) = N (0, σ2

noiseI), I is the identity matrix, and using Bayes’s
rule we obtain the joint posterior

p(f ,f∗|y) =
p(f ,f∗)p(y|f)

p(y)
, (8)

where y = (y1, . . . , yn) is the vector of observations. Note that we have dropped
the conditioning on inputs while defining the above probabilities for notational
simplicity. However, these probabilities defining a GP model are always con-
ditional on the corresponding inputs. By marginalizing the training set latent
function values f we get the desired posterior function values at test locations
X∗ given by

p(f∗|y) =

∫
p(f ,f∗|y)df =

1

p(y)

∫
p(y|f)p(f ,f∗)df . (9)

Since both the joint GP prior and the likelihood are Gaussian we can evaluate
the above integral analytically to obtain the posterior latent function at the test
locations given by

p(f∗|y) = N (mf ,Σf ), (10)
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with the following first and second moment [20]:

mf = K∗,f (Kf ,f + σ2
noiseI)−1y

Σf = K∗,∗ −K∗,f (Kf ,f + σ2
noiseI)−1Kf ,∗

(11)

The hyperparameters φ can be obtained as maximum likelihood estimates by
maximizing the log marginal likelihood given by

logP (y|φ) = −1

2
yT (Kf ,f + σ2

noiseI)−1y −
1

2
log
∣∣(Kf ,f + σ2

noiseI)−1
∣∣− 1

2
log(2π).

(12)
We discuss how GP emulators can be refined in terms of choosing training sites
to evaluate the latent function in Section 2.5.2.

1.3.2 Gaussian processes classification

As mentioned previously, we will tackle discontinuities present in the simulator
response surface using a boundary detector built using a classifier. Gaussian
processes can be used for classification purposes in a discriminative probabilistic
[20] framework. Thus we would use a GP classifier to detect the boundaries
of discontinuities. Furthermore, we would exploit its probabilistic predictions
to propagate uncertainty about the boundaries for carrying out active learning
(we discuss this in section 2.5). Next, we briefly review the method for GP
classification.

In a classification problem the input remains the same as that of regression
but the outputs are discrete class occupancy labels ti ∈ {−1,+1} (‘−1’ for not in
the class of interest, and ‘+1’ for in the class). We are interested in predicting the
class membership for a test point X∗. This is achieved using a latent function
g(X∗) whose value is mapped to the unit interval by means of a sigmoid function
sig : R→ [0, 1] such that [20]

π := p(t∗ = +1|X∗) = sig(g(X∗)). (13)

The class membership probability must normalise,
∑
t∗
p(t∗ = +1|X∗) = 1, thus

we have p(t∗ = −1|X∗) = 1− p(t∗ = +1|X∗). The sigmoid function takes the
form

sig(g(X)) =
1

1 + exp−g(X)
. (14)

The likelihood of the class labels t = (t1, . . . , tn) for n data points is assumed
to be a Bernoulli distribution given by

p(t|g) =

n∏
i=1

p(ti|gi) =

n∏
i=1

sig(ti|gi), (15)

where we have assumed that the class labels are i.i.d. and g = (g1, . . . , gn) is
the vector of latent function values.

Now just like the regression case, we can put a joint prior p(g, g∗) on the
training (g) and test (g∗) latent function values. This immediately enables the
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use of the standard GP machinery to obtain the posterior predictive distribution
over the class labels

π := p(t∗ = +1|t) =

∫
sig(t∗|g∗)p(g∗|t)dg∗. (16)

Unfortunately the posterior term p(g∗|t) is intractable as it involves an inte-
gration over the likelihood given by equation (15) with a sigmoid nonlinearity.
Approximation schemes can be used to overcome this intractability. While
MCMC methods provide the closest approximation [21] such methods are often
found to be extremely slow for a datasets of even moderate size. Expectation
propagation (EP, [22]) is an iterative deterministic approximation scheme that
is widely used for inference in GP classifiers as it provides good accuracy and
is much faster than MCMC. See Nickisch & Rasmusson [23] for a review and
comparison of different approximations for inference in a binary GP classifier. In
EP, the individual (per data point) sigmoidal likelihood terms are approximated
by un-normalised Gaussians ξi(gi). We term these local Gaussian approxima-
tions as site functions. Thus, the likelihood p(ti|gi) for i-th data point ti is
approximated as

p(ti|gi) = sig(ti|gi),
≈ ξi(gi; µ̃i, σ̃i, Z̃i),
≈ Z̃iN (gi; µ̃i, σ̃i),

(17)

with site parameters {µ̃i, σ̃i, Z̃i}. For convenience we can write the product of
the local approximate likelihoods as

n∏
i=1

ξi(gi; µ̃i, σ̃i, Z̃i) = N (µ̃, Σ̃)

n∏
i=1

Z̃i, (18)

where µ̃ = (µ̃1, . . . , µ̃n) and Σ̃ is a diagonal matrix with diagonal elements σ̃i.
The posterior latent function p(g|t) is then approximated using the site functions
as

p(g|t) ≈ q(g|t) =
1

ZEP
p(g)

n∏
i=1

Z̃iN (gi; µ̃i, σ̃i) = N (µ,Σ), (19)

where p(g|φ) is the standard Gaussian prior with covariance K and ZEP =
p(t|φ) =

∫
p(t|g)p(g|φ) is the marginal likelihood. The posterior mean and

variance is given by [20]

µ =ΣΣ̃−1µ̃,

Σ =(K−1 + Σ̃−1)−1.
(20)

Note that we have made the parameter dependency explicit in the prior p(g|φ)
while defining the marginal likelihood as in the regression case.

The task of EP is then to find each of the site parameters iteratively so that
the marginal posterior is as accurate as possible. To this end, we first combine
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the prior and the site functions into an approximate marginal distribution, also
known in machine learning parlance as a cavity distribution [20]:

q−i(gi) ∝
∫
p(g)

∏
j 6=i

ξj(gj ; µ̃j , σ̃j , Z̃j)dgj , (21)

where the subscript ‘−i’ means “all but the i-th”. The cavity distribution is an
approximation to the marginal distribution of the latent function at the i-th site
obtained by combining the prior p(g) with n− 1 (all but the i-th) approximate
likelihood terms ξi. The simplest way to to obtain the cavity distribution is by
first finding the i-th approximate posterior from the joint in equation (19) and
then dividing it by the i-th site function ξi. Thus we have the cavity distribution
at the i-th site as [20]

q−i(gi) = N (gi|µ−i, σ2
−i), (22)

where µ−i = σ̃2
−i(σ

−2
i µi − σ̃−2i µ̃i) and σ2

−i = (σ−2i − σ̃
−2
i )−1.

We then find, for each site, a new un-normalised Gaussian marginal with
parameters {µ̂i, σ̂i, Ẑi} which best approximates the product of the cavity distri-
bution and the exact likelihood at each site.

q̂(gi) := ξi(gi; µ̂i, σ̂i, Ẑi) ≈ q−i(gi)p(ti|gi). (23)

The parameters of the Gaussian q̂(gi) are found by moment matching with the
right hand side of equation (23). Finally, the site parameters {µ̃i, σ̃i, Z̃i} of the
likelihood approximation ξi are obtained in turn from the updated moments
of q̂(gi). We refer the reader to [20] for a detailed derivation of the desired
moments.

This procedure is carried out iteratively where in each sweep all the individual
site functions are fitted and the sweeps are carried out until the convergence of
the site parameters of ξi for all the sites. In practice a fixed number of sweeps,
say 20, generally suffices for convergence. The converged site parameters are
used to obtain the posterior latent function, at test locations [20],

p(g∗|t) ≈ q(g∗|t) = N (mg∗ ,Σg∗), (24)

where,

mg∗ = K∗,g(Kg,g + Σ̃)−1µ̃,

Σg∗ = K∗,∗ −K∗,g(Kg,g + Σ̃)−1Kg,∗.
(25)

Substituting this value of p(g∗|t) ≈ q(g∗|t) into equation (16), and approximating
the sigmoidal function sig(ti|gi) ≈ Φ(ti|gi) by a probit function1 we can evaluate
the integral in equation (16) to obtain the posterior class membership probability

1A probit function Φ(x) is the standard CDF of a normal distribution given by Φ(x) =∫ x
−∞N (y)dy. EP gives us a very good Gaussian approximation as N (mg∗ ,Σg∗ ).
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as

π̂ := p(t∗ = +1|t) =

∫
Φ(t∗|g∗)N (mg∗ ,Σg∗)dg∗,

= Φ

(
mg∗√

1 + Σg∗

)
.

(26)

We also use the site parameters to maximise ln(ZEP ) to obtain the maximum
likelihood estimates of the hyperparameters. From the likelihood approximations
we directly obtain the marginal likelihood as the function of the site parameters
given by

ln(ZEP ) ≈ ln

∫ n∏
i=1

ξi(gi; µ̃i, σ̃i, Z̃i)p(g|φ)dg

=

n∑
i=1

ln
Z̃i√
2π
− 1

2
V T

(
Kg,g

−1 + Kg,g
−1Σ̃−1Kg,g

−1
)
V − 1

2
ln
∣∣∣Kg,g + Σ̃−1

∣∣∣ ,
(27)

where,

V =
[
I−Kg,g

(
Kg,g + Σ̃−1

)]
Kg,gΣ̃µ̃, (28)

and |A| denotes the determinant of matrix A. Note that each iteration for
maximizing lnZEP with respect to φ in equation (27) requires the estimate of
site parameters and thus a number of sweeps of EP. Thus the computational
cost of maximising the marginal likelihood is much higher in this case compared
to regression.

1.4 Sparse approximations

GP models suffer from high computational load for inference computations. For
n training points exact inference as used in GP regression requires O(n3) effort
while for EP approximation a sequence of O(n3) operations are required.

There is an active line of research whose aim is to alleviate this computational
bottleneck by using a sparse approximation of the true covariance function. Some
of these methods are reviewed in [24]. The common approach advocated by
these methods is to use a set of m inducing (or imaginary) inputs Xu with
associated latent function u to reduce the computational load to O(nm2). We
denote the n× n covariance matrix between the training inputs as K, the m× n
covariance matrix between the inducing and training inputs as Ku and the m×m
covariance matrix between the inducing inputs as Ku,u. The most widely used

approximation scheme [24], the FITC approximation K̂ to the full covariance K
is given by

K ≈ K̂ = Q + diag(K−Q), (29)

where diag(A) is a diagonal matrix whose elements match the diagonal of A and
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the matrix Q is given by

Q = Ku
TQu,uKu, (30)

Qu,u = Ku,u + σ2
nu

I, (31)

where σ2
nu

is the noise from inducing inputs. K̂ has the same diagonal elements as
K and the off-diagonal elements are the same as for Q. This sparse approximation
was first introduced in [25] to scale the GP regression and later it was introduced
in the context of a GP classifier in [26] within the EP approximation.
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2 Methods

Having introduced the GP machinery we will now proceed towards applying the
GP classification and regression to build a two-step emulator.

2.1 A GP classifier for segmenting the APD response sur-
face: boundary detector

As mentioned in the previous section, our approach of using a classifier is primarily
motivated by the idea of boundary detection and as a consequence segmentation
of the input domain. However, unlike the previous domain segmentation attempts
in the realm of computer experiments where a tree-based or non-stationary GP
is constructed, in our application we can define a priori a set of possible labels
to the APD90 values (and the corresponding region of input space) based on
the depolarisation/repolarisation pattern of the membrane voltage. The goal
is to use a small number of simulated APD90 values obtained by varying the
parameters to train a classifier to predict the labels for a much larger set of test
inputs with a quantifiable measure of uncertainty. We denote the inputs (here,
scaling factors between zero and one applied to each maximal conductance of an
ion current) as R = (R1, . . . , RD), where D is the number of ion currents under
consideration (and dimension of the input space) and each element of which can
take any value between [0, 1].

For the n-th input vector ourRn our simulator S returns a set {yn, kn} =
S(Rn), where yn is the APD90 value and kn ∈ {1, 2, 3} is a label associating the
n-th input with any one of the three observed categories of action potential as
shown in Figure 1(a). We chose the following convention for labelling the action
potential (see Fig. 1): k = 1 for no-depolarisation, k = 2 for a valid action
potential, and k = 3 for no-repolarisation. Note that the simulator only returns
an APD value in yn when the input is within the valid AP region k = 2, and an
error code denoting which of the other regions it is in otherwise.

As our problem is inherently a multi-class classification we adopt a One-
versus-Rest (OVR) method of classification. Using OVR we build one binary
GP classifier, as introduced in section 1.3.2, for each class k ∈ {1, 2, 3} with
associated labels tk ∈ {+1,−1} (+1 for the k-th class and −1 for the rest of the
classes), to predict the probability

πk∗ := p(tk∗ = +1|R∗,R, tk), (32)

that a test input R∗ given the training inputs R = (R1, . . . ,Rn) and OVR
labels tk belongs to the k-th class. The predicted class label k∗ for the test input
R∗ is then simply the most likely class:

k∗ = argmax
k

(πk∗ ). (33)
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2.2 GP regression response surface prediction

Again we consider a simulated dataset where {Rn, yn} = S(Rn) is the n-th
input-output pair which gives rise to a valid action potential and the associated
APD90 value returned by the simulator. We wish to learn a latent function f
that is an emulator of the simulator S. Thus we have the output of the emulator
yn (the APD90 values) given by

yn = f(Rn). (34)

Now we place a zero mean GP prior on f as

f ∼ N (0,K(R,R′;φ)) (35)

where K(R,R′;φ) is a covariance function parametrized by hyperparameters φ.
Note that this covariance is separate from the classifier covariance although we
may use the same kernel function.

Given the training data {R∗,y}, the posterior mean at a new test point
f∗ := f(R∗) is given by (using equation (11))

µ(f∗) = K(R,R∗)−K(R,R)−1y, (36)

and the posterior variance as (again using equation (11))

V ar(f∗) = K(R∗,R∗)−K(R,R∗)
TK(R,R)−1K(R∗,R). (37)

The hyperparameters are obtained as maximum likelihood estimates by
maximizing the log marginal likelihood of the GP given by (following equation
(12))

logP (y|φ) = −1

2
yTK(R,R)−1y − 1

2
log |K(R,R)| − 1

2
log(2π). (38)

2.3 Two-step emulator

We combine the boundary detector (using GP classification) and surface emulator
(using GP regression) in a sequential manner to design a two-step emulator.
In the training phase we use the simulator to create a training dataset of n
points: Dtrain = {(Ri, yi, ki) for i = 1, . . . , n}. We draw the values of Ri from
U(0, 1). We then learn the GP hyperparameters associated with the boundary
detector (with the OVR method using binary GP classifiers) and the surface
emulator using the training dataset Dtrain. Note that we use a subset of {Ri, yi}
for training the surface emulator. This subset contains only those inputs that
generate a valid action potential — that is, all training points in this subset have
the same associated class label k = 2.

In the test/prediction phase for test input vector R∗ we first use the boundary
detector and obtain the class labels k∗ which we subsequently use to segment
those test inputs into three domains: RNoDep

∗ for which the membrane potential
does not depolarise (that is no AP is generated); RAP

∗ where we observe an
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AP; and RNoRep
∗ where the membrane potential does not repolarise after the

occurrence of an AP as shown in Fig. 1. Since we are interested in the AP region
we pass RAP

∗ to the surface emulator to obtain the posterior predictive given by
(using equation (36))

yAP ≈ f̂∗ ∼ N
(
µ(f∗), V ar(f∗)

)
. (39)

2.4 Choice of GP covariances

In order to use both the classifier and surface GP one has to choose a suitable
covariance function a-priori which embeds our prior assumption about the
function that we are trying to model with a GP. For the classifier GP we use a
squared exponential covariance given by equation (6) and for the surface GP we
use the rational quadratic covariance function given by

kRQ(Ri,Rj) = ν2
(

1 +
‖Ri −Rj‖2

2αl2

)−α
, (40)

where {ν, α, l} are the covariance hyperparameters. This covariance is equivalent
to adding many squared exponential covariance with different lengthscales. As
a result we expect to see functions varying across different lengthscales. Our
prior intuition about the APD response surface is that it is smoother away from
the boundary and varies much more rapidly near the boundary. Thus we have
used this covariance function to accommodate different lenghtscales (degree of
variation). Here the hyperparameter α determines the relative weighting of
large-scale and small-scale variations.

We have used the GPML package [27] called from MATLAB to implement the
surface and boundary GPs. That code is available from http://www.gaussianprocess.org/gpml/code/matlab/doc/,
and our simulator and emulator codes are available as described in Section 6.

2.5 Active learning

Since we are using a probabilistic framework for both classification and regression,
we can exploit the uncertainty associated with the predictions to choose the
training inputs using some form of adaptive scheme, as opposed to picking
training points at random. This is known as active learning [28]. The main idea
behind active learning is to sequentially add inputs to the training set to reduce
uncertainty in predictions away from the training locations. Choosing the inputs
actively has the potential to significantly reduce the required training budget,
i.e. the number of simulations needed to generate Dtrain. This is what we turn
to next.

2.5.1 Active learning for boundary detection using GP classification

To carry out active learning of a GP classifier our goal is to augment a set of n1
initial training inputs R∅ with either a single new training point R∗ or a set of
such points

{
Rnewj

}
j=1,...,ns

of size ns that convey more information about the
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boundaries in comparison to an equal number of randomly chosen points. We
would like to point out that previously we have denoted a test point as R∗ where
the subscript ∗ denotes a point where we draw predictions from a GP. In this
context, the same notation applies to those points where we draw predictions
during the active learning process. We do this by finding those inputs about
which the GP classifier is most uncertain, by using a suitable criterion to quantify
this uncertainty. Information theoretic criteria such as the conditional entropy
have been used to quantify uncertainty and carry out active learning for a GP
classifier previously [29]. To quantify uncertainty through conditional entropy, we
need to evaluate posterior expectations that do not have a closed form (due the
the sigmoidal likelihood of the GP classifier). Gaussian approximation is known
to work well for a binary GP classifier [29] and is considered a state-of-the-art
technique to carry out active learning for a classifier GP. Although it is possible
to extend the active learning approach proposed in Houlsby et al. [29] to the
multi-class OVR method, we propose an alternative quantification of uncertainty
using the posterior prediction probability as:

c(R∗) = max(πk∗ )−max(π
k−
∗ ), (41)

where πk∗ is the classification probability for the most-likely class, given by
equation (32), and the second term is the probability of classification into the
second-most-likely class. We term c the certainty of classifier predictions as c = 1
means the classifier is absolutely certain and c = 0 represents equal probability of
being in either of the two most likely classes. We are essentially characterising the
regions in the input space that lead to an overlap of possible class distributions,
and these are quantified as c→ 0. We propose to use a particle based optimisation
algorithm to find regions of minimum certainty, and (after this has converged)
to add ns new points returned by the particle based optimiser to our training
set to obtain the actively learnt input set R = R∅ ∪Rnew. Moreover, we can
carry out this procedure sequentially while using the optimiser at each step to
find Rnew and then setting R∅ = R∅ ∪Rnew. Repeating this for r rounds we
obtain the active set of inputs R consisting n3 = r × ns new active training
points, and thus a total training set at which the full simulator must be run of
size N = n1 + n3. A flow diagram of active classifier learning is presented in
Fig. 3. For carrying out the optimisation we use a particle swarm optimisation
(PSO) algorithm [30, 31] and to be synonymous with the terminology of PSO
we will denote the set of points Rnew considered at each round as a swarm of
possible training points.

Note that to generate distinct and useful training points for the classifier we
purposefully refrain from running the PSO up to convergence, to maintain some
distance (in input space) between each of the particles in the swarm. Thus in
practice we stop the PSO iterations when the average certainty of the swarm
goes below a threshold θ. We found satisfactory performance by setting θ = 0.5.
To visualise the learning mechanism we evaluate this active learning scheme on
a 2-input simulator (and emulator) of the O’Hara model with inputs as:

i) The sodium channel conductance scalings – RNa; and
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ii) The hERG channel conductance scalings – RKr;

with APD90 as the output.
We started with n1 = 10 initial training points drawn randomly over the

input space. We ran r = 10 rounds of active learning with a swarm size of
ns = 10 and show the consecutive uncertainty contours for rounds r = {3, 4, 5}
in Fig. 4. We also carried out a random design by adding 10 points at random
to the initial 10 training points, and compare the certainty with that of active
learning. The contour plots are shown in Fig. 4.

It is evident from the contour plots for active learning that after round r = 4
the classifier is able to get an estimate of the boundaries and the active points
start to gather in the regions of low certainty. At the final (r = 10) round the
active learning method is able to increase the certainty significantly more than
the random design.

2.5.2 Active learning for surface emulation

Active learning for GP regression is a well studied topic and different schemes have
been proposed. The schemes differ mainly in the criteria with which uncertainty
is quantified. The most widely used of these is the entropy criterion [32–34].
Alternative criteria such as mutual information [19] and integrated variance [35]
have been proposed recently. Note that actively picking training points based
on the entropy as well as mutual information is a NP -hard problem [36] and
thus greedy algorithms are used while using any of these information theoretic
criteria. Note that optimal algorithms have also been proposed [28,37] recently
that integrate active learning with covariance hyperparameter learning, so that
the selection of new training locations are optimal for carrying out Bayesian
inference of the hyperparameters.

Most active learning methods have been used in spatial modelling where
i) the training locations are 2D grids and ii) the number of training and test
data points are much smaller than we can afford in our application where full
simulator evaluations are relatively cheap (but not so cheap that an emulator
is not desirable). In our application, the dimensionality of the inputs will be
over two or three, and thus using a full grid is impractical. For these reasons we
approach the active learning problem using a greedy algorithm, for computational
tractability, that utilises the entropy criteria.

In order to set up the active learning consider a pool of candidate points{
Roj

}
j=1,...,Nc

which are locations spanning the input domain, drawn randomly,

from which we choose training points based on a chosen uncertainty criterion.
Our aim is then to choose a new training point R∗ ∈ Ro such that it gives
us more information about the domain than choosing R∗ randomly, resulting
in greater prediction accuracy at lower simulation cost. This can be achieved
by quantifying the uncertainty associated with the point R∗, having observed
a small initial dataset R∅ consisting of n1 points, where n1 � Nc for which
the simulator returns a valid AP. Intuitively we want to choose R∗ as points
of maximum uncertainty. We can quantify this uncertainty using posterior
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conditional entropy between the latent function f(R∗) and the observations
y∅ = S(R∅) returned by the simulator. This conditional entropy is given by [19]

H(f(R∗)|y∅) = −
∫
p(f(R∗),y∅) log p(f(R∗)|y∅)df(R∗)dy∅, (42)

which can be evaluated in closed form, since p(f(R∗)|y∅) is the posterior Gaussian
density of the surface GP, as

H(f(R∗)|y∅) =
1

2
log
(
Var(f(R∗))

)
+

1

2
log
(
(2π) + 1

)
, (43)

where V ar(f(R∗)) is the posterior variance given by equation (37). We can
now choose the point R∗ from the Nc candidate points Ro that has the largest
conditional entropy:

R∗ = argmax
k

[
H
(
f(Ro|y∅)

)]
(44)

In order to implement such a scheme we have to be aware of the discontinuities.
We start with a small random training set evaluated using the simulator at
R∅ for the surface (discarding non-AP points). We use a small n1 to minimise
the simulation cost. We also obtain an initial estimate of the hyperparameters
using n1. To remove the non-AP points from the candidates in Ro we can
use the classifier. Inclusion of the classifier alleviates full simulations of all the
candidate points. Carrying out the above procedure we get the new training set
as R = R∅ ∪R∗. We can also do this sequentially by setting R∅ = R∅ ∪R∗ and
then again finding one new point R∗ using equation (44).

We can carry on this iterative procedure for n2 rounds to collect n2 active
training input points. Note that due to misclassification some of the candidate
points in R∅ may be in non-AP regions. When we evaluate the simulator on
the n2 active points we remove these non-AP points before forming the surface
GP training set. Thus the resulting set of active points is of size n̂2 ≤ n2 and
our new training set after carrying out active learning consists of N = n1 + n̂2
training points. Also note that the classifier is used only once on the entire
candidate set before adding an active point. The various steps involved in the
surface active learning are summarised and presented in Fig. 5 as a flow diagram.

We again set up the 2 input problem exactly as illustrated previously for
classification. We started with n1 = 11 initial training points drawn randomly
over the input space and carried out active learning for n2 = 90 rounds using
candidate inputs

{
Roj

}
j=1,...,Nc

of size Nc = 10,000. We also carried out a

random design by adding points sequentially to the training set starting with the
initial n1 points for a total of 90 rounds. Fig 6 shows a comparison of consecutive
entropies during active learning rounds {10, 11, 12}. We also show in the same
figure (bottom row) the comparison of entropies between active learning and
random design at the final round. We observe during rounds {10, 11, 12} that
the active points (blue circles with cross-hair in Fig 6) are placed at places of
high entropy. Active learning is able to reduce the entropies better than random
design.
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In our active learning scheme we restrict the candidate points to be within
the valid AP region by i) before simulation filtering out non-AP candidate
points using the classifier; and ii) after simulation, discarding any non-AP points
that were misclassified. During the active learning process the entropies are
higher in the regions near the boundaries as only a few candidate points (due
to misclassification) exist in the non-AP regions. A well-studied pathology of
entropy based active learning [28] is that a lot of training points are selected near
the edges of the surface, that is the regions of highest entropies. As the active
learning progresses the boundary regions emerge as regions of high uncertainty
for the reasons described above. This is something that we notice in the contour
plots. However, this behaviour actually works in our favour for this application
as the surface changes most rapidly near the boundary region and thus having
training points in those regions leads to a better surface prediction.
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Figure 1: Bifurcation induced discontinuities in the APD biomarker
response surface for the O’Hara model. a) Bifurcations in the O’Hara
model dynamics [12] lead to three distinct types of behaviour, with no smooth
transition in APD90. The black line indicates that the membrane voltage fails
to return to the resting membrane potential. The orange line shows a valid AP.
The red line shows the failure of depolarisation. b) Resulting discontinuous APD
response surface evaluated on a dense grid of 100 × 100 sample points. The
parameters are conductance scalings of the hERG and sodium channels. The
three regions of the parameter space are shaded and colour coded according to
the depolarisation/repolarisation patterns as seen above.
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Figure 2: Comparison of the steps involved in simulation vs. emulation of
discontinuous biomarker response surface.

Boundary DetectorUse initial random 
dataset and learn classi er GP

hyperparameters.

Evaluate simulator on random
inputs to creat initial training

dataset
Start Training

Carry out PSO to gather 
a swarm of inputs that minimise 

OVR classi er uncertainty

Evaluate simulator 
on the swarm of active points: 

Finished

Rounds
Swarm size:  

Training data size:  

Data size:  

Yes  

No  

Figure 3: Steps involved in active learning for the boundary detector.
The algorithmic settings, supplied by the user, for this active learning process
are the initial data size n1, number of rounds r and the swarm size ns.
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Classi er inital certainty

Certainty nal round 

ActiveRandom

Certainty round 3 

Certainty round 4 

Certainty round 5 

Figure 4: Comparison of the measure of certainty c in classification
between actively and randomly adding training points. The certainty
as defined by equation (41) is shown as contour plots. The training points
(accumulated thus far) are shown as red circles. The darker shade of the
contours represents the areas of least certainty spread along the boundaries
(discontinuities) as estimated by the classifier. We show three consecutive rounds
of active learning r = {3, 4, 5} in the right column. In the top left we show the
initial certainty. In bottom row we compare the final certainty between active
and random design. After round r = 4 the active method starts discovering
the boundaries and puts swarm points in this region. After the final round the
active method chooses more points around the class boundaries, with most of
the points placed in the region where the three classes meet. The region where
three class boundaries intersect is the region of least certainty.
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Boundary Detector

Start Training

Use initial random 
dataset and learn surface GP

hyperparameters.

Evaluate simulator on 
random inputs to create 

initial training dataset

Draw randomly candidate 
inputs and

discard all non-AP points, 
using a pre-trained 
boundary detector.

Only keep those inputs 
that generate a valid AP 
and create initial training

dataset for 
surface learning

Choose those candidate
points that maximise entropy 

and add to the initial 
surface dataset

Evaluate the simulator 
on the collection of inputs 

gathered actively: 
generating a new 
training dataset

Surface Emulator Retain only those 
points that give
rise to a valid AP

Finished

Rounds

Data size:  

Yes

Active data size:  

No

Candidate size:  

Training data size:  

Figure 5: Steps involved in active learning for the surface predictor.
We have used the oval shapes to indicate steps where we are removing non-AP
points from the training set. The rest of the shapes used here follow standard
flowchart notations. The algorithmic settings that needs to be supplied by the
user are the initial data size n1, the candidate set size Nc and the number of
sequential rounds n2.
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Surface inital entropy

Entropy final round 

ActiveRandom

Entropy round 10 

Entropy round 11 

Entropy round 12 

Figure 6: Comparisons of entropies from active vs. random training of
the surface GP. The entropy defined by equation (44) is shown as a contour
plot. A darker shade represents less entropy and thus less uncertainty in surface
predictions. The black line demarcates the real boundary (obtained using a
100×100 grid for visualisation, and shown in Fig. 1(b)) between the non-AP and
valid AP regions. The red circles show all the training points accumulated at
specific stages of training in both active and random learning schemes. The active
points picked during intermediate rounds are shown as blue circles with black
cross-hair. We show three consecutive rounds of active learning r = {10, 11, 12}
in the right column. The next training point is always placed in the most
uncertain (high entropy) region on the input space. In the top left we show the
initial uncertainty on n1 = 11 training points. In the bottom row we compare
the final uncertainty between the active and random schemes after n2 = 90
rounds. The active method is able to reduce the uncertainty noticeably over the
input domain after the final round. Also note that in the intermediate rounds
such as r = {10, 11, 12} some active points are picked in the non-AP region.
This happens due to misclassification of the candidate points. However, after we
finish the active learning these points are discarded based on the actual simulator
evaluation.
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3 Results

We are going to test different aspects of the two-step emulator applied to
predicting the APD response surface as obtained by simulating the O’Hara [12]
cardiac electrophysiology model. We evaluate the performance of the emulator
by observing the rate of decrease in prediction error, a learning curve, of the
surface and boundary GP respectively as we grow the size of the training dataset.
We have designed two sets of tests. In the first set, we evaluate the learning
curve of the surface and classifier GP without active learning, which we denote
as random learning. In the second, we evaluate similar learning curves using the
active learning schemes described in sections 2.5.2 & 2.5.1.

Note that the error in the surface GP cannot be evaluated at points that
belong to either of the non-repolarising or non-depolarising regions. To circum-
vent this, we only use test points that are associated with a valid AP to obtain
learning curves (in both random and active learning experiments) for the surface
GP, but we also track the misclassification rate of all points.

We also compared the learning curves in the first set of experiments, the
random case, with the learning curves of a look-up table based interpolator used
within [9] and subsequently in a web-based APD prediction application [38]. This
interpolator uses a look up table and a space partitioning algorithm to interpolate
a range of biomarkers including the APD. Following the emulator tests we only
test the interpolator on inputs generating a valid AP while comparing the surface
predictions. To test the classifier GP’s performance we use inputs on the entire
domain.

3.1 Simulator setup

As mentioned previously, our simulator is the ventricular action potential model
from [12]. For the experiments below, the 4D input to the simulator is the
conductance scalings of four ion currents:

i) Fast sodium channel conductance scaling — RNa;

ii) Rapid delayed rectifying potassium channel conductance scaling — RKr;

iii) Slow delayed rectifying potassium channel conductance scaling — RKs;

iv) L-type calcium channel conductance scaling — RCaL.

The output of the simulator is the APD90 value under these channel scalings. For
each evaluation of the simulator we pace the cardiac model with 100 1 Hz paces
(using the stimulus defined in the CellML file/original [12] paper) in order to allow
the state variables to settle towards their 1 Hz limit-cycle (a larger number may
be required in practice). Thus for each input combination the simulator calls the
underlying ODE solver 100 times. We have used the Chaste cardiac modelling
package [39] to implement the simulator using a CellML representation [40] of
the model. Code is openly available as described in Section 6.
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3.2 Surface and classifier GP learning curves: random
method

For this experiment we used the simulator (setup as described previously) to
generate a training, Dtrain, and a test, Dtest, dataset each containing a different
N = 100,000 points. For evaluating the surface GP we keep only those points, in
both the training and test datasets, that are associated with a valid AP. To obtain
the learning curve we generate a random subsample D∗train = {500, . . . , 50 000}
of the training data to fit the hyperparameters by MLE for both the surface and
boundary GPs and draw prediction on the entire 100,000 test points. Denoting
the test dataset as Dtest = {(Ri, yi, ki) , i = 1, . . . , N} we define the surface
prediction error Esurface as the mean absolute error in the APD90 given by

Esurface =
1

NAP

NAP∑
i=1

|yi − µ(fi)|, (45)

where NAP is the number of test points associated with a valid AP, µ(fi) defines
the posterior mean prediction of the surface emulator GP, and |.| defines the
absolute value. The error for the boundary detector Eboundary is defined as the
percentage misclassification rate given by

Eboundary =
100

N

N∑
i=1

I(ki 6= k̂i), (46)

where k̂i is the most likely class prediction from the OVR classifier and I(·)
denotes the indicator function.

Also note that we start using sparse covariances, using the FITC approx-
imation, when number of training points is greater than 10,000 and 5000 for
the surface and classifier GPs respectively. We used the FITC approximation
with 1000 and 300 training points (see section 1.4) for the surface and classi-
fier GPs respectively. This number of training points is sufficient to produce
an approximation comparable (and superior) to that of the Look-Up-Table
interpolator.

We plot the learning curves for the surface and classifier GPs in Figs. 7 & 8.
In both of these figures the black line distinguishes between the part of learning
curves generated using the true and the FITC covariance.

Unlike the classifier GP learning curve (Fig. 8(b)) the surface GP error stops
decreasing as the FITC approximation is introduced and this error remains
relatively constant despite the increase in training data size (see Fig. 7(b)). The
error generated by the surface GP with a training data size of 10,000 is the
minimum error achievable, on the test dataset that we have used, and thus
introducing more training points is futile in decreasing the error. In fact with
the FITC covariance the error goes up due the introduction of the covariance
approximation. The surface GP clearly outperforms the linear interpolator;
this is expected as the interpolator employs a very simple function estimation
compared to GP regression.
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Figure 7: Learning curves for the surface GP. a) Original axes, b) Loga-
rithmic axes. The black line distinguishes between the part of learning curves
generated using the true covariances and the FITC approximations.

From Fig. 8(a) it is evident that the classifier error decreases steadily at a
faster rate up to 4000 training points. Although the error keeps on decreasing
beyond this training data size, the rate of decrease is reduced noticeably. Also
notice in Fig. 8(b) that using a sparse covariance approximation does not appear
to hinder the accuracy of the GP classifier.

3.3 Performance with active learning: surface emulation

In section 2.5.2 we gave an overview of the surface active learning scheme.
Although entropy based active learning is a well studied method, doing so on a
discontinuous surface brings about a new set of challenges so as to confine the
learning scheme within the boundaries of discontinuities. This is achieved using
the classifier. We start with an initial dataset D∅ ∈ Dtrain of size n1 = 500, a
random subsample of Dtrain. We also fix the candidate set

{
Roj

}
j=1,...,Nc

size

as Nc = 10,000. For evaluation purposes we train (learn the hyperparameters)
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Figure 8: Learning curves for the classifier GP. a) Original axes, b) Loga-
rithmic axes. The black line distinguishes between the part of learning curves
generated using the true covariances and the FITC approximations.

of the surface and classifier GPs using D∅. Note that for actual applications we
will have an (actively) pre-trained classifier GP. We test this approach below
in section 3.6. We also fix the number of active points to n2 = 2500. With
no misclassification the final training set size would be N = n1 + n2 = 3000.
However, we end up with a training size NAP < N after discarding the inputs
with invalid APs.

To generate a learning curve we calculate the surface error using equation
(45) by sequentially generating predictions with the active dataset after the
inclusion of 25 new training points. Note alternatively we can evaluate the
learning curve after inclusion of every other active point. However, to keep
parity with the classifier learning curves (presented in section 3.4), evaluated
on each new swarm of active points, we adopt the aforementioned frequency of
evaluation. The prediction is made on the test dataset Dtest, containing NAP

test points. To compare this with randomly adding training points to the initial
set D∅ we calculate the same sequential prediction errors by drawing 25 new
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points randomly from Dtrain, having only valid AP inputs, as opposed to actively
learning them. We keep on adding these 25 random points for n2/25 = 100
rounds. To highlight the variability in randomly growing the training dataset
we repeat the random learning exercise 10 times. Furthermore, we draw the
predictions in both schemes with the set of hyperparameters learnt using the
same initial dataset D∅. We plot the resulting learning curves in Fig. 9(a).
From Fig. 9(a) it is evident that the active learning scheme outperforms the
random update method. In Fig. 9(b) we plot the learning curves for the 2-input
problem that we used for visualisations of the surface entropy in section 2.5.2.
Only in this case we change the initial points size to n1 = 100 to improve the
hyperparameter estimate, and to compare with random design we keep adding
25 new randomly drawn points sequentially to the initial training set as done
above for the 4-input problem. We generated a test dataset containing 10,000
points placed on a 2-dimensional grid for this 2-input case. We extended the
rounds to 500 in order to have a smoother learning curve. The swarm size for
evaluating error is maintained as 25. The increased accuracy in the 2-input case,
for both active and random learning, results from the reduced dimensionality of
the discontinuity surface. Also note that the error is reduced much faster during
the earlier rounds of active learning than the later ones.

The entropy criteria will eventually start picking all those points from the
candidate set that are located near the surface boundaries (regions of higher
entropy including the class boundaries), once a certain number of points are
picked in the valid AP region to reduce the entropy significantly. Although it
is difficult to quantify the number of points (in the valid AP region) required
to reduce entropy optimally we start to see this effect for the simpler 2-input
problem in Fig. 9(b). Once the number of active training points is greater than
400 the learning curve improvement slows. At this point the active learning
scheme is adding points mostly around the surface boundaries, whereas for the
random addition of training points more points are accumulated in the valid
AP region and thus the random error keeps on decreasing. It is worth noting
that in applications such as ours some of the boundary regions (no ion channel
block in certain dimensions) are of particular interest, and extra accuracy there
is beneficial. Due to the nature of the entropy criteria we expect the same thing
to happen in the 4-input case but for a higher number of training points.

3.4 Evaluating classifier active learning

We adopt the same procedure for testing the classifier active learning as for
the surface. That is, we try to compare the misclassification error produced by
actively growing the training dataset to that of a random design.

We start with an initial dataset D∅ ∈ Dtrain of size n1 = 500 and sequentially
grow the training dataset using PSO as described in section 2.5.1 to collect a
swarm of inputs of size ns = 50 in each round. We retain the same test dataset
and we repeat this process for a 2-input problem set up exactly as in the surface
active learning experiment. The random learning is carried out as previously,
using 10 randomly drawn swarms in each round from Dtrain. For the 4-input
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problem we perform r = 20 rounds of PSO, collecting n3 = 20 × 50 = 1000
active input points, and thus N = n1 + n3 = 1500 training points in total. For
the 2-input case we start with n1 = 100 initial points and restrict the swarm
size to 25 points, thus collecting n3 = 25 × 20 = 500 active input points and
N = n1 + n3 = 600 training points in total. We retain the same test dataset
which was used for evaluating the surface active learning in the 2-input case.
We use a cut-off value θ = 0.5 specified by the average certainty of the swarm
particles to stop the PSO iterations.

We plot the learning curves for the boundary classifier in Fig. 10(a). The
learning curve for the 2-input problem is shown in Fig. 10(b). We have created
an animation (see Supplementary Material) visualising the first 8 rounds of PSO
and subsequent changes to contour plots of the certainty. In both these plots
we see that the active error decreases much more rapidly than in the surface
case. Furthermore, we notice that the variability (among the 10 repetitions) of
random errors for the classifier GP is higher than the surface error plots.

However, for the 2-input case we see the same flattening of the active learning
curve as in the surface active learning. This is because after going through 20
rounds the active learning scheme manages to put the necessary amount of input
points covering all the uncertain regions on the input space. Adding further
inputs does not affect the overall uncertainty noticeably.

3.5 Learning times and swarm sizes

While designing the emulator we have to consider the fact that training and
prediction of GPs are limited due to the computationally expensive covariance
inversion step. For the classifier GP both training and prediction involve a
number of such covariance inversion steps due to the expectation propagation
algorithm. In Figs. 11 & 12 we show the training and prediction times for
random learning in the case of the surface and classifier GP respectively. The
corresponding learning curves are presented in Figs. 7 & 8. We have also
plotted the simulation time (shown as a solid blue line) required to evaluate the
corresponding number of training points for each of the GPs. The simulation
time for evaluating all the points in the test set is shown as a horizontal broken
line in all the plots. The total time for training the GP and simulating the
training set is also plotted in Figs. 11 & 12.

For the surface GP the total training plus prediction time is negligible in
comparison to the simulation time for the entire test set, which is an expected
result. Furthermore, using a FITC covariance we see further speed-up albeit
at the cost of reduced accuracy (see Fig. 7(b) for the corresponding learning
curve). However, for the classifier GP interestingly we see that while using a
true covariance the training time exceeds the simulation time for evaluating the
entire test set (mainly due to the PSO rounds). Even for the FITC covariance
the training and prediction times are significantly higher than that of the surface
GP. Thus in order to make our two-step approach work in a practical manner we
need to use a small training dataset for the classifier GP. This is possible using
the active learning scheme as we can use fewer points than the corresponding
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random learning.
With a small number of training points we can reduce the training time of

a classifier GP. But since each PSO round incurs many classifier predictions
involving the EP algorithm it is important to find out the time spent in carrying
out the classifier active learning, especially within the PSO iterations. In Fig. 13
we plot the reduction in misclassification for the classifier active learning, averaged
over 10 repetitions, with increasing computation time. The computation time is
represented as the cumulative training time which is the sum total of the training
time upto the r-th round. We carried out the training for 30 rounds with a
swarm size of ns = 50. We also plot the same graph for the FITC covariance (red
line). For each of the 10 repetitions we used a separate initial set of n1 = 500
random training points to learn the true and FITC covariance hyperparameters.

It is evident from Fig. 13 that initially both using a FITC as well as the true
covariance the average error is reduced almost at the same rate. However, we
get marginally higher reduction using the FITC covariance.

Another important algorithmic setting that has a potential impact on the
run-time of the classifier active learning is the swarm size. A smaller swarm of
points has to go through many more rounds of PSO in comparison to a larger
swarm to collect the same amount of actively-learnt training points. However,
more PSO rounds will enable the active learning scheme to hone in on different
uncertain regions of the input space.

In order to test this we ran the FITC active learning, with three different
swarm sizes {1000, 500, 100}. We chose the initial dataset size n1 to be 1000
points. We carried out active learning for each of the swarm sizes to collect 5000
active points. Hence, the GP with a swarm size of 100 finished l = 50 rounds
while the GP with swarm size of 1000 finished only 5 rounds. In Fig. 14 we plot
the misclassification rate for the three GPs concerned. The smallest swarm has
the largest run-time but is able to reduce the error much more than the larger
swarm variants. In fact the smallest swarm variant reduces the classifier error
significantly more within 1 hour (this is demarcated with the black line) than
the larger variants. The reason for this is that the smallest swarm can complete
more rounds of PSO within the same time compared to others and thus can
put points across more distinct uncertain regions than the larger swarms do.
Covering more regions of uncertainty (with fewer points) is more important than
covering fewer regions with more points.

3.6 Performance of the two-step method

Finally to test the performance of the complete two-step emulator we carry out
active learning for both the classifier and surface GPs. For the classifier GP we
used a swarm of ns = 50 points with r = 30 rounds of PSO generating the active
set of points n3 = r × ns = 1500. We retain the same PSO threshold of θ = 0.5.
We used the FITC covariance for the classifier GP.

Subsequently for the surface GP we carry out active learning to gather
n2 = 3000 points sequentially. For the surface active learning we have used a
candidate set of 10,000 input points and used the actively learnt classifier to
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filter out all the non-AP points. We chose an initial dataset D∅ of size n1 = 500,
drawn randomly, to learn the classifier and surface GP hyperparameters. Thus,
the total training data size for the two-step emulator is n1 + n̂2 + n3 = 5000.
As we filter out the non-AP points from the active surface training inputs our
actual training size is slightly less than 5000.

To carry out a fair comparison between active and random learning the
hyperparameters were learnt using D∅ and were not updated after finishing all
the rounds. However, while evaluating the two-step emulator we have updated
the hyperparameters after finishing the active learning. This update step affects
the run-time of the two-step method and one can optionally avoid this step.

In Table 1 we present the performance of the two-step GP which we denote
as Two-step including the parameter re-learning/update step. We have also
presented the performance of our previously described linear interpolator [9]
denoted as the Interpolator, here trained using 5000 points. We also show the
time required for both the GP based and interpolation method to complete the
emulation task, which we denote as prediction time, and simulation (Chaste
ODE evaluations) for the entire test dataset. In Table 2 we breakdown the
run-time of the emulator into training and prediction times for both the surface
and boundary GP. In Table 2 the training time of classifier consists of the sum
total of hyperparameter learning on n1 = 500 initial points, active learning to
collect n3 = 1500 points and re-learning hyperparametrs on 2000 points. For the
surface GP the total training time consists of hyperparameter learning on valid
AP points in the initial set of n1 = 500, active learning to collect n2 = 3000
points and re-learning hyperparametrs on the AP ones out of 3500 points. Note
that the surface and classifier GP training times include the time for ODE
simulation during the respective active learning processes. The prediction is
drawn on 100,000 test points.

Table 1: Performance of two-step emulator training for a 4-input prob-
lem. We evaluated emulator performance by comparing against a test dataset of
100,000 points, picked from the 4D input space at random. Simulating the full
ODE solutions for these points took 44.2 hours. The training times for both the
methods are listed below and include walltime for ODE simulation at the training
points. These performance tests were carried out on single processor (3GHz with
32GB RAM). Although the two-step emulator’s training time is double that of
the interpolator it outperforms the interpolator in terms of prediction accuracies.

Method Training size Training time (h) Prediction time (s) Eboundary (%) Esurface (ms)

Two-step-GP 5000 5.5085 68.8980 1.5770 2.8742
Interpolator 5000 2.4320 1.8951 13.9670 17.9525

Although the new two-step GP emulator is slower than the Look Up Table-
based interpolator, considering the time needed in simulating the entire test
dataset it is a reasonable alternative to the interpolator due to its improved
accuracy in the presence of discontinuities. Also note that once the emulator
is trained we can use it to evaluate the response surface for a large number of
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Table 2: Breakdown of run-time of the two-step emulator. Here the
training time of the classifier and surface GPs constitute the sum total of
hyperparameter learning on the initial and final training set as well as the active
learning. The total number of training points for the classifier is n1 + (ns × r) =
500 + (30 × 50) = 2000 and for the surface is n1 + n2 = 500 + 3000 = 3500.
Predictions are made for a test-set of 100,000 points.

Method Training time (h) Prediction time (minutes)

Classifier GP 4.2939 0.6320
Surface GP 1.2146 0.5163

inputs repeatedly. In such a scenario the fast prediction time, as seen in Table 2,
is extremely valuable for an uncertainty propagation task.

3.7 Drug Block Case Study

Finally, we evaluate the performance of the two-step emulator within a study of
drug action. This is relevant to the work being undertaken in the Comprehen-
sive in-vitro Pro-arryhthmia Assay initative [41] and will make the Uncertainty
Quantification undertaken there [42] faster to perform. Recently, Crumb et
al. [43] published dose-response screening data for 30 compounds on 7 differ-
ent ion channels along with point estimates of [IC50] and the Hill coefficient
n. Johnstone et al. [44] then implemented a method to derive a probability
distribution for the drug block parameters, as given by equation (1), on various
ion-channels. To propagate the uncertainty, as captured through the marginal
posterior distributions of these parameters, APD90 values were simulated using
a Monte Carlo method for the corresponding samples of [IC50] and n. We will
test our emulator in the same setting, to establish whether it can provide the
same insights in a more computationally tractable fashion.

At a high concentration ([C] in equation (1)) of quinidine, the reduction
in hERG ion channel conductance pushes the model into the non-repolarising
region. Thus, to evaluate our proposed emulator near to the discontinuous
regime we repeat the uncertainty quantification task while blocking the hERG
channel based on quinidine as the chosen drug. We refer the reader to Johnstone
et al. [44] (section 4 in particular) for further details of the characterisation of
input uncertainties, and have generated samples of the [IC50] and Hill coefficient
n using the technique and code they provided. We used the hierarchical model
variant from that paper and generated 2000 samples inferring the underlying drug
effect (rather than including a prediction of future experiment-level variability
in our samples) using the concentration effect curve given by equation (1) for i)
a moderate dose — 0.3µM of quinidine producing ≈ 50% block and ii) a higher
dose — 3µM of quinidine producing ≈ 85% block, obtaining distributions of
conductance scalings RKr shown in Fig. 15. We picked these concentrations to
test the emulator for uncertainty quantification on a distribution of APD90 that
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is i) entirely on the surface and ii) straddling a discontinuity. Our distributions
shown in Fig. 15 are analogous to those shown in the original publication [44]
(Fig. 12E in that paper).

Since in many drug action studies we would be testing a single ion channel,
the conductance for that channel would be blocked, whereas for other channels
the conductances would be set to the maximal conductance with no blocking.
To account for this scenario we augment the initial random dataset D∅ with 24

training points which have the scalings R set to 0/1, and use a full 4D emulator.
With this new augmented D∅ we repeat the active learning for both the classifier
and surface GP as described in the previous section. The total training set size for
the two-step emulator in this case is n1 + 24 +n2 +n3 = 5016. Addition of these
corner points does not change the prediction accuracy noticeably for a general
case where we draw test points which have some amount of scaling applied to
each channel such as our test dataset Dtest used so far for testing the two-step
emulator in the previous sections. Drawing predictions on Dtest we found the
surface error Esurface = 3.0597 ms and the classifier error Eboundary = 1.5580%.
We notice little difference between these error values and the ones reported in
Table 1.

We perform a prediction for all the 2000 samples of RKr at each of the two
concentrations using the emulator to obtain estimates of the APD90 surface
using equation (39). To facilitate the visualisation of the classifier and surface
GP predictions we plot one-dimensional slices, in Figure 16, of the pre-trained
classifier posterior probabilities and the surface GP mean and variance for an
artificial test dataset with 1000 samples of RKr spread evenly between 0 and
1. The posterior probabilities consist of the probabilities πk of the binary GP
classifiers for all the three regions. Note that for visualisation we are passing all
the artificial test points to the surface GP, unlike the two step method where we
pass only those which are classified as valid AP points to the surface GP. We set
the scaling of other channels as: (RNa,RKs,RCaL) = 1, to represent no block
at those channels. Whilst this means a 1D emulator could be used, we wish to
test our more general 4D emulator in what follows.

In previous sections we considered the posterior mean of the surface GP at
test points to define APD90 surface. However, in a real application such as this
drug action study we also want to include uncertainty due to the emulator, as
estimated by its posterior variance; and we wish to propagate this uncertainty
into the corresponding APD90 distribution too.

Thus to calculate the full uncertainty we simply sum the continuous Gaussian
distributions for APD given by the emulator at each discrete sample of block,
and re-normalise to produce a full probability distribution for APD. We denote
the number of test points classified as being in the ‘full AP region’ as NAP , so

pAPD90
=

1

NAP

NAP∑
i=1

N
(
µ(fi), V ar(fi)

)
, (47)

where µ(fi) (equation (36)) and V ar(fi) (equation (37)) are the posterior mean
and variance of the surface GP at the i-th (out of NAP ) test point. Computa-
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tionally, we discretise the above continuous equation into 1000 values of APD90

between 0 and 1000 ms (the bounds for a 1 Hz simulation).
Fig. 17 shows the distribution of APD90 from taking samples from Fig. 15 and

mapping them through the classifier and Surface GP shown in Fig. 16 and finally
evaluating equation (47). We also evaluate pAPD90

using the ODE simulator
directly on all samples of block for comparison.

For both moderate and high dose cases we find that the distributions of
APD90 obtained from the emulator and simulator match well. For the moderate
dose there is no misclassification. For the high dose 548 out of the 2000 RKr

samples belong to the non-repolarising region when running the full ODE system.
The emulator assigns 477 points to this region and thus misclassifies 71 points.
The slight increase in misclassification rate 3.55% from what is reported in Table
1 for predictions on Dtest happens due to the presence of most of the test samples
in this UQ task being near the class boundary.

We notice from Fig. 16 that the binary classifier probabilities for the AP and
the non-repolarising regions are almost the same near the class boundary; as a
result the certainty is very low in this region. If using the emulator for safety
critical applications (such as the high dose quinidine action study considered
here) if some test input points are located right along the discontinuities then
one switch to performing full simulation simulation for points where the certainty
c is less than a threshold, say 0.8.

4 Discussion

Uncertainty and variability is intrinsic to a plethora of biological processes that
we want to understand, model and predict. In cardiac modelling, sources of uncer-
tainty stem from the experimental ‘error’ in the measurements from our protocols,
lack of knowledge about the underlying mechanisms leading to ‘structural error’
in our models, variability due to differences in cell and ion channel states due to
cells being in different settings and gene expression patterns, and variability due
to the inherent stochasticity of some of these processes exhibited at multiple time
and spatial scales [18]. To accommodate mathematical/phenomenological models
in safety-critical clinical practice and drug development, it is therefore of utmost
importance to quantify and propagate these uncertainties to model predictions.
As a consequence we need to examine our model predictions over large parameter
domains. This is where emulation becomes necessary to reduce the computational
burden associated with uncertainty quantification and propagation. However,
many mathematical models, especially in cardiac electrophysiology, have bifurca-
tions in behaviour as we move through parameter domains, rendering traditional
Gaussian Process emulation infeasible. In this work we have addressed this
specific issue of emulating cardiac action potential models having bifurcations in
dynamics, and as a result, discontinuous output/response surfaces. We proposed
a two-step emulator combining GP classification and regression to emulate the
discontinuous action potential duration biomarker response surface and applied
our method to a study of drug action.
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Looking at the computational complexity of the GP classifier it is natural to
ask whether a simpler classifier could be used for boundary detection. To achieve
a good degree of separation we have to use many more training points with a
simple classifier such as a linear softmax classifier (this classifier can generate
probabilistic predictions). Furthermore, using the probabilistic framework of
the GP classifier we can quantify the uncertainty of the boundary locations,
somewhat accounting for the fact that numerical errors become important close to
the bifurcation point and so the notion of a somewhat random and probabilistic
outcome here is helpful even though the ODE system is completely deterministic
in this case. We use this probabilistic property to build an active learning scheme
which reduces the necessary training dataset size significantly. Using a complex
boundary detector we become less sensitive to simulation errors and are able to
use the simulator more sparsely.

We tried an alternative GP classifier using the Laplace approximation [27]
which reduced the training and prediction times dramatically (results not shown).
However, there was a significant drop in accuracy, and so we retained use of the
EP algorithm.

If there is sufficient computing power available, the classifier certainty metric
could be used to confine use of the emulator to locations that we are confident
in the class. Thus, we can associate a threshold, say 0.9, and if for a particular
test point the certainty is below the threshold then we can use simulation for
finding the true output value. We did not explore an adaptive train-use-refine
scheme here, but it would then be intuitive to add the simulation points to the
GP training sets.

We have so far not discussed the timing implications of the surface active
learning. This is because the surface active learning took less than 30 minutes
(for n2 = 3000) to finish. This speed can be further reduced by using the FITC
approximation, but we recommend the usage of true covariance as the run-time
is insignificant in comparison to classifier active learning.

In this paper we have confined our emulation to one biomarker: the APD.
However, the effect of bifurcation is observed in many other summary statistics
of the action potential too, and the techniques are transferable. Using multiple
GPs one can build a two-step emulator that covers the output space consisting of
all the relevant biomarkers of the action potential trace. Or, using a multi-output
GP [45,46], correlations among the generated biomarkers can also be captured
to enhance prediction accuracies.

5 Conclusion

In this paper we presented a two-step emulator of the discontinuous APD90

biomarker response surface generated by the O’Hara cardiac AP model under
varying drug block. The proposed emulator produces good prediction accuracies
on an artificial test dataset containing 100,000 test points. Our two-step emulator
was trained at a fraction (≈ 10%) of the computational expense of simulation.
The proposed emulator requires ≈ 1 minute for drawing predictions on the entire
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test dataset. We achieve this by using sparse GP approximation (FITC) in
conjunction with a novel active learning scheme. A significant amount of the
emulation time is consumed by the classifier GP due to its inherent computational
limitations stemming from repeated covariance inversion within the EP algorithm.

We have applied our two-step method for uncertainty quantification in a
drug action study. In this application we found the two-step method was able
to perform uncertainty quantification of APD90 with high prediction accuracy.
Our proposed method can be easily extended to accommodate other biophysical
models (that go through bifurcations) and biomarkers.

6 Materials and Methods

All the codes we used to generate the results in this study are available to
download from https://github.com/sanmitraghosh/ApPredict GP.
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Figure 9: Learning curves for surface active vs. random learning for
the a) 4-input & b) 2-input problem. The red line shows the error for
training the GP using actively learnt inputs. The blue line shows the average,
out of 10 repetitions, GP error for randomly drawing training inputs. The
shaded area shows the standard deviation of this error, reflecting the variability
in performance if a random design is carried out.
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Figure 10: Learning curves for classifier active vs. random learning for
the a) 4-input & b) 2-input problem.
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Figure 11: Surface GP timing performance for the 4-input problem,
see section 3.2 for the learning curves. a) Training, and b) Prediction
times with increasing numbers of training inputs. The predictions are drawn over
the test dataset Dtest which contains 100, 000 test points. The green broken line
shows the time required by the simulator to evaluate Dtest. The blue line shows
the simulation time for an increasing number of inputs and the red line shows
the GP training (hyperparameter learning) and prediction time. The magenta
line shows the total training time which is the sum total of the simulation and
GP training time. The black vertical line demarcates the training size beyond
which we use the FITC covariance. Here we see the potential benefit in terms of
speed when using the FITC method, despite the slightly larger error that we
observed in Fig. 7.
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Figure 12: Training a) and Prediction b) time for the classifier GP
for the 4-input problem, see section 3.2 for the learning curves, with
increasing number of training inputs. The predictions are drawn over the
test dataset Dtest which contains 100, 000 test points. The green broken line
shows the time required by the simulator to evaluate Dtest. The blue line shows
the simulation time for increasing number of inputs and the red line shows the
GP training (hyperparameter learning) and prediction time. The magenta line
shows the total training time which is the sum total of the simulation and GP
training time. The black vertical line demarcates the training size beyond which
we use the FITC covariance.
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Figure 13: Misclassification error reduces at the same rate using FITC
and true covariance for carrying out active learning. Comparison of true
vs. FITC covariance for classifier active learning. Active learning is repeated 10
times using different initial datasets. We notice same average (out of 10 runs)
rate of error reduction using both covariances. The horizontal and vertical lines
point out the average error reduction observed after spending the time required
for carrying out active learning using FITC (red lines). We used a swarm size
of ns = 50 and a separate initial set of n1 = 500 random training points for
each repetition. Within this same time budget we achieve similar average error
reduction using the true covariance (green line).
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Figure 14: More rounds of PSO with smaller swarm sizes reduces error
most efficiently. Effect of swarm sizes on active learning time with FITC
covariance.
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Figure 15: Distributions of the concentration-effect-curve parameters
as obtained in [44] through MCMC, and the corresponding distribu-
tion of RKr (hERG ion channel scalings) at different doses of quini-
dine. The top row shows the marginal posterior distributions (as kernel density
estimates) of Hill coefficient n and [pIC50] = − log10([IC50]) estimated from
the dose-response data in [43] for quinidine compound action on hERG channel.
The bottom row shows the corresponding distributions of RKr, as histograms, at
quinidine concentrations 0.3µM (left) and 3µM (right) calculated using equation
(1). Each of the kernel density estimates and histograms are made using 2000
samples.
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Figure 16: 1-dimensional slice of surface prediction along with binary
classification posterior probabilities on a linear grid of RKr. Misclas-
sification is associated with low classifier probabilities. The surface GP
prediction of APD90 values is plotted (red line) along with the emulator variance
(shaded area), scale shown on left hand axis. The true solution from running the
ODE solver (simulator) is plotted as a blue line. The true and the classifier’s esti-
mated class boundary are shown as vertical lines. The posterior class probability
p(Surface) of the surface (valid AP vs rest of the regions) region is shown on the
right hand axis (orange line) and reduces rapidly in the misclassification region
between the two vertical lines. The variance of the surface GP also reduces in
this region. The corresponding posterior class probabilities p(No-Repolarisation)
and p(No-Depolarisation) of the non-repolarising and non-depolarising regions vs
rest of the regions respectively, are also shown on the right hand axis as broken
lines. Note that the true solution is contained within the emulator variance.
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Figure 17: Uncertainty propagation from concentration-effect-curve
parameters to APD90. Distributions of APD90 obtained through emulation
(evaluated as given in equation (47)) are plotted as red lines for corresponding
RKr values as represented in Fig. 15. Distributions of APD90 obtained through
Monte Carlo samples with a full simulation of the ODE system are shown as
histograms.
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