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Summary

We analyse local bifurcation problems with octahedral symmetry using 

results from singularity theory. The thesis is split up into three sections. 

$1 comprises the bifurcation theory, and S3 contains a full singularity 

theory classification up to topological codimension one. The classification 

relies heavily upon new results about the recognition problem. These 

results are presented in §2  together with several examples drawn from 

equivariant bifurcation theory. These examples illustrate the new methods 

more clearly than the work in S3.

In S i  we look at nondegenerate bifurcation problems equivariant with 

respect to the standard action of the octahedral group on R3. We find three 

branches of symmetry-breaking bifurcation corresponding to the three 

maximal isotropy subgroups of the symmetry group with one-dimensional 

fixed-point subspaces. Locally, one of these branches is never stable, but 

precisely one of the other branches is stable if and only if all three 

branches bifurcate supercritically.

In S2 we simplify the recognition problem by decomposing the group of 

equivalences into a unipotent group and a group of matrices. Building upon 

results of Bruce, du Plessis & Wall, we show that in many cases the 

unipotent problem can be solved by just using linear algebra. We give a 

necessary and sufficient condition for this, namely that the tangent space 

be invariant under unipotent equivalence. In addition we develop methods 

for checking whether the tangent space is invariant.

The classification theorem in S3 gives a list of seven normal forms 

together with recognition problem solutions and universal unfoldings. 

Certain anomalies arise when comparing these results with those in S i .  We 

reconcile the anomalies by giving a qualitative classification in addition to 

the standard classification. An application to barium titanate crystals is 

considered briefly.
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Introduction.

In this thesis, we apply the methods of singularity theory to study the 

local bifurcations of steady-state solutions to a three-dimensional system 

of equations in the presence of a group of symmetries, namely that of the 

cube. Many of the techniques required are those developed by Golubitsky & 

Schaeffer [I979a,b]. In these papers many explicit examples are 

considered: /7-dimensional systems with no symmetry, the line with Z 2 

acting as reflections (see also Golubitsky & Langford [1981]), and the 

plane under actions of Z2 with one-dimensional fixed point set (see 

Armbruster, Dangelmayr & GGttlnger [ 1985]), Z2« Z 2 and ¿7(2). 

Subsequently the actions of the family of symmetry groups of the /7-gon Dn 

on R2 have been studied (see Bu2ano, Geyamonat & Poston [  1985]). These 

investigations essentially exhaust the possibilities for actions on R and R2. 

The natural next step is to look at the group of symmetries of a 

three-dimensional solid, giving an irreducible action on R*. We have 

selected the cube, for which there is a particularly easy choice of 

coordinates. In addition, the action is absolutely irreducible (the only 

linear maps commuting with the action are real multiples of the Identity) 

and this simplifies the analysis.

Apart from the mathematical naturallty of the cube, there is also the 

question of applications. Many physical phenomena may be modelled by an
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idealisation with cubic symmetry. Then the results in this paper would go 

some way towards predicting the qualitative behaviour of steady state 

solutions. For example, it should be possible to apply our results to elastic 

deformations of a cube. Indeed, Ball & Schaeffer [1983] have already 

looked at a problem in elasticity w here cubic symmetry is assumed. 

However, they make further assumptions which first factor out the 

reflectional symmetry of the cube and then reduce the system of equations 

from three dimensions to two dimensions. They are then left with D3 

acting on R2 and are able to call on the results of Golubttsky & Schaeffer 

[1982].

Our aim here is to set up the mathematical generalities of bifurcation 

with octahedral symmetry, and applications are not emphasised. However, 

in S3 we indicate how the results might be applied to model the 

phenomenological changes in the crystal form of barium tttanate as 

temperature is varied, Devonshire [  1949].

The traditional name for the symmetry group of the cube Is the 

octahedral group because it is also the symmetry group of the octahedron, 

the dual of the cube. We shall be interested throughout in the standard 

absolutely irreducible representation of 0 as the symmetry group of the 

cube acting on R3 by orthogonal transformations and acting trivially on all 

other variables (for example, \  in (2 )  below). The group 0  has 48 elements



and is generated by
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These elements represent reflection in the x^O  plane and tt/2 rotations 

about the xt-  and *2-axes respectively. The symmetric group 5 j  is a 

subgroup of 0 and other elements include k /  j i /  with the obvious 

matrix representations. Note that we are including reflectional 

symmetries of the cube. As mentioned above, Ball & Schaeffer [1983] use a 

different representation of 0, on R?, with kernel Z2« Z 2« Z 2.

Consider the steady slate solutions of the system of ODEs

* *&*%>)•  0,  ( 1 ) 

where \  is a distinguished real bifurcation parameter, x ^ x ^ x ^ x ^ )  e R3 

and g : R3xR -* R3 is a smooth map-germ at 0 commuting with the 

symmetry group of the cube 0 , that is, satisfying

g i l  xt\ )  -  %g( x ,\ )  for all * e 0 . (2 )

Such g  are said to be 0 -  equivariant. We denote by £^¿(0 ) the set of all 

0-equivariant mappings g. The set 2 ^ ( 0 )  is a module over 6 ^ ( 0 ) ,  the 

ring of all 0 -  invariant C00 function-germs f  at 0; that is, those f  

satisfying f \ i  x ,\ )  * t\ x ,\ ) for all % e  0. (See Golubitsky, Stewart &

->

Schaeffer [1988].)



4

A bifurcation problem with 0 -symmetry is an equation i\ x%\ )  -  0 

where f  e 2 ^ ( 0 )  and {o ^f)Q -  0. Clearly, if g  in (1 ) satisfies Kdxg \  -  0 

or in other words has a singularity at the origin, then the steady state 

solutions of (1) define a bifurcation problem with O-symmetry. Note that 

since we work with germs, the entire analysis is local.

Following the ideas introduced in Golubitsky & Schaeffer [1979a,b] we 

apply singularity-theoretic methods to analyse the qualitative nature of 

bifurcation problems with O-symmetry. Two germs g  and h  in 1 ^ ( 0 )  are 

said to be 0 -equivalent if there exist smooth germs at 0

S  : (R4,0) -*L (R3,R3), X  : (R «,0) -* R3, A  : (R,0) -» R

such that

h( x ,\) -  5t * M g ( A  * ,X ),A (X )), (3)

/ (0 ) -  0. A (0 ) -  0. (4)

5X0) -  p i , ( otxX )o -  v l , p ,v  > 0, A '(0 ) > 0, (5)

'IX T * .»  ■ )f(* ,X ), | l r ,X )y  -  5 t* ,X )f o ra ll i  e O. (6) 

Here L (R3.R3) jS the space of linear maps R3 -♦ R3. This definition is 

analogous to that of contact equivalence in singularity theory, but the 

purely X dependence of A  in (3 ) preserves the special nature of the 

distinguished parameter, whilst (6 ) ensures that h is O-equivariant 

precisely when g  is. The sign conditions (5 ) are a special case of a
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refinement of the original definition put forward by Golubitsky &

Schaeffer; see Golubitsky. Stewart & Schaeffer [1988]. They are imposed 

in order to preserve the asymptotic stabilities of solutions. In general this 

is not always possible, but for a group acting absolutely irreductbly the 

conditions reduce to those in (5 ) and the asymptotic stabilities of many 

solutions are preserved. We say that * q,X0 is linearly staple if every 

eigenvalue of ( # ) ro,)v0 tes positive real part, and linearlyunstaù/e if at 

least one eigenvalue of ( # ) r 0,X0 has a negative real part. Provided none 

of the eigenvalues lie on the imaginary axis, linear stability is a necessary 

and sufficient condition for asymptotic stability.

Notice that the condition on X  in (6 )  just says that X  e 2 ^ ( 0 ) .  We denote 

by 1 ^ ( 0 )  the E ^O J-m o d u le  of all smooth matrix-valued germs at 0 

satisfying the condition on 5  in (6 ). Finally Ea Is Just the ring of C°° 

function-germs at 0 in the variable(s) a .

In S i we obtain nondegeneracy conditions under which we can predict 

the directions and stabilities of branching from the trivial solution x  -  0 

for a bifurcation problem g  e 2 ^ ( 0 ) .  Our results are consistent with a 

theorem of Vanderbauwhede [1982] and Cicogna [1981], the Equivariant 

Branching Lemma. For x  e R3 we define the isotropy suPgroup I ,  of 0  to
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be

Z* - { * 6  0 1 * * -* } ,

and its fixed-point subspace F ix (I^ ) to be

F ix iZ ^) -  { y  e R3 | \ y y  for all * e Z ^ } .

Then subject to certain hypotheses, the Equlvariant Branching Lemma 

states that corresponding to each isotropy subgroup with one-dimensional 

fixed-point subspace there exists locally a unique branch of solutions with 

the symmetry of that subgroup. It turns out that there are three conjugacy 

classes of isotropy subgroups of 0 with one-dimensional fixed-point 

subspaces. The sign conditions in (5 ) ensure that the stabilities of the 

three corresponding branches and the trivial solution are indeed preserved 

by O-equivalences. Assuming the trivial solution to be stable subcritically 

(in  order to normalize signs), we show that of the three guaranteed 

branches, one is never stable and one of the others is stable only if all 

three branches bifurcate supercrltlcally. Further, in the situation where 

all three branches are supercritical, it is one non-vanishing coefficient in 

the Taylor expansion that determines stabilities. This same coefficient 

ensures that no eigenvalue of dg evaluated on a branch has a vanishing 

real part so that linearised stability is  a necessary and sufficient 

condition for asymptotic stability. Finally we use the condition that this
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coefficient is non-zero to prove that no other branches are possible.

In §2 we widen our field of study to the situation where r  Is any 

compact Lie group acting on R*. Definitions (1 ) and (2 ) are the same but 

with R3 replaced by P* and 0  replaced by r .  Sim ilarly we define 

T - equivalences in a way analogous to (3 ) -  (S ). The r-equivalences 

(5 * .r.A ) form a group JX O . Since Golubttsky & Schaeffer [1979a,b] 

introduced the idea of applying singularity-theoretic methods to the study 

of equtvariant bifurcation problems, many authors have produced 

classifications up to some codimension in a given context. These 

classifications include the following three components:

( i )  A list of normal forms, w ith the property that all bifurcation problems 

up to the given codimension are equivalent to precisely one normal form, 

(it) The universal unfolding of each normal form.

(I ll)  The solution to the recognition problem for each normal form.

The recognition problem is  one of the least explored facets of 

singularity theory and it Is with this third component that we deal in this 

thesis. We are interested in knowing precisely when a bifurcation problem 

Is equivalent to a given normal form. Hence we must find a 

characterisation of the orbit of the normal form under the group of 

equivalences D (r). This problem can often be reduced to one of finite 

dimensions via a key idea from singularity theory; that of finite



determinacy. Many smooth map-germs are determined up to r-equivalence 

by finitely many coefficients In their Taylor expansion. Modulo other nigti 

order terms D(r) acts as a Lie group. It is well known that the orbits 

under the resulting Lie group are semlalgebralc sets, so we can 

characterise the orbit as comprising those germs whose Taylor 

coefficients satisfy a finite number of polynomial constraints In the form 

of equalities and inequalities. This characterisation Is the solution to the 

recognition problem.

Wo will always assume that the bifurcation problems under discussion 

are finitely determined, indeed, finite codimension Implies finite 

detorminacy, and so for the purposo of classifying bifurcation problems up 

to low codimension, this assumption Is always valid. The next step Is to 

discover precisely which terms are high order terms. Gaffney [1986] uses 

results from Bruce, du Plessls & Wall [1985] In providing the answer to 

this problem. However an additional assumption Is required, namely that 

« r )  acts linearly. The group of (contact) equivalences used In studying 

bifurcation problems does indeed act linearly and the results In this thesis 

require the same assumption. In fact, the linearity of the group action Is 

the key hypothesis In our results which hold equally well for the 

recognition problem under right equivalence and contact equivalence In

8

classical singularity theory.
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Because of the Lie group structure of 1X0, we can speak of the tangent 

space to the orbit of a bifurcation problem f % or the LteatgePra at f

n  f M D )  -  L ixn. f  -  { *(6,01 I 6, 6 iKr). 60 - 1}. (7)

Most of the low codimension classifications in the literature have been 

performed in the presence of a group of symmetries r  acting absolutely 

irreducibly. Such classifications include bifurcation problems in one state 

variable with no sym m etry up to codimension seven (Keyfitz [1906]) and 

with Z 2-symmetry up to codimension three (Golubitsky & Schaeffer 

[1984]),and in two state variables with Z?4-symmetry up to topological 

codimension two (Golubitsky & Roberts [1986]). We tackle the case of 

three state variables w ith  O-symmetry up to topological codimension one 

in S3 of this thesis. A part from these, the most exhaustive classification in 

the literature is that performed by Dangelmayr & Armbruster [1983] who 

consider an action of Z 2 on R2 which is not irreducible. They go up to 

codimension four.

It is shown in 52 that provided r  acts absolutely irreducibly, then the 

group of equivalences D(r) can be decomposed into a group lAT) of 

equivalences whose linear parts are the identity and a group S t H  of 

linear equivalences (w hich  hence must be scalar multiples of the identity). 

We refer to these as the group of unipotent equivalences and the group of 

scalings and define the unipotent tangent space T( f ,  ¿/(r)) in an analogous
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way to 7 V J X r ) )  In (7).

Examination of the solutions of me recognition proOlem In tne 

aforementioned classifications leads to the following observations:

(1 ) Calculating the effect of the scalings atone ts easy, although tne results 

look complicated and are often very nonlinear.

(2 ) If we consider the recognition problems with respect to umpotent 

equivalences alone, the solutions consist only of equalities.

(3 ) In many cases, these equalities are linear.

(4 ) The ltneartty of these equalities ts usually disguised when the effect of 

the scalings are included.

The following remarks on these observations a re  in order:

(1) If r  does not act absolutely trreduclbly then tt ts possible for the 

effect of the linear equivalences to be rather complicated (for example, 

two state variable problems with no symmetry. Gotubltsky & Schaeffer 

[1984]). This complexity does not occur provided linear equivalences are 

forced by the action of r  to be diagonal matrices. In this thesis we study 

only such examples.

(2 ) This property is In fact always true and ts stated algebraically in 

Proposition 3.3 of Bruco, du Ptessls & Watt [1 9 8 5 ] and Theorem 2.2.2(a) of 

this thesis.

(3 ) The main result of 52, Theorem 2.3.4, gives a necessary and sufficient
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condition for this property of linear determinacy to hold. The condition is 

that T{ f %lA T )) should be invariant under M O .  In this case the orbit of f  

under M r )  is simply the affine space f  * T ( / .M r ) ) .

(4 ) In the light of the examples in this thesis. It seems reasonable to solve 

the unipotent part of a recognition problem separately, whether or not the 

bifurcation problem is linearly determined.

In §3 we return to the setting of Si and, with the aid of §2 , perform the 

classification of bifurcation problems with octahedral symmetry up to 

topological codimension 1. The classification consists of seven normal 

forms together with their recognition problem solutions and universal 

unfoldings. We would expect that one normal form would encapsulate the 

nondegenerate bifurcation problems of Si and that the remaining normal 

forms would reflect each of the possible degeneracies. It turns out, 

however, that we need two infinite families of germs in order to represent 

all O -orbits of nondegenerate bifurcation problems. These families are

/^•{S/n(x2*si2*^)*e\) j*  & |^3

where 6,e,o = ±1 , m # - l . - J . - J .

Now, the results of SI show that the different assignments for 8 and c
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do indeed lead to different branching directions and stabilities. This is 

also true of the interval

(-o o ,-l), ( - 1 , - 1 ), ( - 1, - 1 ), (-i,+oo),

tn which m lies. According to 51, these possibilities should give rise to all 

distinct qualitatiw behaviour. The local branching and stability does not 

depend on the precise value of m. However m ts a modal parameter and 

as such is invariant under O-equivatence.

We also have the parameter o whose sign (positive, negative or zero) ts 

invariant under 0, and yet which again has no qualitative relevance. The 

smooth singularity theory suggests that hm ts more degenerate than gt  but 

for the purposes of bifurcation theory they are the same. Unfortunately, 

there is at present no good mathematical theory for studying qualitative 

equivalence of bifurcation problems; even a slight weakening of the 

smoothness properties of the equivalences throws away large amounts of 

structure. Nevertheless, within the bounds of our low codimension 

classification we are able to deal with qualitative considerations simply 

by inspection of the bifurcation diagrams.

Hence §3 consists of both a smooth and a qualitative classification. 

Under the latter, the modal families gB and ha collapse into one family. 

The recognition problems are correspondingly more straightforward since

much of the fine detail can now be omitted.
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The calculations are similarly simplified in the application to the 

changes in structure of barium tttanate crystals with temperature. 

Devonshire [1949], noted that as temperature is decreased from above 

120*C, the structure of a barium tttanate crystal undergoes successive 

changes from one having the full group of symmetries of the cube to three 

structures with less symmetry. These states are referred to in the 

Physics literature as cubic, tetragonal, orthorhombic and rhombohedrat 

respectively, the last three corresponding to the three conjugacy classes 

of isotropy subgroups of 0  with one-dimensional fixed-point subspaces. 

Our results tn Si say that the orthorhombic state cannot be stable locally, 

but this is not a contradiction since we do not preclude the possibility of 

stability away from the origin. By analysing the unfolding of a suitably 

degenerate normal form, we are able to reproduce exactly the scenario

described above.
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S i .  B ifurca tio ns in the P resence of Octahedral Sym m etry.

In this section we consider the general bifurcation problem with the 

symmetry group of the cube, g  e t  and show that generlcally

there are three different types of solution to g  »  0 branching from the 

trivial solution x=y*z=0 at the origin. The symmetry of a solution 

(x ,y %z )  is defined in terms of its isotropy subgroup 

- { 1 6 0 1

which is a subgroup of 0. An isotropy subgroup H  is called maxima1 if H  

is a proper subgroup of 0 and the only isotropy subgroups of 0 containing 

H  are 0 and H  themselves.

The trivial solution has the full symmetry group of the cube so that 

^ <w>= 0. However, In accordance with a general phenomenon called 

spontaneous symmetry breaking, each branch of solutions corresponds to 

a proper isotropy subgroup of 0 , and so has less symmetry. Furthermore 

the three isotropy subgroups of these solutions turn out to be the three 

maximal isotropy subgroups. Thus the losses of symmetry are in some 

sense the least possible. This situation is fairly general though examples 

of submaximal isotropy subgroups with generic branches of solutions can 

be found in Chossat [1983] and Lauterbach [1986].

We follow the standard procedure (see Golubitsky [1983], Golubitsky,
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Stewart & Schaeffer [1988]) of finding the lattice of isotropy subgroups, 

and seeing whether branches of solutions exist for each isotropy subgroup. 

In fact a result of Vanderbauwhede [1982] and Cicogna [1981], the 

Equivariant Branching Lemma, guarantees under certain hypotheses the 

existence of a unique branch corresponding to each maximal isotropy 

subgroup. We impose nondegeneracy conditions on g  enabling us to decide 

whether each branch bifurcates subcritlcally or supercritically (that is 

whether the branch of solutions exists for \  less than or greater than 

zero). A further nondegeneracy condition allows us to determine 

stabilities, and we use this condition to show that no nondegenerate 

branching other than that guaranteed by the Equivariant Branching Lemma, 

is possible locally.

In 51.1 we give the lattice of conjugacy classes of isotropy subgroups of 

0 together with their fixed-point subspaces. Then a simplified form for an 

C-equivariant bifurcation problem is found in §1.2. This simplifies 

further on fixed-point subspaces and we are able to solve the branching 

equations in 51.3. We also compute the stabilities.

Fig. 1.3.1 illustrates eight of the possible bifurcation diagrams for a 

nondegenerate bifurcation problem. There are in fact sixteen distinct 

diagrams in all but we draw only those In which the trivial solution is 

stable subcritically and unstable supercritically. These are the diagrams
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of interest in applications. We see that there exists a stable branch if and 

only If all three branches bifurcate supercrltlcally. However, there is one 

maximal isotropy subgroup for which the corresponding branch is never

stable.
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S l . l .  The Octahedral Group and La ttic e  of Is otrop y Subgroups.

In this section we obtain the lattice of isotropy subgroups of 0. This is a 

standard part of the procedure for analysing equivartant bifurcation 

problems, see Golubitsky [1983] and Golubitsky, Stewart & Schaeffer 

[1988]. First, we give a brief review of the approach.

Suppose we have an equivariant map-germ g  e £ ^ ^ ^ ( 0 ) .  Then

iM .*

Hence, given g  at ( x,y,z,\)*  we know the value of g  at (y ( x ,y ,z ) ,\ )  for 

all y  e 0. In other words, the O -orbit of g  is determined by the value of g  

on a representative of that orbit. Furthermore, solutions to g  »  0 come in 

orbits: if the value of g  on an orbit representative is zero then g  is zero 

on the whole orbit.

The isotropy subgroup of a solution ( x %y %z %\ )  is given by

Z e ul t( *,y.*)b

It is an easy calculation to see that

(1)
We have seen that solutions to g  -  0  come in orbits. It follows from (1) 

that each solution has isotropy subgroup conjugate to that of its orbit 

representative.

The fixed-point subspace of an isotropy subgroup Z is given by
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Fix(2) -  { (x ,y ,s )  6 R3| 0 ( x%y %* )-{x %y %z )  for all o  e 2 }.

An easy but fundamental fact is that

^ (F tx (I)x R ) C  Fix(2), (2)

since

a g {x ,y tx ,\ )  -  g {a {x ,y ,x ) ,\ )  -  g {x ,y tx %\ )  

for all ( x%y %z )  e Fix(2), a  e 2.

Our strategy is to obtain a list of orbit representatives and to find the 

isotropy subgroup of this representative and the fixed-point subspace of 

the isotropy subgroup. We can then find zeroes of g  by restricting g  to 

orbit representatives. Simultaneously we know the symmetry of the 

solution.

Table 1.1.1 lists the different orbit representatives, the isotropy 

subgroup of 0 fixing that representative, and the subspace of R3 fixed by 

the isotropy subgroup. The entries in Table 1.1.1 are easy to verify. 

Elements of 0 can only permute and/or change signs of the x ,y ,z  

variables. Thus we have ordered the variables so that the nonzero 

elements come first and elements of the same magnitude are grouped 

together and equal. We could have insisted that all elements were 

nonnegative and in descending order of magnitude but this is no simpler 

and actually leads to an extra case to consider: case (f ) would split up into

(x ,x ,x )a n d (x ,y ,y ).
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Table  1 .1 .1 . Isotropy Subgroups for 0  and their Fixed-Point Subspaces. 

Orbit Rep Isotropy Subgroup Fixed-Point Space

(a) (0,0,0) 0 (0,0,0)

(6) (r.0 .0 ) Of (generated by ( a-,0,0)

(c) 0 ) ZjT.Zjt ( X.lfi)

(o) (*.*.*) Si (*,*.*)
le) (*.y. o) Z /  -  {1 ,* ,} (r.yfi)
(0 Z 2t .  (1 ,(1 2)) U.*,z)
<fl> l *.#,*) 1 (r,y,z)

|  AJuMA distinct W 6 R
and non-zero

We have used r  and / in Z2r and Z2* to denote reflection and 

transposition respectively. In Fig. 1.1.1, we sketch the isotropy subgroups 

with one-dimensional fixed-point subspaces, to show that they are 

geometrically very natural. Fig. 1.1.2 illustrates the lattice of isotropy 

subgroups up to conjugacy. In this lattice, A c B  if  a member of the 

conjugacy class of A  is a subgroup of B. The inclusions are all trivial.

The most difficult thing to check in Fig. 1.1.2 is that Z f  is not included in 

B6. However, let K  -  {  k x% k 0, } .  Then it is easy enough to check that

1 /Cy'* 1 c K% (3 )

for * = *x , Rm and Rv . But these generate 0 and so (3 ) holds for all 

y e 0. In particular, * x ^ f '1 $ Bz for any % e 0. It follows that Z2r is not

included in S y
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Note that the three maximal isotropy subgroups Z 2r®z 2t* £ 5*arc 

precisely those instances (b),(c),(d) in Table 1.1.1 where the dimension of 

the fixed-point subspace is minimal, that is one. In general the latter 

condition implies maximallty of the isotropy subgroup (see Golubltsky 

[1983]) but not vice versa (Ihrig & Golubitsky [1984]).

Ftg 1 .1.1  The maximal isotropy subgroups of 0.

F ig . 1 .1 .2 . The lattice of isotropy subgroups of 0.

1
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51.2 . Calculation of Invariants and Equivariants.

Our atm tn this section ts to arrive at a simplified expression for a 

general B-equivariant bifurcation problem g  e In particular,

we w ill prove the following result.

Theorem  i .2 .1  Let g  e 2 , lft, >x(ll). Then there exist P ,0 ,R  

such that

g { x ,y ,z ,\ )  -  P { a* v, w%\ )X x * u% v% w ,\)X 2 * ff(u%v% w ,\ )X z (1)

where

u  -  jr2*g2+z2, v -  x iy l+ y l  z**z*x2t Wm x*y*z*

and

Further, alt coefficients in the Taylor expansions of P %Q,Rat 0 are 

uniquely determined.

Remark 1.2.2 As a consequence of Theorem 1.2.1 we can adopt the

invariant coordinate notation

g * l P . 0 . n  <2>

for g  given os in (1). This representation is essentially unique for our
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purposes: up to any given order in the Taylor expansion of g  we have P % (? 

and R  given uniquely. Note that an equtvariant germ g  is automatically 

zero at the origin. The other condition that g  must satisfy in order to be a 

bifurcation problem becomes P [0)  = 0.

The remainder of this section is devoted to proving Theorem 1.2.1. In 

Lemma 1.2.3 we show that the ring of invariant function germs 

is generated in some sense by ut v and w. Then Lemma 1.2.4 demonstrates 

that Xv  X2 and X3 generate the ^ ^ (O j -m o d u le ,  of equivariant

map germs. Finally we prove uniqueness.

Lemma 1.2.3 Suppose f t  G j iO ) is  an invariant germ. Then there 

exists P e E such that

-  P iu .v .w ),

where

U m v  x*y2+g*x**x*x*% w  -  xiy***.

P roof Using a result of Schwarz [1975] it is sufficient to show that u % v 

and w  generate the ring of 0 - invariant polynomials and that there is no
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relation between these generators. Now the x ^ , x ^  and x ̂ invariance tells 

us that f  is even in x , y  and z .  Apart from this f  is just 5*3 invariant.

The result follows as it is well known that the ring of 5 ‘3-invariant 

polynomials is generated by the elementary symmetric polynomials. (For 

example, see Theorem 268, page 442 of Redei [1967].) □

In the following, let a * x*, b  »  y*% c  = z* and let 

iy {a ,6 ,c )x \
<9(*,/>,£•)>■ <p(htc ta )y  .  (3 )

\ y (c ,a ,/ r )z l

Lemma 1.2.4 The module of equivariant m a p s ! i s  generated 

over f y x\* X2 and x 3 wnere

/ ,  -  ■ < i> . * 2 -  ■ < ^ > .  * , • {*£*1 * <****>•

Furthermore,

l . 'J * ')  -  {<9>l 9 «  ,9 < * .« .c ) .  9 < i,c ,P ) }. (4)

Proof Applying Lemma 1.4.1, page 106 of Poinaru [19761 we restrict 

attention to polynomials. We start by verifying expression (4). In other 

words we snow trial an equtvarlant polynomial g  is characterised du being
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of the form

gix .y .x)  -  Y. ¡t,3tß< *'(& *•  «**». (S)

where the are real numbers. Observe that such a map satisfies

for j  -  k ^ , n’x and f>f  and hence for alt x e 0, so a map of the form (5 ) Is 

indeed O-equivariant. Now suppose that g  -  ( ) ts an equivariant

polynomial map satisfying (6 ) for all x* Setting i  -  k ^ . k x ^ , we find 

that g i  is odd tn x, even tn g  and x. g i  ts odd tn g. even tn x  and x, and 

g i  js odd in x, even tn x  and g. Hence we can write

g(x< x.g .x ))  - ngU.g.x), (6)

9 p * '
g (x ,g ,x )  -  g j^g  . (7)

Now set x to be the transpositions (12), (23), (31) to find

9]ß, -  a it • 9'm  '  9m  • 9^  -  9ip ■

Hence (7 ) becomes

(B )

Using x * (12) and (1 3 ) tn (B) yields the required form (5 ).

Now we show that the general term < gX:*< r /**■)> of (S ) can be
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written in the form

<i/</>r*. c W > -  P {a .0 .cK l> '(K .9 .o .c)< a '>*tta .0 .c)</x:> . (9)

where P,Q  and ffare symmetric polynomials tn 3, tj and c. First note that

< « 2> -  i/<a> -  K l >  ♦ <flc>.

<a«> ■ i i< j » - l>  -  r < a » -2> • !»■<«»->>; 0 2 3 ,

so <a«> can be written in the form (9 ) for n i  0. Also

£ * ) > ■ ( c « K « * >  - < « « ♦ » > ;  m,n i. 0.

Furthermore,

< w » >  -  ( adtw, Mro* £•<»/>)< 1> -  < £»• i» )> ,

and for m i. n 1 0,  setting k -  m -n ,v e  have

< ¿nr«* £■**>> ■ < zvtof 3*> c*)>

C*)< M rr>  -  (w*< ¿ * w > ; m  k, p  • n -k ,  
[w »<  «* > : n <. k. q  -  k -n .

Finally

< «* ( -  w*<dwrv.c® »>; /(■ Is least. /; -  d  • /w -f.

• *  is not least, say m i  k , I
p  -  k - m , q  -  t-m .  □

Proof of Theorem  1.2.1  We have to show that the uniqueness condition 

holds. Theorem 1.2.1 then follows Immediately from  Lemmas 1.2.3 and 

1.2.4 by the triviality of the 0 action on the X variable. Now Theorem 268, 

page 442 of Hidel [1967] shows that at the level of polynomials, there Is 

no nontrivial relation between u, v and w. This Is not enough to guarantee
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that there ts no relation at the level of germs, but it does give uniqueness 

up to arbitrarily high order in the Taylor expansion.

It only remains to show that Xit X2 and Xz generate £ ^ ^ , ( 0 )  freely 

over Suppose that P%Q%R  e E ^ ^  satisfy

P X x ♦ QX2 ♦ R X Z > 0. (10)

We must show that each of P %i7 and R  is identically zero. Now for x%y %z  

nonzero, ( 10) reduces to

P{ u% y, w ) ♦ x2 <7( u% y% w) ♦ y 2z 2R[ u% v% w) * 0,

P {u % y, tv) * y 2Q {u% y% w) * z 2x 2R iu% y% w) = 0,

P[ u, i/, w ) ♦ z 2 Qi u, y, w) ♦ x2 y 2 /?(ut y, w) s 0,

and by continuity, the identities (11) hold for all x %y %z. Eliminating P  

from these identities, we obtain

Q -  z 2 R  = 0, 2 (12)

Q - z 2 R . O ,  )

holding everywhere by continuity. Eliminating Q from (12) and appealing 

once again to continuity yields R  * 0, and so by (12) and (11) we have

Q = 0, P  * 0, as required. □
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§1 .3 . Branching and S ta b ility .

In §1.1 we obtained the lattice tf isotropy subgroups of 0  together with 

a list of orbit representatives and fixed-point subspaces. In this section 

we look for zeroes of the general O-equtvartant bifurcation problem 

restricted to each fixed-point subspace. The analysis is greatly simplified 

due to the special form that an equivariant germ must take, see 

Theorem 1.2.1.

Our main result of §1, Theorem 1.3.1, ts in accordance with the 

Equivariant Branching Lemma. This result due to Vanderbauwhede [1982] 

and Cicogna [1981] predicts, under certain hypotheses, the existence 

locally of a unique branch corresponding to each isotropy group with 

one-dimensional fixed-point subspace. The first hypothesis ts that the 

group of symmetries should act absolutely irreducibly. Then for a 

bifurcation problem

o )- o t

the only other hypothesis is that the nondegeneracy condition Px(0) # 0 

holds.

Theorem  1 .3 .1 . Suppose thatg is  as in Remark 1.2.2 and that 

P{0) -  0, Px(0) * 0. Suppose further that the following nondegeneracy
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conditions are satisfied:

CKO) # 0. PJ,0)/ CKO) * -  ( 1)

Then (i ) the branches of solutions corresponding to the three maximal 

isotropy subgroups satisfy the following equations:

(2 )

PJ  0)

z 2r* z 2t: X .  -  2 /y°>* .  o< x*). (3 )

PJO)

S j: \ . .3 P J 0 b < K 0 ) x 2 ,  o ( ,4 ). (4 )

(i i ) There are no other branches of solutions locally.

(i it ) The fix branch is stable i f  and only ifPJ.0)* CKO) > 0, <?(0 ) < 0.

The S z branch is stable i f  and only ifZP Jfi)*  ¿7(0) > 0, ¿7(0) > 0.

The Z2r®Z2t branch is never stable.

Rem arks 1.3.2 (a) The results of Theorem 1.3.1 are summarised in 

Figure 1.3.1. The branches here represent 0 -orbits. We consider the case 

e<0 where the trivial solution is stable subcritically and unstable 

supercritically.

(b) One of the bifurcating solutions can be stable if and only if all three 

branches bifurcate supercritically. The others are then unstable. The sign



F ig . 1 .3 .1 . Branching and stability for the different types of solution 

branch in the O-symmetric context. The ( QiO)%Pj,0)) plane divides into 8 

regions: for values interior to these the schematic bifurcation diagrams 

are as shown for e<0. (Solid lines correspond to stable branches, dotted 

ones to unstable branches.)
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of 0 (0) determines which of the and 5*3 branches is stable whilst a 

stable Z 2raZ2t branch would require 0 (0 )  to be simultaneously positive 

and negative, and hence cannot occur.

Proof of Theorem  1.3.1  (t) We only need look at g  evaluated at points 

(* ,0,0 ), *>0 when looking for ¿?4 -solutions to g  -  0, since g  vanishes on 

O-orbits by the equivariance of g. The equation g  = 0 becomes

P {*2,0,0,X) * x* (A * 2,0,0.x) -  0. (5 )

Now /*(0) = 0 and Px(0) * 0 so by the Implicit Function Theorem,

P{ *2,0,0,X( *2)) ♦ , 2  (A *2,0,0,X( * 2 ) ) .  0, 

where X(0) -  0 and X( *2) .  X2*2 *o( * « ) .  Therefore 

rjLO) ♦ ^ (o )X 2 ♦ 0 ( 0)  -  0

yielding equation (2 ). Evaluated on (* ,* ,0 ) and (* ,* ,* ) ,  the equation g  -  0 

becomes

P [ 2 *2, *«,0 ,X ) ♦ *2 <7(2 *2, *4,0,X) -  0, (6 )

and

/>(3 *2,3 * «,* « ,> ) **2 0(3*2,3*4,*e,X) ♦ *4 *(3*2,3  * « ,* « ,X ) -  0, (7 )

respectively. These lead by the Implicit Function Theorem to (3 ) and (4 ) as 

required.

(i i )  Case (a) in Table 1.1.1 is just the trivial solution. In case (e ) g  -  0
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reduces to

P + x * Q -0 % p + j/ iQ m 0,| s | # II I ,  x%y  + Q.

Subtracting one equation from the other and dividing by x^-y*  gives Q * 0 

on the supposed branch which contradicts the nondegeneracy condition 

(7(0) # 0. Hence there are no solution branches with Z 2r symmetry that do 

not have at least 4  or Z2r « z 2* symmetry. Cases (f )  and (g) offer sim ilar 

contradictions.

(t il) A solution branch of g  Is stable if all the real parts of the 

eigenvalues of ( dg) evaluated at points on the branch are positive, and is 

unstable if one of the real parts is negative. Now g  = (A ,B tC) where 

A  -  Px* Qx3 4 R y2;2x% B  -  Pg* Qy* « Bx*xty, C  -  Px* (to* ♦ Px*y2x. 

We consider the three cases tn turn.

Case 1: Z*. When evaluated at ( *,0,0,X), QB/Qx, QC/Qx  and Q C/dy  all

vanish. Hence ( dp) is an upper triangular matrix with eigenvalues

H f ( . r ,O ,0.X>. ® £ (x.0,0,1).
Q x  9 y  Qx

Now

? £ (  r.O.O.X) ■ — U ,0 ,0 ,X ) -  <°(/2,0,0,X)
9  y  Qx

-  -x2 0{x2%O,O%\ )

by (5 ). Also



31

8 ^ U ,0 ,0 ,\ )  -  P {  ̂ 2,0,0,X)*2x*PM( x ¡ (K x2%0& \)* o (**) 
dx

• 2 r2( Pu ( -r^.O.O.X)* (?(r  2,0,0.X ))♦<)( * «).

To use the characterisation of stability stated in the introduction, we 

ensure that the eigenvalues do not vanish near the origin by demanding that 

(HO) * 0 and / y o ). <7(0) * 0. Note that the latter condition corresponds to 

that needed to predict direction of branching.

Case 2: Z / e Z jt. Along (.r.r .O .M ,

/a a a a *
a x a y
a a 3/4 *

•if a *
, 0 0 P+x*R

Therefore, one eigenvalue Is positive if <7(0) < 0. The other eigenvalues 

are the eigenvalues of a 2 x2  matrix and so the signs of tnetr real parts are 

determined by the signs of the trace and determinant of the matrix. We 

nave stability If

(Ho) < 0, iL£ > 0 and l ^ i ] 2 .  [2 ^ \ 2 > 0,
ax- lar| la ¿/I

and instability tf at least one of these expressions Is negative. Now

M -2 r 2 (/ 5 , -< f )* o (r 4 )
a J-

using (G), and
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O U « ).
a y

Hence

The conditions

0 (0 ) < 0, /yo)*  0 (0) > 0, 2 /yO)* 0 (0 ) < 0

cannot hold simultaneously, and so the Z2r#Z2t branch is always unstable.

Case 3: S3. The eigenvalues of ( û&)XfXtX^  satisfy the equation

E -\  F  F  
F  E -\  F  - 0  
F  F  E -\

(8)

where, using (7 ),

E -  l d - 2 -rî(/ 5,* y )* o (r< )  
a*

F  -  -2 .1*/’„•<* .r«).
a y

By performing column and row operations, (8) can be reduced to

0 0 E -F - \
0 E - F - \  0 - 0 .

E * 2 F -\  F  F

Therefore we require E -F  and E*2F  to be non-zero for nondegeneracy 

and positive for stability. This yields the required results. □



§2 . T h e  E q u iv a le n t Recognition Problem .

In this section we explore more efficient ways of solving the 

recognition problem. Recall that we wish to characterise the orbit of a 

bifurcation problem g  under the group of equivalences J ) (r )  tn terms of 

the Taylor coefficients of g. We show that this problem can be simplified 

by decomposing D (r ) into a group ¿AD  of equivalences whose linear parts 

are the identity and a group S (D  of linear equivalences. Then the 

»(D-recognttton problem can be solved by combining the solutions of the 

¿AD~ and 5(r)-recognition problems.

For many r-actlons the 5tO-recognttton problem ts trivial and so we 

concentrate on the ¿/(r)-recognition problem. In particular, we give a 

criterion for this problem to reduce to linear algebra, namely that the 

unipotent tangent space T{ f t lA D )  of the bifurcation problem f  should bo 

invariant under ¿AD- In this case the orbit of f  under ¿AD  Is simply the 

affine space

f ♦ T (f %iA  D ) .

and we say that f  ts linearly determined.

The organisation of this section ts as follows. S2.1 sets up the 

necessary singularity theory background. In §2.2 we show that D (r )  can be 

decomposed into ¿AD  and 5 tO , and that the recognition problem can be 

sim ilarly decomposed. We then give a theory for ¿/(r)-equivalence that ts



almost identical to that developed by Gaffney [1986] for »(r)-equivalence. 

In particular, results by Bruce, du Plessls & Wall [1985] lead to a 

characterisation of a module of high order terms. $2.3 contains our main 

result which gives the criterion for a bifurcation problem to be linearly 

determined. In $2.4 we give results which make it easier to check whether 

or not this criterion holds. Even if the bifurcation problem tn question ts 

not linearly determined, the calculations discussed in $2.4 are still 

necessary in order to determine the module of high order terms.

In $2.5 we solve the recognition problem for many linearly determined 

bifurcation problems. A common link between these examples ts that r  

acts absolutely irreducibly. We conclude by discussing briefly in $2.6 the 

complications that can be introduced into both the (AT) and the 5 ( r )  

recognition problems when r  does not act absolutely irreducibly.
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S2.1. Background S in g u la rity  Th eo ry.

We summarise the main concepts that w ill be needed, and establish 

notation. This notation Is the same as that used tn Golubltsky & Schaeffer 

[1384], Golubltsky. Stewart & Schaeffer [1988], Golubltsky & Roberts 

[1986] and Stewart [1987], and generalises that used tn SI.

Let r  be a compact Lie group acting on R . A smooth map-germ at 0. 

g  : R"xR -» R1 ts said to be r -  equt variant tf

g (\ x ,\ )  -  I g {x ,\ )  for alt t  e T ,  r  e R>, % e R.

We denote the space of all such mappings by § ^ ( r ) .  The variable

r - (  r j ..... )  is called the state variable and % ts the bifurcation

parameter. Let E ^ ( D  be the ring of all T -  invariant smooth 

function-germs at 0, f : R"*R -• R; that ts, those /'satisfying 

f U x . \ ) - H x , \ )  for all t  E T ,  r  E R", X e R.

Then is a module over 6 ^ ( 0 .  We must also consider the

6^(r)-m o d u te  E ^ ( r ) ,  which consists of the germs at 0 of all smooth 

matrix valued maps s : R”xR -> L (rr.fr) satisfying the condition 

K"l5tl(X ',X)T -  5 [r ,X )  for alt j e T , x  e R*. X E R.

A result of Schwarz [1975] ensures that there exists a finite set of 

Invariant generators ux..... i f  e E ^ , ( r )  such that any element f t  E ^ f )
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can be written as a function of ¿/lt...,¿ f. In other words 6 * ^ (0  * E WfX- 

The ring 5 ^  has a unique maximal ideal X ^  -  < u l%...,i+.,X> comprising 

all invariant functions that vanish at the origin. The *th power of the 

maximal ideal consists of all invariant functions whose derivatives 

in u  and \  up to any degree less than k vanish at the origin. Similarly we 

can define X ^ r )  to be the space of equivariant maps whose derivatives 

in x  and \  of degree less than k  vanish at the origin. A bifurcation 

problem with r  symmetry is an equation g { x ,\ )  -  0 where g  e * ^ < r > 

and ( dxg )0 «  0.

The group of T-equivalences acting on X » * ( r )  is defined in the 

following way. Let Z(D* denote the connected component of 

Hocnr (R*)nGL (R") containing the identity, where HompfR'’) is the vector 

space of all r-equivarianl linear mappings on R". Then g %h  e X ^ ( r )  are 

r  -equivalent if there exists a triple (S ’, X%A ) e such

that

/X x ,\ )  -  S[ x ,\ )g ( A  <r.*).A(X)),

5(O).(^>T)0 e Z (rr ,A ,(O)>O.

Let
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JXH - {(s.r,a ) e ^(D xk̂ D km̂ | 5to), (^ x )0 e Krr. a '(o ) > o).

Then under a suitable multiplication, the group action of D (r )  on X ^ r )  

induces the required equivalence relation. If we w rite 9 / - (^ / .A / ) /-1,2, 

then the multiplication is given by

( i -5‘2*(*S‘i *9?)»9i , 92)

where

5*2.(5*i*92)('r’A )  *

9 l»9 j( J’.X ) -  ( /Tr 9 2( **X)»Aj»A2(X)).

Recall that the tangent space T{ y ,JK r)) is given by

n m x  n> ■ { JU S y -T i« , i s ,  e « n ,  s, - 1 }. a )

A calculation shows that

n  M X D )  -  7T[ M x r ) )  * Ex{>  4 ) ,  (2 a)

where

H mxd) - { sr. (an* I (s,/) e i^,(r)«3,A(r)). (2b)

Note that f (  M X O )  Is an E ^ r i -m o d u le ,  but this Is not necessarily so for 

r {  M H O ) .  (2 ) gives an alternative 'formal' definition for /"(M X H ) .  

Unlilte tn ( 1 ) we do not require 1 X 0  to be a Lie grot^i. The following result 

is e fundamental lemma from singularity theory relating the concepts of 

finite  determlnacy and finite codlmensiun.
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Lemma 2 .1 .1  The following are equivalent:

(a) T( f M O )  has finite codimension in £ ̂ ( H ,  that is

n r . J H r ) ) «

for some finite t/imensionei vector space V.

(b) f  is finitely Determine!), that is  there is some * > 0 such that

f  ♦ p  E 0 ( r ) .  f  for a n p  E H*,A(r ) .

//■(a) and (if) hold then D ( r )  can he considered as acting modJ/o 

M‘^ ( D .  The induced action is  that of a Lie group acting algehraically. 

The tangent space definitions in  (1 ) and (7) coincide.

Definition 2 .1 .2  A bifurcation problem re  K ^ t O h a s  rinite 

r  -codimension If r ( f M D )  has finite codimension in l ^ J X ) .
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S 2.2  Unipotcnt Actions and the Recognition P ro b lo m .

Let D {r )  be the following group of r-equivalences acting on H ^ t n :  

n ( r ) - { ( 5 ,r ,A ) e ? ^ ( r ) « i , >x(r)«K l | sio),( dxx-)„c « r r ,  a '(o)>o). 

Consider the map projecting equivalences onto their linear parts 

n : g ^ i r j x X ^ D « ^ .

t!< S,X,A) -  ( MO), ( dx/ )a, A‘(0)).

Let s ir )  -  «n 'x Z ir i 'x R » ®  where IP® is the set of positive real numbers. 

It Is easy to check that

t t ljX r ): ®<r > -  *W> 

ts a group epimorphtsm. Its kernel

M r ) - { ( . i , . r , A ) e J X r ) |  W R I i A 1'  A - (0 ) . l } .  ( 1 )

is therefore a normal subgroup of fl(r). We can decompose fi 6 IKr) as 

6 * a/j • u2s

where s  e 5 f r ) ,  dXlux i  M r ) .  To do this set 

S ■ n (8), ux -  Tt(6)*t6, i/2 • 6tT(6)"t.

Furthermore the decomposition is unique since

t t ( S )  -  TI( 5) t i (  i / , )  •  S.
Note however that In general </, * i/j.

The group Mr) consists of unlpotent dlffeomorpnisms, whose linear
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parts are unipotent matrices. (A  unipotent matrix is one that in some 

coordinate system can be written as an uppertrlangular matrix with ones 

on the diagonal). In consequence we can use the methods of Bruce, du 

Plessis & Wall [1985], from algebraic geometry.

Remark 2 .2 .1  (a) The decomposition described above allows us to solve a 

C(r)-recognition problem by combining the solutions of the corresponding 

(A T )-  and 5(r)-recognitlon problems in the following way. Our method is 

to compute 5tr)./? for a given normal form /?, and then to calculate U f  

for all f t  5tr)./7. Since

JKD./7- ¿^r).5tr)./7,

we have g  e D(r)./? if and only if  g  t  ¿/(r)./ for some f  e 5tO./7.

The elements of 5 ( r )  are linear, hence we might hope to solve the 

5tr)-recognltton problem without too much difficulty. This hope Is not 

always realised; see Chapter IX of Golubitsky & Schaeffer [1984] for the 

case of two state variables without symmetry. However, in the examples 

which we consider in this paper, r  acts in such a way that 5tr> is scalar, 

that is Z(D *  contains only diagonal matrices (in some coordinate system). 

In §2.6 we give a criterion for 5 t r )  to be scalar in terms of the action of 

r , I n  these cases solving 5(r)-recognltlon problems is a trivial matter. In 

the remainder of this section we concentrate on the MD-recognitton
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problem. From now on we usually suppress the T  dependence.

(b) Our results require bifurcation problems f  e to have finite 

codimension. It is not necessary to specify whether this is finite 

codimension with respect to D orU. A  calculation shows that

T {r %t/) • <2a>

where

s r  , st,o)- ( <zr)0 - o }.  (2b)

Comparing the definitions of 7~( /\E) and n / ,  60, we see that

-  r(/-,60.  fcr, (3)

where

fcT .  R { 5/ ♦ ( Dx r iX  .  * /¡J 5", e Hom(R")}.

Now and are finitely generated as modules over E ,^ .  say by 

X| Xr , J j Ss ,

(Theorems X1I.S.2 and XII.5.3, and Exercise X1V.1.3 of GoliAitsky, Stewart 

»  Schaeffer (1988]) and so Hom(R") ts spanned by

( d„X^ , _ ,  ( of,-Wo: • -  • Ss(°> ■

Therefore V  is a finite dimensional vector space and hence, by (3), tt 

follows that the two tangent spaces have finite or infinite codimension in

l x?L together.
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(c) The results in 52.2 and 52.3 hold in a more general setting. In 

particular U  and 5  can he any subgroups of »  satisfying the following 

three properties:

for all 6 e D, 6 -  su for some u e U% s  e 5 ,

U  acts unipotently,

the codimension property (3 ) holds with W finite-dimensional.

we w ill require the following two results from algebraic geometry.

They deal with actions of uni potent groups and are Proposition 3.3 and 

Corollary 3.5 respectively of Bruce, du Plessls & wall [1985].

Theorem  2 .2 .2  Let if be a unipotent affine algebraic group over R 

acting algebraically on an affine variety V. Then

(a) The orbits of Uare Zariski-dosed in V.

(b) I f  x  e Vand W is  a U-invariant subspace of V then x* W is contained in

an orbit of U  if  and only i f  LU.x => W. □

Theorem 2.2.2 is restated in our particular context in Corollary 2.2.6.
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D efin ition  7 .2 .3  For f  e ,

H mA\ f+p  g U f )

= {¿'/'-/ 'I u s  U ).

Remark 2 .2 .4  Notice that g s  Uf if and only if g  -  f  e M {f,U ).

Hence, solving the ¿/-recognition problem amounts to computing M( f %U).

D efin ition  2 .2 .5  A subspace of is U-intrinsic i f  it is invariant 

under the action of U. If a subset M of contains a unique maximal 

¿/-intrinsic subspace, then this subspace is called the U-intrinsic part of 

M and is denoted Itr^/V.

Note that a ¿/-intrinsic subspace of is automatically an

6 , -submodule of M -  since it is closed under multiplication on the left 
•*»* ■*»*

by S  -  t)\ for any h  e

Clearly ItruM exists for any subspace M. In Proposition 2.2.8 we see 

that llruM  f*lA always exists provided f  has finite codimension.
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C o ro lla ry  2 .2 .6  Suppose f  6 Is of finite coalmens ion. rnen

(a) The orbit U f  is determined by e finite system ofpolynomial equations. 

(D) Suppose M is a U-intrinsic subspace of Then

M c  fi{ f, ¿1) i f  and only i f  M c  f (  f ,  if).

Proof By Lemma 2.1.1 we can work modulo . some k > 0. and so 

regard U  as an algebraic group acting algebraically. Now (a) and (b) are 

then just rewordtngs of Theorem 2.2.2 (a ) and (b) respectively. □

We now define the analogue to the module f  of high order terms in the S 

context (see Gaffney [1386]).

Definition 2 .2 .7  H f . i i )  - I p  e A ^ |  g*p  t  ¿¡/"for all g e  U f } .  

Proposition 2 .2 .8  I f  f  has finite codimension then

t { f . i n - U r uM .f.lA .

Proof We have to show that P( f .U )  ts the unique maximal ¿/-Intrinsic 

subspace contained in » i f .  if). The proof is identical to that of 

Proposition 1.7 in Gaffney [ 1986] with one exception. Closure under
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addition is still straightforward: If p v  p 2 £ f {f ,U )  and g  e U f  then 

g+Pi e U.f and so {g *p {i*P 2 e U.f by definition. The problem is closure 

under scalar multiplication. However, consider the set 

/ e  R | g+tpe U f  } ,

where p  e J>( f % ¿/), g  e U f. By the property of closure under addition, we 

have H e r .  But by Corollary 2.2.6(a), U f  ts determined by finitely many 

polynomials. Therefore / e T  if and only if  / is a simultaneous zero of a 

finite set of polynomials. But T  contains N, an infinite set, and so 7"=F as 

required. Therefore 5>( f,U )  is a subspace.

The rest of the proof proceeds as expected. Suppose g  e 9 {ftU), u  e U. 

Then g+ u p - u{ u  xg + p )  e Uf, so up e J>( f % U). Therefore J>( f% U) is a 

¿/-intrinsic subspace. Clearly j>( f %U) c M( f%U). Suppose P c  M (f,U ) 

where P  is ¿/-intrinsic. Let p  e P  and g  -  uf% u  e U. Then 

g  ♦ p  -  u f + p  = u{ f+ u xp ) e U.f.

Thus P z 9 { f tL/) and f>( /, ¿/) is maximal and unique. 0

C oro l 1 ary 2 .2 .9  //■ f  has finite codimension then 

9 {f ,U )~  \\run r ,U ) .

Proof Taking ¿/-intrinsic parts in Corollary 2.2.6(b) and applying

Proposition 2.2.8 yields



46

M c ?{ f % O) if and only If M c Itra7"( l/)% 

for any ¿/-intrinsic subspace M. Setting M (A  and M ■ ltru 7X ^.¿0 

In turn gives the result.
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$2.3. Lin ea rly  D eterm ined B ifurca tio n  Problem s.

In Remark 2.2.4, we observed that the computation of Af( f %U) would 

solve the ¿/-recognition problem. By Corollary 2.2.6(a), //(/.¿/) is 

determined by a finite set of polynomial equations. We concentrate on the 

simplest case when these equations are linear, so that Af{ f%U) is a vector 

subspace of finite codlmenston. Note that this codimension is the same as 

that of T( f % ¿/), because

codtm /"(/■, ¿/) -  number of defining equations for Uf 

-  codim M {f% U).

D efinition 2 .3 .1  A  bifurcation problem f  e X ^ o f  finite codtmenston 

is linearly determined if M( f %U) is a vector subspace of X ^ .

Remark 2 .3 .2  Linearly determined bifurcation problems are by no means 

rare. Indeed in examples that have been studied up to now, the majority of 

bifurcation problems are linearly determined. In the context of one state 

variable with no symmetry, nine out of the thirteen bifurcation problems 

of codtmension < 4 are linearly determined, whilst if T  -  Z2 all problems 

up to at least codimension 3 are linearly determined. In this section we 

give a simple criterion for linear determinacy. If this is satisfied, then



M{ f, it) is immediately known.

Proposition 2.3.3 f  is linearly determined i f  and only if  

M .f . l / ) -H f . lf ) .

Proof We have to show that M (f,U )  Is a subspace tf and only if tt ts a 

¿/-intrinsic subspace. One implication is trivial. To prove the converse 

suppose M if.lt) and g  e Uf. so that there exist u .d  t  ¿/such that 

f  * p  -  uf, g -  if  f.

Then

(g  . p ) - f - i i / f - f )  > i u f -  f )  e M if.lt).

Therefore g  * p  e Uf and so p  e 9 if.lt). O

Theorem 2.3.4 f  is linearly determined i f  and only I f  T if .lt )  is 

U intrinsic, in which case

m r . it ) -  r i f . i t ) .

Proof Suppose that /  Is linearly determined. Then by Proposition 2.3.3, 

M if . l t ) -9 i f . l t ) c  T {f ,If ).

But Mi f.lt )  Is a subspace with the same codtmenston as / ( f.lf).

Therefore
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T (f ,U ) -  M (f ,U )m 9{ V)%

the latter being a ¿/-intrinsic subspace. The converse can be proved

directly in the case when LAX) is defined as in (2.1). However the proof is

quite unwieldy. C.T.C. Wall found a more natural setting for the result in

Lemma 2.3.5. The upshot of this Lemma is that T ( f , U ) -  Af( f, U). But

T (f ,  l / ) -  J>( f, U) and so f  ts linearly determined by Proposition 2.3.3. □

Jr\ -fhe remainder df itys seeUo we revert io die. ndktion d f Iheoretn 2.I X .  ^
Recoil tat &t- Lie. a\aje,bra Ll) dt f todhe space l(f,U) aft object.
Lemma 2 .3.5  Let Ube a unipotentgroup acting linearly on a vector space

V, and let v e V such that LU.v is a U-invariant subspace of V. Then U.vis

the affine subspace v * LU.v.

Proof (C.T.C Wall, private communication.) Let Ny,...,Nk be a basis of the 

Lie algebra LU. Since this is nilpotent, there is an integer r  such that any 

product of more than r  of the Nj ts zero. The tangent space LU.V is 

spanned by the tyv. Since it is invariant, any NtNfV also belongs to L U v  

(see Proposition 2.4.1).

It suffices to show that U.v c v*LUv for these have the same 

dimension. As U.v is closed, it follows that it is the whole space. Because 

the exponential map for U  is surjective, it is enough to show that for any 

N  = TkjNj in LU, e ^ v  belongs to v ♦ LU v. But

a " v -  V .  •... .^ < S
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and since any NtNfv is a linear combination of the ty v  tt follows by 

induction that each term except the first lies In L D . v . □

C o ro lla ry  2 .3 .6  Let Uhe a unipotentgroup acting i¡nearly on a vector 

space V and let v e  l/. then L U v  is a U-invariant subspace of V if  and only 

i f

U v *  v * L U v .

Proof It remains to prove that if U v  * v * LU v  then L U v  is 

¿/-invariant. Suppose that M e  LU, u  e U. We must show that uMv e LUv. 

The hypothesis implies that v * LU v  is invariant under U  and so 

u( v  ♦ Mv ) e  v ♦ LUv.

Therefore

uv * uMv -  v e  LUv.

But u v e  U v  and so uv -  v e  L U v. Hence we have 

uMv e  LU v

as required. □
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$ 2.4 . To o ls  f o r  Calculating Maximal ¿ / -In trin s ic  Subspaces.

In order to calculate J>( f t t/) we need an efficient method for calculating 

the ¿/ intrinsic part of a subspace. The first result gives a necessary and 

sufficient condition for a subspace to be ¿/-intrinsic.

Proposition 2 .4 .1  If  M c X  ̂  is  a subspace of finite codimension then 

M is U-intrinsic i f  and only i f  L U.M c M.

P roof By the finite codimension of M we can work modulo X ^ ,  k > 0, 

and so regard U  as a Lie group or as an algebraic group acting 

algebraically. For a untpotent group ¿/, the exponential map 

e xp : LU U

is continuous and surjective (Lemma 3.1 of Bruce, du Plessis & Wall 

[1985]), so U  is  the continuous image of a connected space. Therefore U 

is a connected Lie group acting smoothly on X ^ .  Hence by Lemma 2.2 of 

Bruce, du Plessis & Wall [  1985] we obtain the required result. □

In general verifying the condition in Proposition 2.4.1 is a laborious 

task. A better method is to recognise that a Targe part' of a subspace is 

¿/-intrinsic and then apply Proposition 2.4.1 as a last resort on whatever
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is remaining.

It is clear that applying a T-equivalence to a monomial p  6 M ,A<r > 

cannot reduce the overall degree of p. Furthermore, because the A  part of 

a T-equivalence is only allowed to depend on X, the degree of p  in X alone 

can also not be reduced. Hence for all k%/ > 0, the subspace

x V r)<v> (1)

is both »-in trin s ic  and ¿/-intrinsic. By the linearity of the action of » .  

sums of subspaces such as in ( 1 ) are also intrinsic.

In the examples considered in §2.5, the action of r  is irreducible. 

Suppose further that the action is nontrivial. The fixed point subspace 

» {  i' e R j ' f o r a l l y e r }

is a r-invariant subspace of R and so is just {0 }. Now suppose X  e 2 * ^ (0 . 

Then

* *(0,X) -  X {i.O ,\) • JT{0.X) for all * 6 I*.

Hence r (0 ,X )  e  and so /(O.X) s 0. Thus the following useful hypothesis 

is often satisfied.

«  0 for all /  e ¡ ^ ¿ ( r ) .  (2 )

Condition (2 ) implies that the degree in x  is preserved by r-equlvalence in 

the same way as the degree in X is preserved. Therefore it is useful to 

define a space of germs vanishing up to some specified degree in x. For
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k > 1 , we define

f t l . W ) I  £ ü f ( 0 ) - 0
a x '

for all multi-indices

M <  *

The following result is elementary.

Proposition 2 .4 .2  Suppose (2 ) holds. Then sums of subspaces of the 

form

These inclusions need not be strict. For example, consider r  -  Z2 acting on 

R. Then 2 ^(Z2) consists only of odd functions and so 

^ ( Z 2) * J^24> i(Z 2) for all k i  1 .

For k > 1, let k~ denote the largest integer less than k such that X ^ -tr ) is 

strictly contained in X *-(r).

£ * (r )O i> .  * * !• / * < > ,

are 1) -intrinsic and U-intr/ns/c. □

Note that

2 ,(0  - Kt(r) =. Kj(r) = Mjfr) =... .

Remark 2 .4 .3  (a) k~ is either k - 1 or k - 2. This is due to the fact that r  

is a compact Lie group acting on R"and so is a subgroup of 0(n).  Hence
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there is always an invariant of degree two, the norm || x\\. In consequence, 

there is an equtvariant of degree r  for any odd number r .  Furthermore, 

the existence of an equivariant of degree two would guarantee the 

existence of an equivariant of any given degree. Hence we have the 

following.

Either k~ -  k-1  for all k  > 1, or 3" -  1. (3 )

(b ) Both cases in (3 ) can obtain for -  {0 }. The examples in $2.5 and $3 

all satisfy 3" -  1, but If r  -  S3 acting on C as the symmetries of an 

equilateral triangle, then /  2 is an equivariant of degree two. (See 

Golubttsky & Schaeffer [1983].)

Theorem  2 .4 .4  Suppose (2) holds. Let Vbe a subspace of

^ r x x « -i>  ♦ ... ♦  K*-(r)<x'.-i>, kj  > l, /,. > o, / - 1,...,*.

Then

Mt(n<v.-i>. H*r(r)<x'>.....  ajt(rK>'>-i> * A*-(r><V->. v

is  U-intrinsic.

P roof By Proposition 2.4.2

H- H,(r)<x'.-1>. a*r(D<x'>.....  H,(rKxt-i> • at-(r)<x̂ >

is ¿/-intrinsic. Hence by Proposition 2.4.1 it suffices to show that
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LU. k c  H.

We show that tf p  e X * -(r)< X »~ l>  then

np%U) c //0 - A *(rK V -i> ♦  x*-(rKX#>.

The result follows by linearity of the D-actton. Now

np.U).  f & ' i w *  A px\ (s ./M e ? , l» ( r ) x K ^ ( r ) . M i )

S(0) -  O, ( fitflo -  0, A'(0) -  0 J

It is easy enough to see that

Sp e //q t A/7x e X * -(r )< X #> C H0 .

To show that ( dp)X  e Hq we have to use Remark 2.4.3(a). By (3 ) we have 

two cases to consider.

Case 1. k~ = k- 1 for all k  >  1.

Now /7 is of degree at least k - 1 in r  and at least / - I  in X, and so tip is of 

degree at least k - 2 in * and at least / - I  in X. Also we have 

X  e Xj(r)Ex ♦  XjirKXX since /(0,X) ■  0 and ( tiX\ - 0. Thus 

( d p ) x i  M , ( n < v - » >  . H M (r K X ‘ > • 

as required.

Case 2. 3“ -  1 .

This lime r e  S j (r )E x • R j f r X X ) .  Hence

( * | J 'E i l r , ! ( r ) < V - i > .  H ^ ( r ) O i > .



56

By Remark 2.4.2(a), /r~*2 i  k and so the result ts proved. □

If (2 ) does not hold then the property of ’preservation of degree in x' 

does not stand. However we can prove a weak analogue of Theorem 2.4.4 

which holds true for all compact Lie group actions. Note that

?,A ( r )  '  a ‘J,A( r )  3  * .A ( r )  3  * - A ( r )  3  ”  '

Th is time each inclusion is strict.

Theorem  2 .4 .5  Let Wbe a subspace of

2,.»«■)<*-> ♦ i y r K V  -^ *... ♦ X%/r)Of>-r> .*,><>,/,> o.

Then

K ^ (r )< V-> .  X £ < r K V  -i>  .  K ‘;^ (D < V >

. . . . .  x k; y r ) < ^  - 1> .  * £ < r ) < # > .  V

is  U-intrinsic.

Proof This ts similar to that of Theorem 2.4.4. However we have only

/ e x , / i  .  i xA(n< \>

rather than S , A( r )  ♦ X ^ i r X »  as In case 1 of the proof of

Theorem 2.4.4. In particular
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JT(r,\) -  s\, J  e R*.

Is a possibility now that the restriction A 0 .\ )  ■ 0 no longer holds In 

general. This accounts for the slightly weaker result.
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S2.5. Examples w ith r  acting Absolutely Irreducibly.

l . One state variable. No symmetry. (Keufltz [1986].)

Up to codimenston < 4, all bifurcation problems fall into one of the 

following families:

e x* ♦ 6X, k codim * k -2,

zx**  6*X, codim = k - 1,

C*2 ♦ 6 * . k * 2 ; codim -  k - 1,

e r* ♦ 6X2f codim =* 3.

(See Table 1V2.2 and Exercise 1V2.1 of Golubitsky & Schaeffer [1984].)

Our methods apply to all the above germs except those in the third family. 

Indeed even the solutions to the full recognition problems consist of linear 

defining and nondegeneracy conditions. Furthermore, in these cases the 

unipotent tangent spaces are invariant not only under unipotent 

equivalences but under the full group of equivalences. For this reason, the 

solution of these recognition problems is almost trivial even without 

making use of the results in this paper. Therefore it is necessary to go up 

to higher codimension to find instructive examples. First however we must 

calculate the unipotent tangent space r( f %U). By definition 

n r . U )  E 1 }

Therefore



59

r ( r %t/) -  f \ i %U) ♦ Bx{ X*/;}, (la)

where

xf% X f % *2 fM ( lb )

The tangent space T( f %U) ts the same as L ^  in Corollary 1.9 of Gaffney 

[198G].

Example 2 .5 .1 (t )  exk ♦ 8*X2, k  > 4; codtm -  2 k -\ ,  

lhts ts the family 11.5.2 in Table 1 of Keyfttz[l986]. The lowest 

codimension in the family is 7. First we calculate the orbit of zxk+&x\2 

under scaling equivalences ( 5 ,X%A ) where

S (  Xt\) a p ,  X,\) a VX% A ( X )  a l\\ p , V ,  / Z O .

It is easy to ascertain that the orbit is

{p  v*e x* * p v  /2fi x \2 1 p ,v , / £ 0}, 

and that / is contained in this orbit if and only if

f  -  axk ♦ bx\2% sign* -  e, sign£ “ 8. (2)

Now consider the unsealed germ

f{ x%\ )  -  axk ♦ bx\2% atb * 0, k t A .

By (1) we have

n r . u ) -  2 ' x).

where

f t r .tA  - e ^ {  * r , \ r )
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-  kax*+Ut>x*\*% kaxk-\\*b\i%

ax**Ubx2\2, ax*\*i?x\* }  .

The first and third generators simplify to x**i and x2\2 and then it is 

easy to obtain

n r % 60 -  M‘*i ♦ *2<X2> ♦ R{ /cax*-i\*D\* }. 

where X = ■ <>r,X> is the maximal ideal in E ^ .

Note that

* ( / , » ) - JU-l*X2<X2>.

Now kaxk-\\ ♦ u \ i  $ S>( / ,» ) ,  for if we apply the scaling 

X ~ 2 X ,

then

kax*~IX ♦ Z?X3 ~  2( IX *4^X 3) /-(/, ¿0.

Hence 7"( /, ¿/) is not »-in trinsic . However

R{ }  c x*-i<X> ♦ <X3>,

and

n r , U ) *  x ‘<x> ♦ x m <X2> ♦ x<X 3 >, 

and so by Theorem 2.4.5

9 {f%U ) m n r %U).

Hence by Theorem 2.3.4, f  is linearly determined and

u r  - r  ♦ n r %U)

.  ax* ♦ bx\2 ♦ >4(>tw*-ix ♦ £ X 3) ♦ Mb*i ♦ X2<X2> .
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Further, g  e U.f if and only if

g - g „ - ~ - g xk-\ -  0, g x - g A - ... -  gxk- 2 l-  0, ga - 0, (3a)

gxk• k\a, gM - 2 b, (3b)

ffxk-\x* K'Aa, • 6 A t.  (3c)

The equations in (3c) are equivalent to the condition

* l « W - 6 4 S ^ U  m0- <3d>

We have now solved both the unipotent recognition problem (3a,b,d) and the 

scaling recognition problem (2). Combining the two solutions gives the 

solution to the full recognition problem. Hence we see that g  is 

D-equtvalent to ex**6x\* if and only if

g - g x - - - g xk- i - ° .  s%- ff* ....... sxk

s i g n ^ - c .  SigngM -&,

Although the defining conditions for the unipotent problem are linear, the 

defining and nondegeneracy conditions for the corresponding full problem 

are not linear.

Example 2.5.1(11) c(.r2*6X)2 ♦ ax*, codim » 5.

(See Table 3.5 of Keyfitz 11986) and Example 1.13 of Gaffney [1986].)

It is easy to check that f  is equivalent by scalings to e( ^♦6X)2 ♦ 0*5 tf
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and only if

f  -  a( ♦ afi% signs -  e, signs -  6, signs -  o. (4 )

Consider

f [x ,\ )  * a(x**6\)2 ♦ cxs, s.S.s 1 0. 

Computations show that

T( f ,U )  -  f ( f %U )-  //♦!?{ x$*Dx*\% x*\*6x\2).

H  -  M6 ♦ X «< \>  ♦ X2<X2> ♦ <X5>.

and that

9i.r*(A -  f l / ’.f l).

However 5>( /,J)) is only H. Gaffney shows that in this case a sufficient 

condition for g  to be D-equivalent to f  is that g - f  mod T( f t i/). In fact 

Theorem 2.3.4 shows that this condition is necessary and sufficient for 

¿/-equivalence. Hence

U f  -  ax* ♦ 2 afcr2\  «. & 2x 2 ♦ ex*

♦ A[x**dx*\) ♦ 0{x*\*6x\2) ♦ H  

and g  e  U.f i f  and only i f

where

(5)

Conditions (5 ) are equivalent to
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S '  f f ,m 9 * , - 9x - 9 x x - ° '

9xoo, ■ ™  »• *9m  ’  “ 9x00, . W n  -  34 i*  ’  <>•

9^000, -  9xoA  ♦ £*»» -  0  .
120 60  202

Combining this with (4) yields the required result: i 'E D / ’ if and only If 

9 ' 9 „ - 9 „ - 9 x o , - ° -  9x - 9 m - 0 ,

sl9n 9x00, ‘  E' st9" 9x*  ‘  e5' 9xoc<9x>. * 3« i n  ‘  °-

siqn ¡9x000, -  10 9x o a9x A  * 15 9xn9xox V  d.
V 9xi 9 { i  I

Note that example 2.5.1(ii) is  the first member of the infinite family 

e( x*+6\)* + a * J , / i 5 ,  codim -  /, 

in Keyfitz [1986]. In fact it is the only member of the family that is

linearly determined.



64

2. One state variable T  -  Z2. (Golubitsky & Schaeffer [1984), V I.)

Here r  acts on R as multiplication by -1 . The ring of r-tnvarlant 

polynomials in x  is merely the ring of even polynomials, while the module 

of r-equlvarlant polynomials just consists of odd polynomials. Every odd 

polynomial can be written as an even polynomial multiplied by *,and so the 

module of r-equivariant polynomials is generated over the ring of 

r -  invariant polynomials by the single element x. Results of Schwarz 

[1975] and Po^naru [1976] state that these properties are shared by 

smooth germs. Thus if we let u  -  x*% then

*

?xA(Z 2 > 'e . A - r -

Suppose f  e S U M  -  t/M .r ,  / -e E ^ .  The untpotent

tangent space is given by

T (f ,U ,Z2) -  f (/ ,i/ ,Z 2) .  (7a)

where

f t  f .U X i!  u r . \ r ,  u tr¥ , u \ r t ) . j r . (7b)

A list of Zj-equlvarlant germs up to codimension 3 Is given In 

TaPle V1.S.1 of Golubitsky & Schaeffer [1984]. It turns out that all but one 

of the eleven bifurcation problems satisfy

i>( /-.n.Zj) -  *>< f , u,z 2) -  n  f, ¿/,Zj).
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The missing problem is linearly determined but 5>( /’,D,Z2) is strictly 

contained in r {  f%U X &  Th is means that there is a distinct advantage in 

considering the unipotent recognition problem separately and we choose 

this as our next example:

Example 2.5.2 (e(*/*6X)2 *  a u * ) x ,  coding -  3.

Now f  is equivalent by scalings to (e( ¿/*6X)2 + a ts*)x if and only if

/■= ( ¿/*£X)2 ♦ cv*)x , sign* = e, sign£ * 6, sign c  «  0. (8)

Consider the germ

f {x ,\ )  = r {  u ,\ )x ,

where

r ( u %\ )  = a(i/+b\ )2 ♦ cx/3, a%byc  * 0.

A computation using (7 ) shows that

n  r, u,z2) - n  f* uj-i* - h  ♦  k

where

/ / - E #iX{  ¿/3X, */2\2, */X3, \4 }.

and

l / -R {  i/l*A/2>, ¿/2X^A/X2, ¿/X2*^X3 } .* .

Notice that ¿/4..r e //and hence //contains any monomial of order * 9 in 

«r. Therefore H  => X ^ Z ^ E * . In this way we see that

H  -  K9(Z2)Ex ♦ X 7(Z 2)<X> ♦ M6(Z 2)<X2> ♦ X 3(Z 2)<X3> ♦ X i(Z 2)<X4>
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and so by Proposition 2.4.2 

J>( /r,l),Z2) -  H.

Now

K 7(Z 2)6x ♦ Ms(Z 2)<X> ♦ X 3(Z 2)<X2> ♦ jt| (Z ,K > sX  

and since there are no equivariants of even order 

9" -  7, 7 "  -  5, 5 ' -  3 and 3‘  -  L  

Thus, by Theorem 2.4.4

T(fyUyZ2) -  H*V

is ¿/-intrinsic and so f  is linearly determined. Therefore 

U f *  (au* ♦ 2 abu\ ♦ ab*\* * 0/3).x  

♦ ♦ B(u*\*ùu\*) ♦ C{i/\**ô\*)).Jr ♦ H.

Hence g (x y\ )  = s (u y\ ) x  is ¿/-equivalent to / if and only if

s  -  s , -  sx -  0 . X

- 2C, s ^ -  2ab, - 2 a®!, > (9)

s _ . 6 ( c * / f ) ,  sm ~ 7(.BÙ<C), SiXX-6CÔ. J

Equations (9) can be replaced by

j  -  s ,  -  -  0. >

« 2 * ,  # * - * * „ . s„ s> x - sk ' 0’ > (10)

r -  3 SouX ♦ 3 S*XX - sux  • 6 c . )
Ù Ù2 b  3 J

Togetner with (8 ) this gives me necessary and sufficient conditions for g
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to be Z2-equivalent to e(//*SX)2 ♦ a a*, namely

sign 5 ^  »  e, sign -  e6, sm = 0,

sign suuu -  5 suu\suu ♦ 3 suxx̂ uu -
suX SuX

3. Two state variables. T = CL. (Golubttsky & Roberts [  1986].)

Here Z?4 is taken to be acting on R2 as the symmetry group of the square 

and is generated by the symmetries

( ( * ,y ) ** ( y .  ')•

The ring of Z?4-tnvariant germs is given by

N • x l+ y l  and A ■ ( x* -y2)2.

%x  ^ (Z ? 4) is generated as a module over

Hence every Z?4-equivarianl map germ can be written as

/< ■ p ( N * r (N ,b * \ t y i - r t )   ̂ ■

We adopt the ‘invariant coordinate* notation

where

f - l p . r \ .



68

Tabic 2.1 of Golubitsky & Roberts [ 1986] gives a list of the fifteen 

bifurcation problems with D A symmetry of topological codimension < 2. Of 

these, ten are linearly determined. We remark that these are precisely 

those bifurcation problems satisfying the nondegeneracy condition 

r (0 )  # 0. An analogous situation exists in the O-symmetrtc context; see 83. 

Of the linearly determined germs, ?{ f %U%0 A) is strictly larger than 

J>( f %U%DA) for all but cases 1 ana 11. We treat problem XII:

Example 2 .5 .3  [e)V*6X*KlA«/nAA,e], m2 # 460, top. c o d i m ■ 2.

The scaling problem is not quite as trivial as in the previous examples, f  

is equivalent by scalings to [eA'*6X2-KJA*/77A'X,e] if and only if

f  = [ aN+ ù\2+ c&* dN\, a], (11a)

and there are positive numbers p ,v, / such that

epv3 = a , 6pv/2  = b y öpv5 = r ,  /77pv3 / « d.

Clearly we require

sign^ = e, s ig n£  = S, signr = ö. ( l ib )

A short computation shows that in addition we require

(H e )

As usual we now consider the unsealed germ
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In Example 9.2 of GoluOtlsky & Roberts [ 1986] it Is shown that 

where

.[M3*M<A>,M2.<A>],

M being the maximal ideal <4f,A,X> in £ „ . In fact

rU ,l/ ,O t ) ■ H  -  R{ [/V2,,V], [A,/V], [AfX.X] }• (12)

In order to translate (12) Into the notation of 52.4, we first note that H  is 

generated as an £ ,  module by

[/V3.0], [A2.0], [X5,0],[A*X,0]. [/VA.O], [AX.O], (13)

10,/lft], [O.A], [0,X2], [0,/VX],

Ignoring factors of X we start to list monomials in ^ ¡ n order of 

degree In ( x,y). Note that N  and A have degrees 2 and 4 and that [ 1,0] and 

[0 ,1 ] have degrees 1 and 3.

eft 1 4 be.

Order [*.0] [0 , . ]
1 1
3 N 1
5 /V2.A N
7 A*,A

Glancing at (13) we note that the only monomials in ( x ,y )  which are 

missing are

[1,0], [ /V.O], [ -V2.0], [A,0], [0,1], [O.A0-
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These are all terms of degree s 5 In ( r ,y )  and hence 

//=> X 7( 0 4)E , .

In this wag It is easily seen that

/V- M7<04)€» • Ms( 0 4)<X> * H 3{0 t K M >  * M ,(^ 4K X ’ >. 

Thus by Proposition 2.4.2 H  Is ¿/-intrinsic and so is contained in 

P( f,U ,D t ). Furthermore

R { [/ V J .n  [A./V],[/VX.X]}  c  .  K j ( / )4)< X > .

and so by Theorem 2.4.4, ? (f ,U ,D t ) -  T {f,U ,D t ). Therefore by 

Theorem 2.3.4 we have

U f  -  [ »V* A V *  ¿-A* ON\, a]

Hence 1/7,r] e Uf if and only tf

p  * p x* 0, pM = a, p xx~2 P , p L ~ c  ♦ B, 

pM - a * C ,  pm - 7 A , r ~ a .  rK - A * B ,  r x - C ,

that is tf and only tf

P m  -  r x -  d' P m ' 2P a  ■ 2ra m 2c- 

Combining (14) with (11) we see that [ p , r ] Is ¿^-equivalent to

.  A l/P .P ]  .  ♦ ¿14/X.X] ♦ H.

[zN.KTP.ai* tf and only tf
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§2.6. Examples with r  not acting Absolutely Irreducibly.

In §2.5 we considered examples where r  acts irreducibly. Using 

Theorem 2.4.4 or Theorem 2.4.5, we were able to show that the uni potent 

tangent spaces of certain bifurcation problems are ¿/-intrinsic. Then by 

Theorem 2.3.4 the unipotent recognition problems can be solved using only 

linear algebra. Furthermore it is then trivial to recover the solution to the 

full recognition problem because the group S\r) of linear r-equivalences 

just consists of scalar multiples of the identity. In other words, the 

triviality of the 5(r)-recognition problems in §2.5 relies on the absolute 

irreducibility rather than the irreductbility of the r  action.

Schur's Lemma (Theorem 2, p.119 of Kirillov [1976]) states that if r  

acts irreducibly on 1/and Homr ( k) denotes the space of linear maps on V 

that commute with r ,  then

Homr ( 10 s  F , C  or H.

If Homr ( 10 =* F , then r  acts absolutely irreducibly, whereas if 

Homr ( tO a C or H, then there is no coordinate system in which Homr ( 10

consists only of diagonal matrices.
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D efinition 2 .6 .1  Supose r  is a compact Lie group acting on F \  We say 

that S ir )  ts scalar tf tn some coordinate system 

HompdV) c {diagonal matrices}.

Proposition 2 .6 .2  Suppose r  acts irreducibly on QT. Then S ir )  ts

scalar if  and only i f  T  acts absolutely irreducibly. □

Suppose now that r  does not act irreducibly. By Theorem 3.20 of Adams 

[1969], F" can be decomposed into irreducible subspaces 

F Vt • ... • Vk.

Lemma 2 .6 .3  S iT ) is  scalar if

( i ) The actions o f r  on Vt  and Vj are not isomorphic for i  t  /

(i i ) Homr ( V j)*  F, / -  1,...,*.

Proof Supose L e Z (D *  c Homr (F"). Then, as in Proposition 4.2 of 

Stewart [1987],

i ( V j ) c  Vj,

and so L has the block matrix structure
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where each Zy e  Homr ( Vt ). Furthermore, since each Homr ( l  ̂J s R w e  

have

Z, -  P/I , Jl/ 6 R, / -  1,...,*. □

In this paper we consider only examples where 5 t r )  is scalar. A 

nonscalar problem is studied by Golubitsky & Schaeffer [1984], Chapter IX. 

They look at the nondegenerate bifurcation problems in two state variables 

with no symmetry. Their result for high order terms is easily recovered 

using Corollary 2.2.9; indeed the problems are linearly determined. 

However it is in the .^-recognition problem that all the difficulties lie.

In the remainder of this section we look at a straightforward example 

where r  does not act irreducibly but where 5 X 0  is  scalar.

l . r - Z }  acting on R?. by reflection on one copy of R . trivially on the 

other. (Dangelmayr & Armbruster [1983].)

The Z2 action is generated by

( *%y) ** (**-</)•

Every Z2-equivariant germ can be written in the form



75

i  /*( r .y .X H

/ , ( r .y .X ) -  p { u, v.X), /■}( .r .^ .X ) -  r (  i/, c .X )^ . 

u  -  r ,  r  ■ ^ 2.

In the Invariant coordinate notation 

in this notation the unlpotent tangent space

n  f,i/ ,it) -  n  f .u ,z t) • e jx n / »* ./ -* » .

where f( r,U.l2) Is generated as a E ^ ^ -m o d u le  by

A p f i \  4 0 . r ] ,  4  1Py, vrv\  z  -  u, \f or X ,

[0,p \  [ tr-,0), t/2[ up,j, uru\  K  ^  « - „ I ,  X[ up,j, i r j .

Let M  -  <i/, e,X> denote the maximal Ideal In E ^  • Let / and J consist of 

sums and products of ideals of the form 

X, < v> and <X>.

Then it is  easily seen from the tangent space generators that (/,*/) is an 

intrinsic module if and only if 

VJ c / c  J .

Th is  characterisation of ’obvious1 intrinsic modules proves more useful in 

this particular case than the more general Theorem 2.4.5.
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It turns out that the methods of this paper simplify calculations for 

relatively few of the bifurcation problems. Linear determinacy holds for 

three out of the five problems of topological codimension < 1, but for only 

three of a further twelve problems of topological codtmension 2. There 

are two types of equivalence that restrict the number of intrinsic 

subspaces:

x * x  ♦ \  and [/7,0] ** [0,/7].

The first of these types also occurs when there is one state variable 

without symmetry and causes bifurcation problems of low codimension to 

fail to be linearly determined. Th is  does not happen when there is 

reflectional symmetry present. For example in our present context we do 

not have equivalences of the form

y** y  » X or [O ,? ]»«  [?,<>].

We would expect the action of Z 2e Z 2 on R2

( *,y) ~ (- *,y), ( **y) ~  (**-</)

to behave far better, in much the same way that Z2 behaves better than 1 

when acting on R.

Example 2.6.4 [¿^♦e1X*e3 v%z2u*+ w], top. c o d lm ^  • m-1. '

This is family ( 3 ) ^  of Dangelmayr & Armbruster [1983]. First we solve 

the 5XZ2)-recognttton problem. Note that S(Z2) is scalar:
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HomZ j(R2) -

We usually require that

5 t0 ). ( or) o e Z ( I , ) \  A (o )  > o.

Z(Z2)° being the connected component of HomZ2(R2)n£Z (R2) containing the 

identity (see Chapter XIV, Si of Golubitsky, Stewart & Schaeffer [1988]). 

Then

Dangelmayr & Armbruster [1983] impose the alternative restrictions 

det 5 to ) * 0. ( tfrfo > o. A ’(0 ) > o.

In other words ( S%X%A ) e 5 (Z 2) must satisfy

where jij, p 2 # 0, v t, v 2, / > 0. It can be shown that f  is 5 (Z 2)-equivalent 

to [¿/•♦e1X+e3 i'] subject to the following conditions:

sign( de) = e2, sign( ac) * e3, sign( aù) »  e1# if m  even, ( lb)

f  -  [  ao"* b\  ♦ £V, du* ♦ ev\ (la)

sign( de) -  e2, sign( be) -  CjC3, if m odd. (lc)

As always we now consider the unsealed bifurcation problem 

f  -  [ ao"* b\*eo,du** o v\ m > 3, ayb %c %d*e # 0.
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P  -  Pu ■ - •  *  P  um- 1 -  0 .  r  -  r u  -  0 ,  

^°PKr u u P \{P \r v -  r \P vù  -  e2 • 

and s ig n iPumPy) -  E3.  s i g r t ^ / ^ )  -  c , , t f  m  even,

sigrtp-yPy) -  EjEj  ,  t f  m  odd.
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S3. Singularity Theory Classification of Bifurcation Problems 

with Octahedral Symmetry.

We give a singularity theory classification of bifurcation problems with 

octahedral symmetry up to topological codimension one. This consists of a 

list of seven normal forms with the property that any O-equivariant 

bifurcation problem on R3 with topological codtmension z  1 is 

O-equivalent to precisely one of the germs represented by the normal 

forms. In addition we give the universal unfolding of each normal form and 

solve the recognition problems where possible. The results are displayed 

in Table 3.1.1.

The recognition problem was discussed in §2. We now explain briefly 

the concepts of universal unfolding and codimenston. For a more detailed 

discussion see Golubitsky & Schaeffer [1984] and Golubttsky, Stewart & 

Schaeffer [1988].

Roughly speaking, a universal unfolding of a germ gives us all possible 

local behaviour in the bifurcation diagram under small perturbation. More 

rigorously, we say that a germ F  e £ Y|. .* r (D ) ls an unfolding (or 

0  -unfolding to emphasise the role of the group 0 ) of f  e if

J r ,g ,f X 0) -  f {  x,g .* ,\). The unfolding F  factors tnrough another 

unfolding 6  e if there exist s  e % -  r  - «  - ( 0 ).
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/  6 ?W l M (0 ). A  e 6 ^ ,  ana a smootn germ at 0 A  : such tnat

F{x ,y.e .\jtx) -  S (.r ,i',.? ,X ,a )£ (,l'(.i',y ,.? ,X ,a ),A (X ,a ),/ l(a )),

5t .r,,y,.?,X,0) ■ 1, -T( r .v .^ .X .O ) • ( r ,y ,e ) ,  A (X,0) • X, -4(0) -  0. 

An O-unfolding F  of A Is versa! if all other O-unfoldings of f  factor 

through F. A necessarg and sufficient condition for versallty is given in 

terms of the extended tangent space Tv{ A,D(0)) defined as follows.

TJi f,SXO)) -  {S -A ( d n r  *A fx | i- E X  £ 2w A(0 ),a  e M -  

There is a simple relation between A,0(C)) and the tangent space 

A( A,D(0)) defined in the introduction, namely 

Ae(A ,0 (0 ) ) -  A (A .O (C ) ) .R {4 ) .

Then the Equivariant Universal Unfolding Theorem (Golubitsky & Schaeffer 

[1979b], Gotubitsky, Stewart & Schaeffer [ 1988]) states that A  is a versal 

O-unfotdihg of A if and only if

l _ f  . , ( n ) ■ 7e(A ,0 ( 0 ) ) .  R fa A /a o t/fr.y .i-.x .o )}. (D

A universal unfolding is a versal unfolding with the minimum number of 

unfolding parameters o(¿...«a*. It follows from (1 ) that k  ts the 

codimension of Tt( A,0 (0 )) In ¿ (0 ). This same number we call the

0 -codimension of the germ f.

The codimension of a germ gives a rough measure of the complexity of 

the bifurcation diagram. The higher the codimension the greater the
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number of degeneracies that can be unfolded. However we saw in the 

introduction that some degeneracies are irrelevant from the qualitative 

point of view. Even in the nondegenerate situation of S i, we have a modal 

parameter that is invariant under 0 - equivalence. This parameter must 

therefore be an unfolding parameter and yet it does not change the 

qualitative behaviour. To deal with this we slightly alter our definition of 

codimension by considering the topological codimension :

top. codim0 f  -  codim0 f  -  #(modal parameters).

This definition is not totally satisfactory; we still have two modal 

families corresponding to nondegenerate bifurcation problems, one of 

topological codimension zero and the other of topological codimension one. 

Hence in addition to our standard classification we produce a qualitative 

classification. This gives the right answers but only because it is defined 

to do sol In particular, the two modal families described above collapse 

into one family of codimension zero.

Thus $3.1 comprises both a standard (smooth) classification and a 

qualitative classification up to (topological) codimension one. $3.2 deals 

briefly with an application to barium titanate crystals. The calculations 

for the smooth classification are presented in $$3.3 to 3.5, and the 

qualitative classification is discussed in $3.6. Many of the tangent space

calculations are reserved for the Appendix.
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$3.1. Tabulation of Results.

In this section we present the results of our classification. There is one 

normal form of topological codimenston zero, normal form l( i) .

Associated with this normal form are six nondegeneracy conditions. 

Breaking each of these conditions in the least degenerate manner leads to 

the six topological codimension one normal forms l( i i ) ,  2 to 6. Normal 

forms l ( i )  and l ( i i )  correspond to the nondegenerate bifurcation problems 

of $1. The reason for the strange numbering is that the qualitative 

behaviour of these two normal forms is the same. The other five normal 

forms all lead to distinct qualitative behaviour.

Fig. 3.1.1 gives a flow  diagram for the classification up to topological 

codimenston one. Then in Table 3.1.1 the recognition problem is solved for 

the first six normal form s. In other words, polynomial restraints are 

imposed on Taylor coefficients at the origin in order to determine whether 

a bifurcation problem is D-equivalent to a normal form. We also give the 

additional terms required to obtain a universal unfolding of each normal 

form. Note however that for example normal form 3 has codimension three 

but that we only give one unfolding term corresponding to the topological 

codimension. The other unfolding terms correspond to the two modal 

parameters and are omitted.

The full solution to the recognition problem for normal form B is not
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given as the calculations involved are far more difficult. However, we are 

able to solve a slightly different recognition problem.Here we look only 

for qualitative differences between germs; that is topological differences 

between bifurcation diagrams and furthermore differences between 

unfolded diagrams. We say that germs belonging to distinct smooth 

equivalence classes are qualitatively equivalent if they are the same In 

the above sense.

Table 3.1.2 gives the same information as Table 3.1.1 but for 

qualitative equivalence. Note that the entries are far sim pler than those in 

Table 3.1.1. For a start, normal forms 1(1) and l(tt) coincide as promised. 

Also we see that the modal parameters denoted by p  and q  have no 

qualitative bearing. Hence (usually complicated) expressions that had to be 

evaluated precisely for smooth equivalence can be ignored completely for 

qualitative equivalence. In practical terms, this simplification does not 

make a great deal of difference when recognising to which normal form a 

given bifurcation problem corresponds. However, actually solving the 

simplified recognition problem is much easier. In particular the 

recognition problem for normal form 6 can be solved w ith  relatively little 

trouble. (In fact, a good mathematical theory for qualitative equivalence 

would make the solution quite easy.)

Some notation in Table 3.1.2 has to be explained. For example, in the
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case of normal form 6, one of the nondegeneracy conditions ts

*/E(/77) . ( D

The modal parameter m has four intervals of possible values 

( - 00,0), (0,1), ( U )  and (l.oo).

Each range of values gives rise to distinct qualitative behaviour. However 

it is not necessary to specify the precise value of J  but merely the 

interval into which the value falls. Thus if  m had the value $, then 

condition (1 ) would read J  e (O.J).

$§3.3-3.5 are concerned with obtaining the information in Table 3.1.1; a 

sample of the calculations for normal forms 1 to 5 are given in $$3.3 and 

3.4 and the details for normal form 6 are presented in $3.5. Then we deal 

with Table 3.1.2 in $3.6.

Theorem 3.1.1  (Classification Theorem)

Suppose f  • [PtOtff] e of topological codimension s 1. Then f  is

equivalent to precisely one of the normal forms in Table 3.1.1//7 which 

case it  satisfies the defining equations and nondegeneracy conditions 

( where given) .  The universal unfolding is obtained by adding the unfolding 

terms and replacing m, n, p, qbym, n, p, q respectively, where 

a , m -m , n -n , p -p ,  q -  q.

are arbitrarily dose to zero.
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R em ark 3 .1 .2  An analogous result to Theorem 3.1.1 exists for 

qualitative equivalence. The codimension in Table 3.1.2 is the least 

topological codimension of germs in the same qualitative equivalence 

class.

Proof of Theorem 3.1.1 Most of the work is done in verifying the 

entries in Tables 3.1.1 and 3.1.2. Then the flow chart in Fig. 3.1.1 all but 

constitutes a proof of the theorem. It only remains to show that the 'top. 

codim > 2' boxes are accurate. Now

top. codim f  * #(topologtcal defining equations for 0 - 1 .  

Hence we must show that each box corresponds to at least three 

independent topological defining equations for f. Our strategy rests on the 

following observation: if we go along an arrow that says Vp -  a ' and if 

'<p = a' is an invariant of equivalence by that stage of the flow diagram, 

then '<p -  a' must be a defining condition from then on. For example, Q is 

invariant whilst in general R  is not. However, cnce we have P  = Q * 0, 

then R  is invariant. Therefore if we go along the arrows which say' Q -  0' 

and ' R  * 0' then we have already reached germs of codimension at least 

tw o. Special caution must be paid to expressions involving moduli. For 

example, if Q * 0, then we define m -  P J  Q. This is a smooth defining

condition but not necessarily a topological defining condition. Indeed if we
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have m t - l ,  - I ,  - l ,  then m -  P J Q  Is a topological nondegeneracy 

condition. Of course, if we have m * -1 , -1, -1, then m -  P J Q  is both a 

smooth and a topological defining condition.

Hence it remains to prove that all expressions in the flow chart are 

invariant (once they appear). Now if  0  * 0, then it is clear from the 

calculations in $§3.3 and 3.4 that all subsequent expressions such as r(m) 

are invariant. Also, if < 7 -0 , then it is  clear that Pm , Px , and R  are all 

invariant. This leaves J  and K. Th is  time, the calculations in $3.6 lead us

to the required conclusion. □



«  m - P J Q , /■ ( /» ) -  /°„»(/77 .1)^ l.-2/77<?,.(/77.1X2'»*l)#

« »  J-t.PxO.-f’.W ’x*' K-\PrQ.-P.9JU*

Fig  3 .1 .1 . Flowchart for Classification Theorem.
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§3.2. Application to Barium Titanate Crystals.

One possible application for equlvariant bifurcation theory Is the 

phenomenological theory of crystals. The theory deals with the change in 

structure of a crystal with temperature and the resulting polarisation 

along an axis. This behaviour corresponds to spontaneous symmetry 

breaking from a trivial solution with full symmetry to a bifurcation with 

a smaller isotropy subgroup of symmetries. An example of a crystal with 

cubic symmetry is the barium titanate crystal. Th is has a barium ion at 

each vertex, an oxygen ion at each face centre, and a titanium ion at the 

centre of the crystal. Our following analysis should work equally well for 

other crystals with cubic symmetry. However different parameter values 

corresponding to differing properties of crystals could lead to strikingly 

different bifurcation diagrams.

Devonshire [1949] noted that as temperature is decreased from above 

120*C, the structure of a barium titanate crystal undergoes successive 

changes from one having the full group of symmetries of the cube to three 

structures with less symmetry. These states are referred to in the 

Physics literature as cubic, tetragonal, orthorhombic and rhombohedral 

respectively, the last three corresponding to Z2«Z 2, and Sz, the three 

maximal isotropy subgroups of 0. Furthermore, the axes of polarisation 

are the corresponding one-dimensional fixed-point subspaces.
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Our results say that in the nongeneric situation the orthorhombic state

cannot be stable locally but this is not a contradiction since we do not

preclude the possibility of stability away from the origin. In fact by

considering the universal unfolding of a suitably degenerate normal form

we are able to produce precisely the scenario described above. (Our

unfolding corresponds to the derivative of a free energy polynomial.

Employing Landau theory, Devonshire [1949] minimised sucn a polynomial

in order to explain the transitions.) Our choice o f  non^L-Qnn tmsl tteimit ^caL 
Subrrwtfwvjl. braocVv  ̂ <*\d accord**̂  iolheor&o 1-VI (» )  "flus «s vUii GHo) noniert

He*)«,the normal form in question is the sixth in our list:

[e u* 6\ *a nvjo mu+pu*+ qu 3,o],

E, 6,0 s t l ,  777* 0,1,1, 77*0,f.

Our analysis is simplified by choosing suitable values and ranges of values 

for the various parameters. As mentioned in §3.1, the qualitative nature of 

the bifurcation diagrams is not affected by the values of p  and 

q. Accordingly, we set p  = q  = 0. Then, as is standard for physical 

applications, we set c = +1,6 = -1 . These values are necessary to ensure 

that the trivial solution is stable subcritically and unstable 

supercritically, thus allowing spontaneous symmetry breaking as \  passes 

through zero. The qualitative effect of the modal parameter n is almost 

negligible and in order to simplify calculations we w ill set n  * 0. This is 

a critical value for n and w ill thus lead to degeneracies in the bifurcation
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diagrams. However we w ill keep track of the rare occasions when we 

should not have taken n  to be zero and w ill indicate the true picture at 

these 'degeneracies'. Finally, we w ill postpone a choice of value for a and 

range of values for m. These choices are far more sensitive and lead to a 

wide range of interesting scenarios including the one required for the 

intended application.

Thus we analyse the unfolding

G{cx) -  [u -\ ,a + a  mu,a], 

a -  ± 1, m  * 0, J, i -

The branching and stability data are summarised in Table 3.2.1. We 

notice that there are four X values at which an eigenvalue on a maximal 

branch changes sign giving rise to a submaximal secondary bifurcation. 

These intersections values are

Xj -  -  _ L  a , (* ,0 ,0 ), ( x,y,0) and ( x ,y ,y )  branches,
am

X2 »  -  J L  a , (* ,  * ,0) and ( xty t0) branches,
am

X3 ■ 2 a  ♦ — 2------a2, (* ,* ,0 ) and ( * ,* ,* )  branches,
0(1-2/77) (1-2/77)2

X4 -  3 a  ♦ ___a2, (* ,* ,* ) , (* ,* ,* )  and ( x %y*y) branches.
0(1-3/77) (1-3/77)2

It would appear that Xt -  X2. In fact, the coefficient of 0(2 in Xr X2 is not
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identically zero. This is the artificial degeneracy introduced by setting 

n = 0. We shall draw the bifurcation diagrams as tf »  \ 2 but should be 

remembered that one of the X-values occurs slightly before the other 

(oc2 is small compared with a ).  Which value occurs first depends on the 

sign of n.

The order of occurrence of X3, X4 is indicated in Table 3.2.2 

together with the stability assignments on the maximal branches and the 

existence of submaximal branching. The ♦ and -  signs indicate the signs of 

the three eigenvalues on a branch. The branch is stable if and only if the 

signs are ♦♦♦.

It is now possible to pick out the sequence of events corresponding to 

the results tn Devonshire [1949]. In particular, the ( x ,x tO) branch must 

start unstable, stabilise, and then become unstable again. Hence we must 

have either

oc < 0 , d/77 > 0,0(2/77-1) > 0, d -  *1, (1)

or

a  > 0, d/77 < 0, 0(2/77-1) < 0, a  = -1 . (2 )

However, if condition (2 ) holds then it is impossible for the ( .r,0,0) branch 

to be stable from the origin. Hence we must have condition (1). Finally, we 

need

0(3/77-1) > 0,
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in order for the ( x ,x ,x )  branch to restabilise. Hence we have the 

following independent requirements:

a  < 0, a -  1, m  > J. (3)

The parameter values in (3 ) lead to Fig. 3.2.1. We have included the 

submaximal branches in the diagram even though it is not clear that they 

are relevant to the application. What appears to happen in practice is that a 

mixture of say ( r,0 ,0) and (* ,* ,0 )  states occurs for a short time between 

the two pure states. For this reason we have not performed the 

complicated calculations that would give us the stabilities of the 

submaximal branches. In any case, these stabilities are not necessarily 

invariant under the equivalence relation.

Fig. 3.2.1 could equally well model the behaviour of other crystals with 

cubic symmetry and similar characteristics to barium titanate, or even 

totally different physical systems. (Note that for certain ranges of 

parameter values, it might be possible for the ( x%x,0) state to be bypassed 

via the ( x%y %y )  secondary bifurcation). On the other hand, a better model 

might be given by Figs. 3.2.2-3.2.B.

We have only drawn the bifurcation diagrams that arise from the 

unfolding of normal form 6. This is because the diagrams associated to the 

other normal forms are not very interesting. In particular, no mode

interactions are possible.
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Maximal Branching Equations Stabilities

( /T,0,0) X -  x*+amx*+OLx* Ml > 0
sign p2 * sign p 3 = -sign(oc*o/77*2)

( X , X ,  0) X -  2x2+20 mx^+cnx* sign j i j »  sign(a*2a mx2) 
M2>0
sign ji3 »  -sign(oc*a(2/77-l)*2)

( A  *,*) X « 3 * 2+0 (3m+\)x*+ax2 sign Pi »  sign p 2 = sign(a+d(3/77-l)*2) 

M3>0

Submaximal Branching Equations Intersection with Maximals

U .y f i ) o m \  * -a  
o my2 -  -amx^-cx

y  = 0 0/77X = amx2 -  -a  
y  -  x  o m \  -  2 0 /77x2 .  -a

{* .* .* ) o m \  = a  *2- « + (  l -  m )  * « -o a  x2
0/77x2 = 0(1-2/77)^ 2-a

Z  « 0 0( 1-2/77)X -  20(1-2/77)*2*0(*«) 
-  2a*0(a2)

z  -  * d( 1-3/77)X -  3d(l-3/77)*2+o(*4) 
«  3a*o(a2)

X -  x2+2t/2+ot/2(x2+i/2)
0(2/77-1)^2 -  -0/77^2-a

^  = 0 0 /77X = omx2 .  -a
* 0(l-3/77)X -  30( 1-3/77) ̂ o (  ̂ 4) 

= 3a+o(oc2)

No solution

Table 3 .2 .1 . Branching Equations and Eigenvalues of Normal Form 6.
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Fig  3 .2 .1 . ö > O, m > } ,  a  < 0.

F ig . 3 .2 .2 . a > O, m < O, a  > O.
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53.3. Tangent Space Calculations for the Linearly Determined 

Bifurcation Problems.

In this section, we obtain the information displayed in Table 3.3.1. In 

particular, we show that all but one of the low codimension bifurcation 

problems are linearly determined; that is their unipotent tangent spaces 

are invariant under the group of unipotent equivalences. It is convenient to 

work throughout under the coordinate change in the Appendix. We split the 

calculations up into three stages.

Step 1 Calculate f (  f % ¿/), the E#> ^-module part of r {  f % t/). As we 

have a E ^ ^ ^ -m o d u le  we can use Nakayama’s Lemma (Lemma 3.10 of 

Golubttsky & Schaeffer [1979a]). In order to verify that f (  / , £/) contains a 

finitely generated E ^ ^ ^ -s u b m o d u le  /, we need only show 

/ c 7( /,£/) ♦ X / ,

where X  is the maximal ideal in E ^ ^ ^ .

Step 2 Calculate the unipotent tangent space,

n r ,ù 0-  f(f ,£ /) + ex{ \ 2 £ }.

Step 3 Find the high order term module,

9 (f,U )*  Itru /"( / , U).

If P( /, ¿/) «  T( f , U), then /  is linearly determined.
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Step 1 This is just an application of Nakayama's Lemma. As an example, 

we give the details for the two infinite families

We have to prove that

f ( f %l/ ) -  /*l/,

where, suppressing subscript /77's, / is generated as an E^ ^ ^-m odule by

(¿^♦2,0,0) ((* ,0 ,0 ) ((✓ ,0,0) (*2,0,0) (¿/✓ ,0,0) (¿/2*,0,0) ( (A ,0,0) 
(0, z/2,0) (0, v , 0 )  (0, (✓ ,0) (0.X.0)
(0,0, u) (0,0, ✓ ) (0,0, w ) (0,0,X)

To prove this it suffices by Nakayama's Lemma to work modulo X / . Modulo 

X /  the generators in Corollary A.4 reduce to

( bu\* cu**u *j**2-2av%0%0)

( -  ay- Dmu\ -  emu**- dmu**2, a( m ♦ 1) u* b\ ♦ o A , a)

( -  bmu\ ♦( k-\)cmu**+kdmu**+2 amv*2 kcu*~ 1 ✓ , amu♦ b \  ♦ co*,0) 

( A/2X ♦ ctA* 2, «/ 2,o) ( kcu**, au*% 0 )

( bu%\♦ cu*+i-2  auv,0,0) ( -  «/✓ - bmu*\-emu**, a(/v*l)  ¿/2,o) 

(-A/2X ♦( 1) cu**>2 auv, au 2,0).

/" - (£*♦ a/** £*/*♦!, *,0)#; m - -1 or -1; * £ 2. (1)

and

((* .0 ,0 ) (0, ✓ .O) (0,0, ✓ ) ( (A ,0 ,0 ) ((✓ ,0,0) (0, (✓ .O) (0,0, (✓ ) (0,0,X) (0,0, ✓ ) 

( bu\+cu*+U du**,au,0) ( 1 )  at/**, au,0)

(£X2*£*/*X,*X,0) (kcu*\,a\,0)

The last five generators yield ( ¿A* ,0,0), ( ¿/2X.0.0), ( ¿/✓ ,0,0) and
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has full rank. The required result now follows easily.

Step 2 This step is trivial. Indeed, for the normal forms l( it ) , 3, 4 and 5 

/"(/■, ¿0 ■ f (  f , U ). In the cases of the normal forms l( t )  and 2, 

f (  /", i/) contains £ },  Dut the introduction of the term X* fx simplifies 

the form of the tangent space quite considerably.

Step 3 Our method is to find as big a ¿/-intrinsic part as possible by 

Theorem 2.4.4 and then to use Proposition 2.4.1 on what is left over. For 

example, consider normal form l ( i i )  in Table 3.3.1. In this case 

/■(/■, U) * f {  U). We claim firstly  that f ( f t U) has the alternative 

characterisation given in the third column of the table. The following table 

gives all monomials in ( x ,y ,7 )  of a given degree. (Recall that ¿/, v% w  have 

degree 2,4,6 and the equivariant generators Xit X2, Xz have degrees 1,3,5. 

Also note that our coordinate changes in the Appendix preserve these

degrees:)
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Order jic o o (0,*,0) (0,0,*)

1 1

3 u 1

5 lA ,v u 1

7 u \ u v , w ut, V u

We see from Table 3.3.1 that ignoring terms with X we are only missing 

(1,0,0), (z/,0,0), (¿/2,0,0), (0,1,0).

Hence we have all terms of order i  7 and so 

r ( f tt/)z>R-,Zx .

Sim ilarly  

We are left with

( I'V.O.O), (0,*/V,0), (0,0 ,\r ); r  »  0 , . . . ,* - l  

(0 ,V ,0 ); r  -  1..... * - l .

Hence we have verified the entry in Table 3.3.1. It remains to show that 

/■( f %U) is ¿/-intrinsic. By Proposition 2.4.2 we have 

n r . i A  = K jE , * it j< V >  * Xi<X‘ *i>.

Now consider the set

K  -  { (  v,0,0) (0,z/,0) (0 ,0 ,1)) 

c M jE jn  7"( ^, U).

It is a simple application of Lemma 2.4.1 to see that
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*( f.lA  => (X 7 ♦ ^ E x ♦ X 3< * >  ♦

Hence it remains only to show that

0 = fr'.

where

1/ -  R {(0 ,X ,0 ),,..., (O .V -1 ,0 )* }.

Using Corollary A.4, it is easy to check that 

f (  w%U )c  9 (f t l/) for all w e W.

Also X2 wx is clearly contained in ? ( f %l/) ♦ F  for all w e t/ .  Hence by 

Proposition 2.4.1 we have

5\ f %U ) -  T ( f %U).

The calculations for normal forms l ( i )  and 2 are even more 

straightforward. T [f t l/) can be written as in Table 3.3.1 and it is then 

immediate by Proposition 2.4.2 that it is ¿/-intrinsic. However normal 

forms 3,4 and 5 present more difficulties. Again there are no problems in 

obtaining the results in Table 3.3.1. Now suppose* «  2. By Theorem 2.4.4 

we have

S>( f,U ) => (> V R { (^ ,0 ,0 ) ,  ( u/,0,0), (0,^/2,0), (0, (0,0,z/))Ex

♦ (X5*R(O,l,0))<X> ♦ Xj<\2> ♦ R(£*/3-Z*/X,0,0).

It remains to show that J>( f % (/) contains W where

W = R{( cu3- ^i/,0,0), (2 v%u%0), ((4/77^3) ^ ,0 ,-1 )}.
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It suffices by Proposition 2.4.1 to show that

r { p .o ) c ? {r %o)

for p  «  ( t'.O.O), (0,//,0), (0,0,1). This i:< an awkward calculation. We 

cannot use the tangent space generators in Corollary A.4 since p  does not 

satisfy the conditions Pv ,pv ,ffs  0. We have to write p  in the ortginal 

coordinates, work out the tangent space generators using Theorem A.3, and 

then change coordinates again to verify that the generators are contained 

in P( f %U). Great care must be taken with these calculations. For example, 

consider p  = ( vm ,0,0)* and t\7 . In the original coordinates 

p  -  [ v+\(/n+\)u2SS,Q).

We have

ri2 = [ - (  ¿/2-2 ^){/77*l)0*i/^-Zu/M/77*l)i/2- I'.O]

-  [-(/77 + l)6 ’3*(2/77*3)i/»'-3ii<',i(/77*l)6'2- t-\0]

-  [-(/77*l)tf3*(2/77*3)*/( £♦)(/??♦ l)</2)-3 ( Ufr*i(/77*l)(2/7?*l)tf3),- £ , ( ) ]  

* [J(/77*l)(-2*2/77*3-2/77-l)tf3*(2/77*3)i/ljr 3 Hf,,- ifr.O]

= [(2/77 * 3 ) ^ - 3  i^ ,0 ]

= ((2/77*3)¿4^-3 Wa%-Vm ,0)* C  J>( f % U).

The third and sixth equalities are the second and first coordinate changes 

respectively. ri2 is the most difficult generator for ( ^,0,0) and eventually 

we do obtain the required result when k -  2.

When k > 2 even nore work is required, although the fact that we 

exclude the case m -  -J simplifies things slightly. In particular, wa-  w
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and (0,0,/?)# -  [0,0, tf]. We can see immediately that

S>( * *5<X> ♦ *i<*2>

♦ R{(U-1)«/**1-Z«A,0,0)}.

Also, a glance at the tangent space generators in Theorem A.3 reveals that 

factors of w  cannot be removed and so

B ^ ^ { (  k'.O.O) (0 , w,0) (0,0, w)}.

Furthermore, if p  = (0,0,>9), then

/"(/7,60 c **9.0,0) (0, **9,0) (0.0,/?)}.

Hence all the hard work lies in checking that

n p %t A * * K W

for p  e 6 ^ K{ (  k'.O.O) (0,u,0) (0, I'.O )}. We omit these details.



Normal Form
 f 

fU
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Tangent Space 

T(f,U
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)
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§3.4. The Recognition Problem for the Linearly Determined 

Bifurcation Problems.

In this section, we verify the entries in Tables 3.1.1, 3.4.1 and 3.4.2 for 

the normal forms 1 to 5. We showed in §3.3 that the unipotent tangent 

space was ¿/-intrinsic for each of these normal forms and hence the 

solution of the unipotent recognition problems only requires linear 

algebra. The solution of the full recognition problem falls naturally into 

three stages.

Step 1 Solution of the unipotent recognition problem in the preferred 

coordinates (Table 3.4.1).

Step 2 Solution of the full recognition problem in the preferred 

coordinates (Table 3.4.2).

Step 3 Solution of the full recognition problem in the original 

coordinates (Table 3.1.1).

Step 1 Suppose f  is one of the normal forms 1 to 5. Then T( f % U) is 

¿/-intrinsic, and hence by Theorem 2.3.4 we have

g  is ¿/-equivalent to f  if and only if g  * f  mod T( /.¿/).

Now, for the normal forms l( i ) ,  l ( i i )  and 2, f %l/) is generated by

monomials and so the linear algebra is very straightforward. For example.

consider normal form l(i) ,
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f - ( ¿ > )N ctA.aflY, i l l .

Notice that the impotent tangent space contains alt monomials except

(1,0,0), (X.0,0)..... (W-1,0,0),

( u,0,0), ( U\,0,0),..., ( i/\k-1,0,0),

(i^ ,0 ,0 ),(X ‘ ,0,0), (0,1,0).

Hence ( P, <?,/?) is ¿/-equivalent to f  tf and only tf 

r - P y  -  . . .  -  />w - i  -  0 ,

pu '  ' ’¿ A ......... '"i/Xk-l * °’

puu • ■ p lt  * *1*. 0  * a-

Normal forms 3, 4 and 5 do not cause many more problems. In the 

preferred coordinates, each normal form is represented by

/ -  c u * * \ m  -  -1  or k 42; or m -  -1, k -  2. 

The untpotent tangent space contains all monomials except for

(1,0,0), (z/,0,0),..., (i/*,0,0), (X.0,0), (0,1,0),

( o*»l,0,0), ( ¿A.0,0), ( V.O.O), (0 ,i/,J), (0,0,1).

In addition r ( f , l / )^  V  where

j/ -  R  i l ( * - l ) ex/**1-¿K/%,0,0) ( 1 - 2 SK.0,0) )
l  (2  V, i/,0) ((4 / n .J ) v .O ,-1) j

Hence ( Z\ O.ff) Is ¿/-equivalent to f  tf and only tf

P - P u * - 1 - 0 .  P u * - v c ,  P \ - t f ,  0 - a

and there exist A ,B yCyD  e R such that
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Pyk*i -(k +\yi{(/+(k -\)cA+ kc0 )t

P y -  -2aB*2C+{4m*Z)D,

P u - C ,

R  • -D .

These equations yield the required relation between Put+\ , Pu\% Py % Qu 

and R.

Step 2 Suppose n  is a one of the normal forms 1 to 5 in Table 3.4.2. By 

Remark 2.2.1(a), a germ f t  2 ^ , ^  is O-equlvalent to n  if and only if f  

is ¿/-equivalent to the corresponding normal form in Table 3.4.1 and if 

that normal form is equivalent by scalings to n.

For example, (/>,{?,/?) is ¿/-equivalent to normal form 2 in Table 3.4.1 

if and only if

Q - a % P y ^  •2tJ% P y y -2 0 ,  P y l  -  *

P - P l - P y - O .

This normal form is equivalent by scalings to 

{6\2*at/*+pu\e,0)

if  and only if there exist positive numbers p, v  and / such that the

equivalence
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S(/r,i/t* ,\ )  ■ p, Xi.x%y %*%X) ■ v U . ^ . z ) ,  A (X ) ■ /X. 

transforms one normal form Into the other. In other words p, v  and / must 

satisfy

(6pv/2X2+apv5tf2*/?pv3 /¿A,epv3,0) = ( b\2* ciA* du\% s,0).

The equations

epv3 »  a%
6 p v /2 - b% 
tjpv5 -  Cy 
/?pv3 / =

can be solved for p ,v ,/  > 0 if and only if

signs -  e, sign£ -  S, signer -  a and "  P '

But from  the untpotent recognition problem we have 

3 . 0 .  O .  \ P \ \  . C .\ P UU. O . P uX 

so (1 ) becomes

sign Q -  e, s i g n / ^  -  6, s i g n -  a and

P.s

( 1)

In addition, the unipotent recognition problem gives

P m P \ mPu m0

as required.



Step 3 It remains to recover the necessary and sufficient conditions of 

Table 3.4.2 in the original coordinates. Note that in Table 3.1.1 we have 

given these results only up to topological codimension one.The results 

needed to do this are summarised in Proposition A.7. In fact we could 

recover the results for the infinite fam ilies l ( i )  and l ( i i )  since high 

partial derivatives with respect to X are allowed for in Proposition A.7. 

Also we could deal with the infinite fam ily 3. Here m -  -1  and the second 

coordinate change is the identity, so we need only use Proposition A.5 

which allows for all partial derivatives. It is the second coordinate change 

which causes more problems and our results in the Appendix do not suffice

for the infinite family 4.
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Normal Form Defining Equations

1(1) <7 = a, P \k -  * !£ , Puu = 2c
/ i l ;  a.O.c * 0 P - P - y  .  _  -  Py<-i -  0
m * - 1,  - I ,  - i pu  -  '‘ ¡/X.........|Di/X*-i ■ 0

m o (¿>\k, a ,0). Q = a, Pyj, * * !£
k 1; a,b * 0 P - P \ - ~ . -  P y ^ i  ■ 0
m * -1 , -1 pu  ■ ^ i/X .........* » X M  ■ 0

pu u \ - ~ -  puuV'-1 -°

2 {e\2*cvi*O j\,a, 0)m <7 -  a , T’xX ■ 2 0 . puu " 2 0
a ,b ,c  * 0 P  = P \  ■ Py  a 0
m # -1 , -1, - j pu \ -< *

3-5 ( b\+ cuk* djk+\t a,0)M 0 -  a, P \ -  0, P u t -  k\c
a ,b ,c  * 0 P  • Pu  ■ ... -  = o
m  -  -1  or k i  2 
or m  »  -1, k «  2

« c ( kH * (k -\ 'tpu \ \ -  0
T * r n i  ( 2 /  0  /

M /7?)- P v -  VQu ♦ {A/n*Z)ff

Ta b le  3 .4 .1 . Unipotent Equivalence.



Table 3.4.2. Smootn Equivalence In Preferred Coordinates.

Normal Form
 

(Top.) 
Defining Equations 

Nondegeneracy
Codim

. 
Conditions
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S3.5. Th o  Degeneracy {7 (0 )-0 .

From Table 3.1.1 we see that a bifurcation problem [P ,<?,/?] has 

topologicol codimension zero provided six nondegeneracy conditions are 

satisfied, namely

<t(o ) # o, />(o) # o, 7j(o) # o, m # - l ,  - I ,  - l .

where

m  -  />,(0)/<?(0),

5 (0 ) • P J 0) ♦ (/77*1)^(0) -  2/77^0) ♦ (/77*lX2/77O)/?(0). 

Normal forms l( ii ) ,  2, 3, 4 and 5 correspond to the degeneracies 

5 (0 ) -  0, Px(0) -  0, m -  -1 , - i ,  -1. 

respectively. Further nondegeneracy conditions are imposed where 

necessary in order to ensure the only degeneracy ts the required one.

In this section we show that normal form 6 

[e u*6\*o nv,o mu+pui+ qu3 ,o], 

m  * O, i, i, n i* 0, f ,

possesses only the degeneracy ¿7(0) -  0 and so has topological codlmenston 

one.

First we consider the germ

f  -  [ au* ó \  ♦ envy emu♦ du?+ eu*, c]t 

atb,c  # 0, m  # 0, l, K n  # 0, f .
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Lemma 3 .5.1  / ♦ J ,  where

I  -  [M< w \)i<  w>,< w > l

J  -  [M3.X4 *M2< ♦*< v>].

Proof By Theorem A.3, f( f ,U )  is generated by

zT± = z\au* b\* cnv,cmu* du?* eu*. ¿r]

zri3 -  z [ 3U*7 b \ ,- d/A-2 eu* ,0] z  -  u, v% w  and \

r 3 = [c (m -\)u w *du 2 w*eu* u / , « sk/+ r(/7+1) v\

/¿4 * [r(/77*2/7*l)i/u/>cf/2 w*eu* w *6 a w ,c (Zm -i) w*Gdbw*3eu? w,0] 

7"5 -  [au?*bu\* c{n- 2m)uv* emu* * du** eu*-2du? v-7eu* ^ 3 w ,0 ,0 ]  

r 6 = [0,au?* b u\* c {n -2 m ) uv* emu* * du** eu^-7 du? v-2eu* y*Zew,0] 

Tf = [0,0,au?*bu\* c [n -2 m)uv* emu* * du** eu*-2du? v-2eu* u*Zew] 

7"8 -  [Zauw*Zbw\*e{Zr*l) vw* emu* w*du* w*eu* fc'.O.O]

T$ * [0 ,3auw*Zbw\*c{3/7+1) vw*cmu? w*du* w*eu* w,0]

TJo »  [0,0,3 au*Zb\*c{Zn*l) v* emu?* du* * eu*]

7ij »  [ -  emuv- du? v - eu* v* cw, au* b \  * env* emu?* du* * eu*, 
emu* du?* eu* ]

7̂ 5 * [c [n -m )u v -d u ?  v-eu* v*au?-2av-c[Zn*\)w %
-2 cmv*2cmu?*Zdu* *4eu*-4duv-0eu? v,c[m*\)u*du?*eu*]

where ^ 13 = i(S 7|- T2 ), r i4 = i( rA- r 3 ), /"i5 »  i( r  12-  T||).

First we show that ? ( f %U) contains /. By Nakayama's Lemma we may

work modulo M/. Now

wT§ * [Zew?t0t0], wT§ = [0,Zew?,0] mod M/, 

and then w rn , r 9 yield [0, uw,0], [0,auw*bw\,Q). v f i4 gives [  w ,0 ,0 ] 

and so 7"8 and iW 13 give [uw,0,0] and [ w \,0,0]. Multiplying T14 by u
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ond X gives [0,uw,0\ and [0, tvX.O] respectively since m * I. Finally 

u*ri yields [0,0, w\ Similarly f(r.U) contains J provided m *0.1 □

We can now write

f ( ✓ ,* /) - (/ • J ) »  V ,

wtiere l/ts a finite dimensional vector space. In fact 

\2rx* [ a V . o . o ] ,  

and so

7\ f% *A • ( /  ♦  */) • R {[>2.o ,o ]}f

where W is the real vector space generated by 

Ax -[«/2*2AA,-<*/3,0] ¿2 • [*/*,-
Az • [auv+20t/\JOJO] Aa - [au2*bu\*cnuv,emu** du*,cu]
A$ - [ au\*cnv\,cmu\* du2\, ¿rX] A9 - [auv*bv\+ env2,emuv,cv]
Af = [0,mU*,U2] Aff * fO, mu2\,u\]
A9 •[0,/77//\2,\2]
A io ■  [- emuv* cw% 9u+ b\+env* emu2* du5, emu* du2]
Au »[0, au2* bu\* cnuv* emu3, emu2]
A12 = [0,au\* b\2* cnv\*cmu2\, cmu\]
A13 - [0, auv* bv\ ♦ cnv2,0] A 14 « [0, «/3 ♦  bu2\,0]

¿ 16 -  [0,«/2X*A/X2,0] Aft -  [0 ,«/ > 2 ^ X 3 ,0 ]

/417 -  [  ̂ (  /7- m)uv* au2-2  av- c{Zn*\) w%-2  cmv*2 cmu2*Z ¿rt/3 -A duv,
c(m*i)u+du2]

A 19 -  [-2«A',-2/^77/A'>2£577i/3fc(/77*l)i/2]

/4jg -  [ - 2av\,-2cmv\+2cmu2\ c (m * l )u \ ]
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A 20 A n  -  [0 ,cw ,Ä/*/>X*r(/7*l)k]

A ft = [0 ,0 ,ä /2,^*A] A ft  ■ [0 ,0 ,ä A * £ X 2]

A ft  -  [3 sw ,c(3/77 -l) W.O)

-  [aul>t>u\>c{,n-7m)W ‘Scw%0 M

A ft * [ 0 , Ou\*l { n-2m)uv*emu* *3cw.O]

A 21.  [0 ,0 ,3at/+3 £X ♦ c (3  /?♦ 1) r . 0771/2],

Our firs t task is to cast out redundancies. Inspecting the generators 

A 1 to -49 , A ft to A 1& , Aft, A 23 

we see that A e and A % are redundant. Now replace A ti and A e by 

A ft  = 3{-\t.2Aili<0Al9)*cm Ai4*', c (m t\ )A 2i-c m A ii ten Aft)

-  [  31/v , d v\t  077^2,0,0],

A ft  -  A ,  -  » 2 ,  -  [0 ./W », «0.

Also replace /t2$ by

A ft  = /»u  -  A ft -  [0 ,2m w -3 w,/7)i/2].

We can now see that A „  ts a linear combination of A n , A n  and A 10. It ts 

also possible to check that A ti can be written in terms of A i to /15, A l4,

A is ,  Aft, ^ 2 4 ’  ^25* ^29 and ^ 3 0  ■

By Theorem A.3 the extended tangent space

t, ( / , B ) .  n r , u ) t K { r i% ra , 4 , 1 4 }

.  (/  .  J ) • V ,  • F { [  1,0,01 [X,0,01 [X2.0.0]},

where

Wx • W ♦ R {[ au♦ env, emu* du*<■ eu*>, c], [ au,- du*-2 « / 3,0]}.
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Wo have cast out seven redundancies from W and so have at most 25 

independent tangent space generators in 30 variables. Hence the 

codimension of /\D) is at least 5. We claim that

U  -  F { [0,1,0], [  I'.O.O], [0,i/,0]. [0,tf2,0], [O.Z/3,0] }  

is the required tangent space complement and so 

codim f  * 5.

The claim is easy to verify. Wc must show that

(1)
It is immediate that the left hand side of (1 ) contains

lz/,0,0], [ i/X.0,0], [ i/2,0,0], [0 ,i/2X,0), [0 ,i/X2,0], [0.X3.0] 

[0,0,1], [0,0, i/2], [0,0, i/X], [0.0.X2] 

in addition to the generators of U. Then the four simplified generators 

2*18. ¿24 • ¿2S ’ ^30

give

[ov.0,0], [ w ,0,0], [0, z/r.O], [0, w ,0]

since m » 0 and /7 »  | . The rest is easg with n t  0. Hence we have proved

the following.
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Theorem  3 .5 .2  Letts. tie the germ

f  .  [e  u*S\*a nv,a mu*put* qu* , o ] .

where

6, e, a = ± 1, m * 0, J, i ,  n * 0, f .

Then m,n,p,q are modal parameters and f  has codimension 5 , but 

topological codimension 1. A universal unfolding of f  is

where a ,m ,n ,p ,q  are close to 0tm,n,p,q. □
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S3.6. Qualitative Equivalence.

It ts generally recognised that the equivalence relation used In this 

thesis is too strong. Two bifurcation problems can exhibit the same 

qualitative behaviour and yet not be related by a smooth change of 

coordinates. On the other hand if we replaced 'smooth' by 'continuous' then 

the resulting equivalence relation would be too weak. For example, the

germs

4 U . X ) -  * 2 -X ,

4(-r,X) = x* - X,

are related by a continuous change of coordinates, yet behave quite

differently under small perturbations. A more subtle example is the 

Z 2-equivariant 'nondegenerate quadratic' discussed in VI §7 of Golubitsky

& Schaeffer [1984]:

gm{x ,\ )  = e^5+2/77X^3+6X2^, (1)

c,S «  ±1, m2 * eS.

Here m is a modal parameter determining a distinct smooth equivalence 

class for each value of m satisfying m'l + eS. However if eS = -1 , gM only 

represents one topological equivalence class, while if e6 = *1, ^  

represents three equivalence classes depending on whether m falls in the 

range (-o o ,-l), (-1,*1), (♦l,*oo). Moreover on studying the universal 

unfolding of gH it is revealed that m  = 0 is also a special value of the
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modal parameter. See Fig. VI 7.3 of Golubitsky & Schaeffer [1984]. Ve 

will say that two germs are qualitatively equivalent if their zero sets 

exhibit tho same topological behaviour under small perturbations. We have 

not attempted to make this definition precise. However it is clear that 

under the general definition, the germ in (1 ) should represent precisely 

two equivalence classes when e6 -  - 1  and four equivalence classes when 

e fi- *1.

We use barehand techniques to deal with the bifurcation problems 

considered in this paper. For example, consider the normal forms 

1(1) [zmu*6\*au*,ztO]%

l ( it )  hu ■ [c/77i/*6X,e,0],

e,6,d ■ ±1, m # -1 , 4 ,  - l .

These are the nondegenerate bifurcation problems of 51- We saw in 

Fig. 1.3.1 that the only qualitatively important factors are 

sign 0(0), sign/*(0) and m.

Furthermore the importance of m  only lay in the question of whether its 

value was in the range (-o o ,-l), ( -1 ,-1 ), ( 4 ,4 )  or (4,*oo). In other words 

the two modal families gm and />, collapse into precisely 16 different 

bifurcation problems, the different problems corresponding to the various 

permutations of

e -  ♦! or -1 , 6 -  ♦! or -1 , m e (-«> ,-1 ), (-1 ,-1 ), (-1 ,4 ) or (-!,♦<»).
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Note that the value of the expression r2 in Table 3.1.1 has no hearing on 

the qualitative question. Similarly the expressions relating to the modal 

parameters p  in normal forms 2 to 5 have no qualitative relevance. Hence 

the simplified recognition problem solutions in Table 3.1.2. The arguments 

are quite simple for normal forms 1 to 5. Since 0{O) is bounded away 

from zero we have no submaximal branching (see Theorem 1.3.l ( i i ) ) .

Hence we need only consider the subspaces

(0,0,0), (*,0 ,0), (* , * ,0 ), (  * , *, *).

On (0,0,0) we just have the trivial solution, while on each of the other 

subspaces we have the zeroes of one polynomial in * and One 

nonvanishing term in each of * and \  is sufficient to give all local 

behaviour. Hence in normal form 3 the term

gives a non vanishing *5 term and so pu* is unnecessary. However the 

term [a*/2,0,0] is needed because the cubic terms vanish on the ( *,0,0) 

subspace:

[-e*/,e,0] a 0 when y  -  2  -  0.

As usual, the arguments for normal form 6 are much harder. However 

on inspection of branching and stability equations it becomes clear that the
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values of the modal parameters p  and q are irrelevant. Hence the normal 

form given in Tadle 3.1.2. Now since the value of q does not matter 

[0.//3.0] ts qualitatively a high order term. Instead of choosing [0,x/S,0] In 

the complement to the extended tangent space, we could |ust as well have 

chosen any of

[0 , i/JX.O], [0. U X2.0], [0.X3,0], [0,0.1/2). [0,0. U \ \  [0.0.X2], 

Hence to solve the unipotent qualitative recognition problom, we can work 

modulo the ¿/-Intrinsic space

H  -  [M3 *M< W>,M3 *M< W>,M2.< e, w » ,  

which is contained in the ¿/-intrinsic part of 

/ .  J  * [O.M3.M2 ].

Define T „ ( f ,U \ -  A f .l/ )  * M ,9  -  \\ru TK(r ,tf ).  T hen

rKU ,U )  • [M2.< w >.M3 .M < v>*< w >,M2.< V, u/>]

< R r  [0, m fi, u] [0, /77//X,X] [0, au\ -  £X2,0] [ 0,0 , « / .  OX] ;
L [0, a/* ¿»X. cnv* ¿777(1-/77) //2,0] [2 av.2 cmv« cm{ m -1)//2.0 ]]

Repeating the argument with the modal parameter p  we can work modulo 

/V -[M 2. < w >,M 2.< iw>,M].

We might hope that

% ( / . * / ) -  r j r . u )

working modulo >V, but unfortunately
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r„K r% U) > n  ♦ F {  [o, au♦ ♦ ¿77^,0]  [ av% c/n^o]}.

Applying ^12 of Theorem A.3 to [ cmv$\ gives 

[0 ,-* ^ ,0 ] mod 90 { f ti/U

and clearly [0 ,1'.O] $ 9 f % Lf). Hence by Proposition 2.4.1,

and so f  is not qualitatively linearly determined.

However, we can stilt solve the unipotent recognition problem working 

modulo N. First note that Ex{X2} c  /V, and so without loss of generality, the 

A  part of an O-equivalence can be taken to be the identity. Now consider 

the x  part, x  e ( ax)0 - 1, so

J r - [ x lt x 2, x z), x x[0 ) - 1 , x 2(0 ) .  a .

Lemma 3 .6 .1  Modulo N, Xhas the following effect:

\  *♦ X, u** u -  A A v , v v%

[ Zy,x2%k ] [ X ^ x y ;  X\.X2 ‘  U 'V 'W  or \ t X e R.

P ro o f As an example, we show that u  •-* u -  4Av. Notice that At contains 

all invariants except for u and v. In particular, we can work modulo

terms of order 6. Now X  sends x onto
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M{Xy*Jr*X2*s/i2*Xj), 

similarly y  and z .  Therefore modulo N

U - x U j / i . z * »

•  u x f -  2 r 1(o)/2(oK^4*y, *-i’4)

-  u ♦ 2 A {i/2- 2 u)

-  U -  4A v .  D

The effect of general 5  with 5 (0 ) -  I is easier to compute. The 

generators of 1^, y  ^  are given in Lemma A.1. From Theorem A.3 it can 

be seen that

sr-t*s,Tt

where ¿j e E ,  „ rA  w ith i t 0) -  1, and Z* denotes summation over the set 

{1.....12} v {2,4.6}.

It turns out In the same way that under general S,

[¿■¡,^2,* ]  -  mod/V,

where i n(0 ) -  s .  We can now prove the following.

C o ro lla ry  3 .6 .2  [P .P .ff ] isunipotenlly D -equivalent to

[  aw  01.* coo, emu, r ]  modulo N i f  and only i f  

p  .  0 . 0 ,  P„ -  a, Px -  b, B  ■ c,

DOy-aO^ -  Ocm, q ,P ,-a (l, -  c lm n .
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Proof Using the results of Lemma 3.6.1, we see that under a general 

equivalence ( we have 

[  au+ + cnv, emu, c] **A [  au+ t/\ * env, emu, e] mod N

+* s  [ a( u-A A v)+t>\+ cnv, 0 {a (u -A A v)+ d \+  cnv)+ cm (u-AAv), c ]  mod A' 

-  [ a/* b \ +( r/7-4a,4 )v,{a ? « ¿>77) bB\ ♦( flfifc-4 a4£ -4  g 4/77) v, e]. 

Hence [P ,0 ,R ]  is contained in the orbit if and only if there exist A ,B  e R 

such that

Pu - a , P x = t > ,R = c ,P y = cn-AaA,

Qm -  30+cm, Qx -  bB, Qv * cBn-A aAB-A cAm.

Rearrangement gives the required conditions. C

Coroll ary 3.6.3 [ P , <?, R] is  0 -equivalent to [e u+6\ +a nv,a mu,a ] 

modulo N i f  and only if

++ x  [a ( u-A  A  v)+ û\+ cnv, cm( u-A A v), r ]  mod/V

P  = <7 = 0, signPu = e, sign/^ = 6, sign/? = a.

PXR

Proof Combine the effect of scalings with Corollary 3.6.2. □
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Appendix to §3. Tangent Space Generators and Change of Coordinates. 

Tangent space generators.

In order to calculate the tangent space of a germ we first need to find 

generators for the E^^^-m odule of all matrix-valued germs 

S: (R3,0) -* Z(R3,R3)

satisfying

r'Stxf.x.y.x))^- S{x,y,x), (1)

for all * e D.

Lemma A .1  8 is generated over E by 5,,..., 5 , where

/I 0 0 \ / 0 xy xx\ / 0 2-3 ^ 2 x*yxl\
S*t- 0 1 0 , S4- yx 0 yx j ,  S7- xiyx2 0 xlyxt

\0  0 1 / V iT  xy 0 / (xlyxi 2-5 ¿i?2 0 /

IX 2 0  O '1 I 0 xyxl xzy*\ / 0 j y 3 ^2 «•3j/2\

5*2 ■ i 0 y2 0 , lyxxl 0 y x x U , S, - [ yx5 -?2 0 2-2 j
\0  0 72/1 \xxyi xyx? 0 / \ -w J ^ 2 xy*x* 0 /

¡1/2*2 0 0 / 0 x*y x*x\ / ° x*yx* -r525/2 \

S 3 -  0 72x2 0 ,  S i -  y'x 0 yixj ,  S i - tySxx 2 0 y*xx2 I
\ 0 0 x'yV \7* x 7* y 0 / x̂yx* 0 /

Proof As in the proof of Lemma 1.2.4, we exploit Lemma 1.4.1 of Poenaru 

[1976] to restrict attention to matrix maps with polynomial entries

satisfying (1 ). Again we set
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a -  *2, b -  y t , c  -  z*.

It ts easy to check that the following two spaces contain such maps.

(ai\ bJc*+ cJb*) 0 0
0 b i( cJ9*+ at*) 0

0 0 d ( a£*+ bJB*)
6 (2)

i =¿£0,+ \uxbiaJc* 0 yzbicja*\ L.

p  [ « *
(3 )

xya‘bJc* xzaicJb* ~)
0 yzbicja* / L

[  zxcialj* zycibJa* 0 J  J

We show that D*A  contains all such maps. Suppose that S  is a diagonal

matrix with polynomial entries satisfying (1 ), with diagonal entries

Si, 5?, S*3. Then setting y = x ji shows that each S** is even in

xty ,z .  Hence we can write S  in the form

St x%y %z )-^ a ib ic *  
ifi

(4)

As in the proof of Lemma 1.2.4, taking y to be the transpositions (12), (23) 

and (31) shows first that

s 't, -  sit r  stp -  V  • si t  ■ sm  •

and then that

Now suppose that S  is an antidiagonal matrix satisfying (1 ) with 

polynomial entries S r ;  q%r  -  1,2,3. Letting y -  k ^ , we find that
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SQr is odd in the ^th and rth  variables and even in the other. Thus we can 

write

0 s£ x y s ' i ”

f b v * 0
_n . 0

5t x ,y %z )  ■
ip

By choosing y =(12) we obtain the relations

e'J .  cs' o'* — s '  — S*1sift Sf* ' sip  */» » *ip •

and (5 ) becomes

Î
0 s^xyaibJC* s £  xzaibt* 1

s ^ y x b ù t*  O s ^ y ib la t*  I .

s^zxatoJb* s ]j  zybtaJc* 0 J

Now choosing * = (13) yields

(5 )

as required.

It is clear by analogy with Lemma 1.2.4 that generate D  and

so it remains to show that 5>4(...,5 a9 generate A. We use the notation

{
0 xyaibjc* xzaiciP  1

yxbiaJc* 0 yzbfcJB* . (6 )

zxc‘aJb* zycibJa* 0 J

Then

< * 2 > . u < a > -  » ♦ < * > .

^  a/f~2') ♦ n i  3,

and
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= (aft-\/jn-\+ bn-\cn~l+ cf*~lan~l)4ibc'}

-  w {a"-U6n-Uci*-i)4 ian-V} ♦ w4ta&>-v^\ n >2.

Hence and <£/%?/?>, and sim ilarly < £ " > ,  Rantin'» and

<*'£■'*>, are generated by 5 4t...f5*8. We claim that and

<  z?/»> can be generated. When n = 1

< * 2 £ > -  5 9 a n d < ^ 5 ^ > s ¿ / «* 2 z ,> -«* 2 £ 2 > - 

while for n i  2,

k-< ,?/#/*-1> -  tv'-C

< ^ + 2 ^/? >  =

thus verifying the claim. It is now easy to see that we have we

know this for <  a ^ + w y ,  /7 -  o or r  «  0,1.2. For n i  1, r  ± 3 we have

an*rbri^ -  ¿ / < £ ¿ ? / ? ^ >  _ 4^an+r-\bn+Y^ -  iv^aa*r-2/^r-iy.

Finally, the general term is <<?#£*>. Without loss of generality 

/ < /  £ k% and so

«  aWJtr> »  u//< £/£••>; / . / - / ,  n  -  * -  /. □

We recall some notation from §1.2. In Theorem 1.2.1 It was shown that 

every equivariant germ f  e  can be written in invariant coordinates

where P%Q,fi e t x t0tX̂  It was also shown (Theorem 1.2.4) that f  can be

( 7)
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written as

ty (a%D%c ) x  \
fm <9( ^ , ^ , r ) > «  l(p(4tc , a ) y  I .  (8)

\tp(c,a,fi)sj

for some function-germ <p. In the notations (7 ) and (8 ) we have the 

following useful identities.

Lemma A .2  (a) x**y**2* -  ¿/2-2

x§+y$*z$ -  -2  uv+7> w%

(b) < J * > - [ - l ' vl '( l ] >

< x*> = [ -  uv+ u*- u \

< ^ 4  = [ -  UW, W% P ],

(y iz * + z iy*') -  [ -  »♦'.O,*/], 

<y2^6+^2^6> -  [0, -  w*iA- 2 x].

Proof (a) Can be checked directly.

(b ) These are straightforward consequences of the inductive

arguments used in the proof of Lemma 1.2.4. □
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ineorem A .3  Suppose r  - [ A \ < 7 , / ? ] e £ Then the untpotent tangent 

space is  given by

n t , i t )  -  /(/•.¿/)*ex{X i/y .

Here f(.T,Lt) is generated as an E moouteby

z  7J, z  Tt , 2  -  u,v, w  or X, T} .....Ta  , where

r, = [/ ’,<?,/?],

T2 -  [ P*2 UP, .4  vPr *S wP, ,3 0*2 uQ,* 4 ^ * 6  **<?, ,

•iR*2uRii*A vP,*6 wR,\

T2 -  [ 1*4?- uwR, wft.P* tP],

T, = [  l*4?*i4M7. «43/°,*24/,(.* M“, ) , -  wR* w{ZO.*2uOy* vOJ. 

w i^ R ^ u R ,*  vR,)\

?S *[uP*(u*-2 v) <7.3 **7?,0,0],

?-6 .  [0. u°*( i/?-2 V) <7.3 

^  -  [0,0, uP*{ i/7-2 f) <7.3 UP],

7j » [3  tvT’* uwQ* vwR'0,0],

Tij .  [0,3 U43. */u<7« n*4?,0],

A10 -  [0,0,3/’ .  ¡<7. m9],

%  «  [ -  *<?• wR,P*uO.0\

/¡j . [ - 2  l«?. ¿4«°,. m » , ) -2 » ° , -3 i< , ,

- / ’ »  u{uOm* v0r * w0.)-2 ¡0 ,-3  WO, ■ 

uR* ¿A. uR,* VP,* wff,)-2 vP, - 3

A/» ex tended tangent space is  given by

T,( A.D) -  A(/,</) .R {
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Proof Recall from $2.2 that f {  f %U) is given by

Thus f {  f %U) is generated as an 6 ^  ^ ^ -m o d u le  by

zSx f % z { d f)X x , z  -  ¿/, u/ or X,

S2 f  5g f % ( df) X2 . ( d O  ̂ 3 •

We obtain the set of generators in the statement of this Theorem by the 

following rules:

r x -  s xr % r 2 • {a r)x l , r z - s zf, r A • [a n x 2,

7*5- 5*4/♦ 5*2 A 7"g ■ 5’g/' ♦ Sj/'-
r 7- n^/; r0-  5*7/'♦ wsxf,

7*9-  5'9/‘* Jv5*2̂* ^10“ $1?*

r xx- s 2r t T x2- ( a n x 2 .

Since f (  /;£/) is a submodule of 2jr§fkJ^ .  each generator is equivartant and 

so must be of the form (8 ) for some <p e B^2f *2, r 2 • Hence we need only 

find <p. Then using the results in Lemma A.3 we write the generators in the 

invariant coordinates (7 ). Suppose for example we wish to calculate Txx. 

Then
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. <  » I P  * x*Q>  in?>

. [0,1,0]/’»[- v,u,i]e> [ w,o,o]/?
v0>wft.P'UV,01

Similarly, to find the ( df)Xt  it suffices to consider the first row of df, 

namely

(A ,x B (y ,z \ x B {z ,y )\

where

A =  a \  *  x(2xPllx2x{.jfi*zt)Pr * 2x iflztP ¥ )
Tx

. xyt z?(2 xff"-2 x(y2'Z*)Py'2xy?z2P',)

♦  p *Zx*0'  yiztn, 

and

x B iy ,z ) * a/j .  x{2 y P ^ 2 yix t^ x ^ )P i, ' 2 y x i z i p J
a y

♦ J'3 (2 i<7 ,»2^(l'2 .2 ’2 )^ »2 id '2 2 ’2 i ’, )

.  jy2j-2(2y P ^ 2 y { x*>z1)Rv> 2 yxiziB J)

♦ 2 xyziR.

We exploit the symmetry of the partial derivatives of P ,0 ,R  in A and 

xB by splitting up the calculations as follows. We have 

(d O X i -  < A 'yB 1 ,y ,z )* zB (z ,y )\

and so Pm , Pv and P ,  contribute
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■ K rtP S  x* (yU  x* y* Z IP ,* !/* ' W P .

• li/H x i* z* ).* H x * 'iti))P r '2 x ty t* tP J>

■ 2[ uPy>2 ^ * 3  uPy,0,0]. (9)

To compute the (>„ , <?„ end <?„ terms, multiply (9 ) by x* end chenge P s  to 

ffs. Similarly, multiply (9 ) by y tz*  and change P s  to P s  to yield the Rt , 

Ry and Ry  terms. Ignoring the partial derivative terms, < vt) is t P,Q*R\ 

and iy B iy .z ^ z B lz .y Y x  Is [0,0,4/?]. The calculation of (o iO / j and 

( df)Xl  is similar.

Finally the relation between the unlpotent tangent space and the extended 

tangent space follows immediately from their respective definitions tn 

S2.2 and S3. D
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Change of coordinates.

It turns out that many of the calculations in this thesis are best 

performed in a different set of coordinates. Six out of the seven normal 

forms in our classification have 0(0) * 0. It Is the calculations for these 

germs that are simplified. These germs all have the modal parameter 

m -  P„(O)/0(O)

and the coordinate change is also parametrised by m. In the remainder of 

the Appendix, we describe the coordinate change and give results enabling 

us to recover some solutions in the original coordinates.

The change of coordinates is performed in two stages. Firstly we set

• [/ % * * ].

where

P  .  P -m u ff  f f -O .  P -/ > ,  (10)

The subscript m shows the dependence of the change of coordinates on m. 

Secondly, we set

P '(u %vm>wmX t  = P (u % v, w%\ )y sim ilarly 0“ and P \

where

1/ -t(/n*l)v2, wm ■ ti/-|(/77*l)(2/77*l)i/3f ( H )

For the bifurcation problems that we consider in this paper, the partial 

derivatives Pr ,Pm%0m,0r% 0m and R are identically zero. Using this
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simplification we w rite  the generators t[ ..... Tu  in the new coordinates.

C o ro lla ry  A .4  Let f  • (/ ’,<7,0), wtiere Pr .P „,O m.Qv ,Q , areO.Thentr 

the coordinates of [10) end( 11), T{ f,LT) is  genereted by 

t r x -  ^ ^ p ,o .o ).

zTt  ■ e{P*2uPy  ,3(7,0), z=u, V,, w, or X

7j = (}(/77*1)(2/77»1) z/2>’ »( mj, wi(/77*l)(2/7»*l)(3/77*l)//»)<>.
0 ,P 'tnuQ ),

Tt  -  (( w, .i(/77*lX 2/w .l)i/*X 3^,.(3/77.1 )i’),0 ,0 ),

7J »(u P -2  14(7,0,0),

7-6 -(0 ,u ® -2 t4 < 7 ,0 ),

T, -  (O.O.uP-2 * (? ) ,

r8 = (( U4 .i(/77.1)(2/n.l)i/3 )(3/’ .(3/77.1) o<7).0,0).

7j * (0,( U4 •i(/77*lX2/77*l)i/!X3/‘M3/l7*l)o<7),0), 

r10 • (¡(/77*lX2/h.l)//2(3^.(3OT.l)i<7).0.3/°.(3/7;.l)i<)),

7^ -  (-m uP - vmQ,P*{m ‘ \.)uQ,0'),

rl2 = ( mu{ uPa-  P)*2 vm ( P ^ m 0 ), P* muO.O), □

The following three results tell us how partial derivatives in the 

original coordinates can be recovered. The first of these results deals 

with the coordinate change (10).
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Proposition A .5  Let

(  a 7* W ' l

V  J d u , a v /l S u ', i d \ , S 

7 1 .
Then, at the origin, for l  > 0 , we have

; / < 0.

a ;p  ,, a 'p  . m , a/_1 <M (/-
a u* a u 1 a u 1' 1

a V . , a 'o a '/r , a *r
a u / a u* a u 1 a u 1

Proof By induction we have

-  tm  3 /' 1<’ > t(/-l)/(/7?.lX2/7>n)3/~2^’
a^ 7 a^ /_1

-  mu ♦ /(/77*lX2/77*l)tf 1/7 ♦ 1(/^*1X2/77»1)^2^J?_ ,
a*/7 a ¿/7_1 az/^

a V . a V  f a<^. a ^
a u 1 a u 1 d u / a u 1

The result at the origin follows. □

The next result gives a series of identities for obtaining partial 

derivatives of P '  in terms of partial derivatives of P .  Similar results

exist for 0" and P \
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Proposition A .6  At the origin, we hove, suppressing v,w,\ partiels 

P '  -  P ,  P , -  P „. 

ana, suppressing X partiels

P „ -  P „ '< ,m 'l ) P r .

pwe • pmu * * Km*VKim*\)Pm.

and so on.

Proof Straightforward.

Finally we combine the two results.

Proposition A .7 At the origins we have, suppressing v. w. \  partiats 

P '  -  P % (?' -  Q% fT  -  R%

P . - P . - m O ,  Q . ' O . .  P . - P . .

and, suppressing X par liais,

Pm -  Pm * (m * l)P ^  -  2i7J0¥ ♦ {tn*iy,2m *i)P,

Q „  -  <’„ * ( / w « l ) P >, .

P ^  -  / ^  .3 (/ 7 7 .1 )^  .(/W1X2/77.1)/», -3/77<>,

-  3/77(/77.1)<7^ .  3(/7?.1X2ot»1 )^ , .

and so on. □
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