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Abstract

There is currently a need to evaluate the interaction of drugs in the liver and at

the liver membrane, to determine whether the potential for a drug-drug interaction in the

clinic could adversely affect a patients prognosis. The interactions of drugs or probe sub-

strates with liver membrane transporters are currently poorly understood at a molecular

level, and there is strong interest in terms of the pharmacology of the transporters and

how we can examine and understand these interactions through mathematical models.

Currently the dynamics of interactions through the use of micro-rate constants, where

steady-state assumptions are not implied in data analysis are less favoured. Whilst

modelling and data analysis conducted using Michaelis-Menten type kinetics (defined as

macro-rate constant mechanistic models), under the assumption of rapid equilibration

of substrate with the transporter (association with the transporter is almost instanta-

neous) are more common. The aim of this thesis is to improve the determination of

transporter mediated drug-drug interactions (TrDDIs) in in vitro liver specific cellular

systems through the use of structurally identifiable mechanistic models describing the

dynamics of the interaction between substrates and inhibitors. This was done by the

design of experiments to optimise the data collected for substrate and inhibitors for use

within the mechanistic models across different cellular systems (human cell lines, rat

and human hepatocytes) under different inhibition conditions. Mechanistic models were

developed to obtain robust model fits that adequately described the interaction between

substrates and inhibitors, whilst gaining an insight in terms of model selectivity, given

the data available. The structural identifiability of the mechanistic models was assessed

to ensure that the unknown parameters in the model could be estimated from the ex-

perimental data. The mode of inhibition was determined through the use of mechanistic

models for each experimental chapter and compared with conclusions drawn in the in

literature. The potential for a clinical TrDDI was evaluated for the experimental work

in cryopreserved human hepatocytes (Chapter 5), through a worst case scenario static
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drug interaction model at the entrance to the liver using an “R value”, and through

the use of a semi-quantitative physiologically based pharmacokinetic (PBPK) model.

All the micro-rate constant mechanistic models were at least structurally locally iden-

tifiable with no parameters unknown. Conversely, the macro-rate constant mechanistic

were only structurally locally identifiable if both substrate and inhibitor were measured

(see Chapter 5). Otherwise one to two parameters had to be known for the macro-rate

constant mechanistic models to be structurally locally identifiable. Concurrent with the

structural identifiability analysis results, in each of the experimental chapters, the use of

micro-rate constant mechanistic models were always the best fitting model to the exper-

imental data based on goodness of fit statistics compared to the use of Michaelis-Menten

macro-rate constant mechanistic models. Both the micro-rate constant and macro-rate

constant mechanistic models were in agreement with regards to the mechanism of in-

hibition in all experimental cases, whilst the steady-state assumptions required for the

use of the Michaelis-Menten equation were only valid for the micro-rate constants de-

rived in Chapter 5. This supported the use of scaled micro-rate constant parameters in

Chapter 5 to Michaelis-Menten parameters in the semi-quantitative mechanistic PBPK

model in Chapter 6, where there was a potential for a clinical TrDDI given the in vitro

data, which was at odds with the determined R value. In conclusion, this work strongly

supports the use of micro-rate constants in mechanistic modelling of in vitro TrDDIs

to formally test steady-state assumptions through more robust, structurally identifiable

parameter estimates.
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Chapter 1

Introduction

Life expectancy has steadily increased from the latter half of the 20th century for men

and women by approximately eight and six years respectively [12]. As life expectancy has

increased, so the number of patients who have sought treatment for multiple age-related

diseases has also increased. A global collaborative effort evaluating the prevalence of

infectious and non-infectious diseases and determination of a “years living with a dis-

ability” (YLD) value, found that diseases associated with increasing age; stroke and

heart disease, hearing loss, diabetes, and chronic obstructive pulmonary disease, showed

a greater than 10 % increase over the period of 2010-2016 compared to all other YLD

values when normalised by age group [13]. The increase in YLD values for more age

related diseases shows that there is a requirement to fill the current unmet need in terms

of the treatment of an ageing population which will increase based on current trends

and which also spans socio-economic barriers. Treatment of the increasingly ageing pop-

ulation is likely to be across multiple diseases. It is therefore rare that a patient will be

taking just one drug, and is likely to receive multiple drugs to treat the multi-faceted

symptoms of non-communicable diseases on a long term basis or life. Understanding

how multiple drugs interact at a cellular level has the potential to improve a patient’s

quality of life and helps to decrease the attrition of drugs in the clinic. It is here that

mathematical modelling can play a key holistic role in understanding the relationships

between what can easily or routinely measured, e.g. drug in blood, and what is hap-

pening away from where it is measured e.g. in the liver or some pharmacological target,

is vital in order to make sure that what is dosed to a patient has the highest chance of

being efficacious (sufficient exposure at the site of action), whilst minimising the chance

of adverse effects that can potentially be life threatening.

The study of drug disposition processes, namely; absorption from the dose site

into the circulation, distribution of the drug into tissues, metabolism of the drug and

excretion into urine or faeces of the parent and/or metabolites of an administered drug

in the body is termed pharmacokinetics (PK). The study of the pharmacological action

of a drug at the site of action or via a downstream biomarker that can be measured is

termed pharmacodynamics (PD). These processes do not occur in isolation, and thus

the analysis of PK-PD relationships is known as pharmacometrics [14]. PK and/or PD

are studied by developing mathematically derived models of the underlying processes
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involved in the data that are observed, along with error in the measurements themselves

[14, 15].

Models are simplifications of processes in the body, and their development is

based on both an understanding of the underlying physiology or mechanism from the

literature and personal experience, and as such approximate what we think is hap-

pening. Obtaining meaningful parameters from the modelling process - the so-called

“inverse problem” and often the most difficult [15], will depend on the experimental

design, the ensuing errors and the complexity of the model considered. For example

a simple one compartment PK model following an intravenous injection with two pa-

rameters (clearance from the compartment through metabolism and/or excretion, and

the apparent volume of the compartment), up to vast biochemical models (e.g. the

JAK-STAT model investigated by Anguelova et al. [16] with 31 compartments and 51

parameters). These are two extreme examples of mechanistic models, and whilst a

highly complex mechanistic model can be written, unless there are sufficient data across

time and states (measurements of the compartmental concentrations), accurate estima-

tion of the parameters will not be possible. Therefore before the costly exercise of data

generation from experiments is run, it is advisable to look at the structure of the model

itself, and evaluate whether we can actually obtain the desired measurement output

from the model, assuming limitless noise free data - known as structural identifiability

[17] will be described in the next Chapter 2, and then applied across the experimental

and modelling chapters (Chapters 3, 4 and 5).

There is currently an unmet need to evaluate the interaction of drugs in the

liver and at the liver membrane as this is the first point of call for all orally absorbed

drugs and food. As such the liver “sees” much higher concentrations than the rest

of the body. Such is the importance of the liver, that prior to submission of a new

drug to the regulatory agencies, assessments have to be made both in terms of enzyme

interactions, but also at the liver plasma membrane transporters at the sinusoid and

bile canaliculus [18, 19]. The interactions of drugs with liver membrane transporters are

currently poorly understood at a molecular level [20]. There is strong interest in terms

of the pharmacology of the transporters and how we can examine and understand these

interactions through mathematical models [20–22], and it is this that this thesis will

study in an attempt to further the knowledge base and understanding in this field.

1.1 Aims and Objectives

The aim of this thesis is to improve the determination of transporter mediated drug-

drug interactions (TrDDIs) in in vitro liver specific cellular systems through the use of

structurally identifiable mechanistic models describing the dynamics of the interaction

between substrates and inhibitors.

Currently the mechanistic modelling and data analysis of transporter mediated

uptake are conducted using Michaelis-Menten kinetics, which have been expanded upon

for transporters from the original development for enzyme kinetics. The use of the
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Michaelis-Menten equation (see Chapter 2, Eq. ) is valid under the following assump-

tions [15, 23, 24]:

1. The initial substrate concentration is much larger than the transporter concentra-

tion.

2. It then follows that the association to the transporter (ka, is very rapid) is thus

in rapid equilibrium with the transporter.

3. The free transporter (Tf ) is therefore affected by the dissociation rate constant

from the transporter (kd).

4. The rate limiting step in the transport of substrate into the cell is the translocation

rate constant (kt).

Models that use the Michaelis-Menten derivation are referred to in this thesis

as macro-rate constant models. If for these models, the steady-state rate transport

constants (Vmax and Km) are split back into their constituent micro-rate constants

(defined as micro-rate constant models in this thesis), then these assumptions can be

formally tested.

Therefore this thesis will try to answer the main aim and that above relating to

steady-state assumptions via a series of objectives for a selection of substrates where

transporter mediated movement into the cell dominates over passive movement into the

cell:

1. Develop mechanistic models that characterise the data, and are possible given the

available observations from in vitro cellular drug uptake experiments, extending

the work of Grandjean [25] to include inhibition of transport.

2. Evaluate the effectiveness of both macro-rate constant models and micro-rate con-

stant models with the inclusion of substrate and inhibitor and determine their

structural identifiability for a given model and observations available.

3. Design experiments to optimise the data collected for substrate and inhibitors for

use within the mechanistic models across different cellular systems (human cell

lines, rat and human hepatocytes) under different inhibition conditions.

4. Using the micro-rate constant and macro-rate constant mechanistic models, obtain

robust model fits that adequately describe interaction between substrates and

inhibitors, whilst gaining an insight in terms of model selectivity.

5. Compare if from obtained in vitro TrDDI whether: The use of a static clinical

interaction model based on the ratio of the AUCs calculated in absence and pres-

ence of inhibitor at the entrance to the liver (R value). Or through the use a more

dynamic PBPK modelling approach, which takes into account the liver physiol-

ogy offers a more realistic description of the potential for transporter mediated

drug-drug interactions (TrDDIs) in the clinic.
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1.2 Thesis Outline

This thesis follows a logical path through the literature, and mechanistic modelling

techniques employed and their relevance to cellular drug uptake experiments. This is

followed by three experimental chapters that look at the uptake of substrate and its

subsequent inhibition through different scenarios, before the development of a semi-

mechanistic PBPK model based on the final experimental chapter. The chapters are

summarised below:

Chapter 2: Provides an in depth review of transporter physiology and mechanisms

of action obtained from the literature. The transporters will be split into two distinct

sections; Non-energy (ATP) dependent transporters and ATP dependent transporters,

with the former of more experimental relevance here. An introduction to structural

identifiability analysis and practical identifiability through parameter estimation soft-

ware is also provided.

Chapter 3: The uptake of a fluorescent substrate (2,7-dichlorofluorescein, DCF) into

human embryonic kidney cells (HEK293) that overexpress human OATP1B1 (hOATP1B1)

is considered as an alternative to the more costly radiolabelled substrates or the analysis

of substrates using mass spectrometry. The mode of inhibition of gemfibrozil, which has

been shown to have a mixture of enzymatic and transporter mediated DDIs, on liver

specific hOATP1B1 was determined experimentally and through the use of mechanistic

modelling.

Chapter 4: Provides a more complex cellular structure of isolated rat hepatocytes,

which possess a full compliment of transporters and enzymes. A high throughput cen-

trifugal oil layer method is described (that was partially developed during my MSc.

dissertation) and applied to the uptake of an HMG-CoA reductase inhibitor (atorvas-

tatin) and its inhibition by the immunosuppressant cyclosporine (CsA), which has been

shown to be a potent inhibitor of transporters in the clinic using mechanistic modelling.

Chapter 5: Builds on the outcomes of Chapters 3 and 4 and provides a simultaneous

analysis of both substrate (pitavastatin, another HMG-CoA reductase inhibitor) and

an inhibitor (eltrombopag) in the same sample of cryopreserved human hepatocytes. A

mechanistic modelling approach is again undertaken to understand the mode of inhibi-

tion of eltrombopag. Eltrombopag is used to stimulate platelet formation, and the dose

is carefully monitored to prevent over/under production of platelets and thus consider-

ation of pitavastatin and eltrombopag is important in TrDDI consideration

Chapter 6: Provides the development of a qualitative semi-mechanistic PBPK model

using the data obtained from Chapter 5 to simulate clinical PK profiles in the absence

and presence of inhibitor through Monte-Carlo simulations in R. This model includes

passive movement of drug into and out of the cell, as well as transporter mediated in-

teractions obtained from Chapter 5 and other selected information from the literature

regarding the elimination of both pitavastatin and eltrombopag.

Chapter 7: Provides summaries and conclusions from the experimental and modelling

chapters and suggestions for further work.
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Chapter 2

Background and Data Analysis

The liver is the major organ responsible for elimination of most drugs from the systemic

circulation, but first of all they need to cross the cell membrane (both in the gut and the

liver), either via passive diffusion or via an uptake transporter protein. Drug transporters

in the liver are key components in the elimination of many drugs; both for uptake into

the hepatocytes (where they can be metabolised) from the blood, as well as excretion

back into the blood to be circulated to the rest of the body or into the bile [26]. For more

lipophilic drugs such as gemfibrozil or cyclosporine A, passive diffusion dominates over

transporter mediated uptake [9, 27]. For amphiphillic drugs that are weak acids (e.g.

pitavastatin or atorvastatin), which are less lipophilic and also have a small charge at

physiological pH, uptake of drugs into the liver via a saturable carrier protein dominates

and is the rate limiting step in clearance from the blood [28].

There is a large body of literature dedicated to clinical DDIs at an enzymatic

level, with much less work dedicated to a transporter level or combined transporter /

metabolism level. Indeed, a PubMed search of “Drug-Drug Interaction” with

“metabolism” or “transporter” or both and then filter the search to “Clinical Trials”

and “Journal Articles”, 66 % of the references were “metabolism”, whilst “transporter”

or both were 14 % and 13 %, respectively (Table 2.1). It is interesting to note that in

2018, the number of “transporter” DDI publications has remained steady since 2013,

and coincides with when the EMA [18] and the previous FDA (2012) guidance docu-

ments first included transporter mediated drug drug interactions (TrDDIs). Articles for

“metabolism” only have decreased by 16 %, whilst studies where both “metabolism”

and “transporters” were included have remained unchanged (see Table 2.1). It is en-

couraging to see that journal issues are also now dedicated to progressing the knowledge

of transporters and their importance in pharmacokinetic and pharmacodynamic inter-

actions (e.g. Clinical Pharmacology and Therapeutics, 2018, volume 105, issue 5).

The rest of this chapter is sectioned into three parts: The first section will cover the

current knowledge and biology of drug transporters, how we can study them and their

importance with regard to the potential for TrDDIs. A small section on drug metabolism

will also be included as a major route of elimination of most drugs, but also because of

the effect that some of the metabolites have on transporters both as substrates them-

selves and inhibitors. The second section is concerned with the development and use of
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Table 2.1: Number of journal articles in PubMed regarding DDIs between 1969-2018

Search terms Total References 2018*

(% of total) (% of total)

“Drug-Drug Interaction” 3173 382

“Drug-Drug Interaction” AND metabolism 2104 (66 %) 164 (42 %)

“Drug-Drug Interaction” AND transporter 458 (14 %) 52 (14 %)

All Three 414 (13 %) 32 (8 %)

up to date of search: 01/11/2018

mechanistic models, their power in furthering our knowledge of cellular kinetics, but also

the limitations in terms of the information we can obtain. An important pre-requisite

for the use of mechanistic models is an identifiability analysis with respect to the struc-

ture of the mathematical model to be used, and whether we can obtain meaningful

parameter estimates from the model in its postulated form, or whether it needs to be

modified, or simplified. Such analysis of mechanistic models can also be used to guide

experimental design as to what information would improve the chance of estimating the

unknown parameters. The final section underlines efforts made to link in vitro data and

in vivo/clinical data either by extrapolating from a cellular level up to a whole body

level through the use of physiologically based models, or by correlating physicochemical

properties to clinical data.

2.1 Transporters

Transporters are promiscuous in nature across prokaryotes and eukaryotes both for

the uptake of nutrients and exclusion of toxins [29]. Functioning transporter genes in

humans (excluding regulatory subunits) account for nearly 5 % of the total number of

genes in the human body [30]. The promiscuous nature of transporters has spawned two

opposing views on how molecules cross membranes passively: the more mainstream belief

of passive diffusion across phospholipid bilayers; and the belief that passive movement

across membranes is via a host of low capacity uptake transporters, most of which

are currently unidentified [31]. The view of how molecules passively cross membranes,

whether it be through diffusion or a host of not yet discovered transporters, is of little

relevance, it is more the manner for which it occurs, i.e. “passive” movement of molecules

is a very rapid process relative to transporter kinetics and is practically unsaturable in

laboratory experiments (linear uptake across concentrations).

Hallifax and Houston [32] found that the time to reach a plateau for a lipophilic

amine, imipramine, was 30 s in rat hepatocytes and most of the uptake was seen at the

first timepoint of 10 s. The cell concentration:medium concentration ratio (commonly

known as Kp) obtained in either inactivated cells (no viable transporter) or at high

concentrations of imipramine were similar (Kp = 120 and 150 respectively), indicative
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of passive permeability and high intracellular binding of these drugs [32].

In comparison the time to reach a maximum for a transporter substrate, rosuvas-

tatin in plated rat hepatocytes was around 15 min [33], and although a Kp value was not

stated, it can be estimated from figure 4 in the article, assuming that the concentration

in the medium is the same as the dose at the 15 min timepoint. The Kp decreased

around 13-fold from an estimated Kp of 90 at 0.1 µM to 7 at 300 µM ([33], 15 min time-

point). Whilst a very rough calculation, it helps to illustrate the point that the uptake

process drives the cellular concentration for acidic drugs where passive permeability is

less, as seen in the n-fold decrease in Kp for rosuvastatin, in comparison to fold decrease

for imipramine where passive diffusion outweighed the transporter element [32, 33].

The rest of this section will be split into two distinct parts; those transporters

that do not require cellular energy (ATP) directly - the Solute Carrier (SLC) family of

transporters, also known as secondary active transporters [29]; and those that are ATP

dependent and are part of the ATP Binding Cassette family of transporters (ABC). To

simplify the notation for transporters across species below, genes will be described in

italics, whilst proteins are not. Human genes, proteins or enzymes will given in capital

letters, or when general features are discussed, whilst for animal specific genes, proteins

or enzymes only the first letter is capitalised [34]. The species will be marked accordingly

or left blank when discussing general features: human (h), rat or rodent (r, depending

on the context), mouse (mu), dog (d) and monkey (mo).

2.1.1 Non-ATP Dependent Transporters

The solute carriers span a broad range of transporters with around 52 different families

and around 400 genes in humans and are mainly membrane bound [29]. They cover

transport across a broad range of substrates: amino acids, organic anions and bile acids,

organic cations, metals, neurotransmitters, sugars and DNA base sugars [30]. SLCs are

ubiquitous in their distribution in the human body from muscle and intestine to the brain

[35] and are therefore important in disease and as attractive drug targets [30, 36, 37].

With so many SLCs across such a broad range of substrates and distribution, it can

be easily seen why some authors state that passive movement of molecules may be as

a result of numerous low capacity transporters [22]. This section will concentrate on

four families in more depth (genes in brackets): the OATP superfamily (SLCO), NTCP

(SLC10A1 ), OCT (SLC22 ) and MATE (SLC47 ) as they are the main SLCs of interest

in the liver, the first two deal with the sodium independent and dependent transport

of large bulky (> 350 Da) amphipathic (mainly) anions which have a small negative

charge at physiological pH (7.4), whilst the second two deal with smaller molecular

weight (<500 Da) (mainly) cations which have a small positive charge at physiological

pH [38, 39].

2.1.1.1 OATP (SLCO)

A major transporter protein family involved in the uptake of weakly acidic molecules

with a molecular weight of > 350 Da (both endogenous substrates and drugs) [38]
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across membranes, the organic anion transporting polypeptides (OATP) are ubiquitous

in their tissue distribution in the human body. They are the most abundant of all

transporters in the liver [40], and have a large range of endogenous substrates from bile

acids to prostaglandins [35]. They function using intracellular HCO−
3 or glutathione

as a counter ion [38] with substrate transported through a positively charged central

pore via a rocker-switch mechanism [3], with two distinct inward and outward facing

sides [41] (see Fig. 2.1). This mechanism is distinct for counter transporting proteins in

that the faces “switch” over, whilst for the other transporters in this chapter, whether

they are non-ATP dependent or ATP dependent seem to act through a “hinge switch”

mechanism, where the substrate binds in an open state and then moves through the

pore as the protein closes and then opens on the other side of the pore, releasing the

substrate (see Fig. 2.2) [4, 5].

Figure 2.1: Schematic of transporter function via a rocker-switch mechanism. A counter ion is
already bound in first step before the substrate binds. The transporter then switches outward
and inward facing sides and releases the substrate and counter ion. The transporter then returns
to its original state. This is a simplification of the process presented by Huang et al. [3] of the
Glycerol-triphosphate mechanism in E. coli.

There are currently six different sub-families of the OATP family [42], and they

have been extensively reviewed in the past literature in detail [30, 35, 38, 43, 44], there-

fore they will be briefly summarised below and updated where new information has

arisen. The main families involved in uptake of xenobiotics into the liver, as well as those

that have been deemed important for study by regulatory bodies (hOATP1B1 and 1B3)

and the International Transporter Consortium (hOATP1A2, hOATP1B1, hOATP1B3

and hOATP2B1) [45] are discussed below.

OATP1A (SLCO1A2 )

OATP1A exists as a single form in humans (hOATP1A2), whilst in rodents there are

multiple subtypes (rOatp1a1, 1a3-6), which potentially can make exact correlations dif-

ficult between species. As a family, OATP1A protein is found in; cholangiocytes in
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humans (liver cells which line the bile duct), hepatocytes in rats [40], with high abun-

dance in brain capillaries, proximal tubules in the kidneys [38] and duodenum [46] in

humans, and is upregulated in certain cancers [37]. The presence of hOATP1A2 in hu-

man intestine was refuted by Drozdzik et al. [47] who found no mRNA or protein in

the small intestine or colon in six organ donors, which was backed up by a proteomics

study in pooled human liver microsomes from 13 donors [48]. However the limit of

quantification (LOQ) was around 1-2 fmol/µg protein for all transporters, whilst most

proteins were measured at a tenth of the LOQ [47]. Glaeser et al. [46] used mRNA

detection, as well as immunohistochemistry and immunofluorescence from biopsies in

10 healthy volunteers to show hOATP1A2 and hMDR1 both present in enterocytes.

Whilst immunofluorescence and immunohistochemistry clearly showed the presence of

hOATP1A2 in enterocytes, the amount of hOATP1A2 protein was not measured [46].

This suggests that whilst hOATP1A2 is present in the duodenum at least, it was below

the LOQ for the hOATP1A2 peptides used in LC-MS Glaeser et al. [46], Drozdzik et al.

[47]. In rats, 26-32 % of the total hepatic rOatp was rOatp1a1 and 1a4 making them

important transporters, whilst in human liver samples hOATP1A2 was not observed

[40]. Endogenous substrates in humans and rats include a preference for unconjugated

bile acids (e.g. cholic acid) over conjugated bile acids (e.g. taurocholic acid and glycholic

acid), as well as hormones (e.g. dehydroepiandosterone, estradiol-17β-glucuronide) [35].

OATP1B (SLCO1B1, SLCO1B3 )

There are two subtypes of OATP1B in humans (hOATP1B1 and 1B3), whilst in ro-

dents there is only rOatp1b2 [35]. They are a liver specific family with hOATP1B1,

hOATP1B3 and hOCT1 having the highest abundance of all SLCs associated with the

uptake of drugs in human hepatocytes [40, 49]. hOATP1B1 and hOATP1B3 contribute

12 % and 7 % respectively to the total OATP in human hepatocytes, whilst rOatp1b2 is

similar to the total OATP1B in humans of 16-17 % [40]. hOATP1B3 has been observed

in oncogenic tissues outside of the liver (breast, lung and prostate) [37, 38] and down-

regulation of hOATP1B3 in prostate cancer cells is associated with docetaxel resistance

[37]. Endogenous substrates which overlap with OATP1A vary across rat and human,

with rOatp1b2 transporting less bile acids compared with human hOATP1B1 and 1B3,

and rOatp1a transporting the other bile acids [35]. A slight preference for unconjugated

bile acids over conjugated bile acids was seen in in hOATP1B1 and 1B3 cell lines [50].

The reason that hOATP1B1 and 1B3 are of interest enough to the drug regulatory

bodies to warrant inhibition or substrate studies (if > 25 % of the uptake is due to

hOATP1B1 and hOATP1B3) [51] is due to certain hOATP1B1 polymorphisms leading

to reduced activity, putting a greater burden on hOATP1B3 to transport substrates in

the liver. An example of an hOATP1B1 polymorphism is hOATP1B1*15*15, which is

the result of a single nucleotide substitution of T521>C, and leads to a 104 % increase

in the area under the curve (AUC) of repaglinide in the homozygous 521CC compared

to the wild type 521TT carrier and a tendency for lower blood glucose concentrations

[52]. It has also been reported that patients with the hOATP1B1*15*15 phenotype have
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a much greater chance of pravastatin-induced myopathy, due to increased concentration

in the plasma [53]. Bosgra et al. [54] found that the activity of HEK293-hOATP1*15

was similar to mock transfected cells for rosuvastatin, and that in a PBPK model for

humans this decreased the total uptake clearance into the liver by 23% [54].

The hOATP1B1*14*14 polymorphism is present in 0.74-0.77 of African-Americans,

and 0.3-0.51 of Caucasians [55] who all have increased hOATP1B1 protein expression in

hepatocytes and therefore an increase in the maximum uptake velocity (Vmax), leading

to a decrease in the predicted plasma exposure of statins, due to an increased liver uptake

[56]. hOATP1B1 and 1B3 are significantly reduced by 3-fold and 8-fold respectively in

caucasian fatty liver [57], making cholesterol lowering drug choice in patients with fatty

liver more important. As well as polymorphisms in hOATP1B1 or hOATP1B3 individ-

ually, in patients where both hOATP1B1 and hOATP1B3 are absent, due to deletions

in the SLCO1B1 and SLCO1B3 genes manifest as Rotor syndrome in around 1 per mil-

lion people [58]. Patients with Rotor syndrome have higher bilirubin glucuronide plasma

levels (conjugated hyperbilirubinaemia) and increased urinary excretion of bilirubin glu-

curonides as well mild jaundice. Interestingly in Slco1a/1b-/- mice, oral administration

of methotrexate gave similar plasma concentrations to wild-type mice, but following in-

travenous administration, methotrexate plasma concentrations were higher in knockouts

and this could be partially attributed to the liver:plasma ratio of 43 in wild type versus

4 in knockouts due to the decreased uptake through muOATP1a/1b [58].

OATP2B1 (SLCO2B1 )

OATP2B1 is seen across species, and is separate to OATP2A1 which is ubiquitous in

its distribution [35]. OATP2B1 is found in human intestine, liver, brain capillaries,

eye and placenta, and transports taurocholic acid in both rats and humans, but only

steroid precursors in humans [35, 59]. In human liver, the expression of hOATP2B1 was

found to be approximately equal to hOATP1B3, however in sandwich-cultured human

hepatocytes, the expression of hOATP2B1 was found to be upregulated 7-fold [60]. It is

upregulated in fatty livers, but not enough to counter the reduction in hOATP1B1 and

1B3 [57]. Polymorphisms in hOATP2B1 are associated with rates of minimal residual

disease after treatment [61], as well as survival in prostate cancer [62] and are therefore

important in considerations during treatment of prostate cancer.

2.1.1.2 NTCP (SLC10A1)

Na+ Taurocholate Co-transporting Polypeptide (NTCP) is an important transporter

that mediates the sodium dependent uptake of anions, and was first noted by Schwarz

et al. [63] due to its saturable uptake of taurocholic acid in rats. It is separate from

OATP in that it co-transports two sodium ions with the substrate into the hepatocyte

[64]. It is liver specific to the basolateral membrane of hepatocytes, and within the

liver of Caucasians it constitutes 6 % of the total abundance of transporters [57]. It

plays an important role in the enterohepatic recycling of conjugated and unconjugated

bile acids in humans helping to maintain bile acid homeostasis [65]. Liu et al. [66]
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Figure 2.2: Schematic of transporter function for co-transport. Substrate binds in the first step,
then moves towards the other side of the membrane. The transporter then switches the “open”
side releasing substrate, adapted from [4, 5].

reported an increase in both conjugated and unconjugated bile acids in individuals who

are homozygous for the S267F mutation in Chinese individuals, as well as decreased

vitamin D levels. NTCP has been reported to correlate with the entry of hepatitis virus

into the liver, and is important in the innate immune response to the virus [67].

2.1.1.3 OCT (SLC22)

There are three members of the organic cation transporter (OCT) family in humans

with a broad ranging distribution throughout the body and they have been covered in

more depth by [38, 68]. hOCT1 is highly expressed in liver [68] and has 12 % of the total

abundance of transporters in human Caucasian males [57]. OCT2 is highly expressed

in human kidney only, but is highly expressed in rodent liver and kidney [68]. OCT3

is highly expressed in the basolateral membrane of liver in human and rodents, and is

important in the homeostasis of the central nervous system [69]. They are polymorphic,

with 20 different alleles for hOCT1 and the allelic frequencies are ethnicity dependent

[70].

The OCT family has a large overlap in endogenous substrates, and is responsible

for the transport of catecholamines, monoamines and neurotransmitters down their re-

spective electrochemical gradient into the cell, but can also move substrates out of the

cell depending on the direction of gradient [38]. The mechanism by which uptake occurs

changes depending on the concentration in the blood, either as a uniporter, or as a more

efficient exchanger with an intracellular organic cation [68]. The change between uptake

mechanisms from a high affinity to a low affinity state, means that the Michaelis-Menten

constant (Km) or point at which 50 % of transporter sites are occupied, is in the millimo-

lar range (compared to low micromolar for OATP and NTCP), which combined with a

higher passive permeability makes identification of substrates more difficult [68]. Due to
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the large expression of OCT2 in the kidney, observed polymorphisms and clinical DDIs

with the glucose lowering drug metformin, it is listed as a likely target for DDIs [18, 19].

The international transporter consortium recommended conducting studies with both

hOCT1 and hOCT2 in human cell lines because of observed clinical DDIs [45].

2.1.1.4 MATE (SLC47A)

The Multidrug And Toxin Extrusion (MATE) transporter has three members in hu-

mans: MATE1, MATE2 and MATE2K, whilst in rodents there are no analogues that

correspond to hMATE2 and 2K, with rMate2 more similar to hMATE1 [71]. hMATE1 is

expressed throughout the body with high expression in adrenal gland, kidney, canalic-

ular membrane in the liver and skeletal muscle, while hMATE2 and hMATE2K only

express in the kidney, but transcripts have been observed for hMATE2K in various tis-

sues [71]. Within the liver, hMATE accounts for 1 % of the total protein abundance [57],

and in the renal cortex hMATE1 expression was ten-fold higher than in the liver [72].

hMATE1 expression was similar to hOCT2 expression in the renal cortex (18 % and

26 % of the relative expression respectively) [72]. There are numerous single nucleotide

polymorphsims (SNPs) in MATE1 and MATE2 amongst different ethnic populations,

all leading to decreased activity [5, 73, 74]. The SNPs in MATE transporters do not

significantly alter the plasma pharmacokinetics of the generally used probe substrate

metformin or endogneous substrate thiamine, but decrease the renal clearance [5, 73, 74],

and depending on which MATE is affected, may increase or decrease the blood glucose

lowering effect of metformin in healthy volunteers or patients with type 2 diabetes [73].

MATE functions as an electroneutral transporter, with an organic cation counter

transported with either H+ or Na+ depending on the proton gradient, as well as the

sodium gradient respectively [5, 71]. As such it can transport in either direction, but

this is normally out of the cell. When hMATE1 was co-transfected with hOCT2 in

HeLa cells, it decreased the uptake of metformin to 24 % of OCT2 only, in the kidney

at least, and with a similar Km for metformin [5]. This shows that MATE and OCT

act in unison to increase the elimination of organic cations either into the bile, urine or

in the case of the placenta, from the foetal circulation to the maternal [75].

2.1.2 ATP Dependent Transporters

The ATP Binding Cassette (ABC) family of transporters is able to move molecules

out of cells against a concentration gradient, which is an essential way of excreting

molecules that may be seen as toxic to cells. This is at the cost of a cellular energy

source in the form adenosine triphosphate (ATP) and the enzyme ATPase to cleave a

phosphate group, to generate the energy to drive these transporters [7] (see Fig. 2.3 for

schematic). However, it is thought that for MRP1 at least, only one of the ATPases

is active, whilst the fate of the other ATP is not clear [76]. Like the SLC transporters

they are seen across prokaryotes and eukaryotes alike, indeed the first example of a

multi-drug resistance (MDR) transporter was published in 1974 in bacteria that showed

resistance to tetracycline [77]. The isolation of the MDR1 gene in tumours followed in
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1987 [78], and since then numerous examples have been observed in tissues and organs

in the human body as well as oncogenic and infected tissues. There are currently 51

different members of the ABC family from A-G [79]. Four members will be discussed

here due to their importance in drug disposition and DDIs: MDR1 (ABCB1 ), MRP1-4

(ABCC1-4 ), BCRP (ABCG2 ) and BSEP (ABCB11 ).

Figure 2.3: Schematic of transporter function for ATP dependent transport. Substrate binds
to the transporter active site in the first step from inside the cell (solid lines) or from the lipid
bilayer. Binding activates ATPase which cleaves off inorganic phosphate (Pi) and instigates
movement of substrate towards the other side of the membrane as the transporter switches the
open side, releasing substrate. Modified from Sharom [6] and Chang [7].

2.1.2.1 MDR1 (ABCB1)

Multidrug resistance transporter 1 (MDR1), or P-glycoprotein (P-gp) as it is also known,

is the second most abundant ATP transporter in the small intestine and third most

abundant in the colon [47]. hMDR1 accounts for 2 % of the total transporter abundance

in the liver of caucasians [57], where it is present at the canicular side of the hepatocyte

membrane. It is also found in the endothelial cells of the brain, in the brush border

membrane in the kidney, as well as maternal-foetal barriers and blood-testis barrier

[80]. MDR1 is essential for the removal of toxins away from these organs of importance

as well as protecting the foetus from maternal toxins, so much so, that in dogs deficient

in dMdr1, foetal toxicity and neural toxicity were observed after dosing with ivermectin

(an MDR1 substrate) [80].

The three main polymorphisms that are studied in the literature; 1236C>T,

2677G>T/A and 3435C>T [81, 82], were reviewed across diseases in depth by Wolking

et al. [81]. What is apparent is the discrepancy between the amounts of hMDR1 protein

produced in patients with the polymorphisms, partially due to the low patient numbers

in many studies [81]. hMDR1 upregulation is associated with resistance to drugs used in:

oncology, epilepsy, and bacterial and viral infections amongst others [80, 81]. hMDR1
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is upregulated in oncogenic tissues, with a lower relapse rate of high risk children with

acute lympoblastic leukemia who possess the 3435CT or TT polymorphism compared to

3435CC (61 % and 40 % respectively, p = 0.02), and an increase in bone marrow toxicity

during therapy with doxorubicin for 3435TT patients compared to 3435CC patients

(p < 0.0001) [82]. β-amyloid is an endogenous substrate of MDR1 in the brain [81], and

the three polymorphisms above were found to be associated with Alzheimers disease

susceptibility in a meta-analysis of the literature by Zhong et al. [83], with 2677G>T/A

offering some protection, whilst the others increased susceptibility to Alzheimers disease.

MDR1 has been reported to act as a “flippase” or “hydrophobic vacuum cleaner”

for drugs within the plasma membrane, expelling substrates before they enter the cell

[76, 84], but it is also able to move substrates from inside to outside the cell, as the

substrate binding site opens into the cytoplasm as well as the plasma membrane (Fig.

2.3, [6, 7, 76]). hMDR1 is able to bind multiple separate drugs with at least four

binding sites [85], some of which can modulate the transport of other drugs at low

concentrations by binding to MDR1 and activating ATP hydrolysis, but are not sub-

strates themselves, whilst at higher concentrations, the same drug may inhibit MDR1

[86]. MDR1 transports a large variety of endogenous substrates from small molecular

weight lipophilic substances, e.g. ethinyl estradiol (MW 296 Da, [87]), to large molec-

ular weight peptides, e.g. β-amyloid (MW 4514 Da, [81]). The extensive number of

substrates and distribution in important organs for restriction of drug entry, along with

its role in multi-drug resistance, is why hMDR1 investigations are included in all drug

submissions to regulatory authorities [18, 19].

2.1.2.2 MRP1-4 (ABCC1-4)

Multidrug resistance associated proteins (MRPs) were, like MDR1 above, found due to

their role in multidrug resistance in tumours, with hMRP1 the first to be discovered in

lung tumours and hMRP2-4 following later [88]. There are currently 12 members of the

ABCC family in humans [89] including hMRP1-4 which will be covered here in more

detail as they are important in efflux of xenobiotics.

MRP1 (ABCC1 )

hMRP1 is ubiquitous in its distribution, in the plasma membrane of blood-tissue barri-

ers of importance such as the brain, liver, heart, kidney and intestine as well as within

mitochondria, and is extensively covered in the literature [88, 90]. In a meta-analysis of

the literature, the expression of hMRP1 protein in liver was similar to hMRP2 (∼ 0.4

pmoles/106 cells) [57]. In the intestine, hMRP1 protein was undetectable, but mRNA

was present, suggesting its presence at low levels [47]. Whilst the distribution is ubiqui-

tous, high expression is limited to certain specialist cells in tissues with a high turnover

rate or protective role, e.g. crypt cells in the intestine, bronchial and bronchiolar ep-

ithelial cells and foetal blood vessels [90]. It is highly polymorphic with at 17 SNPs that

are seen across ethnicities, with four frequent polymorphisms (4002G>A, 2168G>A,

825T>C and 2012G>T) that were seen to increase adverts events in oncology treatment
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[91]. The presence of high intracellular reactive oxygen species (ROS) increases MRP1

expression, and is another reason it is likely upregulated in cancer cells, whilst high in-

tracellular glutathione (a ROS scavenger) downregulates MRP1 expression [90]. MRP1

uses intracellular glutathione to stimulate transport of some endogenous substrates,

whilst others are not stimulated by GSH, e.g. bilirubin and estradiol-17β-glucuronide

respectively [90, 92]. MRP1 is also important in the immune response as the phys-

iological efflux pump for leukotriene C4 in mast cells [90]. MRP1 differs from other

ABC transporters in that only the second ATPase is functional (the right hand side

of schematic in Fig. 2.3), whilst the first ABC region is required for function of the

transporter [90].

In cancer cell lines hMRP1 is found in the plasma membrane of origin tissues

where it would not normally be present, partly due to inhibition of tumour suppressor

genes [90]. In resistant cell lines, it is also found in intracellular vesicles and mitochon-

dria preventing oncology drugs such as doxorubicin from reaching their target in the

nucleus [93]. Intracellular vesicles of MRP1 follow a physiological function, whereby

MRP1 translocates to the plasma membrane when unconjugated bilirubin is present,

acting as a cellular reservoir for excretion as required [90]. hMRP1 has a clinically

recognised role in various diseases due to its presence in sanctuary organs and tissues,

where the overlap with other transporters is small, e.g. cancer, cystic fibrosis, chronic

obstructive pulmonary disease and depression [88, 94].

MRP2 (ABCC2 )

hMRP2 is exclusively localised to the apical membrane [95], and is the apical equivalent

of hMRP1 [96]. It is highly expressed in the small intestine (10 % of total membrane

protein), colon (25 % of total membrane protein) [47], and liver (31 % of relative protein

abundance in Caucasians [57]), but less so in the kidneys (5 % of relative transporter

protein expression, [72]), and not seen in the blood-brain barrier under normal cir-

cumstances [95]. The importance of MRP2 in the liver can be seen in humans with

Dubin-Johnson syndrome and Esai Hyperbilirubinaemic rats which are both deficient

in MRP2. Both show increased plasma bilirubin glucuronide levels (both monoglu-

curonide and diglucuronide), jaundice (stress induced only in humans) and enlarged

dark pigmented livers, as well a large increase in MRP3 to try and compensate for the

lack of MRP2 [95, 97]. From the studies in Dubin-Johnson syndrome patients and Esai

Hyperbilirubinaemic rats, it can be seen that MRP2 is the major transporter respon-

sible for conjugated bilirubins in the liver. Wen et al. [98] expressed seven common

hMRP2 SNPs in HEK293 cells and evaluated the accumulation of 2 different substrates

in cell-lines or inside-out vesicles. The SNP S789F had a 1.5-fold increase in calcein AM

accumulation which was due to a 50 % decrease in protein expression, and this SNP was

also noted as “probably damaging” with reference to Dubin-Johnson syndrome and was

close to the SNP R768W seen in Dubin-Johnson syndrome patients [95]. V417I showed

reduced activity of 30-50 % even after normalising for protein and was observed to show

a decrease in hMRP2 mRNA in the placenta in early gestation [98], but was labelled
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as benign in its effects in Dubin-Johnson syndrome [95]. Estradiol-17-β-glucuronide, a

substrate for multiple transporters including MRP2 was implicated in cholestasis during

pregnancy, likely due to prolonged internalisation of rMrp2 and bile salt export protein

(rBsep), in female rat hepatocytes at least [99], underlying the importance of MRP2 in

the physiological processing of bile salts under normal conditions.

MRP3 (ABCC3 )

hMRP3 is the most abundant transport protein in the colon (36 % of total transporter

protein), has a similar abundance to hMDR1 in the small intestine (10 % [47]) and 12

% of the relative protein abundance in the liver [57]. It is also the most abundant trans-

porter in the skin, contributing 20 % of total mRNA in the skin [100]. MRP3 is a high

capacity transporter, with a key role in the excretion of bilirubin glucuronides out of the

hepatocytes in the periportal region of the liver into the blood stream. This allows the

uptake of bilirubin glucuronides further towards the central veins by hOATP1B1 and

1B3 to prevent saturation of ABC mediated transporter excretion into the bile under

normal physiological conditions [58, 101]. The function of MRP3 in bilirubin glucuronide

cycling and its upregulation in cholestasis and disease helps to explain the increase in

conjugated bilirubin in the plasma and urine of Dubin-Johnson syndrome patients and

Esai Hyperbilirubinaemic rats, whilst in Rotor syndrome patients or Oatp1a/b knockout

mice, total bilirubins (both conjugated and uncojugated) are excreted almost entirely by

the kidneys [101]. MRP3 seems to also act as a reserve transporter that is upregulated

during cholestasis [97]. Like other ABC transporters, hMRP3 is correlated with drug

resistance and survival in cancer, and like hMRP1 seems to be present in cytoplasmic

vesicles (in primary urinary bladder cancer at least, [102]). However in comparison

to hMRP1, knockdown of hMRP3 genes in vitro in breast cancer derived cell lines,

improved the effectiveness of doxorubicin, more so than an equivalent knockdown of

hMRP1, potentially making it more attractive as a target for drug-resistant chemother-

apy [102].

MRP4 (ABCC4 )

MRP4 is broadly expressed in sanctuary organs (brain, liver and kidneys) as well as

platelets [103–105]. Expression is high in renal proximal tubule cells facing the urine col-

lecting ducts, and high on the luminal side of the brain capillary. In the liver, expression

is variable and like MRP3 is upregulated during cholestasis to increase urinary excre-

tion of conjugated bile acids [104]. hMRP4 is present almost exclusively on the plasma

membrane of platelets, with a similar expression level to Na+/K+ ATPase [105]. MRP4

is the physiological transporter for urate, and can transport other cyclic nucleotides, e.g.

cGMP and cAMP, as well other endogenous messengers (e.g. DHEA) [104]. Evidence

for cAMP transport is supported by studies in muMrp4 knockouts, whereby platelets

had a 60 % increase in intracellular cAMP due to defective export, leading to increased

clotting times [105, 106]. hMRP4 is highly expressed (mRNA and protein) in lung cell

carcinoma cells, with mRNA expression up to 1000 greater than healthy surrounding

16



tissue [107]. An SNP in hABCC4 (3463A>G) has also been implicated in increased

kidney damage in HIV positive patients taking anti-retrovirals [108].

2.1.2.3 BCRP (ABCG2)

Breast cancer resistance protein (BCRP) is a half ABC transporter and may form ho-

modimers or heterodimers with other BCRP proteins. It is highly expressed in the

placenta at the maternal side [109]. BCRP represents > 80 % of the total ABC mRNA

in the blood vessels at the blood-brain barrier (8 times greater than P-gp mRNA), and

20 times greater than in the cortex [110]. Expression is low in liver (0.34 % of rela-

tive abundance [57]), small intestine and colon (lowest expression of ABC transporters

[47, 49]) and kidney proximal tubules [111]. Like MRP4, BCRP is important in urate

transport and detection of polymorphisms in BCRP in erythrocytes are positively corre-

lated with gout, a disease due to insufficient excretion of urate, that leads to painful uric

acid crystal deposition in joints and kidneys [112]. Like other ABC transporters it is

upregulated in tumours, having originally been isolated from the resistant MCF7 human

breast cancer cell line [111]. Increased hBCRP was seen to be associated with more ag-

gressive head and neck tumours, as well as right-sided colon cancer with shorter survival

[113, 114]. However, the presence of higher BCRP mRNA (and also MDR1) in clear cell

renal cell carcinoma samples from patients was associated with increased survival and

decreased metastasis, that was more limited to the carcinoma compared to surrounding

healthy tissue [115]. This “protective” role for an ABC transporter is counter intuitive

to what one would expect given the ABC transporter examples above, and warrants

extra research. As these studies were all across different tumours and ethinicities (Cau-

casian, Hispanic and Chinese), it may well depend on where the tumour is as to whether

an up or down regulation affects survival. Like hMDR1, hBCRP was also included in

the FDA guidance document with in vitro studies to examine whether a molecule is a

substrate or inhibitor as part of the submission process [19].

2.1.2.4 BSEP (ABCB11)

Bile salt export protein (BSEP) is a phylogenetically ancient transporter that is found in

plants, fish and mammals [116]. It is highly expressed in the liver at the bile canaliculus,

representing 7 % of relative transporter abundance in Caucasian liver [57], and no role

outside the liver has been found [117]. BSEP is vitally important in the transport

gradient of bile salts and the rank order of transport is conserved between rodents and

humans [116]. The importance of this can be seen in progressive familial intrahepatic

cholestasis type 2 (PFIC-2), where in patients, no BSEP can be detected and where the

concentration of bile salts in the bile is only 1 % of normal [116]. Without the efficient

shuttling of the bile salts linked with a deficiency in BSEP, severe cholestasis occurs and

this is positively correlated with the development of hepatocarcinoma in children [118].

Inhibition of BSEP therefore maybe an important factor in the development of drug

induced liver injury (DILI), but not enough to lead to cholestatis itself [119, 120].
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2.2 Metabolism

One cannot really consider transporters in isolation in the body without consideration

of metabolism of endogenous and xenobiotic molecules as well, and this summary is

based in part on the book of Gibson and Skett [121] who describe the complex interplay

between transport and metabolism. The role of drug metabolism in the body is to make

the drug molecule more water soluble, ideally decreasing cell permeability, potency and

toxicity, so that the metabolite has to be transported into the urine or faeces, and from

there it can be safely eliminated from the body. This section will briefly go through

the two “phases” of drug metabolism within the human body and their relevance and

importance to the work presented here, including DDIs, and relevant guidelines from

the drug regulators that are now being applied to transporters.

2.2.0.1 Phase I - Functionalisation reactions

There are two main families involved in the hydroxylation, or functionalisation of a

drug molecule (prior to conjugation) in the body: Cytochrome P450 (CYP, included

here) and the flavin containing mono-oxygenases (FMOs) found within the endoplasmic

reticulum of cells. The latter will hydroxylate only soft nucleophiles on a nitrogen or

sulphur atom, but not on a carbon atom [121].

There are 18 different hCYPs [122], with hCYP1-3 responsible for metabolism

of 78 % of drugs on the market in 2008 (CYP3A4/5, 2C9, 2D6 and 2C19 comprising

80 % of the total) [123], with protein expression that are up to 100-fold greater than

hOATP1B1 in hepatocytes [49, 124]. The main CYP responsible for the metabolism of

xenobiotics; hCYP3A4, is also highly expressed in the intestine (as well as hCYP2C9),

brain and kidneys and is therefore important in the amount of drug entering the systemic

circulation from the gut. Whilst hCYP3A4 in enterocytes in the small intestine are

only expressed at 1 % of the level in the liver, the large surface area of the small

intestine makes hCYP3A4 important in limiting systemic exposure of substrates. The

importance of intestinal hCYP3A4 is illustrated where the local inhibition of intestinal

hCYP3A4 by grapefruit juice led to a large increase in systemic exposure [125], has

led to it being included in the drug packaging inserts of hCYP3A4 substrates. An

elegant in-depth meta-analysis on the world-wide population genotypes in 12 CYPs

(56945 subjects) published by Zhou et al. [126] clearly shows the level of polymorphisms

in CYPs across populations, with, for example, CYP3A5*3 as the largest polymorphism

across all ethnicities comprising 41-100 % alleles, whilst CYP2D6 and CYP2A6 show

the largest number of alleles across ethnicities with around 13 different alleles.

With the broad range of drugs that are metabolised by the CYPs, the potential

for DDIs is vast and may, if not left unchecked, lead to death. Therefore a whole

field of journals are dedicated to this and is a major part of any new drug registration

submission to the regulatory authorities [18, 19]. Briefly, if a single enzyme is responsible

for > 20-25 % for metabolism of a drug, then clinical studies with inhibitors must be

undertaken (same for non-CYP enzymes). The drug and its major metabolites need to
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be ascertained in vitro as to whether they are competitive and time-dependent inhibitors

and then, using either static or physiologically based pharmacokinetic (PBPK) modelling

techniques, predict the clinical risk [18, 19].

2.2.0.2 Phase II - Conjugation reactions

There are multiple types of conjugation reactions that occur in the body: glucuronida-

tion, sulphation, glutathione conjugation (all discussed here), amino acid conjugation,

N-acetylation and methylation, with the last reaction seemingly increasing the lipophilic-

ity of a molecule. With the exception of glucuronidation, which exists in the endoplasmic

reticulum, close to CYP3A, the enzymes for conjugation reactions are in the cytoplasm of

numerous cell types common to those described above and for transporters: liver, kidney,

intestine (glucuronidation), brain, and male and female gonads (glutathione conjugation

to “scavenge” reactive oxygen species which may damage the sperm and ovum). The

role of conjugation, will in general, further increase the polarity of molecules by addition

of a bulky molecule which is then transported out of the cell. This is primarily to polar

hydroxyl and primary amides following Phase I functionalisation reactions. However,

glucuronidation, sulphation and N-acetylation can lead to reactive metabolites which

bind to protein or DNA adducts leading to liver toxicity.

The addition of a large bulky glucuronide sugar moiety via the UDP- glucuronosyl

transferases (UGTs) is important in the clearance of at least 20 % of clinical drugs on

the market mainly via UGT1 and as such are important in their elimination [127].

Carboxylic acid containing molecules (such as statins and NSAIDs) have the potential

to be metabolised by UGT1 into an acyl-glucuronide. Under most circumstances the

acyl-glucuronide is transported harmlessly into the bile and faeces, where the glucoronide

may come off due to intestinal pH or a bacterial glucuronidase leading to re-absorption

and entero-hepatic recycling. Under certain conditions the acyl-glucuronide can migrate

around the aromatic group it is situated on to become a Schiff base, which can then

covalently bind to protein in the intestine and liver, leading to DILI (see Van Vleet et al.

[128] for further details).

The addition of a SO3 group to a molecule is via the sulphotransferases (SULTs)

with SULT1A1 and 1B1 as the most important in sulphation of molecules in humans, and

comprise 70 % of the SULTs in the liver (with SULT1B also the main in the intestine)

[129]. SULTs are important in the detoxification process of molecules in the liver and

intestine, but are also important in the activation of the carcinogenic polyaromatic

hydrocarbons (in particular SULT1A1) [130].

Glutathione is a bulky tripeptide that is transferred to an electrophilic moiety on

a substrate via the enzyme glutathione-S-transferase (GST) family or if the electrophile

is particularly strong, non-enzymatically. There are 7 sub-families of cytosolic GSTs,

and polymorphisms are most common in µ, θ and π sub-families. These polymorphisms

are important in various diseases from oncology to neurodegenerative diseases and are

reviewed in depth by Allocati et al. [131].
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2.3 Transporter Substrates and Inhibitors

Examples of typical endogenous substrates have been included in the above sections

where possible for each transporter. It can be observed from the above, that it is

rare for any substrate to be purely specific for one transporter, with the exceptions of

leukotriene C4 (MRP1, [90]) and urate (MRP4, [104]). Subtype specific substrates and

inhibitors for clinical and in vivo studies are hard to find due to overlapping specificities

across both rodent and human OATPs, and it is this that makes clear conclusions from

DDI studies in humans less clear cut. In rodents, knockout animals can be used to

investigate the overall transporters that may lead to human DDIs, e.g. mice lacking

mouse Oatp1a/1b, which had 40-fold higher concentrations of bilirubin, 4-fold higher

unconjugated bile acid levels and increased HDL cholesterol concentrations in blood

compared to wild type animals [101]. The human equivalent looks at specific genotypes

and phenotypes to help explain clinically observed DDIs.

In this section xenobiotic substrates and some inhibitors have been included,

but are far from a comprehensive list of interactions and drugs. Table 2.2 illustrates

the complexity of examining transporter mediated DDIs both from a substrate and

inhibitor point of view. Simple static models have been proposed which calculate the

estimated AUC ratios in the absence and presence of inhibitor (The “R Value” see Eq.

2.1, [19, 132]), or clinically observed changes, where the R value is given by:

R Value = 1 +
fu.plasmaIin.max

KI
, R ≥ 1.1 (2.1)

where fu.plasma is the fraction unbound of the inhibitor in the plasma (the minimum value

proposed in the FDA draft guidance [19] is 0.01, due to error in measurements below this

value), KI is the inhibition constant (µM, or Kinact for non-competitive inhibition), and

the maximum concentration of inhibitor at the inlet to the liver (Iin.max) is calculated

according to:

Iin.max (µM) =
Cmax +

FaFgKaDose
Qh

Rb
(2.2)

where Cmax is the maximum plasma concentration of the inhibitor (µM), FaFg is the

fraction absorbed multiplied by the intestinal availability, Ka is the absorption rate

constant (/min), Dose is the dose of inhibitor (nmol), Qh is human hepatic blood flow

(70 kg male) = 1112(16 % CV)-1450 ml/min [2, 133]), and Rb is the blood:plasma ratio.

A R value of greater than 1.1 indicates that there is a possibility of a TrDDI.

As the R Value is used in this situation to determine the maximal inhibitory effect

at the entrance to the liver i.e. the sinusoid, the concentration needs to be estimated at

a site distant from the blood from where it was taken. Iin.max therefore takes this into

account through the use drug specific factors: FaFg which often given as 1 as a worst

case scenario as estimation is difficult [19]. Ka which can be estimated through the

determination of the mean residence time following intravenous and oral administration

(see Chapter 6, Table ), or set at as 0.1 /min, the minimum gastric emptying time [132]

and Rb which is normally determined in vitro through addition of drug to naive blood
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which is then separated and analysed.

For example, in the case of atorvastatin, the calculated R value with cyclosporine

A (CsA) was 3.1 (Table 2.2), which is greater than the FDA cut-off of 1.1 [19], and makes

further investigations important if this was a new drug filing. In this case the R value,

calculated at a single dose of 380 mg of CsA gave a conservative increase compared to

a clinical study. Healthy volunteers who took atorvastatin for four days and then two

doses of CsA (175 mg) showed a 15-fold higher plasma exposure of atorvastatin and its

metabolites compared to those on tacrolimus, with an increased risk of rhabdomyolysis

in chronic patients [134]. Pitavastatin has been suggested as a sensitive clinical substrate

for OATP1B1 inhibition [9], and based on the calculated R values of 65 and 13 for the

potent hOATP1B1 and 1B3 inhibitors rifamycin or rifampicin respectively (see Table 2.2

[132, 135]) back this up. Indeed a 7-fold increase in pitavastatin exposure was observed

when an IV infusion of rifampicin was given [9], confirming the R value calculated

by Hirano et al. [132]. Pei et al. [136] evaluated the effect of irbesartan as well as

the hOATP1B1 521T>C polymorphism (heterozygotes TC versus wild type TT) on

the pharmacokinetics and pharmacodynamics of repaglinide in Chinese volunteers. A

significant increase in repaglinide exposure and glucose lowering effect in the presence

of irbersartan was observed in wild type OATP1B1, 521TT, subjects (see Table 2.2),

but not in heterozygote OATP1B1, 521TC, subjects. This was consistent with lower

OATP1B1 activity in the liver and therefore lower concentration at the site of action of

repaglinide in subjects (see 2.1.1 - hOATP1B1) [136]. Irbesartan is also a substrate of

hOATP1B1 and 1B3 [137]. Unfortunately, the plasma concentration was not measured

in the clinical study [136]. Evaluation of clinical metformin inhibition, like that for

repaglinide, also involves measuring the pharmacokinetic and pharmacodynamic effect

and has recently been reviewed in depth [138]. Two drugs used in oncology (docetaxel

and paclitaxel) have also been included, as drug resistance has been attributed partly

to upregulation of OATP1B3 [37] and MDR1 in tumours [139]. Therefore as well as

potential DDIs in the host, DDIs in the tumour also need to be evaluated to counter

drug resistance.

Table 2.2: Examples of transporter substrates and their inhibitors as well as potential DDI risk

Substrate Transporter Inhibitor R Value Comments Ref

(pmol/min/mg prot) (KI/IC50, µM) (FDA)

Statins

Atorvastatin OATP1B1

Vmax=3.8±0.3, CsA 3.1 Calculated [140]

Km=0.9±0.2 0.02±0.004PC

Vmax=120, Gem 32±4 1.5 Article R value [135]

Km=0.62(0.45)

Vmax=120, RifSV 51 Article R value [135]

Km=0.62(0.45) 0.3±0.08

Vmax=6.6±1.2, Ataz 1.3 1 Calculated [141]

Km=0.8±0.2

OATP1B3

Vmax=2.3±1.4, Ataz 0.37 1 Calculated [141]
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Table 2.2 continued...

Substrate Transporter Inhibitor R Value Comments Ref

(pmol/min/mg prot) (KI/IC50, µM) (FDA)

Km=0.7±1.5

OATP2B1

(Vmax=24±8, Ataz 5.1 1 Calculated [141]

Km=2.8±1.6)∗

NTCP

(Vmax=2260±1184, [142]

Km=185±108)∗

MRP2

Km=7.2 ± 1.6 ATPase activity [143]

MDR1 [144]

Pitavastatin OATP1B1

Vmax=340, Gem 32(4) 1.08 Article R value [135]

Km=1.3±0.3

Vmax=340, RifSV 101 Article R value [135]

Km=1.3±0.3 0.3±0.08

Rifp 0.47±0.03 13 Article R value [132]

OATP1B3* [132]

OATP2B1

(Vmax=7.4±1.4, [132]

Km=1.2±0.3)∗

MDR1 OATP1B1/MDR [132]

MRP2 OATP1B1/MRP2 [132]

Km=8.9±1.4 ATPase activity [143]

BCRP OATP1B1/BCRP [132]

Diabetes

Repaglinide OATP1B1 CsA 0.02PC 3.2 PBPK model [145]

CsA 2 PBPK model [146]

(1.4-2.3)

Gem 1.6 PBPK model [146]

(1.4-2.8)

Ibstn∗2 Clinical [136]

Inc AUC 34 %

OATP1B3 CsA 0.06PC 3.2 PBPK model [145]

Metformin OCT1 Clinical [147]

Imip (↓87 %) [148]

OCT2 Clinical [73]

MATE1 Clinical [73]

MATE2 Clinical [73]

Sartans

Valsartan OATP1B1

Vmax=3.9±0.5, [149]

Km=1.4±0.2

Vmax=33(33-34), Ltnb (2.6)∗2 1.06 Article R value [150]

Km=21(20-22)

Ctnb ↑ Vmax & Km [150]

Gem (39) 1.2 Calculated [151]

Gem-G (20) 2.3 Calculated [151]

OATP1B3

Vmax=135±40, [149]
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Table 2.2 continued...

Substrate Transporter Inhibitor R Value Comments Ref

(pmol/min/mg prot) (KI/IC50, µM) (FDA)

Km=18±6

Gem-G (100) 1.06 Calculated [151]

MRP2

Vmax=895±578, OATP1B1/MRP2 [149]

Km=30±18

Irbesartan OATP1B1

(Vmax=17 (9 %), [137]

Km=0.7 (29 %))∗3

OATP1B3

(Vmax=27 (56 %), [137]

Km=11.9 (77 %))∗3

Oncological

Docetaxel OATP1B1

Vmax=38±47, [152]

Km=0.4±1.3

Sfnb 0.07∗2,PC [153]

OATP1B3

Km=0.32±0.06 [154]

Vmax=480±90, [152]

Km=14±7

MRP2 [154]

MDR1 OATP1B1/MDR1 [152]

OATP1B3/MDR1

Paclitaxel OATP1B1

Vmax=22±3, [139]

Km=0.4±0.2

OATP1B3

Vmax=14±5, [139]

Km=2.4±1.4

MDR1 [155]

MRP2 [155]

PC = pre-co-incubation, CsA = cyclosporine, Gem = gemfibrozil, Gem-G = gemfibrozil glucuronide, RifSV =

rifamycin SV, Rifp = rifampicin, Ataz = atazanavir, Ibstn = irbesartan, Imip = imipramine, Ltnb = lenvatinib,

Ctnb = ceritinib, Sfnb = sorafenib, ∗= minor contribution,∗2= also a substrate,∗3 = per 1 × 106 cells. R

values calculated according to Eq. 2.1

2.4 Mechanistic Modelling

To gain information regarding the specific uptake of endogenous and xenobiotic sub-

strates via the solute carriers (see 2.1.1) as well as their subsequent inhibition (see Table

2.2), one needs to develop models which allow the determination of their kinetic param-

eters. This can be done in two ways: through the determination of the initial uptake

velocity and multiple concentrations (often through a single early timepoint), or via the

use of a mechanistic modelling approach, normally through the use of ordinary differen-

tial equations (ODEs). The former of these two approaches can be used to obtain good

initial estimates in the latter models, which generally include more model parameters.

Structural identifiability of the models used is an essential pre-requisite for ODE based

models for the estimation of unknown parameters, both in terms of what combinations
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(if any) of the parameters and states are estimatable from the available observations,

and this will be described in a separate section below.

2.4.1 Structural Identifiability

Approaches for structural identifiability assume a model structure of the form:

ẋ(t, θ) = f(x(t, θ), u(t), θ) (2.3)

x(t0) = x0(θ) (2.4)

y(t, θ) = h(x(t, θ), u(t), θ) (2.5)

where x(t, θ) ∈ Rn is the state vector, u(t) ∈ Rq is the input vector, y(t, θ) ∈ Rm is

the observations vector and θ ∈ Rp is the vector of unknown parameters which belong

to the feasible parameter space θ ∈ Θ and f and h are smooth functions. If there is

a second parameter vector θ̄ and state vector x̄ which is then compared simultaneously

with the original model output using successive iterations, such that:

h(x(t, θ̄), u(t), θ̄) ≡ h(x̄(t, θ), u(t), θ)

if in a neighbourhood N ∈ Θ, implies that θ = θ̄, then the model is at least structurally
locally identifiable (SI). If N = Θ, then the individual parameters θi ∈ θ are unique

and the model is SGI. If under any circumstances:

h(x(t, θ̄), u(t), θ̄) 6= h(x̄(t, θ), u(t), θ)

except when θ = θ̄ = 0, then the model and all the parameters therein are unidentifiable

[24].

Prior to parameter estimation, or indeed the generation of experimental data,

it is important to evaluate, assuming perfect (noise-free) data, whether the proposed

mathematical model is at least structurally locally identifiable. In other words, there

exists a subset of parameters or parameter combinations that are unique or locally

identifiable, with no model parameters unidentifiable, within the premise of the model

structure and observation(s) [17]. Assuming a known input/output relationship, if all

the parameters within a given model are uniquely identifiable, then the model and all

the parameters within the model are structurally globally identifiable (SGI). Without a

formal structural identifiability analysis, it would not be known if the parameters and

the structure of model itself are unidentifiable, and would not affect the output making

any parameter or state values estimated experimentally meaningless as they could be

replaced with any number without affecting the measurement.

Determination of identifiability with micro-rate constant models (see Fig. 2.4)

and macro-rate constant models (those based on the Michalis-Menten equation for trans-

porters) were evaluated using different mathematical approaches by Grandjean et al.

[24], Grandjean [25]:

• The similarity transformation approach - symbolic, proposed for non-linear sys-
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Figure 2.4: Schematic of a micro-rate constant model of ordinary differential equations (ODEs)
derived for initial parameter estimates for substrate (S) uptake into cells and competitive inhi-
bition by inhibitor (I). X1 and X2 are the amount of X (S or I) in the medium and bound
to transporter respectively, S3 is the intracellular amount of S. kf and kb are the passive rate
constants into and out of the cell respectively, ka and kaI are the transporter association rate
constants for S and I respectively, assuming free transporters are available, kd and kdI are the
dissociation rate constants for S and I respectively and kt is the substrate translocation rate
constant into the cell from S2

tems by Vajda et al. [156]

• The differential algebra approach - numeric, via large number integers

• The algebraic input/output approach - numeric, via large number integers [157,

158]

• The observable normal form - symbolic [24]

• Taylor series expansion - symbolic, becomes intractable due to complexity of ex-

pansions [24]

As a micro-rate constant model for substrate only has previously been shown to

be SGI (see [24, 25]), the model was extended to include the binding of inhibitor to

transporter under the assumption of competitive inhibition only (see Fig. 2.4) using

the algebraic input/output analysis method in Maple 2018 32bit (Maplesoft, Waterloo,

Ontario, Canada) using the code provided in Evans et al. [158].

If the transporter components of Fig. 2.4 for substrate and inhibitor are written in

chemical reaction form:

S1 + Tf
ka


kd
S2

kt→ S3 (2.6)

I1 + Tf
kaI


kdI

I2 (2.7)

where X = the amount of substrate (S) or inhibitor (I), X1 and X2 are the amount in

the medium and bound to transporter respectively, and S3 is the amount of intracellular

substrate. ka and kaI are the transporter association rate constants for S and I respec-

tively, assuming free transporters (Tf ) are available, kd and kdI are the dissociation rate

constants for S and I respectively and kt is the substrate translocation rate constant

into the cell from S2. Then the law of mass action for both the substrate and inhibitor
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gives:
dS1

dt
= −kfS1 − kaS1Tf + kdS2 + kbS3 (2.8)

dS2

dt
= kaS1Tf − (kd + kt)S2 (2.9)

dS3

dt
= kfS1 + ktS2 − kbS3 (2.10)

dI1

dt
= −kfII1 − kaII1Tf + kdII2 + kbII3 (2.11)

dI2

dt
= kaII1Tf − kdII2 (2.12)

dTf
dt

= −Tf (kaS1 + kaII1) + (kd + kt)S2 + kdS3. (2.13)

where kf and kfI are the passive rate constants for the movement of drug into the cell

for substrate and inhibitor respectively, and kb and kbI are the passive rate constants

for the movement of drug out of the cell for substrate and inhibitor respectively. As it

is rare that Tf is known, but assuming that To is conserved, Tf can then be eliminated

in Eqs. 2.8-2.12 [15, 25] to give:

Tf = To − S2 − I2 (2.14)

giving modified equations for substrate and inhibitor:

dS1

dt
= −kaS1(To − S2 − I2) + kdS2 (2.15)

dS2

dt
= kaS1(To − S2 − I2)− (kd + kt)S2 (2.16)

dS3

dt
= ktS2 (2.17)

dI1

dt
= −kaII1(To − S2 − I2) + kdII2. (2.18)

dI2

dt
= kaII1(To − S2 − I2)− kdII2. (2.19)

To reduce the set of 5 ODEs (3 for substrate (medium, transporter and intracellular) and

2 for inhibitor (medium and transporter)), the transporter compartment for substrate

(S2) and inhibitor (I2) can be factored out based on the conservation of substrate (S)

or inhibitor (I), where at t = 0, all states in the model sum to the doses (DS and DI
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respectively) (Eq. 2.20 and 2.21):

DS = S1 + S2 + S3,

∴ S2 = DS − S1 − S3 (2.20)

DI = I1 + I2,

∴ I2 = DI − I1. (2.21)

This simplifies the mechanistic model from five to three compartments, but retains the

overall same number of model parameters. The model equations are then given by:

dS1

dt
= −kfS1 − kaS1 (To − (DS − S1 − S3)− (DI − I1))

+kd (DS − S1 − S3) + kbS3

(2.22)

dS3

dt
= kfS1 + kt (DS − S1 − S3)− kbS3 (2.23)

dI1

dt
= −kaII1 (To − (DS − S1 − S3)− (I − I1)) + kdI (I − I1) (2.24)

where kf and kb represent the passive rate constants into and out of the cell respectively.

Initial conditions for the model are given by: [DS , 0, DI ], and the unknown parameter

vector consists of: {kf , ka, To, kd, kt, kb, kaI , kdI}. The experimental observation assum-

ing only substrate is measured is given by:

y = kS3 (2.25)

where k is a scalar (1/Cell volume in experimental chapters presented here) transferring

from amount (S3) to the measured concentration y. This model (Eqs. 2.22 - 2.24) was

found to be SGI using the algebraic input/ouput analysis method [158] in Maple on a

Lenovo Laptop (2.9 GHz, 4 Gb RAM, Intel Core i5-5200U processor), see Appendix A

for output. A downside of this method of analysis is that the three compartment model

for substrate only (including S2) has an observation that is a combination of two states,

i.e. y = k(S2 + S3), which is not currently supported in the code presented by Evans

et al. [158] (Evans, personal communication), or in the online tool COMBOS [159]. It

is also not possible to include multiple different doses in the ODEs used in the software

for parameter estimation if they are to be analysed simultaneously (Monolix 2018R2

(Lixoft, Antony, France)).

It was deemed important to evaluate the model form used during parameter esti-

mation, but also in Chapter 4, a mixture of rate constants presented above (termed micro

rate constant in future chapters) and a Michaelis-Menten equation for metabolism led to

the models and the resulting expression in the structural identifiability analysis becom-

ing too complex and intractable for determination of structural global indentifiability.

Therefore, determination as to whether a mechanistic model was at least structurally

identifiable was deemed sufficient. One method to determine structural local identifia-
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bility uses the Identifiability Analysis package, developed by Jirstrands group at

the Fraunhofer-Chalmers Institute in Sweden [16, 160] and implemented here using Wol-

fram Mathematica 11.3 (Wolfram Research Inc, Illinois, USA). Given a set of ordinary

differential equations (ODEs) with an unknown parameter vector, known input and a

set of measurable observations, this method gives a Boolean answer to the structural

identifiability problem, including a list of any unidentifiable parameters and the number

required to be known (degrees of freedom, d.o.f.) for the model to become at least

structurally locally identifiable. The package uses large value random prime numbers

as replacements for the parameters, states and inputs in the calculations performed to

obtain a modified Jacobian matrix of the partial derivatives up to a limit of n + p as

any iterations beyond this will be derivatives of those already present and are therefore

already included [16, 160]. Any symmetries within the matrix (indicating unidentifiabil-

ity) are then destroyed to efficiently determine the local identifiability (or combinations)

of parameters and state variables [16, 160] (see Appendix B and C for examples of a

micro-rate constant model and macro-rate constant model respectively). Another op-

tion for the determination of structural local identifiability is the STRIKE-GOLDD package

[161] in Matlab (Mathworks, Massachusetts, USA), which re-casts identifiability analysis

as an extension of observability through the use of extended Lie derivatives to include

the parameters and initial conditions (in a similar way to that described above). Ini-

tial testing of STRIKE-GOLDD (version 1.0.4.Beta) within Matlab R2017a gave the

same answers as the Identifiability Analysis package, but was often intractable on

a Viglen desktop PC (3.6 GHz, 16 Gb RAM, Intel Core i7-4790 processor) during the

Lie derivative expansion compared to the Identifiability Analysis package and was

therefore not used further.

2.4.2 Initial Velocity Models

An early use of the determination of isolated hepatocyte uptake by taurocholic acid was

described in 1975 [63]. The authors used a centrifugal oil spin technique to separate

hepatocytes from the medium in which they were present into a dense bottom layer

(3M KOH in this case). Determination of kinetics was derived from the initial uptake

velocity, where uptake was deemed to be linear across four timepoints (15, 30, 45 and

60 s). Initial adsorption to the plasma membrane was described through extrapolation

of an early timepoint, which ended before the first timepoint was actually taken and

was therefore determined graphically through the use of a Scatchard plot (bound/free

taurocholic acid against bound). The initial velocity was plotted on a double reciprocal

plot (a Lineweaver-Burke plot, see Fig. 2.5b for example) to obtain the maximum uptake

velocity (Vmax, pmol/min) and Michaelis-Menten constant (Km, nmol/ml). Competitive

inhibition of taurocholic acid by a conjugated bile acid (taurochenodeoxycholic acid)

was also determined through the double reciprocal plot and via a Dixon plot (1/(initial

velocity) versus incubation concentration) to determine an inhibition constant (KI) that

is approximately half of Km and indicative of higher affinity for the transporter than

taurocholic acid [63].
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Figure 2.5: a Yamazaki plot of initial velocity at 15 sec against pitavastatin incubation concen-
tration, dashed line = total, dotted line = passive, solid line = saturable uptake. Approximate
parameters Vmax = 300 pmol/min/106 cells, Km = 10 nmol/ml b Lineweaver-Burke (dou-
ble reciprocal) plot using “Active” from a. Parameter estimates Vmax =1/y intercept= 141
pmol/min/106 cells (RSE = 36 %), Km = gradient ×Vmax= 28 nmol/ml (RSE = 21 %)

To generate these plots, a detailed experimental design was required, consisting

of: 4 timepoints × 5 concentrations of taurocholic acid × 3 taurochenodeoxycholic acid

∼ 60 datapoints. The disadvantage of this method is that use of Eq. 2.26 to obtain the

uptake clearance (CLup, µL/min) from the Vmax and Km according to:

CLup =
Vmaxx

Km + x
(2.26)

where x is the concentration of substrate in the medium at t = 0 i.e. the dose, is

that the equation does not allow for passive movement of drug. This can lead to a

deviation of the double-reciprocal plot from linearity at higher concentrations, which

could be seen in a follow up paper which examined the uptake of an anionic substrate

bromosulphophtalein [162].

There are three different techniques (one using curve stripping, and two using

experimental techniques) with the same outcome used to allow for passive movement

of substrate (Pdif ) depending on the experimental system used (Eq. 2.27). The first

technique was used by Yamazaki et al. [163] who calculated initial velocities over the

assumed linear uptake phase using an oil spin method. The gradient obtained at high

concentrations of substrate (indicative of passive movement of substrate) is subtracted

to obtain the saturable only part of the uptake (known as a “Yamazaki plot”). The

saturable uptake is then fitted to Eq. 2.26 using a non-linear least squares approach.

Examples of a Yamazaki plot and the subsequent double reciprocal plot using data from

Chapter 5 are given in Figs. 2.5a and b respectively. As the Lineweaver-Burke plot is a

double reciprocal plot, as the incubation concentration increases to saturate the uptake
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process, so the points become clustered around the origin and the curve fitting becomes

insensitive (see Fig. 2.5b). The converse is also true, at low incubation concentrations

the velocity can be more variable, for which the curve fitting becomes more sensitive to

(see Fig. 2.5b). However, the obtained parameters from the either the Yamazaki plot or

the Lineweaver-Burke plot can then be used as initial estimates in macro-rate constant

models.

The second technique for the separation of passive and active components, in-

volves using hepatocytes that are kept at 4 ◦C to stop any “active” processes and uptake

experiments undertaken, this can then be subtracted from the total to again obtain the

transporter-mediated uptake. This technique has many failings, with the main one being

that it is assumed that membrane fluidity does not change at low temperatures [164] and

has been shown to under-predict passive movement of drug in the literature, compared

to estimation of passive movement at 37 ◦C in a mechanistic model [8, 164–166].

The final method for the separation of passive and active components is fre-

quently used in experiments where plated cell lines (devoid of transporter proteins)

have particular transporter proteins inserted as an expression vector, and the uptake

of substrate compared to the same cell lines where a mock expression vector is used

[164, 167, 168]. The mock expression vector cells will only, in theory, possess passive

permeability characteristics and can therefore be subtracted from the transporter ex-

pressing cell lines. This and the first approach given above are used for calculating

values for passive movement of substrate in cell-lines (see Chapter 3).

2.4.3 Mechanistic Models of Uptake

A mechanistic modelling approach is routinely applied in the transporter literature in

the study of uptake into hepatocytes using Eq. 2.27, and assumes that the difference

between passive movement in and out of the cell is only related to the volume and fraction

unbound in the cell, and that no efflux via a transporter occurs [33, 164, 165, 169, 170]

namely:

CLup =
Vmaxx

Km + x
+ Pdifx. (2.27)

where Pdif is the passive uptake clearance (ml/min). For Eq. 2.27 to be used in a

mechanistic model it has to be decided where the observations are taken experimentally;

either from the medium [171], from the cells [8, 170, 172] or both cells and medium

[171, 173]. Determining factors as to whether cellular and/or medium concentrations

are measured are: structural identifiability analysis outcomes, time/cost of analysis

(LC-MSMS, or radioactivity) and sensitivity of the method to observe changes between

concentrations as well as the lower limit of detection. It is expected that there will be an

initial small decrease in medium concentration corresponding to the uptake of drug into

cells (see Baker and Parton [170], Soars et al. [171] ), whilst at higher doses of substrate,

one will only see a straight line as uptake is saturated. If extraction is complete from

the medium at lower doses, no information can be gleaned from medium concentrations

only (See Chapter 4), therefore the measure of uptake into the cells will be the main
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focus as this can give a broader understanding of drug disposition into cells (including

metabolism, which may be subtly missed in the medium concentration). An extension

to Eq. 2.27 to include the amount in the medium as well as the cellular amount (in the

absence of metabolism) would give ODEs which are the opposite in sign to each other,

i.e. substrate lost from the medium = substrate gained in the cell. If Eq. 2.27 was

extended to include metabolism via additional clearance terms per metabolite (e.g. as

in Menochet et al. [33]), then substrate lost from the medium would not equal substrate

gained in the cell, unless the metabolite formed is also measured.

There are also certain assumptions with regard to the use of the Michaelis-Menten

equation above (Eq. 2.27) from its original development for enzyme kinetics and that

have been expanded upon for transporters [15, 23, 24]:

1. The initial substrate concentration is much larger than the transporter concentra-

tion.

2. It then follows that the association to the transporter (ka is very rapid) is thus in

rapid equilibrium with the transporter.

3. The free transporter (Tf ) is therefore affected by the dissociation rate constant

from the transporter (kd).

4. The rate limiting step in the transport of substrate into the cell is the translocation

rate constant (kt).

As mechanistic models use multiple time courses across concentrations and experiments

(up to 150 datapoints) [8, 33, 164, 170], there should be sufficient information with which

to use the Michaelis-Menten equation in its initial polynomial form using micro-rate

constants, as the maximum number of unknown parameters and states is for a substrate

only model is at most 13 (passive with membrane binding, transporter mediated uptake

and single metabolism rate constant). The combined model output of the amount bound

to the transporter (X2) and the amount within the cell (X3), mulitplied by the inverse

of the cell volume (Vcell) to give a concentration to match the experimental observation

is given by:

y =
1

Vcell
(X2 +X3) . (2.28)

This poses a problem, as one needs to know the number of cells in a sample and also

which cellular volume to use. Within the literature, there are multiple methods used to

measure cell volume (see Table 2.3): Using radiolabelled markers to determine intracel-

lular volume and the adherent water layer [32, 174, 175]; packed cell volume combined

with microscopy [170, 176]; and the use of proteomics [49]. Which cellular volume should

then be used? Does it depend on the species and also the format (i.e. hepatocytes vs.

cell-lines) that is being looked at? Most importantly, does the cell volume used actually

affect the parameters to be estimated? It is also important to note that the cell volume

will also change depending on the number of nuclei within the cell (proportional to the

amount of histones/DNA [49], which for hepatocytes can routinely be ≥ 1 < 16 [177].
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To decrease the uncertainty in this volume, one could estimate the cell volume as an

unknown parameter for each experiment based on an initial estimate from Table 2.3.

This can give spurious results if the data are sparse for a particular experiment (e.g.

see Chapter 3, pre-co-incubation scenario). Therefore literature values and the mean

or median are used in each following experimental chapter, and then whichever volume

gave the smallest BIC was then used a fixed constant and the data was also normalised

to this value.

Table 2.3: Literature values for cellular volume

Sample Type Method Volume (µl/106) Ref.
CHO Mean of literature 1.4 [164]
CHO Using fluorescent dye and 1.6± 0.7 (n = 56) [176]

holographic microscopy
HEK293 Using fluorescent dye and 2± 0.5 (n = 14) [176]

holographic microscopy

HEK293 [14C]-urea 4± 0.2a [178]

Median (HEK293) 3

Rat H Packed cell volume and 6.5 [170]
confocal microscopy

Rat H [3H]-water, [14C]-sucrose 3.9± 0.3 (n = 42) [175]

Rat H [3H]-water, [14C]-sucrose 2.2± 0.46b [32]

Geometric mean (Rat H) 3.8

Human H sphere of r = 6.76 µm 1.2 [179]
Human H sphere of r = 8.1 µm 2 [180]

Human H [3H]-water, [14C]-dextran 2.3± 0.3 [174]
Human H ’Proteomic Ruler’ 3 (n = 7) [49]

Median (Human H)c 2.7

HepG2 ’Proteomic Ruler’ 0.8 (n = 7) [49]
CHO = Chinese Hamster ovary cell line, HEK293 = Human Embryonic kidney cell line 293, H = Hepatocyte, HepG2

= hepatocarinoma cell line, a = adjusted from /mg to /106 using HEK-MOCK cellularity (See Chapter 3, b= adjusted

from /mg to /106 using hepatocellularity [181], c = measured estimates only used)

2.4.4 Micro-rate Constant Scaling

To allow comparison to certain literature values from micro-rate constants up to macro-

rate constants, the equation used to describe saturable uptake needs to be re-arranged

to yield the classic Michaelis-Menten form from the parameter estimates obtained. This

is based on the assumptions listed above (see points 2.4.3 to give the maximum velocity

(Vmax Eq 2.29) and the concentration at which 50 % of the maximum velocity (Km, Eq.

2.30). The corresponding macro parameters are given by:

Vmax (pmol/min/106 cells) = ktTo × 1000 (2.29)

where kt is the translocation from the transporter into the cell, and To is the total amount

of transporters responsible for uptake, and 1000 is the scalar from nmol/min/106 cells

to pmol/min/106.

To enable the concentration at which 50 % either uptake transporters (Km.up)

are occupied to be calculated in nmol/ml, the association rate constant (ka) must first

be converted into /µM/min/106 cells by multiplying by the medium volume Vmedium in
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which 1× 106 cells are present.

Km (nmol/ml) =
(kd + kt)

Vmediumka
. (2.30)

To enable the equilibrium dissociation rate constant for substrate (KD) or inhibition

(KI) to be calculated in nmol/ml, ka or kaI must be converted into /µM/min/106 cells

as per Eq. 2.30.

KD or KI (nmol/ml) =
kdI

V 1× (kaorkaI)
. (2.31)

For non-competitive inhibition, an inactivation constant (Kinact (nmol/ml)) is calculated

by multiplying the KI by the dimensionless term α using:

Kinact(nmol/ml) = KI.upα. (2.32)

These macro parameters can be further scaled to yield uptake clearance (µl/min/106

cells) in the absence (CLup) and presence of inhibitor (CLup.app) using:

CLup (µl/min/106cells) =
Vmax
Km

. (2.33)

For competitive inhibition, within the CLup.app (Eq. 2.35 ), Km becomes an apparent

Km.app:

Km.app(nmol/ml) = Km.up

(
1 +

I

KI.up

)
(2.34)

where I is the incubation concentration of the inhibitor.

CLup.app =
Vmax

Km

(
1 + I

KI

) =
Vmax

Km.D.app
(2.35)

For non-competitive inhibition within the CLup.app, Vmax becomes an apparent Vmax.app

using:

Vmax.app =
Vmax

1 + I
Kinact

(2.36)

and

CLup.app =

Vmax(
1+ I

Kinact

)
Km

=
Vmax

(1 + I
Kinact

)Km.D

=
Vmax.app
Km

. (2.37)

2.4.5 Parameter Estimation and Practical Identifiability

The estimation of parameters within a mechanistic modelling framework for both fixed

effects (one set of parameter estimates for the population) and random effects (where pa-

rameter estimates vary with the individual) and the estimates of errors on the parameters

therein is termed non-linear mixed effects modelling [182, 183]. Practical identifiability

is concerned not just with the experimental design, but also the model structure. It is

concerned with whether given the experimental data (i.e. discrete data or observations

taken at selected intervals in time), the parameters and their variance can be estimated
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[184]. This is intrinsically linked to structural identifiability described above (see Section

2.4.1). If a model is structurally unidentifiable, no matter how much data one can ob-

tain for the model states presented, then any parameters obtained from the experiment

may be effectively meaningless. If a model is at least structurally locally identifiable,

then the parameter estimates and the variances of the parameters are obtained from

the data and experimental design [185]. By models, we mean state space models of the

form given by Eqs. 2.3- 2.4. The state space models considered, need to be extended

here to include the fixed effects, random effects and their variances [182, 185] so that:

ẋi(t, φi) = f(xi(t, φi), ui(t), φi), xi(t0) = x0(φi) (2.38)

yij(t, φi) = g(φi, θ, xij) + h(φi, θ, xij)εij, 1 ≤ i ≤ n, 1 ≤ j ≤ mi (2.39)

where yij is the jth observation (total observations for individual i, mi) of the ith indi-

vidual (total individuals, n), φi is the unknown parameter vector for the ith individual.

The within-group errors εi and residual unexplained variance ηi (with a corresponding

covariance matrix, Ω) are assumed to be random variables that are mutually indepen-

dent with mean 0 and variance σ2, (ηi∼i.i.d.N(0,Γ)). g and h are non-linear smooth

functions of φi.

There are multiple software platforms upon which parameters and their variances

can be estimated. Some are free packages allied to R [186], reviewed by [187], or Matlab

(The Mathworks Inc., Massachusetts USA) [188], whilst others are commercial packages

that require licenses (NONMEM (Icon Plc, Dublin, Ireland), Monolix (Lixoft, Antony,

France) and WinNonLin (Pharsight, Missouri, USA)). All of these packages have the

same objective; to obtain maximum likelihood estimates of the parameters that minimise

the variance between the observed and the predicted data [189]. The profile-likelihood

algorithm is an attractive offering, as it combines structural identifiability with param-

eter estimation to generate profiles for parameter estimates [188]. If both upper and

lower confidence limits are obtained, then the parameter is deemed to be practically

identifiable (and thus at least structurally locally identifiable), if a single bound is ob-

tained, as well as an estimate, then the parameter is practically locally identifiable,

whilst a flat profile indicates practical non-identifiability [188]. This method was not

however implemented here as both fixed and random effects models were not instigated,

and also due to the fact that all compartments are defined in terms of concentrations

[188]. For the micro-rate constant models in the experimental chapters, the transporter

compartment volume is not known. The cell volume is in the region of 3× 10−3 ml, of

which the total plasma membrane has been estimated to be 1 % of this volume [49],

which may introduce instabilities in the data analysis.

The package used for parameter estimation was the Monolix suite (Lixoft, Antony

France). In the Monolix algorithm, a mixed effects model is seen as a missing data

problem, comprising the observed data yij and the non-observed data obtained from the

random effects model (φi), giving the complete data (y, φ) = (yij , φi)1≤i≤n, 1≤j≤m [182].
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Monolix uses the stochastic approximation of the expectation maximisation (SAEM)

method, where a stochastic procedure simulates the random effect data (φi) at each

iteration step φk+1 from the conditional distribution p(.|y; θk) and then updates the

maximisation of the likelihood (arg maxθ L) according to the following [182, 190]:

sk+1 = sk + γk

(
S̃
(
y, φ(k+1)

)
− sk

)
(2.40)

and

θk+1 = arg max
θ
L (sk+1, θ) (2.41)

where sk is the stochastic approximation, γ is a sequence of positive step sizes decreasing

to 0, k is the iteration step, S̃ is the minimum sufficient statistics of the complete model,

with a value in a subset of real numbers Rm and θ is the unknown parameter vector. If

the simulation step is not successful, then the algorithm employs a Markov chain Monte-

Carlo (MCMC) method to obtain φ which is then passed to the simulation step above

[182]. Initial step sizes of 1 allows flexibility in the iterations to converge to a local

neighbourhood around the maximum likelihood estimate of the parameters (φ̂), then

with smaller step the estimations are refined to ensure convergence [182]. This does not

guarantee that the maximum likelihood estimate of the parameters will be the global

maximum, and therefore every 50 iterations a simulated annealing step is included to

help move the estimates away from a local minimum [190].

Once the algorithm has converged to θ̂, and assuming that the log likelihood is

sufficiently smooth, then it is possible to estimate the Fisher information matrix (FIM),

and the observed Fisher information of the likelihood is obtained directly from the

simulated missing data [182]. The inverse of the FIM is then the variance-covariance

matrix Ω and the parameter variances can be calculated.

The MlxTran model files for use in Monolix 2018R2 for each experimental chapter

(Chapter 3, 4 and 5), can be found in Appendix F, whilst the data (in .csv) format can

be found in the online version of the thesis.

2.4.5.1 Optimal Design of Experiments

For each of the experimental chapters (Chapters 3-5), the timepoints taken, as well as

the number of concentrations were based on the assumption that each is a hydrophilic

anion at physiological pH and thus substrate for transporter into the cell. As discussed

above (see Section 2.1), the uptake into the cells is slower than more lipopilic substrates

[32, 33] and therefore timepoints tend to be weighted towards the beginning of the

experiment to capture the initial uptake into the cell, whilst metabolism dominates at

later timepoints. The choice of experimental timepoints are therefore based on prior

literature and personal experience, which may offer a sub-optimal experimental design

to reduce the residual error on the estimation of parameters and thus the practical

identifiability of the parameters.

To prospectively design experiments to maximise the information obtained through

the choice of timepoints, assuming that the mechanistic model used is correct, is known
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as Optimal Design [191]. Optimal design of experiments are becoming more common

in pharmacometrics modelling, where, based on literature or past experience, prospec-

tive timepoints can be selected for new clinical trials, for example when timepoints are

limited due to invasiveness e.g. in neonates or young infants or for practicality e.g. in

Phase III trials [191, 192]. There are multiple optimality algorithms that take advantage

of the inverse of FIM which gives the covariance matrix [193], with the maximisation of

the derivative of the FIM, termed D-optimality as the most relevant to this work. There

are multiple software packages and stand alone functions that can be used for D-optimal

design experiments, based in R (PFIM [194]), Matlab (PopDes [191]) or both (PopED

[195]). Stromberg et al. [193] evaluated these approaches through simulation of 3000

individuals based on the optimal design. The approaches used either a full covariance

matrix (makes no assumptions regarding covariance between parameters) or a triangular

matrix (assumes no covariance between parameters), as well as the use of either a first

order linearisation (FO) algorithm or the first order conditional expectation linearisation

(FOCE) algorithm [193].

2.5 In Vitro-In Vivo Extrapolations/Correlations

The fate of a drug within the body will largely depend on its physical attributes -

molecular weight, lipophilicity, and the level to which it is charged or not at physiological

pH (pH 7.4). These attributes can be calculated from the structure of the drug itself

such as the pKa value, which describes the pH at which 50 % of the drug is unionised,

or determined via a variety experiments.

One way to compare across the diverse chemical structures of drugs in the clinic

in terms of their physical attributes, and then segment them accordingly uses a system

such as the Biopharmaceutics Classification System (BCS). The BCS segments drugs

according to permeability and solubility [196]. An extension of this, the Biopharma-

ceutics Drug Disposition Classification System (BDDCS) was based on metabolism and

solubility, as these were more likely to be routinely measured in a drug-discovery con-

text [197]. The BDDCS was then further modified to segment according to transporters

[198]. Both the BCS and BDDCS are powerful (1000’s of compounds) yet basic in their

approach in order to understand and extrapolate from in vitro measurements up to the

in vivo or the clinical situation.

If in vitro inhibition with liver transporters and enzymes, has the potential for

a relevant drug-drug interaction (DDI) in the clinic, an area under the curve (AUC)

ratio in the presence or absence of the inhibitor can be calculated, the ’R’ value as

described earlier (Eq. 2.1). This is used by regulatory agencies in their in vitro guidance

documents [18, 19] to assess the potential for clinical DDIs and is described in more detail

in Chapters 3 and 5.

To scale in vitro data obtained from cellular systems up to whole body requires

the use of scaling factors, e.g. from human hepatocytes up to a full liver via hepatocel-

lularity factors (from 1 × 106 cells up to /g liver [181]) and physiological weights (g of
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liver/kg body weight [2, 133]). The scaled organ can then be linked to other organs of

interest/importance via knowledge of the physiology of each organ (volume, blood flows,

partition into tissue - physicochemical properties etc.) to obtain an approximation of

the whole body. This type of representation is known as Physiologically Based Phar-

macokinetic (PBPK) modelling and is an oversimplification of the underlying processes,

but can give valuable information regarding the disposition of a drug in the body and

the potential for DDIs. An example of a qualitative PBPK model developed to examine

the interaction at the liver as the organ of interest based on uptake into hepatocytes

can be seen in Fig. 2.6 and Chapter 6.

2.6 Conclusions

This chapter gives an outline on the current literature with regards to transporter me-

diated uptake and TrDDIs. It shows the issues that can arise when predicting clinical

interactions based on in vitro data, and may partly be due to the large degree of overlap

in transporter affinities for substrates. However, this may also be due to the redundancy

built into some of the transporters in the body to protect the sanctuary organs, which

are then capitalised on by tumours and microbes.

Secondly this chapter is the basis for the data analysis and experimental tech-

niques used in the following chapters to evaluate in vitro drug-drug interactions across

two systems of increasing complexity: the first examining a single solute carrier (hOATP1B1)

over expressed in a human derived cell-line (HEK293); with the following two chapters

looking at hepatocytes in rats and humans respectively. Therefore, in Chapters 3-5

the experimental techniques are similar, as we are looking at the inhibition of uptake

of a substrate into cells with early timepoints important in the determination of up-

take. This makes the mechanistic modelling processes the same for the determination

of TrDDIs, with additional transport-metabolism interplay and drug-drug interactions

in hepatocytes.
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Figure 2.6: Schematic of the developed semi-mechanistic PBPK model for the concentrations
in the liver compartment (X4) assumed to be involved in the TrDDI between pitavastatin and
eltrombopag, which is linked to the concentration in the central compartment (X6) via the
concentration in the liver extracellular space (X3) through hepatic blood flow (QH). The dose is
applied as an amount into the stomach (X1), which is then transported into the GI Tract (X2)
with gastric emptying rate constant (kge). Drug is absorbed into X3 with the absorption rate
constant (KaX), where free drug moves into the liver via saturable Michaelis-Menten kinetics
(Vmax.up.X and Km.up.X) and is inhibited by the opposing drug in X3 (I3) via the Km (KI.up).
Passive movement of drug into and out of the liver with clearances Pdif.X and Pdef.X respectively.
Biliary excretion of both drugs (CLbi.X) into X2 through the gallbladder (X5) with bile flow rate
constant (kbile) where they can be re-absorbed. Both drugs have metabolic clearance from the
liver (CLmet.X), whilst pitavastatin is also cleared into the urine (CLurine.P ) with the kidney
blood flow (QK)
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Chapter 3

Evaluation of Uptake of

2’,7’-dichlorofluorescein and its

Inhibition by Gemfibrozil in

HEK293-OATP1B1 Cells

3.1 Introduction

This chapter deals with the uptake of the fluorescent probe substrate 2’,7’-dichloro-

fluorescein (DCF) in HEK293 cells expressing the human OATP1B1 transporter pro-

tein, and the determination of the inhibition by the anti-diabetes drug gemfibrozil. The

experimental work was conducted at AstraZeneca Cambridge (U.K.) as part of my PhD

studentship and has previously been submitted as a short communication to The Jour-

nal of Pharmaceutical Sciences. Therefore this chapter will, following a brief overview,

evaluate the mechanistic models used in terms of their structural and practical identi-

fiability across different software approaches (see Chapter 2, Section 2.4 for theory and

use of software) and provide an in-depth presentation of model parameter estimation

and model selection.

Gemfibrozil is used to treat hyperlipidaemia either in monotherapy or in combi-

nation with a statin [199], and in type II diabetes with repaglinide [200]. A study in

healthy volunteers co-dosed with repaglinide and gemfibrozil showed an 8-fold increase

in plasma exposure, as well as a prolonged glucose lowering effect [200]. A similar picture

was observed when cerivastatin was dosed with gemfibrozil with an increase in expo-

sure of nearly 6-fold, along with a non-statistically significant increase in creatine kinase

[201] - a biomarker for rhabdomyolysis, that if left untreated can lead to acute renal

failure [202]. The use of gemfibrozil has been largely replaced with other fibrates that

do not interact with repaglinide or statins [203, 204]. The inhibition of substrates by

gemfibrozil, which is not a substrate for OATP1B1 itself [27] is multimodal, comprising:

• Metabolite-dependent inhibition of CYP2C8 from gemfibrozil-glucuronide [205].
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• Inhibition of OATP1B1 by both gemfibrozil and gemfibrozil-glucuronide [135, 206].

Drug-drug interaction (DDI) studies with gemfibrozil and OATP1B1 are often

conducted using a human cell line expressing the transporter with a selective radiola-

belled probe substrate such as [3H]-estradiol-17β-glucuronide [135]. In early research,

the use of radiolabelled probe substrates can be cost prohibitive, therefore a cheaper

and selective substrate is required. Izumi et al. [168] found that DCF was a good

substrate for OATP1B1, with Vmax and Km values similar to those of [3H]-estradiol-

17β-glucuronide, the inhibition of DCF uptake by various inhibitors was the same as for

[3H]-estradiol-17β-glucuronide.

There is increased interest in the evaluation of uptake inhibition mechanisms and

whether the long-lasting inhibition of transporters can explain the discrepancy between

in vitro and in vivo studies [207, 208]. Evaluation of time-dependent inhibition of se-

lected transporters is also now recommended as part of new drug submissions to the

regulatory authorities [18, 19]. Whilst the inhibition of selective substrates by gemfi-

brozil in HEK293-OATP1B1 has been conducted under the assumption of competitive

inhibition [27, 135, 168], the mode of inhibition has not been fully evaluated and will be

the aim of this chapter. This aim will be achieved through the following objectives:

• Evaluate the uptake of DCF into HEK293-OATP1B1 cells and its inhibition by

gemfibrozil to evaluate whether time-dependent inhibition dominates across three

inhibition scenarios (see below).

• Develop mechanistic models to describe the interaction between DCF and gemfi-

brozil via competitive (non-time dependent) or non-competitive (time-dependent)

inhibition to gain further understanding of OATP1B1 uptake transporter interac-

tions.

This was examined experimentally using the following scenarios (see Fig. 3.1):

1. Co-incubation of 1 µM DCF with a range of gemfibrozil incubation concentrations

(1-300 µM).

2. Pre-incubation of gemfibrozil (1-300 µM) for 20 min, removal of gemfibrozil and

then scenario 1.

3. Pre-incubation of gemfibrozil (1-300 µM) for 5-40 min, removal of gemfibrozil and

then incubation with DCF only at 1 µM for 6 min.

3.2 Experimental Methods

3.2.1 Chemicals and Reagents

2,7-dichlorofluorescien (DCF), gemfibrozil, Hanks buffered salt solution (HBSS), high

glucose Dulbeccos modified essential medium containing L-glutamine (DMEM, D6429),

phosphate buffered saline, Accutase, Triton X-100, geneticin (G418),
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HEPES and the BCA protein assay kit (BCA-1) were all purchased from Sigma-Aldrich

(Poole, UK). Fetal bovine serum (FBS, heat inactivated) was purchased from Gibco

(Thermo Fisher Scientific Inc., Loughborough,UK). Acetonitrile, was obtained from

VWR International Ltd., (Lutterworth, UK) and was of analytical grade. HEK293-

OATP1B1 and HEK293-MOCK cells were generated by the Department of Molecular

Biology, AstraZeneca, UK and were the same cell line as used by Sharma et al. [167].

3.2.2 Cell Culture

Culture of HEK293-OATP1B1 and HEK293-MOCK cells were similar to those used

by Sharma et al. [167]. Briefly, cells were cultured in DMEM containing 10 % FBS

and 1 mg/ml geneticin as a selection antibiotic in 75 cm2 or 175 cm2 BD BiocoatTM

Collagen I cell culture flasks (VWR International, Lutterworth, UK) at 37 ◦C in a

humidified 5 % CO2 incubator and were maintained at sub-confluency by splitting twice

weekly in the ratios 1:2 to 1:6 dependent on cell density. Cells were cultured in 24-well

Corning R© BiocoatTM Poly-D-Lysine plates for 20-72 h prior to uptake studies following

the addition of a fixed amount of cells (2.5× 105 cells) [167].

3.2.3 Incubations

DCF was dissolved and serially diluted in DMSO to give stock solutions of: 40, 12, 4, 1.2,

0.4 and 0.12 µmol/ml. For the DCF only incubations, the stock solutions were added to

an equal volume of DMSO and then diluted 1 in 200 in modified HBSS (supplemented

with 5 mM HEPES, adjusted to pH 7.4) and maintained at 37 ◦C in a deep well 96-well

plate until required to give final concentrations of: 100, 30, 10, 3, 1 and 0.3 nmol/ml. For

the inhibition studies, gemfibrozil was dissolved in DMSO and serially diluted in DMSO

to give the following stock solutions: 120, 40, 12, 4, 1.2 and 0.4 µmol/ml. For the pre-

incubation arm, the gemfibrozil stock solutions were diluted 1 in 400 with modified HBSS

to give final concentrations: 300, 100, 30, 10, 3 and 1 nmol/ml. For the co-incubation

arm (with or without pre-incubation), the gemfibrozil stock solutions were diluted with

an equal volume of 0.4 µmol/ml DCF and then diluted 1 in 200 with modified HBSS.

The DMEM was aspirated, and after a pre-incubation for 20 min in modified HBSS

at 37 ◦C, the medium was replaced with 0.3 ml HBSS containing gemfibrozil and pre-

incubated for 20 min as required. The DMEM was removed and 0.3 ml of DCF (with

or without gemfibrozil) was added using a multichannel pipette in duplicate (see Fig.

3.1 for experimental workflow). For DCF alone and the co-incubation with gemfibrozil

scenarios (with or without pre-incubation), the medium was aspirated at pre-defined

timepoints (20, 40, 60 and 80 s, then 3 and 6 min (co-incubation only)) and washed

three times with ice cold HBSS and left to dry. For the pre-incubation only scenario,

cells were pre-incubated for 5, 10, 20 or 40 min with gemfibrozil (1-300 nmol/ml), the

medium was removed and 1 nmol/ml DCF incubated for 6 min before aspiration and

treated as above. Four independent sampled wells were taken for each datapoint, with

six independent sampled wells used for the pre-co-incubation scenario.
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Figure 3.1: Schematic of experimental workflow in HEK293-OATP1B1 and HEK293-MOCK
cells for inhibition scenario’s 1, 2 and 3. In each case the cells are already plated onto the
24-well culture plates
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3.2.4 HEK293-OATP1B1 Cellularity

To enable a standard volume parameter for HEK293 cells to be used in the mechanis-

tic models, the concentration of DCF within the cell was normalised to nmol/ml/106

cells from pmol/ml/mg protein for both HEK293-OATP1B1 and HEK293-MOCK cells.

Following treatment with Accutase R© (5 ml per flask), HEK293 cells were taken from

>3 flasks, and centrifuged at 70 g for 10 min at 5 ◦C in 50 ml Falcon tubes (BD VWR

International, Lutterworth, UK). The cells were re-suspended in 20 ml in HBSS, counted

and diluted in water to give between 3 and 0.05 ×106 cells/ml. These were then mixed

1:1 with Triton X-100 and shaken at room temperature for 30 min. Bovine serum al-

bumin (BSA) protein standards were prepared in 1:1 water:Triton X-100 and used as

per the manufacturers instructions (BCA protein assay kit instructions, Sigma-Aldrich).

Briefly, a 1 mg/ml ampoule of BSA was diluted in 1:1 water Triton X-100 to give a BSA

concentration range of 25-1000 µg/ml, 0.1 ml of standard or cell lysate was added to

2 ml of bicinchoninic acid (BCA) working solution, mixed gently and incubated for 30

min at 37 ◦C. 0.1 ml was then placed in triplicate onto a 96-well plate suitable for spec-

trophotometry and read in an OPTIMA POLARstar plate reader (absorbance: 560±10

nm, BMG LABTECH Ltd., Aylesbury, UK) on three separate occasions. The cellularity

measurements for HEK293-OATP1B1 and MOCK cells were then used to estimate the

total amount of OATP1B1 receptors, which could then be compared to the total number

of OATP1B1 transporters (To) obtained from the mechanistic models during parameter

estimation:

Total OATP1B1 (nmol/106cells) =

(
(OATP1B1 - MOCK)/1000

85000

)
1, 000, 000

(3.1)

where 85000 is the molecular weight of OATP1B1 in Daltons [101], and 1000 and

1,000,000 scale from mg/106 cells to nmol/106 cells

3.2.5 Sample Extraction and Data Analysis

0.4 ml of ice cold acetonitrile was added to each well and placed in a -20 ◦C freezer for ≥
30 min to extract DCF from the cells. The 24-well plates were then centrifuged at 1300

g for 15 min at 5 ◦C and 0.05 ml of the supernatant was diluted with 0.15 ml water in

a 96 well plate suitable for fluorescence measurement. A standard curve for DCF was

made by serially diluting a 1000 pmol/ml DCF DMSO stock in 80:20 water:acetonitrile

to give: 100, 10, 1 and 0.1 pmol/ml. The standard curve was pipetted in triplicate

onto a 96 well plate suitable for fluorescence measurement and read in an OPTIMA

POLARstar plate reader (excitation: 485±12 nm, emission: 520 nm, BMG LABTECH

Ltd., Aylesbury, UK). The standard concentrations were determined from fitting to a

straight line (y = mx) of the standard curve following blank well subtraction (80:20

water acetonitrile). Inclusion of an intercept in each equation lead to an increase in

the % relative mean square root error (RMSRE, Eq. 3.2) of the predicted standard
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concentrations from 2-3 % to 39-42 % respectively.

% RMSRE = 100×

√
1

n

∑(
Observedi − Predictedi

Observedi

)2

. (3.2)

Sample concentrations were determined following blank subtraction and normalised from

nmol/ml/ mg protein to nmol/ml/106 cells using:

[Cell] (nmol/ml/mg protein) =

(
(mean DCF fluorescence - mean blank)×5

m

)
mg/ml protein× 1000

(3.3)

and

[Cell] (nmol/ml/106 cells) =
[Cell] (nmol/ml/mg protein)× cellularity

Vcell
(3.4)

where 5 and 1000 scale from 0.2 ml to 1 ml and from pmol/ml to nmol/ml, ’cellularity’

converts from mg/ml protein to 1×106 cells, and Vcell is the cellular volume. As multiple

cell volumes have been published (see Chapter 2, Table 2.3) [176, 178], data were nor-

malised to 0.002 ml/106 cells [176], 0.004 ml/106 cells [178] or the median (0.003 ml/106

cells). Parameters were estimated for all the DCF data using a micro-rate constant

model with two passive rate constants and transporter mediated uptake (see Table 3.1

Eqs. 3.17, 3.19 and 3.21, without inhibition, with observations from Eq. 3.28 ), using

the inverse of each cell volume (see 3.28) and with the weighted BIC (wBIC, Eq. 3.39)

used to distinguish which volume best described the data. An inverse Vcell of 333 /ml,

corresponding to the median literature value of 0.003 ml/1 × 106 cells had the lowest

BIC of the three inverse volumes tested, giving a wBIC ≈ 1, whilst the volume from

Boss et al. [176] and the volume from Gillen and Forbush [178] had a wBIC ∼ 0 (see

Chapter 2, Table 2.3). Therefore all data were normalised to 0.003 ml/106 cells (with

an inverse of 333 /ml).

3.3 Mechanistic Modelling

Grandjean et al. [8] published a three compartment mechanistic model to describe the

uptake of pitavastatin into hepatocytes (see Fig. 3.2) with first order passive rate con-

stants for movement into and out of the cell (kf and kb respectively). A second order rate

constant for association of substrate (ka) to free transporter (Tf ), and first order rate

constants for dissociation from transporter (kd) and translocation from the transporter

into the cell (kt) were also included. In this and future chapters, mechanistic models of

this form for substrate with or without inhibitor, will be referred to as micro-rate con-

stant models (see Fig. 3.3a and b) and Table 3.1). If the formation of substrate bound to

transporter (S2) is very rapid (ka >> kd > kt) and the total amount of transporter (To)

is small in comparison to the amount in the medium (S1), then the micro-rate constant

model can be reduced assuming a pseudo-steady state to obtain the Michaelis-Menten

equation (see Chapter 2, Section 2.4.4 in this and future chapters, see Fig. 3.3c and d)
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Figure 3.2: Modified schematic of the micro-rate constant model published by Grandjean et al.
[8] of ODEs derived for initial parameter estimates for DCF uptake into HEK293-OATP1B1
cells (see Table 3.1, model 1 - gemfibrozil excluded). S1, S2 and S3 are the amount of substrate
(DCF) in the medium, bound to transporter and intracellular respectively, kf and kb are the
passive rate constants into and out of the cell respectively, ka is the transporter association rate
constant, assuming free transporters are available, kd and kt are the dissociation rate constant
and translocation rate constant into the cell from S2 respectively

[15].

If the transporter component of Fig. 3.2 is written in the chemical reaction form:

S1 + Tf
ka


kd
S2

kt→ S3 (3.5)

then the law of mass action gives:

dS1

dt
= −kaS1Tf + kdS2 (3.6)

dS2

dt
= kaS1Tf − (kd + kt)S2. (3.7)

dS3

dt
= ktS2 (3.8)

As it is not normally the case that Tf is known in practice, assuming that To is constant,

then Tf can be eliminated in Eq. 3.7 [15, 25] via the conservation law:

Tf = To − S2 (3.9)

and
dS1

dt
= −kaS1(To − S2) + kdS2 (3.10)

dS2

dt
= kaS1(To − S2)− (kd + kt)S2. (3.11)

dS3

dt
= ktS2 (3.12)

If Eq. 3.11 is extended to include inhibitor (gemfibrozil, see Fig. 3.3a and b) that either

competitively binds to the transporter (I2) or forms a complex with the transporter and

the substrate (un-competitive inhibition, I3), then similar to Eq. 3.9:

Tf = To − S2 − I2 − I3 (3.13)
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and Eqs. 3.10-3.12 are also extended to include I2 and I3 (see Table 3.1 for relevant

inhibitor equations):

dS1

dt
= −kaS1(To − S2 − I2 − I3) + kdS2 − αkaS1I2 + αkdI3 (3.14)

dS2

dt
= kaS1(To − S2 − I2 − I3)− (kd + kt)S2 − αkaIS2I1 + αkdII3 (3.15)

dS3

dt
= ktS2 + αktI3 (3.16)

where kaI and kdI are the inhibitor association and dissociation rate constants and α is

the unitless constant defining the type of non-competitive inhibition.

3.3.1 Structural Identifiability Analysis

As per Chapters 4 and 5, prior to parameter estimation, models were evaluated for struc-

tural identifiability (see Chapter 2, Section 2.4.1) using the Identifiability Analysis

package in Mathematica 11.3. Mechanistic models using micro-rate constants (Table 3.1,

models 1 and 2) and macro-rate constants (Table 3.2, models 3 and 4), with one or two

passive rate constants were evaluated assuming that DCF is an OATP1B1 substrate

[209], and that gemfibrozil can bind to the transporter, but is not a substrate itself [27].

The inclusion of the α term within the non-competitive inhibition micro-rate constant

mechanistic model (model 2) gives an indication of the effect of gemfibrozil binding to

the transporter and subsequent binding of DCF to the complex. Here a value of α <

1 indicates that gemfibrozil decreases the binding and translocation of DCF, whilst a

value of α > 1 indicates that gemfibrozil enhances transport of DCF [210].
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Figure 3.3: Schematic of the micro-rate constant models (a, b, Table 3.1) consisting of medium
(X1), transporter (X2) and intracellular (X3), and macro-rate constant models (c, d, Table
3.2) consisting of medium (X1) and intracellular (X2) mechanistic models. DCF following co-
incubation or pre-co-incubation with gemfibrozil with competitive (a and c) and non-competitive
(b and d) mode of inhibition respectively were modelled. * = for pre-co-incubation data only
kfD used as bidirectional passive rate constant
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3.3.2 Parameter Estimation

A single passive rate constant representing movement into and out of the cell is common

in the literature for macro-rate constant models, with the difference in rate only seen

when the parameter is scaled via either the medium or cell volume to a passive diffusion

clearance (Pdif ) [164, 170, 173]. For the co-incubation data (scenario 1), modelling the

passive movement of DCF (in the absence of gemfibrozil) through two separate rate

constants as well transporter mediated uptake, decreased the BIC value by 15 compared

to a single rate constant model formulation, making it the best fitting model for the

given data (wBIC = 0.999, Eq. 3.39).

For the pre-co-incubation data (scenario 2), the use of two passive rate constants

within the micro-rate constant models (models 1 and 2, Table 3.1) were not supported,

with in increase in the BIC for models 1 and 2 of 35 and 37 respectively (see Table

3.4 5th and 6th ranked order), and an RSE of 500 % for the population estimate of

kbD. However, two passive rate constants (kfD and kbD) were required for the pre-co-

incubation data macro-rate constant models (models 3 and 4, Table 3.2). This difference

is possibly due to a lack of steady state at the final timepoint of 3 min for the pre-co-

incubation scenario, compared to 6 min for the co-incubation scenario, and some loss

of cells when the medium containing gembfibrozil was changed in the pre-co-incubation

scenario 2.

Therefore for the co-incubation data (scenario 1), all mechanistic models used

two passive rate constants for the movement of DCF into and out of the cell (kfD and

kbD respectively, see Tables 3.1 and 3.2). For the pre-co-incubation data (scenario 2), a

single passive rate constant for the movement of DCF into and out of the cell was thus

used for the micro-rate constant models (models 1 and 2, designated kfD, see Table 3.1),

whilst the macro-rate constant models used separate rate constants for movement into

and out of the cell (kfD and kbD respectively, models 3 and 4, Table 3.2). Incubation

concentrations of DCF and gemfibrozil were converted to amounts (nmol) by multiplying

by the medium volume (V1 = 0.3 ml).

Initial parameter estimates were obtained for DCF only with micro-rate constants

(see Fig. 3.2) using starting values of 1 in Monolix 2018R2 (Lixoft, Antony, France)

for the transporter mediated parameters (kaD, kdD, To, ktD) as no information was

available regarding these estimates, whilst for the passive rate constants into and out

of the cell (kfD and kbD, for the co-incubation scenario data), estimates were obtained

from the HEK293-MOCK cell models (2 compartments with passive rate constants). For

the macro-rate constants (Vmax.D and Km.D) and passive rate into the cell (kfD, taken

from the HEK293-MOCK initial velocity), a Yamazaki plot and Lineweaver-Burke plot

(Fig. 3.4a and b respectively) were used to obtain initial estimates after scaling to nmol.

For both the DCF only co-incubation and pre-co-incubation data, there was very little

passive uptake (see Fig. 3.4a, dotted line, 0.08 /min/1 × 106 cells), and active uptake

was similar between the two datasets in the Yamazaki plot (Fig. 3.4a, solid lines), that

was close to the total (Fig. 3.4a, dashed lines).

The mean calculated parameters obtained from the linear regression of the Lineweaver-
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Figure 3.4: DCF concentration against initial velocity or the inverse velocity plots. Where black
lines and points denote the co-incubation data for DCF only and blue lines and points denote
the pre-co-incubation data for DCF only. a Yamazaki plot for DCF initial velocity at 0.33 min
against DCF incubation concentration. Dashed line = total, dotted line = passive (obtained
using the HEK293-MOCK data), solid line = saturable uptake. b Lineweaver-Burke plot using
“Active” from a, where points are data and solid lines are the linear regression.

Burke plot (Fig. 3.4b, solid lines) were also similar as expected from the Yamazaki plot

(Vmax = 1/intercept = 142 (RSE = 57 %) and 102 (RSE = 176 %) pmol/min/106

cells, Km = Vmax× gradient = 10 (RSE = 57 %) and 15 (RSE = 177 %) nmol/ml, for

co-incubation data and pre-co-incubation data respectively). The large errors observed

in the pre-co-incubation data (see Fig. 3.4b, blue triangles) and in the Lineweaver-

Burke plot estimates help to explain the difficulty in obtaining estimates for the pre-co-

incubation data and will be discussed later in the chapter.

As no concentrations of gemfibrozil in the cell were measured, initial parameter

estimates were obtained for DCF only, which were then used as fixed parameter esti-

mates to help improve the robustness of the parameter estimation of the gemfibrozil rate

constants (kaG, kdG and α). The uptake of gemfibrozil in sandwich-cultured human hep-

atocytes has been observed to be via passive means, and is not a substrate of hOATP1B1

[27]. Therefore, the uptake of gemfibrozil was assumed to be by passive means only and

was assumed to be at steady-state in the data analysis. The simultaneous analysis of

DCF in the presence of gemfibrozil for either the co-incubation or the pre-co-incubation

scenarios was then undertaken with no parameters values fixed. Parameter estimates

for the micro-rate and macro-rate constant models (see Table 3.1 and Table 3.2 respec-

tively) were estimated using Monolix 2018R2 (Lixoft, Antony, France). Parameters were

assumed to follow a log-normal distribution, and a proportional residual error model for

the co-incubation scenario mechanistic models, and a combined constant and propor-

tional residual error model for the pre-co-incubation mechanistic models were used.

The final chosen model was based on the weighted Bayesian information criterion

(wBIC, Eq. 3.39) to more harshly penalise over-parameterisation within the models

compared to the Akaike information criterion (AIC, Eq. 3.37) [211, 212], as well as the
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sum of i individual and population prediction of the RMSRE (Eq. 3.2) given by:

AIC = −2.LL(θ) + 2p (3.37)

and

BIC = −2.LL(θ) + log(n)p, (3.38)

where LL is the log likelihood of the data, n is the total number of data points and p is

the number of parameters.

wBICi =
exp(−0.5∆i)∑m
i exp(−0.5∆i)

(3.39)

and

∆i = BICi −BICmin (3.40)

where 1
n is the inverse of the total number of datapoints multiplied by the sum of the

relative square error of each datapoint i. ∆i is the difference between the individual

BIC (BICi) and the lowest BIC (BICmin) calculated using Eq. 3.40, exp(−0.5∆i) is

the relative likelihood and
∑m

i is the sum m of individual i relative likelihoods from the

mechanistic models with the same number of datapoints used for parameter estimation

(in this case a total of 4 different models) [212].
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3.4 Results and Discussion

3.4.1 Structural Identifiability Analysis

The use of micro-rate constants representing competitive and non-competitive inhibition

in mechanistic models for the uptake of DCF and its inhibition by gemfibrozil (Table 3.1,

models 1 and 2 respectively) allowed the mechanistic models to be at least structurally

locally identifiable given a known input and observations using the Identifiability

Analysis package [16, 160]. The structural identifiability result was not affected by the

use of a single passive rate constant for movement of DCF into and out of the cell (kf )

or separate passive rate constants for the movement of DCF into and out of the cell (kf

and kd respectively, see Table 3.3).

For the macro-rate constant competitive inhibition and non-competitive inhibi-

tion models to be identifiable (see Table 3.2 models 3 and 4 respectively), Km.D or KI.G

had to be known or Vmax.D or the Kinact.G had to be known respectively for models 3

and 4 to be at least structurally locally identifiable (see Table 3.3). Alternatively if the

apparent Km.D.app or Vmax.D.app were used (see Chapter 2, Section 2.4.4), then models

3 and 4 were at least structurally locally identifiable.

3.4.2 HEK293-OATP1B1 Cellularity

Determination of a cellularity number for HEK293-OATP1B1 cells is important for use

in mechanistic models in order to normalise across data obtained from different ex-

perimental days, as well as a method for obtaining the amount of transporter at the

membrane. This is under the assumption that the difference in the amount of protein

between HEK293-OATP1B1 and HEK293-MOCK cells is only due to OATP1B1 pro-

tein in the membrane. A total of 33 and 31 separate measurements on three separate

days were obtained for HEK293-OATP1B1 and HEK293-MOCK cells respectively. A

geometric mean value of 0.685 (RSE = 4.5 %) mg/106 cells and 0.620 (RSE = 3.2 %)

mg/106 cells were obtained for HEK293-OATP1B1 and HEK293-MOCK cells respec-

tively, which were similar to human hepatocellularity values of 0.657 mg/106 cells [181].

The abundance of hOATP1B1 on HEK293 cell plasma membranes has been reported

in the literature to be 0.18-0.36 nmols/106 cells [141, 213] and 0.02 nmols/106 cells for

the AstraZeneca cell line (Sharma, P. personal communication), once converted from

fmols/µg to nmols/106 cells, using Eq/ 3.41:

Literature value (nmol/106cells) =
fmol/µg

(0.685− 0.620)/1000
. (3.41)

The total amount of OATP1B1 present at the plasma membrane was calculated accord-

ing to Eq. 3.1, giving 0.77 (95 % confidence interval = 0.51-1.03) nmols/106 cells, which

was within 4-fold of that found in the literature, without having to measure hOATP1B1

through peptide analysis in crude plasma membrane fractions [141, 213].
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Figure 3.5: Plot of individual weighted residuals (IWRES) obtained from Monolix 2018 R2
against time for model 1. Solid line is the LOESS, dashed lines are the 95 % confidence intervals.
a = co-incubation, blue circles = IWRES, dotted line highlights the mean IWRES of 0. b =
pre-co-incubation, green triangles = IWRES

3.4.3 Mechanistic Modelling and Parameter Estimates

For both the co-incubation scenario 1, and the pre-co-incubation scenario 2, the best

fitting model to the data based on the wBIC and % RMSRE (Eqs. 3.39 and 3.2 re-

spectively, see Table 3.4) was model 1 for competitive inhibition (wBIC u 1 and 0.93

respectively, % RMSRE = 111 % and 123 % respectively). The individual % RMSRE

values were similar across all the models (49-59 %), regardless of whether micro-rate

constants (model 1) or macro-rate constants (model 3) were used (see Table 3.4). The

population % RMSRE values varied from 62-112 % across models with the greatest

% RMSRE for the macro-rate constant models (72 and 73 % and 107 and 112 % for

the co-incubation scenario 1 and pre-co-incubation scenario 2 respectively). Individual

parameter estimates (mode of the conditional distribution) were therefore included in

Tables 3.1 and 3.2. For the co-incubation and pre-co-incubation data, the individual

weighted residuals (IWRES) locally estimated scatterplot smoothing (LOESS) line was

approximately 0, with an average IWRES over the timecourse of 0.024 and 0.021 respec-

tively, confirming that the unexplained residuals were normally distributed with a mean

of 0 and symmetrical variance around zero (Fig. 3.5). The LOESS line obtained from R

using the geomsmooth function can be misleading in this context, as the span is adjusted

to fit the data (a span of 0.95 (95 % of data were used) and 1.05 were used respectively,

with the latter value used to prevent a visual maximum for the pre-co-incubation IWRES

data at 2 min).

For the co-incubation data (scenario 1, see Fig. 3.1), model 1 (micro-rate con-

stant, with competitive inhibition) fitted the experimental data well for DCF alone

(Fig. 3.6a, lines and shapes respectively), with saturation of uptake observed within an

incubation concentration of 10-100 nmol/ml. The inhibition of 1 nmol/ml DCF by gem-
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fibrozil was concentration dependent with little change up to 10 nmol/ml gemfibrozil

(Fig. 3.6b, shapes), which was well described by model 1 (Fig. 3.6b, dashed lines).

Non-competitive inhibition of DCF by gemfibrozil was not supported as the best fitting

model, with a wBIC ∼ 0 (see Table 3.4).

For the pre-co-incubation data (scenario 2, see Fig. 3.1), model 1 fitted the

data well (Fig. 3.7a, shapes) for DCF alone across the incubation concentrations tested

(Fig. 3.7a, solid lines), with saturation within 30-100 nmol/ml. Compared to the co-

incubation fit, the pre-co-incubation data in the presence of increasing concentrations of

gemfibrozil was more sparse (281 versus 234 datapoints used for parameter estimation

respectively, with incomplete timecourses in the presence of gemfibrozil, see Fig. 3.7),

with the 300 nmol/ml gemfibrozil data excluded due to insufficient fluorescence (close to

background), possibly due to the added wash step prior to co-incubation of DCF with

gemfibrozil. This sparseness made parameter estimation difficult, which can be seen

from the ranges of BIC values between the two scenarios, where the best fitting to worst

fitting model for co-incubation data (model 1 and model 4 respectively) had a ∆i BIC of

61 (see Table 3.4), whilst for the pre-co-incubation models the best fitting to the worst

fitting model (model 1 and model 2 respectively) had a ∆i BIC of only 8. It may also be

the case that the number of timepoints needed at each concentration of gemfibrozil for

the pre-co-incubation scenario 2 were not sufficient to differentiate between micro-rate

constant and macro-rate constant mechanistic models

Non-competitive inhibition of DCF uptake by gemfibrozil (Table 3.1 model 2,

and Table 3.2 model 4) was not supported as the inhibition mechanism under either the

co-incubation or pre-co-incubation scenarios 1 and 2 respectively based on the wBIC

(see Table 3.4). To evaluate whether there was a time dependency of inhibition to

support non-competitive inhibition, gemfibrozil was pre-incubated at 1-300 nmol/ml and

removed before addition of 1 nmol/ml DCF (scenario 3, see Fig. 3.1). Pre-incubation

time had no effect on the uptake of 1 nmol/ml DCF, but a pre-incubation with 300

nmol/ml gemfibrozil and then 1 nmol/ml DCF was significantly different from 1 nmol/ml

of DCF only (p = 0.0017, t-test assuming unequal variance in R using the ggpubr

package, see Fig. 3.8). The inhibition observed at 300 nmol/ml gemfibrozil, irrespective

of pre-incubation time, is likely due to the difficulty in removing all of the medium

containing gemfibrozil without affecting the cell density in the well.

It is important to note, that the pre-co-incubation data were sparse in terms of

full timecourses, with some of the gemfibrozil incubations only having two timepoints.

This led to a large range of 268-fold difference in the parameter estimates for the translo-

cation into the cell (ktD = 1.04 (0.05-13.4) /min/106 cells, model 1, Table 3.5), and a

10-fold difference in the dissociation rate constant (kdD = 0.12 (0.06-0.81) /min/106

cells, model 1, Table 3.5). Therefore any conclusions drawn regarding the mode of in-

hibition of DCF following pre-co-incubation with gemfibrozil when taken alone should

be discounted. When the conclusions are combined with the co-incubation scenario

supporting competitive inhibition, as well as a lack of difference over time in the pre-

incubation scenario, it is clear that competitive inhibition alone is supported as the most
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Figure 3.6: Concentration-time profile of DCF in HEK293-OATP1B1 cells. a following admin-
istration of DCF alone at 0.3-100 nmol/ml. b following co-incubation of 1 nmol/ml DCF and
1-300 nmol/ml gemfibrozil. Points are average data ± s.e.m. (n = 4), lines are the average of
the individual fits from model 1

Figure 3.7: Concentration-time profile of DCF in HEK293-OATP1B1 cells. a following admin-
istration of DCF alone at 0.3-100 nmol/ml. b following pre-co-incubation of 1 nmol/ml DCF
and 1-100 nmol/ml gemfibrozil. Points are data ± s.e.m. (n = 6), lines are the average of the
individual fit from model 1 (single bidirectional passive rate constant)
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Figure 3.8: Bar chart of % of 1 nmol/ml DCF (“0”) following pre-incubation of 1-300 nmol/ml
gemfibrozil for 5-40 min (scenario 3). Data are the mean ± s.e.m. (n = 16) of all pre-incubation
timepoints, as no significant difference was found between timepoints. ∗∗ = p = 0.0017

likely mechanism, however, if more data become available this could be re-evaluated.

3.4.3.1 Passive Rate Constants

For the micro-rate constant mechanistic models (models 1 and 2, Table 3.1), the first

order passive constant for movement of DCF into the cell (kfD) was similar for both

inhibition experimental scenarios (model 1 as the best fitting model, Table 3.4): 0.0007

(0.0004-0.001) /min/106 cells and 0.0004 (0.0002-0.0008) /min/106 cells for the co-

incubation and pre-co-incubation scenario respectively, Table 3.5). The macro-rate

constant model kfD (from models 3 and 4, Table 3.2) were three fold faster than

the micro-rate constant model estimates for the co-incubation scenario (0.0025 (0.002-

0.0033) /min/106 cells and 0.0024 (0.002-0.0029) /min/106 cells respectively, Table 3.6).

For the pre-co-incubation scenario, the estimate of kfD was 20-40 times faster for the

macro-rate constant model (0.0066 (0.0037-0.0148) /min/106 cells and 0.0074 (0.0038-

0.015) /min/106 cells respectively for model 3 and 4, Table 3.6).

Where the parameter kbD was included in the mechanistic model fits (co- incuba-

tion - models 1-4, and pre-co-incubation - models 3 and 4), the parameter estimates were

of the same order, ranging from 0.16 (0.1-0.22) /min/106 cells (co-incubation model 1,

Table 3.5) to 0.5 (0.4-0.6) /min/106 cells (co-incubation models 3 and 4, Table 3.6). This

was > 1000 times the equivalent rate out of the cell for the pre-co-incubation micro-rate

constant model 1 (kfD = 0.0004 (0.0002-0.0008) /min/106 cells).

The micro-rate constant estimates and macro-rate constant estimates for kfD

were all much less (100 and 10 fold respectively) than the HEK293-MOCK estimate

(0.08 /min/106 cells) obtained through linear estimation (Excel Office 365, Microsoft,

Washington, USA). Subtraction of HEK293-MOCK uptake from HEK293-OATP1B1

cells is common across the literature to make data analysis simpler when evaluating

transporter uptake initial velocity [50, 135, 150, 209, 214, 215]. Based on the difference

between the HEK293-MOCK estimate for kfD and the parameter estimates described
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above, may lead to false estimation of the degree of passive diffusion of a substrate. It was

noted that, for estradiol-17β-glucuronide and estrone-3-sulphate, that even after MOCK

subtraction, passive diffusion still had to be included in the analysis of transporter

mediated uptake [214], illustrating the futility in the over-simplification of transporter

mediated uptake.

3.4.3.2 Micro-Rate Constant Transporter Mediated Uptake

For the co-incubation scenario, both model 1 and model 2 had similar parameter es-

timates (see Table 3.5) and total % RMSRE (111 and 112 % respectively) but model

1 had the lower BIC value (1540 and 1560 respectively, Table 3.4). Association to

OATP1B1 was four times faster for DCF compared to gemfibrozil (kaX = 1.89 (1.79-

1.99) /nmol/min/106 cells and 0.44 (0.26-0.6) /nmol/min/106 cells respectively, see

Table 3.5), whilst dissociation from OATP1B1 was similar (5.58 (4.51-6.96) /min/106

cells and 3.73 (3.39-3.87) /min/106 cells respectively, see Table 3.5). The translocation

into the cell for model 1 (ktD = 2.3 /min/106 cells, Table 3.5) was similar to kaD, but

became the rate limiting step as the amount of DCF at the transporter increased at

the point where kaD >> kdD. The total amount of OATP1B1 transporters (To = 0.06

(0.04-0.09) nmols/106 cells, Table 3.5) was roughly ten fold below the total estimated

from the cellularity data (0.7 nmols/106 cells, see above), but was only three fold differ-

ent to the literature values and that determined at AstraZeneca. Estimation of the To

through mechanistic models therefore represents a more dynamic estimate than protein

difference alone.

59



T
ab

le
3.

5:
M

ic
ro

-r
at

e
co

n
st

an
t

in
d

iv
id

u
al

p
ar

am
et

er
es

ti
m

at
es

fo
r

D
C

F
fo

ll
ow

in
g

co
-i

n
cu

b
a
ti

o
n

w
it

h
g
em

fi
b

ro
zi

l
(s

ce
n

a
ri

o
1
)

o
r

p
re

-c
o
-i

n
cu

b
a
ti

o
n

w
it

h
g
em

fi
b

ro
zi

l
(s

ce
n

ar
io

2)
.

D
at

a
ar

e
th

e
in

d
iv

id
u

al
m

o
d

e
of

th
e

co
n

d
it

io
n

a
l

d
is

tr
ib

u
ti

o
n

fr
o
m

4
o
r

6
se

p
a
ra

te
ex

p
er

im
en

ts
re

sp
ec

ti
ve

ly
(M

in
-M

a
x
).

A
ll

d
a
ta

a
re
p
er

1
06

ce
ll

s

C
o
-i

n
cu

b
a
ti

o
n

P
re

-c
o
-i

n
cu

b
a
ti

o
n

C
o
m

p
et

it
iv

e
(m

o
d
e
l
1
)

N
o
n
-c

o
m

p
et

it
iv

e
(m

o
d
e
l
2
)

C
o
m

p
et

it
iv

e
(m

o
d
e
l
1
)

N
o
n
-c

o
m

p
et

it
iv

e
(m

o
d
e
l
2
)

P
a
ss

iv
e

k
f
D

(/
m

in
)∗

0
.0

0
0
7

(0
.0

0
0
4
-0

.0
0
1
)

0
.0

0
0
8

(0
.0

0
0
5
-0

.0
0
1
)

0
.0

0
0
4

(0
.0

0
0
2
-0

.0
0
0
8
)

0
.0

0
0
2

(0
.0

0
0
1
-0

.0
0
0
3
)

k
b
D

(/
m

in
)

0
.1

6
(0

.1
-0

.2
2
)

0
.1

5
(0

.1
-0

.1
7
)

N
/
C

N
/
C

T
ra

n
sp

o
rt

er
k
a
D

(/
n
m

o
l/

m
in

)
1
.8

9
(1

.7
9
-1

.9
9
)

2
.9

5
(2

.5
2
-3

.7
8
)

0
.3

2
(0

.2
3
-0

.6
4
)

0
.3

6
(0

.3
1
-0

.4
7
)

k
a
G

(/
n
m

o
l/

m
in

)
0
.4

4
(0

.2
6
-0

.6
)

0
.2

2
(0

.1
4
-0

.3
9
)

0
.4

7
(0

.3
8
-0

.5
5
)

0
.2

7
(0

.2
2
-0

.3
6
)

k
d
D

(/
m

in
)

5
.5

8
(4

.5
1
-6

.9
6
)

4
.5

6
(3

.4
4
-5

.7
9
)

0
.1

2
(0

.0
6
-0

.8
1
)

0
.1

7
(0

.1
5
-0

.2
9
)

k
d
G

(/
m

in
)

3
.7

3
(3

.3
9
-3

.8
7
)

4
.6

3
(2

.4
8
-5

.0
8
)

1
.7

6
(1

.4
7
-1

.9
6
)

0
.7

4
(0

.3
5
-1

.0
5
)

T
o

(n
m

o
ls

)
0
.0

6
(0

.0
4
-0

.0
9
)

0
.0

3
(0

.0
2
-0

.0
5
)

0
.1

1
(0

.1
-0

.1
3
)

0
.1

(0
.0

8
-0

.1
3
)

k
tD

(/
m

in
)

2
.3

2
(2

.2
1
-2

.3
9
)

1
.9

1
(1

.7
9
-2

.0
4
)

1
.0

4
(0

.0
5
-1

3
.4

)
1
.6

5
(0

.0
7
-1

0
.6

)
α

N
/
C

0
.0

0
0
0
6
9

(0
.0

0
0
0
6
1
-0

.0
0
0
0
7
3
)

N
/
C

0
.0

3
(0

.0
1
-2

1
.3

)
∗

=
si

n
g
le

p
a
ss

iv
e

ra
te

c
o
n
st

a
n
t

fo
r

p
re

-c
o
-i

n
c
u
b
a
ti

o
n

d
a
ta

.

T
ab

le
3.

6:
M

ac
ro

-r
at

e
co

n
st

an
t

in
d

iv
id

u
al

p
ar

am
et

er
es

ti
m

at
es

fo
r

D
C

F
fo

ll
ow

in
g

co
-i

n
cu

b
a
ti

o
n

w
it

h
g
em

fi
b

ro
zi

l
(s

ce
n

a
ri

o
1
)

o
r

p
re

-c
o
-i

n
cu

b
a
ti

o
n

w
it

h
g
em

fi
b

ro
zi

l
(s

ce
n

ar
io

2)
.

D
at

a
ar

e
th

e
in

d
iv

id
u

al
m

o
d

e
of

th
e

co
n

d
it

io
n

a
l

d
is

tr
ib

u
ti

o
n

fr
o
m

4
o
r

6
se

p
a
ra

te
ex

p
er

im
en

ts
re

sp
ec

ti
ve

ly
(M

in
-M

a
x
).

A
ll

d
a
ta

a
re
p
er

1
06

ce
ll

s

C
o
-i

n
cu

b
a
ti

o
n

P
re

-c
o
-i

n
cu

b
a
ti

o
n

C
o
m

p
et

it
iv

e
(m

o
d
e
l
3
)

N
o
n
-c

o
m

p
et

it
iv

e
(m

o
d
e
l
4
)

C
o
m

p
et

it
iv

e
(m

o
d
e
l
3
)

N
o
n
-c

o
m

p
et

it
iv

e
(m

o
d
e
l
4
)

P
a
ss

iv
e

k
f
D

(/
m

in
)

0
.0

0
2
5

(0
.0

0
2
-0

.0
0
3
3
)

0
.0

0
2
4

(0
.0

0
2
-0

.0
0
2
9
)

0
.0

0
6
6

(0
.0

0
3
7
-0

.0
1
4
8
)

0
.0

0
7
4

(0
.0

0
3
8
-0

.0
1
5
)

k
b
D

(/
m

in
)

0
.5

(0
.4

-0
.6

)
0
.5

1
(0

.4
2
-0

.5
8
)

0
.3

2
(0

.0
3
-5

.0
5
)

0
.3

5
(0

.0
3
-5

.0
6
)

T
ra

n
sp

o
rt

er
V
m
a
x
.D

(p
m

o
l/

m
in

/
1
×

1
0

6
ce

ll
s)

2
1
7

(1
4
1
-3

3
2
)

2
3
2

(1
5
3
-3

2
5
)

1
2
7

(1
0
4
-1

8
6
)

1
1
6

(9
0
.7

-1
8
0
)

K
m
.D

(n
m

o
l/

m
l)
∗
2

1
1
.2

(1
0
.6

-1
1
.5

)
1
2
.1

(1
0
.2

-1
3
.4

)
1
0
.9

(6
.5

-1
3
.8

)
9
.4

(5
.7

-1
2
.2

)
K
I
.G

o
r
K
in
a
c
t.
G

(n
m

o
l/

m
l)
∗
2

3
1
.1

(2
8
.9

-3
3
.3

)
3
6
.7

(3
2
.8

-4
1
.7

)
1
8
.4

(1
3
.5

-2
9
.9

)
1
4
.1

(1
3
.5

-1
5
.5

)
∗

=
si

n
g
le

p
a
ss

iv
e

ra
te

c
o
n
st

a
n
t

fo
r

p
re

-c
o
-i

n
c
u
b
a
ti

o
n

d
a
ta

,
∗
2

=
sc

a
le

d
to

n
m

o
l/

m
l.

60



Figure 3.9: Covariance matrix of the individual random effects η for model 1 for the co-incubation
scenario

The variance-covariance matrix derived from the inverse of the Fisher information

matrix (obtained through linearisation in Monolix 2018R2, as the Fisher information

matrix could not be obtained through the SAEM algorithm (see Chapter 2, Section

2.4.5)) [190] can be used to evaluate the practical identifiability of the model, assuming

that all the unknown parameters are independent, i.e. the off-diagonal elements are

zeros [184, 216].

Using the estimated individual random effects (η, taken from Monolix 2018R2)

for the co-incubation data (using model 1), a covariance matrix was generated in R

Studio using GGally [217]. There was covariance between To and kaD and kbD (Fig

3.9) which are all key parameters for the uptake of DCF into the cells, with the largest

covariance of 0.9 between To and kaD. Interestingly neither kaG or kdG showed this

degree of covariance.

For the pre-co-incubation scenario, models 1 and 2 gave kaD and kdD values that

were 6-10 fold and 46-26 fold less than the co-incubation values respectively (see Table

3.5). For model 1 (the best fitting model), kdD varied 14-fold in the parameter estimate

for scenario 2 (0.12 (0.06-0.81) /min/106 cells, Table 3.5). ktD was similar to the value

obtained for the co-incubation, model 1, but it varied 300-fold in its parameter estimate

(1.04 (0.05-13.4) /min/106 cells, Table 3.5). kaG from the pre-co-incubation scenario,

model 1, was the same as the co-incubation estimate (0.47 (0.38-0.55) /nmol/min/106

cells and 0.44 (0.26-0.66) /nmol/min/106 cells respectively, Table 3.5). kdG was approx-

imately half of that obtained from the co-incubation scenario, model 1 (1.76 (1.47-1.96)

/min/106 cells and 3.73 (3.39-3.87) /min/106 cells respectively, Table 3.5). The slower

rates for kaD and kdD, coupled with a slower kdG for the pre-co-incubation scenario,

model 1, compared to the co-incubation scenario, model 1, would lead us to conclude

that gemfibrozil is a more potent inhibitor after pre-co-incubation. Grandjean et al. [8]

evaluated the uptake of pitavatatin across species in hepatocytes, for human hepato-

cytes where incubation concentrations were more limited compared to other species (8
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Figure 3.10: Covariance matrix of the individual random effects η for model 1 for the pre-co-
incubation scenario

concentrations and 13 concentrations respectively over 4 timepoints), the errors on both

kd and kt could not calculated [8]. This highlights the importance of obtaining sufficient

data to enable accurate parameter estimations.

Using the estimated individual random effects (η, taken from Monolix 2018R2)

for the pre-co-incubation data (using model 1), a covariance matrix was generated in R

Studio using GGally [217]. Like the co-incubation parameter estimates from model 1,

there was the same covariance between To and kaD (Fig. 3.10), but not between kaD

and kdD. Instead there was covariance between kaG and kdG of -0.8. Taken together

more information is required to separate the covariance between ka and kd, or a single

parameter should be used.

3.4.3.3 Macro-Rate Constant Transporter Mediated Uptake

DCF has previously been shown to be an OATP1B1 substrate with uptake 41-fold

greater than in mock cells [168], with Vmax values in the range of 128±52 pmol/min/106

cells [168] to 172 (167-178) pmol/min/106 cells [150] (both converted to /106 cells using

the cellularity value determined here) and Km of 5.3± 1.5 nmol/ml [168] to 8.98 (8.14-

9.83) nmol/ml [150].

The scaled Vmax.D derived from the co-incubation scenario model 1 (139 (88-215)

pmol/min/106 cells, see Chapter 2, Section 2.4.4) was similar to the literature values

above [150, 168], and similar to the values obtained from models 3 and 4 (217 (141-

332) pmol/min/106 cells and 232 (153-325) pmol/min/106 cells respectively, Table 3.6).

The Km.D estimate derived from the co-incubation scenario, model 1, (see Chapter 2,

Section 2.4.4) was also similar to that in the literature [150, 168] and that obtained from

models 3 and 4 (13.9 (12.5-15.7) nmol/ml, 11.2 (10.6-11.5) nmol/ml and 12.1 (10.2-13.4)

nmol/ml respectively, Table 3.6).

Due to the large difference in the range of pre-co-incubation parameter estimates

for kdD and ktD, the parameters were not scaled for macro-parameter comparison. The
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Vmax.D estimates obtained from models 3 and 4 for the pre-co-incubation were similar

to those for the co-incubation scenario above (127 (104-186) pmol/min/106 cells and

116 (91-180) pmol/min/106 cells respectively, Table 3.6).

The inhibition constant (KI.G) derived from the co-incubation scenario, model 1,

(28.2 (19.4-44) nmol/ml, see Chapter 2, Section 2.4.4) was the same as that for models

3 and 4 (see Table 3.6), and similar to that obtained with DCF as a substrate, and

different substrates in the literature (18.1 ± 3.9 nmol/ml and 31-39 nmol/ml respectively

[135, 151, 168], see Chapter 2, Table 2.2).

The KI.G estimates obtained from the pre-co-incubation scenario, models 3 and

4, were lower than those estimated for the co-incubation scenario, and closer to the

estimate obtained with DCF as a substrate in the literature (18.4 (13.5-29.9) nmol/ml,

14.1 (13.5-15.5) nmol/ml and 18.1 ±3.9 nmol/ml [168] respectively, Table 3.6).

3.5 Conclusions

This chapter attempted to evaluate the mode of inhibition of gemfibrozil on the uptake

of DCF in HEK293-OATP1B1 expressing cells across different scenarios: co-incubation -

used in the literature to evaluate competitive inhibition [135, 140, 215], pre-co-incubation

- to evaluate competitive and time-dependent inhibition [208, 218] and pre-incubation

- to evaluate lasting inhibition [218, 219]. In addition a HEK293-OATP1B1 cellularity

value was obtained to aid in the mechanistic modelling of uptake through normalisation

of the data to per/106 cells.

Mechanistic models consisting of rate constants (micro-rate constant models)

were compared to the commonly used Michaelis-Menten reduced models (macro-rate

constant models) to determine whether the increased number of parameters and states

in the micro-rate constant models gave better fits to the data. The micro-rate constant

model fit for the pre-co-incubation scenarios, with a large range on the transporter

parameters and a reduced number of passive parameters, also highlighted the amount

of data required for micro-rate constant models to obtain meaningful parameters.

Across all three scenarios (co-incubation, pre-co-incubation and pre-incubation),

the competitive inhibition of DCF uptake by gemfibrozil was supported, with micro-rate

constants (model 1) giving the best fits to the co-incubation and pre-co-incubation data

(see Table 3.4). Non-competitive inhibition of DCF uptake by gemfibrozil in HEK293-

OATP1B1 cell lines was not supported as the mode of inhibition across all three scenarios

evaluated. The use of macro-rate constant mechanistic models to determine the uptake

kinetics of DCF and its inhibition by gemfibrozil are not supported from both a struc-

tural identifiability perspective (unidentifiable with one degree of freedom), but also from

a parameter estimation perspective, giving higher goodness of fit values when compared

to the best fitting micro-rate constant models (model 3 and model 1 respectively).

Estimation of the total amount of OATP1B1 transporters from the micro-rate

constant mechanistic models offers a viable alternative to measurement of hOATP1B1

from crude membranes, and was similar to the values obtained both from AstraZeneca
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and the literature (3-fold difference), in addition to gaining a more in depth understand-

ing of binding and transport and supports a mechanistic modelling approach moving

forwards.

To determine whether the experimental design can be improved to decrease the

covariance seen between ka, kd and To, a D-optimal design was implemented for the

co-incubation data scenario with the same number of timepoints and gemfibrozil con-

centrations in R using PopED with the FO linearisation method and either a full or

triangular matrix [195]. The population estimates and random variances from the com-

bined population and individual model (ω) obtained from Monolix 2018R2. The use of

the triangular matrix assuming no covariance lead to a D-optimal design with a support

point at 0.33 min where duplicate samples were indicated. The use of a full covariance

matrix lead to no support points and the chosen timepoints were similar to the original

experimental design (0.33, 0.66, 1, 1.33, 3, 6 min). The suggested timepoints for each

are given below (numbers are rounded to give realistic timepoints):

• Triangular matrix: 0.33, 0.33, 2.25, 2.75, 4.25, 6 min

• Full matrix: 0.33, 0.66, 1.33, 2, 2.75, 7 min

The following experimental chapter will take the modelling framework explored

here into a more complex model of hepatocytes, where numerous transporters and en-

zymes are present, making good quality data across longer timecourses important.
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Chapter 4

Evaluation of the Uptake and

Metabolism of Atorvastatin in

Fresh Rat Hepatocytes and its

Inhibition by Cyclosporine A

4.1 Introduction

This chapter deals with the uptake and metabolic clearance of atorvastatin in fresh

rat hepatocytes, and the inhibition of these processes by the non-selective inhibitor

cyclosporine A (CsA). This chapter will determine the mode of inhibition of atorvastatin

by CsA through the use of a mechanistic modelling approach. The experimental data

used here, were collected during my time from UCB Pharma (Slough, UK), and their use

is with the kind permission of UCB Pharma (Slough, UK). The oil-spin method described

here was initially developed as part of my MSc dissertation [220], and modified with a

reduction in oil temperature from 37 ◦C to room temperature. This work has previously

been submitted to Xenobiotica. This chapter will, following a brief overview, evaluate

the mechanistic models used in terms of their structural and practical identifiability (see

Chapter 2, Section 2.4) as per Chapter 3 and provide an in depth presentation of model

parameter estimation from experimental data.

Atorvastatin is an HMG-CoA reductase inhibitor used to treat hypercholestero-

laemia, and is the third most prescribed drug in the USA [221]. Atorvastatin is taken

up into hepatocytes in a concentration dependent manner with 96-98 % of the uptake as

carrier mediated in rat hepatocytes [165, 172]. Uptake into hepatocytes is reported to

be due to hOATP1B1 and 1B3 as determined in HEK293 cell lines, and rOatp1b2, with

little or no passive uptake [135, 222, 223]. CsA is an effective immunosuppressant for use

in organ transplantation, but its use is now limited due to cholestasis and nephrotoxicity

[224] and has largely been replaced by immunosuppressants with less severe side effects,

such as tacrolimus [225, 226]. CsA inhibits the uptake of both endogenous acids such

as taurocholic acid [224] and xenobiotics such as atorvastatin [140] and pitavastatin
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[208] in a competitive [140] or non-competitive manner [208], depending on whether

the inhibitor is co-incubated or pre-incubated respectively (see Chapter 2, Table 2.2).

CsA also inhibits CYP3A4 metabolism and P-glycoprotein [224, 225]. Statins are often

dosed along with immunosuppressants in the clinic to treat the associated hypercholes-

terolaemia that occurs after organ transplantation, making the assessment of inhibition

of statin disposition important [226, 227]. The inhibition seen in vitro with atorvastatin

and CsA (see Chapter 2, Table 2.2) was also observed clinically in healthy volunteers

with a 15-fold higher plasma exposure of atorvastatin and its metabolites compared to

those on tacrolimus, with an increased risk of rhabdomyolysis in chronic patients [134].

Atorvastatin shows high intracellular binding with a determined fraction un-

bound in the rat hepatocytes of 0.011-0.015 [165, 228] and is metabolised by rCyp3a

into two main hydroxylated metabolites, which are also found in human hepatocytes

[222, 229, 230]. Disposition of CsA in rat hepatocytes has been shown to be passive

with no contribution from transporters and reaches a steady state within approximately

5 min with 86 % of the initial dose associated to intracellular constituents [231]. Once

within the cell there is a large degree of binding to membranes and other cellular con-

stituents [231, 232]. Any free drug is then slowly metabolised by rCyp3a [231, 232]. The

membrane binding of CsA was investigated over different incubation timescales and af-

ter 5 min most of the dose was associated with an 85 KDa protein [233], which is the

same molecular weight as rOatp [234]. Shitara and Sugiyama [208] obtained parameters

for the passive diffusion of CsA and then simulated timepoints with which to evaluate

different inhibition sites for CsA (outside and inside) to explain the increased inhibition

following pre-incubation seen in other publications [140, 235].

The aims of this chapter were:

• To describe the use a high throughput oil spin method for fresh rat hepatocytes

using atorvastatin and CsA as an inhibitor.

• Develop mechanistic models to describe the interaction between atorvastatin and

CsA via competitive or non-competitive inhibition of uptake and competitive in-

hibition of metabolism to gain further understanding of the interaction.

4.2 Experimental Methods

4.2.1 Chemicals and Reagents

Atorvastatin sodium was obtained from Sequoia Research Products Ltd (Pangbourne,

UK). Cyclosporine, Percoll, high temperature silicone oil (175633), Krebs-Henseleit

buffer powder (KHB,1L), sodium chloride, HEPES, collagenase (C5138) and trypan

blue (0.4 %) were obtained from Sigma-Aldrich (Poole, UK). DMSO, methanol and wa-

ter were obtained from Thermo Fisher Scientific Inc. (Loughborough, UK) and were of

analytical grade.
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4.2.2 Animals

Male Lewis rats (350-480 g) were obtained from Charles River (Margate, UK). They

were housed three to a cage lined with sawdust, forage mix and shredded paper in rooms

maintained at a temperature of 20 ± 2 ◦C with a relative humidity of 45-55 % on a 12

hour light:dark cycle with access to food and water ad libitum. All procedures performed

were approved by the local UCB ethical review committee according to the Home Office

animal procedures act (1986) by licensed individuals. Data were generated from cells

isolated from three rats on different occasions.

4.2.3 Isolation of Hepatocytes

Hepatocytes were isolated using a two stage liver perfusion with collagenase as described

previously [236], with the exception that collagenase was perfused at only 20-24 ml/min

and not 50 ml/min to prevent undue pressure increases in the liver. Under terminal

general anaesthesia with isoflurane, the liver was perfused with a calcium free-buffer

(500 ml Liver Perfusion Medium, Invitrogen, Paisley, UK) at a rate of 25 ml/min in

a humid 38 ◦C temperature controlled cabinet. The medium was then changed to

modified Krebs-Henseleit Buffer (KHB, 118 mM NaCl, 5 mM KCl, 1.1 mM MgSO4, 2.5

mM CaCl2, 1.2 mM KH2PO4, 25 mM NaHCO3, 10 mM glucose supplemented with 12.5

mM HEPES (pH 7.4)) and saturated with O2/CO2, containing collagenase (0.012-0.013

% w/v). Both the Liver Perfusion Medium and modified KHB containing collagenase

were kept at 38 ◦C in jacketed beakers and stirred and gassed continuously with 95 %

O2/5 % CO2 for at least 20 min prior to use. The liver was then dissected free and

transferred to ice cold modified KHB, the cells were released by the use of a cell scraper

(Thermo Fisher Scientific Inc., Loughborough, UK) and filtered through 70 µm filters

into 50 ml falcons (BD, Oxford, UK). The cells were centrifuged at 50 g for 5 min at

4 ◦C and the supernatant removed. The pellets were re-suspended in a 30:70 mixture

of Percoll: modified KHB and spun at 70 g for 5 min at 7 ◦C. This step led to cells of

high viability (> 98 %) as determined by the trypan blue (0.4 %) exclusion test with

greater than 250 ×106 cells/liver. The cells were kept on ice throughout isolation and

used within 3 h of isolation.

4.2.4 Incubations

Custom-made 16-channel Teflon blocks (2 columns of 8 round-ended and bottomed

troughs from Radleys, Saffron Walden, UK) were pre-incubated with 2 ml of 2 ×106

cells/ml for 15 min, at 38.9 ◦C (temperature inside the Teflon blocks was 37 ◦C) and

109 strokes/min, placed lengthwise in an oscillating water bath (Julabo, Peterborough,

UK); using this technique, cells were gently agitated to keep them in suspension, while

the large interface between medium and air helped achieve adequate oxygen exchange.

CsA (2 mM) was dissolved in DMSO and added during pre-incubation where required

(or DMSO alone in controls), with a final concentration of 10 µM. 0.32 ml Omnistrip

PCR 8-tube strips (Thermo Fisher Scientific, Loughborough, UK) were layered with
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50 µl 3M NaCl and 100 µl high temperature silicone oil and placed in a 6-position

PCR strip rotor in an Eppendorf 5417R centrifuge (Eppendorf, Cambridge, UK). High

temperature silicone oil was chosen as its density does not change significantly between

room temperature and 37 ◦C (1.047±0.006 g/ml and 1.043±0.004 g/ml respectively,

values are mean ± SD, n=3) whilst still remaining more dense than modified KHB at

37 ◦C (1.024 ± 0.013 g/ml, values are mean ± SD, n=3 [220]). The difference in density

at 37 ◦C and shape of the menisci before centrifugation (see fig. 4.1, step 2) is critical

to ensure that the aqueous layers do not mix due to “flipping”, and was the driving

factor in miniaturising the assay [220]. Following a pre-incubation of 20 min, 10 µl of

atorvastatin solution (0.05, 0.25, 0.5, 2.5, 5, 25, 50 and 150 nmol/ml final concentration)

in DMSO was spiked into the Teflon blocks using an 8-way multichannel pipette. 8 × 100

µl samples, containing an assumed 2 ×105 cells (the minimum number of cells required

to spin through the oil layer), were taken from the Teflon blocks (Fig. 4.1 step 1) at

pre-defined timepoints (0.25, 0.58, 0.92, 1.25, 2.5, 5, 10, 20, 30, 40, 50 and 60 min),

which were chosen based on the initial time limit of the assay, as well as the literature

where the maximum of an uptake substrate is between 5-15 min [8, 33, 172]. The sample

was gently pipetted down the side of the Omnistrip and immediately centrifuged for 5 s

up to approximately 7000 rpm (Fig. 4.1 step 2 and 3). This was sufficient for the cells

to pellet into the bottom of the 3M sodium chloride (bottom layer), and enabled the

generation of a large number of samples within a short space of time (up to 384 samples

in 80 min). The Omnistrips were then transferred to a 96 well matrix latch rack on ice

for sample extraction (Thermo Fisher Scientific, Loughborough, UK).

4.2.5 Sample Extraction and Carryover

Within 2 h of finishing the experiment, the top medium layer and most of the middle

oil layer were aspirated carefully to prevent flipping of layers leaving sufficient volume

of the oil to cover the bottom layer (Fig. 4.1 step 4). The remaining bottom and

middle layer were refrigerated overnight to enable easier disruption of cells. Due to

the centrifugation step the menisci present before centrifugation were vastly decreased,

making sample extraction more straightforward (see Fig. 4.1 steps 2 and 3). 60 µl

of ice cold methanol (containing 600 nM dextromethorphan as an internal standard)

was added to each tube and mixed using a multi-channel pipette on ice until the pellet

was disrupted (Fig. 4.1 step 5). The matrix racks containing the Omnistrips were

centrifuged at 4000 g at 5 ◦C for 5 min (Fig. 4.1 step 6), 50 µl of the supernatant was

pipetted into a Phenomenex 2 ml deep well plate (Macclesfield, UK) and 250 µl of 40:60

methanol:water added (Fig. 4.1 steps 6 and 7). Standard curves for atorvastatin were

prepared as follows: 5, 1, 0.5, 0.1, 0.05, 0.01 and 0.005 µmol/ml stocks were prepared in

DMSO and then diluted by 1 in 100 in methanol giving final concentrations of 50, 10,

5, 1, 0.5, 0.1 and 0.05 nmol/ml respectively. 50 µl of this solution was then extracted

as per the samples. To examine loss from the medium, 50 µl of the top layer from the

latter two studies was carefully removed from the four lowest concentrations across a

range of timepoints (0.25, 0.58, 0.92, 1.25, 2.5, 5, 10, 20, 30, 40, 50 and 60 min), prior
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Figure 4.1: Flow chart of high throughput assay starting from incubation and separation of
hepatocytes from the media via an oil spin method (steps 1-4) to extraction and analysis via
LC-MS (steps 5-9). The number in the squares relates to the step number in time order as
described in the Methods 4.2.4 section

to aspiration of the top and middle layer, and frozen.

To check for carry over 150 nmol/ml of atorvastatin was incubated in modified

KHB in the absence of cells at 37 ◦C in a Teflon block. 100 µl of medium was taken

and treated as per samples with hepatocytes. Carry over of atorvastatin was negligible

(< 0.1 %, data not shown).

4.2.6 HPLC-Mass Spectrometry Analysis

Reconstituted samples were analysed by high-performance liquid chromatography

(HPLC) high resolution mass spectrometry (HRMS) operated in positive ion mode using

an Accela HPLC system and a Q-Exactive Orbitrap mass spectrometer

(Thermo Scientific, Hemel Hempstead, UK). For HPLC analysis, a Luna C18 100 Å

50 x 2 mm, 5 µ column (Phenomenex, Cheshire, UK) was used with a flow rate of 0.6

ml/min at 40 ◦C. Mobile phase A was composed of H2O 0.1 % formic acid, and mobile

phase B was composed of acetonitrile 0.1 % formic acid. The gradient system used was

as follows: initially, 20 % of B was held for 0.1 min followed by a linear gradient to 95

% of B from 0.1 to 0.8 min, 0.5 min at 95 % of B, a third linear gradient to 20 % of B at

1.3 to 1.31 min, and finally, a 0.49 min re-equilibration period at 20 % of B. Injections

of 10 µl were made by a CTC Prep and Load (PAL) autosampler (CTC Analytics,

Zwingen, Switzerland). For MS analysis, the capillary temperature was set at 380 ◦C,
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the source potential was 3100 V, and the source heater was set at 350 ◦C. Data were

acquired in centroid mode at a resolution setting of 35000 (FWHM - Full Width Half

Maximum). The mass spectrometer was operated in a selected positive ion scanning

mode, monitoring for the protonated masses of atorvastatin (MH559.26028) and the

hydroxylated metabolites (MH575.25519) with an isolation window of 4 Da. The internal

standard (dextromethorphan) was monitored at MH272.20151. The HPLC-MS data

were acquired in a single run, processed and analysed using LCQuan software (version

2.7. Thermo Fisher Scientific Inc., Loughborough, UK). Atorvastatin demonstrated

good linearity up to 50 nmol/ml with R2 > 0.99 and a limit of quantitation of 0.05

nmol/ml.

4.2.7 Data Analysis

The bottom layer concentration was converted to cellular concentration using a cellular

volume of per 1× 106 cells [170, 175]:

[cell] (nmol/ml) =
[bottom layer](Vb + Vcell)

Vcell
(4.1)

where Vb is the volume of the bottom layer 3M NaCl (0.05 ml) and Vcell is the volume

per 2 × 105 cells. As multiple volumes have been reported for the cellular volume (see

Chapter 2, Table 2.2), initial micro-rate constant mechanistic models for atorvastatin

only were evaluated with the inverse of the different volumes (0.0022-0.0065 ml per

1× 106 cells [170, 174, 175]), with the weighted BIC (wBIC) used to distinguish which

volume best described the data. An inverse volume of 906 /ml was obtained giving a

volume of 0.0011 ml/2× 105 using Eq. 4.1 obtained using an initial estimate of 0.0013

ml per 2 × 105 cells [170], and had a wBIC ≈ 1 and was thus the most likely volume.

The volume of 0.00078 ml/2 × 105 cells, and 0.0004 ml/2 × 105 cells calculated using

Reinoso et al. [175] and Yoshikado et al. [174] respectively had wBIC ≈ 0, and these

values were therefore not used further. The volume of 906 /ml was then fixed in the

rest of the parameter estimations (including macro-rate constant models). Due to the

large level of extraction of atorvastatin from the media into the cell, atorvastatin could

only be detected in the media in four out of twenty-four samples in the incubations

at 0.05 nmol/ml, and only up to 5 min at 2.5 nmol/ml. The data from medium loss

were therefore not used in any further analysis due to this sparsity (data not shown).

Metabolite identification for atorvastatin was conducted qualitatively without the use

of metabolite standards, therefore whilst the information is useful, it was not included

in the mechanistic models.

4.3 Mechanistic Modelling

The development of a nonlinear mathematical micro-rate constant model, with the use

of two rate constants to describe passive movement of substrate between the medium

and cells (kf and kb respectively), and the movement of substrates via a transporter
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Figure 4.2: Predicted atorvastatin cellular concentration against observed individual concentra-
tion for the best fitting macro-rate constant mechanistic model, Model 3 for all data. Points are
data, The black solid line represents the line of unity where observed ≡ predicted

. a where two separate passive rate constants were used (blue circles). b where a single
passive rate constant and fraction unbound in the cell was used (red triangles)

compartment has been published for pitavastatin [8]. Whilst Menochet et al. [173]

used a single passive clearance, transporter mediated interactions via Michaelis-Menten

kinetics, with the inclusion of a fraction unbound in the cell and medium and Michaelis-

Menten metabolism for the phase I metabolism of repaglinide. Two separate passive

rate constants (kf and kb) were used, as the use of a single passive rate constant with

a fraction unbound in the cell led to a greater deviation of the predicted concentrations

from the observed concentrations for the macro-rate constant models at higher observed

concentrations compared to the use of two separate passive rates constants (see Fig.

4.2b and a respectively).

In the present study, both micro-rate constant (Table 4.1, Fig. 4.3a and b) and

macro-rate constant mechanistic models (Table 4.2, fig. 4.3c and d) were evaluated for

atorvastatin and its inhibition by CsA with two passive rate constants given above, and

the inclusion of metabolic clearance through the Michaelis-Menten equation. As it is

not normally the case that the amount of free transporters available (Tf ) for the uptake

of atorvastatin, assuming the total amount of transporters (To) are constant, then Tf

can be eliminated via the conservation law derivation for transporters by adding Eqs.

4.4, 4.6, 4.8, 4.10, 4.12 and 4.13 (see previous Chapter 3 Eqs. 3.5-3.16):

Tf = To − S2 − I2 − I3 (4.2)

where S2 and I2 are the amount of atorvastatin and CsA bound to transporter respec-

tively and I3 is the atorvastatin-transporter-CsA complex involved in non-competitive

inhibition.
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Figure 4.3: Schematic of the micro-rate constant models (Models 1 and 2, Table 4.1) consisting of
medium, transporter and intracellular compartments, and macro-rate constant models (Models
3 and 4, Table 4.2) consisting of medium and intracellular compartments. Atorvastatin following
pre-incubation with CsA with competitive (a and c) and non-competitive (b and d) mode of
inhibition respectively were modelled
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4.3.1 Structural Identifiability Analysis

As per Chapters 3 and 5, prior to parameter estimation, models were evaluated for struc-

tural identifiability (see Chapter 2, Section 2.4.1) using the Identifiability Analysis

package in Mathematica 11.3. Micro-rate constant models for competitive and non-

competitive inhibition (see Table 4.1, Model 1, and Model 2 respectively) were evaluated

assuming that atorvastatin is an uptake transporter substrate and is metabolised, and

that CsA can bind to the transporter and enzyme only but is not a substrate. Macro-rate

constant models for competitive and non-competitive inhibition (see Table 4.2, Model

3, and Model 4 respectively) were evaluated under the assumptions above given for the

micro-rate constant models. The inclusion of the α term within the non-competitive

inhibition micro-rate constant mechanistic models (Model 2) gives an indication of the

effect of CsA binding to the transporter and subsequent binding of atorvastatin to the

complex. Here a value of α < 1 indicates that CsA decreases the binding and translo-

cation of atorvastatin, whilst a value of α > 1 indicates that CsA enhances transport of

atorvastatin [210].

4.3.2 Parameter Estimation

The incubation concentrations of atorvastatin and CsA were converted to amounts

(nmol) by multiplying by the sampled medium volume that holds 2×105 cells (V 1 = 0.1

ml). The final chosen model was based on the weighted Bayesian information criterion

(wBIC, Eq. 4.25) to more harshly penalise over-parameterisation (Eq. 4.24) within the

models compared to the Akaike information criterion (AIC, Eq. 4.23) [211, 212]:

AIC = −2.LL(θ) + 2p (4.23)

and

BIC = −2.LL(θ) + log(n)p, (4.24)

where LL is the log likelihood of the data, n is the total number of data points and p is

the number of parameters.

wBICi =
exp(−0.5∆i)∑m
i exp(−0.5∆i)

(4.25)

and

∆i = BICi −BICmin (4.26)

∆i is the difference between the individual BIC (BICi) and the lowest BIC (BICmin)

calculated using Eq. 4.26, exp(−0.5∆i) is the relative likelihood and
∑m

i is the sum of

individual i relative likelihoods from the mechanistic models with the same number of

datapoints used for parameter estimation (in this case m = 4 different models) [212].

The final chosen model was also chosen based on the sum of i individual and population
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prediction of the relative mean square root error (RMSRE) given by:

% RMSRE = 100×

√
1

n

∑(
Observedi − Predictedi

Observedi

)2

, (4.27)

where 1
n is the inverse of the total number of datapoints multiplied by the sum of the

relative square error of each datapoint i.

Figure 4.4: Atorvastatin concentration against velocity or the inverse of the velocity plots. a Ya-
mazaki plot for atorvastatin initial velocity at 15 s against atorvastatin incubation concentration,
dashed line = total, dotted line = passive, solid line = saturable uptake. b Lineweaver-Burke
plot using “Active” from a. c Lineweaver-Burke plot for the metabolism of atorvastatin

Initial parameter estimates were obtained for atorvastatin only micro-rate con-

stants using starting values of 1 for the transporter mediated parameters (kaA,

kdA, To, ktA) and the passive rate constant out of the cell (kbA), as no information was

available regarding these estimates within Monolix 2018R2 (Lixoft, Anthony, France).

For the passive rate into the cell (kfA), and any macro-rate constant parameters (i.e.

Michaelis-Menten), a Yamazaki plot (for uptake, Fig. 4.4a) and Lineweaver-Burke plot

(uptake and metabolism, Fig. 4.4b and c respectively) were used to obtain initial esti-

mates after scaling to nmol (see Table 4.4). The difference in the Yamazaki plot, the

Lineweaver-Burke plot and parameters (Fig. 4.4a and b respectively, see Table 4.4)

for uptake parameter estimates highlight the issues with using these plots. Estimating

inhibition of atorvastatin metabolism by CsA was also problematic due to the diffi-

culty in estimating the terminal atorvastatin gradient in the presence of CsA. Therefore

the KI.met value was estimated based on a difference in metabolic clearances, without

specifically defining the mode of inhibition. The Lineweaver-Burke estimates were then

scaled to nmol/min/2 × 105 cells and nmol for initial estimates. Parameters were ini-
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Table 4.3: Goodness of fit value comparison for micro and macro parameter models for uptake
of atorvastatin with inhibition by CsA

Rank Model Inhibition Type BIC % RMSRE
order∗ Number Type (wBIC ) (ind + pop = total)
1 2 Micro rate Non-competitive 5513.8 (0.54) 21 + 49 = 69
2 1 Micro rate Competitive 5514.2 (0.45) 21 + 61 = 82
3 4 Macro rate Non-competitive 5524.8 (0) 29 + 94 = 123
4 3 Macro rate Competitive 5608.0 (0) 29 + 96 = 125

∗ = Based on total % RMSRE (Eq.4.27) and wBIC (Eq. 4.25)

tially estimated for atorvastatin only with a log-normal distribution to ensure positivity

with a proportional error model in Monolix 2018R2 (Lixoft, Antony France), these were

then fixed to obtain CsA specific parameters before simultaneous determination of all

parameters across the whole dataset (562 datapoints).

4.4 Results and Discussion

4.4.1 Structural Identifiability Analysis

The use of micro-rate constants to describe the uptake of atorvastatin in the presence of

CsA, combined with competitive inhibition of the Michaelis-Menten metabolism (Mod-

els 1 and 2, Table 4.1), lead to both the competitive and non-competitive inhibition

Models 1 and 2 respectively to be at least structurally locally identifiable, with no pa-

rameters required to be known (see Table 4.5). For the macro-rate constant models

(Models 3 and 4, Table 4.2) with two Michaelis-Menten nonlinearities, the models were

structurally unidentifiable unless two of the following parameters were known (see Table

4.5): Vmax.up, Km.up, Km.met and KI or Kinact depending on the inhibition type.

4.4.2 Mechanistic Modelling and Parameter Estimates

The determination of uptake of substrates in rat using a high throughput assay includ-

ing atorvastatin was first published in 2013, with the first individual sample taken at

30 s [166], a high throughput media loss method has also been developed including

atorvastatin [237], with the first timepoint taken at 2 min. The method described here

took multiple concentrations simultaneously at one timepoint using 8-way Omnistrips,

with an early sample possible at 15 s. Time courses over 0.25-60 min for incubations of

atorvastatin from 0.05-150 nmol/ml, in the absence or presence of CsA from all three ex-

periments were obtained with no samples lost due to mixing of the oil and media layers.

A total of 192 samples were obtained relatively simply using this method over a time

period of 68 min. The analysis of data from the three experiments in a single HPLC-

MS run was undertaken to decrease inter-run variability with a mean relative standard

deviation across all datapoints of 25 % and 33 % for atorvastatin in the absence and

presence of CsA respectively.

The best fitting model based on the % RMSRE and wBIC (see Table 4.3) was

Model 2 (micro-rate constant model, including non-competitive inhibition of atorvas-

tatin uptake by CsA, and competitive inhibition of atorvastatin metabolism by CsA,

77



Figure 4.5: Plots of atorvastatin cellular concentration against time following the addition of
atorvastatin (0.05, 0.25, 0.5, 2.5, 5, 25, 50 and 150 nmol/ml) in the absence (blue) and pres-
ence (red) of 10 nmol/ml of CsA. Each time course represents one experiment from one Teflon
block trough. Shapes are data from the three separate experiments, the solid line is the aver-
age individual prediction from Model 2, bounded by the max and min individual predictions
(shading)

Fig. 4.3 and Table 4.1 for ODEs). Both Models 1 and 2 were almost equal in terms of

BIC, with a wBIC that made Model 2 more favourable over Model 1 (wBIC = 0.54 and

0.45 respectively, Table 4.3). The macro-rate constant models (Models 3 and 4, Table

4.2) were unsupported as the best fitting models (wBIC ≈ 0), again non-competitive

inhibition of uptake of atorvastatin by CsA was the best fitting of the two (see Table

4.3).

Model 2 visually fitted the atorvastatin data in the absence and presence of

CsA relatively well (Fig. 4.5, blue and red respectively), with a rapid increase up to a

maximum at the same time as the data, which was more prolonged in the presence of

CsA. As indicated by the initial estimates (see Table 4.4), CsA strongly inhibited the

metabolism of atorvastatin within rat hepatocytes, as can be seen in the flat line in the

individual predictions (see Fig. 4.5).

The population fits for each model had two to four times the % RMSRE compared

to the individual fits (49-96 % and 21-29 % respectively, see Table 4.3), and therefore the

individual parameter estimates are included and discussed here. A plot of the individual

weighted residuals (IWRES) against time obtained from Monolix 2018 R2 for Model 2

look normally distributed with a mean of 0.07, close to 0 (Fig. 4.6), but are outside the

95 % confidence intervals at earlier timepoints, due to the model fits at lower atorvastatin

incubation concentrations which fall outside the maximum and minimum prediction (see

Fig. 4.5 blue data points and shading respectively).

78



Figure 4.6: Plot of individual weighted residuals (IWRES) obtained from Monolix 2018 R2
against time for Model 2. Points are IWRES, solid line is the LOESS, dashed lines are the 95
% confidence intervals and the dotted line highlights an IWRES of 0

4.4.2.1 Passive Rate Constants

Across all four models the passive rate constant into the cell for atorvastatin (kfA) varied

little between 1.1-1.8 /min/106 cells, however, in the micro-rate constant mechanistic

models the error around the kfA parameter estimate was large (1.3 (0.3-28.5) and 1.1

(0.2-23.3) /min/106 cells for Models 1 and 2 respectively, Table 4.6). In the macro-rate

constant models the error around kfA was small (1.5 (0.9-2.7) and 1.8 (1-4) /min/106

cells for model 3 and 4 respectively, Table 4.7). The median passive rate constant out of

the cell for atorvastatin (kb.A) for Models 1 and 2 (Table 4.1) were 7-9 times faster than

the rate into the cell, but again the errors were large (7.4 (0.5-44.9) and 9.3 (0.6-36.5)

/min/106 cells respectively, Table 4.6). In the macro-rate constant models (Models 3

and 4, Table 4.2), kbA was approximately double kfA for Models 3 and 4, but with errors

similar to the micro-rate constant models (4 (0.3-19) and 3.3 (0.4-19.6) /min/106 cells

respectively, Table 4.7).

To compare to passive rate constants to the literature values for atorvastatin,

the passive rate constants (kfA and kbA) are scaled from Model 2 to clearances (Pdif

and Pdef respectively), by multiplying by either the medium volume (500 µl) or cell

volume (0.0055 µl) in which 1× 106 cells exist. The Pdif for Model 2 = 0.55 (0.1-11.7)

µl/min/106 cells) was 11-fold faster than the clearance out of the cell (Pdef= 0.051 (0.03-

0.2) µl/min/106 cells), possibly due to intracellular binding [165, 172, 228]. The Pdif of

atorvastatin into hepatocytes is minor (< 1 %) compared to the uptake clearance (CL.up

= 3375 (2722-10750) µl/min/106 cells, calculated according the equations in Chapter

2 for Vmax and Km (Eqs. 2.29 and 2.30 respectively)), therefore though the error on

Pdif estimation was large it is of little consequence in the uptake of atorvastatin. The

percentage of passive clearance to the overall uptake clearance is similar to the literature

for the uptake of atorvastatin in rat hepatocyte suspensions of 1.5 % [172], but less than

the estimated value in plated rat hepatocytes of a 10 % passive contribution [238].
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Table 4.6: Micro-rate constant individual parameter estimates for atorvastatin in the presence
of CsA. Data are the individual mode of the conditional distribution from three separate exper-
iments (Min-Max). All parameter estimates are scaled to per 106 cells, Vmax.met was scaled to
pmol/min and Km and KI were scaled to nmol/ml

Parameter Competitive Non-competitive
Model 1 2

Passive
kfA (/min) 1.3 (0.3-28.5) 1.1 (0.2-23.3)
kbA (/min) 7.4 (0.5-44.9) 9.3 (0.6-36.5)

Transporter
kaA (/nmol/min) 2.7 (1.4-12.6) 2.6 (1.2-13.3)
kaC (/nmol/min) 1.2 (1-1.4) 0.36 (0.33-0.37)
kdA (/min) 0.005 (0.004-0.005) 0.017 (0.015-0.021)
kdC (/min) 0.54 (0.53-0.55) 0.16 (0.13-0.2)
ktA (/min) 0.3 (0.3-0.3) 0.3 (0.2-0.3)
To (nmol) 2.3 (1.5-3.7) 2.7 (2-3.6)
α N/C 0.013 (0.007-0.023)

Metabolism
Vmax.met (pmol/min) 383 (283-590) 393 (285-500)
Km.met (nmol/ml)∗ 36.9 (26-46.5) 17.7 (8-30.7)
KI.met (nmol/ml)∗ 2.8 (1.7-8.2) 11 (5.5-29)

N/C = not calculated, ∗ = calculated by dividing by Vcell = 0.0055 ml/106 cells, obtained from initial volume
estimates for atorvastatin only (see above)

4.4.2.2 Micro-Rate Constant Transporter Mediated Uptake

The atorvastatin transporter association rate constant (kaA = 2.6 (1.2-13.3) /nmol

/min/106 cells, Table 4.6), was 10-fold faster than the translocation constant (ktA =

0.3 (0.2-0.3) /min/106 cells, Table 4.6), and were the same for Models 1 and 2. The

atorvastatin transporter dissocation rate constant (kdA = 0.017 (0.015-0.021) /min/106

cells) was 150 times slower than kaA and 20 times slower than ktA for Model 2. It

follows then, that very quickly kaA approaches To (see Fig. 4.8, dotted blue line), and

once atorvastatin is bound, it is likely to be translocated into the cell. The result is that

the Michaelis-Menten assumptions (list 2.4.3) discussed in Chapter 2 hold here for ator-

vastatin. This also partially explains why the BIC values (see Table 4.3) obtained for

atorvastatin are much closer between the micro-rate constant and macro-rate constant

models (∆i BIC = 11 between Model 2 and 4, Table 4.3).

The CsA transporter association rate constant (kaC = 0.36 (0.33-0.37) /nmol

/min/106 cells, Table 4.6 model 2), was seven times slower than kaA, whilst the dis-

sociation rate constant (kdC = 0.16 (0.13-0.2) /min/106 cells, Table 4.6 model 2) was

ten times faster than kdA. The difference in ka and kd between atorvastatin and CsA

explains the co-incubation inhibition conclusions in the literature with the KI.up =

0.9(0.8−1) nmol/ml value determined here (from kdC/kaC), that was similar to the IC50

in HEK293-OATP1B1 cells of 0.48 ±0.34 nmol/ml [140] and 0.3 nmol/ml cis-inhibition

with estradiol-17β-glucuronide [208]. The inhibition on pre-incubation therefore comes

from the α term of 0.013 (0.007-0.023), which, if the KI.up is multiplied to obtain a

Kinact.up value of 0.012 (0.0057-0.023) nmol/ml is the same as that for pre-incubation

with atorvastatin in HEKOATP1B1 cells (0.021 ±0.004 nmol/ml) [140], as well as the

trans-inhibition of 0.026 nmol/ml calculated using estradiol-17β-glucuronide as a sub-

81



strate [208].

With regards to the α term in Model 2, this is best illustrated using a reaction

scheme (Fig. 4.7), that is more common in the enzymology literature [210, 239]. The

top row of the scheme represents normal atorvastatin transport, with CsA competitively

binding to Tf on the left hand side. When either is bound (S2 and I2 respectively), then

an opposing free molecule from the medium (I1 and S1 respectively) can bind leading to

a complex I3 via an α term through the current rate constants (ka and kd). Atorvastatin

can then be translocated into the cell faster or slower, dependent on α through αktA

leaving CsA bound to the transporter. It then follows, that if α < 1 and the amount in

the medium of I1 is in excess, that over time the reaction would drive towards I3, with

transport into the cell of atorvastatin then more dependent on αktA than ktA as can be

seen in Fig. 4.8.

Figure 4.7: Reaction scheme for the transport of atorvastatin and its inhibition by CsA. S1,
S2 and S3 are the amount of atorvastatin in the medium, bound to free transporter (Tf ) and
intracellular respectively. I1, I2 and I3 are the amount of CsA in the medium, bound to Tf
and the atorvastatin-transporter-CsA complex respectively. ka and kd are the association and
dissociation rate constants, ktA is the translocation rate constant from tranporter into the cell
for atorvastatin, α is the dimensionless term to describe the effect of CsA binding on atorvastatin
transport

To illustrate how the different aspects of non-competitive inhibition affect ator-

vastatin and CsA, parameter estimates from Model 2 associated with the transporter

(kaA, kaC , kdA, kdC , To and α, Table 4.6) were used to simulate the transporter response

following pre-incubation with CsA using the deSolve package in R [1] (Fig. 4.8). In

the absence of CsA (Fig. 4.8, dotted blue lines), as the incubation concentration of

atorvastatin was increased, so kdA has a larger effect, seen as the broadening of the

peak.

82



Figure 4.8: Model 2 plots of the simulated amounts of atorvastatin bound to the transporter
against time in the absence (dotted blue line) and presence (solid blue line) of CsA. The solid
red line is the amount of CsA bound to the transporter following pre-incubation, and the dashed
red line is the atorvastatin-transporter-CsA complex

After pre-incubation with CsA, the higher affinity atorvastatin competes with

CsA, leading to a decrease in atorvastatin bound (blue solid line), and also a perturbation

in the amount of CsA bound (red solid line), which recovers to near the initial amount of

CsA at lower atorvastatin incubation concentrations as atorvastatin is transported into

the cell. The formation of the atorvastatin-transporter-CsA complex initially starts at

zero and increases over time (Fig. 4.8, red dashed line). As the incubation concentration

of atorvastatin increases, so the complex increases (Fig. 4.8, red dashed line).

The covariance matrix derived from the inverse of the Fisher information matrix

(obtained through linearisation in Monolix 2018R2, as the Fisher information matrix

could not be obtained through the SAEM algorithm (see Chapter 2, Section 2.4.5)) [190]

can be used to evaluate the practical identifiability of the model, assuming that all the

unknown parameters are independent, i.e. the off-diagonal elements are zeros [184, 216].

Using the estimated individual random effects (η, taken from Monolix 2018R2) for Model

2, a covariance matrix was generated in R Studio using GGally [217] (see Fig. 4.9).

Unlike Chapter 3, there was ≤ 0.4 covariance between kaA, kdA and To. This

may be due a large increase in the amount of datapoints from 281 (DCF co-incubation

scenario) to 568 and the higher concentration of timepoints up to the maximum (5

timepoints up to 3 min for the DCF co-incubation scenario and 6 timepoints up to 5

min here). A covariance of -0.8 was observed between Vmax.met and Km.met (Fig. 4.9

indicative of their relationship in the Michaelis-Menten equation.
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Figure 4.9: Covariance matrix of the individual random effects η for Model 2

4.4.2.3 Macro-Rate Constant Transporter Mediated Uptake

The macro-constant model for non-competitive inhibition of atorvastatin uptake (Model

4) has a Vmax.up value similar to the scaled value from Model 2 (Vmax.up = 850 (680 −
1340) pmol/min/ 106 cells), Table 4.7 and Vmax.up = 675 (430 − 1116) pmol/min/ 106

cells respectively). This was similar to the Yamazaki plot Vmax.up estimate = 1253

pmol/min/106 cells, Table 4.4), but not the Lineweaver-Burke plot Vmax.up estimate

= 157 (80 %) pmol/min /106 cells, see Table 4.4). The scaled micro-rate and macro-

rate constant parameter estimates compared favourably to that in the literature in rat

hepatocytes (Vmax.up = 1340± 320 pmol/min /106 cells [172]).

The Km estimate for Model 4 (0.09 (0.04-0.17) nmol/ml, Table 4.7) was two fold

less than the scaled value from Model 2 (0.2 (0.04-0.41) nmol/ml) and was similar to that

seen in plated rat hepatocytes (0.3 nmol/ml, although Vmax.up was low at 58 pmol/min/

mg protein [238]), but less than that in rat hepatocyte suspensions (4 ± 4 nmol/ml,

[172]). Cellular volume estimates have a large effect on both the cellular concentration

calculation prior to parameter estimation (Eq. 4.1), but also in the models themselves

with normalised data. Yabe et al. [172] used the literature value of 0.0039 ml/106 cells

[175], which gave a higher BIC for the data presented here, and is therefore a major

contribution to the source of the differences. To get around this, some authors normalise

the data to /mg protein [32, 237, 238] which can be accurately measured, and for rat is

almost equivalent to per 106 cells [32, 181].

4.4.2.4 Metabolism

2-hydroxy atorvastatin and 4-hydroxy atorvastatin were detected within the cell extract

at 15 s in the three highest dose groups (25-150 nmol/ml), whilst in the lower dose

groups (0.25-5 nmol/ml), detection was variable. The peak area ratio of both metabo-

lites was inhibited by pre-incubation by CsA, which was similar to the metabolite only
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Table 4.7: Macro-rate constant individual parameter estimates for atorvastatin in the presence
of CsA. Data are the individual mode of the conditional distribution from three separate exper-
iments (Min-Max). All parameter estimates are scaled to per 1× 106 cells. Vmax was scaled to
pmol/min, and Km, KI and Kinact.up were scaled to nmol/ml

Parameter Competitive Non-Competitive
Model 3 4

Passive
kfA (/min) 1.5 (0.9-2.7) 1.8 (1-4)
kbA (/min) 3 (0.3-19) 3.3 (0.4-19.6)

Transporter
Vmax.up (pmol/min) 3220 (1460-13000) 850 (680-1340)
Km.up (nmol/ml) 0.74 (0.18-1.08) 0.09 (0.04-0.17)
KI.up or Kinact.up (nmol/ml) 0.1 (0.07-0.22) 0.06 (0.04-1.11)

Metabolism
Vmax.met (pmol/min) 296 (158-840) 364 (211-950)
Km.met (nmol/ml) 340 (251-407) 436 (296-544)
KI.met (nmol/ml) 1.1 (1-1.3) 0.32 (0.27-0.36)

at higher atorvastatin incubation concentrations (see Figs. 4.10 and 4.11), suggestive of

competitive inhibition. The effect of CsA was greatest on 4-hydroxy atorvastatin for-

mation compared to 2-hydroxy atorvastatin formation at lower atorvastatin doses (Figs.

4.11 and 4.10 respectively, red dotted lines). Amundsen et al. [225] also showed the

inhibition by CsA on midazolam metabolism to be concentration dependent in human

liver microsomes.

Neither of the macro-rate constant models (Models 3 and 4) gave realistic esti-

mates for metabolism with a Km.met that was more than the highest incubation con-

centration for atorvastatin (Km.met = 340 (251 − 407) and 436 (296-544) nmol/ml re-

spectively, Table 4.7). This was also the case in the absence of CsA and suggests an

instability in the data analysis and is also related to the structural unidentifiability of

the macro-rate constant models with regard to the Km.met and KI.met (see Table 4.5),

that was not present in the micro-rate constant models (Models 1 and 2), where the

models were at least structurally locally identifiable (see Table 4.5).

Vmax.met however was similar across all four models (see Table 4.6 and 4.7).

Model 2 had a Vmax.met of 393 (285-500) pmol/min/106 cells, with a Km.met of 17.7

(8-30.7) nmol/ml, giving a metabolic clearance (CLmet) of 22 (16-35) µl/min/106 cells,

which was higher than the value in the literature (CLmet = 4.3 ± 0.65 µl/min/106

cells (hepatocytes) - 7.6 ± 0.4 µl/min/106 cells (adjusted from microsomes) [165, 229]).

KI.met was similar to Km.met (11 (5.5-29) and 17.7 (8-30.7) nmol/ml respectively, Ta-

ble 4.6, Model 2), on the assumption that for CsA, the concentration inside the cell is

approximately equal to the concentration outside the cell. From the work of Prueksari-

tanont et al. [231], who measured disposition of CsA in rat hepatocytes, it was reported

that 86 % of the initial concentration of CsA was measured in the cell after five minutes,

whilst only 16 % of the initial concentration of CsA was lost over four hours [231]. This

helps to support the assumption for the CsA KI.met seen here.
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Figure 4.10: Plots of cellular 2-hydroxy atorvastatin peak area ratio against time following the
addition of atorvastatin (0.25, 0.5, 2.5, 5, 25, 50 and 150 nmol/ml) in the absence (blue) and
presence (red) of 10 nmol/ml CsA. Each time course represents one experiment from one Teflon
block trough. Points are data (n = 1− 3) and solid lines are the average peak area ratio

Figure 4.11: Plots of cellular 4-hydroxy atorvastatin peak area ratio against time following the
addition of atorvastatin (0.25, 0.5, 2.5, 5, 25, 50 and 150 nmol/ml) in the absence (blue) and
presence (red) of 10 nmol/ml CsA. Each time course represents one experiment from one Teflon
block trough. Points are data (n = 1− 3) and solid lines are the average peak area ratio
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4.5 Conclusions

In conclusion, the data presented here show that the high throughput method developed

is an improvement compared to existing methods for the assessment of atorvastatin

uptake in rat hepatocytes and its inhibition by CsA given the models fits and parameter

estimates. Through the use of mechanistic modelling and comparison of the % RMSRE

and wBIC, a micro-rate constant model describing the uptake of atorvastatin and its

complex inhibition by pre-incubation of CsA was developed (Model 2) and compared

across models (Model 1, 3 and 4). The models all included two passive rate constants

for the movement into and out of the cell for atorvastatin, as well Michaelis-Menten

metabolism and subsequent competitive inhibition by CsA. Non-competitive inhibition

of uptake of atorvastatin by CsA in rat hepatocytes (Model 2) through the use of micro-

rate constant models, was the best fitting of the three models tested (lowest % RMSRE

and BIC, Table 4.3). The use of a structurally identifiable model (Models 1 and 2)

enabled the determination of uptake and metabolic processes that were similar to those

in the literature. Whilst the use of macro-rate constant models (Models 3 and 4) that

were structurally unidentifiable unless two parameters were known (see Table 4.5) were

not able to capture the metabolic processes and as such were not the best fitting models

(see Table 4.3).

Following on from Chapter 3, a D-optimal design for Model 2 was undertaken

using the PopED function in R [195] using eight different atorvastatin concentrations

and 12 different timepoints. Both the triangular matrix and full matrix gave a support

point at 0.25 min (3 and 2 replicates respectively). However, given the difficulty in

taking multiples of the same timepoint using this method, and the variability seen with

the lower atorvastatin incubation concentrations, increasing the entire timecourse at

lower concentrations may decrease the covariance. The optimal designed timepoints are

as follows:

• Triangular Matrix: 0.25, 0.25, 0.25, 1.2, 8.4, 8.7, 25.5, 30, 35, 59, 67 min

• Full Matrix: 0.25, 0.25, 5.6, 9.2, 13.2, 14.3, 20.6, 39, 43, 50, 64, 65 min

Future work should be undertaken to establish the simultaneous analysis of sub-

strate and inhibitor in a single sample so that a more holistic understanding of drug-drug

interactions can be described, and is covered in Chapter 5. Quantification of metabolites

both in the cell and medium should also be evaluated to improve the understanding of

the complexity of metabolism and its inhibition as well as possible effects on uptake

processes.
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Chapter 5

Evaluation of the Uptake of

Pitavastatin and Eltrombopag in

Cryopreserved Human

Hepatocytes

5.1 Introduction

The previous experimental chapters have described the analysis of uptake of substrates

(DCF, Chapter 3 and atorvastatin, Chapter 4) and their inhibition (through gemfibrozil

and cyclosporine respectively) using mechanistic models in experimental systems of in-

creasing complexity from cell-lines to isolated hepatocytes. What was apparent in the

analysis of both of the processes, was that the outcomes were limited by the lack of

measurement of both substrate and inhibitor in the same sample to understand the

interactions in depth. This chapter therefore will evaluate whether the simultaneous

measurement of both a high affinity substrate (pitavastatin) and “inhibitor” (eltrom-

bopag, also a substrate) can improve the fit to the more extensive data available, and

determine through the use of a mechanistic modelling approach the mode of inhibition

between pitavastatin and eltrombopag.

Pitavastatin, which like atorvastatin is one of the family of HMG-CoA reductase

inhibitors and used to manage hypercholesterolaemia [240], was determined in vitro to

be a substrate of OATP1B1 and OATP1B3, with a total fraction transported into cells

of 0.78 by these transporters, and the remaining fraction of pitavastatin through passive

movement based on the total uptake clearance. Pitavastatin is also a substrate of the ef-

flux transporters BCRP and MRP2 [9, 132]. Pitavastatin is more sensitive to inhibition

by rifampicin (OATP, BCRP and MRP2 inhibitor) than rosuvastatin; in vitro, both

in human hepatocytes and MDCKII cells, overexpressing hOATP1B1 or hOATP1B3,

as well as in healthy volunteers [9] and is thus a good candidate to use for evaluat-

ing transporter mediated drug-drug interactions (TrDDIs). In human liver microsomes

pitavastatin is metabolised via lactonisation through the hUGT1A3, which can then be
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further metabolised by hCYP3A4 [241]. However, this route of elimination is relatively

small, compared with the major route of biliary elimination of pitavastatin (53 %) and

a minor 3 % of pitavastatin in urine [240]. The generation of the lactone metabolite

through UGT is also confounded as it is a breakdown product of pitavastatin, which is

in equilibrium with the active acid form, and is therefore seen at similar concentrations

in human plasma in healthy volunteers [9, 242].

Eltrombopag, is a thrombopoietin agonist used in the management of thrombo-

cytopenic purpura, and the dose is individualised based on platelet count to prevent

excessive clotting or lack of effect [243]. It is highly protein bound, and adsorption

to plasma proteins was included in order to obtain an IC50 value that explained the

inhibition of rosuvasatin [244]. In vitro studies found eltrombopag to be a substrate of

hOATP1B1, hOATP2B1, hOCT1 and hBCRP, and is able to inhibit probe substrates

for each transporter [244, 245]. The uptake by hOATP1B1 is disputed in the FDA new

drug filing for eltrombopag [246], maybe due to the large amount of non-specific binding

to plastic [245]. Clinical drug-drug interactions (DDIs) were observed between eltrom-

bopag and rosuvastatin (as a perpetrator, [247]) and lopinavir-ritonavir (as a victim,

[248]). Takeuchi et al. [244] and Elsby et al. [249] both found eltrombopag to inhibit ro-

suvastatin through hBCRP, and reasoned that this was the main cause of the interaction

with rosuvastatin in the clinic through the use of a physiologically based pharmacoki-

netic model (PBPK), as well as a minor contribution from hOATP1B1 inhibition [244].

5.2 Methods

5.2.1 Chemicals

Eltrombopag and pitavastatin calcium were obtained from Toronto Research Chemi-

cals (Toronto, Canada), caesium chloride (C3032), mineral oil (69794, density 0.872

g/l), oil red O (O0625), Dimethyl sulfoxide (DMSO, 99.5 %), formic acid (99 %) and

5,5-diethyl-1,3-diphenyl-2-iminobarbituric acid (S518891) were obtained from Sigma-

Aldrich (Stockholm, Sweden). Acetonitrile, methanol, Leibovitz L15 medium (21083027)

and silicone oil (15445005, density 1.08 g/l) were of analytical or cell culture grade and

obtained from Thermo-Fisher Scientific Inc (Gothenburg, Sweden).

5.2.2 Use of Hepatocytes

Human hepatocytes were obtained from BioIVT (Lot Number: LYB, 10 donor LiverPool
TM

(8 Caucasians, 1 African-American and 1 Hispanic, see Appendix E, Brussels, Belgium)

and thawed according to supplier recommended guidelines in Leibovitz L15 medium.

Cells were counted using a haemocytometer in 0.4 % trypan blue, with a viability of

84-87 % over the three experiments and then diluted to 3×106 cells/ml in Leibovitz

L15 medium. Hepatocytes were kept on ice prior to use and were used within 3 h of

defrosting.

89



5.2.3 Incubations

0.4 ml of hepatocytes was diluted 1:1 with Leibovitz L15 medium either containing

DMSO blank (0.1 % for pitavastatin or 0.25 % for eltrombopag alone) or eltrombopag

at 90 nmol/ml and pre-incubated at 1.5 × 106 cells/ml for 15 min at 37 ◦C in 7 ml

glass scintillation vials (PerkinElmer, Vasby, Sweden) in a shaking water bath (Grant

Instruments, Cambridge, UK). Pitavastatin was dissolved and serially diluted in DMSO

to give 0.12, 0.4, 1.2, 4, 12 and 40 mmol/l before being diluted 400-fold into 37 ◦C

Leibovitz L15 medium. 30 mmol/l of eltrombopag was dissolved in DMSO, then diluted

333-fold to 90 nmol/ml in Leibovitz L15 medium. Incubations were started by the

addition of 0.4 ml of pitavastatin solution at final concentrations of 0.3, 1, 3, 10, 30 and

100 nmol/ml, or by the addition of 0.4 ml of eltrombopag at a final concentration of 30

nmol/ml (final DMSO 0.35 % and 1×106 cells/ml hepatocyte suspension). Samples were

taken at 0.25, 0.5, 1, 2, 5, 10 and 30 min following the addition of pitavastatin and the

cells separated using an oil spin method, similar to Nordell et al. [250] and Grandjean

et al. [8]. Briefly, 0.5 ml microtubes (12049877, Thermo-Fisher Scientific, Gothenburg,

Sweden) layered with 15 µl of 4 % caesium chloride onto which 140 µl was added of 8:2

silicone oil: mineral oil, containing oil red O for visualisation purposes. Samples were

taken by transferring 100 µl of hepatocyte suspension into the microtube which was then

centrifuged for 15 s in a Minispin centrifuge (Eppendorf, Horsholm, Denmark), during

which time the hepatocytes passed through the oil into the caesium chloride bottom

layer. The tubes were then frozen on dry ice and the bottom layer cut off once frozen

into a 1 ml deep well plate (260252, Thermo-Fisher Scientific, Gothenburg, Sweden). 50

µl of water suitable for UPLC (MilliQ ELGA water, Merck-Millipore, Solna, Sweden)

and 150 µl of stop solution (50:50 MeOH:MeCN, containing 0.8 % formic acid and 4

nM 5,5-diethyl-1,3-diphenyl-2-iminobarbituric acid as an internal standard) were then

added. Samples were mixed on a plate shaker for 1 h and then stored at 80◦C overnight.

Prior to analysis, samples were defrosted and mixed 30 min before centrifugation of the

plates at 4000g for 20 min at 4 ◦C. Samples were transferred to a conical bottomed

96 well plate for analysis (249944, Thermo-Fisher Scientific, Gothenburg, Sweden) and

diluted 1:1 with MilliQ ELGA water.

5.2.4 UPLC Mass Spectrometry Analysis

Samples were analysed by ultra-performance liquid chromatography (UPLC)high res-

olution mass spectrometry (HRMS) operated in positive ion mode using an Acquity

UPLC I Class system with column and sample manager and a Xevo TQ-S mass spec-

trometer (Waters, Sollentuna, Sweden). For HPLC analysis, a Waters Acquity UPLC

HSS T3 C18 50 x 2.1mm, 1.8 µm column (Waters, Sollentuna, Sweden) was used with

a flow rate of 1ml/min at 40 ◦C. Mobile phase A was composed of 0.1 % formic acid

in MilliQ ELGA water, and mobile phase B was composed of acetonitrile and 0.1 %

formic acid. The gradient system used was as follows: initially, 0.2 % of mobile phase

B was held for 1.3 min followed by a linear gradient to 95 % of mobile phase B from

1.3 to 1.8 min, and finally 0.2 % of B up to 2 min. Injections of 0.3-1 µl were made,
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depending on incubation dose of pitavastatin. For MS analysis the following settings

were used: capillary voltage 0.5 kV; desolvation temperature 600 ◦C; cone gas flow 150

l/h; nebulizer gas 7.0 bar; collision gas flow 0.15 ml/min. The mass spectrometer was

operated in a selected positive ion scanning mode, monitoring for the protonated masses

of pitavastatin (422.1768>290.1528) and eltrombopag (443.1298>182.9503). The inter-

nal standard was monitored at 336.2126>194.9987. The UPLC-MS data were acquired,

processed and analysed using TargetLynx software (version 4.1, Waters, Sollentuna, Swe-

den). Eltrombopag and pitavastatin standard curves were linear up to 1000 pmol/ml

with R2 > 0.96 and a limit of quantitation of 4 pmol/ml and 1 pmol/ml respectively.

5.2.5 Data Analysis

The bottom layer concentration was converted to cellular concentration using a cellular

volume (Vcell) of 3 µl per 1× 106 human hepatocytes [49] using:

[cell] (nmol/ml) =

(
[Bottom layer] × 15.3 µl

Vcell

)
/1000 (5.1)

where the cell volume (Vcell) per 1× 105 cells was 0.3 µl and the volume of the bottom

layer of caesium chloride was 15 µl, a dilution factor of 1000 was used to convert the

concentration from pmol/ml to nmol/ml. As described in Chapter 2 (Table 2.3), there

are various cell volumes that one could use, therefore: the median human volume of 2.7

µl/106 cells; 3 µl/106 cells (human) [49] and 3.9 µl/106 cells (rat) [175] were evaluated

using a micro-rate constant model for pitavastatin only, which was the same as the model

structure used by Grandjean et al. [8], with the addition of a metabolic elimination rate

constant (ke, see Fig. 5.1a). The volume of 3 µl [49] had the lowest Bayesian Information

Criterion (BIC) value and a weighted BIC value (wBIC = 0.79, Eq. 5.43) and was used

in the rest of this chapter, whilst the median value of 2.7 µl and 3.9 µl had wBIC =

0.17 and 0.039 respectively and were therefore not used further.

5.2.6 Mechanistic Modelling

A three compartment mechanistic model to describe the uptake of pitavastatin into

hepatocytes through the use of micro-rate constants for passive and active processes

has previously been described [8]. In the present study, this model was extended to

include a first order elimination rate constant (ke) for pitavastatin, and passive and

active uptake processes for eltrombopag (see Fig. 5.1b and c). A requirement for the

micro-rate constant models (see Fig. 5.1a-c) is that the amount of free transporters (Tf )

available for binding of pitavastatin and eltrombopag need to be known, but it is not

normally the case. As per previous chapters (Chapters 3 and 4), Tf can be eliminated

by a steady state analysis of the states for medium, transporter and intracellularly for

pitavastatin and eltrombopag (see Chapter 3, Eqs. 3.5-3.16 for derivation) to give :

Tf = To − S2 − I2 − I4 (5.2)
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Figure 5.1: Schematic of the micro-rate constant (a-c, Table 5.1) consisting of medium, trans-
porter and intracellular, and macro-rate constant (d-f, Table 5.2) consisting of medium and in-
tracellular mechanistic models. a and d pitavastatin only used in parameter estimation. Pitavas-
tatin following pre-incubation with eltrombopag with competitive (b and e) and non-competitive
(c and f ) mode of inhibition respectively.

where To is the total amount of transporters responsible for the uptake of pitavas-

tatin and eltrombopag, S2 and I2 are the amounts bound to transporter and I4 is the

pitavastatin-transporter-eltrombopag complex.

5.2.6.1 Structural Identifiability Analysis

As per Chapters 3 and 4, prior to parameter estimation, models were evaluated for struc-

tural identifiability (see Chapter 2, section 2.4.1) using the Identifiability Analysis

package in Mathematica 11.3. Micro-rate constant models (Model 1 - competitive in-

hibition of uptake, and Model 2 non-competitive inhibition of uptake, Table 5.1) and

macro-rate constant models (Model 3 - competitive inhibition of uptake, and Model 4 -

non-competitive inhibition of uptake, Table 5.2) with measurement of pitavastatin, and

with or without measurement of eltrombopag were evaluated, both for competitive and

non-competitive inhibition (see Tables 5.1 and 5.2 for observations), assuming that both

pitavastatin and eltrombopag are substrates of uptake transporters [132, 244].
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5.2.6.2 Parameter Estimation

The final chosen model was based on the weighted Bayesian information criterion (wBIC,

Eq.5.43) to more harshly penalise over-parameterisation (Eq. 5.42) within the same set

of observations compared to Akaike information criterion (AIC, Eq. 5.41) [211, 212]

(with or without eltrombopag measurement), as well as the sum of the individual and

population prediction of the relative mean square root error (RMSRE) given by:

% RMSRE = 100×

√
1

n

∑(
Observedi − Predictedi

Observedi

)2

, (5.40)

AIC = −2.LL(θ) + 2p (5.41)

and

BIC = −2.LL(θ) + log(n)p, (5.42)

wBICi =
exp(−0.5∆i)∑m
i exp(−0.5∆i)

(5.43)

and

∆i = BICi −BICmin (5.44)

where 1
n is the inverse of the total number of datapoints multiplied by the sum of the

relative square error of each datapoint i. LL is the log likelihood of the data, n is the

total number of data points and p is the number of parameters. ∆i is the difference

between the individual BIC (BICi) and the lowest BIC (BICmin) calculated using Eq.

5.44, exp(−0.5∆i) is the relative likelihood and
∑m

i is the sum of individual i relative

likelihoods from the mechanistic models with the same number of datapoints used for

parameter estimation (in this case m = 4 different models) [212].

As eltrombopag was pre-incubated in the experimental design at 45 nmol/ml (or

nmol as the incubation volume = 1 ml) and then diluted to 30 nmol by the addition of

pitavastatin, a micro-rate constant model for eltrombopag only was used to obtain initial

parameter estimates in Monolix suite 2018R2 (Lixoft, Antony France) (see Fig.5.3).

These parameter estimates were then used in a simulation at the 45 nmol using deSolve

in R [1] to obtain initial conditions for the simultaneous analysis of pitavastatin and

eltromobopag, and fitted as free-parameters in the final model. Parameter estimation for

the mechanistic models was conducted within Monolix suite 2018R2 (Lixoft, Anthony

France), where to ensure positivity, a log-normal distribution was assumed for each

parameter in the candidate models, together with a proportional residual error model

for the observations (see Table 5.1 Eqs. 5.22-5.25 and Table 5.2 Eqs. 5.36-5.39 for

micro-rate constant and macro-rate constant observations respectively).

Due to the large number of parameters to be estimated in the combined pitavas-

tatin and eltrombopag mechanistic models, initial estimates for pitavastatin, and eltrom-

bopag only were obtained for the micro-rate constant models (no macro-rate constant

estimates could be obtained for eltrombopag alone). In all the datasets, the pitavastatin
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Figure 5.2: a Yamazaki plot of initial velocity at 15 s against pitavastatin incubation concen-
tration, dashed line = total, dotted line = passive, solid line = saturable uptake. Approximate
parameters Vmax = 300 pmol/min/106 cells, Km = 10 nmol/ml b Lineweaver-Burke (dou-
ble reciprocal) plot using “Active” from a. Parameter estimates Vmax =1/y intercept= 141
pmol/min/106 cells (RSE = 36 %), Km = gradient ×Vmax= 28 nmol/ml (RSE = 21 %)

Figure 5.3: Plot of eltrombopag cellular concentration against time following a 30 nmol incuba-
tion. Shapes are the experimental data from 3 separate experiments, and the solid line is the
simulation of eltrombopag (see Table 5.1 Eqs. 5.3, 5.5 and 5.7, without keP )

data at an incubation concentration of 100 nmol/ml was excluded from one experiment

(Triangles in Figs.5.4 and 5.6) due to the large concentrations present compared to

the other experiments. The large concentrations adversely affected the total amount of

transporters available for uptake to more than double the rest of dataset, and therefore

the fits and parameter estimates were also affected. To enable comparisons of the micro-

rate constants to those commonly used in the literature, parameters were scaled under

the pseudo steady-state assumptions to Vmax.X , KM.X , KI.X and Kinact.E , as discussed

in Chapter 2, Section 2.4.4. To obtain initial parameter estimates for the uptake of

pitavastatin in the macro-rate constant models (Models 3 and 4, pitavastatin only) a

Yamazaki plot and Lineweaver-Burke plot were used (Fig. 5.2a and b respectively). The

Vmax and Km initial parameter estimates were quite different between the two meth-

ods with a 3-fold difference between the methods (Vmax = 300 and 141 (RSE = 36 %)

pmol/min/106 cells respectively, Km = 10 and 28 (RSE = 21 %) nmol/ml respectively),

possibly due to a larger influence in the Yamazaki plot of the higher velocities in the

mean value (see Fig. 5.2b points).
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Figure 5.4: Plots of hepatocyte cell concentration against time over 30 min for pitavastatin
(0.3-100 nmol, blue, normalised to t = 15 min) with and without 15 min pre-incubation with
eltrombopag (red). Points are data from three separate experiments. Solid and dashed lines
are the median pitavastatin individual fits from Model 1 with measurement of eltrombopag (see
Table 5.4). The shaded areas are the maximum and minimum individual fits from Monolix

5.3 Results and Discussion

5.3.1 Structural Identifiability Analysis

All candidate models (four micro-rate constant models, Table 5.1, and four macro-rate

constant models, Table 5.2) were evaluated to determine whether, inclusion of the cellu-

lar measurment of eltrombopag in addition to the measurement of cellular pitavastatin

aided in the structural identifiability outcomes within the Identifiability Analysis

package [16, 160]. For the micro-rate constant models (Models 1 and 2), measurement

of the cellular amount of eltrombopag did not alter the structural identifiability result,

with all four models at least locally structurally identifiable, with no parameters uniden-

tifiable as long as the initial conditions were known (see Table 5.3). For the macro-rate

constant models (Models 3 and 4), measurement of eltrombopag was needed for the

models to be at least locally structurally identifiable (see Table 5.3), otherwise there

was one degree of freedom, with one of the following parameters to be known (for Mod-

els 3 and 4 respectively) for the model to be at least structurally locally identifiable:

Km.P or KI.E , and Vmax.P or Kinact.E .

5.3.2 Mechanistic Modelling and Parameter Estimates

Out of the eight mechanistic models evaluated (see Tables 5.1 and 5.2), regardless of

whether eltrombopag was measured or not, the micro-rate constant model versions were

always the best fitting model (Model 1), with wBIC values u 1 (see Table 5.4, high-

lighted in bold) compared to the macro-rate constant models (Model 3). In the absence
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Figure 5.5: Plot of individual weighted residuals (IWRES) obtained from Monolix 2018 R2
against time for Model 1 in the presence of eltrombopag. a pitavastatin (blue circles) and
measured eltrombopag (red triangles). b pitavastatin without measured eltrombopag. Solid line
is the LOESS, dashed lines are the 95 % CI and the dotted line highlights an IWRES of 0

of measured eltrombopag the macro-rate constant models (Models 3 and 4) had the

largest % RMSRE values for the individual predictions (RMSRE = 16 %), population

predictions (RMSRE = 42 and 46 % for competitive inhibition (Model 3) and non-

competitive inhibition (Model 4) respectively) and thus a total % RMSRE (58 and 62

% respectively, see Table 5.4), and were ranked as 7th and 8th of all models tested (see

Table 5.4). This confirmed the structural identifiability analysis results demonstrating

the utility of a formal structural identifiability analysis a priori (Table 5.3).

The overall best fitting mechanistic model to the data based on the total %

RMSRE and wBIC was the micro-rate constant model, including measurement of el-

trombopag for mutual competitive inhibition (Model 1, Fig. 5.1a and b, RMSRE = 41

% and wBIC ≈ 1, Table 5.4). No model accurately fitted to the population data, with

residuals that were 3-4 times higher than the individual prediction residuals (see Table

5.4), therefore all parameter estimates described below use the individual mode of the

conditional distribution (min-max).

The improvement of fit using micro-rate constants against macro-rate constants

was also discussed by Grandjean et al. [8] who also evaluated the uptake of pitavastatin

in human hepatocytes, and that work is concurrent with the comparison of models drawn

here.

The best fitting micro-rate constant model (Model 1, with measurement of el-

trombopag) fitted the individual data well (Fig. 5.4), with an initial increase in the

pitavastatin concentration at lower doses in the cell to a maximum followed by a de-

crease due to loss from the cell via metabolism (0.3-10 nmol/ml incubation, Fig. 5.4,

solid lines). As the dose of pitavastatin increased (30 and 100 nmol/ml incubation), the

uptake was saturated, and a decrease in concentration could not be observed (Fig. 5.4),
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due either to saturation of metabolism or the large concentration of pitavastatin in the

cell, masking the metabolism. In the presence of eltrombopag, the transporter mediated

uptake of pitavastatin was reduced (Fig. 5.4, dotted lines), which could be overcome by

increasing the pitavastatin dose, until the fits overlapped the pitavastatin only data at

30 and 100 nmol incubation (Fig. 5.4).

The individual weighted residuals (IWRES) for pitavastatin in the presence of el-

tromboag had a mean of around zero, with visually normally distributed errors, whether

eltrombopag was measured (Fig. 5.5a blue circles for pitavastatin and red triangles for

eltrombopag respectively) or not (Fig. 5.5b blue circles).

The macro-rate constant best fitting model (Model 3, with measured eltrombopag

see Table 5.4) fit the uptake of pitavastatin and its inhibition by eltrombopag well (Fig.

5.6). However, the elimination through metabolism was not well fitted (flat blue and

dotted red line, Fig. 5.6), and was due to a 12-fold lower pitavastatin elimination rate

constant for the macro-rate constant model (Model 3, with measured eltrombopag, keP

= 0.018 (0.014-0.021) /min/106 cells, Table 5.6), compared to the micro-rate constant

model (Model 1, with measured eltrombopag, keP = 0.22 (0.2-0.24) /min/106 cells,

Table 5.5).
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It was important that when eltrombopag measurements were included, that the

model was able to adequately describe the pitavastatin and eltrombopag data as well.

Model 1 (Table 5.1, with measurement of eltrombopag), with a wBIC ≈ 1 (see Table

5.4) included eltrombopag initial conditions obtained from the eltrombopag only data

at 30 nmol (see Fig. 5.3) as free parameters in the mechanistic model (final individual

parameter values, Model 1 (min-max): 19.6 (18.9-20) nmol, 0.002 (0.002-0.003) nmol and

2.84 (1.37-4.37) nmol for medium (I1), transporter (I2) and cell (I3) respectively). The

inclusion of the initial conditions as free parameters for eltrombopag was important,

due to the pre-incubation step of eltrombopag from 45 nmol to a nominal 30 nmol,

which based on the dilution of eltrombopag with pitavastatin at 15 min and was not

known. The total initial amount (22.4 (20.3-24.4) nmol) was similar to the nominal

dose (30 nmol) after dilution from 45 nmol. Due to the variability in the data (see Fig.

5.3 data points), the plotted eltrombopag was normalised to the maximum from the

geometric mean of the eltrombopag only data at 30 nmol to give a percentage value.

When pitavastatin was not present (dose = 0 nmol, Fig. 5.7), there was an initial rapid

increase in eltrombopag concentration followed by a decrease after 5 min. After the

dilution of eltrombopag through the addition of pitavastatin doses (0.3-100 nmol), there

was an initial decrease in the eltrombopag concentration, to a new lower asymptote (Fig.

5.7). In the presence of higher concentrations of pitavastatin (30-100 nmol incubation),

the amount of intracellular eltrombopag decreased to a lower asymptote compared to

the lower doses (0.3-10 nmol) as the eltrombopag uptake was inhibited (Fig. 5.7).

5.3.2.1 Passive Rate Constant and Binding

In the best fitting micro-rate constant model (Model 1, with measurement of eltrom-

bopag), the passive movement of pitavastatin into the cell (kfP = 0.00055 (0.00046-

0.00061) /min/106 cells) was much slower (≈400 fold) than the passive movement of

pitavastatin out of the cell (kbP = 0.21 (0.18−0.22) /min/106 cells) (see Table 5.5). For

eltrombopag, the passive movement into the cell for Model 1 (kfE = 0.05 (0.04− 0.06)

/min/106 cells, Table 5.5) was 10-fold slower than the passive movement out of the cell

(kbE = 0.43 (0.35−0.65) /min/106 cells, Table 5.5). kfE was 100 times faster than kfP ,

whilst kbE was of the same order of magnitude as kbP . The passive rate constants for

pitavastatin and eltrombopag for the other micro-rate constant models were the same

as described above (see Table 5.5).

In the best fitting macro-rate constant model (Model 3, with measurement of

eltrombopag, see Table 5.4), the passive rate constant into the cell for pitavastatin

(kfP = 0.0047 (0.0045− 0.0047) /min/106 cells, Table 5.6) was approximately 10 times

faster than for the micro-rate constant model (Model 1, see Table 5.5). The passive

rate constant out of the cell for pitavastatin (kbP = 1.04 (0.54 − 1.42) /min/106 cells,

Table 5.6) was 5 times faster than for the micro-rate constant model (Model 1, see Table

5.5). The passive rate constant estimates for eltrombopag were around 10-fold faster

in Model 3 (with measurement of eltrombopag) (kfE = 0.86 (0.79 − 0.91) /min/106

cells, kbE = 5.61 (3.98 − 10.7) /min/106 cells, Table 5.6) compared to the best fitting
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Figure 5.6: Plots of hepatocyte cell concentration against time over 30 mins for pitavastatin
(0.3-100 nmol, blue, normalised to t = 15 min) with and without 15 min pre-incubation with
eltrombopag (red). Points are data from three separate experiments, Solid and dashed lines are
the median individual fits from the best fitting macro constant model (see Table 5.4, ranked 4th)
in the absence and presence of eltrombopag respectively, and shaded areas are the maximum
and minimum individual fits from Monolix

micro-rate constant model (see Table 5.5).

If kfP is scaled up to a passive clearance (Pdif ), that is commonly used in the

literature, by multiplying by the medium volume (1000 µl), the Pdif.P for pitavastatin

is within the lower range of others in the literature (0.55 (0.46-0.61) µl/min/106 cells

and 0.4-13 µl/min/106 cells [173, 174, 250, 251] respectively). The value scaled up

from Grandjean et al. [8] was eight times higher (100 µl/min/106 cells) than the largest

literature value, and was similar to that seen for more highly permeable drugs such as

saquinavir (Pdif = 191 (SE = 24)µl/min/106 cells, fraction transported = 52 %, [172])

or glyburide (Pdif = 100 (SE = 12) µl/min/106 cells, fraction transported 55 % [250].

If the passive rate constant out of the cell (kbP ) is also scaled to a passive clearance

(Pdef.P ), by multiplying by the cell volume of 3 µl = 0.62 (0.55-0.67) µl/min/106 cells,

and was similar to the value obtained with micro-rate constants by Grandjean et al.

[8] (0.89 (27 %) µl/min/106 cells). If Pdif.P and Pdef.P are compared, the passive

clearance into and out of the cell are similar when normalised to volume, and confirmed

experimentally, with what is assumed in the literature regarding passive movement of

drug [173, 174, 250, 251]. However, this assumption does not hold when the dominant

uptake process is not transporter mediated, as was the case with eltrombopag in Model

1, with a Pdif.E of 52 (40-64) µl/min/106 cells and a Pdef.E of 1.3 (1.05-1.94) µl/min/106

cells, and therefore caution should be used when using a single parameter to describe

passive movement into and out of the cell.

When a single parameter to describe passive movement of drug, the fraction

unbound in the cell (fu.cell) is used in the literature to allow for intracellular binding on
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Figure 5.7: Plots of % of the maximum eltrombopag only cellular concentration against time
over 30 min for eltrombopag in the presence of pitavastatin (0.3-100 nmol) added at t = 15 min,
(normalised to t = 0 min). Shapes are data from three separate experiments. Solid lines are
the median individual fits from the best fitting micro-rate constant model (Model 1, Table 5.4).
Sub-plots are separated by dose of pitavastatin and eltrombopag only control (0)

the passive movement out of the cell [172, 173]. Estimates for fu.cell can be obtained

using multiple techniques: heat inactivated hepatocytes [165]; linear regression obtained

using the logDpH 7.4 across different compounds [172]; parameter estimation [164, 173]

or as separate binding rate constants, either through separate experiments [170] or

during parameter estimation as membrane binding [165, 250]. We used heat inactivated

human hepatocytes across the concentrations used in the experiments, with pitavastatin

(0.3, 10 and 100 nmol/ml) or 30 nmol/ml of eltrombopag, which were then incubated

overnight in a Rapid Equilibrium Dialysis (RED) device. The RED device works with

low volumes across a medium chamber (500 µl) and incubation chamber containing

the hepatocytes (300 µl), and as such has been reported to even out the non-specific

binding (NSB) between the membrane and wells, thereby improving recovery [252]. The

free fraction in the incubation (fu.inc) is calculated as:

fu.inc =
[medium chamber] (White)

[incubation chamber] (Red)
. (5.45)

The amount of non-specific binding to the labware used in the RED device experiment

is important to gain information regarding the recovery of pitavastatin or eltrombopag:

% recovery = 100× 300 · Red + 500 ·White

300 · (incubation concentration)
. (5.46)

For pitavastatin, the fu.inc values were similar at 0.3 and 10 nmol/ml (0.87 (9 % rela-

tive standard deviation (% RSD)) and 0.93 (4 %) respectively), whilst at 100 nmol/ml

the data were unreliable (fu.inc > 1). For eltrombopag the fu.inc following a 30 nmol

incubation was 0.04 (5 %). The % recovery for both pitavastatin and eltrombopag was

low at 55 % (3 %) and 10 % (5 %), and this may be due to the lack of a RED device

washing step prior to use in the experiment [252]. The fu.cell value can be estimated
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using the method of Paine et al. [165]:

fu.cell =
Vcell

Vinc
fu.inc

− Vmedium − kmem
(5.47)

where Vcell was 3.6 µl for 1.2× 106 cells, the experimental incubation volume (Vinc) was

1203.6 µl, Vmedium was 1200 µl and kmem was the membrane volume fraction (1 % of

the total volume = 0.0036 µl, [165]).

The low recovery for pitavastatatin and eltrombopag makes the use of fu.cell in

data analysis unreliable. If the fraction unbound was to be included in the mechanistic

models used here (see Tables 5.1 and 5.2), then the model would be structurally uniden-

tifiable as fu.cell is already included in the rate constants themselves and the parameter

would be inestimable as the value always approached 1 when not fixed.

5.3.2.2 Micro-Rate Constant Transporter Mediated Uptake

The transporter association rate constant (kaX) and dissociation rate constant (kdX)

were similar between pitavastatin and eltrombopag in the best fitting micro-rate constant

model (Model 1, with measurement of eltrombopag, kaX = 0.17 (0.14-0.25) and 0.26

(0.23-0.31) /nmol/min/106 cells, kdX = 2.2(1.97−2.37) and 1.57 (1.42-2) /min/106 cells

respectively, Table 5.5), suggesting similar binding kinetics to the transporter.

The translocation rate into the cell (ktX) was six times faster for pitavastatin than

for eltrombopag (Model 1, with measurement of eltrombopag, 1.65 (1.57-1.74) and 0.27

(0.24-0.32) /min/106 cells respectively, Table 5.5), and was what defined the difference

in transporter mediated uptake between the two substrates. The transporter mediated

parameters were similar across all micro-rate constant models (Models 1 and 2), with the

exception of the eltrombopag translocation rate constant (ktE = 0.0004 (0.0003−0.0005)

/min/106 cells) which was 1000 fold slower in the non-competitive inhibition model than

the competitive inhibition model (see Table 5.5) probably due to ktE being unaffected

by α in the model structure (Eq. 5.18).

The kaP value obtained for pitavastatin in human hepatocytes over 70 s in the

literature was 44-fold faster (7.4 (51 %) /nmol/min/106 cells, [8]) than the kaP value

obtained here, whilst the kdP and ktP were of the same order of magnitude (kdP = 6.3

/min/106 cells (not able to calculate error, [8]) and ktP = 4.3 (85 %) /min/106 cells,

[8]). The extended timepoints used here up to 30 min post addition of pitavastatin

(compared to 70 s), also enabled the standard errors of the dissociation rate constant

from the transporter (kdP ) to be determined and reduced error on ktP estimated from

the data.
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The total amounts of transporters (To = 0.18 (0.11 − 0.37) nmol/106 cells) de-

termined from this data set for pitavastatin and eltrombopag are difficult to compare

to measured values of uptake transporters obtained from hepatocytes or liver tissue,

which vary across papers and ethnicity due to SNPs in the transporters (see Chapter 2).

For pitavastatin, hOATP1B1 dominates the uptake process, with a minor contribution

from hOATP1B3 [132], whilst for eltrombopag it is assumed that passive dominates,

but it is also a substrate of hOATP1B1 and hOCT1 [245]. The total hepatic abun-

dance of hOATP1B1, hOATP1B3 and hOCT1 in Caucasians obtained during a meta-

analysis of literature data from liver tissue was ∼ 11 pmol/106 cells [57], which is 16-fold

lower than the To value, assuming that only one transporter site moves one molecule

into the cell. Unlike in HEK293-OATP1B1 cell-lines, where the amount of protein in

hOATP1B1 containing cells and MOCK cells was measured to obtain an estimate of

membrane hOATP1B1 associated protein, making the scale up of the To more simplistic

(see Chapter 3), there are no such measurements here. The majority of the hepatocyte

donors used in this study were Caucasian, with one Hispanic and one African-American,

with a minimum age of 10 month old, a 4 year old female, with a maximum age of 60

years old (Appendix E). The hOATP1B1*14*14 polymorphism is present in 0.74-0.77 of

African-Americans, and 0.3-0.51 of Caucasians [55] who all have increased hOATP1B1

protein expression in hepatocytes and therefore an increase in the maximum uptake ve-

locity (Vmax), leading to a decrease in the predicted plasma exposure of statins, due to

an increased liver uptake [56]. Infants upto 1 year old have been shown to have signif-

icantly lower hepatic mRNA for hOATP1B1, hOATP1B3 and hMRP (p = 0.05) [253],

which may also affect the total amount of transporters if the amount of protein was

also decreased significantly. It is not currently known how many molecules are trans-

ported when a molecule binds to the active transporter site. Site-directed mutagenesis

studies have built on the multiple affinities seen for estrone-3-sulphate, and analysed

the data via Eadie-Hoffstee plots to evaluate changes in the Michaelis-Menten kinet-

ics [254]. It is within these mutagenesis experiments, through analysis with micro-rate

constants (already discussed in the article, but not instigated, [254]), that more under-

standing regarding how To determined here relates to the number of substrate moieties

transported.

The covariance matrix derived from the inverse of the Fisher information matrix

(obtained through linearisation in Monolix 2018R2, as the Fisher information matrix

could not be obtained through the SAEM algorithm (see Chapter 2, Section 2.4.5))

[190] can be used to evaluate the practical identifiability of the model, assuming that

all the unknown parameters are independent, i.e. the off-diagonal elements are ze-

ros [184, 216]. Using the estimated individual random effects (η, taken from Monolix

2018R2) for Model 1 (with and without measurement of eltrombopag), a covariance

matrix was generated in R Studio using GGally [217] (see Fig. 5.9 and 5.8 respectively).

kbP and keP had a covariance of 1 with and without measurement of eltrombopag (Fig.

5.9 and 5.8 respectively), which given that the final parameter estimates for these pa-

rameters were the same (see Table 5.5) is not unsurprising and furthers the need to
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Figure 5.8: Covariance matrix of the individual random effects η for Model 1 without measure-
ment of eltrombopag

separate the covariance between the two parameters, potentially through quantification

of pitavastatin metabolites and inclusion in the mechanistic model. The covariance of

0.9 between kaP and To was the same as that seen in Chapter 3, but not Chapter 4,

where there was less limitation in terms of number of cells and possible experiments.

The large error observed with the measurement of eltrombopag (see Fig. 5.7),

and the use of only a single concentration of eltrombopag, lead to a large covariance of

-0.9 between kfE and kbE and of 0.9 between kdE and ktE (Fig. 5.9). More experimental

data may decrease the covariance between the eltrombopag parameters, but at the cost

of an extra vial of cryopreserved human hepatocytes and time on an LC-MS.

5.3.2.3 Macro-Rate Constant Transporter Mediated Uptake

For the best fitting macro-rate constant model (Model 3, with measurement of eltrom-

bopag, Table 5.4 4th ranked model), a similar picture was seen as with the micro-rate

constant models. The difference between pitavastatin and eltrombopag was in Vmax.X

estimate (350 (210-1140) and 72 (70-75) pmol/min/106 cells respectively, Table 5.6).

Km.X values were the same (19.6 (17.4-20.9) and 15 (13.7-16.9) nmol/ml respectively,

Table 5.6). The scaled Vmax.P estimate from micro-rate constant Model 1, with mea-

surement of eltrombopag (see Chapter 2, Section 2.4.4), was similar, but with a smaller

range of parameter values (Vmax.P = 302 (177-639) pmol/min/ 106 cells), whilst Km.P

was the same (22.1 (16.7-25.5) nmol/ml). The scaled Vmax.E estimate from micro-rate

constant Model 1, with measurement of eltrombopag, was similar, but had a wider range

of values compared to the macro-rate constant Model 3, with measurement of eltrom-

bopag (Vmax.E = 49 (26-118) and 72 (70-75) pmol/min/106 cells respectively), and Km.E

of around a half of the macro-rate constant estimate from Model 3, with measurement of

eltrombopag (Km.E = 7.1 (7.2-9.6) and 15 (13.7-16.9) nmol/ml respectively), that was

the same as the inhibition constant KI.E obtained from the micro-rate constant Model

1, with measurement of eltrombopag (KI.E = 6 (6.2-6.5) nmol/ml). KI.P was half of
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Figure 5.9: Covariance matrix of the individual random effects η for Model 1 including measure-
ment of eltrombopag

Km.P (12.9 (9.5-14) nmol/ml).

Literature values for the uptake of pitavastatin in human hepatocytes show a

range for Vmax.P , similar to that seen here using scaled micro-rate constants with a

literature Vmax.P of 65-354 pmol/min/ 106 cells [8, 173, 251]. However, Km.P was close

to 10-fold lower in the literature (1.4-2 nmol/ml [8, 173, 251]. The discrepancy in Km.P

may be driven partly by the variability in our data, with the higher concentration seen

in one study (triangles in Fig. 5.4) that had the highest To estimates, and thus a higher

Vmax and Km.

Whilst eltrombopag was reported to show saturable uptake in mouse hepatocytes,

attributable to uptake transporters [245], it was reported only as an in inhibitor in

the FDA submission document [246]. By measuring eltrombopag here, and relying on

the large amount of data for pitavastatin in the presence and absence of eltrombopag,

uptake kinetics for eltrombopag were obtained. By dividing Vmax byKm, the transporter

mediated uptake clearance (CLup) for pitavastatin and eltrombopag can be compared.

CLup was twice as fast for the more hydrophilic pitavastatin (CLup.X = 13 (11-26)

and 7 (4-12) µl/min/106 cells respectively), whilst Pdif was 90 times faster for the more

lipophilic eltrombopag. The percent of transporter mediated uptake for pitavastatin has

been reported to be 90-92 % [250], which was the same here (95 % = CLup/(CLup+Pdif ),

if this is compared to eltrombopag, where the percent of transporter mediated uptake was

12 %, it is clear that whilst eltrombopag is an uptake substrate, the passive movement

into the cell dominates.
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5.3.2.4 Pitavastatin Elimination Rate Constants

The pitavastatin metabolism elimination rate constant obtained from the micro-rate

constant models (Model 1, with measurement of eltrombopag, keP = 0.22 (0.2-0.24)

/min/106 cells) was the same as the passive rate out of the cell (kbP = 0.21 (0.18-0.22)

/min/106 cells, Table 5.5), which shows that whilst the model is structurally locally

identifiable, these two parameters can be interchanged (similar to an oral pharmacoki-

netic 1-compartment model where the elimination rate constant and absorption rate

constant can also be changed leading to “flip-flop kinetics [184]). This was confirmed in

the covariance matrix where the covariance was 1 between these two parameters (Fig.

5.9 and Fig. 5.8). As mentioned above, one way of potentially separating the covariance

between kbP and kep could be through quantification of pitavastatin metabolites and

their inclusion in the mechanistic models. This is not trivial, as the main metabolite

seen for pitavastatin in human hepatocytes is pitavastatin lactone, which is also present

as an impurity in the dose, and in combination with metabolism leads to similar pitavas-

tatin lactone and the active pitavastatin acid concentrations in human plasma [9, 241].

Menochet et al. [33] included metabolite kinetics for repaglinide and telmisartan and

found a decrease in the overall relative mean standard error compared to when they

were excluded from analysis and the mechanistic model. It is possible therefore that

this may be beneficial here also.

It is interesting to note, that the best-fitting macro-rate constant model (Model 3,

with measurement of eltrombpag) showed a clear distinction between kbP and keP (1.04

(0.54-1.42) and 0.018 (0.014, 0.021) /min/106 cells respectively, Table 5.6), however,

ke.P did not influence the pitavastatin data fit and gave a flat profile after 5 min that

did not follow the data (Fig. 5.6). If the keP is scaled from the micro-rate constant

model (Model 1, with measurement of eltrombopag) to a clearance (by multiplying by

3 µl and dividing by 0.657 mg protein/106 cells [181]), then the value of 1 (0.91-1.1

µl/min/mg protein) was similar to that in the literature in human liver microsomes

(2.5-3.4 µl/min/mg protein [241, 256]).

5.3.2.5 Clinical Liability - Static Model

Evaluation in vitro of the potential for clinical DDIs is important to decrease the risk

and to improve patient quality of life. A common method is the static AUC difference in

the presence and absence of inhibitor (the R value, first described by Hirano et al. [132])

and is used to assess the potential for clinical DDIs in regulatory guidance documents

[18, 19]:

FDA R Value = 1 +
fu.plasmaIin.max

KI
, if R ≥ 1.1, then a TrDDI is likely (5.48)

EMA R Value =
25 · (fu.plasmaIin.max)

KI
, if R ≥ 1.04, then a TrDDI is likely (5.49)
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where fu.plasma is the fraction unbound in the plasma (set to 0.01 for eltrombopag,

the minimum value proposed in the FDA draft guidance [19] due to error in measure-

ments below 0.01), KI is obtained from the best fitting model, and Iin.max is calculated

according to:

Iin.max (nmol/ml) =
Cmax +

FaFgkaDose
Qh

Rb
(5.50)

where Cmax is the maximum plasma concentration of the inhibitor (nmol/ml), FaFg

is the fraction absorbed multiplied by the intestinal availability (pitavastatin=1 [174],

eltrombopag = 0.5 [244]), ka is the absorption rate constant (pitavastatin = 0.1 /min

(minimum gastric emptying time, [132]) and eltrombopag = 0.0084 /min [244]), Qh

is human hepatic blood flow = 1450 ml/min [133]), and Rb is the blood:plasma ratio

(pitavastatin = 0.425 [209], eltrombopag = 0.78 [244]) and does not appear in the EMA

equation (Eq. 5.49).

As there are multiple clinical pharmacokinetic studies for eltrombopag, Cmax and

doses ranged from 14 nmol/ml [255] to 18 nmol/ml [243] at 50 mg in patients, to 25

nmol/ml and 29 nmol/ml at 75 mg in healthy volunteers [11] and patients respectively

[243], the calculated R values are summarised in Table 5.7. The clinical risk of a TrDDI

according to R values for the FDA guidance were below the cut-off (R value > 1.1) or

close to the cut-off (R = 1.06-7 at 75mg), similar to EMA R values at 75 mg (see Table

5.7).

Clinical doses for eltrombopag start at 50 mg, or 25 mg in patients with East

Asian ancestry [243], there is less potential for the inhibition of pitavastatin by eltrom-

bopag based on the in vitro data presented here. Takeuchi et al. [244] evaluated the

inhibition of rosuvastatin by eltrombopag using a PBPK model and found that BCRP

inhibition with additional inhibition of hOATP1B1 was the likely cause of the clinical

DDI. BCRP is expected to be in intracellular vesicles in human hepatocyte suspensions

[257], this inhibition cannot be evaluated in the current experimental set-up, without

first plating the cells for several hours. As the dose of eltrombopag is closely monitored

in the clinic due to its pharmacological effect [243], the R values were also calculated

with eltrombopag as the victim and pitavastatin as the perpetrator. No potential effect

was seen, with values all below the cut-offs suggested by the EMA and FDA [18, 19],

likely due to the low dose given of pitavastatin (2-4 mg) in the clinic [9, 258, 259] (with

an estimated Iin.max of 0.5-3 nmol/ml) compared to the estimated KI.P of 13 (9.5-14)

nmol/ml from the micro-rate constant model (Model 1, with measurement of eltrom-

bopag).

5.4 Conclusions

This chapter presented a comparison of micro-rate constant and macro-rate constant

mechanistic models for the uptake of pitavastatin and eltrombopag and their interac-

tion at the level of transporter mediated in cryopreserved human hepatocytes. The

measurement of eltrombopag in the same sample as pitavastatin decreased the residuals
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of the individual predictions. Macro-rate constant models (Models 3 and 4) were never

the best at fitting to the experimental data based on the wBIC with the same num-

ber of datapoints and % RMSRE across experimental set-ups. A mutual competitive

mode of inhibition for the uptake of pitavastatin and eltrombopag (Model1, including

measurement of eltrombopag) was the overall best fitting model of the eight tested.

Future experimental work could evaluate multiple eltrombopag concentrations, as

well as extra timepoints taken during the pre-incubation period, so that initial conditions

for eltrombopag do not have to be estimated in the model, but would be known from

the experimental data. Quantification of metabolites and their inclusion in a micro-rate

constant mechanistic model may help to decrease the covariance between kbP and keP

and improve model fits.

With the inclusion of eltrombopag measurements, it was interesting to observe

whether this would alter the D-optimal design using PopED [195] in R compared to

the previous Chapter and improve the number of stable points. Neither the obtained

triangular matrix of full matrix design gave any stable points, with the triangular matrix

more akin to the design used in the experimental used here (0.25, 0.5, 1, 2, 5, 10 and 30

min). The timepoints are given as follows:

• Triangular Matrix: 0.25, 0.5, 1, 3.2, 6.2, 12.25, 38 min

• Full Matrix: 0.25, 4.25, 10.2, 11.2, 14, 17, 28 min

The scaled micro-rate constants obtained in this chapter will be used in the next

chapter in a PBPK model, to evaluate whether the marginal calculated R values from a

static model at 75 mg eltrombopag (see Table 5.7 R values in bold) translate in a PBPK

model.
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Chapter 6

Development of a

Semi-Mechanistic Human

Physiologically Based

Pharmacokinetic Model for the

Disposition of Pitavastatin and

Eltrombopag

6.1 Overview

This chapter builds on the work presented in the previous chapter with regard to the

TrDDI between pitavastatin and eltrombopag and, along with the work in that chapter

will be submitted to CPT: Pharmacometrics & Systems Pharmacology. The potential

for a clinical TrDDI calculated using a static interaction model [18, 19] in the previous

chapter (see Chapter 5, Table 5.7), suggested that only at a dose of 75 mg of eltrombopag,

was a small potential for an interaction with pitavastatin likely (R value = 1.06-1.07

at 75 mg eltrombopag and 1 mg pitavastatin). Given the large degree of inhibition

observed in vitro in cryopreserved human hepatocytes with 30 nmol/ml of eltrombopag

(see Chapter 5, Fig. 5.4), it was decided to evaluate the potential for interaction between

pitavastatin and eltrombopag using a more dynamic approach through Physiologically

Based Pharmacokinetic (PBPK) modelling. There are two levels of PBPK models in
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the literature to evaluate TrDDIs:

1. Semi-mechanistic PBPK models: which focus on the organ(s) of interest only (e.g.

Takeuchi et al. [244] included 4 compartments (GI tract, liver extracellular space,

liver and a central compartment) to explain the TrDDI between rosuvastatin and

eltrombopag - the basis for the PBPK model presented below), assuming that these

can adequately explain the PK data and subsequent interactions [54, 244, 260].

2. Full PBPK models include all organs, not just those of focused interest with regard

to TrDDIs, as such they are much larger models [38, 179, 261, 262]. For example

Li et al. [179] included 19 compartments (5 for the liver, and liver extra vascular

space) to evaluate the effect that ethnicity (Japanese and Caucasian) has on the

pharmacokinetics of rosuvastatin and pravastatin following oral and intra-venous

administration).

These are clearly very different approaches, if one was to include inhibitor in a full

PBPK model, this would lead to 38+ compartments, and this is where commercial

packages come to the fore, with optimised software to cater such large models (e.g.

SimCYP (Certara, Princeton, USA), Gastroplus (Simulations Plus, Lancaster, USA)

and PK-Sim (Bayer, Leverkusen, Germany)).

There are conflicting articles for full PBPK models with regard to the number of

liver extracellular space and liver cellular compartments that can be used to fit the data,

with 1, 3, 4 and 5 compartments used [54, 261–263], and this also depends on which statin

was evaluated (rosuvastatin, rosuvastatin, pravastatin and cerivastatin respectively, [54,

261–263]). Yao et al. [262] evaluated 1, 3 and 5 compartments for the extravascular

space and liver and found no difference in fit between the number of compartments

considered, and was attributed to the robustness of the use of the “5 liver model” [262].

The aim of this chapter is to qualitatively evaluate the TrDDI between pitavas-

tatin and eltrombopag at clinically relevant doses. As we are interested in the DDI at

the level of the liver only, this will be done through a semi-mechanistic PBPK model in

R using the DeSolve package [1, 186], based on the model of Takeuchi et al. [244].
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6.2 PBPK Model

6.2.1 Identifiability Analysis

As per the previous chapters, prior to PBPK model development, a model for pitavas-

tatin only (Eqs. 6.1-6.6, Table 6.1 without inhibition of uptake from eltrombopag) and

then a combined model in the presence of eltromobopag (Eqs. 6.1-6.12, Table 6.1), was

evaluated for structural identifiability, given the unknown parameter vector:

{kge,Ka.P , kbile, Vmax.up.P ,Km.up.P , Pdif.P , Pdef.P , CLmet.P , CLbi.P , CLurine.P ,

Ka.E , Vmax.up.E ,Km.up.E , Pdif.E , Pdef.E , CLmet.E , CLbi.E},

with known initial conditions of the doses of pitavastatin (1 mg) and eltrombopag (75

mg):

[1, 0, 0, 0, 0, 0, 75, 0, 0, 0, 0]

and observations of the blood concentration of pitavastatin (y1 = S6) and eltrom-

bopag (y2 = I6). The structural identifiability analysis was carried out using the

Identifiability Analysis package [16, 160] in Mathematica 11.3 (see Chapter 2,

Section 2.4.1).

The PBPK models for pitavastatin only or pitavastatin with eltrombopag were

at least structurally locally identifiable with no parameters unidentifiable if the fol-

lowing were assumed known: Volumes and blood flows, and the fraction unbound

(fu.pl.P /blood:plasma = fu.blood.X , fu.pl.E and fu.L.X).

6.2.2 PBPK Model Development

A semi-mechanistic PBPK model was fitted to rosuvastatin and eltrombopag separately

to obtain parameters which were then fixed for the simulation of the TrDDI between

the two drugs, assuming that hOATP1B1 was the driving force for the TrDDI [244].

The model developed here (Fig. 6.2) was based on the principle that the uptake of

pitavastatin could be inhibited by eltrombopag in patients based on the data obtained

from Chapter 5. Yoshikado et al. [260] used a PBPK model to adequately describe the

interaction between pitavastatin or fluvastatin with CsA, based on clinical data. The

PBPK model included 5 liver compartments, 3 compartments to allow for entero-hepatic

recirculation as well as muscle, skin and adipose to allow distribution [260]. Both of these

models simplified the uptake into clearances [244] or the ratio of active:passive uptake

clearance [260] to adequately fit the data, but seemed to not describe the time to Cmax.

As the Michaelis-Menten assumptions for pitavastatin held (see previous chapter), it

was decided to scale the parameters from micro-rate constants to Michaelis-Menten

parameters for pitavatatin and eltrombopag (from Model 1, including eltrombopag in

Chapter 5). These parameters were then scaled directly to a normal healthy 83 kg male

[2] (see Table 6.2), to see if the pitavastatin data could be adequately fitted visually

before the inclusion of eltrombopag due to the greater amount of in vitro data for
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Figure 6.1: Schematic of the developed semi-mechanistic PBPK model for the concentrations
in the liver compartment (X4) assumed to be involved in the TrDDI between pitavastatin and
eltrombopag, which is linked to the concentration in the central compartment (X6) via the
concentration in the liver extracellular space (X3) through hepatic blood flow (QH). The dose is
applied as an amount into the stomach (X1), which is then transported into the GI Tract (X2)
with gastric emptying rate constant (kge). Drug is absorbed into X3 with the absorption rate
constant (KaX), where free drug moves into the liver via saturable Michaelis-Menten kinetics
(Vmax.up.X and Km.up.X) and is inhibited by the opposing drug in X3 (I3) via the Km (KI.up).
Passive movement of drug into and out of the liver with clearances Pdif.X and Pdef.X respectively.
Biliary excretion of both drugs (CLbi.X) into X2 through the gallbladder (X5) with bile flow rate
constant (kbile) where they can be re-absorbed. Both drugs have metabolic clearance from the
liver (CLmet.X), whilst pitavastatin is also cleared into the urine (CLurine.P ) with the kidney
blood flow (QK)
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Table 6.1: PBPK model system of ODEs instigated in R using the deSolve package [1] (see Fig.
6.1)

Compartment Equation

Pitavastatin Stomach (S1, ng)
dS1

dt
= −kgeS1 (6.1)

Pitavastatin GI Tract (S2, ng)
dS2

dt
= kgeS1 −Ka.PS2 + kbileS5 (6.2)

Pitavastatin Liver Extracellu-
lar Space (S3, ng/ml)

dS3

dt
=

(
− fu.bl.PS3

 Vmax.up.P

Km.up.S

(
1 + I3

Km.up.E

)
+ fu.bl.PS3

+ Pdif.P


+QHfu.bl.P (S6 − S3) +Ka.PS2 + Pdef.P fu.L.PS4

)
/Vext.H (6.3)

Pitavastatin Liver (S4, ng/ml)

dS4

dt
=

(
fu.bl.PS3

 Vmax.up.P

Km.up.S

(
1 + I3

Km.up.E

)
+ fu.bl.PS3

+ Pdif.P


− fu.L.PS4 (CLmet.P + CLbi.P + Pdef.P )

)
/VH (6.4)

Pitavastatin Gallbladder (S5, ng/ml)
dS5

dt
= CLbi.P fu.L.PS4/VGaBl − kbileS5 (6.5)

Pitavastatin Central (S6, ng/ml)
dS6

dt
= (QHfu.bl.P (S3 − S6)−QKCLurine.PS6) /Vc.P (6.6)

Eltrombopag Stomach (I1, ng)
dI1

dt
= −kgeI1 (6.7)

Eltrombopag GI Tract (I2, ng)
dI2

dt
= kgeI1 −Ka.EI2 + kbileI5 (6.8)

Eltrombopag Liver Extracel-
lular Space (I3, ng/ml)

dI3

dt
=

(
− fu.pl.EI3

 Vmax.up.E

Km.up.E

(
1 + S3

Km.up.P

)
+ fu.bl.EI3

+ Pdif.E


+QHfu.bl.E (I6 − I3) +Ka.EI2 + Pdef.Efu.L.EI4

)
/Vext.H (6.9)

Eltrombopag Liver (I4, ng/ml)

dI4

dt
=

(
fu.pl.EI3

 Vmax.up.E

Km.up.E

(
1 + S3

Km.up.P

)
+ fu.pl.EI3

+ Pdif.E


− fu.L.EI4 (CLmet.E + CLbi.E + Pdef.E)

)
/VH (6.10)

Eltrombopag Gallbladder (I5, ng/ml)
dI5

dt
= CLbi.Efu.L.EI4/VGaBl − kbileI5 (6.11)

Eltrombopag Central (I6, ng/ml)
dI6

dt
= (QHfu.pl.E(I3 − I6)) /Vc.E (6.12)

X = S or P = pitavastatin, or X = I or E = eltrombopag, X1−6 represent stomach, the GI Tract where absorption takes
place, the liver extracellular space (volume = Vext.H ), the liver (volume = VH ), the gall bladder (volume = VGaBl), central
compartment (volume = Vc.X ). kge = the gastric emptying rate, Ka.X = the absorption rate, kbile = the bile flow rate
(all /min). fu.bl.P , fu.pl.E and fu.L.X = the fraction unbound in the blood (pitavastatin), plasma (eltrombopag) and liver
respectively. QH and QK are the liver and kidney blood flows respectively (ml/min). CLmet.X , CLbi.X and CLurine.P
are the metabolic, biliary and urinary (pitavastatin only) clearance respectively (ml/min). Vmax.up.X and Km.up.X are the
maximum uptake velocity (ng/min) and concentration at half of Vmax.up.X (ng/ml) respectively.
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pitavastatin available.

Pitavastatin was applied as a 1 mg bolus into the stomach (S1) which was then

transferred into the gut, at the rate of gastric emptying (kge, taken as the inverse of

a minimum gastric emptying time of 10 min [132], see Table 6.1). This was sufficient

to allow enough of a time lag to prevent both drugs reaching their respective Cmax

too early (time to Cmax = Tmax), and was more simplistic than including separate

intestinal segment compartments as used in a full PBPK model [261]. Pitavastatin is

absorbed from the GI tract (S2) into the liver extracellular volume (S3) via the first

order absorption rate constant Ka.P , (see Table 6.1, Eq. 6.2 and Table 6.2), assuming

that all of the administered dose is absorbed (i.e. there is assumed to be no metabolism

or efflux transporter activity in the gut) [260]. Movement of free pitavastatin (fu.bl.P =

0.012 (% CV = 42), see Table 6.2) into the liver is with saturable (Vmax.up.P and Km.up.P )

and passive diffusion (Pdif.P ), with diffusion allowed back into the extravascular space

(Pdef.P ). Any liver (S4) elimination of free pitavastatin is through metabolism (CLmet.P )

or biliary excretion (CLbi.P ) into the gallbladder (S5, volume = 36 ml (% RSE = 2.5),

[264], see Table 6.2), which returns back to the GI Tract via the gallbladder emptying

rate (kbile = 0.0618 /min (% RSE = 11)) to be re-absorbed. The liver extracellular

compartment (Vext.H = 556 ml [229], once adjusted to an 83 kg male) is considered as

the lumping of the hepatic portal vein, the hepatic artery and liver blood volume, which

then link to the central blood volume compartment (VcP ) via the central vein through

the hepatic blood flow (QH). Urinary clearance (CLurine.P ) of free pitavastatin is from

the central compartment through the kidney blood flow (QK). The clinical study for a 1

mg oral dose of pitavastatin in healthy volunteers included measurement of pitavastatin

in plasma [9], therefore, as the PBPK model was developed for pitavastatin in the blood

(total blood volume = 5820 ml [2], see Table 6.2), the clinical data were converted from

plasma concentration (ng/ml) to blood by dividing by the blood:plasma ratio obtained

from the literature (0.425± 0.162, [209]).

Due to the high level of binding of eltrombopag to plasma proteins (99.8%, [243]),

and the fraction of radioactivity in blood cells of 0-16 % [11], it was assumed that

eltrombopag only exists in plasma (plasma volume = 3460 ml, [2]), and has a volume

of distribution of 2940 ml [244]. The FDA guidance suggests the use of 1 % free drug in

the plasma as a fixed value when the estimated value is below this, due to inaccuracies

in estimation [19]. Given the high level of binding and low recovery (10 %) from the

RED device used in the experiment in Chapter 5, the value of fraction unbound in the

plasma (fu.pl.E) of 0.002 [243], 0.01 and 0.005 were checked, with a value of 0.005 giving

the best visual fit to the 75 mg clinical data for eltrombopag [11]. Eltrombopag was

applied as a 75 mg bolus into the stomach (I1), which was then transferred into the gut

at the same rate as for pitavastatin through kge. The fraction of eltrombopag that was

absorbable and escaped metabolism in the gut (FaFg in the literature) was reported as

0.5 [244, 246], but assumed to be 1 here. Eltrombopag was absorbed from the GI tract

into the liver extracellular space (I3) with first order absorption rate constant (Ka.E =

11 /min). Movement of free eltrombopag into the liver is with saturable (Vmax.up.E and
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Km.up.E) and passive diffusion (Pdif.E), with diffusion back into the extravascular space

through Pdef.E . Any liver (I4) elimination of free eltrombopag is via metabolic clearance

(CLmet.E) or biliary excretion through the CLbi.E rate constant into the gallbladder (I5,

volume = 36 ml (% RSE = 2.5), [264], see Table 6.2), which returns back to the GI

Tract to be re-absorbed. The liver extracellular compartment links to the central plasma

volume compartment with Qh, and no urinary elimination of eltrombopag was included

as only metabolites contributed to the urinary radioactivity in humans [11]. Interactions

between pitavastatin and eltrombopag only occurred at the uptake transporter level

through competitive inhibition of uptake only via their respective Km.up values (see Fig.

6.1, 1+I/KI.up).
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The PBPK model was generated as a set of ODEs (Table 6.1) that were solved

numerically in R [186] using the deSolve package [1]. To gain an estimate of error

in the model a Monte-Carlo simulation of 100 subjects (healthy male, 83 kg), each

parameter was factored as 100 normally distributed random numbers with a mean of

the parameter estimate, and a standard deviation of 0.2 or 0.3 times the parameter

estimate (for literature derived values and model derived values respectively). The code

for the whole model is given in Appendix G.

6.3 Results and Discussion

Whilst the PBPK models developed here are simulations only, based on the drug char-

acteristics and physiology, the visual fit for pitavastatin alone (Fig. 6.2a, blue line

and shading) fit the data reasonably well and replicated the shape of the blood con-

centration versus time data well (extracted from Prueksaritanont et al. [9], with the

associated errors bars). No experimentally derived parameters (fu.L.P , Pdif.P , Pdef.P ,

Vmax.up, Km.up.P and CLmet.P ) or other parameters were adjusted in the visual fitting

process (see Table 6.2).

For eltrombopag alone (Fig. 6.3a, blue line and shading), the mean simulation

(blue line) fitted the plasma concentration reasonably well and closely followed the shape

of the plasma concentration versus time data (extracted from Deng et al. [11]), but the

large error shading of the 95 % confidence intervals increased to large proportions during

the eltrombopag elimination phase. Whilst the experimentally derived values (Pdif.P ,

Pdef.P , Vmax.up and Km.up.P ) required no adjustment, fu.L.E was unreliable if calculated

using the same equation as for pitavastatin (see Table 6.2 fu.L.P ), and therefore was

adjusted stepwise from 1 to 0.4. The total CL/F value for eltrombopag is low (13

ml/min, [243]), this comprises both biliary (CLbi.E) and metabolic clearances (CLmet.E),

with biliary clearance expected to dominate, as 20 % of the dose was eliminated in the

faeces as unchanged eltrombopag. 20 % of 13 ml/min (2.6 ml/min) was not sufficient

to follow the elimination part of the plasma concentration curve and was adjusted to 12

ml/min, with the metabolism set to a third lower at 8 ml/min.

Following a 1 mg dose of pitavastatin, in the presence of 75 mg eltrombopag,

and based on the inhibition of uptake only, the pitavastatin plasma concentration-time

curve Cmax more than doubled from 20 ng/ml up to 41 ng/ml to above the data from

a 2 mg dose (Fig. 6.2b, open circles, taken from the FDA document), without visually

altering the elimination (Fig. 6.2b, solid line). The AUC0−t (calculated using the zoo

package in R) ratio in the presence and absence of a 75 mg dose of eltrombopag (94

h.ng/ml/ 45 h.ng/ml respectively = 2.1) increased by more than the static R models

would suggest (R value = 1.1-1.19 using the EMA guidelines and 1.07 using the FDA

guidelines, see Chapter 5, Table 5.7). The simulated concentration of eltrombopag in

the liver extra cellular compartment following a 75 mg dose (52956 ng/ml at 15 min),

was much larger than the KI.E value calculated from the in vitro data obtained from the

previous chapter (KI.E = 3138 ng/ml), making a TrDDI more likely with pitavastatin
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Figure 6.2: Semi-mechanistic PBPK model Monte-Carlo simulation fits (100 subjects) for
pitavastatin (1 mg dose) in the absence (a, blue) and presence (b, red) of eltrombopag (75
mg). Circles and error bars are clinical data, extracted from Prueksaritanont et al. [9], solid
lines are the mean, shading denotes the 95 % confidence intervals. Open circles are pitavastatin
(2mg dose) extracted from the pitavastatin FDA drug submission document [10]

as the “victim” drug and eltrombopag as the “perpetrator” drug.

Following a 75 mg dose of eltrombopag, in the presence of a dose of 1 mg pitavas-

tatin, and based on inhibition of uptake only, the eltrombopag plasma concentration-

time curve did not change (Fig. 6.3b). The Pdif.E value = 11780 (9424-14136) ml/min

(Table 6.2) was much greater than the transporter mediated clearance for eltrombopag

(Vmax.up.E/Km.up.E = 1626 (891 − 3678) ml/min), making a TrDDI unlikely with el-

trombopag as the “victim” drug. Takeuchi et al. [244] also saw no difference in the

simulated eltrombopag plasma concentration following a 75 mg dose in the presence of

rosuvastatin at 10 mg. Whilst the simulated rosuvastatin concentration was altered to

a similar amount as shown here, only if the IC50 was a tenth of that estimated (i.e. 0.09

µM = 39.8 ng/ml). It was shown that pitavastatin was more sensitive to inhibition by

an I.V. dose of rifampicin than rosuvastatin in a healthy volunteer study (7.6- and 3-fold

increase in AUC respectively) [9], therefore it is expected that the KI.E value obtained

here would be sufficient clinically to inhibit pitavastatin uptake into the liver, leading

to a TrDDI.

6.4 Conclusions

This chapter developed a semi-mechanistic PBPK model to evaluate the effect of el-

trombopag inhibition of pitavastatin uptake using the scaled data from Chapter 5. The

model consisted of 5-6 compartments (GI tract including the stomach, the liver extra-

cellular space, the liver and gallbladder and a central blood or plasma compartment).
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Figure 6.3: Semi-mechanistic PBPK model Monte-Carlo simulation fits (100 subjects) for el-
trombopag (75 mg dose) in the absence (a, blue) and presence (b, red) of pitavastatin (1 mg).
Points are clinical data, extracted from Deng et al. [11], solid lines are the mean, shading denotes
the 95 % confidence intervals

Pitavastatin blood and eltrombopag plasma concentrations were then estimated using

a Monte-Carlo simulation of 100 human subjects (70 kg male) following a 1mg dose of

pitavastatin with a 75 mg dose of eltrombopag.

The use of a 75 mg dose of eltrombopag doubled the exposure of a 1 mg dose of

pitavastatin (AUC ratio = 2.1) in the 100 virtual subjects without altering the elimi-

nation, whilst no effect was seen on the eltrombopag plasma concentration versus time

profile. This makes the PBPK model a useful tool beyond the static clinical assess-

ment ’R value’ approach at least for substrates that are sensitive to inhibition through

OATP1B, such as pitavastatin.

This chapter represents a preliminary analysis of in vitro data in a PBPK model,

and is highly simplistic in its nature. The previous chapters have all shown that micro-

rate constant mechanistic models offer improved data fits and are more dynamic in the

mechanisms of inhibition than a macro-rate constant model. Future work is therefore

potentially quite extensive, both with regard to a more robust parameter estimation

approach and the development of a model that incorporates micro-rate constants, with

transporter occupancy a key component.
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Chapter 7

Conclusions and Further Work

There is currently a need to evaluate the interaction of drugs in the liver, and at the

liver membrane for all orally absorbed drugs and food. As such the liver “sees” much

higher concentrations than the rest of the body. Prior to submission of a new drug to

the regulatory agencies, assessments have to be made both in terms of hepatic enzyme

interactions, but also the liver plasma membrane transporters at the sinusoid and bile

canaliculus [18, 19]. The interactions of drugs with liver membrane transporters are

currently poorly understood at a molecular level [20]. There is strong interest in terms

of the pharmacology of the transporters and how we can examine and understand these

interactions through mathematical models [20–22]. There is also increased interest in

the evaluation of uptake inhibition mechanisms and whether the long-lasting inhibi-

tion of transporters can explain the discrepancy between in vitro and in vivo studies

[207, 208]. Evaluation of time dependent inhibition of selected transporters is also now

recommended as part of new drug submissions to the regulatory authorities [18, 19]. It

is these interactions and processes that this thesis evaluated in an attempt to further

the knowledge base and understanding in this field.

The objective of this thesis was to improve the determination of transporter me-

diated drug-drug interactions (TrDDIs) in in vitro liver specific cellular systems through

the use of structurally identifiable mechanistic models describing the dynamics of the

interaction between substrates and inhibitors.

Currently the dynamics of interactions through the use of micro-rate constant

models, where steady-state assumptions are not implied in data analysis are less favoured.

Whilst modelling and data analysis conducted using macro-rate constant models using

Michaelis-Menten type kinetics, under the assumption of rapid equilibration of substrate

with the transporter (association with the transporter is almost instantaneous) are more

common.

Therefore this thesis tried to answer the main aim and that above relating to

steady-state assumptions with a series of objectives for a selection of substrates where

active transport into the cell dominates over passive:

1. Develop mechanistic models that characterise the data, and are possible given the

available observations available from in vitro cellular drug uptake experiments,
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extending the work of Grandjean [25] to include inhibition of transport.

2. Evaluate the effectiveness of both macro-rate constant models and micro-rate con-

stant models with the inclusion of substrate and inhibitor and determine their

structural identifiability for a given model and observations available.

3. Design experiments to optimise the data collected for substrate and inhibitors for

use within the mechanistic models across different cellular systems (human cell

lines, rat and human hepatocytes) under different inhibition conditions.

4. Using the micro-rate constant and macro-rate constant mechanistic models, obtain

robust model fits that adequately describe interaction between substrates and

inhibitors, whilst gaining an insight in terms of model selectivity.

5. Evaluate whether through the use of static clinical interaction models and a more

dynamic PBPK supports the potential for TrDDIs in the clinic in human hepato-

cytes.

7.1 Chapter Summary

Chapter 3 evaluated the uptake of a fluorescent substrate, DCF, as an alternative to

the use radio labelled substrates in HEK293-OATP1B1 cells. Whilst the inhibition of

selective substrates by gemfibrozil in HEK293-OATP1B1 has been conducted under the

assumption of competitive inhibition [27, 135, 168], the mode of inhibition has not been

fully evaluated. The mode of inhibition of DCF by gemfibrozil was therefore evaluated

across three different scenarios: co-incubation with gemfibrozil, to examine for compet-

itive inhibition; pre-incubation with gemfibrozil and then co-incubation with gembfi-

brozil, to evaluate time dependent effects; and finally pre-incubation with gemfibrozil,

to evaluate lasting inhibition. In this chapter, the fluorescence of DCF was measured in

each sample, but the analysis of the concentration of gemfibrozil was not undertaken.

For the micro-rate constant models, compartments representing the amount in

the medium, the amount bound to transporter and the amount within cell were included

in the mechanistic model for DCF. For gemfibrozil, only the amount in the medium and

amount bound to transporter were included. As DCF was measured as a concentration,

the observations in the mechanistic model were scaled from an amount to concentration

by multiplication of the combined transporter and cellular amounts by the inverse of the

cell volume. However, as the total number of cells was not known in the experiments, a

cellularity factor was determined and the data normalised to per 106 cells, enabling the

use of a cell volume/106 cells.

Prior to parameter estimation, the micro-rate constant models and macro-rate

constant models for competitive and non-competitive inhibition underwent a formal

structural identifiabilty analysis. The micro-rate constant models describing the compet-

itive inhibition and non-competitive (time-dependent inhibition) of DCF by gemfibrozil

were all at least structurally (locally) identifiable given known inputs and observations,
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with no parameters unidentifiable. The macro-rate constant models were unidentifiable

unless one of the parameters relating to the Michaelis-Menten uptake (Km, KI , Vmax

or Kinact) were known for competitive and non-competitive inhibition respectively.

For the co-incubation and pre-co-incubation scenarios, the micro-rate constant

models were the best fitting models to the experimental data, compared to the macro-

rate constant models based on the BIC values and % RMSRE for the individual predic-

tions under the assumption of competitive inhibition (BIC = 1540 (RMSRE = 49 %)

and 1600 (58 %) for the co-incubation scenatio data respectively, and 1242 (50 %) and

1249 (52 %) respectively for the pre-co-incubation scenario data). Across the scenarios,

the competitive inhibition of DCF uptake by gemfibrozil into HEK293-OATP1B1 cells

was the supported mechanism of inhibition, consistent with the literature.

The estimate of the total amount of transporters (To = 0.06 (0.04 − 0.09)

nmols/106 cells) on the plasma membrane of HEK293-OATP1B1 cells, obtained us-

ing the micro-rate constant model for competitive inhibition of DCF by gemfibrozil was

similar to that determined using the same cell line extracted from crude membranes at

AstraZeneca (0.02 nmols/106 cells, P. Sharma, personal communication) and supports

the further use of mechanistic modelling for the determination of the amount of trans-

porters, along with more information regarding the binding and transport, in cell lines

at least. This value can then be used in the future to assess inter-laboratory conditions

and during PBPK model development.

Chapters 4 and 5 evaluated the uptake of a statin (atorvastatin and pitavastatin

respectively) and the inhibition of uptake and metabolism (Chapter 4) by CsA and el-

trombopag respectively in suspended hepatocytes (rat and human respectively). Unlike

Chapter 3 which used plated HEK293-OATP1B1 cells, Chapter 4 and Chapter 5 used

hepatocytes in suspensions, and therefore a centrifugal oil-spin method of separating

the cells from the medium was needed, with more timepoints at the beginning of the

experiment to help describe the uptake process and then prolonged timepoints to help

describe elimination through metabolism. Chapter 4 used a high throughput method for

hepatocyte incubations in Teflon blocks containing 16 troughs, whilst Chapter 5 used

individual glass vials. The technique for both was the same - a dense bottom layer into

which the cells reside after centrifugation, separated from the medium by an oil layer

that is sufficiently dense that only hepatocytes can pass through, leaving the medium on

top. For Chapter 4, only atorvastatin was measured in the hepatocytes, whilst in Chap-

ter 5, in addition to the measurement of pitavastatin in the hepatocytes, eltrombopag

was also measured simultaneously in the same sample.

The mechanistic models for both Chapter 4 and 5 were therefore very similar,

with additional metabolism compared to Chapter 3 in the models through Michaelis-

Menten parameters and a first order elimination rate constant respectively. Prior to

parameter estimation, the micro-rate constant models and macro-rate constant models

for competitive and non-competitive inhibition underwent a formal structural identi-

fiabilty analysis. The inclusion of metabolism in Chapter 4 and 5 did not alter the

result for the micro-rate constant models with the models for competitive and non-
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competitive inhibition at least structurally (locally) identifiable, given the model inputs

and observations, with no parameters unidentifiable. For the macro-rate constant mod-

els described in Chapter 4, which included two Michaelis-Menten non-linearities, the

models were unidentifiable, unless 2 parameters relating to Michaelis-Menten uptake

and metabolism (Km.up, KI.up, Km.met, KI.met, Vmax.up or Kinact.up) were known for

competitive and non-competitive inhibition respectively. Measurement of pitavatatin

and eltrombopag simultaneously in Chapter 5 led to the macro-rate constants being at

least structurally (locally) identifiable, given the model inputs and observations, with

no parameters unidentifiable.

In Chapter 4, a micro-rate constant model for non-competitive inhibition of ator-

vastatin by CsA was the best fitting model to the experimental data with a probability

wBIC = 0.54 compared to competitive inhibition wBIC = 0.45. The macro-rate con-

stant models for non-competitive and competitive inhibitions were not supported as the

best fitting models with ∆BIC values of 11 and 94 compared to best fitting model re-

spectively. Non-competitive inhibition of uptake by CsA, and competitive inhibition of

metabolism with different substrates were also supported in the literature using macro-

rate constant models [140, 208, 225].

In Chapter 5, simultaneous measurement of pitavastatin and eltrombopag in

a micro-rate constant model for competitive inhibition of pitavatatin by eltrombopag

was the best fitting model to the experimental data, with a decrease in the individual

RMSRE compared to when pitavatatin only was measured (RMSRE = 7 % and 9 %

respectively). Macro-rate constant models were never the best fitting model to the

experimental data, partially due to the inability to adequately follow the elimination of

pitavastatin from the cell through metabolism.

The use of a static clinical interaction models by calculation of the ‘R value’

[18, 19] for the effect of a 75 mg dose eltrombopag on a 1 mg dose of pitavastatin sug-

gested little potential for a clinical TrDDI based on the calculated maximum liver inlet

concentration (R value = 1.06-1.07), despite the large degree of inhibition seen in the in

vitro data. This is partly due to the high level of plasma protein binding of eltrombopag,

leading to an underestimation of the clinical interaction potential. Therefore in Chapter

6, a semi-mechanistic PBPK model was developed which included compartments the

gastro-intestinal tract (GI tract), the blood flow linked to the liver extracellular space

(the liver inlet), where the interaction is expected to take place between pitavastatin

and eltrombopag, and the liver and central blood volume for elimination of drug. The

estimated potential for a clinical interaction for the PBPK model, based on the cal-

culated area under the pitavastatin blood curve ratio, in the presence and absence of

eltrombopag, the AUC ratio = 2.1 was double that estimated using a static model, and

therefore caution should be exercised if a clinical interaction study was to be conducted

between pitavastatin and eltrombopag.
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7.2 Future Work

Across the experimental chapters (Chapters 3-5), the future experimental work follows

similar processes:

• Measurement of inhibitor at multiple concentrations simultaneously with substrate

in the same sample will aid in the structural identifiability of macro-rate constant

models, and help in the estimation of parameters in micro-rate constants.

• The experimental determination of the degree of binding interaction of substrates

and inhibitors can help in the robust fitting of parameters (ka and kd) and further

the knowledge of transporter pharmacology.

• Accurate measurement of the total amount of plasma membrane transporters in

different cellular systems (cell lines and hepatocytes) in comparison with that

obtained from micro-rate constant mechanistic models in the same cellular system

used (e.g. like in Chapter 4). This can be used to confirm whether the To parameter

value obtained is comparable to the measurement in crude membrane fractions.

• Quantification of metabolites should be considered to improve the understanding of

the complexity of metabolism and its inhibition as well as possible effects on uptake

processes. The use of LC-MSMS analysis should make this relatively straight-

forward.

• An initial D-optimal design analysis was carried out for each of the experimental

chapters based on the best fitting mechanistic model, with the same number of

timepoints and concentrations.

− Chapter 3: The full matrix was similar to that obtained experimentally for the co-

incubation data, with a greater spread of timepoints after 1.33 min. This suggests

that the pre-co-incubation design could be improved using the co-incubation D-

optimal design.

− Chapter 4: Neither the full or triangular matrix removed the stable point at 0.25

min. As the model fits do not fit as well at low incubation concentrations of

atorvastatin, future work should increase replicates at the lower concentrations

before further D-optimal design experiments are undertaken.

− Chapter 5: The triangular matrix was similar to that obtained experimentally, but

with a shift at later timepoints by 1-2 min and a final timepoint at 38 min. This

may assist in the more accurate determination of the elimination rate constant to

separate it from the passive rate constant for the movement of pitavastatin out of

the cell.

• The use of an increased number of substrates and inhibitors will help to build

a relationship with regard to transporter kinetics at the molecular level through

micro-rate constant models.
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The development of a more robust parameter estimation approach for the semi-

mechanistic PBPK model described in Chapter 6 to gain accurate parameter estimates,

rather than a visual fit requires extensive work if the incorporation of micro-rate con-

stants are to be included. Measurement of the amount of transporters in the same

experimental system to allow scaling from in vitro up to in vivo in animals and humans,

as well as the use of micro-rate constant mechanistic models will enable more accurate

predictions of DDIs to be determined a priori, rather than a posteriori as they are now.

7.3 Final Conclusions

This thesis and the chapters herein have shown that across experimental systems, micro-

rate constant models offer a significant improvement in structural identifiability with

each micro-rate constant model at least structurally locally identifiable. The structural

(local) identifiability of a model and the parameters therein was shown in each case to

give an improved model fit to the experimental data, compared to their macro-rate con-

stant model counterparts, which needed up to two parameters to be already known prior

to fitting to experimental data. However, the use of micro-rate constant models also re-

quire sufficient data to cover the timecourse of uptake and metabolism, and as such may

not be wholly suitable very early in research when a transport inhibitor “yes/no” may

suffice. Indeed in Chapters 3-5 (with the exception of the pre-co-incubation scenario

from Chapter 3), both the micro-rate constant and macro-rate constant mechanistic

models were in agreement with the mode of inhibition. This provides evidence that the

micro-rate constant mechanistic models are not over parameterised, but as well as a

mode of inhibition confirmation, provide much more information regarding the binding

kinetics and transport of substrate and inhibitors that could otherwise be missed using

macro-rate constant models. Once more transporter data become available for more

selected substrates and inhibitors where a more in depth analysis is required, then the

use of micro-rate constant mechanistic models for robust parameter estimation should

become the go-to approach for TrDDI assessment. What is apparent across each of the

experimental chapters, is the combined use of simple tools to evaluate whether a mecha-

nistic model is at least structurally identifiable, along with robust parameter estimation

from well designed experiments are essential if the parameters are to be taken into other

models. For example the combined measurement of pitavastatin and eltrombopag in hu-

man hepatocytes assisted in the semi-mechanistic PBPK model development to include

Michaelis-Menten uptake into the liver.

7.4 Personal Reflection

The development of the work presented in this thesis has been both a very enjoyable and

tough experience. Having freedom to be able to learn new concepts and implement them

in mechanistic modelling, such as gaining an understanding of identifiability analysis and

tracking the results of this into the parameter estimates derived from the models clearly
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defines how closely they are linked. If more experimental scientists made this connection

before conducting their research and experimental design, this would be of great benefit

in the prediction of TrDDIs.

Undertaking a PhD really improves the resourcefulness and mental resilience of

any researcher who undertakes one, as you really have to keep going when the results

and models do not go the way you expected initially. As the quote said at the beginning

of this PhD “See first, think later, then test”, should be a state of being during the PhD

and beyond.
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Appendix A

Structural Identifiability of a

Three Compartment Model for

Substrate and Inhibitor
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Loading LinearAlgebra
Loading Groebner

Many thanks to Dr Neil Evans for the following code:

Forsman Code (modified)

ONF Approach Code
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Appendix B

Structural Identifiability Example

with the Identifiability

Analysis Package - Micro-rate

Constant Model

Needs[“IdentifiabilityAnalysis̀”]Needs[“IdentifiabilityAnalysis̀”]Needs[“IdentifiabilityAnalysis̀”]

deq = {deq = {deq = {

x′1[t] == −θ1 ∗ x1[t]− θ2 ∗ x1[t] ∗ (θ3 − x2[t]− x5[t]) + θ4 ∗ x2[t] + θ5 ∗ x3[t],x′1[t] == −θ1 ∗ x1[t]− θ2 ∗ x1[t] ∗ (θ3 − x2[t]− x5[t]) + θ4 ∗ x2[t] + θ5 ∗ x3[t],x′1[t] == −θ1 ∗ x1[t]− θ2 ∗ x1[t] ∗ (θ3 − x2[t]− x5[t]) + θ4 ∗ x2[t] + θ5 ∗ x3[t],

x′2[t] == θ2 ∗ x1[t] ∗ (θ3 − x2[t]− x5[t])− (θ4 + θ6) ∗ x2[t],x′2[t] == θ2 ∗ x1[t] ∗ (θ3 − x2[t]− x5[t])− (θ4 + θ6) ∗ x2[t],x′2[t] == θ2 ∗ x1[t] ∗ (θ3 − x2[t]− x5[t])− (θ4 + θ6) ∗ x2[t],

x′3[t] == θ1 ∗ x1[t] + θ6 ∗ x2[t]− (θ5 + θ7) ∗ x3[t],x′3[t] == θ1 ∗ x1[t] + θ6 ∗ x2[t]− (θ5 + θ7) ∗ x3[t],x′3[t] == θ1 ∗ x1[t] + θ6 ∗ x2[t]− (θ5 + θ7) ∗ x3[t],

x′4[t] == −θ8 ∗ x4[t]− θ9 ∗ x4[t] ∗ (θ3 − x2[t]− x5[t]) + θ10 ∗ x5[t] + θ11 ∗ x6[t],x′4[t] == −θ8 ∗ x4[t]− θ9 ∗ x4[t] ∗ (θ3 − x2[t]− x5[t]) + θ10 ∗ x5[t] + θ11 ∗ x6[t],x′4[t] == −θ8 ∗ x4[t]− θ9 ∗ x4[t] ∗ (θ3 − x2[t]− x5[t]) + θ10 ∗ x5[t] + θ11 ∗ x6[t],

x′5[t] == θ9 ∗ x4[t] ∗ (θ3 − x2[t]− x5[t])− θ10 ∗ x5[t],x′5[t] == θ9 ∗ x4[t] ∗ (θ3 − x2[t]− x5[t])− θ10 ∗ x5[t],x′5[t] == θ9 ∗ x4[t] ∗ (θ3 − x2[t]− x5[t])− θ10 ∗ x5[t],

x′6[t] == θ8 ∗ x4[t]− θ11 ∗ x6[t]x′6[t] == θ8 ∗ x4[t]− θ11 ∗ x6[t]x′6[t] == θ8 ∗ x4[t]− θ11 ∗ x6[t]

};};};

Dose = 3;Dose = 3;Dose = 3;

Doseb = 30;Doseb = 30;Doseb = 30;

modelStates = {x1, x2, x3, x4, x5, x6} ;modelStates = {x1, x2, x3, x4, x5, x6} ;modelStates = {x1, x2, x3, x4, x5, x6} ;

ic = {x1[0]==Dose, x2[0]==0, x3[0]==0, x4[0]==Doseb, x5[0]==0, x6[0] == 0} ;ic = {x1[0]==Dose, x2[0]==0, x3[0]==0, x4[0]==Doseb, x5[0]==0, x6[0] == 0} ;ic = {x1[0]==Dose, x2[0]==0, x3[0]==0, x4[0]==Doseb, x5[0]==0, x6[0] == 0} ;

modelParameters = Table [θi, {i, 12}] ;modelParameters = Table [θi, {i, 12}] ;modelParameters = Table [θi, {i, 12}] ;

observationVector = {θ12 ∗ (x5[t] + x6[t])observationVector = {θ12 ∗ (x5[t] + x6[t])observationVector = {θ12 ∗ (x5[t] + x6[t])

};};};

iad = IdentifiabilityAnalysis[{{deq, ic}, observationVector},modelStates,modelParameters, t, u]iad = IdentifiabilityAnalysis[{{deq, ic}, observationVector},modelStates,modelParameters, t, u]iad = IdentifiabilityAnalysis[{{deq, ic}, observationVector},modelStates,modelParameters, t, u]

IdentifiabilityAnalysisData[True, <>]

iad[“DegreesOfFreedom”]iad[“DegreesOfFreedom”]iad[“DegreesOfFreedom”]

iad[“NonIdentifiableParameters”]iad[“NonIdentifiableParameters”]iad[“NonIdentifiableParameters”]
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Appendix C

Structural Identifiability Example

with the Identifiability

Analysis Package - Macro-rate

Constant Model

Needs[“IdentifiabilityAnalysis̀”]Needs[“IdentifiabilityAnalysis̀”]Needs[“IdentifiabilityAnalysis̀”]

deq = {deq = {deq = {

x′1[t] == −θ1 ∗ x1[t]− (θ2 ∗ x1[t]) / (θ3 ∗ (1 + 30 /θ4 ) + x1[t]) + θ5 ∗ x2[t],x′1[t] == −θ1 ∗ x1[t]− (θ2 ∗ x1[t]) / (θ3 ∗ (1 + 30 /θ4 ) + x1[t]) + θ5 ∗ x2[t],x′1[t] == −θ1 ∗ x1[t]− (θ2 ∗ x1[t]) / (θ3 ∗ (1 + 30 /θ4 ) + x1[t]) + θ5 ∗ x2[t],

x′2[t] == θ1 ∗ x1[t] + (θ2 ∗ x1[t]) / (θ3 ∗ (1 + 30 /θ4 ) + x1[t])− (θ5 + θ6) ∗ x2[t]x′2[t] == θ1 ∗ x1[t] + (θ2 ∗ x1[t]) / (θ3 ∗ (1 + 30 /θ4 ) + x1[t])− (θ5 + θ6) ∗ x2[t]x′2[t] == θ1 ∗ x1[t] + (θ2 ∗ x1[t]) / (θ3 ∗ (1 + 30 /θ4 ) + x1[t])− (θ5 + θ6) ∗ x2[t]

};};};

Dose = 5;Dose = 5;Dose = 5;

modelStates = {x1, x2} ;modelStates = {x1, x2} ;modelStates = {x1, x2} ;

ic = {x1[0]==Dose, x2[0]==0} ;ic = {x1[0]==Dose, x2[0]==0} ;ic = {x1[0]==Dose, x2[0]==0} ;

modelParameters = Table [θi, {i, 6}] ;modelParameters = Table [θi, {i, 6}] ;modelParameters = Table [θi, {i, 6}] ;

observationVector = {333 ∗ x2[t]observationVector = {333 ∗ x2[t]observationVector = {333 ∗ x2[t]

};};};

iad = IdentifiabilityAnalysis[{{deq, ic}, observationVector},modelStates,modelParameters, t, u]iad = IdentifiabilityAnalysis[{{deq, ic}, observationVector},modelStates,modelParameters, t, u]iad = IdentifiabilityAnalysis[{{deq, ic}, observationVector},modelStates,modelParameters, t, u]

IdentifiabilityAnalysisData[False, <>]

iad[“DegreesOfFreedom”]iad[“DegreesOfFreedom”]iad[“DegreesOfFreedom”]

1

iad[“NonIdentifiableParameters”]iad[“NonIdentifiableParameters”]iad[“NonIdentifiableParameters”]

{θ3, θ4}
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Appendix D

Lineweaver-Burke Plots Obtained

From Initial Velocity

Determinations of Atorvastatin in

the Presence of Cyclosporine A

From Chapter 4
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Figure D.1: Atorvastatin concentration against velocity or the inverse of the velocity plots.
a Lineweaver-Burke plot using “Active” in presence of CsA. b Lineweaver-Burke plot for the
metabolism of atorvastatin in the presence of CsA
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Appendix E

Cryopreserved Human

Hepatocyte Donor Sheet Used in

Chapter 5
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Appendix F

Model files for Best Fitting

Models from Chapters 3, 4 and 5

The data files for Chapter 3 for use in Monolix 2018R2 can be found below, and as a copy in the online

thesis version.

DCFGem Combo.txt :

DCFGem PC Combo.txt:

DCF Gem Pre.txt:

The code for the model files for Chapter 3 for use in Monolix 2018R2 for the best fitting model
(micro-rate constant with competitive inhibition for the co-incubation and pre-co-incubation data) are
included below, and all the files are included in the online thesis version:

DESCRIPTION: model to de s c r i b e DCF uptake in to HEK293−OATP1B1 c e l l s

; and i n h i b i t i o n by g e m f i b r o z i l

[LONGITUDINAL]

input = {k13 , k31 , k12 , k21 , To , k23 , k45 , k54}
; input = {k3 , k12 , k21 , To , k23 , k45 , k54} ; for Pre−Co−incubat ion data

PK:

depot ( type =1, t a rg e t=x1 )

depot ( type =2, t a rg e t=x4 )

EQUATION:

; k13 and k31 = kfD and kbD

; k12 , k21 and k23 = kaD , kdD and kt

; k45 and k54 = kaG and kdG

; x1−3: DCF S1 , S2 and S3

; x4−5: g e m f i b r o z i l I1 and I2

ddt x1 = −k12∗x1∗(To−x5−x2 ) − k13∗x1 + k21∗x2 + k31∗x3

; ddt x1 = −k12∗x1∗(To−x5−x2 ) − k3∗x1 + k21∗x2 + k3∗x3 ; For Pre−Co−incubat ion data

ddt x2 = k12∗x1∗(To−x5−x2 ) − ( k21 + k23 )∗x2

ddt x3 = k13∗x1 + k23∗x2 − k31∗x3

; ddt x3 = k3∗x1 + k23∗x2 − k3∗x3 ; For Pre−Co−incubat ion data

ddt x4 = − k45∗x4∗(To−x5−x2 ) + k54∗x5

ddt x5 = k45∗x4∗(To−x5−x2 ) − k54∗x5

c e l l = ( x2+x3 )∗333

OUTPUT:

output = { c e l l }

R code for the statistical analysis of the pre-incubation data (DV = % of control):

l ibrary ( ggp lot2 )

l ibrary ( p ly r )

l ibrary ( grid )

l ibrary ( ex t r a f on t )

l ibrary ( cowplot )

l ibrary ( ggpubr )
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		ID		AMT		TIME		DV		ADM

		1		0.09		0		.		1

		1		.		0.333		1.16		.

		1		.		0.667		1.16		.

		1		.		1		1.52		.

		1		.		1.333		2.61		.

		1		.		3		5.23		.

		1		.		6		5.88		.

		1		0.09		0		.		1

		1		.		0.333		1.16		.

		1		.		0.667		1.52		.

		1		.		1		1.67		.

		1		.		1.333		2.98		.

		1		.		3		6.97		.

		1		.		6		5.88		.

		2		0.09		0		.		1

		2		.		0.333		1.07		.

		2		.		0.667		3.49		.

		2		.		1		2.51		.

		2		.		1.333		4.74		.

		2		.		3		8.68		.

		2		.		6		7.69		.

		2		0.09		0		.		1

		2		.		0.333		1.34		.

		2		.		0.667		3.22		.

		2		.		1		3.31		.

		2		.		1.333		4.12		.

		2		.		3		9.21		.

		2		.		6		8.68		.

		3		0.3		0		.		1

		3		.		0.333		5.81		.

		3		.		0.667		3.63		.

		3		.		1		4.14		.

		3		.		1.333		8.49		.

		3		.		3		14.88		.

		3		.		6		18.22		.

		3		0.3		0		.		1

		3		.		0.333		6.17		.

		3		.		0.667		4.94		.

		3		.		1		5.15		.

		3		.		1.333		10.09		.

		3		.		3		20.47		.

		3		.		6		21.56		.

		4		0.3		0		.		1

		4		.		0.333		4.38		.

		4		.		0.667		8.68		.

		4		.		1		8.23		.

		4		.		1.333		15.65		.

		4		.		3		26.75		.

		4		.		6		25.76		.

		4		0.3		0		.		1

		4		.		0.333		5.01		.

		4		.		0.667		9.39		.

		4		.		1		11.54		.

		4		.		1.333		13.15		.

		4		.		3		29.7		.

		4		.		6		26.84		.

		5		0.9		0		.		1

		5		.		0.333		6.32		.

		5		.		0.667		5.37		.

		5		.		1		7.99		.

		5		.		1.333		18.08		.

		5		.		3		26.94		.

		5		.		6		38.12		.

		5		0.9		0		.		1

		5		.		0.333		9.73		.

		5		.		0.667		8.35		.

		5		.		1		7.04		.

		5		.		1.333		24.1		.

		5		.		3		37.39		.

		5		.		6		37.25		.

		6		0.9		0		.		1

		6		.		0.333		10.56		.

		6		.		0.667		16.01		.

		6		.		1		14.94		.

		6		.		1.333		29.25		.

		6		.		3		63.33		.

		6		.		6		48.21		.

		6		0.9		0		.		1

		6		.		0.333		11.54		.

		6		.		0.667		19.05		.

		6		.		1		19.14		.

		6		.		1.333		27.28		.

		6		.		3		68.07		.

		6		.		6		48.57		.

		7		3		0		.		1

		7		.		0.333		7.84		.

		7		.		0.667		9.37		.

		7		.		1		16.63		.

		7		.		1.333		30.42		.

		7		.		3		41.89		.

		7		.		6		61.93		.

		7		3		0		.		1

		7		.		0.333		16.41		.

		7		.		0.667		19.75		.

		7		.		1		13.14		.

		7		.		1.333		36.67		.

		7		.		3		61.86		.

		7		.		6		76.02		.

		8		3		0		.		1

		8		.		0.333		27.28		.

		8		.		0.667		39		.

		8		.		1		31.4		.

		8		.		1.333		58.86		.

		8		.		3		135.97		.

		8		.		6		97.41		.

		8		3		0		.		1

		8		.		0.333		27.82		.

		8		.		0.667		46.96		.

		8		.		1		49.47		.

		8		.		1.333		62.88		.

		8		.		3		117		.

		8		.		6		95.89		.

		9		9		0		.		1

		9		.		0.333		13.94		.

		9		.		0.667		17.13		.

		9		.		1		32.09		.

		9		.		1.333		57.87		.

		9		.		3		86.47		.

		9		.		6		79.86		.

		9		9		0		.		1

		9		.		0.333		34.27		.

		9		.		0.667		38.92		.

		9		.		1		23.02		.

		9		.		1.333		78.05		.

		9		.		3		147.31		.

		9		.		6		162.42		.

		10		9		0		.		1

		10		.		0.333		40.61		.

		10		.		0.667		53.58		.

		10		.		1		48.48		.

		10		.		1.333		58.14		.

		10		.		3		151.98		.

		10		.		6		105.19		.

		10		9		0		.		1

		10		.		0.333		54.65		.

		10		.		0.667		69.15		.

		10		.		1		78.81		.

		10		.		1.333		101.35		.

		10		.		3		231.68		.

		10		.		6		117.09		.

		11		30		0		.		1

		11		.		0.333		13.43		.

		11		.		0.667		13.72		.

		11		.		1		39.79		.

		11		.		1.333		50.6		.

		11		.		3		80.45		.

		11		.		6		66.29		.

		11		30		0		.		1

		11		.		0.333		62.73		.

		11		.		0.667		53.94		.

		11		.		1		34.63		.

		11		.		1.333		82.99		.

		11		.		3		149.71		.

		11		.		6		304.57		.

		12		30		0		.		1

		12		.		0.333		18.43		.

		12		.		0.667		25.14		.

		12		.		1		35.78		.

		12		.		1.333		72.28		.

		12		.		3		117.27		.

		12		30		0		.		1

		12		.		0.333		67.71		.

		12		.		0.667		103.58		.

		12		.		1		77.82		.

		12		.		1.333		174.79		.

		12		.		3		339.73		.

		12		.		6		114.68		.

		13		0.3		0		.		2

		13		0.3		0		.		1

		13		.		0.333		2.9		.

		13		.		0.667		4.07		.

		13		.		1		5.59		.

		13		.		1.333		8.06		.

		13		.		3		17.13		.

		13		.		6		22.14		.

		13		0.3		0		.		2

		13		0.3		0		.		1

		13		.		0.333		3.7		.

		13		.		0.667		3.27		.

		13		.		1		5.15		.

		13		.		1.333		8.86		.

		13		.		3		14.96		.

		13		.		6		17.57		.

		14		0.3		0		.		2

		14		0.3		0		.		1

		14		.		0.333		2.95		.

		14		.		0.667		6.44		.

		14		.		1		8.59		.

		14		.		1.333		15.83		.

		14		.		3		24.51		.

		14		.		6		28.71		.

		14		0.3		0		.		2

		14		0.3		0		.		1

		14		.		0.333		3.76		.

		14		.		0.667		5.9		.

		14		.		1		6.8		.

		14		.		1.333		13.06		.

		14		.		3		24.87		.

		14		.		6		28		.

		15		0.9		0		.		2

		15		0.3		0		.		1

		15		.		0.333		3.05		.

		15		.		0.667		3.92		.

		15		.		1		4.43		.

		15		.		1.333		8.86		.

		15		.		3		16.77		.

		15		.		6		20.47		.

		15		0.9		0		.		2

		15		0.3		0		.		1

		15		.		0.333		3.92		.

		15		.		0.667		3.27		.

		15		.		1		4.07		.

		15		.		1.333		9.8		.

		15		.		3		13		.

		15		.		6		29.33		.

		16		0.9		0		.		2

		16		0.3		0		.		1

		16		.		0.333		6.35		.

		16		.		0.667		11.45		.

		16		.		1		8.95		.

		16		.		1.333		12.34		.

		16		.		3		23.88		.

		16		.		6		25.4		.

		16		0.9		0		.		2

		16		0.3		0		.		1

		16		.		0.333		7.78		.

		16		.		0.667		12.7		.

		16		.		1		12.08		.

		16		.		1.333		14.58		.

		16		.		3		25.32		.

		16		.		6		28.18		.

		17		3		0		.		2

		17		0.3		0		.		1

		17		.		0.333		2.54		.

		17		.		0.667		2.9		.

		17		.		1		2.61		.

		17		.		1.333		5.81		.

		17		.		3		9.29		.

		17		.		6		12.78		.

		17		3		0		.		2

		17		0.3		0		.		1

		17		.		0.333		2.9		.

		17		.		0.667		3.05		.

		17		.		1		3.34		.

		17		.		1.333		7.48		.

		17		.		3		8.35		.

		17		.		6		16.12		.

		18		3		0		.		2

		18		0.3		0		.		1

		18		.		0.333		3.4		.

		18		.		0.667		5.81		.

		18		.		1		4.56		.

		18		.		1.333		8.59		.

		18		.		3		16.28		.

		18		.		6		19.59		.

		18		3		0		.		2

		18		0.3		0		.		1

		18		.		0.333		4.65		.

		18		.		0.667		5.99		.

		18		.		1		6.26		.

		18		.		1.333		10.38		.

		18		.		3		16.91		.

		18		.		6		20.13		.

		19		9		0		.		2

		19		0.3		0		.		1

		19		.		0.333		1.52		.

		19		.		0.667		1.89		.

		19		.		1		1.6		.

		19		.		1.333		4.21		.

		19		.		3		6.68		.

		19		.		6		7.77		.

		19		9		0		.		2

		19		0.3		0		.		1

		19		.		0.333		2.18		.

		19		.		0.667		1.82		.

		19		.		1		2.25		.

		19		.		1.333		3.63		.

		19		.		3		6.03		.

		19		.		6		8.86		.

		20		9		0		.		2

		20		0.3		0		.		1

		20		.		0.333		2.06		.

		20		.		0.667		4.03		.

		20		.		1		4.12		.

		20		.		1.333		4.65		.

		20		.		3		8.5		.

		20		.		6		10.02		.

		20		9		0		.		2

		20		0.3		0		.		1

		20		.		0.333		2.86		.

		20		.		0.667		3.31		.

		20		.		1		3.49		.

		20		.		1.333		6.35		.

		20		.		3		9.93		.

		20		.		6		10.2		.

		21		30		0		.		2

		21		0.3		0		.		1

		21		.		0.333		0.58		.

		21		.		0.667		0.58		.

		21		.		1		0.73		.

		21		.		1.333		1.6		.

		21		.		3		2.03		.

		21		.		6		4.14		.

		21		30		0		.		2

		21		0.3		0		.		1

		21		.		0.333		0.87		.

		21		.		0.667		0.51		.

		21		.		1		0.8		.

		21		.		1.333		1.31		.

		21		.		3		2.25		.

		21		.		6		6.82		.

		22		30		0		.		2

		22		0.3		0		.		1

		22		.		0.333		0.72		.

		22		.		0.667		1.34		.

		22		.		1		1.61		.

		22		.		1.333		1.97		.

		22		.		3		3.22		.

		22		.		6		3.94		.

		22		30		0		.		2

		22		0.3		0		.		1

		22		.		0.333		1.07		.

		22		.		0.667		1.07		.

		22		.		1		0.98		.

		22		.		1.333		2.77		.

		22		.		3		4.03		.

		22		.		6		3.4		.

		23		90		0		.		2

		23		0.3		0		.		1

		23		.		1		0.22		.

		23		.		1.333		0.8		.

		23		.		3		0.51		.

		23		.		6		3.85		.

		23		90		0		.		2

		23		0.3		0		.		1

		23		.		0.333		0.29		.

		23		.		0.667		0.15		.

		23		.		1		0.29		.

		23		.		3		0.51		.

		23		.		6		2.9		.

		24		90		0		.		2

		24		0.3		0		.		1

		24		.		0.667		0.36		.

		24		.		1		0.54		.

		24		.		3		1.07		.

		24		.		6		2.06		.

		24		90		0		.		2

		24		0.3		0		.		1

		24		.		0.333		0.98		.

		24		.		1		0.72		.

		24		.		1.333		0.54		.

		24		.		3		2.51		.

		24		.		6		0.9		.




		ID		AMT		TIME		DV		ADM

		13		0.09		0		.		1

		13		.		0.333		0.8		.

		13		.		0.667		2.0		.

		13		.		1		0.9		.

		13		.		3		2.5		.

		13		0.09		0		.		1

		13		.		0.333		1.0		.

		13		.		0.667		2.0		.

		13		.		3		2.9		.

		14		0.09		0		.		1

		14		.		1		0.85		.

		14		.		3		8.24		.

		14		0.09		0		.		1

		14		.		0.333		0.38		.

		14		.		0.667		1.99		.

		14		.		1		7.20		.

		15		0.09		0		.		1

		15		.		1		1.6		.

		15		.		3		5.3		.

		15		0.09		0		.		1

		15		.		0.667		0.6		.

		15		.		1		2.4		.

		15		.		3		5.8		.

		16		0.3		0		.		1

		16		.		0.333		3.3		.

		16		.		0.667		4.8		.

		16		.		1		5.2		.

		16		.		3		11.2		.

		16		0.3		0		.		1

		16		.		0.333		3.4		.

		16		.		0.667		6.3		.

		16		.		1		4.9		.

		16		.		3		10.2		.

		17		0.3		0		.		1

		17		.		0.333		1.23		.

		17		.		1		4.83		.

		17		.		3		22.36		.

		17		0.3		0		.		1

		17		.		0.333		2.84		.

		17		.		1		7.58		.

		17		.		3		21.42		.

		18		0.3		0		.		1

		18		.		0.333		1.2		.

		18		.		0.667		3.3		.

		18		.		1		5.8		.

		18		.		3		14.6		.

		18		0.3		0		.		1

		18		.		0.333		1.0		.

		18		.		0.667		2.0		.

		18		.		0.667		1.5		.

		18		.		1		6.1		.

		18		.		3		21.7		.

		19		0.9		0		.		1

		19		.		0.333		7.3		.

		19		.		0.667		7.1		.

		19		.		1		10.3		.

		19		.		3		15.2		.

		19		0.9		0		.		1

		19		.		0.333		6.4		.

		19		.		0.667		10.4		.

		19		.		1		9.5		.

		19		.		3		15.9		.

		20		0.9		0		.		1

		20		.		0.333		7.11		.

		20		.		1		18.38		.

		20		.		3		19.14		.

		20		0.9		0		.		1

		20		.		0.333		12.13		.

		20		.		1		19.14		.

		20		.		3		47.09		.

		21		0.9		0		.		1

		21		.		0.333		4.6		.

		21		.		0.667		5.4		.

		21		.		1		14.2		.

		21		.		3		33.5		.

		21		0.9		0		.		1

		21		.		0.333		5.2		.

		21		.		0.667		7.5		.

		21		.		0.667		7.1		.

		21		.		1		15.1		.

		21		.		3		39.7		.

		22		3		0		.		1

		22		.		0.333		21.3		.

		22		.		0.667		17.2		.

		22		.		1		28.4		.

		22		.		3		30.2		.

		22		3		0		.		1

		22		.		0.333		16.3		.

		22		.		0.667		25.3		.

		22		.		1		25.3		.

		22		.		3		31.3		.

		23		3		0		.		1

		23		.		0.333		13.55		.

		23		.		1		24.92		.

		23		.		3		95.99		.

		23		3		0		.		1

		23		.		0.333		20.56		.

		23		.		1		38.09		.

		23		.		3		100.16		.

		24		3		0		.		1

		24		.		0.333		12.1		.

		24		.		0.667		14.2		.

		24		.		1		27.3		.

		24		.		3		59.2		.

		24		3		0		.		1

		24		.		0.333		11.8		.

		24		.		0.667		16.9		.

		24		.		0.667		20.3		.

		24		.		1		31.6		.

		24		.		3		77.8		.

		25		9		0		.		1

		25		.		0.333		38.3		.

		25		.		0.667		35.8		.

		25		.		1		41.4		.

		25		.		3		53.9		.

		25		9		0		.		1

		25		.		0.333		34.8		.

		25		.		0.667		49.9		.

		25		.		1		38.6		.

		25		.		3		61.3		.

		26		9		0		.		1

		26		.		0.333		25.39		.

		26		.		1		49.56		.

		26		.		3		130.67		.

		26		9		0		.		1

		26		.		0.333		31.18		.

		26		.		1		64.53		.

		26		.		3		137.30		.

		27		9		0		.		1

		27		.		0.333		29.5		.

		27		.		0.667		39.3		.

		27		.		1		59.5		.

		27		.		3		102.9		.

		27		9		0		.		1

		27		.		0.333		27.6		.

		27		.		0.667		41.2		.

		27		.		0.667		40.5		.

		27		.		1		65.3		.

		27		.		3		144.9		.

		28		30		0		.		1

		28		.		0.333		52.5		.

		28		.		0.667		34.2		.

		28		.		1		46.7		.

		28		.		3		49.1		.

		28		30		0		.		1

		28		.		0.333		49.0		.

		28		.		0.667		54.5		.

		28		.		1		51.9		.

		28		.		3		54.8		.

		29		30		0		.		1

		29		.		0.333		32.60		.

		29		.		1		52.87		.

		29		.		3		98.74		.

		29		30		0		.		1

		29		.		0.333		33.17		.

		29		.		1		79.79		.

		29		.		3		131.71		.

		30		30		0		.		1

		30		.		0.333		31.6		.

		30		.		0.667		34.2		.

		30		.		1		60.0		.

		30		.		3		96.7		.

		30		30		0		.		1

		30		.		0.333		48.2		.

		30		.		0.667		63.4		.

		30		.		0.667		39.4		.

		30		.		1		85.5		.

		30		.		3		151.9		.

		31		0.3		0		.		2

		31		0.3		0		.		1

		31		.		0.333		1.86		.

		31		.		0.667		4.63		.

		31		.		1		1.14		.

		31		.		3		10.68		.

		31		0.3		0		.		2

		31		0.3		0		.		1

		31		.		0.333		1.35		.

		31		.		0.667		4.42		.

		31		.		1		2.27		.

		32		0.3		0		.		2

		32		0.3		0		.		1

		32		.		0.333		2.65		.

		32		.		1		14.31		.

		32		.		3		61.31		.

		32		0.3		0		.		2

		32		0.3		0		.		1

		32		.		0.333		4.83		.

		32		.		1		12.79		.

		32		.		3		45.67		.

		33		0.3		0		.		2

		33		0.3		0		.		1

		33		.		0.333		1.30		.

		33		.		0.667		1.18		.

		33		.		1		6.29		.

		33		.		3		15.93		.

		33		0.3		0		.		2

		33		0.3		0		.		1

		33		.		0.333		1.75		.

		33		.		0.667		1.41		.

		33		.		0.667		2.20		.

		33		.		1		5.95		.

		33		.		3		15.81		.

		34		0.9		0		.		2

		34		0.3		0		.		1

		34		.		0.333		1.04		.

		34		.		0.667		4.53		.

		34		.		1		4.94		.

		34		.		3		11.29		.

		34		0.9		0		.		2

		34		0.3		0		.		1

		34		.		0.333		1.25		.

		34		.		0.667		5.04		.

		34		.		1		3.81		.

		35		0.9		0		.		2

		35		0.3		0		.		1

		35		.		0.333		1.80		.

		35		.		1		7.68		.

		35		.		3		22.65		.

		35		0.9		0		.		2

		35		0.3		0		.		1

		35		.		0.333		2.65		.

		35		.		1		7.39		.

		35		.		3		27.38		.

		36		0.9		0		.		2

		36		0.3		0		.		1

		36		.		0.333		1.98		.

		36		.		0.667		1.18		.

		36		.		1		6.17		.

		36		.		3		15.93		.

		36		0.9		0		.		2

		36		0.3		0		.		1

		36		.		0.333		1.98		.

		36		.		0.667		1.52		.

		36		.		0.667		2.43		.

		36		.		1		5.04		.

		36		.		3		17.17		.

		37		3		0		.		2

		37		0.3		0		.		1

		37		.		0.333		1.66		.

		37		.		0.667		1.04		.

		37		.		1		1.76		.

		37		.		3		2.89		.

		37		3		0		.		2

		37		0.3		0		.		1

		37		.		0.333		2.27		.

		37		.		0.667		1.35		.

		37		.		1		1.45		.

		38		3		0		.		2

		38		0.3		0		.		1

		38		.		0.333		2.75		.

		38		.		1		5.87		.

		38		.		3		16.30		.

		38		3		0		.		2

		38		0.3		0		.		1

		38		.		0.333		2.84		.

		38		.		1		4.64		.

		38		.		3		18.00		.

		39		3		0		.		2

		39		0.3		0		.		1

		39		.		0.333		1.30		.

		39		.		0.667		1.18		.

		39		.		1		4.02		.

		39		.		3		8.78		.

		39		3		0		.		2

		39		0.3		0		.		1

		39		.		0.333		0.96		.

		39		.		0.667		1.07		.

		39		.		0.667		1.30		.

		39		.		1		4.13		.

		39		.		3		11.73		.

		40		9		0		.		2

		40		0.3		0		.		1

		40		.		0.333		1.66		.

		40		.		0.667		3.09		.

		40		.		1		3.09		.

		40		.		3		5.55		.

		40		9		0		.		2

		40		0.3		0		.		1

		40		.		0.333		2.17		.

		40		.		0.667		3.30		.

		40		.		1		3.30		.

		41		9		0		.		2

		41		0.3		0		.		1

		41		.		0.333		1.80		.

		41		.		1		3.41		.

		41		.		3		10.42		.

		41		9		0		.		2

		41		0.3		0		.		1

		41		.		0.333		2.27		.

		41		.		1		2.75		.

		41		.		3		11.84		.

		42		9		0		.		2

		42		0.3		0		.		1

		42		.		0.333		0.50		.

		42		.		1		1.98		.

		42		.		3		5.83		.

		42		9		0		.		2

		42		0.3		0		.		1

		42		.		0.667		0.62		.

		42		.		1		2.43		.

		42		.		3		6.85		.

		43		30		0		.		2

		43		0.3		0		.		1

		43		.		0.333		0.73		.

		43		.		0.667		1.35		.

		43		.		1		0.73		.

		43		.		3		2.27		.

		43		30		0		.		2

		43		0.3		0		.		1

		43		.		0.333		1.45		.

		43		.		0.667		1.25		.

		43		.		1		0.73		.

		44		30		0		.		2

		44		0.3		0		.		1

		44		.		0.333		0.57		.

		44		.		1		1.04		.

		44		.		3		2.08		.

		44		30		0		.		2

		44		0.3		0		.		1

		44		.		0.333		0.85		.

		44		.		1		0.57		.

		44		.		3		2.18		.

		45		30		0		.		2

		45		0.3		0		.		1

		45		.		1		0.73		.

		45		.		3		3.11		.

		45		30		0		.		2

		45		0.3		0		.		1

		45		.		1		0.96		.

		45		.		3		2.66		.




		ID		DOSE		TIME		DV

		1		1		5		77.89

		1		1		5		113.95

		1		1		5		112.21

		1		1		5		101.35

		2		1		10		94.40

		2		1		10		128.71

		2		1		10		97.01

		2		1		10		125.24

		3		1		20		89.19

		3		1		20		113.08

		3		1		20		124.37

		3		1		20		120.03

		4		1		40		107.43

		4		1		40		110.91

		4		1		40		120.90

		4		1		40		114.81

		5		3		5		99.18

		5		3		5		123.07

		5		3		5		117.42

		5		3		5		104.39

		6		3		10		116.55

		6		3		10		132.62

		6		3		10		106.56

		6		3		10		146.09

		7		3		20		99.18

		7		3		20		116.55

		7		3		20		115.68

		7		3		20		129.58

		8		3		40		112.21

		8		3		40		117.86

		8		3		40		114.38

		8		3		40		134.80

		9		10		5		61.39

		9		10		5		92.66

		9		10		5		87.88

		9		10		5		91.36

		10		10		10		86.15

		10		10		10		95.70

		10		10		10		86.15

		10		10		10		119.16

		11		10		20		61.82

		11		10		20		83.54

		11		10		20		83.11

		11		10		20		88.32

		12		10		40		89.19

		12		10		40		96.57

		12		10		40		101.78

		12		10		40		138.27

		13		30		5		57.05

		13		30		5		102.22

		13		30		5		92.23

		13		30		5		105.69

		14		30		10		86.15

		14		30		10		89.19

		14		30		10		83.98

		14		30		10		105.26

		15		30		20		77.46

		15		30		20		82.24

		15		30		20		97.87

		15		30		20		107.00

		16		30		40		104.82

		16		30		40		109.17

		16		30		40		94.40

		16		30		40		124.81

		17		100		5		60.09

		17		100		5		117.86

		17		100		5		106.56

		17		100		5		109.60

		18		100		10		66.60

		18		100		10		83.98

		18		100		10		73.55

		18		100		10		100.48

		19		100		20		71.81

		19		100		20		77.46

		19		100		20		91.36

		19		100		20		69.64

		20		100		40		99.18

		20		100		40		90.06

		20		100		40		85.71

		20		100		40		114.38

		21		300		5		28.38

		21		300		5		49.23

		21		300		5		67.90

		21		300		5		99.18

		22		300		10		32.72

		22		300		10		48.36

		22		300		10		45.75

		22		300		10		56.18

		23		300		20		37.50

		23		300		20		37.50

		23		300		20		47.06

		23		300		20		48.79

		24		300		40		62.69

		24		300		40		58.35

		24		300		40		44.45

		24		300		40		55.31

		25		0		0		91.36

		25		0		0		98.31

		25		0		0		111.34





DCF Pre <− read . table ( ”DCF Gem Pre . txt ” , head=TRUE)

#Data : ID , DOSE, TIME, DV

DCF Pre$TIME <− as . factor (DCF Pre$TIME)

DCF Pre$DOSE <− as . factor (DCF Pre$DOSE)

# unequa l v a r i a t i o n = d e f a u l t , unpa i red = d e f a u l t

compare means (data=DCF Pre ,DV˜DOSE,

method=” t . t e s t ” ,

r e f . group = ”0” )

compare means (data=DCF Pre ,DV˜TIME,

method=” t . t e s t ” ,

r e f . group = ”0” )

theme set ( theme cowplot ( font s i z e =8, font family = ” Ar ia l ” ) )

f i g 1 <− ggbarp lot (data=DCF Pre , x=”DOSE” ,

y=”DV” ,

add=”mean se ” ,

p o s i t i o n=p o s i t i o n dodge ( 0 . 8 ) ,

f i l l = ” l i g h t g r e y ” ,

width=0.8)+

stat compare means ( method=” t . t e s t ” ,

l a b e l=”p . s i g n i f ” ,

l a b e l . y=90,

hide . ns=”TRUE” ,

r e f=”0”)+

theme ( axis . text=element text ( s i z e =8) ,

axis . t i t l e=element text ( s i z e =8)

)+

xlab ( ” Gemf ibroz i l incubat ion concent ra t i on ( nmol/ml) ”)+

ylab ( ”% of DCF con t r o l ” )

f i g 1

f i g 2 <− ggdraw ( f i g 1 )+

theme ( rect=element rect ( f i l l =” white ” ) )

ggsave ( ”DCF Pre . jpg ” , f i g2 , width=6, he ight =3, un i t s=” in ” , dpi =600)

The data files for Chapter 4 for use in Monolix 2018R2 can be found below, and
as a copy in the online thesis version.

AtorCsA Combined.txt :
The code for the model files for Chapter 4 for use in Monolix 2018R2 for the best fitting
model (micro-rate constant with non-competitive inhibition) is included below, and all
the files are included in the online thesis version:

DESCRIPTION: model to de s c r i b e a t o rva s t a t i n uptake in to hepatocytes

; and i t s i n h i b i t i o n by CsA

[LONGITUDINAL]

input = {k13 , k31 , k12 , k21 , To , k23 ,Vm,Km, Ki , k45 , k54 , alpha}

PK:

depot ( type =2, t a rg e t=x1 )

depot ( type =1, t a rg e t=x4 )

EQUATION:

; k13 and k31 = kfA and kbA

; k12 , k21 and k23 = kaA , kdA and ktA

; Vm, Km and Ki = Vmax. met , Km. met and KI . met

; k45 , k54 , alpha = kaC , kdC

; x1−3: a t o r va s t a t i n S1 , S2 and S3

; x4−6: CsA I1 , I2 and I4

ddt x1 = −k12∗x1∗(To−x5−x2−x6 ) − k13∗x1 + k21∗x2 + k31∗x3 − k12∗alpha∗x1∗x5 + k21∗alpha∗x6

ddt x2 = k12∗x1∗(To−x5−x2−x6 ) − ( k21 + k23 )∗x2 − k45∗alpha∗x2∗x4 + k54∗alpha∗x6

ddt x3 = k13∗x1 + k23∗x2 − k31∗x3 − (Vm∗x3 )/ (Km∗(1+x4/Ki ) ) + k23∗alpha∗x6

ddt x4 = −k45∗x4∗(To−x5−x2−x6 ) + k54∗x5 − k45∗alpha∗x2∗x4 + k54∗alpha∗x6

ddt x5 = k45∗x4∗(To−x4−x2−x6 ) − k54∗x5 − k12∗alpha∗x1∗x5 + ( k21+k23 )∗alpha∗x6

ddt x6 = k12∗alpha∗x1∗x5 + k45∗alpha∗x2∗x4 − ( k21+k54+k23 )∗alpha∗x6

c e l l = 906∗( x2 + x3 + x6 )

OUTPUT:

output = { c e l l }

The data files for Chapter 5 for use in Monolix 2018R2 can be found below, and
as a copy in the online thesis version.
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		ID		AMT		TIME		DV		ADM		OCC

		1		0.005		0		.		2		1

		1		.		0.25		5.79		.		1

		1		.		0.58		5.07		.		1

		1		.		0.92		4.10		.		1

		1		.		1.25		4.73		.		1

		1		.		2.5		5.44		.		1

		1		.		5		5.28		.		1

		1		.		10		4.56		.		1

		1		.		20		3.72		.		1

		1		.		30		2.94		.		1

		1		.		40		2.80		.		1

		1		.		50		2.15		.		1

		1		.		60		2.25		.		1

		2		0.005		0		.		2		2

		2		.		0.25		3.07		.		2

		2		.		0.58		2.77		.		2

		2		.		0.92		2.86		.		2

		2		.		1.25		3.13		.		2

		2		.		2.5		3.27		.		2

		2		.		5		3.49		.		2

		2		.		20		2.64		.		2

		2		.		30		2.13		.		2

		2		.		40		1.72		.		2

		2		.		50		1.65		.		2

		2		.		60		1.61		.		2

		3		0.005		0		.		2		3

		3		.		0.25		1.95		.		3

		3		.		0.58		2.90		.		3

		3		.		0.92		3.15		.		3

		3		.		1.25		4.02		.		3

		3		.		2.5		4.38		.		3

		3		.		5		4.57		.		3

		3		.		10		3.20		.		3

		3		.		20		2.90		.		3

		3		.		30		2.68		.		3

		3		.		40		1.51		.		3

		3		.		50		1.28		.		3

		3		.		60		1.35		.		3

		4		0.025		0		.		2		1

		4		.		0.25		6.57		.		1

		4		.		0.58		14.10		.		1

		4		.		0.92		16.79		.		1

		4		.		1.25		18.68		.		1

		4		.		2.5		24.79		.		1

		4		.		5		25.87		.		1

		4		.		10		24.28		.		1

		4		.		20		19.76		.		1

		4		.		30		17.74		.		1

		4		.		40		13.16		.		1

		4		.		50		12.13		.		1

		4		.		60		8.55		.		1

		5		0.025		0		.		2		2

		5		.		0.25		10.40		.		2

		5		.		0.58		13.60		.		2

		5		.		0.92		13.68		.		2

		5		.		1.25		17.82		.		2

		5		.		2.5		14.19		.		2

		5		.		5		16.33		.		2

		5		.		10		14.15		.		2

		5		.		20		10.73		.		2

		5		.		30		10.12		.		2

		5		.		40		7.72		.		2

		5		.		50		6.87		.		2

		5		.		60		4.64		.		2

		6		0.025		0		.		2		3

		6		.		0.25		8.73		.		3

		6		.		0.58		14.74		.		3

		6		.		0.92		18.31		.		3

		6		.		1.25		21.49		.		3

		6		.		2.5		24.12		.		3

		6		.		5		23.02		.		3

		6		.		10		20.67		.		3

		6		.		20		14.64		.		3

		6		.		30		13.13		.		3

		6		.		40		9.07		.		3

		6		.		50		8.52		.		3

		6		.		60		5.98		.		3

		7		0.05		0		.		2		1

		7		.		0.25		12.90		.		1

		7		.		0.58		25.82		.		1

		7		.		0.92		34.84		.		1

		7		.		1.25		36.54		.		1

		7		.		2.5		45.32		.		1

		7		.		5		50.06		.		1

		7		.		10		44.14		.		1

		7		.		20		37.53		.		1

		7		.		30		28.80		.		1

		7		.		40		23.39		.		1

		7		.		50		21.06		.		1

		7		.		60		19.59		.		1

		8		0.05		0		.		2		2

		8		.		0.25		18.33		.		2

		8		.		0.58		18.27		.		2

		8		.		0.92		22.76		.		2

		8		.		1.25		26.18		.		2

		8		.		2.5		32.66		.		2

		8		.		5		35.49		.		2

		8		.		10		28.39		.		2

		8		.		20		22.17		.		2

		8		.		30		19.03		.		2

		8		.		40		12.87		.		2

		8		.		50		11.96		.		2

		8		.		60		9.69		.		2

		9		0.05		0		.		2		3

		9		.		0.25		15.74		.		3

		9		.		0.58		29.88		.		3

		9		.		0.92		35.54		.		3

		9		.		1.25		42.03		.		3

		9		.		2.5		49.44		.		3

		9		.		5		48.31		.		3

		9		.		10		39.17		.		3

		9		.		20		27.34		.		3

		9		.		30		25.38		.		3

		9		.		40		17.64		.		3

		9		.		50		15.77		.		3

		9		.		60		10.80		.		3

		10		0.25		0		.		2		1

		10		.		0.25		42.98		.		1

		10		.		0.58		87.89		.		1

		10		.		0.92		109.59		.		1

		10		.		1.25		137.90		.		1

		10		.		2.5		201.08		.		1

		10		.		5		248.91		.		1

		10		.		10		168.55		.		1

		10		.		20		154.83		.		1

		10		.		30		113.98		.		1

		10		.		40		82.30		.		1

		10		.		50		69.53		.		1

		10		.		60		44.77		.		1

		11		0.25		0		.		2		2

		11		.		0.25		53.28		.		2

		11		.		0.58		64.45		.		2

		11		.		0.92		85.28		.		2

		11		.		1.25		112.72		.		2

		11		.		2.5		150.19		.		2

		11		.		5		149.14		.		2

		11		.		10		118.61		.		2

		11		.		20		104.02		.		2

		11		.		30		74.53		.		2

		11		.		40		52.72		.		2

		11		.		50		47.70		.		2

		11		.		60		32.87		.		2

		12		0.25		0		.		2		3

		12		.		0.25		52.30		.		3

		12		.		0.58		104.20		.		3

		12		.		0.92		150.91		.		3

		12		.		1.25		166.83		.		3

		12		.		2.5		218.37		.		3

		12		.		5		223.02		.		3

		12		.		10		164.84		.		3

		12		.		20		109.88		.		3

		12		.		30		87.44		.		3

		12		.		40		56.28		.		3

		12		.		50		44.55		.		3

		12		.		60		30.20		.		3

		13		0.5		0		.		2		1

		13		.		0.25		62.71		.		1

		13		.		0.58		114.62		.		1

		13		.		0.92		174.75		.		1

		13		.		1.25		208.40		.		1

		13		.		2.5		301.80		.		1

		13		.		5		397.59		.		1

		13		.		10		355.55		.		1

		13		.		20		257.76		.		1

		13		.		30		178.55		.		1

		13		.		40		122.56		.		1

		13		.		50		86.67		.		1

		13		.		60		52.95		.		1

		14		0.5		0		.		2		2

		14		.		0.25		95.35		.		2

		14		.		0.58		93.78		.		2

		14		.		0.92		132.64		.		2

		14		.		1.25		168.97		.		2

		14		.		2.5		232.48		.		2

		14		.		5		270.16		.		2

		14		.		10		248.18		.		2

		14		.		20		158.78		.		2

		14		.		30		109.87		.		2

		14		.		40		80.99		.		2

		14		.		50		55.39		.		2

		14		.		60		35.63		.		2

		15		0.5		0		.		2		3

		15		.		0.25		81.78		.		3

		15		.		0.58		158.08		.		3

		15		.		0.92		199.50		.		3

		15		.		1.25		255.72		.		3

		15		.		2.5		391.56		.		3

		15		.		5		456.51		.		3

		15		.		10		307.63		.		3

		15		.		20		164.06		.		3

		15		.		30		115.42		.		3

		15		.		40		49.70		.		3

		15		.		50		38.89		.		3

		15		.		60		22.18		.		3

		16		2.5		0		.		2		1

		16		.		0.25		256.66		.		1

		16		.		0.58		348.69		.		1

		16		.		0.92		432.87		.		1

		16		.		1.25		497.95		.		1

		16		.		2.5		576.38		.		1

		16		.		5		901.72		.		1

		16		.		10		1104.86		.		1

		16		.		20		784.93		.		1

		16		.		30		676.03		.		1

		16		.		40		502.92		.		1

		16		.		50		463.82		.		1

		16		.		60		346.65		.		1

		17		2.5		0		.		2		2

		17		.		0.25		531.50		.		2

		17		.		0.58		245.44		.		2

		17		.		0.92		349.48		.		2

		17		.		1.25		420.73		.		2

		17		.		2.5		493.51		.		2

		17		.		5		756.59		.		2

		17		.		10		784.99		.		2

		17		.		20		473.64		.		2

		17		.		30		373.25		.		2

		17		.		40		245.61		.		2

		17		.		50		194.73		.		2

		17		.		60		118.95		.		2

		18		2.5		0		.		2		3

		18		.		0.25		398.15		.		3

		18		.		0.58		452.45		.		3

		18		.		0.92		457.38		.		3

		18		.		1.25		545.63		.		3

		18		.		2.5		979.67		.		3

		18		.		5		821.23		.		3

		18		.		10		1139.79		.		3

		18		.		20		886.15		.		3

		18		.		30		641.69		.		3

		18		.		40		524.54		.		3

		18		.		50		332.27		.		3

		18		.		60		228.64		.		3

		19		5		0		.		2		1

		19		.		0.25		607.48		.		1

		19		.		0.58		526.04		.		1

		19		.		0.92		612.95		.		1

		19		.		1.25		975.70		.		1

		19		.		2.5		1085.85		.		1

		19		.		5		1243.15		.		1

		19		.		10		1168.65		.		1

		19		.		20		1589.26		.		1

		19		.		30		1078.36		.		1

		19		.		40		1005.02		.		1

		19		.		50		949.14		.		1

		19		.		60		944.10		.		1

		20		5		0		.		2		2

		20		.		0.25		821.71		.		2

		20		.		0.58		648.37		.		2

		20		.		0.92		488.46		.		2

		20		.		1.25		537.37		.		2

		20		.		2.5		875.67		.		2

		20		.		5		772.94		.		2

		20		.		10		982.16		.		2

		20		.		20		989.66		.		2

		20		.		30		742.93		.		2

		20		.		40		440.41		.		2

		20		.		50		592.91		.		2

		20		.		60		344.99		.		2

		21		5		0		.		2		3

		21		.		0.25		437.38		.		3

		21		.		0.58		653.42		.		3

		21		.		0.92		660.54		.		3

		21		.		1.25		817.24		.		3

		21		.		2.5		1129.20		.		3

		21		.		5		1400.26		.		3

		21		.		10		1314.59		.		3

		21		.		20		1539.90		.		3

		21		.		30		937.34		.		3

		21		.		40		1193.20		.		3

		21		.		50		659.99		.		3

		21		.		60		661.89		.		3

		22		15		0		.		2		1

		22		.		0.25		1194.32		.		1

		22		.		0.58		1523.19		.		1

		22		.		0.92		1698.65		.		1

		22		.		1.25		1889.70		.		1

		22		.		2.5		1648.33		.		1

		22		.		5		2091.47		.		1

		22		.		10		1682.14		.		1

		22		.		20		2247.69		.		1

		22		.		30		1907.07		.		1

		22		.		40		2319.36		.		1

		22		.		50		2247.38		.		1

		22		.		60		2096.40		.		1

		23		15		0		.		2		2

		23		.		0.25		1439.22		.		2

		23		.		0.58		1250.71		.		2

		23		.		0.92		1329.06		.		2

		23		.		1.25		1358.26		.		2

		23		.		2.5		1527.05		.		2

		23		.		5		1461.10		.		2

		23		.		10		1861.68		.		2

		23		.		20		1606.31		.		2

		23		.		30		1400.33		.		2

		23		.		40		1726.10		.		2

		23		.		50		1612.85		.		2

		23		.		60		1273.35		.		2

		24		15		0		.		2		3

		24		.		0.25		1577.12		.		3

		24		.		0.58		1575.77		.		3

		24		.		0.92		1511.71		.		3

		24		.		1.25		1407.65		.		3

		24		.		2.5		1740.03		.		3

		24		.		5		2397.18		.		3

		24		.		10		1777.85		.		3

		24		.		20		2387.34		.		3

		24		.		30		2375.48		.		3

		24		.		40		1572.29		.		3

		24		.		50		2201.11		.		3

		24		.		60		1632.21		.		3

		25		1		-20		.		1		1

		25		0.005		0		.		2		1

		25		.		0.25		0.65		.		1

		25		.		0.58		0.68		.		1

		25		.		0.92		0.92		.		1

		25		.		1.25		1.16		.		1

		25		.		2.5		1.49		.		1

		25		.		5		2.37		.		1

		25		.		10		3.03		.		1

		25		.		30		3.24		.		1

		25		.		40		3.53		.		1

		25		.		50		3.22		.		1

		25		.		60		2.58		.		1

		26		1		-20		.		1		2

		26		0.005		0		.		2		2

		26		.		0.58		1.30		.		2

		26		.		0.92		1.70		.		2

		26		.		1.25		1.80		.		2

		26		.		2.5		2.09		.		2

		26		.		5		2.65		.		2

		26		.		10		3.77		.		2

		26		.		20		3.78		.		2

		26		.		40		3.25		.		2

		26		.		50		4.23		.		2

		26		.		60		3.26		.		2

		27		1		-20		.		1		3

		27		0.005		0		.		2		3

		27		.		0.58		2.34		.		3

		27		.		1.25		0.85		.		3

		27		.		2.5		0.87		.		3

		27		.		5		2.58		.		3

		27		.		10		2.89		.		3

		27		.		20		3.32		.		3

		27		.		30		2.52		.		3

		27		.		40		2.52		.		3

		27		.		50		3.07		.		3

		27		.		60		2.96		.		3

		28		1		-20		.		1		1

		28		0.025		0		.		2		1

		28		.		0.25		2.98		.		1

		28		.		0.58		4.87		.		1

		28		.		0.92		5.33		.		1

		28		.		1.25		6.45		.		1

		28		.		2.5		7.88		.		1

		28		.		5		11.07		.		1

		28		.		10		15.32		.		1

		28		.		20		16.24		.		1

		28		.		30		17.90		.		1

		28		.		40		17.73		.		1

		28		.		50		15.57		.		1

		28		.		60		13.70		.		1

		29		1		-20		.		1		2

		29		0.025		0		.		2		2

		29		.		0.25		13.18		.		2

		29		.		0.58		8.53		.		2

		29		.		0.92		4.94		.		2

		29		.		1.25		9.14		.		2

		29		.		2.5		6.55		.		2

		29		.		5		9.75		.		2

		29		.		10		11.28		.		2

		29		.		20		17.94		.		2

		29		.		30		17.09		.		2

		29		.		40		12.94		.		2

		29		.		50		15.73		.		2

		29		.		60		12.77		.		2

		30		1		-20		.		1		3

		30		0.025		0		.		2		3

		30		.		0.58		8.00		.		3

		30		.		0.92		8.35		.		3

		30		.		1.25		7.91		.		3

		30		.		2.5		8.71		.		3

		30		.		5		16.04		.		3

		30		.		10		20.69		.		3

		30		.		20		20.53		.		3

		30		.		30		23.72		.		3

		30		.		40		18.18		.		3

		30		.		50		18.71		.		3

		30		.		60		11.32		.		3

		31		1		-20		.		1		1

		31		0.05		0		.		2		1

		31		.		0.25		6.08		.		1

		31		.		0.58		9.32		.		1

		31		.		0.92		9.43		.		1

		31		.		1.25		11.80		.		1

		31		.		2.5		13.37		.		1

		31		.		5		20.88		.		1

		31		.		10		28.66		.		1

		31		.		20		30.76		.		1

		31		.		30		34.83		.		1

		31		.		40		31.79		.		1

		31		.		50		31.22		.		1

		31		.		60		23.74		.		1

		32		1		-20		.		1		2

		32		0.05		0		.		2		2

		32		.		0.25		3.52		.		2

		32		.		0.58		6.41		.		2

		32		.		0.92		8.53		.		2

		32		.		1.25		10.03		.		2

		32		.		2.5		11.87		.		2

		32		.		5		17.68		.		2

		32		.		10		22.55		.		2

		32		.		20		27.35		.		2

		32		.		30		27.33		.		2

		32		.		40		26.82		.		2

		32		.		50		24.00		.		2

		32		.		60		18.65		.		2

		33		1		-20		.		1		3

		33		0.05		0		.		2		3

		33		.		0.58		11.74		.		3

		33		.		0.92		11.67		.		3

		33		.		1.25		15.14		.		3

		33		.		2.5		22.99		.		3

		33		.		5		24.09		.		3

		33		.		10		16.14		.		3

		33		.		20		42.69		.		3

		33		.		30		44.47		.		3

		33		.		40		38.92		.		3

		33		.		50		40.48		.		3

		33		.		60		30.75		.		3

		34		1		-20		.		1		1

		34		0.25		0		.		2		1

		34		.		0.25		28.45		.		1

		34		.		0.58		41.98		.		1

		34		.		0.92		48.89		.		1

		34		.		1.25		51.81		.		1

		34		.		2.5		63.89		.		1

		34		.		5		95.16		.		1

		34		.		10		122.76		.		1

		34		.		20		143.22		.		1

		34		.		30		159.86		.		1

		34		.		40		142.58		.		1

		34		.		50		137.15		.		1

		34		.		60		110.32		.		1

		35		1		-20		.		1		2

		35		0.25		0		.		2		2

		35		.		0.25		23.23		.		2

		35		.		0.58		26.79		.		2

		35		.		0.92		34.51		.		2

		35		.		1.25		39.79		.		2

		35		.		2.5		52.52		.		2

		35		.		5		73.02		.		2

		35		.		10		93.54		.		2

		35		.		20		126.38		.		2

		35		.		30		123.32		.		2

		35		.		40		112.27		.		2

		35		.		50		101.28		.		2

		35		.		60		77.27		.		2

		36		1		-20		.		1		3

		36		0.25		0		.		2		3

		36		.		0.58		73.72		.		3

		36		.		0.92		62.46		.		3

		36		.		1.25		67.38		.		3

		36		.		2.5		90.87		.		3

		36		.		5		187.34		.		3

		36		.		10		239.98		.		3

		36		.		20		182.51		.		3

		36		.		30		294.58		.		3

		36		.		40		199.45		.		3

		36		.		50		179.30		.		3

		36		.		60		254.35		.		3

		37		1		-20		.		1		1

		37		0.5		0		.		2		1

		37		.		0.25		53.07		.		1

		37		.		0.58		78.17		.		1

		37		.		0.92		84.03		.		1

		37		.		1.25		89.29		.		1

		37		.		2.5		111.62		.		1

		37		.		5		170.21		.		1

		37		.		10		222.22		.		1

		37		.		20		247.92		.		1

		37		.		30		263.71		.		1

		37		.		40		250.05		.		1

		37		.		50		228.55		.		1

		37		.		60		188.73		.		1

		38		1		-20		.		1		2

		38		0.5		0		.		2		2

		38		.		0.25		26.74		.		2

		38		.		0.58		50.92		.		2

		38		.		0.92		63.08		.		2

		38		.		1.25		70.51		.		2

		38		.		2.5		84.30		.		2

		38		.		5		129.03		.		2

		38		.		10		173.22		.		2

		38		.		20		231.02		.		2

		38		.		30		231.99		.		2

		38		.		40		186.83		.		2

		38		.		50		162.94		.		2

		38		.		60		111.48		.		2

		39		1		-20		.		1		3

		39		0.5		0		.		2		3

		39		.		0.58		86.54		.		3

		39		.		0.92		84.98		.		3

		39		.		1.25		98.15		.		3

		39		.		2.5		138.80		.		3

		39		.		5		223.52		.		3

		39		.		10		80.26		.		3

		39		.		20		417.96		.		3

		39		.		30		336.00		.		3

		39		.		40		280.35		.		3

		39		.		50		252.34		.		3

		39		.		60		199.99		.		3

		40		1		-20		.		1		1

		40		2.5		0		.		2		1

		40		.		0.25		294.71		.		1

		40		.		0.58		445.66		.		1

		40		.		0.92		400.12		.		1

		40		.		1.25		443.55		.		1

		40		.		2.5		460.76		.		1

		40		.		5		747.70		.		1

		40		.		10		724.44		.		1

		40		.		20		723.26		.		1

		40		.		30		964.49		.		1

		40		.		40		681.16		.		1

		40		.		50		621.36		.		1

		40		.		60		570.61		.		1

		41		1		-20		.		1		2

		41		2.5		0		.		2		2

		41		.		0.25		189.30		.		2

		41		.		0.58		262.61		.		2

		41		.		0.92		346.10		.		2

		41		.		1.25		265.31		.		2

		41		.		2.5		442.51		.		2

		41		.		5		448.69		.		2

		41		.		10		481.81		.		2

		41		.		20		687.28		.		2

		41		.		30		520.18		.		2

		41		.		40		452.11		.		2

		41		.		50		497.17		.		2

		41		.		60		372.36		.		2

		42		1		-20		.		1		3

		42		2.5		0		.		2		3

		42		.		0.58		312.22		.		3

		42		.		0.92		276.30		.		3

		42		.		1.25		217.86		.		3

		42		.		2.5		576.09		.		3

		42		.		10		419.95		.		3

		42		.		20		766.01		.		3

		42		.		30		758.79		.		3

		42		.		40		665.10		.		3

		42		.		50		500.00		.		3

		42		.		60		365.19		.		3

		43		1		-20		.		1		1

		43		5		0		.		2		1

		43		.		0.25		370.23		.		1

		43		.		0.58		597.21		.		1

		43		.		0.92		705.52		.		1

		43		.		1.25		542.52		.		1

		43		.		2.5		732.94		.		1

		43		.		5		1019.54		.		1

		43		.		10		1161.86		.		1

		43		.		20		1256.84		.		1

		43		.		30		1241.93		.		1

		43		.		40		919.05		.		1

		43		.		50		1164.79		.		1

		43		.		60		780.03		.		1

		44		1		-20		.		1		2

		44		5		0		.		2		2

		44		.		0.25		262.86		.		2

		44		.		0.58		347.22		.		2

		44		.		0.92		470.72		.		2

		44		.		1.25		428.54		.		2

		44		.		2.5		540.08		.		2

		44		.		5		778.43		.		2

		44		.		10		901.46		.		2

		44		.		20		872.80		.		2

		44		.		30		794.80		.		2

		44		.		40		889.51		.		2

		44		.		50		626.35		.		2

		44		.		60		865.96		.		2

		45		1		-20		.		1		3

		45		5		0		.		2		3

		45		.		0.58		654.36		.		3

		45		.		0.92		619.33		.		3

		45		.		1.25		644.39		.		3

		45		.		2.5		857.23		.		3

		45		.		5		1707.16		.		3

		45		.		10		1138.11		.		3

		45		.		20		1973.49		.		3

		45		.		30		767.25		.		3

		45		.		40		1221.84		.		3

		45		.		50		1168.52		.		3

		45		.		60		743.68		.		3

		46		1		-20		.		1		1

		46		15		0		.		2		1

		46		.		0.25		1182.43		.		1

		46		.		0.58		1804.80		.		1

		46		.		0.92		1911.68		.		1

		46		.		1.25		1881.84		.		1

		46		.		2.5		1382.28		.		1

		46		.		5		2032.43		.		1

		46		.		10		2156.56		.		1

		46		.		20		2800.81		.		1

		46		.		30		1772.33		.		1

		46		.		40		2211.27		.		1

		46		.		50		2269.01		.		1

		46		.		60		2787.54		.		1

		47		1		-20		.		1		2

		47		15		0		.		2		2

		47		.		0.25		884.45		.		2

		47		.		0.58		1108.07		.		2

		47		.		0.92		1135.06		.		2

		47		.		1.25		970.21		.		2

		47		.		2.5		998.13		.		2

		47		.		5		1308.94		.		2

		47		.		10		1600.53		.		2

		47		.		20		2081.28		.		2

		47		.		30		1283.31		.		2

		47		.		40		1131.30		.		2

		47		.		50		1734.70		.		2

		47		.		60		1714.74		.		2

		48		1		-20		.		1		3

		48		15		0		.		2		3

		48		.		0.58		1423.01		.		3

		48		.		0.92		1516.51		.		3

		48		.		1.25		1988.99		.		3

		48		.		2.5		3207.72		.		3

		48		.		5		2208.94		.		3

		48		.		10		2929.50		.		3

		48		.		20		4286.32		.		3

		48		.		30		2442.46		.		3

		48		.		40		2373.99		.		3

		48		.		50		1408.93		.		3

		48		.		60		2408.57		.		3





Pita Etm Combo all.txt (with measurement of eltrombopag) :

P E Init NoEtm.txt (without measurement of eltrombopag) :
The code for the model files for Chapter 5 for use in Monolix 2018R2 for the best
fitting model (micro-rate constant with competitive inhibition, with measurement of
eltrombopag) is included below, and all the files are included in the online thesis version:

DESCRIPTION: model to de s c r i b e p i t a v a s t a t i n uptake in to hepatocytes and i n h i b i t i o n by eltrombopag

[LONGITUDINAL]

input = {k13 , k31 , k12 , k21 , To , k23 , k30 , k46 , k64 , k45 , k54 , k56 , x40 , x50 , x60}

PK:

depot ( type =2, t a rg e t=x1A)

depot ( type =3, t a rg e t=x1 )

; depot ( type =1, t a r g e t=x4 )

EQUATION:

; i n i t i a l c ond i t i on s :

t0 = 15

x4 0 = x40

x5 0 = x50

x6 0 = x60

; k13 and k31 = kfP and kbP

; k12 , k21 and k23 = kaP , kdP and ktP

; k30 = p i t a v a s t a t i n met

; k46 and k64 = kfE and kbE

; k45 , k54 , alpha = kaC , kdC

; x1A−x3A = p i t a v a s t a t i n S1A , S2A and S3A

; x1−3: p i t a v a s t a t i n S1 , S2 and S3

; x4−6: eltrombopag I1 , I2 and I3

ddt x1A = −k12∗x1A∗(To−x2A) − k13∗x1A + k21∗x2A + k31∗x3A

ddt x2A = k12∗x1A∗(To−x2A) − ( k21 + k23 )∗x2A

ddt x3A = k13∗x1A + k23∗x2A − ( k31+k30 )∗x3A

ddt x1 = −k12∗x1∗(To−x5−x2 ) − k13∗x1 + k21∗x2 + k31∗x3

ddt x2 = k12∗x1∗(To−x5−x2 ) − ( k21 + k23 )∗x2

ddt x3 = k13∗x1 + k23∗x2 − ( k31+k30 )∗x3

ddt x4 = −k46∗x4 − k45∗x4∗(To−x5−x2 ) + k54∗x5 + k64∗x6

ddt x5 = k45∗x4∗(To−x5−x2 ) − ( k54+k56 )∗x5

ddt x6 = k46∗x4 + k56∗x5 − k64∗x6

p i ta1 = (x2A+x3A)∗333

p i ta2 = ( x2+x3 )∗333

etm = ( x5+x6 )∗333

OUTPUT:

output = {pita1 , pita2 , etm}
table = {x4 , x5 , x6 , x2}
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		ID		AMT		TIME		DV		ADM		DVID

		1		0.3		15		.		2		1

		1		.		15.33		0.44		.		1

		1		.		15.5		0.81		.		1

		1		.		16		1.13		.		1

		1		.		17		2.05		.		1

		1		.		20		3.37		.		1

		1		.		25		3.44		.		1

		1		.		45		3.08		.		1

		2		0.3		15		.		2		1

		2		.		15.25		1		.		1

		2		.		15.5		1.65		.		1

		2		.		16		2.77		.		1

		2		.		17		3.74		.		1

		2		.		20		6.25		.		1

		2		.		25		6.32		.		1

		2		.		45		5.75		.		1

		3		0.3		15		.		2		1

		3		.		15.25		0.64		.		1

		3		.		15.5		1.12		.		1

		3		.		16		2.02		.		1

		3		.		17		2.84		.		1

		3		.		20		3.66		.		1

		3		.		25		3.52		.		1

		3		.		45		2.87		.		1

		4		1		15		.		2		1

		4		.		15.25		1.64		.		1

		4		.		15.5		2.04		.		1

		4		.		16		3		.		1

		4		.		17		5.53		.		1

		4		.		20		8.32		.		1

		4		.		25		5.65		.		1

		4		.		45		9.06		.		1

		5		1		15		.		2		1

		5		.		15.25		3.21		.		1

		5		.		15.5		4.54		.		1

		5		.		16		7.36		.		1

		5		.		17		11.12		.		1

		5		.		20		17.63		.		1

		5		.		25		18.93		.		1

		5		.		45		14.63		.		1

		6		1		15		.		2		1

		6		.		15.25		2.1		.		1

		6		.		15.5		2.85		.		1

		6		.		16		5.61		.		1

		6		.		17		8.39		.		1

		6		.		20		13.16		.		1

		6		.		25		10.79		.		1

		6		.		45		8.88		.		1

		7		3		15		.		2		1

		7		.		15.25		3.44		.		1

		7		.		15.5		5.29		.		1

		7		.		16		6.84		.		1

		7		.		17		12.79		.		1

		7		.		20		20.91		.		1

		7		.		25		23.83		.		1

		7		.		45		16.69		.		1

		8		3		15		.		2		1

		8		.		15.25		7.28		.		1

		8		.		15.5		11.1		.		1

		8		.		16		18.96		.		1

		8		.		17		26.06		.		1

		8		.		20		34.93		.		1

		8		.		25		41.51		.		1

		8		.		45		37.21		.		1

		9		3		15		.		2		1

		9		.		15.25		4.57		.		1

		9		.		15.5		6.22		.		1

		9		.		16		10.98		.		1

		9		.		17		14.51		.		1

		9		.		20		23.79		.		1

		9		.		25		27.45		.		1

		9		.		45		24.05		.		1

		10		10		15		.		2		1

		10		.		15.25		10.28		.		1

		10		.		15.5		13.48		.		1

		10		.		16		21.07		.		1

		10		.		17		40.16		.		1

		10		.		20		41.64		.		1

		10		.		25		48.12		.		1

		10		.		45		51.06		.		1

		11		10		15		.		2		1

		11		.		15.25		23.81		.		1

		11		.		15.5		31.84		.		1

		11		.		16		50.69		.		1

		11		.		17		69.05		.		1

		11		.		20		86.82		.		1

		11		.		25		101.31		.		1

		11		.		45		92.94		.		1

		12		10		15		.		2		1

		12		.		15.25		10.24		.		1

		12		.		15.5		15.8		.		1

		12		.		16		23.52		.		1

		12		.		17		33.88		.		1

		12		.		20		45.66		.		1

		12		.		25		55.04		.		1

		12		.		45		58.31		.		1

		13		30		15		.		2		1

		13		.		15.25		27.54		.		1

		13		.		15.5		39.76		.		1

		13		.		16		51.68		.		1

		13		.		17		70.77		.		1

		13		.		20		94.15		.		1

		13		.		25		96.56		.		1

		13		.		45		134.16		.		1

		14		30		15		.		2		1

		14		.		15.25		55.36		.		1

		14		.		15.5		78.62		.		1

		14		.		16		112.65		.		1

		14		.		17		171.8		.		1

		14		.		20		206.15		.		1

		14		.		25		229.26		.		1

		14		.		45		248.83		.		1

		15		30		15		.		2		1

		15		.		15.25		30.02		.		1

		15		.		15.5		44.72		.		1

		15		.		16		58.25		.		1

		15		.		17		83.69		.		1

		15		.		20		107.2		.		1

		15		.		25		109.61		.		1

		15		.		45		117.64		.		1

		16		100		15		.		2		1

		16		.		15.25		69.18		.		1

		16		.		15.5		107.44		.		1

		16		.		16		136		.		1

		16		.		17		165.82		.		1

		16		.		20		300.74		.		1

		16		.		25		284.22		.		1

		16		.		45		366.49		.		1

		17		100		15		.		2		1

		17		.		15.25		196.86		.		1

		17		.		15.5		246.56		.		1

		17		.		16		383.44		.		1

		17		.		17		431.86		.		1

		17		.		20		608.34		.		1

		17		.		25		657.36		.		1

		17		.		45		755.03		.		1

		18		100		15		.		2		1

		18		.		15.25		59.21		.		1

		18		.		15.5		73.16		.		1

		18		.		16		101.75		.		1

		18		.		17		141.38		.		1

		18		.		20		182.62		.		1

		18		.		25		214.66		.		1

		18		.		45		221.36		.		1

		19		0.3		15		.		2		1

		19		.		15.25		0.25		.		1

		19		.		15.25		1415		.		2

		19		.		15.5		0.45		.		1

		19		.		15.5		1664.77		.		2

		19		.		16		0.51		.		1

		19		.		16		1316.07		.		2

		19		.		17		0.63		.		1

		19		.		17		1350.11		.		2

		19		.		20		0.88		.		1

		19		.		20		1306.17		.		2

		19		.		25		1.21		.		1

		19		.		25		1430.89		.		2

		19		.		45		1.12		.		1

		19		.		45		1256		.		2

		20		0.3		15		.		2		1

		20		.		15.25		0.79		.		1

		20		.		15.25		970.61		.		2

		20		.		15.5		1.03		.		1

		20		.		15.5		1119.14		.		2

		20		.		16		1.34		.		1

		20		.		16		953.09		.		2

		20		.		17		1.85		.		1

		20		.		17		1156.16		.		2

		20		.		20		2.31		.		1

		20		.		20		1027.73		.		2

		20		.		25		2.46		.		1

		20		.		25		1040.39		.		2

		20		.		45		2.42		.		1

		20		.		45		1042.95		.		2

		21		0.3		15		.		2		1

		21		.		15.25		0.35		.		1

		21		.		15.25		737.06		.		2

		21		.		15.5		0.41		.		1

		21		.		15.5		668.12		.		2

		21		.		16		0.5		.		1

		21		.		16		534.55		.		2

		21		.		17		0.77		.		1

		21		.		17		638.73		.		2

		21		.		20		1.03		.		1

		21		.		20		647.19		.		2

		21		.		25		1.04		.		1

		21		.		25		557.86		.		2

		21		.		45		1.11		.		1

		21		.		45		615.15		.		2

		22		1		15		.		2		1

		22		.		15.25		1.2		.		1

		22		.		15.25		1584.27		.		2

		22		.		15.5		1.3		.		1

		22		.		15.5		1389.71		.		2

		22		.		16		1.56		.		1

		22		.		16		1281.58		.		2

		22		.		17		2.36		.		1

		22		.		17		1373.89		.		2

		22		.		20		2.55		.		1

		22		.		20		1181.24		.		2

		22		.		25		3.55		.		1

		22		.		25		1342.39		.		2

		22		.		45		2.85		.		1

		22		.		45		1025.18		.		2

		23		1		15		.		2		1

		23		.		15.25		2.8		.		1

		23		.		15.25		1164.67		.		2

		23		.		15.5		3.25		.		1

		23		.		15.5		1103.91		.		2

		23		.		16		4.14		.		1

		23		.		16		989.77		.		2

		23		.		17		4.35		.		1

		23		.		17		885.62		.		2

		23		.		20		6.95		.		1

		23		.		20		1044.52		.		2

		23		.		25		7.41		.		1

		23		.		25		939.03		.		2

		23		.		45		6.87		.		1

		23		.		45		958.14		.		2

		24		1		15		.		2		1

		24		.		15.25		1.01		.		1

		24		.		15.25		612.21		.		2

		24		.		15.5		1.32		.		1

		24		.		15.5		640.63		.		2

		24		.		16		2.01		.		1

		24		.		16		664.19		.		2

		24		.		17		3.12		.		1

		24		.		17		698.55		.		2

		24		.		20		3.79		.		1

		24		.		20		640.77		.		2

		24		.		25		4.34		.		1

		24		.		25		649.35		.		2

		24		.		45		3.81		.		1

		24		.		45		606.35		.		2

		25		3		15		.		2		1

		25		.		15.25		2.77		.		1

		25		.		15.25		1193.59		.		2

		25		.		15.5		3.9		.		1

		25		.		15.5		1462.45		.		2

		25		.		16		5.45		.		1

		25		.		16		1415.57		.		2

		25		.		17		6.15		.		1

		25		.		17		1237.47		.		2

		25		.		20		8.63		.		1

		25		.		20		1281.43		.		2

		25		.		25		8.51		.		1

		25		.		25		1096.58		.		2

		25		.		45		8.88		.		1

		25		.		45		1118.86		.		2

		26		3		15		.		2		1

		26		.		15.25		7.14		.		1

		26		.		15.25		1136.71		.		2

		26		.		15.5		9.19		.		1

		26		.		15.5		1041.26		.		2

		26		.		16		12.88		.		1

		26		.		16		1024.88		.		2

		26		.		17		12.66		.		1

		26		.		17		656.13		.		2

		26		.		20		19.85		.		1

		26		.		20		1083.4		.		2

		26		.		25		21.39		.		1

		26		.		25		1049.35		.		2

		26		.		45		21.78		.		1

		26		.		45		1103.08		.		2

		27		3		15		.		2		1

		27		.		15.25		3.01		.		1

		27		.		15.25		703.87		.		2

		27		.		15.5		3.97		.		1

		27		.		15.5		635.9		.		2

		27		.		16		5.7		.		1

		27		.		16		655.85		.		2

		27		.		17		7.64		.		1

		27		.		17		663.15		.		2

		27		.		20		9.22		.		1

		27		.		20		597.36		.		2

		27		.		25		11.17		.		1

		27		.		25		636.28		.		2

		27		.		45		9.03		.		1

		27		.		45		552.25		.		2

		28		10		15		.		2		1

		28		.		15.25		8.66		.		1

		28		.		15.25		1266.62		.		2

		28		.		15.5		11.6		.		1

		28		.		15.5		1248.83		.		2

		28		.		16		13.7		.		1

		28		.		16		1153.85		.		2

		28		.		17		20.56		.		1

		28		.		17		1251.52		.		2

		28		.		20		22.94		.		1

		28		.		20		1095.74		.		2

		28		.		25		25.07		.		1

		28		.		25		1158.44		.		2

		28		.		45		27.58		.		1

		28		.		45		1182.01		.		2

		29		10		15		.		2		1

		29		.		15.25		20.13		.		1

		29		.		15.25		1095.88		.		2

		29		.		15.5		27.47		.		1

		29		.		15.5		1035.93		.		2

		29		.		16		37.04		.		1

		29		.		16		1126.83		.		2

		29		.		17		47.38		.		1

		29		.		17		1088.94		.		2

		29		.		20		54.85		.		1

		29		.		20		1007.88		.		2

		29		.		25		67.61		.		1

		29		.		25		1166.93		.		2

		29		.		45		56.74		.		1

		29		.		45		1002.58		.		2

		30		10		15		.		2		1

		30		.		15.25		10.53		.		1

		30		.		15.25		729.81		.		2

		30		.		15.5		12.06		.		1

		30		.		15.5		682.02		.		2

		30		.		16		17.35		.		1

		30		.		16		633.62		.		2

		30		.		17		21.4		.		1

		30		.		17		618.74		.		2

		30		.		20		28.45		.		1

		30		.		20		608.21		.		2

		30		.		25		34.14		.		1

		30		.		25		683.69		.		2

		30		.		45		28.9		.		1

		30		.		45		599.94		.		2

		31		30		15		.		2		1

		31		.		15.25		26.63		.		1

		31		.		15.25		1382.52		.		2

		31		.		15.5		31.4		.		1

		31		.		15.5		1329.86		.		2

		31		.		16		43.67		.		1

		31		.		16		1156.33		.		2

		31		.		17		56.57		.		1

		31		.		17		1204.59		.		2

		31		.		20		70.75		.		1

		31		.		20		1196.1		.		2

		31		.		25		59.98		.		1

		31		.		25		890.75		.		2

		31		.		45		87.76		.		1

		31		.		45		983.35		.		2

		32		30		15		.		2		1

		32		.		15.25		62.23		.		1

		32		.		15.25		1189.57		.		2

		32		.		15.5		75.26		.		1

		32		.		15.5		1153.93		.		2

		32		.		16		114.22		.		1

		32		.		16		1218.64		.		2

		32		.		17		132.18		.		1

		32		.		17		1146.32		.		2

		32		.		20		159.89		.		1

		32		.		20		1061.43		.		2

		32		.		25		163.93		.		1

		32		.		25		1010.46		.		2

		32		.		45		176.26		.		1

		32		.		45		1102.17		.		2

		33		30		15		.		2		1

		33		.		15.25		26.77		.		1

		33		.		15.25		668.8		.		2

		33		.		15.5		38.61		.		1

		33		.		15.5		715.76		.		2

		33		.		16		45.83		.		1

		33		.		16		633.41		.		2

		33		.		17		61.09		.		1

		33		.		17		623.34		.		2

		33		.		20		81.99		.		1

		33		.		20		652.6		.		2

		33		.		25		73.56		.		1

		33		.		25		543.53		.		2

		33		.		45		78.92		.		1

		33		.		45		574.79		.		2

		34		100		15		.		2		1

		34		.		15.25		83.21		.		1

		34		.		15.5		84.23		.		1

		34		.		16		149.55		.		1

		34		.		17		162.02		.		1

		34		.		20		195.87		.		1

		34		.		25		258.45		.		1

		34		.		45		241.53		.		1

		34		.		15.25		1383.49		.		2

		34		.		15.5		1026.05		.		2

		34		.		16		1256.06		.		2

		34		.		17		1131.42		.		2

		34		.		20		983.13		.		2

		34		.		25		1130.84		.		2

		34		.		45		1000.32		.		2

		36		100		15		.		2		1

		36		.		15.25		56.55		.		1

		36		.		15.5		71.62		.		1

		36		.		16		101.21		.		1

		36		.		17		112.18		.		1

		36		.		20		166.1		.		1

		36		.		25		175.81		.		1

		36		.		45		174.89		.		1

		36		.		15.25		470.72		.		2

		36		.		15.5		453.1		.		2

		36		.		16		430.66		.		2

		36		.		17		384.81		.		2

		36		.		20		459.69		.		2

		36		.		25		410.46		.		2

		36		.		45		416.81		.		2




		ID		AMT		TIME		DV		ADM		DVID

		1		0.3		15		.		1		1

		1		.		15.33		0.44		.		1

		1		.		15.5		0.81		.		1

		1		.		16		1.13		.		1

		1		.		17		2.05		.		1

		1		.		20		3.37		.		1

		1		.		25		3.44		.		1

		1		.		45		3.08		.		1

		2		0.3		15		.		1		1

		2		.		15.25		1		.		1

		2		.		15.5		1.65		.		1

		2		.		16		2.77		.		1

		2		.		17		3.74		.		1

		2		.		20		6.25		.		1

		2		.		25		6.32		.		1

		2		.		45		5.75		.		1

		3		0.3		15		.		1		1

		3		.		15.25		0.64		.		1

		3		.		15.5		1.12		.		1

		3		.		16		2.02		.		1

		3		.		17		2.84		.		1

		3		.		20		3.66		.		1

		3		.		25		3.52		.		1

		3		.		45		2.87		.		1

		4		1		15		.		1		1

		4		.		15.25		1.64		.		1

		4		.		15.5		2.04		.		1

		4		.		16		3		.		1

		4		.		17		5.53		.		1

		4		.		20		8.32		.		1

		4		.		25		5.65		.		1

		4		.		45		9.06		.		1

		5		1		15		.		1		1

		5		.		15.25		3.21		.		1

		5		.		15.5		4.54		.		1

		5		.		16		7.36		.		1

		5		.		17		11.12		.		1

		5		.		20		17.63		.		1

		5		.		25		18.93		.		1

		5		.		45		14.63		.		1

		6		1		15		.		1		1

		6		.		15.25		2.1		.		1

		6		.		15.5		2.85		.		1

		6		.		16		5.61		.		1

		6		.		17		8.39		.		1

		6		.		20		13.16		.		1

		6		.		25		10.79		.		1

		6		.		45		8.88		.		1

		7		3		15		.		1		1

		7		.		15.25		3.44		.		1

		7		.		15.5		5.29		.		1

		7		.		16		6.84		.		1

		7		.		17		12.79		.		1

		7		.		20		20.91		.		1

		7		.		25		23.83		.		1

		7		.		45		16.69		.		1

		8		3		15		.		1		1

		8		.		15.25		7.28		.		1

		8		.		15.5		11.1		.		1

		8		.		16		18.96		.		1

		8		.		17		26.06		.		1

		8		.		20		34.93		.		1

		8		.		25		41.51		.		1

		8		.		45		37.21		.		1

		9		3		15		.		1		1

		9		.		15.25		4.57		.		1

		9		.		15.5		6.22		.		1

		9		.		16		10.98		.		1

		9		.		17		14.51		.		1

		9		.		20		23.79		.		1

		9		.		25		27.45		.		1

		9		.		45		24.05		.		1

		10		10		15		.		1		1

		10		.		15.25		10.28		.		1

		10		.		15.5		13.48		.		1

		10		.		16		21.07		.		1

		10		.		17		40.16		.		1

		10		.		20		41.64		.		1

		10		.		25		48.12		.		1

		10		.		45		51.06		.		1

		11		10		15		.		1		1

		11		.		15.25		23.81		.		1

		11		.		15.5		31.84		.		1

		11		.		16		50.69		.		1

		11		.		17		69.05		.		1

		11		.		20		86.82		.		1

		11		.		25		101.31		.		1

		11		.		45		92.94		.		1

		12		10		15		.		1		1

		12		.		15.25		10.24		.		1

		12		.		15.5		15.8		.		1

		12		.		16		23.52		.		1

		12		.		17		33.88		.		1

		12		.		20		45.66		.		1

		12		.		25		55.04		.		1

		12		.		45		58.31		.		1

		13		30		15		.		1		1

		13		.		15.25		27.54		.		1

		13		.		15.5		39.76		.		1

		13		.		16		51.68		.		1

		13		.		17		70.77		.		1

		13		.		20		94.15		.		1

		13		.		25		96.56		.		1

		13		.		45		134.16		.		1

		14		30		15		.		1		1

		14		.		15.25		55.36		.		1

		14		.		15.5		78.62		.		1

		14		.		16		112.65		.		1

		14		.		17		171.8		.		1

		14		.		20		206.15		.		1

		14		.		25		229.26		.		1

		14		.		45		248.83		.		1

		15		30		15		.		1		1

		15		.		15.25		30.02		.		1

		15		.		15.5		44.72		.		1

		15		.		16		58.25		.		1

		15		.		17		83.69		.		1

		15		.		20		107.2		.		1

		15		.		25		109.61		.		1

		15		.		45		117.64		.		1

		16		100		15		.		1		1

		16		.		15.25		69.18		.		1

		16		.		15.5		107.44		.		1

		16		.		16		136		.		1

		16		.		17		165.82		.		1

		16		.		20		300.74		.		1

		16		.		25		284.22		.		1

		16		.		45		366.49		.		1

		18		100		15		.		1		1

		18		.		15.25		59.21		.		1

		18		.		15.5		73.16		.		1

		18		.		16		101.75		.		1

		18		.		17		141.38		.		1

		18		.		20		182.62		.		1

		18		.		25		214.66		.		1

		18		.		45		221.36		.		1

		19		0.3		15		.		2		2

		19		.		15.25		0.25		.		2

		19		.		15.5		0.45		.		2

		19		.		16		0.51		.		2

		19		.		17		0.63		.		2

		19		.		20		0.88		.		2

		19		.		25		1.21		.		2

		19		.		45		1.12		.		2

		20		0.3		15		.		2		2

		20		.		15.25		0.79		.		2

		20		.		15.5		1.03		.		2

		20		.		16		1.34		.		2

		20		.		17		1.85		.		2

		20		.		20		2.31		.		2

		20		.		25		2.46		.		2

		20		.		45		2.42		.		2

		21		0.3		15		.		2		2

		21		.		15.25		0.35		.		2

		21		.		15.5		0.41		.		2

		21		.		16		0.5		.		2

		21		.		17		0.77		.		2

		21		.		20		1.03		.		2

		21		.		25		1.04		.		2

		21		.		45		1.11		.		2

		22		1		15		.		2		2

		22		.		15.25		1.2		.		2

		22		.		15.5		1.3		.		2

		22		.		16		1.56		.		2

		22		.		17		2.36		.		2

		22		.		20		2.55		.		2

		22		.		25		3.55		.		2

		22		.		45		2.85		.		2

		23		1		15		.		2		2

		23		.		15.25		2.8		.		2

		23		.		15.5		3.25		.		2

		23		.		16		4.14		.		2

		23		.		17		4.35		.		2

		23		.		20		6.95		.		2

		23		.		25		7.41		.		2

		23		.		45		6.87		.		2

		24		1		15		.		2		2

		24		.		15.25		1.01		.		2

		24		.		15.5		1.32		.		2

		24		.		16		2.01		.		2

		24		.		17		3.12		.		2

		24		.		20		3.79		.		2

		24		.		25		4.34		.		2

		24		.		45		3.81		.		2

		25		3		15		.		2		2

		25		.		15.25		2.77		.		2

		25		.		15.5		3.9		.		2

		25		.		16		5.45		.		2

		25		.		17		6.15		.		2

		25		.		20		8.63		.		2

		25		.		25		8.51		.		2

		25		.		45		8.88		.		2

		26		3		15		.		2		2

		26		.		15.25		7.14		.		2

		26		.		15.5		9.19		.		2

		26		.		16		12.88		.		2

		26		.		17		12.66		.		2

		26		.		20		19.85		.		2

		26		.		25		21.39		.		2

		26		.		45		21.78		.		2

		27		3		15		.		2		2

		27		.		15.25		3.01		.		2

		27		.		15.5		3.97		.		2

		27		.		16		5.7		.		2

		27		.		17		7.64		.		2

		27		.		20		9.22		.		2

		27		.		25		11.17		.		2

		27		.		45		9.03		.		2

		28		10		15		.		2		2

		28		.		15.25		8.66		.		2

		28		.		15.5		11.6		.		2

		28		.		16		13.7		.		2

		28		.		17		20.56		.		2

		28		.		20		22.94		.		2

		28		.		25		25.07		.		2

		28		.		45		27.58		.		2

		29		10		15		.		2		2

		29		.		15.25		20.13		.		2

		29		.		15.5		27.47		.		2

		29		.		16		37.04		.		2

		29		.		17		47.38		.		2

		29		.		20		54.85		.		2

		29		.		25		67.61		.		2

		29		.		45		56.74		.		2

		30		10		15		.		2		2

		30		.		15.25		10.53		.		2

		30		.		15.5		12.06		.		2

		30		.		16		17.35		.		2

		30		.		17		21.4		.		2

		30		.		20		28.45		.		2

		30		.		25		34.14		.		2

		30		.		45		28.9		.		2

		31		30		15		.		2		2

		31		.		15.25		26.63		.		2

		31		.		15.5		31.4		.		2

		31		.		16		43.67		.		2

		31		.		17		56.57		.		2

		31		.		20		70.75		.		2

		31		.		25		59.98		.		2

		31		.		45		87.76		.		2

		32		30		15		.		2		2

		32		.		15.25		62.23		.		2

		32		.		15.5		75.26		.		2

		32		.		16		114.22		.		2

		32		.		17		132.18		.		2

		32		.		20		159.89		.		2

		32		.		25		163.93		.		2

		32		.		45		176.26		.		2

		33		30		15		.		2		2

		33		.		15.25		26.77		.		2

		33		.		15.5		38.61		.		2

		33		.		16		45.83		.		2

		33		.		17		61.09		.		2

		33		.		20		81.99		.		2

		33		.		25		73.56		.		2

		33		.		45		78.92		.		2

		34		100		15		.		2		2

		34		.		15.25		83.21		.		2

		34		.		15.5		84.23		.		2

		34		.		16		149.55		.		2

		34		.		17		162.02		.		2

		34		.		20		195.87		.		2

		34		.		25		258.45		.		2

		34		.		45		241.53		.		2

		36		100		15		.		2		2

		36		.		15.25		56.55		.		2

		36		.		15.5		71.62		.		2

		36		.		16		101.21		.		2

		36		.		17		112.18		.		2

		36		.		20		166.1		.		2

		36		.		25		175.81		.		2

		36		.		45		174.89		.		2





Appendix G

Semi-Mechanistic Human

Physiologically Based

Pharmacokinetic Model for

Pitavastatin and Eltrombopag

Code

Copy of the R code developed in RStudio 1.1.456 with R 3.5.1 [186] using the deSolve
package [1] for the semi-quantitative PBPK model:

###################################################################

# This PBPK model was w r i t t e n by Simon J . Car ter 2019 w i t h #

# s u g g e s t i o n s from Car los S . Traynor r e g a r d i n g t h e Monte−Carlo #

# s i m u l a t i o n s #

# Biomedica l and B i o l o g i c a l Systems Labora tory #

# U n i v e r s i t y o f Warwick #

# Coventry , UK. CV4 7AL #

###################################################################

l ibrary ( deSolve )

l ibrary ( ggp lot2 )

l ibrary ( grid )

l ibrary ( gr idExtra )

l ibrary ( ex t r a f on t )

l ibrary ( cowplot )

l ibrary ( zoo )

# f i r s t t ime use o f e x t r a f o n t :

#f o n t import ( )

#l o a d f o n t s ( )

# Model Based on : Takeuchi e t a l ( 2 0 1 4 ) . DMD 45:726−734 , w i t h added b i l i a r y e x c r e t i o n i n t o t h e g u t and d e l a y compartment f o r Tlag

# C l i n i c a l da ta : P r u e k s a r i t a n o n t e t a l . ( 2 0 1 4 ) . Br . J . C l in . Pharmacol 7 8 ( 3 ) : 587−598 (1mg)

# FDA C l i n i c a l Pharmacology s u b m i s s i o n ( 2 0 1 4 ) . f i g . 3 : 8mg i n s t a n t r e l e a s e dose

Prueksar i tanont <− read . csv ( ’ Pruesksar i tanont 2014 Pita . csv ’ , head=TRUE)

Prueksar i tanont$Time <− Prueksar i tanont$Time∗60

Prueksar i tanont$DV<− Prueksar i tanont$DV/0 .425

Prueksar i tanont$Pos e r r<− Prueksar i tanont$Pos e r r/0 .425

Prueksar i tanont$Neg e r r<− Prueksar i tanont$Neg e r r/0 .425

FDA Pita 2 <− read . csv ( ’FDA Pita 09 2mg PO. csv ’ , head=T)

FDA Pita 2$Time <− FDA Pita 2$Time∗60

FDA Pita 2$DV <− FDA Pita 2$DV/0 .425

FDA 2009 <− read . table ( ’FDA Etm. txt ’ , head=TRUE) # conc in ng/mL 50mg dose

Deng <− read . csv ( ’Deng 75 2011 . csv ’ , head=T)

Deng$Time <− Deng$Time∗60

Deng$DV <− Deng$DV/0 .718

# assuming t h a t 100% o f t h e dose i s a v a i l a b l e t o be a b s o r b e d ( Fa=1)

# CfPP = f u . plasma/BL: PL

theme set ( theme cowplot ( font s i z e =8, font family = ”Times New Roman” ) )

######################################################################
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# Vz f o r p i t a . FDA = 226∗0.51=133.2L . Gives very low plasma v a l u e s . To ta l Body Water = 42L

# HPGL: 1 3 9 , S o h l e n i u s−S t e r n b e c k ( 2 0 0 6 ) . ToxInVit 2 0 : 1582−1583.

# wt o f l i v e r : 1695 (% CV = 1 6 ) : Pr i ce ( 2 0 0 3 ) . C r i t . Rev . T o x i c o l : 3 3 : 5 . 469−503

#

# Number o f v i r t u a l s u b j e c t s :

n = 100

################### P i t a v a s t a t i n S p e c i f i c parameters #################

ktransP v = rnorm(n , 0 . 1 , sd = 0.2∗ 0 . 1 ) #/min , min g a s t r i c emptying t ime =10 ’. Hirano (2006)

kaP v = rnorm(n , 0 . 07 , sd = 0.3∗0 . 07 ) # FDA doc , ka=1/(MRT PO − MRT IV)=1/ ( 4 . 5 5 ( 1 . 8 7 ) −2 . 1 8 ( 2 . 0 3 ) ) = 0.07 minˆ−1 (% CV = 102)

CL BiPi v = rnorm(n , 165 , sd = 0.2∗165) # B i l i a r y CL, Tota l CL = 384mL/min (AUSPAR 2013)∗0 . 4 3 ( f r a c t i o n in f a e c e s ) = 165.12 ml/min

CL MePi v = rnorm(n , 155 , sd = 0.3∗99) # ml/min . 0 .22 (0.2−0.24)∗0 .003∗139∗1695 = 155 (141−169)

CLur v = rnorm(n , 11 . 5 , sd = 0.2∗11 . 5 ) # ml/min . Urine . FDA ( p . 4 8 ) = 3% o f t o t a l = r e n a l c l e a r a n c e

fTP v = rnorm(n , 0 . 02 , sd = 0.3∗0 . 02 ) # fu , t i s s u e from RED e x p t #2

VmP v = rnorm(n , 29988021 , sd = 0.3∗29988021 ) # ng/min/ l i v e r . 0 .302(0 .18 −0 .64)∗421.46∗139∗1695 = 29988021 (17873654−63550773)

Cfpp v = rnorm(n , 0 .012 , sd = 0.4∗0 .012) # f u . p l /BL: PL=0.005 ( 0 . 0 0 0 9 ) ( Aus TGA, 2013)/0 .425 ( 0 . 1 6 2 ) ( Izumi e t a l ( 2 0 1 7 ) . J . Pharm . S c i 106 : 2678−2687 )

KmP v = rnorm(n , 9525 , sd = 0.3∗9525) # ng/ml . 22 .6∗421.46 = 9525 (7038−10747)

PdPi v = rnorm(n , 137 .6 , sd = 0.3∗137 .6 ) # P. d i f f i n t o heps . ml/min . 5e−4∗139∗1695 = 137.6 (108−144)

PdePi v = rnorm(n , 295 , sd = 0.3∗295) # P. d i f f out o f heps . ml/min . 0 .21∗0 .003∗139∗(1695−(556∗1.03)=1139) = 295 (261−318)

################## Eltrombopag S p e c i f i c parameters #####################

kaE v = rnorm(n , 11 , sd = 0.2∗11) # /min , FDA (2009) , Ka2 = 0.189/h = 0.003

CL BiE v = rnorm(n , 13 , sd = 0.2∗13) # B i l i a r y CL ( ml/min ) , Tota l CL/F = 13∗0 .52∗ 0 . 2 ( Unchanged dose in b i l e , Nie to e t a l 2011)=1.3

CL MeE v = rnorm(n , 6 . 8 , sd = 0.2∗ 6 . 8 ) # ml/min . t o t a l CL=13∗0 .52∗0 .36 = 6.76 (FDA, 2009 , 64% o f Etm in plasma )

#CLur v = rnorm ( n , 1 1 . 5 , sd = 0 . 2∗1 1 . 5 ) # ml/min . Urine . = 0% o f t o t a l = r e n a l c l e a r a n c e

fTE v = rnorm(n , 0 . 4 , sd = 0.2∗ 0 . 4 ) # fu , t i s s u e from RED e x p t #2 = 0.001 !

VmE v = rnorm(n , 5102733 , sd = 0.3∗5102733) # ng/min/ l i v e r . 0 .049(0 .028 −0 .116)∗442∗139∗1695 = 5102733 (2915848−12079939)

CfpE v = rnorm(n , 0 .005 , sd = 0.1∗0 .005) # f u . p l . = 0.002 ( Nie to e t a l ( 2 0 1 1 ) . Haemato log ica 9 6 : e33 )

KmE v = rnorm(n , 3138 , sd = 0.3∗3138) # ng/ml . 7 . 1 (7.4−7.43)∗442 = 3138 (3271−3284)

PdE v = rnorm(n , 11780 , sd = 0.3∗11780) # P. d i f f i n t o heps . ml/min . 0 .05(0 .04 −0 .06)∗139∗1695 = 11780 (9424−14136)

PdeE v = rnorm(n , 294 , sd = 0.3∗294) # P. d i f f out o f heps . ml/min . 0 .62(0 .55 −0 .67)∗0 .003∗139∗(1695−(556∗1.03)=1139) = 294(261−318)

VcE v = rnorm(n , 2940 , sd = 0.2∗2940) # ml . Takeuchi e t a l (2014)

################## P h y s i o l o g i c a l Parameters ############################

VcP v = rnorm(n , 5820 , sd = 0.1∗5820) # Tota l b l o o d volume ( ml ) . Pr i ce e t a l (2003)

Vext H v = rnorm(n , 556 , sd = 0.2∗556) # ml . Watanabe e t a l ( 2 0 0 9 ) . JPET 328:652−662

VH v = rnorm(n , 1570 , sd = 0.2∗1570) # v o l o f l i v e r ( ml ) . Pr i ce e t a l (2003)

VGaBl v = rnorm(n , 36 , sd = 0.2∗36) # G a l l b l a d d e r volume (mL) , Guias t rennec e t a l (2016)

Qh v = rnorm(n , 1320 , sd = 0.2∗1320) # Hepat i c b l o o d f l o w ( ml/min )

BiTrans v = rnorm(n , 0 .0618 , sd = 0.2∗0 .062) # /min . G a l l b l a d d e r emptying r a t e . Guias t rennec e t a l ( 2 0 1 6 ) . CPT Pmetric 5(12):692−700

Qk v = rnorm(n , 1170 , sd = 0.2∗1170) # Kidneys b l o o d f l o w ( ml/min ) , Pr i ce e t a l (2003)

####################Funct ions#########################################

##############P i t a v a s t a t i n Only######################################

PitaODE <− function ( t , In Cond , parameters )

{with ( as . l i s t (c ( In Cond , parameters ) ) ,{
# p i t a l a g compartment

dy1dt <− −ktransP∗y1

# P i ta g u t compartment ( y2 )

dy2dt <− − kaP∗y2 + BiTrans∗y5 + ktransP∗y1

# P i ta l i v e r e x t r a c e l l u l a r space ( y3 )

dy3dt <− (kaP∗y2

− Cfpp∗y3∗ ( (VmP/ (KmP+y3∗Cfpp))+PdPi )

+ Qh∗Cfpp∗( y6−y3 )

+ PdePi∗y4∗fTP

)/Vext H

# P i ta l i v e r ( y4 )

dy4dt <− ( Cfpp∗y3∗ ( (VmP/ (KmP+y3∗Cfpp ) ) + PdPi )

− (CL MePi + CL BiPi + PdePi )∗y4∗fTP

)/VH

# P i ta GaBl ( y5 )

dy5dt <− (CL BiPi∗y4∗fTP)/VGaBl − BiTrans∗y5

# P i ta b l o o d ( y6 )

dy6dt <− (Qh∗Cfpp∗( y3−y6 ) −Qk∗CLur∗y6∗Cfpp )/VcP

l i s t (c ( dy1dt , dy2dt , dy3dt , dy4dt , dy5dt , dy6dt ) ) }) }
# p i t a v a s t a t i n o n l y t imes :

t imes <− c ( seq ( 0 , 400 , 1 ) ) # min

# I n i t i a l C o n d i t i o n s f o r p i t a v a s t a t i n o n l y

In Cond <− c ( y1=1000000 ,y2=0,y3=0,y4=0,y5=0,y6=0)

out <− l i s t ( )

# Loop f o r Monte−Carlo s i m u l a t i o n s o f n s u b s j e c t s

for ( i in seq along ( 1 : n )){
parameters Norm <− c (

ktransP = ktransP v [ i ] ,

kaP = kaP v [ i ] ,

CL BiPi = CL BiPi v [ i ] ,

CL MePi = CL MePi v [ i ] ,
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CLur = CLur v [ i ] ,

fTP = fTP v [ i ] ,

VmP = VmP v [ i ] ,

Cfpp = Cfpp v [ i ] ,

KmP = KmP v [ i ] ,

PdPi = PdPi v [ i ] ,

PdePi = PdePi v [ i ] ,

VcP = VcP v [ i ] ,

Vext H = Vext H v [ i ] ,

VH = VH v [ i ] ,

VGaBl = VGaBl v [ i ] ,

Qh = Qh v [ i ] ,

BiTrans = BiTrans v [ i ] ,

Qk = Qk v [ i ]

)

out [ [ i ] ]<− ode (y = In Cond , t imes = times , func = PitaODE , parms = parameters Norm)

}

newout <− lapply ( out , function ( x ) x [ , 7 ] )

newout <− do . ca l l ( rbind , newout )

meany6 <− apply ( newout , 2 , mean, na .rm = TRUE)

qy6 <− apply ( newout , 2 , quantile , probs = c ( . 0 5 , . 9 5 ) )

f i g 1<−ggp lot (data . frame ( m = meany6 , q05 = qy6 [ 1 , ] , q95 = qy6 [ 2 , ] , time = times ))+

geom l i n e ( aes (x=time , y=meany6 ) , co l our=”Blue” ) +

geom ribbon ( aes (x = time , ymin = q05 , ymax= q95 ) , f i l l =”Blue” , alpha =0.3)+

labs (x=”Time (min ) ” , y=” blood [ p i t a v a s t a t i n ] ( ng/ml) ” )

f i g 2 <− f i g 1 + geom point (data=Prueksar i tanont , aes (x=Time , y=DV) , s i z e =0.6)+

geom er ro rba r (data=Prueksar i tanont , aes (x=Time , ymin=Neg err , ymax=Pos e r r ))+

ylim (0 ,100)

#############Eltrombopag Only######################################

EtmODE <− function ( t , In Cond , parameters )

{with ( as . l i s t (c ( In Cond , parameters ) ) ,{
# Etm stomach

dy7dt <− −ktransP∗y7

# Etm g u t compartment ( y8 )

dy8dt <− − kaE∗y8 + BiTrans∗y11 + ktransP∗y7

# Etm l i v e r e x t r a c e l l u l a r space ( y9 )

dy9dt <− (kaE∗y8

− CfpE∗y9∗ ( (VmE/ (KmE+y9∗CfpE ) ) + PdE)

+ Qh∗CfpE∗( y12−y9 )

+ PdeE∗y10∗fTE

)/Vext H

# etm l i v e r ( y10 )

dy10dt <− (CfpE∗y9∗ ( (VmE/ (KmE+y9∗CfpE ) ) + PdE)

− (CL MeE + CL BiE + PdeE)∗y10∗fTE

)/VH

# etm GaBl ( y11 )

dy11dt <− (CL BiE∗y10∗fTE)/VGaBl − BiTrans∗y11

# etm b l o o d ( y11 )

dy12dt <− (Qh∗CfpE∗( y9−y12 ) )/VcE

l i s t (c ( dy7dt , dy8dt , dy9dt , dy10dt , dy11dt , dy12dt ) ) }) }

#Eltrombopag t imes

t imes <− c ( seq (0 ,10800 ,5 ) ) # min

# I n i t i a l c o n d i t i o n s f o r e l t r om b o pa g o n l y :

In CondE <− c ( y7=75000000 ,y8=0,y9=0,y10=0,y11=0,y12=0)

out <− l i s t ( )

for ( i in seq along ( 1 : n )){
parameters NormE <− c (

ktransP = ktransP v [ i ] ,

kaE = kaE v [ i ] ,

CL BiE = CL BiE v [ i ] ,

CL MeE = CL MeE v [ i ] ,

fTE = fTE v [ i ] ,

VmE = VmE v [ i ] ,

CfpE = CfpE v [ i ] ,

KmE = KmE v [ i ] ,

PdE = PdE v [ i ] ,

PdeE = PdeE v [ i ] ,

VcE = VcE v [ i ] ,

Vext H = Vext H v [ i ] ,

VH = VH v [ i ] ,

VGaBl = VGaBl v [ i ] ,
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Qh = Qh v [ i ] ,

BiTrans = BiTrans v [ i ]

)

out [ [ i ] ]<− ode (y = In CondE , t imes = times , func = EtmODE, parms = parameters NormE)

}

newout <− lapply ( out , function ( x ) x [ , 7 ] )

newout <− do . ca l l ( rbind , newout )

meany12 <− apply ( newout , 2 , mean, na .rm = TRUE)

qy12 <− apply ( newout , 2 , quantile , probs = c ( 0 . 0 5 , 0 . 95 ) )

f igA<−ggp lot (data . frame ( m = meany12 , q05 = qy12 [ 1 , ] , q95 = qy12 [ 2 , ] , time = times ))+

geom l i n e ( aes (x=time , y=meany12 ) , co l our=”Blue” ) +

geom ribbon ( aes (x = time , ymin = q05 , ymax= q95 ) , f i l l =”Blue” , alpha =0.3)+

labs (x=”Time (min ) ” , y=”plasma [ eltrombopag ] ( ng/ml) ” )

f igB <− f igA + geom point (data=Deng , aes (x=Time , y=DV) , s i z e =0.6)+

scale y log10 ( l i m i t s=c (1 ,30000))+

xlim (5 ,10800)

f igB

#############P i t a v a s t a t i n and Eltrombopag###########################

PitaEtmODE <− function ( t , In Cond , parameters )

{with ( as . l i s t (c ( In Cond , parameters ) ) ,{
# p i t a l a g compartment

dy1dt <− −ktransP∗y1

# P i ta g u t compartment ( y2 )

dy2dt <− − kaP∗y2 + BiTrans∗y5 + ktransP∗y1

# P i ta l i v e r e x t r a c e l l u l a r space ( y3 )

dy3dt <− (kaP∗y2

− Cfpp∗y3∗ ( (VmP/ (KmP∗(1+y9/KmE)+y3∗Cfpp))+PdPi )

+ Qh∗Cfpp∗( y6−y3 )

+ PdePi∗y4∗fTP

)/Vext H

# P i ta l i v e r ( y4 )

dy4dt <− ( Cfpp∗y3∗ ( (VmP/ (KmP∗(1+y9/KmE) + y3∗Cfpp ) ) + PdPi )

− (CL MePi + CL BiPi + PdePi )∗y4∗fTP

)/VH

# P i ta GaBl ( y5 )

dy5dt <− (CL BiPi∗y4∗fTP)/VGaBl − BiTrans∗y5

# P i ta b l o o d ( y6 )

dy6dt <− (Qh∗Cfpp∗( y3−y6 ) −Qk∗CLur∗y6∗Cfpp )/VcP

#Etm stomach

dy7dt <− −ktransP∗y7

# Etm g u t compartment ( y8 )

dy8dt <− − kaE∗y8 + BiTrans∗y11 + ktransP∗y7

# Etm l i v e r e x t r a c e l l u l a r space ( y9 )

dy9dt <− (kaE∗y8

− CfpE∗y9∗VmE/ (KmE∗(1+y3/KmP)+y9∗CfpE) − CfpE∗y9∗PdE

+ Qh∗CfpE∗( y12−y9 )

+ PdeE∗y10∗fTE

)/Vext H

# etm l i v e r ( y10 )

dy10dt <− (CfpE∗y9∗VmE/ (KmE∗(1+y3/KmP)+y9∗CfpE) + CfpE∗y9∗PdE

− (CL MeE + CL BiE + PdeE)∗y10∗fTE

)/VH

# etm GaBl ( y11 )

dy11dt <− (CL BiE∗y10∗fTE)/VGaBl − BiTrans∗y11

# etm b l o o d ( y11 )

dy12dt <− (Qh∗CfpE∗( y9−y12 ) )/VcE

l i s t (c ( dy1dt , dy2dt , dy3dt , dy4dt , dy5dt , dy6dt , dy7dt , dy8dt , dy9dt , dy10dt , dy11dt , dy12dt ) ) }) }

# Use r e l e v a n t t ime depend ing on p l o t r e q u i r e d :

t imes <− c ( seq ( 0 , 400 , 2 ) ) # min

t imes <− c ( seq (0 ,10800 ,5 ) )

out <− l i s t ( )

# I n i t i a l c o n d i t i o n s f o r p i t a v a s t a t i n and e l t r om b o p ag t o g e t h e r

In CondPE <− c ( y1=1000000 ,y2=0,y3=0,y4=0,y5=0,y6=0,y7=75000000 ,y8=0,y9=0,y10=0,y11=0,y12=0)

for ( i in seq along ( 1 : n )){
parameters NormPE <− c (

ktransP = ktransP v [ i ] ,

kaP = kaP v [ i ] ,

CL BiPi = CL BiPi v [ i ] ,

CL MePi = CL MePi v [ i ] ,

CLur = CLur v [ i ] ,

fTP = fTP v [ i ] ,

VmP = VmP v [ i ] ,

Cfpp = Cfpp v [ i ] ,
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KmP = KmP v [ i ] ,

PdPi = PdPi v [ i ] ,

PdePi = PdePi v [ i ] ,

kaE = kaE v [ i ] ,

CL BiE = CL BiE v [ i ] ,

CL MeE =CL MeE v [ i ] ,

fTE = fTE v [ i ] ,

VmE = VmE v [ i ] ,

CfpE = CfpE v [ i ] ,

KmE = KmE v [ i ] ,

PdE = PdE v [ i ] ,

PdeE = PdeE v [ i ] ,

VcP = VcP v [ i ] ,

Vext H = Vext H v [ i ] ,

VH = VH v [ i ] ,

VGaBl = VGaBl v [ i ] ,

Qh = Qh v [ i ] ,

BiTrans = BiTrans v [ i ] ,

Qk = Qk v [ i ] ,

VcE = VcE v [ i ]

)

out [ [ i ] ]<− ode (y = In CondPE , t imes = times , func = PitaEtmODE , parms = parameters NormPE)

}

# P i ta b l o o d

newout <− lapply ( out , function ( x ) x [ , 7 ] )

newout <− do . ca l l ( rbind , newout )

# P i ta e x t r a v a s c u l a r space

newout2 <− lapply ( out , function ( x ) x [ , 4 ] )

newout2 <− do . ca l l ( rbind , newout2 )

# Etm plasma

newout3 <− lapply ( out , function ( x ) x [ , 1 3 ] )

newout3 <− do . ca l l ( rbind , newout3 )

# Etm e x t r a v a s c u l a r space

newout4 <− lapply ( out , function ( x ) x [ , 1 0 ] )

newout4 <− do . ca l l ( rbind , newout4 )

meany3i <− apply ( newout2 , 2 , mean, na .rm=TRUE)

qy3i <− apply ( newout2 , 2 , quantile , probs = c ( . 0 5 , . 9 5 ) )

meany6i <− apply ( newout , 2 , mean, na .rm = TRUE)

qy6i <− apply ( newout , 2 , quantile , probs = c ( . 0 5 , . 9 5 ) )

meany8i <− apply ( newout4 , 2 ,mean,na .rm=TRUE)

q8 i <− apply ( newout4 , 2 , quantile , probs = c ( . 0 5 , . 9 5 ) )

meany12i <− apply ( newout3 , 2 ,mean,na .rm=TRUE)

q12i <− apply ( newout3 , 2 , quantile , probs = c ( . 0 5 , . 9 5 ) )

# P i ta Grid p l o t

f i g 3<−ggp lot (data . frame (m = meany6i , q05 = qy6i [ 1 , ] , q95 = qy6i [ 2 , ] , time = times ))+

geom l i n e ( aes (x=time , y=meany6i ) , co l our=”Red” ) +

geom ribbon ( aes (x = time , ymin = q05 , ymax= q95 ) , f i l l =”Red” , alpha =0.3)+

labs (x=”Time (min ) ” , y=” blood [ p i t a v a s t a t i n ] ( ng/ml) ” )

f i g 4 <− f i g 3 + geom point (data=Prueksar i tanont , aes (x=Time , y=DV) , s i z e =0.6 , shape=16)+

geom er ro rba r (data=Prueksar i tanont , aes (x=Time , ymin=Neg err , ymax=Pos e r r ))+

geom point (data=FDA Pita 2 , aes (x=Time , y=DV) , s i z e =0.6 , shape=1)+

ylim (0 ,100)

f i g 5 <− plot grid ( f i g2 , f i g4 , a l i g n=”h” , labels=c ( ”a” , ”b” ) )

ggsave ( ” Pita Etm 1mg 75mg. png” , f i g5 , width =135 , he ight =80, un i t s=”mm” , dpi =900)

##############

# Etm Grid p l o t

f igC<−ggp lot (data . frame ( m = meany12i , q05 = q12i [ 1 , ] , q95 = q12i [ 2 , ] , time = times ))+

geom l i n e ( aes (x=time , y=meany12i ) , co l our=”Red” ) +

geom ribbon ( aes (x = time , ymin = q05 , ymax= q95 ) , f i l l =”Red” , alpha =0.3)+

labs (x=”Time (min ) ” , y=”plasma [ eltrombopag ] ( ng/ml) ” )

f igD <− f igC + geom point (data=Deng , aes (x=Time , y=DV) , s i z e =0.6)+

scale y log10 ( l i m i t s=c (1 ,30000))+

xlim (5 ,10800)

f i gE <− plot grid ( f igB , figD , a l i g n=”h” , labels=c ( ”a” , ”b” ) )

ggsave ( ”Etm Pita 75mg 1mg. png” , f igE , width =135 , he ight =80, un i t s=”mm” , dpi =900)
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# P i t a v a s t a t i n c a l c u l a t i o n s

t imes <− c ( seq ( 0 , 400 , 1 ) )

#AUC Calc : P i ta ( h . ng/ml )

AUC PE <− sum( d i f f ( t imes )∗ ro l lmean ( meany6i , 2 ) ) /60 # Pi ta AUC in p r e s e n c e o f etm

AUC P <− sum( d i f f ( t imes )∗ ro l lmean (meany6 , 2 ) ) /60 # P i ta AUC in absence o f etm

Cmax PE <− max( meany6i ) # P i ta Cmax in p r e s e n c e o f etm

Tmax PE <− which .max( meany6i ) # Tmax (−1) in p r e s e n c e o f etm ( hr )

Tmax PE <− (Tmax PE −1)/60

Cmax P <− max(meany6 ) # P i ta Cmax in absence o f etm

Tmax P <− which .max(meany6 ) # Tmax (−1) in absence o f etm

Tmax P <− (Tmax P −1)/60

# Eltrombopag c a l c u l a t i o n s

t imes <− c ( seq (0 ,10800 ,5 ) )

AUC EP <− sum( d i f f ( t imes )∗ ro l lmean ( meany12i , 2 ) ) /60000 # Etm AUC in p r e s e n c e o f p i t a , hr . ng . ml

AUC E <− sum( d i f f ( t imes )∗ ro l lmean (meany12 , 2 ) ) /60000 # Etm AUC in absence o f p i t a , hr . ng . ml

Cmax EP <− max( meany12i )/1000 # Etm Cmax in p r e s e n c e o f p i t a

Tmax EP <− which .max( meany12i ) # Tmax (−1) in p r e s e n c e o f p i t a ( hr )

Tmax EP <− (Tmax EP∗5−5)/60

Cmax E <− max( meany12 )/1000 # etm Cmax in absence o f p i t a

Tmax E <− which .max( meany12 ) # Tmax (−1) in absence o f p i t a

Tmax E <− (Tmax E∗5−5)/60

Cmax EPl iver <− max( meany8i )

Tmax EPl iver <− which .max( meany8i ) # Tmax in e x t r a v a s c u l a r space ( min )

Tmax EPl iver <− (Tmax EPl iver∗5−5)

r e s <− as . data . frame ( rbind (Cmax P,Tmax P,AUC P,

Cmax PE,Tmax PE,AUC PE,

Cmax E,Tmax E,AUC E,

Cmax EP,Tmax EP,

Cmax EPliver ,Tmax EPliver ,

AUC EP))

write . csv ( res , ’ Pita Etm PK. csv ’ )
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