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Exploiting Spontaneous Transmissions for Broadcasting and

Leader Election in Radio Networks

ARTUR CZUMAJ, University of Warwick, UK

PETER DAVIES, University of Warwick, UK

We study two fundamental communication primitives: broadcasting and leader election in the classical model

of multi-hop radio networks with unknown topology and without collision detection mechanisms. It has

been known for almost 20 years that in undirected networks with n nodes and diameter D, randomized

broadcasting requires Ω
(
D log

n
D + log

2 n
)
rounds in expectation, assuming that uninformed nodes are not

allowed to communicate (until they are informed). Only very recently, Haeupler and Wajc (PODC’2016)

showed that this bound can be slightly improved for the model with spontaneous transmissions, providing an

O
(
D

logn log logn
logD + logO (1) n

)
-time broadcasting algorithm. In this paper, we give a new and faster algorithm

that completes broadcasting in O
(
D

logn
logD + log

O (1) n
)
time, succeeding with high probability. This yields the

first optimal O(D)-time broadcasting algorithm whenever n is polynomial in D.
Furthermore, our approach can be applied to design a new leader election algorithm that matches the

performance of our broadcasting algorithm. Previously, all fast randomized leader election algorithms have

used broadcasting as a subroutine and their complexity has been asymptotically strictly bigger than the

complexity of broadcasting. In particular, the fastest previously known randomized leader election algorithm

of Ghaffari and Haeupler (SODA’2013) requires O
(
D log

n
D min{log logn, log n

D } + logO (1) n
)
-time with high

probability. Our new algorithm again requiresO
(
D

logn
logD + log

O (1) n
)
time and succeeds with high probability.
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2 Artur Czumaj and Peter Davies

1.1 Model of communication networks

A radio network is modeled by an undirected graph N = (V , E), where the set of nodes corresponds
to the set of transmitter-receiver stations. An edge {v,u} ∈ E means that nodev can send a message

directly to node u and vice versa. To admit global propagation of information, we assume that N is

connected. We denote by n the size of |V |, and by D the diameter of N (the distance between the

furthest pair of nodes in the graph). Algorithmic running times will be analyzed with respect to

these two parameters.

The network is ad-hoc, which means that it has unknown structure: we assume that a node does

not have any prior knowledge about the topology of the network, its own degree, or the set of its

neighbors. We do make the standard assumption that nodes have knowledge of (i.e. their behavior

can depend upon) parameters n and D.
Nodes operate in discrete, synchronous time steps. When we refer to the “running time” of

an algorithm, we mean the number of time steps which elapse before completion (i.e., we are

not concerned with the number of calculations nodes perform within time steps). In each time

step a node can either transmit a message to all of its neighbors at once or can remain silent and

listen to the messages from its neighbors. We do not make any restriction on the size of messages,

though the algorithms we present can easily be made to operate under the condition ofO(logn)-bit
transmissions.

A further important feature of the model considered in this paper is that it allows spontaneous

transmissions, that is, any node can transmit whenever it so wishes. In some prior works (see, e.g.,

[4, 9, 15]), it has been assumed (typically for the broadcasting problem) that uninformed nodes are

not allowed to communicate (until they are informed). While this assumption is sometimes natural

for the broadcasting problem, it is meaningless for the leader election problem, and so, throughout

the paper we will allow spontaneous transmissions.

The distinguishing feature of radio networks is the interfering behavior of transmissions. In the

most standard radio networks model, the model without collision detection (see, e.g., [1, 3, 6, 17]),

which is studied in this paper, if a node v listens in a given round and precisely one of its neighbors

transmits, then v receives the message. In all other cases v receives nothing; in particular, the

lack of collision detection means that v is unable to distinguish between zero of its neighbors

transmitting and more than one.

The model without collision detection describes the most restrictive interfering behavior of

transmissions; also considered in the literature is a less restrictive variant, the model with collision

detection, where a node listening can distinguish between zero of its neighbors transmitting and

more than one (cf. [11, 17]).

1.2 Key communications primitives: Broadcasting, leader election, and Compete

In this paper we consider two fundamental communications primitives: broadcasting and leader

election. We present randomized algorithms that perform these tasks with high probability (i.e.,

succeed with probability at least 1−n−c for an arbitrary constant c), and analyze worst-case running
time.

Broadcasting is one of the most fundamental problems in communication networks and has been

extensively studied for many decades (see, e.g., [17] and the references therein). The premise of

the broadcasting task is that one particular node, called the source, has a message which must

become known to all other nodes. As such, broadcasting is one of the most basic means of global

communication in a network.

Leader Election is another fundamental problem in communication networks that aims to ensure

that all nodes agree on such a designated leader. Specifically, at the conclusion of a leader election
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Exploiting Spontaneous Transmissions for Broadcasting and Leader Election 3

algorithm, all nodes should output the same node ID, and precisely one node should identify this

ID as its own. Leader election is a fundamental primitive in distributed computations and, as the

most basic means of breaking symmetry within radio networks, it is used as a preliminary step in

many more complex communication tasks. For example, many fast multi-message communication

protocols require construction of a breadth-first search tree (or some similar variant), which in turn

requires a single node to act as source (for more examples, cf. [5, 10], and the references therein).

To design efficient algorithms for broadcasting and leader election, we will be studying an

auxiliary problem that we call Compete. Compete has a similar flavor to broadcasting, but instead

of transmitting a single message from a single source to all nodes in the network, it takes as its

input a source set S ⊆ V , in which every source s ∈ S has a message (of integer value) it wishes to

propagate, and guarantees that upon completion all nodes in N know the highest-valued source

message.

It is easy to see how the Compete process generalizes broadcasting: it is simply invoked with

the source as the only member of the set S . To perform leader election, one can probabilistically

generate a small set (e.g., of size Θ(logn)) of candidate leaders, and then perform Compete using

this set, with IDs as the messages to be propagated. Therefore, to design efficient randomized

broadcasting and leader election algorithms, it is sufficient to design a fast randomized algorithm

for Compete (cf. Section 5).

1.3 Previous work

As a fundamental communications primitive, the task of broadcasting has been extensively studied

for various network models, see, e.g., [17] and the references therein.

For the model studied in this paper, undirected radio networks with unknown structure and

without collision detection, the first non-trivial major result was due to Bar-Yehuda et al. [3], who,

in a seminal paper, designed an almost optimal randomized broadcasting algorithm achieving the

running time ofO((D+logn)·logn)with high probability. This boundwas later improved by Czumaj

and Rytter [9], and independently Kowalski and Pelc [14], who gave randomized broadcasting

algorithms that complete the task in O(D log
n
D + log

2 n) time with high probability. Importantly,

all these algorithms were assuming that nodes are not allowed to transmit spontaneously, i.e., they

must wait to receive the source message before they can begin to participate. Indeed, for the model

with no spontaneous transmissions allowed, it has been known that any randomized broadcasting

algorithm requires Ω(D log
n
D + log

2 n) time [1, 15]. Only very recently, Haeupler and Wajc [12]

demonstrated that allowing spontaneous transmissions can lead to faster broadcasting algorithms,

by designing a randomized algorithm that completes broadcasting in O(D
logn log logn

logD + logO (1) n)

time, with high probability. This is the only algorithm (that we are aware of) that beats the lower

bound of Ω(D log
n
D + log

2 n) [1, 15] in the model with no spontaneous transmissions. Given

that for the model that allows spontaneous transmissions any broadcasting algorithm requires

Ω(D + log2 n) time (cf. [1, 17]), the algorithm due to Haeupler and Wajc [12] is almost optimal (up

to an O(log logn) factor) whenever n is polynomial in D.
Broadcasting has been also studied in various related models, including directed networks,

deterministic broadcasting protocols, models with collision detection, andmodels inwhich the entire

network structure is known. For example, in the model with collision detection, an O(D + log6 n)-
time randomized algorithm due to Ghaffari et al. [11] is the first to exploit collisions and surpass

the algorithms for broadcasting without collision detection. For deterministic protocols, the best

results are an O(n logD log logD)-time algorithm in directed networks [7], and an O(n logD)-time

algorithm in undirected networks [13].

For more details about broadcasting in various models, see, e.g., [17] and the references therein.
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4 Artur Czumaj and Peter Davies

The problem of leader election has also been extensively studied in the distributed computing

community for several decades. For the model considered in this paper, it is known that a simple

reduction (see, e.g., [2]), involving performing a network-wide binary search for the highest ID using

broadcasting as a subroutine every step, gives an O(TBC logn)-time randomized leader election

algorithm. Here TBC is time taken to perform broadcasting (provided the broadcasting algorithm

used can be extended to work from multiple sources). This yields leader election randomized

algorithms taking time O(D log
n
D logn + log3 n) using the broadcasting algorithms of [9, 14], or

O(D
log

2 n log logn
logD + log

O (1) n) using the broadcasting algorithm of [12]. This approach has been

improved only very recently by Ghaffari and Haeupler [10], who took a more complex approach to

achieve an O(D log
n
D + log

3 n) · min{log logn, log n
D } time algorithm based on growing clusters

within the network. Notice that in the regime of large D being polynomial in n, when D ≈ nc for a
constant ε , 0 < ε ≤ 1, the fastest leader election algorithm achieves the (high probability) running

time of O(D logn log logn).
Leader election has also been studied in various related settings. For example, one can achieve

O(TBC ) expected (rather than worst case) running time [8], or time O(TBC
√
logn) with high prob-

ability even for directed networks [8], and deterministically time O(n logn logD log logD) [7] or

O(n log3/2 n
√
log logn) [5].

1.4 New results

In this paper we extend the approach recently developed by Haeupler and Wajc [12] to design

a fast randomized algorithm for Compete, running in time O(D
logn
logD + |S |D0.125 + logO (1) n), and

succeeding with high probability (Theorem 4.1). By applying this algorithm to the broadcasting

problem (Theorem 5.1) and to the leader election problem (Theorem 5.2), we obtain randomized

algorithms for both these problems running in timeO(D
logn
logD + log

O (1) n), also succeeding with high

probability. ForD = Ω(logc n) for a sufficiently large constant c , these running time bounds improve

the fastest previous algorithms for broadcasting and leader election by factors O(log logn) and
O(logn log logn), respectively. More importantly, whenever D is polynomial in n (i.e., D = Ω(nε ),
for some positive constant ε), this running time isO(D), which is asymptotically optimal since time

D is required for any information to traverse the network.

Our algorithms are the first to achieve optimality over this range of parameters, and are also

the first instance (in our model) of leader election time being asymptotically equal to fastest

broadcasting time, since the former is usually a harder task in radio network models.

Finally, even though the current lower bounds for the randomized broadcasting and leader

election problems are Ω(D + log2 n), we would not be surprised if our upper bounds O(D
logn
logD +

log
O (1) n) were tight for D = Ω(logc n) for some sufficiently large constant c .
Note: We assume throughout that D = Ω(logc n) for some sufficiently large constant c . If this is

not the case, then the O(D log
n
D + log

2 n)-time algorithm of [9, 14] should be used instead.

2 APPROACH

Our approach to study Compete (and hence also broadcasting and leader election problems)

follows the methodology recently applied for fast distributed communication primitives by Ghaffari,

Haeupler, Wajc, and others (see, e.g., [10, 12]). In order to solve the problem, we split computations

into three parts. First, all nodes in the network will communicate with their local neighborhood to

create some clustering of the network. Then, using this clustering, the nodes will perform some

computations within each cluster, so that all nodes in the cluster share some useful knowledge.

Finally, the knowledge from the clusters will be utilized to efficiently perform global communication.
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Exploiting Spontaneous Transmissions for Broadcasting and Leader Election 5

2.1 Clusterings, Partition, and schedulings

To implement this approach efficiently, we follow a similar line to that of Haeupler and Wajc [12]

and rely on a clustering procedure of Miller et al. [16], adapted for the radio network model. We

consider a partitioning of the input network into clusters in distributed setting, such that

• each node identifies one particular node as its cluster center,

• any node which is a cluster center to anyone must be cluster center to itself, and

• the subgraph of nodes identifying any particular node as their cluster center is connected.

In what follows, the term “strong diameter” refers to diameter using only edges within the relevant

cluster.

Lemma 2.1 (Lemma 3.1 of [12]). Let 0 < β ≤ 1. Any network on n nodes can be partitioned into

clusters such that:

• each cluster has strong diameter O(
logn
β ) with high probability, and

• every edge is cut by this partition (has its endpoints in distinct clusters) with probability O(β).

This algorithm can be implemented in the radio network setting in O(
log

3 n
β ) rounds.

The clustering provided by the application of Lemma 2.1 will be denoted by Partition(β).
This framework will be used in our central result, Theorem 2.2, which states that upon applying

Partition(β)with β randomly chosen from some range polynomial in D, with constant probability

the expected distance from some fixed node to its cluster center is O(
logn
β logD ).

Theorem 2.2. Let j be an integer chosen uniformly at random between 0.01 logD and 0.1 logD,
and let β = 2

−j
. For any node v , with probability at least 0.55 (over choice of j), the expected distance

from v to its cluster center upon applying Partition(β) is O(
logn
β logD ).

We prove this result in Section 6, at the end of the paper.

The result in Theorem 2.2 applies to the clustering method in any setting, not just radio networks,

and hence it may well be of independent interest. It improves over the result of [12] that expected

distance to cluster center is O(
logn log logn

β logD ).

The approach described above is combined with a means of communicating within clusters from

[11] using the notion of schedules.

Lemma 2.3 (Lemma 2.1 of [12]). A network of diameter D and with n nodes can be preprocessed

in O(D log
O (1) n) rounds, yielding a schedule which allows for one-to-all broadcast of k messages in

O(D + k logn + log6 n) rounds with high probability. This schedule satisfies the following properties:

• for some prescribed node r , the schedule transmits messages to and from nodes at distance ℓ
from r in O(ℓ + log6 n) rounds with high probability;

• the schedule is periodic with period O(logn): it can be thought of as restarting every O(logn)
steps.

Whenever we refer to computing or using schedules during our algorithms, we mean using

the method from Lemma 2.3. We note that, as shown in Lemma 4.2 of [12], we can perform

this preprocessing in such a way that it succeeds with high probability despite collisions, at a

multiplicative O(logO (1) n) time cost.

2.2 Algorithm structure

The general approach of our algorithm proceeds as follows: First there is a preprocessing phase,

in which we partition the network using Partition(β) from Lemma 2.1, and compute schedules

, Vol. 1, No. 1, Article . Publication date: December 2019.



6 Artur Czumaj and Peter Davies

within the clusters using Lemma 2.3. Then we broadcast the message through the network using

these computed schedules within clusters. Any shortest (u,v)-path p crosses O(|p |β) clusters in

expectation, and communication within these clusters takes O(
logn
β logD ) expected time, so total time

required should be O(|p |
logn
logD ) = O(D

logn
logD ).

Of course, this omits many of the technical details, and we encounter several difficulties when

trying to implement the approach. Firstly, Theorem 2.2 only bounds expected distance to cluster

center with constant probability. However, by generating many different clusterings, with different

random values of β , and curtailing application of the schedules afterO(
logn
β logD ) time, we can ensure

that we do make sufficient progress with high probability. A second issue is that these values

of β must somehow be coordinated, which we solve by using an extra layer of “coarse” clusters,

similarly to [12]. Thirdly, collisions can occur between nodes of different clusters during both

precomputation and broadcasting phases. We take several measures to deal with these collisions in

our algorithms and analysis.

2.3 Advances over previous works

The idea of performing some precomputation locally and then using this local knowledge to perform

a global task occurs frequently in distributed computing. In our setting, the most similar prior work

is theO(D
logn log logn

logD + logO (1) n)-time broadcasting algorithm due to Haeupler and Wajc [12]. Here

we summarize our main technical differences from that paper and other related works:

• It was known from [12] that when Partition(β) is run with 1/β randomly selected from a

range polynomial inD, the expected distance from a node to its cluster center isO(
logn log logn

β logD ).

We improve this result with Theorem 2.2, which states that with constant probability this

distance is O(
logn
β logD ).

• We demonstrate how, by switching clusterings frequently and curtailing their schedules after

O(
logn
β logD ) time, we can improve the fastest time for broadcasting in radio networks.

• We show that, with a different method of analysis and an algorithmic background process

to deal with collisions, we can extend this method to also complete leader election, a task

usually considered to be more difficult.

3 ALGORITHM FOR COMPETE

Since our broadcasting and leader election protocols require the same asymptotic running time

and use similar methods (cf. Section 5), we can combine their workings into a single generalized

procedure Compete.

Compete takes as input a source set S ⊆ V of nodes, in which every source s ∈ S has a message

it wishes to propagate, and guarantees, with high probability, that upon completion all nodes know

the highest-valued source message. The process takes O(D
logn
logD + |S |D0.125 + log

O (1) n) time (cf.

Theorem 4.1), which is within the O(D
logn
logD + log

O (1) n) time claimed for broadcasting and leader

election, as long as |S | = O(D0.875). Here this constant exponent of D is somewhat arbitrary, and

could be improved by modifying constants in our algorithm and analysis, but this value is sufficient

for our needs.

Our efficient algorithm forCompete consists of two processes which run concurrently, alternating

between steps of each. The main Compete process is designed to propagate messages quickly
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Exploiting Spontaneous Transmissions for Broadcasting and Leader Election 7

through most of the network, and the slower background process has the purpose of “papering over

the cracks” in the main process; specifically, passing messages across coarse cluster boundaries.

ALGORITHM 1: Compete(S)

1) Compute a coarse clustering using Partition(β) with β = D−0.5
.

2) Compute a schedule within each coarse cluster.

3) Within each coarse cluster, for each integer j with 0.01 logD ≤ j ≤ 0.1 logD, compute D0.2
different fine

clusterings using Partition(β) with β = 2
−j
.

4) Compute schedules within all fine clusterings.

5) Each coarse cluster center computes a D0.99
-length sequence of randomly chosen fine clusterings to use.

6) Transmit this sequence within each coarse cluster, using the coarse cluster schedules.

7) For each fine clustering in the sequence perform Intra-Cluster Propagation(O(
logn
β logD )) (with the value

of β corresponding to the fine clustering).

In the main process, we first compute a coarse clustering, that is, one with comparatively large

clusters, which we need to spread shared randomness. Then, within the coarse clusters we compute

many different fine clusterings, i.e., sub-clusterings with smaller clusters. These are the clusterings

we will use to propagate information through the network. The coarse clusters generate and

transmit a random sequence of these fine clusterings, which tells their members in what order to

use the fine clusterings for this propagation (this was the sole purpose of the coarse clustering).

We show that, when applying Intra-Cluster Propagation(O(
logn
β logD )) on a clustering with β

chosen at random, we have a constant probability of making sufficient progress towards our goal

of information propagation. We can treat the progress made during each application of Intra-

Cluster Propagation as being independent, since we use a different random clustering each

time (and with high probability, whenever we choose a clustering we have used before, we have

made sufficient progress in between so that the clusters we are analyzing are far apart and behave

independently). Therefore we can use a Chernoff bound to show that with high probability we

make sufficient progress throughout the algorithm as a whole.

An issue with the main process, though, is that at the boundaries of the coarse clustering,

collisions between coarse clusters can cause Intra-Cluster Propagation to fail. To rectify this,

we interleave steps of the main process with steps of a background process (Algorithm 2), e.g., by

performing the main process during even time-steps and the background process during odd

time-steps.

ALGORITHM 2: Compete(S) - Background Process

1) Compute D0.2
different fine clusterings using Partition(β) with β = D−0.1

.

2) Compute a schedule within each cluster, for each clustering.

3) Cycling through clusterings in round-robin order, perform Intra-Cluster Propagation(O(
logn
β )).

The background process is simpler: it follows a similar line to the main process, but does not use a

coarse clustering, only fine clusterings. This means that we do not have the shared randomness we

use in the main process, so we cannot choose β randomly (we instead fix β = D−0.1
) and we cannot

use a random ordering of fine clusterings (we instead use a round-robin order). As a result, we must

run Intra-Cluster Propagation for longer to achieve a constant probability of making good

progress, and so the propagation of information is slower (if we were to rely on the background

process alone, we would only achieve O(D logn + logO (1) n) time for Compete).

However, the upside is that there are no coarse cluster boundaries, and so the progress is made

consistently throughout the network. Therefore, we can analyze the progress of our algorithm using

the faster main process most of the time, and switching to analysis of the background process when

the main process reaches a coarse cluster boundary. Since the coarse clusters are comparatively

, Vol. 1, No. 1, Article . Publication date: December 2019.



8 Artur Czumaj and Peter Davies

large, their boundaries are reached infrequently, and so we can show that overall the algorithm

still makes progress quickly.

Both Compete processes make use of Intra-Cluster Propagation as a primitive, which makes

use of the computed clusters and schedule to propagate information. Specifically, the procedure

facilitates communication between the cluster center and nodes within ℓ hops.

ALGORITHM 3: Intra-Cluster Propagation(ℓ)

1) Broadcast the highest message known by the cluster center to all nodes within ℓ distance.

2) All such nodes which know a higher message participate in a broadcast towards the cluster center.

3) Broadcast the highest message known by the cluster center to all nodes within ℓ distance.

Here we apply Lemma 2.3: after computing schedules, it is possible to broadcast between the

cluster center and nodes at distance at most ℓ in time O(ℓ + log
O (1) n). That is, on an outward

broadcast all nodes within distance ℓ of the cluster center hear its message, and on an inward

broadcast the cluster center hears the message of at least one participating node. This would be

sufficient in isolation, but since we perform Intra-Cluster Propagation within all fine clusters at

the same time, we will describe a background process (Algorithm 4) to deal with collisions between

fine clusters in the same coarse cluster. As before, we intersperse the steps of the main process and

background process, performing one step of each alternately.

ALGORITHM 4: Intra-Cluster Propagation Background Process

Repeat until main process is complete:

for i = 1 to logn do
with probability 2

−i
(coordinated in each cluster) perform one round of Decay;

otherwise remain silent for logn steps.

end

The background process aims to individually inform nodes that border other fine clusters, and

therefore may have collisions that prevent them from participating properly in the main process.

The goal is to ensure that eventually (we will bound the amount of time that we may have to wait),

such a node’s cluster will be the only neighboring cluster to perform Decay (Algorithm 5), which

ensures that the node will then hear its cluster’s message (with constant probability).

The Decay protocol, first introduced by Bar-Yehuda et al. [3], is a fundamental transmission

primitive employed by many randomized radio network communication algorithms.

ALGORITHM 5: Decay at a node v
for i = 1 to logn do

v transmits its message with probability 2
−i
.

end

It is a well-known and often used property of Decay that performing one round gives a constant

probability of successfully informing a node.

Lemma 3.1 ([3]). After a single round of Decay, a node v with at least one participating neighbor

receives a message with constant probability. �

4 ANALYSIS OF COMPETE ALGORITHM

In this section we prove the following guarantee on the behavior of Compete:

Theorem 4.1. Compete(S) informs all nodes of the highest message in S withinO(
D logn
logD +|S |D

0.125+

log
O (1) n) time-steps, with high probability.
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The precomputation phase of Compete, that is, steps 1–6 of the main process and steps 1-2 of

the background process, requires O(D0.99
log

O (1) n) = O(D) time, and upon its completion we have

all the schedules required to perform Intra-Cluster Propagation. As in [12], we can ignore

collisions during these precomputation steps, since we can simulate each transmission step with

O(logn) rounds of Decay to ensure their success without exceeding O(D) total time.

We first prove a result that allows us to use Intra-Cluster Propagation to propagate messages

through the network. During a fixed application of Intra-Cluster Propagation, we call a node

valid if it can correctly send and receive messages to/from its cluster center despite collisions

between fine clusters.

Lemma 4.2. For some constant c , upon applying Intra-Cluster Propagation(ℓ) with ℓ = DΩ(1)
, a

fixed node u at distance at most
ℓ
c from its cluster center is valid with probability at least 0.99.

Proof. Let u be a node at distance d from its cluster center, and call nodes on the shortest path

from u to the cluster center who border another fine cluster risky. We make use of a result of [12]

(a corollary of Lemma 3.6 used during proof of Lemma 4.6) which states that any node is risky with

probability O(β). Therefore the expected number of risky nodes on the path is O(dβ).
Letv be a risky node bordering q fine clusters, and consider how longv must wait to be informed

if it has a neighbor in its own cluster who wishes to inform it. Whenever 2
−i

is within a constant

factor of
1

q during the background process, Decay has Ω( 1q ) probability of informing v from its

own cluster. This is because with probability Ω( 1q ), v’s cluster is the only cluster bordering v to

perform Decay, and in this case v is informed with constant probability. Since this value of 2
−i

recurs every O(log2 n) steps, the time needed to inform v is O(q log2 n) in expectation.

We use another result from [12], Corollary 3.9, which states that with high probability all nodes

borderO(
logn
logD ) = O(logn) clusters. Therefore the total amount of time spent informing risky nodes

is O(dβ · log3 n) = O(d) in expectation, and since O(d + logO (1) n) time is required to inform non-

risky nodes using the main process, u can communicate with its cluster center in O(d + logO (1) n)
expected time. By choosing sufficiently large c , by Markov’s inequality v is valid with probability

at least 0.99. �

This will allow us to use Intra-Cluster Propagation to propagate information locally. To make

a global argument, we will analyze the Compete algorithm’s progress along paths by partitioning

said paths into length D0.12
subpaths. We call the set of all nodes within distance D0.11

of a subpath

its neighborhood, and we call a subpath good if all nodes in its neighborhood are in the same coarse

cluster (and bad otherwise). We will show that we pass messages along good subpaths quickly

under the main Compete process, and along bad subpaths more slowly under the background

process.

For each pair of vertices, fix a canonical shortest path between them. When we refer to ‘all

shortest paths’ we mean just these canonical paths, not all others of the same length. To show that

there are not too many bad subpaths along these shortest paths, we make use of the following

result from [12]:

Lemma 4.3 (Corollary 3.8 of [12]). After running Partition(β) the probability of a fixed node u

having nodes from t distinct clusters at distance d or less from u is at most (1 − e−β (2d+1))t−1. �

Therefore the probability of a node u having nodes from two different coarse clusters within

D0.11
distance is at most

1 − e−D
−0.5(2D0.11+1) ≤ 1 − e−3D

−0.39

≤ 3D−0.39 .
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10 Artur Czumaj and Peter Davies

Taking the union bound over all nodes in a subpath, we find that any length-D0.12
subpath is

bad with probability upper bounded by D0.12 · 3D−0.39 ≤ D−0.26
.

Lemma 4.4. All shortest paths p have O(D0.63) bad subpaths, with high probability.

Proof. We note that the clustering algorithm of Miller et al. [16] works by having nodes v
generate exponentially distributed random variables δv with parameter β , and having node u join

the cluster of the node which maximizes δv − dist(u,v). A straightforward consequence is that

cluster radius is at most the largest δv , and the cluster assignments of two nodes more than twice

this distance apart depend on entirely independent random choices (for further details of how the

clustering algorithm works see [12, 16]). As in the proof of Lemma 4.3 of [12], therefore, we can

first condition on the event that all values δv used when computing the coarse clustering are at

most 2D0.5
logn, which is the case with high probability (since we are using β = D−0.5

). Then, the

events that two length-D0.12
subpaths of distance at least 5D0.5

logn apart are bad are independent,

since they are not affected by any of the same δv .
Fix some shortest path p. If we label the length-D0.12

subpaths of p in order from one end of the

path to the other, and group them by label mod 6D0.38
logn, then the badness of every subpath is

independent from all the others in its group. Hence, the number of bad subpaths in each group

is binomially distributed, and is O( D
D0.12 ·6D0.38

logn · D−0.26) = O(D0.24) with high probability by a

Chernoff bound. By the union bound over all of the groups, the total number of bad subpaths is

O(D0.63) with high probability. We can then take a union bound over all n2 shortest paths, and find

that they all have O(D0.63) bad subpaths with high probability. �

Having bounded the number of bad subpaths, we can show we can pass messages along them

using the background process, quickly enough that we do not exceed the algorithm’s stated running

time in total. Note that here, and henceforth, we will refer to messages by their place in increasing

lexicographical order out of all messages of nodes in S . That is, by message j we mean the jth

highest message in S .

Lemma 4.5 (Bad subpaths). Let p be any (u,v)-subpath of length at most D0.12
. Let j be the

minimum, over all nodes y in p’s neighborhood, of the highest message known by y at time-step t . If,
at time-step t , u knows a message higher than j, then by time-step t ′ = t +O(D0.121) all nodes in p
know a message higher than j with high probability.

Proof. We analyze only the background process, and consider separately each fine clustering

used in the sequence between time-steps t and t ′. For any such clustering, let w be the furthest

node along p which knows a message at least as high as j + 1. We call the clustering good if:

• all nodes inw’s cluster are O(D0.1
logn) distance from the cluster center;

• the node x which is
D0.1

c nodes along p fromw is in the same cluster asw ;

• x andw are valid (recall that this means they succeed in Intra-Cluster Propagation).

By Lemma 2.1 the first event occurs with high probability, by Corollary 3.7 of [12] we can make

the probability of the second event an arbitrarily high constant by our choice of c , and by Lemma

4.2 and the union bound, the third event occurs with probability at least 1 − 2(1 − 0.99) = 0.98,
conditioned on the first. Therefore the clustering is good with probability at least

1

2
, by applying

the union bound again.

By a Chernoff bound, Ω(D0.02) of the clusterings applied between times t and t ′ will be good.
Consider each good clustering in turn. After applying such a clustering,w ’s cluster will be informed

of an ID higher than j. Every time this occurs,w advances at least
D0.1

c steps, and so by time t ′ the
entire path knows a message at least as high as j + 1. �
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We now make a similar argument for the good subpaths, but since we can use the main Compete

process without fear of collisions from other coarse clusters, we get a better time bound:

Lemma 4.6 (Good subpaths). Let p be any good (u,v)-path of length at most D0.12
. Let j be the

minimum, over all nodes y within D0.11
distance of a node in p, of the highest message known by y at

time-step t . If, at time-step t , u knows a message higher than j , then by time-step t ′ = t +O(D0.12 logn
logD )

all nodes in p know a message higher than j with high probability.

Proof. We analyze only the main procedure, and consider separately each fine clustering used

in the sequence between time-steps t and t ′. For any such clustering, let w be the furthest node

along p which knows a message at least as high as j + 1. We call the clustering good if:

• w is at distance at most c1
logn
β logD from its cluster center;

• the node x which is
D0.1

c2
nodes along p fromw is in the same cluster asw ;

• x andw are valid (recall that this means they succeed in Intra-Cluster Propagation).

By Theorem 2.2, and using Markov’s inequality, we can choose c1 such that the first event occurs

with probability at least 0.54, conditioned on all previous randomness. By Corollary 3.7 of [12], we

can choose c2 so that the second event occurs with probability at least 0.99, also conditioned on
all previous randomness. By Lemma 4.2 the probability that x andw are valid, conditioned on the

first event, is at least 0.98. Therefore each fine clustering is good with probability at least
1

2
(by the

union bound).

Let S be the set of all clusterings applied between time-steps t and t ′. We are interested in the

quantity

∑
s ∈S is good

β−1s . Note that this majorizes the quantity

∑
s ∈S xs , where the xs are indepen-

dent Bernoulli variables which take value β−1s with probability
1

2
and 0 otherwise. The expected

value of this quantity is
1

2

∑
s ∈S is good

β−1s ≥ c
3
D0.12

. By Hoeffding’s inequality,

P

[∑
s ∈S

xs ≤
c

6

D0.12

]
≤ e

−
2|S |2( c

6
D0.12)2∑

s∈S β−2s ≤ e−
2|S |( c

6
D0.12)2

D0.1 ≤ e− log
2 n .

By time t ′,w ’s message has advanced at least

∑
s∈S xs
c2

≥ c
6
D0.12

steps along p, and so by choosing

a sufficiently large constant in the big-Oh notation for t ′, we can ensure that every node in p knows

a message at least as high as j + 1. �

We combine the results from Lemmas 4.4–4.6 to show how to propagate messages along any

shortest path between two nodes.

Lemma 4.7 (All shortest paths). Let u and v be any nodes in N, p be the (canonical) shortest

(u,v)-path, and let b be the number of bad length-D0.12
subpaths of p. If u knows a message at least

as high as i at time-step t , then by time-step t +O(
|p | logn
logD + (i + b)D

0.125), v knows a message at least

as high as i with high probability.

Proof. Let k be the maximum of the constants implied by the asymptotic notation of Lemmas

4.5 and 4.6. We will prove the claim of the lemma at time-step t + k(
|p | logn
logD + (2i + b)D0.125), using

a nested induction. Our ‘outer’ induction shall be on the value i .
Base case: i = 1. Path p trivially contains at most

|p |
D0.12 good sub-paths, and b bad sup-paths.

Applying Lemmas 4.5–4.6, the time taken to inform v of a message at least as high as 1 is at most

|p |

D0.12
· kD0.12 logn

logD
+ b · kD0.121 ≤ k

(
|p | logn

logD
+ (2i + b)D0.125

)
.
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12 Artur Czumaj and Peter Davies

Inductive step: We can now assume the claim for i = ℓ − 1 (Inductive Assumption 1), and prove

the inductive step i = ℓ. We do this using a second, nested induction, on |p |.

Induction on |p |. Base case: |p | ≤ D0.12. Pathp is a single subpath. Ifp is good, then by Inductive
Assumption 1, all nodes within distance D0.11

of p know an ID at least as high as ℓ − 1 by time-step

t + k

(
(|p | + D0.11) logn

logD
+ 2(ℓ − 1)D0.125

)
.

Then, by Lemma 4.6, v knows an ID at least as high as ℓ by time-step

t + k

(
(|p | + D0.11) logn

logD
+ 2(ℓ − 1)D0.125

)
+ kD0.12 logn

logD
≤ t + k

(
|p | logn

logD
+ 2ℓD0.125

)
.

If p is bad then by Inductive Assumption 1, all nodes within D0.11
of p know an ID at least as

high as ℓ − 1 by time-step

t + k

(
(|p | + D0.11) logn

logD
+ (2(ℓ − 1) + 1)D0.125

)
.

Then, by Lemma 4.5, v knows an ID at least as high as i by time-step

t + k

(
(|p | + D0.11) logn

logD
+ (2ℓ − 1)D0.125

)
+ kD0.121 ≤ t + k

(
|p | logn

logD
+ (2ℓ + 1)D0.125

)
.

Induction on |p |. Inductive step: Having proved the base case, we can now assume the claim

for i = ℓ and |p | < q (Inductive Assumption 2), and prove the inductive step |p | = q.
Let u ′

be the start node of the last subpath of p. If this subpath is good, then by Inductive
Assumption 2, u ′

knows an ID at least as high as ℓ by time-step

t + k

(
(|p | − D0.12) logn

logD
+ (2ℓ + b)D0.125

)
.

By Inductive Assumption 1, all nodes within D0.11
of p know a message at least as high as ℓ − 1

by time-step

t + k

(
(|p | + D0.11) logn

logD
+ (2(ℓ − 1) + b + 1)D0.125

)
≤ t + k

(
(|p | − D0.12) logn

logD
+ (2ℓ + b)D0.125

)
.

Therefore, by Lemma 4.6, v knows a message at least as high as ℓ by time-step

t + k

(
(|p | − D0.12) logn

logD
+ (2ℓ + b)D0.125

)
+ kD0.12 logn

logD
= t + k

(
|p | logn

logD
+ (2ℓ + b)D0.125

)
.

If the subpath is bad, then by Inductive Assumption 2, u ′
knows an ID at least as high as ℓ by

time-step

t + k

(
(|p | − D0.12) logn

logD
+ (2ℓ + b − 1)D0.125

)
≤ t + k

(
(|p | + D0.11) logn

logD
+ (2ℓ + b − 1)D0.125

)
.

By Inductive Assumption 1, all nodes within D0.11
of p know a message at least as high as ℓ − 1 by

time-step

t + k

(
(|p | + D0.11) logn

logD
+ (2(ℓ − 1) + b)D0.125

)
.

Therefore, by Lemma 4.5, v knows a message at least as high as ℓ by time-step

t + k

(
(|p | + D0.11) logn

logD
+ (2ℓ − 2 + b)D0.125

)
+ kD0.121 ≤ t + k

(
|p | logn

logD
+ (2ℓ + b)D0.125

)
.
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Exploiting Spontaneous Transmissions for Broadcasting and Leader Election 13

This completes the proof of Lemma 4.7 by induction. �

We are now ready to prove Theorem 4.1:

Proof of Theorem 4.1. The precomputation phase takes at most O(D + logO (1)) time. Upon be-

ginning the Intra-Cluster Propagation phase, one node u knows the highest message. Therefore

by Lemma 4.7, each node v hears this message within O(
dist (u ,v) logn

logD + (|S | + b)D0.125) time-steps,

with high probability. By Lemma 4.4, b = O(D0.63) for all nodes v , and so total running time is

O(
D logn
logD + |S |D0.125 + logO (1) n). �

5 APPLYING COMPETE TO BROADCASTING AND LEADER ELECTION

It is not difficult to see that Compete can be used to perform both broadcasting and leader election.

Theorem 5.1. Compete({s}) completes broadcasting in O(D
logn
logD + log

O (1) n) time with high

probability.

Proof. Compete informs all nodes of the highest message in the message set in timeO(D
logn
logD +

log
O (1) n), with high probability. Since this set contains only the source message, broadcasting is

completed. �

ALGORITHM 6: Leader Election

1) Nodes choose to become candidates in C with probability Θ(
logn
n ).

2) Candidates randomly generate Θ(logn)-bit IDs.
3) Perform Compete(C).

Theorem 5.2. Algorithm 6 completes leader election within time O(D
logn
logD + log

O (1) n), with high

probability

Proof. With high probability |C | = Θ(logn) and all candidate IDs are unique. Conditioning on

this, Compete informs all nodes of the highest candidate ID within timeO(D
logn
logD + log

O (1) n), with

high probability. Therefore leader election is completed. �

6 CLUSTERING PROPERTY: PROOF OF THEOREM 2.2

In this section we prove the last remaining part of our analysis, a key property of the clustering

method in our algorithm Partition(β) as described in Theorem 2.2.

Partition(β) is based on a method first introduced by Miller et al. [16]. The main idea is as

follows: each node v independently generates an exponentially distributed random variable δv ,
that is, a variable taking values in R≥0 with P [δv ≤ y] = 1 − e−βy . Then, each node chooses its

cluster center u to be the node maximizing δu − dist(u,v). It can be seen by the triangle inequality

that a node which is cluster center to any node is also cluster center to itself. For details of how to

implement this in the radio network setting, see [12].

What we must show to prove Theorem 2.2 is that if j is an integer chosen uniformly at random

from the interval [0.01 logD, 0.1 logD], and if β = 2
−j
, then in algorithm Partition(β) as described

above, for any node v , with probability at least 0.55 (over choice of j), the expected distance from v

to its cluster center upon applying Partition(β) is O(
logn
β logD ).
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14 Artur Czumaj and Peter Davies

6.1 Bounding expected distance from v to its cluster center by O(Sx ,β )

Our first step in proving Theorem 2.2 is to obtain a bound for the distance to the cluster center

which is based upon the number of nodes at each distance layer from v . To this purpose, let Ai (v)
be the set of nodes at distance i from v and denote xi = |Ai (v)|. Denote x ∈ ND

0
to be the vector

with these xi as coefficients.

Denote Tx ,β =
∑D

i=0 ixie
−iβ

and Bx ,β =
∑D

i=0 xie
−iβ

. Denote Sx ,β =
Tx ,β
Bx ,β

=
∑D
i=0 ixi e

−iβ∑D
i=0 xi e−iβ

. These

quantities will be used in the following key auxiliary lemma describing the expected distance from

any fixed v to its cluster center after applying Partition(β).

Lemma 6.1. For any fixed node v and value β with D−0.01 ≤ β ≤ D−0.1
, the expected distance from

v to its cluster center upon applying Partition(β) is at most
5

∑D
i=0 ixi e

−iβ∑D
i=0 xi e−iβ

= 5Sx ,β .

Proof. We compute the expected distance to cluster center:

E[distance from v to its cluster center] =

D∑
i=0

i · P [v’s cluster center is distance i away]

=

D∑
i=1

i ·
©«

∑
u ∈Ai (v)

P [u is v’s cluster center]
ª®¬ .

We concentrate on this latter probability and henceforth fixu ∈ Ai (v) to be some node at distance

i from v . For simplicity of notation, let Pu ,v denote P [u is v’s cluster center]. We note that

Pu ,v =

∫ ∞

i
βe−βpP [u is v’s cluster center|δu = p]dp

by conditioning on the value of δu over its whole range and multiplying by the corresponding

probability density function (we can start the integral at i since if δu < i then u cannot be v’s
cluster center).

Having conditioned on the value of δu , we can evaluate the probability that u isv’s cluster center
based on the random variables generated by other nodes. Since the probabilities that any other

node ‘beats’ u are now independent, Pu ,v is equal to:∫ ∞

i
βe−βp

∏
w,u

P [δw − dist(v,w) < δu − dist(v,u)|δu = p]dp .

We can simplify by grouping the nodesw based on distance from v , though we must be careful

to include a
1

P[δu<p]
term to cancel out u’s contribution to the resulting product:

Pu ,v =

∫ ∞

i

βe−βp

P [δu < p]

D∏
k=0

∏
w ∈Ak (v)

P [δw − k < p − i]dp .

Plugging in the cumulative distribution function for the δw yields:

Pu ,v =

∫ ∞

i

βe−βp

1 − e−βp

D∏
k=0

∏
w ∈Ak (v)

1 − e−β (p−i+k )dp .

, Vol. 1, No. 1, Article . Publication date: December 2019.



Exploiting Spontaneous Transmissions for Broadcasting and Leader Election 15

We use the standard inequality 1−y ≤ e−y for y ∈ [0, 1], here setting y = e−β (p−i+k ), and account
for the second product by taking the contents to the power of xk :

Pu ,v ≤

∫ ∞

i

βe−βp

1 − e−βp

D∏
k=0

∏
w ∈Ak (v)

e−e
−β (p−i+k )

dp =

∫ ∞

i

βe−βp

1 − e−βp

D∏
k=0

e−e
−β (p−i+k )xkdp .

We can also remove the remaining product by taking it as a sum into the exponent, and re-

arranging some terms yields:

Pu ,v ≤

∫ ∞

i

βe−βp

1 − e−βp
e−e

β (i−p) ∑D
k=0 xk e

−βk
dp =

∫ ∞

i

βe−βp

1 − e−βp
e−e

β (i−p)Bx ,βdp ,

where for succinctness we use our definition Bx ,β =
∑D

i=0 xie
−iβ

.

At this point we split the integral and bound the parts separately, since they exhibit different

behavior:

Pu ,v ≤ J + K ,

where,

J =

∫ 1

β

i

βe−βp

1 − e−βp
e−e

β (i−p)Bx ,βdp and K =

∫ ∞

1

β

βe−βp

1 − e−βp
e−e

β (i−p)Bx ,βdp .

To bound J , we make use of the following bound on Bx ,β :

Bx ,β =
D∑
k=0

xke
−kβ ≥

⌈D
2
⌉∑

k=0

e−kβ ≥

∫ D
2

−1

e−zβdz =
−1

β
(e−

βD
2 − e−β ) ≥

1

2β
.

This gives

J ≤

∫ 1

β

i

βe−βp

1 − e−βp
e−e

β (i−p) 1

2β dp .

Since eβ (i−p) ≥ e−1, we obtain,

J ≤

∫ 1

β

1

βe−βp

1 − e−βp
e−

1

2eβ dp = βe−
1

2eβ

∫ 1

β

1

e−βp

1 − e−βp
dp .

We can then use that

∫ b
a

e−βp
1−e−βp =

1

β log
(1−eβb )
(1−eβa ) + a − b to evaluate J ≤ e−

1

2eβ
log

(1−e)
(1−eβ ) . Since

eβ > 1 + β , re-arranging yields J ≤ e−
1

2eβ
log

e−1
β . Finally, since we can assume that

1

β ≥ log
c n for

some sufficiently large c , we obtain,

J ≤ e−
log

2 n
2e log

e − 1

β
≤ n−2 .

We now turn our attention to K =
∫ ∞

1

β

βe−βp

1−e−βp e
−eβ (i−p)Bx ,βdp. Since 1− e−βp ≥ 1− e−1 > 1

2
, we get

K <

∫ ∞

1

β

2βe−βpe−e
−βpeβ iBx ,βdp .

Using that e−e
−βp

≤ 1 − 1

2
e−βp (since 0 ≤ e−βp ≤ 1), we obtain,

K <

∫ ∞

1

β

2βe−βp (1 −
1

2

e−βp )e
β iBx ,βdp .
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Evaluating the integral, using∫ ∞

a
e−βp (1 −

1

2

e−βp )c =
(e−aβ − 2)(1 − 1

2
e−aβ )c + 2

β(1 + c)
,

we obtain

K < 2

(e−1 − 2)(1 − 1

2
e−1)e

β iBx ,β + 2

1 + eβ iBx ,β
≤

4

eβ iBx ,β
.

We can now combine our calculations to prove the lemma. Since xi = |Ai (v)|, we have

E[distance from v to its cluster center] =

D∑
i=1

i
∑

u ∈Ai (v)

Pu ,v ≤

D∑
i=1

ixi (J + K)

<

D∑
i=1

ixi

(
n−2 +

4

eβ iBx ,β

)
≤ n−2

D∑
i=1

Dxi +
4

∑D
i=1 ixie

−β i

Bx ,β

≤
D

n
+ 4Sx ,β ≤ 5Sx ,β . �

6.2 Simplifying the form of x to bound Sx ,β

By Lemma 6.1, we must now bound the value of Sx ,β =
∑D
i=0 ixi e

−iβ∑D
i=0 xi e−iβ

. To simplify our analysis, we

will apply two transformations to x which will provide us with useful properties for bounding,

while not altering any Sx ,β by more than a constant factor.

6.2.1 First transformation. The first transformation we apply will be to collate coefficients of x
into indices which are just the powers of 2. That is, we sum the coefficients of x over regions of

doubling size.

Let f : RD+1 → RD+1 be given by

f (x)i =

{∑
4i−1
ℓ=2i xℓ if i = 2

k
for some k ∈ N0,

0 otherwise.

We can bound Sx ,β in terms of Sf (x ),β .

Lemma 6.2. For all x ∈ ND
0
, Sx ,β ≤ 11Sf (x ),β .

Proof. We start with the following auxiliary lemma:

Lemma 6.3. Consider an expression of the form

∑D
i=0 iwi∑D
i=0wi

, where all wi are non-negative. Let p be

an integer with p <
∑D
i=0 iwi∑D
i=0wi

. For all i < p let 0 ≤ w ′
i ≤ wi , and for all i ≥ p let w ′

i ≥ wi . Then∑D
i=0 iw

′
i∑D

i=0w
′
i
> p.

Intuitively, consider

∑D
i=0 iwi∑D
i=0wi

as a weighted average of the i (with weights wi ). The claim then

says that for any p which is less than the value of the average, increasing the weights for indices

higher than p and reducing them for indices lower than p cannot reduce the weighted average

below p.
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Proof of Lemma 6.3.∑D
i=0 iw

′
i∑D

i=0w
′
i

=

∑D
i=0 iwi +

∑D
i=0 i(w

′
i −wi )∑D

i=0w
′
i

=

∑D
i=0 iwi∑D
i=0wi

·
∑D

i=0wi +
∑p−1

i=0 i(w
′
i −wi ) +

∑D
i=p i(w

′
i −wi )∑D

i=0wi +
∑D

i=0(w
′
i −wi )

>
p ·

∑D
i=0wi +

∑p−1
i=0 p(w

′
i −wi ) +

∑D
i=p p(w

′
i −wi )∑D

i=0wi +
∑D

i=0(w
′
i −wi )

=
p ·

(∑D
i=0wi +

∑D
i=0(w

′
i −wi )

)
∑D

i=0wi +
∑D

i=0(w
′
i −wi )

= p . �

We apply Claim 6.3 to analyze the effect of the transformation f , in particular to compare Sf (x ),β
with Sx ,β . First we find an expression for Sx ,β in a form for which we can use the claim:

Sx ,β =

∑D
i=0 ixie

−iβ∑D
i=0 xie

−iβ
=

∑D
i=0 iwi∑D
i=0 iwi

,

wherewi = xie
−iβ

.

Next we do the same for Sf (x ),β :

Sf (x ),β =

∑
logD
k=0 2

k ∑2
k+2−1
ℓ=2k+1

xℓe
−2k β∑

logD
k=0

∑
2
k+2−1
ℓ=2k+1

xℓe−2
k β
=

∑D
ℓ=2 2

⌊log ℓ−1⌋xℓe
−2⌊log ℓ−1⌋β∑D

ℓ=2 xℓe
−2⌊log ℓ−1⌋β

.

We multiply both the numerator and denominator by a scaling factor to make the expression

more comparable to Sx ,β . Let q := ⌊log Sx ,β ⌋. Our scaling factor will be e−2
q−1

.

Sf (x ),β =

∑D
ℓ=2 2

⌊log ℓ−1⌋xℓe
−2⌊log ℓ−1⌋β∑D

ℓ=2 xℓe
−2⌊log ℓ−1⌋β

≥

∑D
ℓ=2

l
4
xℓe

(−2q−1−2⌊log ℓ−1⌋ )β∑D
ℓ=2 xℓe

(−2q−1−2⌊log ℓ−1⌋ )β
=

∑D
i=0 iw

′
i

4

∑D
i=0w

′
i

,

wherew ′
i =

{
xie

(−2q−1−2⌊log i−1⌋ )β
if i ≥ 2,

0 otherwise.

We set p = 3 · 2q−2, and verify that we meet all of the conditions of the Claim 6.3:

Firstly we need that allwi andw
′
i are non-negative, which is obviously the case.

Secondly we need that p <
∑D
i=0 iwi∑D
i=0wi

, which is true since

p < 2
q ≤ Sx ,β =

∑D
i=0 iwi∑D
i=0wi

.

Thirdly we needw ′
i ≤ wi for all i < p andw ′

i ≥ wi for all i ≥ p. To show this, note that

w ′
i ≥ wi ⇐⇒ (−2q−1 − 2

⌊log i−1⌋)β ≥ −iβ ⇐⇒ 2
q−1 + 2 ⌊log i−1⌋ ≤ i .

When i ≤ 2
q−1

, clearly 2
q−1 + 2 ⌊log i−1⌋ > i , sow ′

i ≤ wi .

When 2
q−1 < i < p, 2q−1 + 2 ⌊log i−1⌋ = 2

q−1 + 2q−2 = p > i , sow ′
i ≤ wi .

When p ≤ i < 2
q
, 2

q−1 + 2 ⌊log i−1⌋ = 2
q−1 + 2q−2 = p ≤ i , sow ′

i ≥ wi .

When 2
q ≤ i , 2q−1 + 2 ⌊log i−1⌋ ≤ 2

q−1 + 2log i−1 ≤ 2
q−1 + i

2
≤ i , sow ′

i ≥ wi .
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Therefore we have all the necessary conditions to apply Claim 6.3, yielding

∑D
i=0 iw

′
i∑D

i=0w
′
i
> p. Then,

Sf (x ),β ≥

∑D
i=0 iw

′
i

4

∑D
i=0w

′
i

>
p

4

≥
3q

16

>
3Sx ,β

32

>
Sx ,β

11

.

This completes the proof of Lemma 6.2. �

6.2.2 Second transformation. Having applied f to ensure that only power-of-2 coefficients of x are

non-zero, we apply a second transformation to ensure that the coefficients are not “too decreasing”;

in particular, we guarantee that each non-zero coefficient is at least half the previous one.

Let д : RD+1 → RD+1 be given by

д(x)i =

{∑
ℓ≤i

ℓxℓ
i if i = 2

k
for some k ∈ N0,

0 otherwise.

This definition achieves our aim since when i is a power of 2,

2д(x)2i = 2

∑
ℓ≤2i

ℓxℓ
2i
=

∑
ℓ≤2i

ℓxℓ
i

≥
∑
ℓ≤i

ℓxℓ
i
= д(x)i .

Similarly to Lemma 6.2, we can bound Sx ,β in terms of Sд(x ),β .

Lemma 6.4. For all x ∈ ND
0
which have xi = 0 for all i < {2k : k ∈ N0}, Sx ,β ≤ 2Sд(x ),β .

Proof. We start by taking our Sд(x ),β expression and substituting the sum index to account only

for powers of two, since all other coefficients are 0:

Sд(x ),β =

∑D
i=0 iд(x)ie

−iβ∑D
i=0 д(x)ie

−iβ
≥

∑
logD
k=0 2

kд(x)
2
k e−2

k β∑
logD
k=0 д(x)

2
k e−2

k β
.

We now substitute in the definition of д(x), bounding it in the numerator by its largest term, and

switching order of summation in the denominator.

Sд(x ),β ≥

∑
logD
k=0 2

k ∑k
ℓ=0

2
ℓx

2
ℓ

2
k e−2

k β∑
logD
k=0

∑k
ℓ=0

2
ℓx

2
ℓ

2
k e−2k β

≥

∑
logD
k=0 2

kx
2
k e−2

k β∑
logD
k=0

∑k
ℓ=0

2
ℓx

2
ℓ

2
k e−2k β

=

∑
logD
k=0 2

kx
2
k e−2

k β∑
logD
ℓ=0

∑
logD
k=ℓ

2
ℓx

2
ℓ

2
k e−2ℓβ

.

We simplify the denominator by noting that
2
ℓ

2
k ≤ 1, reaching an expression which matches Sx ,β :

Sд(x ),β ≥

∑
logD
k=0 2

kx
2
k e−2

k β

2

∑
logD
ℓ=0

x
2
ℓe−2

ℓβ
≥

Sx ,β

2

. �

6.3 Bounding Sx ,β for simplified x

Now that we have shown in Lemmas 6.2 and 6.4 that the transformations f and д do not increase

Sx ,β by more than a constant factor, we show how they help to bound the value of Sx ,β . Let x
′
be

the vector obtained after applying the two transformations to x , i.e., x ′ = д ◦ f (x). We begin with

the following lemma.

Lemma 6.5. x ′
has the following properties:

• x ′
i = 0 for all i < {2k : k ∈ N0};

• x ′
1
≥ 2;

• ||x ′ | |1 =
∑D

i=0 x
′
i ≤ 2n;

• 2x ′
2i ≥ x ′

i for all i .
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Proof. The first property is obvious due to transformation f . The second is true since x ′
1
≥

f (x)1 = x2 + x3 ≥ 2. The third is the case since f does not increase L1-norm and д at most doubles

it, and the fourth follows from transformation д. �

Our argument will be based on examining the ratios between consecutive non-zero (i.e. power-

of-two) coefficients in x ′
. To that end, define ki = log

x ′

2
i+1

x ′

2
i

for all i ≤ logD, and note that ki ≥

log
1

2
= −1 for all i and

∑
logD
i=0 ki ≤ logn by Lemma 6.5.

We first show a condition on these ki which guarantees that Sx ′,β (and hence Sx ,β ) is O(
logn
β logD )

for some particular value of β :

Lemma 6.6. If for fixed j and for allm ≥ 8 we have

j+log logn
logD +m∑

ℓ=j+log logn
logD

kℓ ≤ 2
m logn

logD

then Sx ′,2−j = O(
2
j
logn

logD ).

The intuition behind this lemma is that the cluster center of a node is likely within our desired

radius of O(
2
j
logn

logD ) unless the network expands very rapidly just outside that radius.

Proof. We first split Tx ′,2−j (the numerator of Sx ′,2−j ) into three parts, which we will bound

separately:

Tx ′,2−j =

D∑
i=0

ix ′
ie

−i2−j =

logD∑
i=0

2
ix ′

2
i e

−2i−j = P +Q + R ,

where P =
j+log logn

logD +8∑
i=0

2
ix ′

2
i e

−2i−j
, Q =

j+log logn∑
i=j+log logn

log
+9

2
ix ′

2
i e

−2i−j
, and R =

logD∑
i=log logn+1

2
ix ′

2
i e

−2i−j
.

We now bound these parts. P is the largest, and we require that P = O(
2
j
logn

logD )Bx ′,2−j (recall that

Bx ′,2−j =
∑D

i=0 x
′
ie

−i2−j
).

P =

j+log logn
logD +8∑

i=0

2
ix ′

2
i e

−2i−j ≤

j+log logn
logD +8∑

i=0

256

2
j
logn

logD
x ′
2
i e

−2i−j

≤ 256

2
j
logn

logD

logD∑
i=0

x ′
2
i e

−2i−j = 256

2
j
logn

logD
Bx ′,2−j .

Using the condition of Lemma 6.6, we can show that Q is also O(
2
j
logn

logD )Bx ′,2−j . Letm ≥ 9. We

begin by re-expressing x ′
2
j+m

logn
logD

:

x ′
2
j+m

logn
logD

= x ′
2
j
logn

logD

j+log logn
logD +m−1∏

ℓ=j+log logn
logD

x ′

2
ℓ+1

x ′

2
ℓ

= x ′
2
j
logn

logD

2

j+log logn
logD +m−1∑

ℓ=j+log logn
logD

kℓ

.
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We can then apply the condition of the Lemma:

x ′
2
j+m

logn
logD

≤ x ′
2
j
logn

logD

2
2
m−1 logn

logD .

We make some re-arrangements to reach a form containing Bx ′,2−j :

x ′
2
j+m

logn
logD

≤ e
2
j
logn

logD 2
−j
2
2
m−1 logn

logD x ′
2
j
logn

logD

e−
2
j
logn

logD 2
−j

≤ e
logn
logD

2
2
m−1 logn

logD

D∑
i=0

x ′
ie

−i2−j

= 2
(2m−1+log e) logn

logD Bx ′,2−j .

We can use this to bound Q as follows:

Q =

j+log logn∑
i=j+log logn

logD +9

2
ix ′

2
i e

−2i−j =
2
j
logn

logD

log logn∑
m=9

2
mx ′

2
j+m

logn
logD

e−2
m+log logn

logD

≤
2
j
logn

logD

log logn∑
m=9

2
m · 2

(2m−1+log e) logn
logD Bx ′,2−j · e

−2
m+log log

logD
.

Rearranging terms, we obtain,

Q =
2
j
logn

logD
Bx ′,2−j

log logn∑
m=9

2
m+(2m−1+log e) logn

logD −2m
logn
logD

≤
2
j
logn

logD
Bx ′,2−j

log logn∑
m=9

2
−2m−2 logn

logD ≤
2
j
logn

logD
Bx ′,2−j .

R is always negligible, since the e−2
i−j

term is very small for large i .

R =

logD∑
i=j+log logn+1

2
ix ′

2
i e

−2i−j ≤

logD∑
i=j+log logn+1

Dx ′
2
i e

−2 logn ≤ 2Dn1−2 log e ≤ 1 .

So,

Sx ′,2−j =
P +Q + R

Bx ′,2−j
≤

256
2
j
logn

logD Bx ′,2−j +
2
j
logn

logD Bx ′,2−j + 1

Bx ′,2−j
≤ 258

2
j
logn

logD
. �

Finally, we can show that there are many j for which the condition of Lemma 6.6 holds. The

intuition here is that the condition only fails for a region in which the network is rapidly expanding,

and since D and n are already fixed it cannot be rapidly expanding everywhere.

Lemma 6.7. The number of integers j , 0.01 logD ≤ j ≤ 0.1 logD, for which there is i ≥ 8 satisfying∑j+log logn
logD +i

ℓ=j+log logn
logD

kℓ > 2
i logn
logD is upper bounded by 0.04 logD.

Proof. Consider the following process: take integers i with 0.01 logD ≤ i ≤ 0.1 logD in

increasing order. If there is some i ′ ≥ i + 8 such that

∑i′
ℓ=i kℓ > 2

i′−i logn
logD , then call all values

between i and the largest such i ′ ‘bad’, and continue the process from i ′ + 1. Let b denote the
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number of bad i . The average ki over all bad i must be at least
2
8
logn

9 logD , and since all ki are bounded

below by −1 and sum to at most logn, we have

2
8
logn

9 logD
b + (−1)(0.09 logD − b) ≤ logn ,

and so

b ≤
logn + 0.09 logD

2
8
logn

9 logD + 1
≤

1.09 logn
2
8
logn

9 logD

≤ 0.04 logD .

For every j satisfying the condition of the lemma, j + log
logn
logD must be bad, and so the number

of such j is also at most 0.04 logD. �

We are now ready to prove our main result, Theorem 2.2.

Proof of Theorem 2.2. With probability at least 1 − 0.04
0.1−0.01 ≥ 0.55, for all i ≥ 8 we have that

j+log logn
logD +i∑

ℓ=j+log logn
logD

kℓ ≤ 2
i logn

logD
.

Then, Sx ′,2−j = O(
2
j
logn

logD ) by Lemmas 6.6 and 6.7. Applying Lemmas 6.2 and 6.4, we get Sx ,2−j =

O(
2
j
logn

logD ). Finally, applying Lemma 6.1, we find that the expected distance from v to its cluster

center is at most O(
2
j
logn

logD ). This completes the proof of Theorem 2.2. �

7 CONCLUSIONS

The tasks of broadcasting and leader election in radio networks are longstanding, fundamental

problems in distributed computing. Our main contribution are new algorithms for these problems

that improve running times for both toO(D
logn
logD+log

O (1) n), with high probability. ForD = Ω(logc n)

for a sufficiently large constant c , these running time bounds improve the fastest previous algorithms

for broadcasting and leader election by factorsO(log logn) andO(logn log logn), respectively. More

importantly, whenever n is polynomial in D (i.e., n = O(Dc ), for some positive constant c), the
obtained running time is O(D), which is asymptotically optimal since time D is required for any

information to traverse the network.

There is no better lower bound than Ω(D + log
2 n) for broadcasting or leader election when

spontaneous transmissions are allowed, so the most immediate open question is to close that gap.

While a tighter analysis of our method might trim the additive polylog(n) term significantly, it

is difficult to see how the Ω(log2 n) term could be reached without a radically different approach.

Similarly, the Ω(D
logn
logD ) term seems to be a limit of the clustering approach, and reducing it to D

would likely require significant changes. In fact, we would not be surprised if our upper bounds

O(D
logn
logD ) were tight for D = Ω(logc n) for a sufficiently large constant c .

The main focus of this paper has been to study the impact of spontaneous transmissions for

basic communication primitives in randomized algorithms undirected networks. An interesting

question is whether spontaneous transmissions can help in directed networks, which would be

very surprising, or for deterministic protocols.
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