
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Manuscript version: Author’s Accepted Manuscript 
The version presented in WRAP is the author’s accepted manuscript and may differ from the 
published version or Version of Record. 
 
Persistent WRAP URL: 
http://wrap.warwick.ac.uk/134760                                                         
 
How to cite: 
Please refer to published version for the most recent bibliographic citation information.  
If a published version is known of, the repository item page linked to above, will contain 
details on accessing it. 
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  
 
Copyright © and all moral rights to the version of the paper presented here belong to the 
individual author(s) and/or other copyright owners. To the extent reasonable and 
practicable the material made available in WRAP has been checked for eligibility before 
being made available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge. Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 
 
Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk. 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/288396366?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/134760
mailto:wrap@warwick.ac.uk


Human African trypanosomiasis:

current status and eradication efforts

Christopher N. Davis1,2, Kat S. Rock1,2, Matt J. Keeling1,2,3*

1 Zeeman Institute (SBIDER), University of Warwick, Coventry, CV4 7AL, UK
2 Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
3 School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
* Corresponding author: M.J.Keeling@warwick.ac.uk

Abstract

Epidemics of human African trypanosomiasis (HAT) in the 20th century led to millions of deaths.
However, since the start of the twenty-first century, there is been a continued decline in the number
of reported cases, due to increased investment and prioritisation of control efforts. Systematic screen-
ing of at-risk areas and widespread access to increasingly advanced diagnostics and treatments, along
with much improved vector control, have all helped to make disease elimination achievable in the near
future. Despite the progress, the danger of disease resurgence is well-known for HAT and continued
surveillance and treatment availability is essential. Additionally, many uncertainties regarding HAT
transmission remain and combine to make potential disease eradication a complete unknown.

Keywords: human African trypanosomiasis, elimination, diagnostics, treatment, mathematical mod-
elling

Review methodology: We searched CAB Abstracts and Google Scholar for relevant articles us-
ing the keywords human African trypanosomiasis, sleeping sickness, and elimination. We also used
references from these articles for additional relevant material.

Introduction1

Human African trypanosomiasis (HAT), commonly known as sleeping sickness, is a vector-borne disease2

affecting humans in sub-Saharan Africa. It is caused by parasitic protists of the species Trypanosoma3

brucei, of which there are two subspecies that can infect humans: gambiense and rhodesiense. Both4

types of the parasite are typically transmitted to humans by infected tsetse (genus Glossina), a large5

biting fly that inhabits affected regions. The diseases caused by these infections are generally fatal6

without treatment [1] and it is estimated that in the last 100 years HAT has been responsible for7

millions of deaths [2].8

Historically HAT was endemic in 36 countries of sub-Saharan Africa, with most gambiense human9

African trypanosomiasis (gHAT) cases occurring in West and Central Africa and most rhodesiense10

human African trypanosomiasis (rHAT) cases occurring in East Africa (see Figure 1) [3]. The disease11

distribution across these countries is highly focal [2, 4], around locations containing the epidemiological12

factors conducive for transmission of infection. This spatially heterogeneous clustering of incidence is13

predominantly attributed to the habitat of the vector (tsetse), but is notable since disease prevalence14

can vary greatly over short distances and even between neighbouring villages [5]. In general, rHAT15
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Figure 1: Map of the 36 historically HAT-endemic countries. 24 countries are gHAT endemic and 13
are rHAT endemic, including Uganda, which is endemic with both.

is considered to be a predominantly zoonotic disease with human cases as a result of spill-over from16

animal infections. In contrast, humans are far more involved with the transmission cycles of gHAT17

where there is less evidence of zoonotic transmission and the role of animals remains ambiguous [6].18

gHAT is the more widespread of the two diseases, causing 98% of all reported infections in the last 1019

years of data (2009–2018) [7]; the Democratic Republic of the Congo (DRC) is the country with the20

highest proportion of gHAT cases with 82% in this period [7].21

Historical cases and control strategies22

The first accurate medical report of HAT was published in 1734 [8]. In 1896–1906 a large-scale epidemic23

of HAT was recorded which caused an estimated 800,000 deaths across the Congo basin and Uganda24

[9], which was coincident with European colonisation of the region and severe droughts. However, it25

was not until the early twentieth century that cases were routinely recorded [10] (Figure 2).26

Historical control of HAT utilised three main mechanisms that, although much refined, still form27

the basis of modern control. In 1905, the first drugs effective in treating HAT were discovered. These28

were organic arsenicals, which had mixed benefits: while successful in reducing parasitaemia, they29

were less effective for patients in Stage 2 of the disease and were also relatively toxic to the patients30

[11]. In the 1920s Eugène Jamot devised the test and treat principle, using mobile teams to cover the31

highest possible proportion of the population at risk [12]. Finally, as early as 1911 systematic vector32

control was also introduced to the island of Principe, using primitive tsetse traps [10]. Despite this33

early progress, control measures declined after 1953, and through to the end of the twentieth century,34

leading to a resurgence of cases.35
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Figure 2: Cases and number of people screened for HAT reported to the World Health Organization
between 1939 and 2018. Data is collated from WHO reports and WHO’s Global Health Observatory
data repository (cases and screening 1939–1998 [13], cases 1999–2018 [7], and screening 2000–2016
[15]).

Current epidemiology and elimination targets36

The number of annual reported HAT cases has varied dramatically in the last century as a consequence37

of different levels of investment in control [13] (Figure 2). However, since the late 1990s, HAT control38

has been more actively prioritised, with coordination between the World Health Organization, national39

HAT control programmes, funding agencies, industrial partners, and non-governmental organisations40

[14]. This has improved the support of control activities within HAT-endemic countries with better41

surveillance and access to diagnostic tools and treatments [2]. This reinvestment, coupled with ad-42

vancements in diagnostics and drugs to treat the infection, as well as plausible elimination strategies,43

has led to a steep decline in gHAT cases (Figure 2). In 2018, the number of reported HAT cases44

dropped below 1,000 cases, from a recent peak of 38,000 cases in 1998 [7].45

The Neglected Tropical Diseases (NTD) Roadmap, published in 2012, identified HAT as a candidate46

for elimination as a public health problem [16]. The was formalised as a goal in 2013, with the47

elimination definition, comprising of two global indicators, updated in 2017 to: (i) fewer than 2,00048

reported cases per year, and (ii) reducing the area at risk of reporting more than 1 case per 10,00049

people per year by 90% as compared to the baseline for 2000–2004. The Roadmap is due to be updated50

in 2020 and is proposed to include the goal of zero reported gHAT cases by 2030 [3, 17, 18].51

The first indicator for elimination as a public health problem is very likely to be met by 2020, since52

it is currently being achieved, with 977 cases reported to WHO (of which 953 were gHAT) in 2018, well53

below the target of 2,000 [7]. The second indicator is more challenging to assess; in 2012–2016, 280,00054

km2 of land was estimated to be at moderate risk or higher of HAT, a reduction of 61% compared to55

the baseline 790,000 km2 from 2000–2004 [15]. Therefore, the 90% reduction was not met by 2016, but56

the progress is encouraging, with a continued decline in the at-risk area; the size of this area was close57

to the milestone aim of 230,000 km2 for 2012–2016 [16]. It is expected that these downward trends are58

indeed reflecting a real decline in transmission, rather than simply under-reporting, since the number59

of health facilities providing HAT surveillance, diagnosis and treatment is increasing [15].60

There is less evidence that the 2030 elimination of gHAT transmission target [17] will be met, but61
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it remains an important aspirational goal to ensure that progress is sustained and that the previous62

mistakes of early cessation of HAT programmes are not repeated in the twenty-first century [19].63

Intervention approaches64

To attain the targets set by WHO and break the transmission cycle, HAT interventions need to be65

applied effectively at all levels, understanding the geography, the community and field workers, the66

technology, and the governance [20]. However, to be able to implement intervention strategies success-67

fully, there also needs to be adequate surveillance; this allows both for long-term disease monitoring68

and early identification of outbreaks [21]. HAT surveillance is recorded as screening and incidence69

data by the WHO in the Atlas of Human African Trypanosomiasis [22, 23]. This is a systematic70

approach of collating the number of new cases in villages across the endemic areas in each year, as well71

as the number of people screened for HAT and a census estimate. This data allows for the production72

of disease-risk maps, monitoring, planning of future surveillance and data for modelling and making73

future predictions [24].74

Active Screening75

Since there is no vaccine or chemoprophylaxis for HAT [25], case control for gHAT is primarily through76

direct case detection by mass screening, followed by confirmation and treatment [26]. This has widely77

been considered to be the most effective method of control, even since the early twentieth century78

[27–29]. Its impact on reducing the underlying number of infections is also supported by mathematical79

modelling [30].80

Active screening is implemented by the operations of small mobile teams including microscopists,81

secretaries, drivers, messengers, guards, and health workers, who travel directly to villages in the HAT-82

endemic areas in four-wheel drive vehicles (or boats) and aim to test full populations for the infection83

through mass screening [31]. The region a mobile team can cover may include a population of up to84

800,000, and teams typically travel for twenty days each month to conduct active screening, staying85

for multiple days in some large villages to ensure the available population is screened [31]. The choice86

of villages visited is dependent on the history of screening and cases in the village and area, cases from87

nearby health centres and local information [31]. Other predictive methods to identify at-risk villages88

are being devised [32].89

For active screening programmes to be effective a high screening coverage is important in all villages90

to ensure the detection and treatment of those infected and prevent onward transmission. This requires91

a detailed knowledge of the area with sensitisation ahead of an active screening, to ensure that the92

village is ready for the maximum possible number of people willing and available to be screened and93

not on an inconvenient day, such as when there is a market [33]. There also needs to be low drug94

toxicity, low cost to the patients and some level of privacy to achieve high attendances and treatment95

uptakes [29, 34, 35].96

There is limited evidence for how frequently these active screenings should occur and when they97

should stop if no cases are found. Van Nieuwenhove [36] recommends three repeated screening rounds98

with one year intervals, while Simarro et al. [37] used six month intervals. The current WHO rec-99

ommendation is for yearly screening with three years of zero case reporting before stopping active100

screening in the village [26]. There have been many calls for the need to maintain active screening,101

even when no cases are observed [38, 39], particularly given the feedback between surveillance and con-102

trol [40]. Recent mathematical modelling has suggested that infection is expected to persist for long103

periods, with no new infections detected for multiple years to have any certainty of local elimination104

[41]. Indeed, multiple years of active screening without case detections is a valuable measure of the105

likelihood that elimination of transmission has been achieved [42].106

In low-prevalence settings, due to consistent under-representation of certain demographics [35], tar-107

geted door-to-door screening can be more cost-effective and less labour-intensive if there is knowledge108
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of suspected cases, alongside the availability of diagnostic tests and treatments for individuals suffering109

symptoms. Indeed, door-to-door screening has been found to detect significantly more HAT cases than110

standard active screening [43]. In locations where the terrain is difficult to traverse, active screening111

is also carried out by light mobile teams using motorbikes [44].112

Passive Detection113

To better detect cases, there needs to be additional support for those that are not reached by active114

screening. As such, passive surveillance provides fixed health centres with the capacity and tools115

required to test and treat for HAT [45]. This is crucial in areas with low transmission intensity that116

will not be targeted in active screening [46], which will become more common as total case numbers117

fall [14]. It also ensures that individuals who miss active screening events or receive a false negative118

result in previous active screening, can still access diagnosis and treatment. These facilities need to119

be suitably equipped, such that infections are recognised promptly [47, 48]. Since passive surveillance120

relies of individuals to self-present to these health centres, a high proportion of them will be in the late121

stage of the disease, with significant symptoms [49]. The ability to access facilities where HAT can be122

rapidly diagnosed shortens the time between infection and treatment, reducing potential transmission123

opportunities. Indeed modelling has suggested there is great potential in improving rates of passive124

case detection [50].125

Vector Control126

Since gHAT is largely considered an anthroponosis, control has heavily relied on active and passive127

surveillance rather than considering the tsetse [14]; however, if vector control can reduce the number of128

tsetse, there will be fewer flies able to become infected, and hence a reduction in HAT transmission [51].129

Vector control is frequently a staple component of other vector-borne disease intervention strategies,130

such as malaria and dengue, due to its potential to avert transmission. Modelling has supported this131

hypothesis for gHAT, predicting that in many areas including vector control would consistently avert132

more infections that other intervention strategies [52, 53] and strategies without vector control may133

be insufficient to meet the 2030 elimination of transmission target [30, 54, 55].134

Tsetse control can be implemented by traps, targets, insecticide-treated cattle, aerial spraying,135

or sterile insect release [56]. One current strategy showing considerable potential is the use of ‘tiny136

targets’ [25]. These are small blue squares of cloth attached to a square of mesh impregnated with137

the insecticide, deltamethrin. They are attached to a frame and either planted in the ground or hung138

from vegetation. Tsetse are attracted to the blue colour, circle the cloth and come into contact with139

the insecticide, resulting in their death [57–61]. These targets are both highly effective and easier to140

deploy that traditional devices [51] in settings where livestock density is low. In regions with higher141

cattle ownership, restricted application of insecticides can also be a cost-effective approach to reduce142

tsetse populations [62].143

The two main drawbacks of vector control until recently were the expense [25] and the associated144

logistics of repeatedly deploying multiple control. However, with developments in insecticide-treated145

targets and traps [25, 59, 63], tsetse control can now be considered more cost-effective [64]. The small146

size has helped reduce costs, while remaining effective [25]. Furthermore, tsetse control is species-147

specific to tsetse and does not negatively impact the environment, since tsetse are not a key species in148

the food chain. Therefore, it can be considered ethically defensible, as human deaths are averted [65];149

the objective is for local reduction of tsetse in HAT foci to interrupt transmission, rather than global150

eradication of the fly [66].151

‘Tiny targets’ have been introduced in several HAT foci, such as Guinea, Uganda Chad where152

reductions in the tsetse population of 80% in 18 months [67], 90% in 12 months [66], and 99% in 4153

months [53] have been observed respectively. Furthermore, no gHAT cases have been found in areas154

where ‘tiny targets’ were deployed in North West Uganda [68]. When challenges are presented to155

health services, tsetse control is often easier to maintain than traditional medical interventions. For156
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example, when active screening was postponed in Guinea due to the 2014–2016 Ebola outbreak, a rise157

in gHAT prevalence was observed; however, in the area where tsetse control had been implemented, no158

cases were found. Vector control is also now part of HAT control strategy in some high-burden areas159

in the DRC, the country with the highest HAT burden [7, 69].160

Diagnostics161

Medical treatment of HAT patients can cure them of the infection and so prevent suffering and potential162

death, however, early detection of the infection will also reduce the duration a person is infectious and163

able to transmit the infection to biting tsetse. Therefore, accurate diagnostic tools are essential to164

identify early stages of the infection and both prevent the severe symptoms for the individual and165

reduce further transmission to the population. Different diagnostics are available as field-applicable166

and laboratory-bound tests.167

The most commonly used and reliable test for gHAT infection in the field is the card agglutination168

test for trypanosomiasis (CATT) [70]. This is a serological test developed in the 1970s, which uses169

blood collected from a finger prick, plasma, or serum [71]. The test is most suited to be carried out170

by mobile teams in active screening since it is relatively quick, inexpensive and reliable. However, the171

test does require an electricity supply, a cold chain and trained personnel [72]. A positive CATT test172

requires additional parasitological validation to visibly detect the presence of parasites by microscopy173

for HAT confirmation [73].174

More recently, rapid diagnostic tests (RDTs) have been available to screen for gHAT. These tests175

have an important role in the fixed passive detection health centres, since they do not require electricity176

and are instrument-free [74]. This means rural hospitals, that are often ill-equipped, can still screen177

for HAT, and hence RDTs have been widely distributed in remote endemic areas [74–76]. While these178

tests are being developed to have both high sensitivity and specificity (comparable to CATT) [77–82],179

in areas where the infection numbers are low, the number of false positives from RDTs can far outweigh180

the number of true positives, resulting in a very low positive predictive value [2, 83]. Cost-effectiveness181

analysis has suggested RDTs could be more cost-effective than CATT in both mobile and fixed health182

facilities [74].183

For laboratory-bound tests, the trypanolysis test is a confirmatory test with extremely high speci-184

ficity, such that positives from other tests can be verified and thus the patients treated. However, this185

test is expensive to perform and can only be done in selected laboratories in Europe and Africa [26].186

Notwithstanding this, the trypanolysis test is particularly useful in the context of elimination since187

its high specificity means it can be used as a surveillance tool to identify areas which are disease-free188

[84, 85]. Enzyme-linked immunosorbent assays (ELISAs) can also be used as confirmatory tests with189

high specificity, but are time-consuming, expensive and need to be performed in large batches [86].190

Molecular tests have also been developed to detect T. b. gambiense [87] and exhibit high sensitivities191

and specificities. The fact these tests are not directly applicable in the field yet, however, means the192

direct benefit remains limited [75, 88].193

Rhodesiense HAT currently has no field-applicable serodiagnostic test [2], however the more obvious194

symptoms and high levels of parasitaemia make this less crucial for detection of the infection [26].195

Treatment196

Classically, because of the very different severity of symptoms and location of trypanosomes in the197

two stages of HAT, treatments are generally stage specific [89]. The earlier HAT is treated, the better198

prospects for the patient; drugs for Stage 1 will not cure a patient in Stage 2, and drugs for Stage 2199

are unnecessarily toxic for patients in Stage 1. Hence staging is traditionally an important first step in200

determining whether the parasite has passed the blood–brain barrier into the central nervous system.201

This relies on a lumbar puncture to collect cerebrospinal fluid for the counting of white blood cells and202

to ascertain whether trypanosomes are present [90].203
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Until recently, the drugs used to treat Stage 1 infection were pentamidine or suramin [91]. Pen-204

tamidine has a high effacacy in treating gHAT and is administered intramuscularly for seven days,205

with generally minimal ill-effects [2]. Suramin is effective too, but is only used for rHAT as the slow206

intravenous infusion is more difficult to manage and the side-effects more frequent [2].207

For Stage 2, the first-line treatment is nifurtimox–eflornithine combination therapy (NECT) (ni-208

furtimox is delivered orally and eflornithine delivered intravenously) [92, 93]. This is an agressive209

treatment with common side-effects including abdominal pain, vomiting and headaches, with a high210

probability of a successful treatment [2]. The alternative, melarsapol, is now restricted to Stage 2211

rHAT, due to the frequency of life-threatening reactions it can induce [94].212

All five of the drugs are donated by manufacturers to WHO, who is able to freely who are able to213

freely distribute them across HAT-endemic countries [2].214

In addition to these drugs, fexinidazole [95], an oral drug that is taken for ten days, was recently215

included in WHO guidelines for gHAT treatment [96] and approved for use in the DRC in December216

2018 [97]. This drug is effective in treating both stages of gHAT, when the symptoms are not overly217

severe [98]; so eliminating the need for a painful lumbar puncture to determine the infection stage,218

and simplifying the treatment process whilst improving access to care [69, 97]. However, it is notable219

that a lack of stage determination provides less information for subsequent surveillance and can reduce220

the accuracy of recommendations from predictive models [99]. Fexinidazole appears less effective than221

NECT in treating late Stage 2 patients however [96], and the effect on parasites in the skin is still222

unknown [100]. The safety profile of fexinidazole is not sufficient to consider treatment without parasite223

confirmation as part of the diagnostic algorithm.224

Another drug, acoziborole [101] is currently being trialled as a one-day, one-dose oral treatment for225

all gHAT patients. This could potentially revolutionise treatment due to the ease with which it would226

be delivered and has the potential to be administered to all at-risk populations based on RDT results,227

or even given to all high-risk individuals if suitable safety standards are met [100].228

Considering eradication229

There are many reasons to be optimistic about the eventual elimination of HAT: the declining trend230

in reported cases; the availability of accurate diagnostics; effective drugs that are freely donated; new231

diagnostics and drug being developed; and continuing operations to reduce infection numbers through232

both active and passive surveillance and tsetse control. However, as the case numbers decrease to very233

low levels, there will be more competition for funding with other diseases [102, 103] and activities will234

have to continue to avoid resurgence [14]; in addition other factors may emerge that were undetectable235

at high prevalences but could pose problems for elimination and eventual eradication.236

Firstly, all figures for HAT infections are based on reported case numbers and it is expected that237

the true number infected will be much higher. For rHAT in particular, with very low case numbers,238

there has been a decrease in HAT-skilled staff, causing a decrease in awareness and hence reporting as a239

consequence [15]. There is also an issue with systematic non-participation in screening for gHAT, where240

sections of the population are likely to avoid being screened [35]. Data on the age and gender of screened241

participants could be used to determine which groups are not attending screening, although this is not242

routinely collated in an electronic format. Anecdotal evidence suggests working age individuals are the243

least likely to participate, as they may be away from the village working when active screening teams244

visit. From the perspective of elimination, this is particularly troubling since this group is also more245

likely to be working in the tsetse habitat, close to vegetation surrounding river. Hence, there could be246

a high-risk (core) group for infection never being tested – a hypothesis supported by fitting models to247

longitudinal active and passive case data to regions in DRC and Chad [30, 53]. If screening stops in248

areas where there are no identified cases, transmission could be sustained by such a core maintenance249

population, which could re-infect those who have partaken in active screening [6, 104].250

Without active surveillance that can reach high proportions of the at-risk populations, there is also251

the danger that gHAT could sustain itself in low numbers due to a possible asymptomatic reservoir of252
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humans [105]. It has been observed that some individuals infected with gHAT do not present symptoms253

for a long time and so will not seek medical attention or be detected, as they are unaware of the infection254

[1]. These individuals may have the trypanosomes surviving in their skin with no blood parasitaemia,255

which is difficult to screen for in large numbers [100]. However, the parasite can still be ingested by256

tsetse and so transmitted [6, 106, 107]; modelling has suggested treatment of these asymptomatic cases257

should be considered [108]. Gaps in active screening coverage for at-risk populations may also hinder258

elimination programmes [109], with high coverage needed to be maintained to prevent a decrease in259

detected cases being due to a decrease in screening effort [110].260

Movement of infected people into disease-free areas should also be considered in intervention plan-261

ning [111], as this can lead to recrudescence [41]. This is especially important in former-endemic areas,262

where HAT control is no longer considered a priority and high influxes of refugees, could be a perfect263

environment for parasite transmission [112].264

Finally, even if the gambiense form of the infection was eliminated from humans, there is the265

possibility that the transmission cycle could be preserved through animal reservoirs [113]. This is266

certainly the case for rHAT [2], but while T. b. gambiense infection exists in animals, it remains267

unclear if animal hosts able to sustain infection or are likely to re-infect human populations [114].268

Modelling has suggested that the existence of an animal reservoir was a requirement for continued269

transmission in a gHAT focus in Cameroon [115], while other studies have demonstrated there is lack270

of evidence to draw definite conclusions [30, 105]. Spraying livestock could prevent some transmission271

in domestic animals, but pockets of infected wild animals could still pose a problem. The existence of272

a T. b. gambiense infected animal on the island of Luba, where there have been no reported human273

cases since 1995 [116], also provokes wider questions about persistence in the absence of human cases274

and potential reintroduction from the animal reservoir [6, 117]. To achieve rHAT elimination, there275

will need to be multisectoral (One Health) cooperation, with impetus for improved surveillance of276

infection in both humans and animals [118].277

Conclusion278

HAT cases have declined substantially in the twenty first century due to considerable efforts to eliminate279

the diseases [7]. Elimination of transmission of gHAT has also been shown to be cost-effective, with280

economic benefits greater than the costs [102, 119]. Efforts need to be maintained to sustain the281

current decline in cases, with continued investment in diagnostics and treatment, as well as their282

implementation in active and passive surveillance, and tsetse control; even recent interruption of283

interventions has been known to lead to an increase in cases [120]. For rHAT, there are now only tens284

of cases, but completely eliminating transmission could be less achievable due to substantial zoonotic285

transmission. Despite over a century of study and data, there still remain key unknowns concerning286

the biology and epidemiology which influence the likely success of the proposed elimination of these287

diseases [6, 15].288

Acknowledgements

This work was supported by the Bill and Melinda Gates Foundation (www.gatesfoundation.org) in part-
nership with the Task Force for Global Health through the NTD Modelling Consortium [OPP1184344]
(C.N.D., K.S.R. and M.J.K.), the Bill and Melinda Gates Foundation through the Human African
Trypanosomiasis Modelling and Economic Predictions for Policy (HAT MEPP) project [OPP1177824]
(K.S.R. and M.J.K.), and EPSRC/MRC via the MathSys Centre for Doctoral Training (C.N.D. and
M.J.K.). The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

8



References
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African trypanosomiasis. Clinical microbiology reviews. 2005;18(1):133–146.
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[106] Capewell P, Cren-Travaillé C, Marchesi F, Johnston P, Clucas C, Benson RA, et al. The skin is
a significant but overlooked anatomical reservoir for vector-borne African trypanosomes. Elife.
2016;5:e17716.

[107] Caljon G, Van Reet N, De Trez C, Vermeersch M, Perez-Morga D, Van Den Abbeele J. The
dermis as a delivery site of Trypanosoma brucei for tsetse flies. PLoS pathogens. 2016;12(7).

[108] Capewell P, Atkins K, Weir W, Jamonneau V, Camara M, Clucas C, et al. Resolving the apparent
transmission paradox of African sleeping sickness. PLoS biology. 2019;17(1):e3000105.

[109] Pandey A, Galvani A. Strategies for Trypanosoma brucei gambiense elimination. The Lancet
Global Health. 2017;5(1):e10–e11.
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