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Modeling Interference-Free Neuron Spikes with
Optogenetic Stimulation

Adam Noel∗, Member, IEEE, Shayan Monabbati, Student Member, IEEE, Dimitrios Makrakis, and Andrew W.
Eckford, Senior Member, IEEE

Abstract—This paper predicts the ability to externally control
the firing times of a cortical neuron whose behavior follows
the Izhikevich neuron model. The Izhikevich neuron model
provides an efficient and biologically plausible method to track
a cortical neuron’s membrane potential and its firing times. The
external control is a simple optogenetic model represented by
an illumination source that stimulates a saturating or decaying
membrane current. This paper considers firing frequencies that
are sufficiently low for the membrane potential to return to its
resting potential after it fires. The time required for the neuron to
charge and for the neuron to recover to the resting potential are
numerically fitted to functions of the Izhikevich neuron model
parameters and the peak input current. Results show that simple
functions of the model parameters and maximum input current
can be used to predict the charging and recovery times, even when
there are deviations in the actual parameter values. Furthermore,
the predictions lead to lower bounds on the firing frequency that
can be achieved without significant distortion.

I. INTRODUCTION

Over the past decade, developments in optogenetics have
given researchers the ability to directly stimulate neurons [2],
[3]. Using this technique, neurons are modified with a gene
that encodes a light-sensitive protein (i.e., an opsin), causing
the neurons to express opsins on their surface. Certain opsins,
such as channelrhodopsin [4], open an ion channel in response
to light. When the channels are open, an ion current flows
through the neuron’s membrane, changing its electric potential
and causing it to fire. Thus, if an optogenetically-modified
neuron is stimulated with a strong light source, such as a laser,
then the neuron will eventually fire in response.

Dramatic advances in the study of the brain, as well as
revolutionary new therapies for neurological disorders, are ex-
pected to follow from precise optogenetic control over neural
circuits [5]. So far, research has often focused on the control
of large groups of neurons in experimental settings [6]; e.g.,
studies of seizures in the mouse brain [7] or of spinal cord in-
jury in rats [8]. However, targeted control of individual neural
circuits are of considerable interest, and recent experimental
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Fig. 1. Conceptual diagram of the system model. A neuron with light-sensitive
opsins expressed on its surface is stimulated by a light source.

results have demonstrated the feasibility of this approach [9]–
[11]. It is widely expected that this control will one day lead to
optogenetics-based therapies for neurological problems [12],
such as epilepsy [13] or recovery from neural injury [14].
Within the domain of communication and networking,
controlled synaptic communication has been proposed as a
potential communication technique for nanonetworks [15],
[16], including potential interfaces between neurons and
nanomachines [17]. Communication models of synaptic
systems have also been produced [18]–[20]. Furthermore,
optogenetic techniques have been discussed in the context
of therapeutic nanonetworks [21], [22] and for brain-
machine interfaces [23].

For these applications, an interesting problem is to pre-
cisely control the firing time of an individual neuron, as shown
conceptually in Fig. 1. Consider a neuron illuminated by a
light source, where `(t) is the time-varying light intensity. Let
t = [t1, t2, . . . , tn] represent a vector of times at which the
neuron fires. Then the neuron may be viewed as a functional
n(·), taking `(t) as input and returning t. The control problem
is to invert n(·): that is, given a desired vector t, find `(t) as a
solution for t = n(`(t)). The solution to this problem strongly
depends on the neuron model n(·), for which different models
exist.

There have been various approaches to this problem in the
recent literature. Some approaches treat the optogenetic stim-
ulus and response as a control system [24], [25], an approach
that has led to designs for therapeutic medical devices [26].
Other approaches have focused on detailed neuron models with
optogenetic ion channels (particularly channelrhodopsin) [27],
or models based on photoconversion [28].

The simple, yet tractable, integrate-and-fire (IF) model is
an important model for neurons. It has been considered for
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optogenetic systems in populations of coupled neurons [29],
and (in our own previous work) for individual neurons subject
to a distortion criterion on the output [30], [31]. In addition,
optogenetic control strategies for ensembles of neurons
using this model were articulated in [32]. The IF model
considers neurons as capacitors, where the current is integrated
over time to find the neuron’s potential; once the potential
exceeds a threshold, the neuron fires. IF is a first-order linear
differential equation model, but its simplicity hides much of
the complexity of real neurons. In particular, there are practical
neuron behaviors that cannot be readily observed using the IF
model; see [33]. Various other neuron models include linear
models that address issues with IF, such as the leaky IF
model, and nonlinear models, of which the Hodgkin-Huxley
model [34] is likely the best known. Control strategies for
neurons represented by a class of one-dimensional phase
models were presented in [35], including a simplified
version of the Hodgkin-Huxley model. In this paper, we
use a simplified (but realistic) nonlinear model known as the
Izhikevich neuron model [36] (which we hereafter simply refer
to as the Izhikevich model).

This paper considers how to control the optogenetic stimu-
lation of neurons that follow the Izhikevich model, as summa-
rized in Fig. 2. The Izhikevich model is relatively simple to
describe and simulate, but is biologically plausible because
the range of neuron firing patterns that can be observed
is consistent with all known types of cortical neurons, as
demonstrated in [33] by tuning the model parameters. This
is unlike other simple models, such as the IF model and its
variants. The spiking patterns that can be generated using the
Izhikevich model include the following: regular spiking (RS)
neurons, in which spikes occur less frequently as stimulation
is maintained; fast spiking (FS) neurons, where spiking at
a high frequency can be maintained; low-threshold spiking
(LTS) neurons, which are an intermediate between RS and
FS; chattering (CH) neurons, in which spikes can occur in
multiple bursts; and intrinsically bursting (IB), which can
produce both regular spikes as well as irregular bursts. While
the details of the Izhikevich model do not directly align
with the biophysical mechanisms that underlie membrane
potential dynamics (e.g., refractory periods are not clearly
observed), its simplicity makes it amenable to the analysis
that we undertake in this work. Models that include
biophysical parameterization, e.g., the Hodgkin-Huxley
family of models [34], can be considered in future work.

The specific contributions of this work are as follows:

1) We use curve fitting to estimate the illumination period
required for an optogenetically-modified neuron to fire
and recover to its resting potential, as a function of the
Izhikevich model parameters. As in [1], our examples
focus on RS neurons, but in this work we also give
corresponding results for FS, LTS, and IB neurons1.
Furthermore, we adopt a more realistic optogenetic
current model that is an approximation of results

1We note that “chattering” neurons do not align well with the methodology
in this paper because, by design, they are prone to spiking multiple times
even after the stimulating current is removed.
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Fig. 2. The neuron membrane behavior considered in this paper. The
membrane potential versus time is plotted for the stimulation of one action
potential. The membrane current is also shown on an arbitrary scale to indicate
when the light source is turned on (i.e., when the current is increasing).
The membrane potential starts at rest (“Rest”), and once the light source is
turned on the membrane begins to charge (“Charging”). When the neuron is
about to fire, the light source is turned off. Finally, the membrane recovers
(“Recovery”) and returns to the resting potential.

presented in [37], and we also fit the neuron be-
haviour to the peak optogenetically-induced current.
Our results show that our approach leads to accurate
estimation of both the charging and recovery time, as
measured by metrics including the mean squared error.
This enables the generation of arbitrary spike sequences
when there is sufficient time between consecutive spikes.

2) We illustrate control of spike sequence generation by
observing the distortion as a function of spike frequency.
This expands the brief investigation of generating differ-
ent spike frequencies in [1]. We show how our numerical
fits enable us to predict a lower bound on the achievable
frequency without significant distortion. If additional
distortion can be tolerated, then our results demonstrate
that we can generate spikes at a target frequency that is
up to about 50 % greater than that predicted by our
numerical method.

The rest of this paper is organized as follows. Section II
describes the optogenetic and membrane potential models.
We couple the two models in Section III. We numerically
fit the times for both charging and recovery, and observe
the distortion as a function of a target firing frequency, in
Section IV. We conclude in Section V.

II. PHYSICAL MODELS

In this section, we briefly describe the two physical models
that we integrate to describe the neuron stimulation and
membrane potential. These are the optogenetic model for
the external stimulation and the Izhikevich model for the
membrane potential dynamics.

A. Optogenetic System Model

Neurons, like all animal cells, maintain an electric potential
difference across their membranes. This membrane potential
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can be varied through the selective opening and closing of
ion channels on the cell surface, allowing ions such as Na+,
Ca2+, K+, and Cl2− to flow across the membrane. Neurons
have voltage-gated ion channels, which open in response to
changes in the membrane potential. This sets up a positive
feedback loop. For example, in depolarization, a stimulus
causes Na+ channels to open, thus raising the membrane
potential, which causes more Na+ channels to open, further
raising the membrane potential, and so on. The resulting rapid
change in membrane potential causes the neuron to “fire”; see
[38].

Ion channels can also be light-gated, such that they open
in response to light. A well-studied example of this is chan-
nelrhodopsin (ChR); see [4], [39], [40]. An optogenetically-
modified neuron expresses light-gated channels in addition
to voltage-gated channels. Thus, illuminating the neuron (for
example with a laser) can initiate the firing of the neuron by
triggering the initial flow of ions.

While the ion channel is open, the ion current passing
through the channel is dependent on a number of environ-
mental factors, including pH and ion concentration [39]. It can
also depend on the precise number and location of receptors
on the surface of the neuron, which is usually unknown.
Moreover, the dwell time in each channel state is a random
variable. Works that model the states in detail include [37],
and experimental results [4], [39] suggest that a neuron
will experience a stable steady-state current in response
to a constant illumination intensity `(t). In this work, we
assume a constant illumination intensity that results in an
approximation of the current model in [37]. Specifically, if
illumination starts at time t = ton and remain on, then we
assume that current I(t) passing through the membrane
at time t > ton is of the form

I(t) = I(ton) + (Imax − I(ton))(1− e−(t−ton)/τon), (1)

where τon is an optogenetic time constant. Furthermore,
if the illumination turns off at time toff , then the current
through the membrane decays according to

I(t) = I(toff)e−(t−toff )/τoff , (2)

where τoff is another time constant. Using this current
approximation, we find very good agreement with the
membrane current dynamics shown in [37, Fig. 9] for short
illumination times, i.e., on the order of less than 20 ms,
when we set τon = τoff = 2 ms (which we assume for the
remainder of this work). By including ton and toff , both (1)
and (2) also readily model the current if the illumination
is repeatedly turned on and off.

B. Izhikevich Neuron Model

The Izhikevich model uses a two-dimensional system of
ordinary differential equations where the variables are the
membrane potential v(t) and the membrane recovery variable
u(t). u(t), which accounts for the activation of potassium
ionic current and the inactivation of sodium ionic currents,
provides negative feedback to v(t). The system of equations

TABLE I
SELECTION OF NOMINAL PARAMETER VALUES FOR THE IZHIKEVICH

NEURON MODEL (FROM [36])

Neuron Type (Acronym) a b c d

Regular Spiking (RS) 0.02 0.2 -65 8

Fast Spiking (FS) 0.1 0.2 -65 2

Low-Threshold Spiking (LTS) 0.02 0.25 -65 2

Chattering (CH) 0.02 0.2 -50 2

Intrinsically Bursting (IB) 0.02 0.2 -55 4

was obtained via fitting to natural spike initiation dynamics of
cortical neurons and is as follows [36, Eqs. (1)–(3)]:

dv(t)

dt
= 0.04v2 + 5v + 140− u(t) + I(t), (3)

du(t)

dt
= a(bv(t)− u(t)), (4)

if v(t) ≥ 30 mV, then
{
v(t)← c
u(t)← u(t) + d,

(5)

where (3) and (4) update the rates of change of v(t) and u(t),
respectively, and (5) resets u(t) and v(t) after a spike occurs.
Time and potential are measured in ms and mV, respectively.
I(t) is the synaptic or input current through the ion channels
in the dendrites and it is normalized. The parameters a, b,
c, and d are the fitting parameters and they can be tuned for
different types of neurons; see nominal values in Table I. We
emphasise that parameter values are obtained by fitting to
neuron membrane dynamics and thus vary for individual
neurons. a sets the time scale of the decay of recovery variable
u(t) after a spike occurs. b describes the sensitivity of u(t)
to subthreshold fluctuations of v(t), and furthermore it can be
used to define the membrane resting potential. c is the reset
potential for v(t) after a spike occurs, and d determines the
reset of u(t) after a spike occurs.

Results in [33], [36] demonstrate that the Izhikevich model
can produce the behaviors of different types of cortical neu-
rons by appropriately tuning the parameters {a, b, c, d}, even
though the model itself is not analytically derived and so is not
biophysically meaningful. Each type of neuron is associated
with a characteristic firing pattern, where each firing pattern
is a sequence of spikes. Nominal model parameters for a
selection of neuron types that are suitable for a broad range
of neural behavior are listed in Table I.

III. SIMULATING NEURON SPIKES

In this section, we present the simulation of spikes in the
Izhikevich model when stimulation is provided by the simple
optogenetic model. First, we describe how we directly cou-
ple the two models. Next, we demonstrate the simulation of
a sequence of spikes to motivate the selection of a suitable
simulation time step. We also use these simulations to
motivate our interest in studying individual spikes. Finally,
we assess the impact of the model’s initial conditions and
derive the steady-state potentials of the Izhikevich model
in the absence of an input current.
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A. Coupling the Izhikevich Model with Optogenetics

We take a direct approach to couple the two physical models
for an individual neuron. We assume that the optogenetic
stimulation is the membrane’s only external current source at
the dendrites and it defines the input current I(t) in (3), such
that membrane current is bounded within 0 ≤ I(t) ≤ Imax.
In practice, this is an approximation, since the Izhikevich
model was initially developed for natural neurons, where input
currents enter via the activation of neurotransmitter receptors
at the dendrites. We assume that we can control where the
light-gated channels are expressed in the membrane to imitate
the conditions for the Izhikevich model. Otherwise, alternative
means to describe the membrane dynamics would be required,
which can be considered in future work. To use the simplified
optogenetic model in (1) and (2), we assume that we can
turn the light source on and off as needed, and that it
provides constant illumination `(t) when the light source
is on. Thus, to simulate the complete system, we only need to
initialize {u(t), v(t), I(t)} and use (3)–(5) in a loop to update
u(t) and v(t), where we update I(t) or fire the neuron when
required.

B. Choice of Time Step
We must choose a time step ∆t to set the resolution with

which we evaluate (3)–(5). Specifically, ∆t is needed to update
u(t) and v(t) from du(t)

dt and dv(t)
dt , respectively, i.e., we update

v(t) as

vnew = vold + ∆t
dv(t)

dt
(6)

and correspondingly update u(t). In Fig. 3, we test different
values of ∆t for a regular spiking neuron by setting the
(normalized) input current to a constant I(t) = Imax = 10
(practical values for plateau currents can be on the order
of 100 pA or more; see [37], [41]). The default value of
∆t in [33], [36] is ∆t = 10−3 s, but we see in Fig. 3a)
that this results in an insufficient level of granularity for
our analysis, i.e., du(t)

dt and dv(t)
dt change too much over the

scale of ∆t = 10−3 s to accurately update v(t) in (6). Thus,
it appears that spikes are occurring before v(t) reaches the
spiking potential of 30 mV and furthermore that the spikes
are occurring at random potentials. This can be mitigated
by decreasing ∆t. However, decreasing ∆t also increases the
computational resources required to simulate the neuron. The
timing of the spikes is indistinguishable for ∆t = 10−5 s and
∆t = 10−6 s, and the membrane potential for these cases
always peaks at about 30 mV for each spike, but we use
∆t = 10−6 s in the remainder of this work to have sufficient
resolution for the numerical fits. Unless otherwise stated, we
also use Imax = 6.

C. Generating Multiple Spikes
From Fig. 3, we also observe that the interspike intervals

are not constant, and this is independent of the choice of
∆t. This behavior is expected for regular spiking neurons and
other types of neurons as well. However, our objective is to
fit expressions to describe a neuron’s behavior and control

Fig. 3. A sequence of neuron spikes for different values of time step ∆t.
The membrane is stimulated with a constant current I(t) = 10. The model
parameters are {a, b, c, d} = {0.02, 0.2,−65, 8} (i.e., Regular Spiking in
Table I).

when it fires. As an early work in this direction, we seek to
ignore the effects of interspike interference, so we focus here
on predicting the generation and recovery of individual spikes,
as shown in Fig. 2. We then use the results as a baseline
for sequences of multiple spikes where the neuron is only
stimulated while it is charging from rest. Repeated spiking
patterns due to on-going input current is a scenario for future
work.

D. Initial Conditions and the Steady State

To maintain accuracy in our numerical analysis, we need to
impose consistent conditions on the membrane. To generate a
single spike, we will turn the illumination “on” until the
neuron fires and then leave the illumination “off”. In
the absence of illumination, the membrane current will
decrease to 0 and the membrane potential of the neuron
should eventually converge to a resting potential (unless it is
bistable or inhibition induced; see [33]). We can calculate the
resting potential by setting the left hand sides of (3) and (4)
to 0, setting the input current I(t) to 0, and then solving
the two equations for u(t) and v(t). From (4) we can write
u(t) = bv(t), which we can substitute into (3) and re-arrange
for v(t) to show that the two possible resting potentials are

vrest = 12.5b− 62.5± 12.5
√
b2 − 10b+ 2.6. (7)

The more negative solution of (7), v−rest, is stable. The more
positive v+

rest is unstable and is in fact the spike generation
threshold. In other words, if the membrane potential is
above v+

rest, then v(t) will increase and the neuron will fire
even if I(t) = 0 (though firing within this model could
still be avoided with a sufficiently large negative current).
Strictly speaking, we do not need to keep illuminating
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Fig. 4. a) Charging time and b) recovery time for a single spike as a function
of the initial membrane potential when illumination begins at time t =
0 and Imax = 6. The illumination remains on until the neuron fires.
The model parameters are {a, b, c, d} = {0.02, 0.2,−65, 8} (i.e., Regular
Spiking in Table I).

once the membrane potential reaches v+
rest, but we assume

that it would be easier to detect when the peak membrane
potential is reached. Furthermore, automatic firing can
still be accelerated by providing an input current, thus
providing more precise control over firing times and a
margin of error to avoid stopping illumination too early
when generating multiple spikes.

If the membrane potential is lower than v+
rest and no input is

applied, then the potential will converge to v−rest. Throughout
this work, we assume that the potential has converged once it
remains within ε = 0.5% of v−rest. We will see that this is a
conservative estimate; in practice, we will not need to be so
close to the resting potential before we can stimulate again
without noticeable interspike interference.

We refer to the time needed for the neuron to fire as
the charging time and the time to reach the stable resting
potential as the recovery time. We show in Fig. 4, where
v−rest = −70 mV, that both of these times are sensitive to
the initial membrane potential. To facilitate the application of
this model to the generation of multiple spikes, we impose for
the rest of this work that the initial membrane potential is
also the resting potential v−rest, and that the recovery variable
u(0) is initially bv(0) (i.e., (4) is 0).

IV. NUMERICAL FITTING RESULTS

In this section, we assess whether we can predict the timing
behavior, i.e., the charging and recovery times of the Izhike-
vich neuron model, based on knowledge of the model pa-
rameters. Specifically, we seek numerically-derived equations
for a neuron’s behavior as a function of {a, b, c, d, Imax}. We
are not predisposed towards any particular class of equations,
but we seek results that are sufficiently accurate to use as
a guide to control firing times and know how long to wait
between firing times (i.e., for the membrane to return to the

resting potential before we should start charging it again).
Our assumptions limit the usefulness of very high precision;
the optogenetic model is a simplifying approximation that
produces results over short illumination periods that are
consistent with [37], the model parameters {a, b, c, d} cannot
be directly measured, and we assume that all of the models
are deterministic, i.e., there are no physical noise sources.
However, the maximum current Imax can be externally con-
trolled to some extent by modifying the illumination intensity
(though it may not be constant in practice). We seek to gain
intuition about controlling a neuron, and in particular we will
estimate and measure the maximum firing frequency that can
be achieved without interspike interference.

The remainder of this section is organized as follows.
First, we measure the charging time and the recovery time
as functions of the individual model parameters (including the
maximum input current Imax), where the remaining model
parameters are fixed. This helps us decide which parameters to
focus on in a joint model. For all types of neurons considered
(RS, FS, LTS, and IB), the charging time is most sensitive
to b and Imax (we note that (3)–(5) show that charging time
is independent of c and d), and the recovery time is most
sensitive to a and d. Next, we measure the charging time as
a function of both b and Imax and the recovery time as a
function of both a and d. All fitting functions are found via
nonlinear least squares in MATLAB using the fit function
with default tolerances. Finally, we consider the stimulation of
multiple spikes, where we predict the interference-free firing
frequency and measure the deviations from target firing times
as a function of the target firing frequency.

A. Fitting to a Single Spike

As we are primarily interested in the charging time and
recovery time for each neuron type, we use curve fitting to
develop accurate models for these properties under various
parameter values. This is a challenging task given the five-
dimensional parameter space. We first consider fits to individ-
ual parameters, keeping other parameters at a “typical” value
for a particular neuron type, and then consider fits to multiple
parameters. We give a detailed explanation and analysis of our
method using a regular spiking (RS) neuron as an example;
results for the other types of neurons are summarised in the
corresponding tables.

We measure the accuracy of the fitting functions with three
methods. R2 measures the proportion of the variance in the
behavior that is predictable from the model parameters, where
R2 ∈ [0, 1]. The root mean square error (RMSE) measures
the standard deviation of the behavior from that predicted
by the fitting functions. The maximum error (Max Error) is
simply the absolute value of the largest deviation from the
fitting function over the parameter range or ranges considered.
Consider that we are fitting to a total of N parameter value
combinations (where we vary one or more of the parameters
{a, b, c, d, Imax}). We then suppose that yn is the charging
time (in ms) for the nth combination of the model parameters,
ŷn is the corresponding estimated charging time due to some
fitting function, and y is the average charging time over all
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N model parameter combinations. A similar description can
be made for recovery time. Then, R2 for the charging time is
measured as

R2 = 1−
∑N
n=1(yn − ŷn)2∑N
n=1(yn − y)2

, (8)

the RMSE is measured in ms as

RMSE =

√∑N
n=1(yn − ŷn)2

N
, (9)

and the maximum error in ms is

Max Error = max
n
|yn − ŷn|. (10)

To fit behavior to the individual parameters, we consider
polynomial functions up to degree 4 (i.e., from linear to
quartic, beyond which minimal improvement was observed),
exponential functions with either 1 or 2 terms, and power
functions of the form y = nxm + p. These fitting functions
were the most relevant in MATLAB’s Curve Fitting Toolbox.
To fit the behavior to the individual model parameters, we
vary one parameter while holding the remaining parameters
constant. The chosen range of each parameter is in consid-
eration of the types of neurons listed in Table I. Using the
RS neuron as an example, our default parameter values are
{a, b, c, d} = {0.02, 0.2,−65, 8}, which is consistent with RS,
and our default maximum current is Imax = 6. If we vary
one of the parameters {a, b, c, d, Imax}, then the remainder are
fixed at the default value. The range of each varied parameter,
a selection of fitted equations for their behavior (chosen for
quality and space), and the accuracy of each fit are summarized
in Table II for charging time and Table III for recovery time
(see the Appendix for additional functions that fit the behavior
of the RS neuron to the maximum current Imax). Our
considered parameter ranges varied for different neuron
types in order to guarantee that the neuron would fire and
would not fire more than once. We note that, as we might
expect from Table I, some of the fits for different neuron types
are identical because there are common parameter values and
ranges. This is particularly the case for charging time because
it is only a function of two of the Izhikevich model parameters.
For example, since RS, FS, and IB neurons all have the same
nominal value of b and the same range for a, they also have
the same fitting function of a for charging time.

In Fig. 5, we plot the charging and recovery times for
a single spike of a nominal RS neuron while varying one
individual model parameter. A representative numerical fit
accompanies each plot, and is generally chosen to be the
simplest fit that results in R2 > 0.995. The results are
generally consistent with the other types of neurons that we
consider, and are also consistent with what we would expect
given (3)-(5).

The charging time in Fig. 5 depends on {a, b, Imax}. While
the charging time is nearly independent of a, it noticeably de-
creases with increasing b or Imax. The recovery time depends
on all of the model parameters, but is nearly independent of
c and Imax. It is not surprising for the maximum magnitude
of the current to not have a significant impact on the the

Fig. 5. Charging and recovery time behavior for an RS neuron as a function
of individual model parameters, each shown with one representative numerical
fit. Both charging and recovery times are found as functions of {a, b, Imax}.
Recovery times are also found as functions of {c, d}. The nominal parameter
values are {a, b, c, d, Imax} = {0.02, 0.2,−65, 8, 6}. The illumination
remains on until the neuron fires.

recovery time, since the illumination is always turned off
during recovery and the current decays. However, it might
be surprising that parameter c, which via (5) dictates the reset
potential after the neuron fires, has a negligible impact on
the time to recover. This is due to the exponential recovery
behavior. The recovery time is most sensitive to a and d.

Perhaps with the exception of the maximum current Imax,
because it is an external and controllable parameter, fitting
to multiple model parameters is preferable. So, based on the
single-parameter fitting for an RS neuron in Fig. 5, we consider
two-parameter fits for an RS neuron. In particular, we fit to
the charging time by varying b and Imax, and we fit to the
recovery time by varying a and d. We consider polynomial
surfaces up to degree 4, where for simplicity both parameters
always have the same degree. We hold the remaining model
parameters constant according to the nominal parameter values
in Table I. A fitted surface for each type of neuron and the
accuracy of each fit are summarized in Table IV for charging
time and Table V for recovery time (see the Appendix for
additional functions that fit the charging time of the RS neuron
to the current Imax and parameter b).
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TABLE II
FITTING CHARGING BEHAVIOR TO A SINGLE PARAMETER. DEFAULT PARAMETER VALUES ARE FROM TABLE I AND Imax = 6. INCREMENT OVER THE

PARAMETER RANGE IS 0.005 FOR a, 0.005 FOR b, AND 0.5 FOR Imax .

Neuron
Type

Parameter
Range Fit Fitting Function R2 RMSE

[ms]
Max

Error [ms]

RS
a ∈ [0.02, 0.1] poly1 4.003a + 7.834 0.9999 3.72× 10−4 9.61× 10−4

b ∈ [0.2, 0.25] power1 0.2922b−2.050 0.9997 1.545× 10−2 3.769× 10−2

Imax ∈ [4, 12] power2 69.28I−1.512
max + 3.317 0.9995 4.584× 10−2 8.790× 10−2

FS
a ∈ [0.02, 0.1] poly1 4.003a + 7.834 0.9999 3.72× 10−4 9.61× 10−4

b ∈ [0.2, 0.25] power1 0.2505b−2.169 0.9998 1.246× 10−2 2.632× 10−2

Imax ∈ [4, 12] power2 150.6I−1.993
max + 4.002 0.9980 10.67× 10−2 0.2001

LTS
a ∈ [0.02, 0.1] poly1 0.8328a + 4.958 0.9998 2.94× 10−4 5.1× 10−4

b ∈ [0.2, 0.25] power1 0.2922−2.050 0.9997 1.549× 10−2 3.769× 10−2

Imax ∈ [2, 12] power1 11.37I−0.4602
max 0.9999 7.259× 10−3 1.507× 10−2

IB
a ∈ [0.02, 0.1] poly1 4.003a + 7.834 0.9999 3.72× 10−4 9.61× 10−4

b ∈ [0.18, 0.21] power1 0.2256I−2.212 0.9989 3.175× 10−2 4.816× 10−2

Imax ∈ [4, 12] power1 46.60I−0.9916
max 0.9951 1.068× 10−1 0.1376

TABLE III
FITTING RECOVERY BEHAVIOR TO A SINGLE PARAMETER. DEFAULT PARAMETER VALUES ARE FROM TABLE I AND Imax = 6. INCREMENT OVER THE

PARAMETER RANGE IS 0.005 FOR a, 0.005 FOR b, 1 FOR c, 0.5 FOR d, AND 0.5 FOR Imax .

Neuron
Type

Parameter
Range Fit Fitting Function R2 RMSE

[ms]
Max

Error [ms]

RS

a ∈ [0.02, 0.1] power1 3.371a−0.9587 1.000 0.2696 0.5037

b ∈ [0.2, 0.25] poly3 −1.831× 105b3 + 1.161× 105b2 − 2.451× 104b + 1869 0.9976 0.1646 0.2718

c ∈ [−65,−50] exp2 147.0e3.341×10−4c + 9.6847× 1013e0.6390c 0.9971 2.799× 10−2 8.074× 10−2

d ∈ [2, 10] power1 78.30b0.2945 0.9994 0.3756 0.7580

Imax ∈ [4, 12] power2 23.14I−2.4628
max + 143.6 0.9992 5.703× 10−3 1.352× 10−2

FS

a ∈ [0.02, 0.1] power1 3.367a−0.8522 0.9996 0.4221 0.8628

b ∈ [0.2, 0.25] poly3 −1.233× 104b3 + 7614b2 − 1548b + 128.2 0.9998 2.544× 10−3 3.650× 10−3

c ∈ [−65,−55] poly4 1.559× 10−3c4 + 0.3819c3

+35.07c2 + 1431c + 2.193× 104
0.9973 5.336× 10−2 0.1212

d ∈ [2, 10] power1 21.54d0.1736 0.9966 0.1170 0.2609

Imax ∈ [4, 12] exp2 8.572e−0.4449Imax + 22.75e8.625×10−3Imax 0.9961 1.418× 10−2 2.463× 10−2

LTS

a ∈ [0.02, 0.1] power1 3.298a−0.8500 0.9986 0.7094 1.338

b ∈ [0.2, 0.25] exp2 −8.864× 10−10e92.44b + 71.04e1.1474b 0.9999 1.613× 10−2 3.052× 10−2

c ∈ [−70,−61] poly3 1.030× 10−2c3 + 2.079c2 + 140.3c + 3252 0.9958 8.735× 10−2 0.1786

d ∈ [2, 10] power1 77.51d0.2603 1.000 7.412× 10−2 0.1997

Imax ∈ [4, 10] poly3 4.151× 10−2I3max − 0.7104I2max + 4.274Imax + 84.02 0.9928 0.1189 0.2278

IB

a ∈ [0.02, 0.1] power1 3.478a−0.9040 0.9997 0.4039 0.7936

b ∈ [0.18, 0.21] exp1 97.54e1.048b 0.9989 4.104× 10−2 7.065× 10−2

c ∈ [−65,−55] poly3 2.667× 10−3c3 + 0.4995c2 + 31.27c + 773.0 0.9981 2.675× 10−2 5.120× 10−2

d ∈ [3.5, 8] power1 83.66d0.2623 0.9998 0.1395 0.3388

Imax ∈ [4, 6.5] poly2 0.2143I2max − 2.190Imax + 125.7 0.9986 5.295× 10−3 7.629× 10−3

In Fig. 6, we plot the charging time as a function of b
and Imax and the recovery time as a function of a and d for
a nominal RS neuron. We include the third order polynomial
surface fit for both the charging time and the recovery time.

Both surface fits agree with the numerical data, as indicated
in Tables IV and V. We can see that the charging time is
sensitive to both b and Imax for the entire range of parameter
values considered, whereas the recovery time is relatively more
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TABLE IV
FITTING CHARGING BEHAVIOR TO b AND Imax . DEFAULT PARAMETER VALUES ARE FROM TABLE I. INCREMENT OVER THE PARAMETER RANGE IS 0.005

FOR b AND 0.5 FOR Imax .

Neuron
Type

Parameter
Range Fitting Function R2 RMSE

[ms]
Max

Error [ms]

RS b ∈ [0.2, 0.25]
Imax ∈ [4, 12]

187.3− 17.58I − 1553b + 0.6887I2 + 90.70Imaxb + 4686b2

−9.523× 10−3I3max − 1.765I2maxb− 118.5Imaxb2 − 5115b3
0.9962 9.117× 10−2 0.6975

FS b ∈ [0.2, 0.25]
Imax ∈ [4, 12]

269.0− 24.42Imax − 2353b + 0.9272I2max + 131.7Imaxb + 7360b2

−1.265× 10−2I3max − 2.437I2maxb− 181.2Imaxb2 − 8159b3
0.9913 0.1546 1.329

LTS b ∈ [0.2, 0.25]
Imax ∈ [4, 10]

228.1− 23.99Imax − 1922b + 1.033I2max + 127.3Imaxb + 5820b2

−1.577× 10−2I3max − 2.719I2maxb− 171.5Imaxb2 − 6306b3
0.9975 7.345× 10−2 0.5075

IB b ∈ [0.18, 0.21]
Imax ∈ [4, 6.5]

3.900× 104 − 6257Imax − 6.137× 105b + 477.6I2max + 6.808× 104Imaxb
+3.702× 106b2 − 18.93I3 − 3233I2maxb− 2.533× 105Imaxb2 − 1.011× 107b3

+0.3230I4max + 59.29I3b + 5665I2maxb
2 + 3.205× 105Imaxb3 + 1.052× 107b4

0.9933 0.2793 0.8903

TABLE V
FITTING RECOVERY BEHAVIOR TO a ∈ [0.02, 0.1] AND d ∈ [2, 10] (EXCEPT FOR IB NEURONS, WHERE d ∈ [3.5, 8]). DEFAULT PARAMETER VALUES ARE

FROM TABLE I AND Imax = 6. INCREMENT OVER THE PARAMETER RANGE IS 0.005 FOR a AND 0.5 FOR d.

Neuron
Type Fitting Function R2 RMSE

[ms]
Max

Error [ms]

RS, FS 153.5 + 19.16d− 5491a− 1.011d2 − 301.7ad + 7.784× 104a2

+2.552× 10−2d3 + 6.646ad2 + 1389a2d− 3.658× 105a3
0.9950 1.924 5.673

LTS 154.8 + 14.51d− 5358a− 0.6033d2 − 248.3ad + 7.490× 104a2

+9.958× 10−3d3 + 5.148ad2 + 1154a2d− 3.484× 105a3
0.9949 1.801 5.260

IB 180.5 + 11.60d− 6048a− 0.1827d2 − 229.3ad + 8.375× 104a2

−6.411× 10−3d3 + 3.422ad2 + 1126a2d− 3.892× 105a3
0.9953 1.952 5.416

Fig. 6. Charging and recovery time behavior for an RS neuron as a function of
two model parameters, each shown with one representative numerical fitting
surface. The charging time (Top) is found as a function of b and Imax. The
recovery time (Bottom) is found as a function a and d. The nominal parameter
values are {a, b, c, d, Imax} = {0.02, 0.2,−65, 8, 6}. The illumination
remains on until the neuron fires.

sensitive to a than to d.
One might question how reliably we can depend on the

particular model parameter values if the Izhikevich model

itself was obtained via numerical fitting to experimental data.
Since the charging time is generally much faster than the
recovery time, we measure the sensitivity of the charging
time to random model parameters a and b in Fig. 7, where
we predict the charging time as a function of the maximum
stimulation current Imax and we assume that the a and b
parameters are the nominal values for an RS neuron, i.e.,
{a, b} = {0.02, 0.2}. For each considered value of Imax,
we generate 103 realizations of a and b parameters that
are uniformly distributed over the ranges a ∈ [0.02, 0.036],
b ∈ [0.2, 0.21], calculate the charging time from rest for each
realization by solving (3)–(5), and then plot the distribution
of the charging times. Fig. 7 shows that the actual charging
times deviate from the predicted value by less than 10% for
most of the range of maximum currents Imax ∈ [4, 12].

B. Applying Fits to Spike Trains

Thus far, we have focused on the generation of individual
spikes in isolation. However, we can apply our results to the
generation of spike trains. In particular, we can assess how
well we can generate a spike train at a target frequency,
where the period is the sum of the charging and recovery
times. We turn the illumination on for the expected time to
charge the neuron, leave the illumination off for the neuron to
recover, and then charge the neuron again. We are interested
in measuring the deviation in spike times from the target
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Fig. 7. Distribution of charging times (from rest) for a set of 103 non-identical
RS neurons as a function of the maximum input current. Parameters a and b
are uniformly chosen over ranges a ∈ [0.02, 0.036], b ∈ [0.2, 0.21], i.e., over
20% of the value ranges in Table I. The distributions are compared with the
expected charging time given the nominal a and b values for an RS neuron.

frequency when we provide insufficient time for the neuron to
fully recover. Similar to our work with the IF neuron model
in [30], [31], we can use (9) to calculate the RMSE associated
with a spike train of N spikes, but where yn is the nth target
firing time (according to a specified firing frequency), and ŷn
is the corresponding observed firing time.

First, we observe deviations visually. Using Tables IV and
V, we expect an RS neuron with nominal model parameters
and maximum current Imax = 6 to take 8.13 ms to charge and
138.2 ms to recover. Thus the interference-free firing frequency
is approximately 6.8 Hz. In Fig. 8, we observe the input current
and membrane potential of an RS neuron versus time as we
try to generate spikes at 10 Hz and 13 Hz, where in each case
we turn on the stimulating current for 8.13 ms. At 10 Hz,
we observe that the spikes can still be generated but that
deviations from the target firing time are visually apparent
with the third spike (since we expect the neuron to fire
as soon as the current is turned off). At 13 Hz, there is a
more visible deviation with the second spike and then the
third spike is missed entirely. We can achieve faster controlled
spiking with a different neuron type. In Fig. 9, we observe the
input current and membrane potential of an FS neuron, which
we can calculate has an interference-free firing frequency of
approximately 33.1 Hz. A spike train at 13 Hz can be generated
without a problem, but a 60 Hz spike train misses spikes.

To provide more detailed insight into the generation of spike
trains at different frequencies, we measure the RMSE for
sequences of 10 spikes (after the distortion-free first spike)
as a function of the target firing frequency for RS, FS, LTS,
and IB neurons in Fig. 10 where we set the maximum current
Imax = 6 and found the charging time from Imax in Table II.
For each type of neuron, the distortion jumps to infinity when
we miss a spike. RS neurons are the least accommodating
of rapid stimulation, followed by IB neurons, LTS neurons,
and then FS neurons. Generally, for each type of neuron, the

Fig. 8. Membrane potential versus time for an RS neuron ({a, b, c, d} =
{0.02, 0.2,−65, 8}) that is stimulated with a maximum current Imax = 6
to fire at specified frequencies. The input current is drawn on an arbitrary
scale to show when it turns on and off.

Fig. 9. Membrane potential versus time for an FS neuron ({a, b, c, d} =
{0.1, 0.2,−65, 2}) that is stimulated with a maximum current Imax = 6
to fire at specified frequencies. The input current is drawn on an arbitrary
scale to show when it turns on and off.

maximum possible frequency without missing spikes is less
than twice that predicted by the interference-free charging and
recovery times, e.g., 11 Hz for the RS neuron and 53 Hz for
the FS neuron. Thus, the interference-free estimates provide
a “rule-of-thumb” to predict achievable firing times in a
spike train.

Finally, we measure the distribution of sequence distortions
for FS neurons, where we set Imax = 6 and generate 103

realizations of target FS model parameters over the ranges
a ∈ [0.084, 0.1], b ∈ [0.2, 0.21], c ∈ [−65,−62], and
d ∈ [2, 3.2]. For each realization of target model parame-
ters, we generate actual parameter values that are normally
distributed about the target values and with variances that
are 1% of the chosen ranges. We use Tables IV and V to
determine the target charging and recovery times, and then
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Fig. 10. Root mean square distortion versus firing frequency for the RS,
FS, LTS, and IB neuron types. The model parameter values are those that
are nominal for each type of neuron (as listed in Table I), the maximum
current is Imax = 6, and the neuron is illuminated when we expect to be
charging it. The charging time was found using the fitting functions for Imax

in Table II. The distortion is measured relative to a target sequence of the same
frequency whose firing times are synchronous with the first expected firing
time. The second through eleventh firing times are considered to calculate the
RMSE.

in Fig. 11 measure the distribution of RMSE distortion as
a function of the normalized frequency. The frequencies are
normalized to the frequency predicted by the charging and
recovery times in Tables IV and V. Even though we are
simulating neurons with model parameters that do not match
those used to predict the charging and recovery times, the
results in Fig. 11 are still consistent with those in Fig. 10,
such that FS neurons can be stimulated with RMSE distortion
usually below 1 ms if the firing frequency is no more than
50 % greater than that predicted by the charging and recovery
times. This demonstrates the robustness of our methodology
to control the firing of individual neurons.

V. CONCLUSION

In this paper, we have considered the use of an optoge-
netic stimulation model to control the timing of individual
neuron spikes. We used the Izhikevich neuron model for the
membrane potential dynamics and fitted the neuron charging
and recovery times to functions of the model’s parameters
and the input current. We have demonstrated that simple
functions can help predict lower bounds on the highest firing
frequency that can be achieved in regular spiking, fast spik-
ing, low-threshold spiking, and intrinsically bursting neurons
with minimal interspike interference. We have also measured
deviations due to imperfect knowledge of the neuron model
parameters. Future work can consider mismatch between
neuron model parameters and experimentally-observed
membrane potential dynamics, develop a new model for
membrane potential dynamics to align with where light-gated
channels are expressed and opened, and study information-
theoretic measures for the information that can be embedded
in externally-stimulated spike trains.

0

0.05

0.1

0.15

Fig. 11. Distribution of distortion for a set of 103 non-identical FS neurons
as a function of normalized frequency. The second through eleventh firing
times are considered. Each neuron has target model parameter values that
are uniformly chosen over ranges a ∈ [0.084, 0.1], b ∈ [0.2, 0.21],
c ∈ [−65,−62], d ∈ [2, 3.2], i.e., over 20% of the value ranges in Table I.
Actual model parameter values are normally distributed about the target
parameter values with variances that are 1% of the chosen ranges. Frequencies
are normalized to that predicted by the corresponding charging and recovery
times in Tables IV and V, respectively. The maximum current is Imax = 6.

APPENDIX

In Table VI, we list additional equations found for fitting the
charging and recovery times of the nominal RS neuron to the
maximum input current Imax. In Table VII, we list additional
equations found for fitting the charging times of the nominal
RS neuron to the maximum input current Imax and model
parameter b.
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