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A B S T R A C T

Inference using mathematical models of infectious disease dynamics can be an invaluable tool for the inter-
pretation and analysis of epidemiological data. However, researchers wishing to use this tool are faced with a
choice of models and model types, simulation methods, inference methods and software packages. Given the
multitude of options, it can be challenging to decide on the best approach. Here, we delineate the choices and
trade-offs involved in deciding on an approach for inference, and discuss aspects that might inform this decision.
We provide examples of inference with a dataset of influenza cases using the R packages pomp and rbi.

1. Introduction

Mechanistic models of infectious disease dynamics (or infectious
disease models) are built up from first principles to give an accurate
reflection of underlying actual or hypothetical biological and social
processes. Historically, these were infrequently confronted with parti-
cular data sets (Lessler et al., 2016). This could be seen as a contrast to
models of statistical association (e.g., linear or logistic regression
models) that are used as tools to investigate data, with the choice of
models being driven by the data and hypotheses about relationships
among variables. The mechanistic and statistical approaches, however,
are not mutually exclusive. Through the advent of modern methods of
inference, especially so-called plug-and-play or simulation-based ap-
proaches, and increasing availability of computing power it has become
possible to perform statistically rigorous analysis using mechanistic
models. With this development has come an increasing interest in the
use of models for epidemiological forecasting and the design of public
health policy (Heesterbeek et al., 2015). A wide range of methodologies
and software packages are available for performing inference with
models of infectious disease dynamics, and there are many active
strands of methodological and computational development.

In the light of these developments, selecting a methodology and
software can be a challenging task for researchers aiming to fit in-
fectious disease models to data, and it is usually not obvious a priori
what the best tool is for a given research question. Here, we aim to
delineate the choices that have to be made in this process, the criteria

that may be applied to facilitate these choice, as well as the trade-offs
that are involved. For reviews of available methods and recent devel-
opments see, for example, Fasiolo et al. (2016) and Dattner and
Huppert (2018).

2. Choices

2.1. Model

A probabilistic model takes input values (parameters, θ) and returns
a probability distribution of output values (observations/data, Y). In the
context of infectious disease models, the outputs can, for example, be
case counts or deaths at different observation times, but can involve
more complex variables such as pathogen genetic sequences or anti-
body titres (Rasmussen et al., 2014b; Clapham et al., 2016; Smith et al.,
2017). One can write the probability of any particular output Y to occur
when the model is run with parameters θ as

p Y θ( | ) (1)

Instead of characterising this probability distribution, models
usually prescribe the set of mathematical relationships or computa-
tional rules that take a given set of parameters θ and return outputs Y.
Inference then consists of learning something about the parameters θ
given a data set Y* and a probabilistic model or set of models. Models
are often implicitly or explicitly written as the product of two prob-
ability distributions
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=p Y θ p Y X θ p X θ( | ) ( | , ) ( | ) (2)

where the first factor, p Y X θ( | , ) is the observation model encoding
measurement error, the second factor, p X θ( | ) is the process model de-
scribing the behaviour of the system as a function of the parameters,
and X are unobserved (or latent) model states. A model that can be
written as in Eq. (2) is also called a state-space model.

Deciding on the model for inference involves a choice between de-
terministic and stochastic models. In the deterministic case, a given θ will
always lead to the same system behaviour X. In other words, determi-
nistic models have all the probability mass of p X θ( | ) concentrated on
the same X once θ is fixed. In stochastic models, many different out-
comes X are associated with one set of parameters θ, and the probability
with which these occur is given by the probability distribution p X θ( | ).
This distribution is often not available in closed mathematical form for
infectious disease models, for example if they are formulated as a
system of differential equations or as rates at which certain processes
occur stochastically. In these cases, it is not possible to write down
p X θ( | ) explicitly but it is still possible to generate samples from that
distribution by simulating the model. It is worth noting that for the
purposes of inference even in deterministic models the relationship in
the overall model in Eq. (2) is usually probabilistic because of the ob-
servation error encoded in p Y X θ( | , ).

The choice between deterministic and stochastic modelling ap-
proaches is one aspect of the broader question of model complexity.
Perhaps the most useful formalism in infectious disease epidemiology is
that of the compartmental model, in which hosts are grouped according
to their infection status and otherwise assumed to be in random contact
with each other. Increasing the complexity of such models, one can in a
compartmental model represent sub-populations (e.g., age or risk
groups etc.) or various levels of biological realism as to how an infec-
tion is transmitted, all the way to so-called individual-based models, in
which every host is explicitly represented and followed in the model.

2.2. Inference method

Inference with a given infectious disease model often revolves
around using Eq. (1) to learn something about θ given a data set Y*,
that is to perform parameter inference. In full information methods, this is
done by defining a function of θ called the likelihood,

=L θ p Y θ( ) ( *| ) (3)

The value of θ that maximises L θ( ) is called the maximum like-
lihood estimate (MLE). Intuitively, this is the set of parameters that
makes the data most likely. Mathematically, the MLE is asymptotically
consistent, that is, if the data are generated from p Y θ( *| *) the MLE
converges to θ* as the number of observations increases, and efficient,
that is, no other estimator of θ* has lower variance. Maximum like-
lihood estimation is one of the main methods used in modern frequentist
inference.

In contrast, Bayesianmethods perform inference by investigating the
posterior distribution p θ Y( | ). For a given data set Y*, the posterior dis-
tribution is related to the likelihood via Bayes’ rule,

=p θ Y
p Y θ p θ

p Y
( | *)

( *| ) ( )
( *) (4)

where p θ( ) is called the prior distribution and interpreted to encode any
information that is available about the parameters before confronting
the model with data. The denominator p Y( *) is also called the evidence,
and reflects the overall compatibility of the model with the data. For
parameter inference with a given model, this is constant and can be
ignored. In Bayesian inference, the posterior distribution is often in-
terpreted as the probability distribution of a random variable θ, and
inference is conducted using Monte-Carlo methods that yield random
samples from this probability distribution, that is, values of θ that are
distributed according to p θ Y( | *).

Different frequentist and Bayesian methods are appropriate de-
pending on whether one is conducting inference with a deterministic or
stochastic model. For deterministic models, the likelihood p Y θ( *| ) can
be evaluated for any given θ by simulating the model and applying Eq.
(2) to the resulting trajectory. In frequentist inference the maximum
likelihood can then be estimated by applying a numerical optimisation
method, for example the Nelder-Mead or downhill simplex method to
find the parameter set θ that maximises L(θ) (Nelder and Mead, 1965).
For Bayesian inference with deterministic models, Markov-chain Monte
Carlo (MCMC) can be used, for example, to build a chain of θ values
that are samples from p θ Y( | *) (Gilks et al., 1995).

Parameter estimation with stochastic models requires alternative
methods as the likelihood term p Y θ( *| ) cannot be simply evaluated by
simulating the model with θ to yield a trajectory X and plugging this
into the probability distribution for observation error p Y X θ( | , ).
Instead, many different trajectories X are possible given θ, each oc-
curring with probability p(X|θ). To obtain the likelihood, one option is
to use data augmentation, where the trajectories of unobserved states are
estimated as part of the inference routine (e.g., using MCMC), analo-
gously to the inference of parameters (McKinley et al., 2014).

Another option for obtaining the likelihood in stochastic models is
to marginalise over the states X, that is

∫=p Y θ Y X p X θ( | ) dX p( | ) ( | ) (5)

where the integral is over all possible model trajectories (replaced by a
sum if the space of possible model trajectories is discrete).

In many or indeed most cases of interest, a closed expression for
p X θ( | ) is not available. Instead, one can simulate the model for a given
θ and obtain a sample from p X θ( | ). Methods that only require the
ability to perform such simulations are also said to have the plug-and-
play property or be simulation-based (He et al., 2010). A common such
method is to replace the integral in Eq. (5) with a Monte Carlo estimate
(the so-called pseudo-marginal approach), especially by means of se-
quential Monte Carlo (SMC), also called Particle Filtering
(Arulampalam et al., 2002). In a Particle Filter, multiple simulation
runs (each a so-called particle) are performed in parallel. The simula-
tions are weighted and resampled at every data point to yield an un-
biased estimate of Eq. (5). The likelihood estimate given by the Particle
Filter can be used as a basis for maximum-likelihood inference via It-
erated Filtering (IF) (Ionides et al., 2006, 2015) or combined with
MCMC to give particle Markov-chain Monte Carlo (pMCMC) (Andrieu
et al., 2010;Akira Endo et al., 2019).

IF and pMCMC are two examples of so called full-information
methods, that is they use all available data via the likelihood p Y θ( | ).
Other methods replace the likelihood calculation with summary sta-
tistics of the data, either because a decomposition as in Eq. (2) is not
available, or to reduce the amount of information used in an attempt to
lower the computational burden by requiring fewer simulation runs.
The perhaps most prominent of these methods is Approximate Bayesian
Computation (ABC) (Lintusaari et al., 2017; McKinley et al., 2018),
while others include Synthetic Likelihood (Wood, 2010) and Bayesian
History Matching (Andrianakis et al., 2015).

We have focused here on parameter inference for a given model but,
more generally, inference can be conducted using a variety of models.
In the context of infectious disease models, comparing the ability of
different models to reproduce a given data set can give insights into
underlying epidemiological mechanisms (King et al., 2008; He et al.,
2010; Camacho et al., 2011; Rasmussen et al., 2014a).

2.3. Simulation method

Plug-and-play methods only require the user to be able to simulate a
model. This involves a choice of simulation method, with different
options available depending on whether one is studying a deterministic
or stochastic model. Most deterministic models are formulated as
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ordinary differential equations (ODEs), with a variety of ODE solvers of
different accuracy and computational efficiency available on most
computational platforms to simulate them to high numerical accuracy
(Butcher, 2016). A simpler and usually faster way of simulating a de-
terministic model uses difference equations with a fixed time step,
which can be seen as the discrete-time analogue of ODEs and can be
used to approximate them (Fulford et al., 1997).

Stochastic models can be formulated as stochastic differential
equations (SDEs), which extend ODEs to include random processes.
SDEs can be solved using the Euler-Maruyama approximation (Kloeden
and Platen, 1992; Milstein and Tretyakov, 2004) or various higher-
order approximations. Alternatively, stochastic models can be for-
mulated as discrete events and simulated using Gillespie's algorithm or
suitable approximations such as fixed tau-leaping (Gillespie, 1977,
2001). More complex individual-based models may go beyond these
methods and implement bespoke simulation schemes.

2.4. Software

Each choice of a method for simulation or inference comes with a
choice of software implementation. Methods can be written from
scratch in any available programming language or implemented using
the range of libraries available in those languages that simplify this
task. A more recent development are probabilistic programming languages
(PPLs, van de Meent et al., 2018) that aim to automate the task of in-
ference, only requiring the user to specify how to sample from the
model p Y θ( | ), usually using a particular syntax defined by the PPL.
Reviewing the available methods and software libraries is well beyond
the scope of this tutorial. Instead, we provide two examples of inference
with infectious disease models implemented in the statistical pro-
gramming language R at the end of this article.

3. Criteria

How does one choose a level of model complexity, a simulation
method, an inference method and a programming language or library
for conducting inference? These choices are generally not independent
and therefore involve trade-offs. For example, the choice of software
may restrict the researcher to a certain class of inference methods, si-
mulation methods or model types that have been implemented. The
desire to run a complex model may necessitate the use of an approx-
imate method for inference and implementation using a programming
language, library or software package that provides efficient simulation
techniques. These choices often come down to a trade-off between the
necessary (researcher and computer) time investment and the level of
confidence in the obtained result. In the following sections, we set out
the criteria that can be used to inform these choices.

3.1. Model adequacy

The adequacy of a model reflects how well it performs the task it has
been designed to do, whether to understand the dynamics in a parti-
cular system, to test the impact of potential interventions or control
strategies, or to make forecasts. These aspects are interrelated as, for
example, understanding a system can affect the ability to make accurate
forecasts, and the development of reliable control strategies can depend
on both a good understanding and forecasting ability.

Model adequacy includes the validity of implicit and explicit as-
sumptions, the ability of a model to make accurate predictions as well
as of its parameters to reflect the real-world relationships they are
supposed to encode (Lloyd, 2001; Wearing et al., 2005; Huppert and
Katriel, 2013). In general, the type and choice of model should be
guided both by the underlying research or policy question and by the
nature and quantity of the available data. Beyond this, because the
relationship of model complexity to model adequacy depends a great
deal upon both the nature of the data and the dynamics of the model,

little can be said in any degree of generality about the nature of these
relationships. Deterministic models are generally inferior to stochastic
approaches for scientific purposes as they are unable to appropriately
represent uncertainty (King et al., 2015). At the same time, the wide-
spread use of highly compartmentalised or individual-based models
reflects both a desire for greater realism and the possibility of running
such models in acceptable time with increasing computing power and
parallelisation (Willem et al., 2017). Model complexity, however, can
mask model misspecification when a model becomes flexible enough to
reproduce a wide range of data sets without necessarily reflecting the
data-generating process, and rigorously fitting such models to data can
be prohibitively slow.

3.2. Computational efficiency

Computational efficiency in the broadest sense determines how
many cycles of computation a given inference procedure takes to pro-
duce satisfactory results once it has been implemented. Conducting
inference with infectious disease models usually consists of simulating
from a model multiple times, that is, generating samples from p X θ( | )
and confronting the results with the data via the observation model
p Y X θ( | , ).

The overall computational cost in conducting inference consists
largely of the time need to run every individual simulation and the
number of times that the model must be simulated in order to obtain
results. The time cost of a model simulation depends on the level of
model complexity, the simulation method and the efficacy of the im-
plementation, including whether code is compiled (when using pro-
gramming languages such as C/C++) or interpreted (when using
programming languages such as R, although this has an interface for
using C++ code to generate faster code). The number of times a model
must be simulated depends on the inference method and desired or
acceptable statistical accuracy.

The time it takes to conduct a given number of simulations can be
reduced by performing computation in parallel. One potential ad-
vantage of using SMC for likelihood estimation with stochastic models,
for example, is that it can be parallelised and therefore, potentially,
overall computing time reduced. This includes the use of Graphical
Processing units (GPUs), allowing parallelisation at a scale much larger
than previously possible (Murray et al., 2016).

3.3. Statistical accuracy

Strictly speaking, all the inference methods presented here only
yield approximations of the true quantities of interest, that is, the
maximum likelihood estimate of θ given a data set Y*, or the true
posterior distribution p θ Y( | *). How good this approximation is and,
consequently, how much confidence a researchers can have in the re-
sults of the inference, depends on the method used. Most methods
further require a certain amount of tuning of, for example, starting
values (for maximum-likelihood optimisation and MCMC), proposal
distributions (MCMC), cooling schedules (IF) or number of particles (IF
and pMCMC), all of which affect statistical accuracy as well as com-
putational efficiency. Full-information methods generally have max-
imal precision, while feature-based methods sacrifice a level of preci-
sion in order to achieve greater computational efficiency, or to make
computation possible in the first place (Fasiolo et al., 2016).

3.4. Coding efficiency

There is a researcher time commitment involved in developing and
running the inference procedure, generally involving the generation
and testing of computer code. The time investment involved in this
depends on one's familiarity with a given programming language or
inference environment. Learning any new such environment comes
with a time investment, often at the promise of future time savings

S. Funk and A.A. King Epidemics 30 (2020) 100383

3



realised once the particular computing environment is mastered.
The individual time investment benefits from efficient programming

practices. In particular, there are benefits to collaborative coding, even
if collaboration is only with one's future self (Hogervorst, 2016).
Writing efficient code goes well beyond producing the lines of code that
performs a given task using the fewest computations possible but in-
volves consistent error checking, testing, legibility, and reproducibility.
Efficient computing practices are not generally taught as part of a sci-
entific curriculum, and the adoption of efficient standards of colla-
borative coding often depends on the interest and background of in-
dividual researchers (Wilson et al., 2014, 2017).

4. Discussion

All the choices and criteria laid out here are strongly interrelated.
Any decision on using a particular model structure, simulation method,
inference method and software or library comes with trade-offs. Fasiolo
et al. (2016) recommend to start with an approximate inference method
before moving to full-information inference to generate final results.
The reverse approach can be equally viable: beginning with a model
suited to the questions of interest and testing to determine whether
inference with a full-information methods is feasible could be seen to
eliminate a potentially costly or even misleading first approximate step,
while sitll leaving approximate methods available as a second option. In
particular, when expense renders full-information methods infeasible, it
is useful to consider where gains in efficiency might be made: It is
usually the case that the questions of interest can be formulated in
several mathematically different ways, each of which maps adequately
onto the questions of interest, but some of which are more computa-
tionally efficient than others. Model simplifications can speed up
computations, but simplifications that obscure the motivating questions
are self-defeating. Selection of an alternative, approximate, inference
method is an attractive option, since it avoids any distortion of the
question that might arise from modifications of the model. At the same
time, approximate inference methods implicitly reject certain features
of the data as being non-informative, and it can be difficult to know a
priori which features of the data are informative and which are not.

At the beginning of any inference is a data set and a model or set of
candidate models. The role of model adequacy depends on the aim of
the study and whether one's ultimate purpose is scientific hypothesis
testing, forecasting or extrapolation. If one's purpose is purely to sci-
entifically investigate one or more hypotheses about suspected me-
chanisms and whether there is evidence for them in the data, different
model variants might be tested for their ability to reproduce the data. In
that case, a negative finding may well be the most useful by making it
possible to rule out a given mechanism. A determination of adequacy,
on the other hand, does not necessarily support the conclusion that the
hypothesised mechanisms are present. Indeed, one cannot guarantee
that another model with different mechanisms would not be as much or
more adequate. There is no a priori reason that certain mechanisms
should or should not be incorporated in the model, and any such de-
cisions must be guided by the hypotheses that are being investigated
and prior assumptions about relevant mechanisms.

If the aim of a model is to provide forecasts of future incidence then
the ability to make accurate predictions is a prerequisite for those as-
pects of the enterprise. In that case, it is not a given that mechanistic
models are the best tool, and a model completely devoid of mechanisms
might perform at least as well (Reich et al., 2019). However, if the aim
is extrapolation, for example about the future impact of an intervention
or a prediction about a different location, then both predictive ability
and representation of relevant mechanisms are required.

Using off-the-shelf software solutions can limit researchers to using
the particular model structures and methodologies that have been made
available. Designing and developing an approach tailored to a given
problem without recourse to existing solutions comes with greater
flexibility but at the cost of greater coding time investment. At the same

time, using existing libraries or packages as black box can cause
avoidable errors due to a misunderstanding of the underlying meth-
odologies.

Having said this, there are particular efficiency gains to be made
from using and contributing to collaborative open-source platforms,
two examples of which we introduce below. Instead of coding simula-
tion and inference routines from scratch because the particular func-
tionality is not implemented in the available tools for inference, we
advocate that investigators engage in collaboratively improving these
tools instead. This avoids the waste of researchers' time in redundant
implementations of inference methods. It also helps ensure coding
correctness and efficiency through mutual review and error checking.

5. Examples

We provide two examples of inference using a mathematical model
of influenza transmission and a data set of an outbreak in a British
boarding school. We use two different inference methods and software
packages to fit the same process model to the data, using the same si-
mulation method. Both examples are implemented in the R statistical
programming language (Core Team, 2019) and included as supple-
mentary material with this article. The examples are there to highlight
the recommended steps when faced with a new dataset: explore the
data, write down one or more candidate models, explore the parameter
space, find suitable parameters for the chosen inference before method
before running full inference. They also highlight the trade-offs in using
different software platforms for inference. Trade-offs between compu-
tational and statistical efficiency have been discussed elsewhere
(Fasiolo et al., 2016; Chatzilena et al., 2019). The latest version of the
examples (including subsequent bug fixes and/or changes due to
package updates) will be available at https://github.com/sbfnk/
inference_pomp_rbi.

The first example uses Iterated Filtering via the IF2 algorithm as
implemented in the pomp package, a platform for implementation of
inference methods for state-space models (Ionides et al., 2015; King
et al., 2016). The pomp package provides a range of frequentist and
Bayesian simulation-based inference method and is fully integrated
with R, that is, the simulation code and related probability densities can
be provided as R functions, although in practice they are implemented
as C snippets for faster processing. The second example uses pMCMC as
implemented in the rbi package, an R interface to LibBi, a library for
Bayesian inference on high-performance hardware and GPUs with a
particular focus on parallel computing (Murray, 2015; Jacob and Funk,
2019). LibBi defines its own modelling language which is automatically
translated into C++ code and compiled, and therefore native R code
cannot be used to simulate models with rbi.

While both pomp and LibBi provide a range of inference methods,
there is a focus on Iterated Filtering in pomp and on Bayesian SMC-
based methods such as pMCMC in LibBi. Moreover, LibBi comes with the
ability to parallelise the Particle Filter on GPUs. In our example, when
we tested the overall time it took to generate a single pMCMC chain
with LibBi using GPU computing, this was about 27 times less than the
time it took to generate the same chain on a single CPU with pomp.
While some of these speed gains may have been mitigated by running
parallel chains on multiple CPUs, the ability to use GPU hardware is a
strength of LibBi where the relevant hardware is available. At the same
time, however, the implementation of iterated filtering in LibBi is ru-
dimentary, and more generally LibBi is more limiting than pomp in the
range of model structure and simulation methods that are available. For
example, with LibBi it is not possible to use loops or multivariate
probability distributions, or to use the Gillespie algorithm for stochastic
simulation.

These examples serve to highlight that the use of any particular
software package comes with advantages and drawbacks. It is worth
emphasising that the speed at which a particular inference algorithm
can be performed is only part of the picture. Really the quantity of
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interest is time-to-completion of the overall calculation, but that in-
volves a lot more than just the speed of the computational routines. It
involves breadth of the prior, information in the data, dimension of the
parameter space, number, disposition, and shape of the high-likelihood
regions as well as the nature of the inference algorithms used.

Ultimately, the choice of software comes down to the preference of
individual researchers, the methods they intend to use and how much
they value computational speed over flexibility or ease of use given
existing knowledge and expertise. In this context, we reiterate our call
for researchers to become contributors to open-source software, be it by
reporting errors, raising issues or providing improvements to code or
new methodologies. This will result in better tools that are, ultimately,
to the benefit of the whole research community in infectious disease
dynamics and beyond.
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