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Abstract Thermal electrochemical models for porous electrode batteries (such as lithium ion batteries) are widely
used. Due to the multiple scales involved, solving the model accounting for the porous microstructure is computa-
tionally expensive; therefore, effective models at the macroscale are preferable. However, these effective models are
usually postulated ad hoc rather than systematically upscaled from the microscale equations. We present an effec-
tive thermal electrochemical model obtained using asymptotic homogenisation, which includes the electrochemical
model at the cell level coupled with a thermal model that can be defined at either the cell or the battery level. The
main aspects of the model are the consideration of thermal effects, the diffusion effects in the electrode particles,
and the anisotropy of the material based on the microstructure, all of them incorporated in a systematic manner. We
also compare the homogenised model with the standard electrochemical Doyle, Fuller & Newman model.

Keywords Homogenisation · Porous electrode batteries · Thermal-electrochemical model

1 Introduction

The role of rechargeable batteries has become more and more important in recent years due to the increase in the
use of electronic devices and electric vehicles. In particular, most of these applications rely on lithium ion batteries,
a type of porous electrode battery, and therefore, research on this type of battery has received a lot of attention in the
past few years. The first electrochemical model for porous electrode batteries was put forward in the seminal paper
of Doyle et al. [1]. In that article, an effective model was presented which described the mass and charge transport
in both the electrode and the electrolyte. The porous structure of the electrode was modelled by assuming that at
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each point of the electrodes there is a representative particle in which lithium intercalates and diffuses. This model
is commonly known as the pseudo-two-dimensional (P2D) model, because of the two scales involved (electrode
particles and cell scales) or as the Doyle, Fuller & Newman (DFN) model. In this paper, we will refer to it as
the DFN model. This model has been since the backbone of lithium ion battery modelling and, more generally,
of porous electrode batteries. As most of the modelling efforts on porous electrode batteries have been driven by
lithium ion batteries, most of the references and notation in this article refer to that particular application, despite
that the results presented are more general.

In themodels for porous electrode batteries, the equations derived from the thermodynamics are at themicroscale.
This means that they need to be solved in a very complex geometry in order to capture the porous electrode, which
requires a lot of computational power. For this reason effective models, such as the DFN model, have been popular:
they are posed at the macroscale and therefore are computationally cheaper, but still retain most features of the
microstructure and the microscale dynamics. One way to obtain effective macroscale equations from the microscale
equations is using the volume averaging method, like in [1–3]. This method provides good results, but it requires to
either define the effective model ad hoc [1] or neglect some terms in the averaging [3]. In both cases, the parameters
of the macroscale model need to be defined as effective parameters and, therefore, fitted from data. This means that
the macroscale parameters cannot be directly and systematically derived from the microstructure, and has led to the
use of empirical correlations which are still a subject of debate in the field, such as the Bruggeman correlation [4].
For more details on volume averaging we refer the reader to [5].

Another approach to upscale the microscale equations is to use asymptotic homogenisation. The main differ-
ence between volume averaging and homogenisation is that the latter allows the effective parameters from the
microstructure to be derived in a systematic manner. The key idea of asymptotic homogenisation is to assume that
the material is composed of a periodic structure of a size much smaller compared to that of the material. Then, one
can exploit the disparity of scales and define space variables at each level that can be treated as independent, so
all the differential operators can be split into operators at each scale and a small parameter (ratio of length scales)
appears. By performing an asymptotic expansion in this small parameter, an equation at the large scale can be
determined, which accounts for the effects occurring at the small scale. Homogenisation is a well-known technique:
the technical details can be found in the handbooks of the subject [6,7] and a detailed comparison between volume
averaging and asymptotic homogenisation is provided in [8].

In our case, we have a problem in which there is transport of mass around the particles (i.e. the microstructure),
with a chemical reaction at the surface of the particles and diffusion inside them. This type of problem appears in
many different applications, apart from porous electrode batteries, such as filtration [9,10], biology [11], metal-
lurgical furnaces [12] or even coffee roasting [13]. In order to capture the diffusion in the particles that form the
microstructure, it is necessary to use high-contrast homogenisation as the diffusion coeffient in the particles is much
smaller than the diffusion coefficient in the medium surrounding them [14,15]. High-contrast homogenisation is
not as developed as standard homogenisation, and it presents numerous challenges, especially on the analysis side
[16–18].

Thermal effects can have a notable impact on the behaviour of batteries, and therefore, they are an important
aspect of our model. The thermal model is coupled to the electrochemical model in the following way: the currents
in the battery generate heat in several ways, while the temperature of the battery affects the parameters of the
electrochemical model. The coupled thermal electrochemical model can then be upscaled from the microscale
equations from a few different ways, similarly to the electrochemical model. The most common approaches in the
literature are posing the model ad hoc [19] or using volume averaging [3,20], which present the same advantages
and disadvantages discussed for the purely electrochemical model. The goal of this paper is to upscale and derive
the coupled thermal-electrochemical model systematically, using asymptotic homogenisation, and including some
features that extend the models present in the literature. First, we keep the relation between the microstructure
and the effective parameters and also consider a more general microstructure than the single particle at each point
considered in the classic DFN model. We also retain all the features in the electrochemistry of the DFN model,
in particular diffusion in the particles, which is important in the behaviour of the batteries, especially during the
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relaxation period after the current is switched off. Finally, we include the double layer capacitance effects in the
kinetics between the electrode and the electrolyte, similarly to the model in [2].

Homogenisation was first used to derive an effective electrochemical model for porous electrode batteries by
Ciucci and Lai in [21]. Assuming that the microstructure is formed by packed spheres they derive the DFN model
from the microscale equations. They use high-contrast homogenisation so diffusion in the particles is retained.

A similar approach was taken by Richardson et al. in [22]. Here, the authors homogenise the electrochemical
microscale equations to obtain effective macroscale equations and use the following assumptions: fast diffusion
in the electrode particles, high electronic conductivity in the electrodes and dilute electrolyte. They present a very
detailed analysis of the homogenisation and then perform an asymptotic analysis of the effective model to obtain
analytical solutions.

In [23,24], Arunachalam et al. perform asymptotic homogenisation of the electrochemical microscale model.
The authors consider the diffusivity in the particles to be the same order of magnitude as the diffusivity in the
electrolyte. Therefore, the effective model includes lithium diffusion over the whole thickness of the electrode,
rather than within the particle. In [24] the authors also provide an analysis of the region in the parameter space in
which the DFN model is valid.

Focusing on another aspect within batteries, Hennessy andMoyles [25] used homogenisation to derive the battery
heat equation for a double coated electrode from the cell heat equation. The thermal properties of the cell problem
are taken to be scalars and the connection to the microscale bulk properties is not considered.

The outline of this paper is as follows. In Sect. 2 we provide the homogenised dimensionless model for thermal
and electrochemical behaviour of porous electrode batteries. The microscale equations which are the starting point
of the derivation of the homogenised model are presented in Sect. 3 and the details of the homogenisation procedure
are given in Sect. 4. In Sect. 5 we compare our homogenised model with the widely used DFN model. Finally, in
Sect. 6 we discuss the results.

2 Dimensionless homogenised model

We use asymptotic homogenisation to derive a thermal-electrochemical model for porous electrode batteries both
at cell and battery levels, as this method allows us to derive macroscale equations from the microscale ones in a
systematic way. In this section the effective model is presented. This model can be seen as a generalised version of
the Doyle, Fuller & Newman (DFN) model [1] and the physical laws underpinning it are discussed at the beginning
of Sect. 3. Notice that, even though we use lithium ion battery terminology in the article, the model presented here
can be applied to other types of porous electrode batteries.

The variables of the problem are the concentration of lithium in the electrode cs and ions in the electrolyte ce, the
electric potentials Φs and Φe, and the temperature T . The subscripts s and e distinguish the quantities in the solid
electrode and the electrolyte, respectively. For convenience, the currents is and ie in the electrode and the electrolyte
are defined. These are quantities derived from the concentrations and potentials.

As shown in Fig. 1, the effective model accounts for phenomena occurring at three different scales. At the
microscale, denoted by z, there are the electrode particles Ωs. The mesoscale, denoted by y, represents a cell,
which is composed of the negative electrode Ωn, the separator Ωsep, and the positive electrode Ωp. The boundary
of the domain needs to be separated into the part in contact with the current collectors (denoted by ∂Ωcollector

n and
∂Ωcollector

p ) and the rest of the boundary, as different conditions apply to each one. At each point of the cell, there
is the solid electrode and the electrolyte and thus different variables are used to measure them. The cell domain,
defined as the union of the three parts, is Ωcell. Finally, there is the macroscale, denoted by x , which is the battery,
composed of several cells and represented by Ωbatt. In the differential operator ∇ subscripts x , y, and z are used to
denote at which scale the operator is applied. Similarly, we use these subscripts in the volume and area integration
variables to denote the scale.
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Ωbatt

x y z

ΩsepΩn Ωp

Ωs

Fig. 1 Sketch of the geometry at the three length scales that are involved in the effective model: battery, cell, and particles. We label as
well the regions at each scale. At themacroscale, where themacroscale heat equation (5) is defined, the domain is the batteryΩbatt , which
is composed of several cells. At the mesoscale, where the electrochemical model (2)–(3) and the cell thermal model (4) are defined, the
domains are the negative electrode Ωn, the separator Ωsep, and the positive electrode Ωp (apart from the collectors which have not been
labelled as we do not consider them in the problem). The cell is defined as the union of the three parts so Ωcell = Ωn ∪ Ωsep ∪ Ωp. At
the microscale, where the diffusion in the particles (1) is defined, the domain is the representative microstructure of the porous structure
Ωs

Then, the homogenised dimensionless problem is the following. For the concentration of lithium in the electrodes
the problem is defined at the microscale domain. It reads

∂t cs = ∇z · (Ds∇zcs) in xΩs, (1a)

− Ds∇zcs · ns = (g + C∂t (Φs − Φe)) at ∂Ω in
s , (1b)

where Ds is the diffusion coefficient of lithium in the electrode (which may depend on the concentration itself,
space variables, and temperature), G is the ratio between applied and exchange current, and C is the double layer
capacitance. The exchange current g and the overpotential η are defined as

g = cβ
s

(
1 − cs

cmax
s

)1−β

c1−β
e

[
exp

(
(1 − β)λ

η

1 + γ T

)
− exp

(
−βλ

η

1 + γ T

)]
, (1c)

η = Φs − Φe −Uocp (cs) , (1d)

where β is the charge-transfer coefficient of the interacalation reaction, cmax
s is the maximum concentration of the

electrode, λ is the ratio between the typical and thermal potentials, γ is the ratio between temperature variation and
reference temperature, and Uocp is the open circuit potential as a function of the electrode lithium concentration at
the interface. All these parameters are dimensionless quantities, and more details about the non-dimensionalisation
are provided in Appendix A. In addition, cs must be periodic in z ∈ R

3. Even though here we consider the electrode
particles to be isotropic, the same model would apply to anisotropic materials just taking the diffusion coefficients
Ds to be tensors.

At the mesoscale, the conservation of charge equation is posed in each electrode separately

∇y · is = −J in Ωp, (2a)

is · np = −iapp(y, t) at ∂Ωcollector
p , (2b)

is · np = 0 at ∂Ωp \ ∂Ωcollector
p , (2c)
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with the current is and the exchange current per unit of volume J defined as

is = −S∇yΦs, (2d)

J = 1

|Ω|
∫

∂Ω in
s

G (g + C∂t (Φs − Φe)) dAz, (2e)

In the previous equations, iapp is the current density applied to the battery (defined to be positive during discharge),
and S is the mesoscale electronic conductivity tensor in the electrode, which may vary in space and depend on
temperature. The domain ∂Ω in

s is the electrode–electrolyte contact surface as shown in Fig. 2. Because in this model
we do not consider the current collectors, we assume that the applied current density iapp is known. However, in
most of the cell configurations, in order to determine iapp an additional problem at the macroscale for the specific
geometry of the cell. This has been addressed in the literature mostly from a numerical point of view [26–28]. The
incorporation of the current collectors into this homogenisation analysis is an area of future work.

Notice that two instances of problems (1) and (2) are needed to describe a cell, one for each electrode. The
problem in (2) is for the positive electrode, while the problem in the negative electrode is the same but with the
boundary condition (2b) having the opposite sign. In each electrode the parameters can take different values, but
they are constant in each electrode. Also, the microstructure, defined by Ωs , is different in each electrode and the
concentration fields cs may have significantly different behaviours in each electrode.

The electrolyte problem can be posed across the electrodes and the separator, and it is given by

ϕe∂t ce − ∇y · (DL∇yce + λMLce∇yΦe
) = J in Ωcell, (3a)

∇y · ie = J in Ωcell, (3b)

− (DL∇yce + λMLce∇yΦe
) · ncell = 0 at ∂Ωcell, (3c)

ie · ncell = 0 at ∂Ωcell, (3d)

with the current in the electrolyte ie defined as

ie = − (
(DL − DA)∇yce + λ(ML + MA)ce∇yΦe

)
. (3e)

The parameters DL and DA are the mesoscale diffusivity tensors for lithium ions and anions in the electrolyte,
respectively (that is, accounting for the microstructure),ML andMA are the mesoscale ion mobilities (which are
tensors too), and ϕe is the volume fraction occupied by the electrolyte. As we show during the homogenisation
process, DL and DA must be multiples of each other as any anisotropy arising in the electrolyte can be caused
only by the geometry, which is the same for both types of ions, and the same applies to the pair ML and MA.
Both diffusivities and mobilities may depend on the ion concentration in the electrolyte and temperature. All these
parameters, even if they are constant in each part (electrodes and separator) like the electrolyte volume fraction,
have different values in each part. In particular, J is equal to zero in the separator as there is no reaction taking place.
Notice as well that the electrolyte equations only consider the concentration of lithium ions because electroneutrality
has been assumed in the electrolyte, and therefore the concentration of cations and anions must be the identical.

Because this is a homogenised model, we assume that Ds, DL and DA are all of the same order of magnitude.
Even though diffusion in the electrode is much slower than in the electrolyte, this effect has already been captured
by the fact that diffusion in the electrode occurs at a much smaller length scale. In particular, Ds is the same as in the
microscale model in Sect. 3, whileDL = DLB and DA = DAB, where DL and DA are the microscale diffusivities
and B is the tensor accounting for the geometry of the porous material as defined in Sect. 4.7.

The mesoscale heat equation is given by

θ∂t T = ∇y · (K∇yT
) + Q, (4a)
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where θ is the volumetric heat capacity and K is the thermal conductivity tensor. The heat source term Q accounts
for four different heat generation mechanisms: Joule heating in the electrode, Joule heating in the electrolyte,
irreversible reaction heating and reversible reaction heating. These terms can be written as

Qs = −λis · (Qs∇yΦs
)
, (4b)

Qe = −λie · (Qe∇yΦe
)
, (4c)

Qirr = 1

|Ω|
∫

∂Ω in
s

λGgηdAz, (4d)

Qrev = 1

|Ω|
∫

∂Ω in
s

λGgΠdAz, (4e)

whereQs andQe are tensors that account for the microstructure effects in the heat generation, and Π is the Peltier
term. The Peltier term is defined as

Π = T
∂Uocp

∂T
, (4f)

so it is temperature dependent. However, given that in many practical applications the Uocp is provided from
experimental data (and so is its derivative with respect to temperature), we treat the Peltier term as a parameter
function of the model.

Then, the heat generation term is defined as

Q =
{
Qs + Qe + Qirr + Qrev in Ωp and Ωn,

Qe in Ωsep.
(4g)

The boundary conditions are not specified at this point as they depend on the problem of interest. To study a single
cell, heat exchange conditions at the boundary could be used. If, instead, this equation is to be homogenised to
obtain the battery heat equation, then periodic boundary conditions are required.

In a similar way, the heat equation at the battery level can be defined as

θbatt∂t T = ∇x · (Kbatt∇x T ) + Qbatt in Ωbatt, (5a)

with suitable boundary conditions, where θbatt is the average volumetric heat capacity of a cell, and Kbatt is the
thermal conductivity tensor of the battery. The heat source term Qbatt accounts for the heat generation in each cell
and it is defined as

Qbatt = 1

|Ωcell|

(∫
Ωp

(Qs + Qirr + Qrev) dVy +
∫

Ωn

(Qs + Qirr + Qrev) dVy +
∫

Ωcell

QedVy

)

= 1

|Ωcell|
∫

Ωcell

QdVy .

(5b)

An extra term could be added to Qbatt to account for the heat generated in the current collectors, but for simplicity
of the homogenisation problem we have not considered it.

All the tensors that appear in the homogenised model can be calculated from material properties and microstruc-
ture, as detailed in Sect. 4.7.

3 Dimensionless microscale model

We now consider the dimensionless microscale model, fromwhich we derive the effective model. The electrochemi-
calmodel accounts for conservation ofmass and charge in both the electrodes and the electrolyte, withButler-Volmer
kinetics for the intercalation reaction. The transport of lithium in the electrodes is by diffusion only, while in the
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electrolyte there is diffusion and migration due to the electric field. We use a dilute electrolyte model, and thus
use Nernst-Planck equations, but analogous results can be found for concentrated electrolytes (see [21,24]). We
assume as well that charge transport in the electrodes follows Ohm’s law. The thermal model imposes conservation
of energy in both electrode and electrolyte accounting only by diffusion effects, with a heat source term at the
interface between them due to the chemical reaction. For a complete discussion of the microscale equations we
refer the reader to the books [3,29].

The variables for the microscale problem are still the concentration of lithium in the electrodes cs and lithium
ions in the electrolyte ce, the potentialsΦs andΦe, and the temperature T . To be rigorous, these variables are not the
same as those defined in Sect. 2, which are the leading order term in the asymptotic expansions of the microscale
variables. However, to keep the notation simple, we do not use any symbol to distinguish them because for the rest
of the paper we will refer to the microscale variables and their asymptotic expansions. For fluxes, on the other hand,
we need to distinguish the homogenised ones from the bulk ones observed at the microscale; therefore, we use tilde
for the fluxes at the microscale (i.e. Ñs, ĩs and K̃).

The microscale equations are defined in a domain Ω , which is divided into the electrode particles Ωs and the
electrolyte Ωe. In the homogenisation process, we consider the electrode and electrolyte separately (except for the
thermal model); therefore, we need to carefully define the notation in each domain. The thermal problem is defined
as a single equation in the joint domainΩ because the thermal problem is the same in both electrode and electrolyte,
just with different parameters. A detailed sketch of each of the subdomains and their boundaries is shown in Fig. 2.
A key assumption for the homogenisation is that the microstructure repeats periodically; therefore, a finite domain
that is representative of the geometry can be considered. The length scale of Ω is much smaller than the length
scale of the porous electrode. Therefore, the ratio between length scales δ, which is a small parameter, arises in the
equations and can be used in the homogenisation from microscale to mesoscale.

The details on the non-dimensionalisation of the microscale model are provided in Appendix A. The scalings are
chosen so all the parameters in the dimensionless model are of O (1) except for δ which is small. The dimensionless
equations for the solid phase are

∂t cs + ∇ · Ñs = 0 in Ωs, (6a)

∇ · ĩs = 0 in Ωs, (6b)

Ñs · ns = δG (g + C∂t (Φs − Φe)) at ∂Ω in
s , (6c)

ĩs · ns = δG (g + C∂t (Φs − Φe)) at ∂Ω in
s , (6d)

periodic at ∂Ωout
s , (6e)

with

Ñs = −δ2Ds∇cs, (6f)

ĩs = −σs∇Φs, (6g)

and

g = cβ
s

(
1 − cs

cmax
s

)1−β

c1−β
e

[
exp

(
(1 − β)λ

η

1 + γ T

)
− exp

(
−βλ

η

1 + γ T

)]
, (6h)

where the only new parameters are the ratio between length scales at micro- and mesoscale δ, and the microscale
electronic conductivity σs. The latter may depend on temperature and the spacial variables in order to account for
inhomogeneities in the electrode material. Diffusion of lithium in the solid is much slower than diffusion of ions
in the electrolyte; therefore, we consider the limit in which the diffusivity in the solid is of O

(
δ2

)
. As pointed out

in [12], this particular limit allows diffusion to happen only at the microscale, as we expect in a porous electrode
battery.
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∂Ω

Ωs

Ωe

Ω = Ωs ∪ Ωe

∂Ω = ∂Ωout
s ∪ ∂Ωout

e

∂Ωin
s ≡ ∂Ωin

e

Ωe

∂Ωout
e

∂Ωin
e

Ωs

∂Ωout
s

∂Ωin
s

Fig. 2 Schematic of the domain definition at the microscale. The microscale periodic cell Ω is composed of the electrolyte domain Ωe
and the solid electrode domain Ωs. For the homogenisation problem we define ∂Ω as the boundary of Ω , which is composed by ∂Ωout

s
and ∂Ωout

e depending on whether the boundary is at the solid or the electrolyte domain. The interface between electrolyte and solid is
defined by both ∂Ω in

e and ∂Ω in
s

The equations for the electrolyte are

∂t ce + ∇ · Ñe = 0 in Ωe, (7a)

∇ · ĩe = 0 in Ωe, (7b)

Ñe · ne = −δG (g + C∂t (Φs − Φe)) at ∂Ω in
e , (7c)

ĩe · ne = −δG (g + C∂t (Φs − Φe)) at ∂Ω in
e , (7d)

periodic at ∂Ωout
e , (7e)

with

Ñe = − (DL∇ce + λμLce∇Φe) , (7f)

ĩe = − ((DL − DA)∇ce + λ(μL + μA)ce∇Φe) . (7g)
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The new parameters here are DL and DA which are the diffusion coefficients of lithium ions and anions in the
electrolyte, and μL and μA which are the ion mobilities. These are scalars as they are bulk parameters and do not
account for the porous structure of themedium.We assume that diffusivities andmobilities of ions are homogeneous
in space and do not depend on the concentration of ions or the voltage. However, they may depend on temperature.
Notice the δ factor in the fluxes (6c)–(6d) and (7c)–(7d). This scaling arises from the fact that the surface area of
the particles is of O

(
δ−1

)
, and given that the total exchange current over each electrode is of O (1) this implies

that the exchange currents (and ion fluxes) must be of O (δ). To pose the electrolyte microscale equations we have
assumed electroneutrality, which is true except in a thin layer at the electrode–electrolyte interface. The size of this
layer is defined by the Debye length, which is of the order of nanometres. Therefore, even at the microscale (which
is of the order of micrometers) the electroneutrality assumption is reasonable.

The dimensionless thermal model is

ρcp∂t T + ∇ · K̃ = −λĩ · ∇Φ in Ω, (8a)(
K̃s − K̃e

)
· ne = δλG(gη + gΠ) in ∂Ω in

e , (8b)

periodic at ∂Ω, (8c)

where

K̃ = −k∇T, (8d)

and ρ is the density, cp the specific heat capacity, and k the thermal conductivity. All these parameters depend on
z as they are different in each material, and they can vary within each material too. We also have that ĩ and Φ

correspond to ĩe and Φe, or ĩs and Φs depending on whether the point in the domain is in Ωe or Ωs. We use K̃s to
denote the flux on the electrode side of the interface and K̃e to denote the flux on the electrolyte side.

These microscale equations account for the classic conservation of mass, charge and energy laws, so they are
physically consistent (see [3,29] for details). However, given the complexity of the porous structure and the multiple
scales involved in the problem, solving this model numerically is very challenging. The motivation to derive the
homogenised mesoscale equations is to obtain a model of a lower complexity level that still captures most of the
microstructure effects.

4 Derivation of the effective equations

We now proceed to homogenise the microscale equations defined in Sect. 3 in order to derive the effective equations
presented in Sect. 2. To do so, we need to homogenise the equations at the microscale (i.e. porous material structure)
to obtain the mesoscale equations (i.e. cell level). Then, we can assemble the mesoscale equations for a cell and
homogenise them to obtain the macroscale equations (i.e. battery level).

In our problem, we have a particle microstructure of length scale � composing a porous material of length scale
L which makes a cell. A large number of these cells are put together to make a battery of length scale NL , where
N is number of cells in the battery. Then, we define the following dimensionless numbers

δ = �

L
and ε = 1

N
, (9)

and we have that both δ, ε � 1. These are the small numbers that we exploit for the homogenisation. In particular,
for lithium ion batteries, using as typical values those in [14,15] and that the radius of a typical cylindrical cells is
around 1 cm [30], we estimate values of δ and ε of the order of 10−2.

Taking the limit of small δ and ε, we can apply the chain rule to split the differential operators into the multiple
scales. Recall, that the variable at the macroscale is x , at the mesoscale is y, and at the microscale is z. Then, when
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deriving the mesoscale equations, the operator acts on both the meso and microscales, so for a general function f
we have

∇ f (y, z) = ∇ f
(
y,

y

δ

)
= ∇y f (y, z) + 1

δ
∇z f (y, z). (10a)

When we assemble the cell model and upscale it to the battery level, the macro- and mesoscales are involved, so
we have

∇ f (x, y) = ∇ f
(
x,

x

ε

)
= ∇x f (x, y) + 1

ε
∇y f (x, y), (10b)

where the subscripts in ∇ denote with respect to which variable the operator is applied.
The homogenisation analysis presented here assumes that all the parameters except for δ or ε are of O (1). In

practise, for the typical lithium ion chemistries, some of these parameter are big or small but this does not affect the
homogenisation analysis. Having defined the different scales and the operators, we can now proceed to homogenise
the equations.

4.1 Conservation of mass in the electrode

We start by homogenising the conservation of mass in the electrode, which written accounting for the multiple
scales, is given by

∂t cs + ∇y · Ñs + 1

δ
∇z · Ñs = 0 in Ωs, (11a)

Ñs · ns = δG (g + C∂t (Φs − Φe)) at ∂Ω in
s , (11b)

periodic at ∂Ωout
s , (11c)

with

Ñs = −δ2 Ds

(
∇ycs + 1

δ
∇zcs

)
. (11d)

We expand the concentration and the flux as

cs = cs,0 + δcs,1 + δ2cs,2 + O
(
δ3

)
, (12a)

Ñs = δÑs,1 + δ2Ñs,2 + O
(
δ3

)
, (12b)

so now we can substitute these expansions into (11) and linearise the problem.
At leading order we find

∂t cs,0 + ∇z · Ñs,1 = 0 in Ωs, (13a)

Ñs,1 · ns = G
(
g0 + C∂t

(
Φs,0 − Φe,0

))
at ∂Ω in

s , (13b)

periodic at ∂Ωout
s , (13c)

with

Ñs,1 = −Ds∇zcs,0, (13d)
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where g0,Φs,0 andΦe,0 are the leading order terms in the expansion for small δ of g,Φs andΦe, respectively. Then,
we conclude that the governing equation for the conservation of mass in the electrodes is

∂t cs,0 = ∇z · (
Ds∇zcs,0

)
in Ωs, (14a)

− Ds∇zcs,0 · ns = G
(
g0 + C∂t

(
Φs,0 − Φe,0

))
at ∂Ω in

s , (14b)

periodic at ∂Ωout
s , (14c)

which is the problem stated in (1).Notice that this problem is still at themicroscale because the diffusion coefficient is
ofO

(
δ2

)
and, therefore, diffusion is so slow that can only be observed at themicroscale. Because the homogenisation

process does not change the diffusion coefficients for lithium in the electrode particles, the same result holds for
anisotropic materials, just replacing the diffusion coefficient by a tensor.

4.2 Conservation of charge in the electrode

Next we consider the conservation of charge in the electrode, which is given by

∇y · ĩs + 1

δ
∇z · ĩs = 0 in Ωs, (15a)

ĩs · ns = δG (g + C∂t (Φs − Φe)) at ∂Ω in
s , (15b)

periodic at ∂Ωout
s , (15c)

with

ĩs = − σs

(
∇yΦs + 1

δ
∇zΦs

)
. (15d)

We expand the potential and the current as

Φs = Φs,0 + δΦs,1 + δ2Φs,2 + O
(
δ3

)
, (16a)

ĩs = δ−1 ĩs,−1 + ĩs,0 + δĩs,1 + O
(
δ2

)
. (16b)

Notice that the expansion for current starts at δ−1 because of the definition (15d). Substituting these expansions
into (15), multiplying by a power of δ so the leading order term is O (1), and expanding for small δ we find the
following problems.

4.2.1 O(1) problem

At leading order we have the problem

∇z · ĩs,−1 = 0 in Ωs, (17a)

ĩs,−1 · ns = 0 at ∂Ω in
s , (17b)

periodic at ∂Ωout
s , (17c)

with

ĩs,−1 = −σs∇zΦs,0. (17d)
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The first step in the homogenisation process is to show that Φs,0 is independent of z. Multiplying (17a) by Φs,0 and
integrating it over the Ωs, we have that∫

Ωs

∇z · (
σs∇zΦs,0

)
Φs,0 dVz = 0, (18)

and applying the divergence theorem to the left hand side we find

−
∫

Ωs

σs|∇zΦs,0|2 dVz +
∫

∂Ωs

Φs,0σs∇zΦs,0 · ns dAz = 0. (19)

The boundary integral over ∂Ωs vanishes because of the conditions (17b) and (17c), and given that σs is positive,
|∇zΦs,0|2 = 0 over the entire domainΩs which implies thatΦs,0 is independent of z. This also means that ĩs,−1 = 0
and, therefore, the expansion of the current starts at O (1) as one would expect.

4.2.2 O(δ) problem

Now we consider the problem at O (δ), which, using the results from the O (1) problem, is given by

∇z · ĩs,0 = 0 in Ωs, (20a)

ĩs,0 · ns = 0 at ∂Ω in
s , (20b)

periodic at ∂ Ωout
s , (20c)

with

ĩs,0 = − σs
(∇yΦs,0 + ∇zΦs,1

)
. (20d)

Following the usual procedure for homogenisation (see [7] for details), we now write Φs,1 = Ws · ∇yΦs,0, where
Ws depends only on z. Substitution into (20) gives the cell problem

∇z · (σs (I + ∇zWs)) = 0 in Ωs, (21a)

σs (I + ∇zWs)ns = 0 at ∂Ω in
s , (21b)

periodic at ∂Ωout
s , (21c)∫

Ωs

WsdVz = 0, (21d)

which determines Ws.

4.2.3 O(δ2) problem

We finally address the O
(
δ2

)
problem which is given by

∇y · ĩs,0 + ∇z · ĩs,1 = 0 in Ωs, (22a)

ĩs,1 · ns = G
(
g0 + C∂t

(
Φs,0 − Φe,0

))
at ∂Ω in

s , (22b)

periodic at ∂Ωout
s , (22c)

with

ĩs,1 = −σs
(∇yΦs,1 + ∇zΦs,2

)
. (22d)
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We now average (22a) over the domain Ω to determine the homogenised equations. Averaging the first term we
find
1

|Ω|
∫

Ω

∇y · ĩs,0dVz = ∇y · is,0, (23)

where

is,0 = −S∇yΦs,0, (24)

is the homogenised current, and

S = 1

|Ω|
∫

Ω

σs

(
I + (∇zWs)

T
)
dVz, (25)

is the electric conductivity tensor.
We can apply the divergence theorem to the second term of (22a) jointly with the conditions (22b) and (22c) to

obtain
1

|Ω|
∫

Ω

∇z · ĩs,1dVz = 1

|Ω|
∫

∂Ω in
s

G
(
g0 + C∂t

(
Φs,0 − Φe,0

))
dAz . (26)

Therefore, we conclude

∇y · is,0 = −J, (27a)

where

J = 1

|Ω|
∫

∂Ω in
s

G
(
g0 + C∂t

(
Φs,0 − Φe,0

))
dAz . (27b)

4.3 Conservation of mass and charge in the electrolyte

We now focus on the equations in the electrolyte presented in (7). Splitting the differential operators into the two
different scales we find

∂t ce + ∇y · Ñe + 1

δ
∇z · Ñe = 0 in Ωe, (28a)

∇y · ĩe + 1

δ
∇z · ĩe = 0 in Ωe, (28b)

Ñe · ne = − δG (g + C∂t (Φs − Φe)) at ∂Ω in
e , (28c)

ĩe · ne = − δG (g + C∂t (Φs − Φe)) at ∂Ω in
e , (28d)

periodic at ∂Ωout
e , (28e)

with

Ñe = −
[
DL

(
∇yce + 1

δ
∇zce

)
+ λμLce

(
∇yΦe + 1

δ
∇zΦe

)]
, (28f)

ĩe = −
[
(DL − DA)

(
∇yce + 1

δ
∇zce

)
+ λ(μL + μA)ce

(
∇yΦe + 1

δ
∇zΦe

)]
. (28g)

Now, we expand the following variables and fluxes as

ce = ce,0 + δce,1 + δ2ce,2 + O
(
δ3

)
, (29a)

Φe = Φe,0 + δΦe,1 + δ2Φe,2 + O
(
δ3

)
, (29b)
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Ñe = Ñe,0 + δÑe,1 + O
(
δ2

)
, (29c)

ĩe = ĩe,0 + δĩe,1 + O
(
δ2

)
. (29d)

Even though the fluxes should have a term of O
(
δ−1

)
, following a similar analysis as in Sect. 4.2.1 we find that

these components vanish. Then, the linearised problem yields the following equations.

4.3.1 O(1) problem

At leading order we have

− (
DL∇zce,0 + λμLce,0∇zΦe,0

) = 0, (30a)

− (
(DL − DA)∇zce,0 + λ(μL + μA)ce,0∇zΦe,0

) = 0. (30b)

If the diffusion coefficients and mobilities are independent of ce,0, Φe,0, and z, using a similar method as we did
for Φs,0 we can show that ce,0 and Φe,0 do not depend on z.

4.3.2 O(δ) problem

Using the results at O (1) to simplify the equations, at O (δ) we have

∇z · Ñe,0 = 0 in Ωe, (31a)

∇z · ĩe,0 = 0 in Ωe, (31b)

Ñe,0 · ne = 0 at ∂Ω in
e , (31c)

ĩe,0 · ne = 0 at ∂Ω in
e , (31d)

periodic at ∂Ωout
e , (31e)

with

Ñe,0 = − (
DL

(∇yce,0 + ∇zce,1
) + λμLce,0

(∇yΦe,0 + ∇zΦe,1
))

, (31f)

ĩe,0 = − (
(DL − DA)

(∇yce,0 + ∇zce,1
) + λ(μL + μA)ce,0

(∇yΦe,0 + ∇zΦe,1
))

. (31g)

We now write ce,1 = We · ∇yce,0 and Φe,1 = Ve · ∇yΦe,0 so, using the fact that diffusivities and mobilities
do not depend on z, (31) can be rearranged into the cell problems for each one. We find that both problems are
identical, so we conclude thatWe ≡ Ve. In terms of notation we useWe, which is determined by the cell problem

∇z · (I + ∇zWe) = 0 in Ωe, (32a)

(I + ∇zWe)ne = 0 at ∂Ω in
e , (32b)

periodic at ∂Ωout
e , (32c)∫

Ωe

WedVz = 0. (32d)
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4.3.3 O(δ2) problem

Now we can consider the O
(
δ2

)
to determine the homogenised equations. The equations read

∂t ce,0 + ∇y · Ñe,0 + ∇z · Ñe,1 = 0 in Ωe, (33a)

∇y · ĩe,0 + ∇z · ĩe,1 = 0 in Ωe, (33b)

Ñe,1 · ne = −G (g + C∂t (Φs − Φe)) at ∂Ω in
e , (33c)

ĩe,1 · ne = −G (g + C∂t (Φs − Φe)) at ∂Ω in
e , (33d)

periodic at ∂Ωout
e , (33e)

with

Ñe,1 = − (
DL

(∇yce,1 + ∇zce,2
)

+λμL
(
ce,0

(∇yΦe,1 + ∇zΦe,2
) + ce,1

(∇yΦe,0 + ∇zΦe,1
)))

, (33f)

ĩe,1 = − (
(DL − DA)

(∇yce,0 + ∇zce,1
)

+λ(μL + μA)
(
ce,0

(∇yΦe,1 + ∇zΦe,2
) + ce,1

(∇yΦe,0 + ∇zΦe,1
)))

. (33g)

We average (33a) and (33b) over Ω and use the divergence theorem with conditions (33c)–(33e) to obtain the
homogenised equations

ϕe∂t ce,0 + ∇y · Ne,0 = J, (34a)

∇y · ie,0 = J, (34b)

where

Ne,0 = − (
DLB∇yce,0 + λμLBce,0∇yΦe,0

)
, (34c)

ie,0 = − (
(DL − DA)B∇yce,0 + λ(μL + μA)Bce,0∇yΦe,0

)
, (34d)

B = 1

|Ω|
∫

Ω

(
I + (∇zWe)

T
)
dVz . (34e)

4.4 Conservation of heat at the mesoscale

The temperature equation, splitting the microscale from larger scales, is given by

ρcp∂t T + ∇y · K̃ + 1

δ
∇z · K̃ = −λĩ ·

(
∇yΦ + 1

δ
∇zΦ

)
in Ω, (35a)

(
K̃s − K̃e

)
· ne = δλG(gη + gΠ) in ∂Ω in

e , (35b)

periodic at ∂Ω, (35c)

where

K̃ = −k

(
∇yT + 1

δ
∇zT

)
. (35d)
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Now we expand the following quantities as

T = T0 + δT1 + δ2T2 + O
(
δ3

)
, (36a)

Φ = Φ0 + δΦ1 + δ2Φ2 + O
(
δ3

)
, (36b)

K̃ = K̃0 + δK̃1 + O
(
δ2

)
, (36c)

ĩ = ĩ0 + δĩ1 + O
(
δ2

)
, (36d)

where again it can be shown that the O
(
δ−1

)
contributions in the fluxes vanish.

4.4.1 O(1) problem

At leading order the problem reads

− k∇zT0 = 0. (37)

Therefore, following a similar argument to the one for Φs,0 we conclude that T0 is independent of z.

4.4.2 O(δ) problem

We now consider the O (δ) problem, and using that neither T0 nor Φ0 depend on z, we have

∇z · K̃0 = 0 in Ω, (38a)(
K̃s,0 − K̃e,0

)
· ne = 0 in ∂Ω in

e , (38b)

periodic at ∂Ω, (38c)

where

K̃0 = −k
(∇yT0 + ∇zT1

)
. (38d)

Defining T1 = WT · ∇yT0 we obtain the cell problem for the thermal problem

∇z · (k (I + ∇zWT )) = 0 in Ω, (39a)

periodic at ∂Ω, (39b)∫
Ω

WT dVz = 0, (39c)

and notice that we do not need to account for the condition at the internal boundary as (39a) takes care of it.

4.4.3 O(δ2) problem

We finally consider the O
(
δ2

)
problem

ρcp∂t T0 + ∇y · K̃0 + ∇z · K̃1 = −λĩ0 · (∇yΦ0 + ∇zΦ1
)
in Ω, (40a)(

K̃s,1 − K̃e,1

)
· ne = λG(g0η0 + g0Π0) in ∂Ω in

e , (40b)

periodic at ∂Ω, (40c)

123



Derivation of an effective thermal electrochemical model

where

K̃ = − k
(∇yT1 + ∇zT2

)
. (40d)

We can now average (40a) over Ω to obtain the homogenised equation, doing the same type of manipulations as
detailed in Sect. 4.2, The integral can be split up into one integral over Ωs and one over Ωe, so it can be written as∫

Ω

i0 · (∇yΦ0 + ∇zΦ1)dVz =
∫

Ωs

is,0 · (∇yΦs,0 + ∇zΦs,1)dVz +
∫

Ωe

ie,0 · (∇yΦe,0 + ∇zΦe,1)dVz

=
∫

Ωs

is,0 · (
(I + ∇zWs)∇yΦs,0

)
dVz +

∫
Ωe

ie,0 · (
(I + ∇zWe)∇yΦe,0

)
dVz .

(41)

The homogenised equation reads

θ∂t T0 = ∇y · (K∇yT0
) + Qs + Qe + Qirr + Qrev, (42a)

where

Qs = − λis,0 · (Qs∇yΦs,0
)
, (42b)

Qe = − λie,0 · (Qe∇yΦe,0
)
, (42c)

Qirr = 1

|Ω|
∫

∂Ω in
e

λGg0η0 dAz, (42d)

Qrev = 1

|Ω|
∫

∂Ω in
e

λGg0Π0 dAz, (42e)

and

θ = 1

|Ω|
∫

Ω

ρcp dVz, (42f)

K = 1

|Ω|
∫

Ω

k
(
I + (∇zWT )T

)
dVz, (42g)

Qs =
(S−1

)T
|Ω|

∫
Ω

σs (I + ∇zWs)
(
I + (∇zWs)

T
)
dVz, (42h)

Qe =
(B−1

)T
|Ω|

∫
Ω

(I + ∇zWe)
(
I + (∇zWe)

T
)
dVz . (42i)

4.5 Conservation of heat at the macroscale

We finally homogenise the heat equation at the mesoscale (cell level) to obtain the heat equation at the macroscale
(battery level). The mesoscale equation comes from assembling three instances of (42) to account for the electrodes
and the separator, or even consider a more complicated structure to account for double coated electrodes as done in
[25]. However, given that temperature and heat flux must be continuous across the interface between parts we can
write it as a single problem with space varying parameters. Then, we can split the scales as in (10b) and write the
mesoscale equation for temperature as

θ∂t T + ∇x · K + 1

ε
∇y · K = Q in Ωcell, (43a)

periodic at ∂Ωcell, (43b)
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where

K = −K
(

∇x T + 1

ε
∇yT

)
, (43c)

and Q is the heat generation term defined as

Q =
{
Qs + Qe + Qirr + Qrev in Ωp and Ωn,

Qe in Ωsep.
(43d)

Notice that the gradients appearing in Q are at the mesoscale only, so when we expand Q in powers of ε no term
of O

(
ε−1

)
arises.

We now expand the variables as

T = T0 + εT1 + ε2T2 + O
(
ε3

)
, (44a)

K = K0 + εK1 + O
(
ε2

)
, (44b)

substitute them into (43) and linearise.

4.5.1 O(1) problem

At leading order we have

− K∇yT0 = K0, (45)

therefore, by the same argument as in Sect. 4.4, we conclude that T0 does not depend on y.

4.5.2 O(ε) problem

Using the results found at leading order, the O (ε) problem reads

∇y · K0 = 0 in Ωcell, (46a)

periodic at ∂Ωcell, (46b)

where

K0 = −K (∇x T0 + ∇yT1
)
. (46c)

To obtain the cell problem, we make the substitution T1 = Wcell · ∇x T0 finding

∇y · (K (I + ∇yWcell
)) = 0 in Ωcell, (47a)

periodic at ∂Ωcell, (47b)∫
Ωcell

WcelldVy = 0. (47c)

4.5.3 O(ε2) problem

Finally, we consider the O
(
ε2

)
problem given by

θ∂t T0 + ∇x · K0 + ∇y · K1 = Q0 in Ωcell, (48a)

periodic at ∂Ωcell, (48b)
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where

K1 = −K (∇x T1 + ∇yT2
)
. (48c)

Averaging over Ωcell we obtain the homogenised equation

θbatt∂t T0 = ∇x · (Kbatt∇x T0) + Qbatt, (49a)

where

θbatt = 1

|Ωcell|
∫

Ωcell

θd Vy, (49b)

Kbatt = 1

|Ωcell|
∫

Ωcell

K
(
I + (∇yWcell

)T)
dVy, (49c)

Qbatt = 1

|Ωcell|
∫

Ωcell

Qd Vy . (49d)

4.6 Discussion of the effective equations

We observe a few key differences between the microscale model presented in Sect. 3 and the homogenised one
derived in this section. The first one is that, even though the microscale equations assumed isotropic materials
and therefore all the transport properties were defined as scalars, in the homogenised equations the same transport
properties become tensors and thus allow for anisotropy. This anisotropy arises from the porous structure. In some
cases, such as with the electronic conductivity S, the anisotropy is caused by both geometric effects and the
inhomogeneities in the material properties. However, in the electrolyte properties, the anisotropy arises purely from
the geometry, which allows us to define the tensor B which accounts for the anisotropy of all electrolyte properties.
Therefore, all the electrolyte transport tensors at the mesoscale must be multiples of each other.

Another difference is the appearance of source terms in the electrochemical equations. These source terms capture
the chemical reaction that, at the microscale, occurs at the boundary between electrode and electrolyte. However,
due to the homogenisation process, this boundary is lost at the mesoscale but the reactions are captured by the
source term. The same happens with the reaction contribution to the heat source terms Qirr and Qrev.

In the thermal equations, both at mesoscale and macroscale, we observe that what was the ρcp term in the
microscale equation became the averaged volumetric heat capacities θ and θbatt, which can no longer be split into
the averaged density and the averaged specific heat capacity. We also notice that the heat generation terms at the
mesoscale have a similar structure to those at the microscale, but with the introduction of two tensors Qs and Qe

that account for microstructure effects in Joule heating.
Themacroscale thermal equation holds for any periodic cell structure, however notice that normally we encounter

layered materials. In that case, as it is well known from the literature [7], we find that the tensor Kbatt is a diagonal
tensor, and the diagonal values are the arithmetic average of the conductivities of each layer in the directions parallel
to the layers, and the harmonic average of the conductivities in the direction perpendicular to the layers. Therefore,
asymptotic homogenisation provides a rigorous proof to a result that is commonly used in the literature (e.g. [19]).

For the sake of clarity, when performing the homogenisation we have not explicitly accounted for the temperature
dependence on the parameters, even though the parameters are allowed to depend on temperature. Given that we
have determined that, at leading order, temperature does not depend on z, the analysis for temperature-dependent
parameters follows exactly the same way with some extra parameters arising from the derivatives of the parameters
with respect to temperature.
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4.7 Properties of the tensors

In the previous sections, we have derived tensors that account for the material properties in the homogenised
problem. These tensors have certain properties that show the type of behaviour to expect from the homogenised
equations.

4.7.1 Symmetry

We start showing that the tensors are symmetric, which can be used to simplify some of the expressions. We show
it for S because it has the most complicated definition in our model, and any other tensor that we have defined can
be thought to be, from a mathematical point of view, a particular case of S. The method used here follows closely
the one used in [22]. For simplicity in the notation, we define W (i)

s to be the i-th component of the vector Ws and
ei is the basis vector in the i-th direction. Then, we define the integral∫

Ωs

∇z ·
(
σsW

(i)
s

(
e j + ∇zW

( j)
s

)
− σsW

( j)
s

(
ei + ∇zW

(i)
s

))
dVz = 0, (50)

which we can show to be zero using the divergence theorem and the boundary conditions in (21). Expanding the
divergence in the integral, and using (21a) to eliminate some of the terms, we find∫

Ωs

σs∇zW
(i)
s e j − σs∇zW

( j)
s eidVz = 0, (51)

and therefore we have∫
Ωs

σs
∂W (i)

s

∂z j
dVz =

∫
Ωs

σs
∂W ( j)

s

∂zi
dVz, (52)

fromwhich we deduce that S is symmetric. Using similar procedures, we can show that the other tensors we defined
(B, K, Kbatt, Ms and Me) are symmetric as well.

4.7.2 Reduction of the transport properties

We now want to show that the presence of the microstructure reduces the transport properties. Mathematically, this
is equivalent to showing that the diagonal elements of the tensor of a given transport phenomenon are smaller than
the average of the microscale value over the cell for that same property. By considering the integral∫

Ωs

∇z ·
(
σs

(
ei + ∇zW

(i)
s

))
dVz = 0, (53)

and manipulating it in a similar way it can be shown that the diagonal entries of the tensor satisfy

Si i <
1

|Ωs|
∫

Ωs

σsd Vz . (54)

4.7.3 Analytical representation of the tensors

Exploiting the symmetry of the tensors we can simplify the way we defined some of them. Thus, we present the
simpler expressions here under the same section for convenience of the reader.

The electric conductivity tensor in the electrode is given by

S = 1

|Ω|
∫

Ω

σs

(
I + (∇zWs)

T
)
dVz, (55)

where the cell variable Ws solves (21).

123



Derivation of an effective thermal electrochemical model

The geometry of the electrolyte is captured by the tensor B which can then be used to define the transport
properties in the electrolyte. The tensor is defined by

B = 1

|Ω|
∫

Ω

(
I + (∇zWe)

T
)
dVz, (56)

where the cell variable We solves (32). Using B we can define the tensors for diffusivities and mobilities used in
(2) as

DL = DLB, DA = DAB, ML = μLB, MA = μAB. (57)

The thermal conductivity of the cell is given by

K = 1

|Ω|
∫

Ω

k
(
I + (∇zWT )T

)
dVz, (58)

where the cell variableWT solves (39), and the Joule heating tensors in the electrode and the electrolyte are defined
as

Qs = S−1

|Ω|
∫

Ω

σs

(
I + (∇zWs)

) (
I + (∇zWs)

T
)
dVz, (59)

Qe = B−1

|Ω|
∫

Ω

(
I + (∇zWe)

) (
I + (∇zWe)

T
)
dVz . (60)

Finally, the thermal conductivity of the battery is given by

Kbatt = 1

|Ω|cell
∫

Ωcell

K
(
I + (∇yWcell

)T)
dVy, (61)

where the cell variable Wcell solves (47).

5 Comparison with the DFN model

The model presented here can be regarded as a generalised version of the well-known DFN model [1]. In this
section, we compare both models and point out the main differences. The DFN model does not include the battery
level nor the thermal model, so the comparison will be only at the micro- andmesoscale and at constant temperature.
Another difference betwen the model presented here and the DFN model is that the first considers a capacitance
term in the exchange current between the electrode and the electrolyte; thus, we can reduce to the DFN model by
setting C = 0.

5.1 Comparison at the microscale

One of the key assumptions of the DFN model is that the electrode particles are spherical and that there is a single
representative particle at each point of the mesoscale electrode (i.e. one particle in each homogenisation cell). With
these assumptions, our model (1) reduces to

∂t cs = 1

r2
∂

∂r

(
r2Ds

∂cs
∂r

)
in 0 < r < R, (62a)

− Ds
∂cs
∂r

= Gg at r = R, (62b)

∂cs
∂r

= 0 at r = 0, (62c)

which is the same as in the DFNmodel. Here, r is the microscale space variable and takes the role of z in our model.

123



M. J. Hunt et al.

5.2 Comparison at the mesoscale

Note that the parameters in the DFN model are all scalar, whereas in the model presented in this paper some
parameters are tensors, which can take into account anisotropy. However, it can be reduced to the isotropic case (as
in the DFN model) by taking the tensors to be multiples of the identity tensor, as then they can be replaced by a
scalar.

Another main difference is the difference in dilute and concentrated theory which will necessarily lead to
different expressions. However, the analysis presented here can be applied to the concentrated electrolyte equations
(see [21,24] for details) to obtain analogous results.

5.2.1 Conservation of charge in the electrode

The conservation of charge for the solid in our model (2) reads

∇ · (S∇Φs) = J. (63)

Due to the spherical symmetry of the particles assumed in the DFN model, we can write the exchange current as

J = aG (g + C∂t (Φs − Φe)) , (64)

where a is the surface area of the particles per unit of volume. To reduce to the DFN model, we need to neglect the
capacitance of the double layer and the anistropy of the material.

Notice that, even though we reduced our model to the DFN model, in fact, if we take the microstructure from the
latter (a single particle surrounded by electrolyte) we will find that the conductivity is zero as the particles are not
in contact with each other. In the DFN model, this is circumvented by taking an effective value for the conductivity
instead of calculating it from the microscale problem.

5.2.2 Conservation of mass and charge in the electrolyte

Finally, we consider the equations in the electrolyte. Here is where the main difference arises: the DFN model uses
concentrated electrolyte theory while we use dilute electrolyte theory (see [29] for details on both). Therefore, we
cannot directly reduce the model presented here to the DFN model, but we can show that they have similar forms.
This is useful as it points out that the concentrated electrolyte equations could be homogenised following a very
similar method to the one presented here.

We start assuming isotropy, so we can take the coefficients to be scalars. We define DL = DLB, DA = DAB,
ML = μLB, and MA = μAB, and due to isotropy we have B = BI where B is a scalar that captures the
microstructure effect on the transport properties. For example, if we used the Bruggeman correlation, then B = ϕ1.5

e
(see [4] for details). The transference number of the lithium ions is defined as

t+ = μL

μL + μA
, (65)

and given that for dilute electrolyte theory the mobilities and diffusivities are proportional to each other, we can
replace the mobilities in the definition above for diffusivities. Multiplying (3b) by t+ and substracting it from (3a)
we find

ϕe∂t ce − ∇ · (
2DLB(1 − t+)∇ce

) = (1 − t+)aGg. (66)

This is the same form as the DFN model by setting the effective ion diffusion coefficient to

De,eff = 2DLB(1 − t+). (67)

As explained earlier, B captures the microstructure effects. The 2(1 − t+) factor captures the migration effects in
the effective diffusion, but for the concentrated electrolyte this term should be (1−2t+). This discrepancy has been
deeply discussed and resolved in [31].
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For the conservation of charge equation we can define

κD,eff = (DL − DA)ce κeff = (μL + μA)ce, (68)

so (3b), together with (3e), can be rearranged into

∇ · (
κD,eff∇ log ce + λκeff∇Φe

) = −aGg, (69)

which is the same form presented in [3]. However, this presents the same inconsistencies between dilute and
concentrated electrolyte theories discussed in [31]. Therefore, in order to obtain the effective equations for a
concentrated electrolyte one can use the same homogenisation method used in this article with the concentrated
electrolyte equations.

6 Discussion

We derived an effective model for the thermal-electrochemical behaviour of porous electrode batteries (with a
particular interest in lithium ion batteries) using the method of asymptotic homogenisation. We started from the
governing equations at the microscale, which impose mass and charge conservation both in the electrode and the
electrolyte, with an ion intercalation reaction at the electrode–electrolyte interface modelled by the Butler-Volmer
equation. We assumed that transport of lithium in the electrode is governed by diffusion only and that Ohm’s law
holds for the charge. In the electrolyte, we used Nernst-Planck equations to describe the transport phenomena,
assuming thus a dilute electrolyte. For the thermal model we assumed heat is only driven by diffusion, and it is
generated in the bulk of the material due to Joule heating and at the electrode–electrolyte interface due to the
chemical reaction (we included both reversible and irreversible effects).

We exploited the disparity of length scales of the problem and took the limit of infinitely small electrode particles
compared to electrode thickness. In this limit, we can derive the homogenised problem at the cell level (mesoscale).
A particularity of the analysis is that we took the diffusion coefficient of lithium in the electrode to be small, in order
to retrieve the diffusion of lithium only at the microscale, as observed in lithium ion batteries [14,15]. After deriving
the mesoscale model for an electrode, we assembled the cell model (the model at the separator is a particular case
of electrode model) and homogenised it to obtain the battery model, exploiting the limit of an infinitely thin cell
compared to the battery.

The homogenised model presented here is a generalised version of the DFN model [1], so widely used in the
modelling literature. The main differences between our model and the DFNmodel are that our model includes ther-
mal and capacitance effects, and can account for an arbitrary microstructure. Even though we have not explicitly
introduced the temperature dependence of the parameters, as it would clutter the notation, the analysis presented
here easily extends for that case and the same homogenised equations are obtained but with temperature-dependent
tensors. With respect to the microstructure, in our model we can determine the effective mesoscale parameters
directly from the microscopic properties, instead of using theoretical or empirical correlations, such as the Brugge-
man correlation [4], which are a subject of debate within the battery modelling field. The model presented here also
extends the literature on derivation of multiscale models for batteries using asymptotic homogenisation [21–24]
because it includes thermal effects. In addition, it also captures the diffusion of lithium at the microscale.

The model presented here can be used to simulate electrodes with more realistic geometries, given that it can deal
with microstructures more complex than the spherical particles used in the DFN model. For example, one could
use SEM images of real electrodes to define the geometry of the cell problems and then solve them numerically.
The method used here can also be used in a very similar way to homogenise a concentrated electrolyte model.
Another area of future work is to include the current collectors into the model. Also, our model can be used as
a stepping stone towards including more complex physical effects that occur in batteries which depend both on
electrochemistry and temperature, such as degradation. Several degradation mechanisms that occur in batteries have
been considered in the literature [32], but in many cases the degradation models have been coupled to the DFN
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model in a rather ad hoc way. The framework presented here could be extended to derive degradation models from
the microscale models in a systematic and physically consistent way.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material.
If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit
http://creativecommons.org/licenses/by/4.0/.

Appendix A: Non-dimensionalisation of the model

In this section, we introduce the dimensional model and the scalings that lead to the dimensionless microscale
model presented in Sect. 3. The details of the derivation of the microscale equations can be found in the handbooks
of the field (see [3,29]). In the electrode we have mass transport driven by diffusion and charge transport follows
Ohm’s law, with the reaction at the electrode–electrolyte interface modelled by Butler-Volmer equation. We model
the electrolyte as a dilute electrolyte, and therefore we use Nernst-Planck equation to describe the transport of both
positive and negative electrodes (see [29] for details). We also assume that the fluid is static. We can rearrange the
equations to obtain an equation for the lithium ion and one equation for the current in the electrolyte. Finally, we
model the temperature at themicroscale using the heat equation. Themodel holds over both electrode and electrolyte
domains and it has a source term in the bulk (Joule heating) and a source term at the electrode–electrolyte interface
(reversible and irreversible reaction heating).

The variables of the problem are the concentration of lithium in the electrodes cs, the concentration of lithium
ions in the electrolyte ce, the potentials in the electrode and electrolyteΦs andΦe, respectively, and the temperature
T . For convenience in the notation, we define the fluxes, which are derived from the variables. We have the molar
fluxes Ns and Ne, the currents is and ie, and the heat fluxes Ks and Ke, defined in the electrode and the electrolyte,
respectively. For convenience in the notation, in this appendix we do not use tildes for the fluxes at the microscale
as those are the only ones that appear.

The dimensional equations in the electrode are

∂t cs + ∇ · Ns = 0 in Ωs, (70a)

∇ · is = 0 in Ωs, (70b)

FNs · ns = g + CΓ ∂t (Φs − Φe) at ∂Ω in
s , (70c)

is · ns = g + CΓ ∂t (Φs − Φe) at ∂Ω in
s , (70d)

periodic at ∂Ωout
s , (70e)

with

Ns = −Ds∇cs, (70f)

is = −σs∇Φs, (70g)

and

g = FKcβ
s

(
1 − cs

cmax
s

)1−β

c1−β
e

[
exp

(
(1 − β)

F

RT
η

)
− exp

(
−β

F

RT
η

)]
, (70h)

η = Φs − Φe −Uocp(cs), (70i)
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where F is the Faraday constant, CΓ is the double layer capacitance, Ds is the diffusion coefficient of lithium in the
electrode, and σs is the electronic conductivity of the electrode. We also have the exchange current at the electrode–
electrolyte interface g, in which K is the reaction rate, cmax

s is the maximum concentration in the electrode, R is
the gas constant, β is the transfer coefficient of the reaction, and Uocp is the open circuit potential, which depends
on the electrode concentration cs evaluated at the interface with the electrolyte.

The dimensional equations for the electrolyte read

∂t ce + ∇ · Ne = 0 in Ωe, (71a)

∇ · ie = 0 in Ωe, (71b)

FNe · ne = − (g + CΓ ∂t (Φs − Φe)) at ∂Ω in
e , (71c)

ie · ne = − (g + CΓ ∂t (Φs − Φe)) at ∂Ω in
e , (71d)

periodic at ∂Ωout
e , (71e)

with

Ne = − (DL∇ce + FμLce∇Φe) , (71f)

ie = − ((DL − DA)∇ce + F(μL + μA)ce∇Φe) , (71g)

where DL is the diffusivity of lithium ions, DA is the diffusivity of negative ions, μL is the mobility of lithium ions,
and μA is the mobility of negative ions.

The governing equations for the thermal model are

ρcp∂t T + ∇ · K = −i · ∇Φ in Ω, (72a)

(Ks − Ke) · ne = g(η + Π) in ∂Ω in
e , (72b)

periodic at ∂Ω, (72c)

where

K = − k∇T, (72d)

where ρ is the density, cp is the specific heat capacity, k is the thermal conductivity, and Π is the Peltier term,
accounting for reversible heat generation. Given that the heat equation is defined in both the electrode and the
electrolyte, we dropped the subscripts of K, i and Φ in (72a) to simplify notation.

We now scale the variables and derived quantities as

x = NLx̂, y = L ŷ, z = �ẑ, t = t0 t̂,

cs = c0ĉs,Ns = c0L

t0
N̂s, ce = c0ĉe,Ne = c0L

t0
N̂e,

Φs = Φ0Φ̂s, is = i0 îs, Φe = Φ0Φ̂e, ie = i0 îe,

T = T0 + ΔT T̂ ,K = ρ0cp0
ΔT L

t0
K̂s, g = g0 ĝ, η = Φ0η̂,

(73)

and the parameters of the model are scaled as

Ds = �2

t0
D̂s, σs = i0L

Φ0
σ̂s,Uocp = Φ0Ûocp,Π = Φ0Π̂,

DL = L2

t0
D̂L, DA = L2

t0
D̂A, μL = 1

RT0

L2

t0
μ̂L, μA = 1

RT0

L2

t0
μ̂A,

cmax
s = c0ĉ

max
s , ρ = ρ0ρ̂, cp = cp0ĉp, k = t0

ρ0cp0L2 k̂,

(74)
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with

t0 = Fc0L

i0
, ΔT = i0

L

RT0
F

t0
ρ0cp0

, g0 = FKc0. (75)

Here N is the number of cells that compose a battery, L is the thickness of a cell, � is the typical length scale of the
microstructure, c0 is characteristic concentration, Φ0 is the characteristic potential, i0 the characteristic current, T0
is the reference temperature, ρ0 is the characteristic density, and cp0 is the characteristic heat capacity. We scale the
differential operator ∇ with the length scale L .

With these scalings, the following dimensionless numbers arise

G = g0L

i0�
, C = CΓ Φ0

g0t0
, λ = FΦ0

RT0
, γ = ΔT

T0
, δ = �

L
, ε = 1

N
. (76)

Using these scalings we can non-dimensionalise the model (70)–(72). Dropping hats in order to simplify the
notation, we obtain the model (6)–(8).
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