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Abstract

There is currently a need to evaluate the interaction of drugs in the liver and at
the liver membrane, to determine whether the potential for a drug-drug interaction in the
clinic could adversely affect a patients prognosis. The interactions of drugs or probe sub-
strates with liver membrane transporters are currently poorly understood at a molecular
level, and there is strong interest in terms of the pharmacology of the transporters and
how we can examine and understand these interactions through mathematical models.
Currently the dynamics of interactions through the use of micro-rate constants, where
steady-state assumptions are not implied in data analysis are less favoured. Whilst
modelling and data analysis conducted using Michaelis-Menten type kinetics (defined as
macro-rate constant mechanistic models), under the assumption of rapid equilibration
of substrate with the transporter (association with the transporter is almost instanta-
neous) are more common. The aim of this thesis is to improve the determination of
transporter mediated drug-drug interactions (TrDDIs) in in wvitro liver specific cellular
systems through the use of structurally identifiable mechanistic models describing the
dynamics of the interaction between substrates and inhibitors. This was done by the
design of experiments to optimise the data collected for substrate and inhibitors for use
within the mechanistic models across different cellular systems (human cell lines, rat
and human hepatocytes) under different inhibition conditions. Mechanistic models were
developed to obtain robust model fits that adequately described the interaction between
substrates and inhibitors, whilst gaining an insight in terms of model selectivity, given
the data available. The structural identifiability of the mechanistic models was assessed
to ensure that the unknown parameters in the model could be estimated from the ex-
perimental data. The mode of inhibition was determined through the use of mechanistic
models for each experimental chapter and compared with conclusions drawn in the in
literature. The potential for a clinical TrDDI was evaluated for the experimental work

in cryopreserved human hepatocytes (Chapter 5), through a worst case scenario static

xviil



drug interaction model at the entrance to the liver using an “R wvalue”, and through
the use of a semi-quantitative physiologically based pharmacokinetic (PBPK) model.
All the micro-rate constant mechanistic models were at least structurally locally iden-
tifiable with no parameters unknown. Conversely, the macro-rate constant mechanistic
were only structurally locally identifiable if both substrate and inhibitor were measured
(see Chapter 5). Otherwise one to two parameters had to be known for the macro-rate
constant mechanistic models to be structurally locally identifiable. Concurrent with the
structural identifiability analysis results, in each of the experimental chapters, the use of
micro-rate constant mechanistic models were always the best fitting model to the exper-
imental data based on goodness of fit statistics compared to the use of Michaelis-Menten
macro-rate constant mechanistic models. Both the micro-rate constant and macro-rate
constant mechanistic models were in agreement with regards to the mechanism of in-
hibition in all experimental cases, whilst the steady-state assumptions required for the
use of the Michaelis-Menten equation were only valid for the micro-rate constants de-
rived in Chapter 5. This supported the use of scaled micro-rate constant parameters in
Chapter 5 to Michaelis-Menten parameters in the semi-quantitative mechanistic PBPK
model in Chapter 6, where there was a potential for a clinical TrDDI given the in vitro
data, which was at odds with the determined R walue. In conclusion, this work strongly
supports the use of micro-rate constants in mechanistic modelling of in wvitro TrDDIs
to formally test steady-state assumptions through more robust, structurally identifiable

parameter estimates.
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Chapter 1

Introduction

Life expectancy has steadily increased from the latter half of the 20" century for men
and women by approximately eight and six years respectively [12]. As life expectancy has
increased, so the number of patients who have sought treatment for multiple age-related
diseases has also increased. A global collaborative effort evaluating the prevalence of
infectious and non-infectious diseases and determination of a “years living with a dis-
ability” (YLD) value, found that diseases associated with increasing age; stroke and
heart disease, hearing loss, diabetes, and chronic obstructive pulmonary disease, showed
a greater than 10 % increase over the period of 2010-2016 compared to all other YLD
values when normalised by age group [13]. The increase in YLD values for more age
related diseases shows that there is a requirement to fill the current unmet need in terms
of the treatment of an ageing population which will increase based on current trends
and which also spans socio-economic barriers. Treatment of the increasingly ageing pop-
ulation is likely to be across multiple diseases. It is therefore rare that a patient will be
taking just one drug, and is likely to receive multiple drugs to treat the multi-faceted
symptoms of non-communicable diseases on a long term basis or life. Understanding
how multiple drugs interact at a cellular level has the potential to improve a patient’s
quality of life and helps to decrease the attrition of drugs in the clinic. It is here that
mathematical modelling can play a key holistic role in understanding the relationships
between what can easily or routinely measured, e.g. drug in blood, and what is hap-
pening away from where it is measured e.g. in the liver or some pharmacological target,
is vital in order to make sure that what is dosed to a patient has the highest chance of
being efficacious (sufficient exposure at the site of action), whilst minimising the chance
of adverse effects that can potentially be life threatening.

The study of drug disposition processes, namely; absorption from the dose site
into the circulation, distribution of the drug into tissues, metabolism of the drug and
excretion into urine or faeces of the parent and/or metabolites of an administered drug
in the body is termed pharmacokinetics (PK). The study of the pharmacological action
of a drug at the site of action or via a downstream biomarker that can be measured is
termed pharmacodynamics (PD). These processes do not occur in isolation, and thus
the analysis of PK-PD relationships is known as pharmacometrics [14]. PK and/or PD

are studied by developing mathematically derived models of the underlying processes



involved in the data that are observed, along with error in the measurements themselves
[14, 15].

Models are simplifications of processes in the body, and their development is
based on both an understanding of the underlying physiology or mechanism from the
literature and personal experience, and as such approximate what we think is hap-
pening. Obtaining meaningful parameters from the modelling process - the so-called
“inverse problem” and often the most difficult [15], will depend on the experimental
design, the ensuing errors and the complexity of the model considered. For example
a simple one compartment PK model following an intravenous injection with two pa-
rameters (clearance from the compartment through metabolism and/or excretion, and
the apparent volume of the compartment), up to vast biochemical models (e.g. the
JAK-STAT model investigated by Anguelova et al. [16] with 31 compartments and 51
parameters). These are two extreme examples of mechanistic models, and whilst a
highly complex mechanistic model can be written, unless there are sufficient data across
time and states (measurements of the compartmental concentrations), accurate estima-
tion of the parameters will not be possible. Therefore before the costly exercise of data
generation from experiments is run, it is advisable to look at the structure of the model
itself, and evaluate whether we can actually obtain the desired measurement output
from the model, assuming limitless noise free data - known as structural identifiability
[17] will be described in the next Chapter 2, and then applied across the experimental
and modelling chapters (Chapters 3, 4 and 5).

There is currently an unmet need to evaluate the interaction of drugs in the
liver and at the liver membrane as this is the first point of call for all orally absorbed
drugs and food. As such the liver “sees” much higher concentrations than the rest
of the body. Such is the importance of the liver, that prior to submission of a new
drug to the regulatory agencies, assessments have to be made both in terms of enzyme
interactions, but also at the liver plasma membrane transporters at the sinusoid and
bile canaliculus [18, 19]. The interactions of drugs with liver membrane transporters are
currently poorly understood at a molecular level [20]. There is strong interest in terms
of the pharmacology of the transporters and how we can examine and understand these
interactions through mathematical models [20-22], and it is this that this thesis will

study in an attempt to further the knowledge base and understanding in this field.

1.1 Aims and Objectives

The aim of this thesis is to improve the determination of transporter mediated drug-
drug interactions (TrDDIs) in in vitro liver specific cellular systems through the use of
structurally identifiable mechanistic models describing the dynamics of the interaction
between substrates and inhibitors.

Currently the mechanistic modelling and data analysis of transporter mediated
uptake are conducted using Michaelis-Menten kinetics, which have been expanded upon

for transporters from the original development for enzyme kinetics. The use of the



Michaelis-Menten equation (see Chapter 2, Eq. ) is valid under the following assump-
tions [15, 23, 24]:

1.

The initial substrate concentration is much larger than the transporter concentra-

tion.

. It then follows that the association to the transporter (k,, is very rapid) is thus

in rapid equilibrium with the transporter.

. The free transporter (T) is therefore affected by the dissociation rate constant

from the transporter (kq).

. The rate limiting step in the transport of substrate into the cell is the translocation

rate constant (k).

Models that use the Michaelis-Menten derivation are referred to in this thesis

as macro-rate constant models. If for these models, the steady-state rate transport

constants (Viq: and K,,) are split back into their constituent micro-rate constants

(defined as micro-rate constant models in this thesis), then these assumptions can be

formally tested.

Therefore this thesis will try to answer the main aim and that above relating to

steady-state assumptions via a series of objectives for a selection of substrates where

transporter mediated movement into the cell dominates over passive movement into the

cell:

. Develop mechanistic models that characterise the data, and are possible given the

available observations from in wvitro cellular drug uptake experiments, extending

the work of Grandjean [25] to include inhibition of transport.

. Evaluate the effectiveness of both macro-rate constant models and micro-rate con-

stant models with the inclusion of substrate and inhibitor and determine their

structural identifiability for a given model and observations available.

. Design experiments to optimise the data collected for substrate and inhibitors for

use within the mechanistic models across different cellular systems (human cell

lines, rat and human hepatocytes) under different inhibition conditions.

. Using the micro-rate constant and macro-rate constant mechanistic models, obtain

robust model fits that adequately describe interaction between substrates and

inhibitors, whilst gaining an insight in terms of model selectivity.

. Compare if from obtained in wvitro TrDDI whether: The use of a static clinical

interaction model based on the ratio of the AUCs calculated in absence and pres-
ence of inhibitor at the entrance to the liver (R value). Or through the use a more
dynamic PBPK modelling approach, which takes into account the liver physiol-
ogy offers a more realistic description of the potential for transporter mediated

drug-drug interactions (TrDDIs) in the clinic.



1.2 Thesis Outline

This thesis follows a logical path through the literature, and mechanistic modelling
techniques employed and their relevance to cellular drug uptake experiments. This is
followed by three experimental chapters that look at the uptake of substrate and its
subsequent inhibition through different scenarios, before the development of a semi-
mechanistic PBPK model based on the final experimental chapter. The chapters are
summarised below:

Chapter 2: Provides an in depth review of transporter physiology and mechanisms
of action obtained from the literature. The transporters will be split into two distinct
sections; Non-energy (ATP) dependent transporters and ATP dependent transporters,
with the former of more experimental relevance here. An introduction to structural
identifiability analysis and practical identifiability through parameter estimation soft-
ware is also provided.

Chapter 3: The uptake of a fluorescent substrate (2,7-dichlorofluorescein, DCF) into
human embryonic kidney cells (HEK293) that overexpress human OATP1B1 (hOATP1B1)
is considered as an alternative to the more costly radiolabelled substrates or the analysis
of substrates using mass spectrometry. The mode of inhibition of gemfibrozil, which has
been shown to have a mixture of enzymatic and transporter mediated DDIs, on liver
specific hOATP1B1 was determined experimentally and through the use of mechanistic
modelling.

Chapter 4: Provides a more complex cellular structure of isolated rat hepatocytes,
which possess a full compliment of transporters and enzymes. A high throughput cen-
trifugal oil layer method is described (that was partially developed during my MSc.
dissertation) and applied to the uptake of an HMG-CoA reductase inhibitor (atorvas-
tatin) and its inhibition by the immunosuppressant cyclosporine (CsA), which has been
shown to be a potent inhibitor of transporters in the clinic using mechanistic modelling.
Chapter 5: Builds on the outcomes of Chapters 3 and 4 and provides a simultaneous
analysis of both substrate (pitavastatin, another HMG-CoA reductase inhibitor) and
an inhibitor (eltrombopag) in the same sample of cryopreserved human hepatocytes. A
mechanistic modelling approach is again undertaken to understand the mode of inhibi-
tion of eltrombopag. Eltrombopag is used to stimulate platelet formation, and the dose
is carefully monitored to prevent over/under production of platelets and thus consider-
ation of pitavastatin and eltrombopag is important in TrDDI consideration

Chapter 6: Provides the development of a qualitative semi-mechanistic PBPK model
using the data obtained from Chapter 5 to simulate clinical PK profiles in the absence
and presence of inhibitor through Monte-Carlo simulations in R. This model includes
passive movement of drug into and out of the cell, as well as transporter mediated in-
teractions obtained from Chapter 5 and other selected information from the literature
regarding the elimination of both pitavastatin and eltrombopag.

Chapter 7: Provides summaries and conclusions from the experimental and modelling

chapters and suggestions for further work.



Chapter 2
Background and Data Analysis

The liver is the major organ responsible for elimination of most drugs from the systemic
circulation, but first of all they need to cross the cell membrane (both in the gut and the
liver), either via passive diffusion or via an uptake transporter protein. Drug transporters
in the liver are key components in the elimination of many drugs; both for uptake into
the hepatocytes (where they can be metabolised) from the blood, as well as excretion
back into the blood to be circulated to the rest of the body or into the bile [26]. For more
lipophilic drugs such as gemfibrozil or cyclosporine A, passive diffusion dominates over
transporter mediated uptake [9, 27]. For amphiphillic drugs that are weak acids (e.g.
pitavastatin or atorvastatin), which are less lipophilic and also have a small charge at
physiological pH, uptake of drugs into the liver via a saturable carrier protein dominates
and is the rate limiting step in clearance from the blood [28].

There is a large body of literature dedicated to clinical DDIs at an enzymatic
level, with much less work dedicated to a transporter level or combined transporter /
metabolism level. Indeed, a PubMed search of “Drug-Drug Interaction” with
“metabolism” or “transporter” or both and then filter the search to “Clinical Trials”
and “Journal Articles”, 66 % of the references were “metabolism”, whilst “transporter”
or both were 14 % and 13 %, respectively (Table 2.1). It is interesting to note that in
2018, the number of “transporter” DDI publications has remained steady since 2013,
and coincides with when the EMA [18] and the previous FDA (2012) guidance docu-
ments first included transporter mediated drug drug interactions (TrDDIs). Articles for
“metabolism” only have decreased by 16 %, whilst studies where both “metabolism”
and “transporters” were included have remained unchanged (see Table 2.1). It is en-
couraging to see that journal issues are also now dedicated to progressing the knowledge
of transporters and their importance in pharmacokinetic and pharmacodynamic inter-
actions (e.g. Clinical Pharmacology and Therapeutics, 2018, volume 105, issue 5).

The rest of this chapter is sectioned into three parts: The first section will cover the
current knowledge and biology of drug transporters, how we can study them and their
importance with regard to the potential for TrDDIs. A small section on drug metabolism
will also be included as a major route of elimination of most drugs, but also because of
the effect that some of the metabolites have on transporters both as substrates them-

selves and inhibitors. The second section is concerned with the development and use of



Table 2.1: Number of journal articles in PubMed regarding DDIs between 1969-2018

Search terms Total References 2018*

(% of total) (% of total)
“Drug-Drug Interaction” 3173 382
“Drug-Drug Interaction” AND metabolism 2104 (66 %) 164 (42 %)
“Drug-Drug Interaction” AND transporter 458 (14 %) 52 (14 %)
All Three 414 (13 %) 32 (8 %)

up to date of search: 01/11/2018

mechanistic models, their power in furthering our knowledge of cellular kinetics, but also
the limitations in terms of the information we can obtain. An important pre-requisite
for the use of mechanistic models is an identifiability analysis with respect to the struc-
ture of the mathematical model to be used, and whether we can obtain meaningful
parameter estimates from the model in its postulated form, or whether it needs to be
modified, or simplified. Such analysis of mechanistic models can also be used to guide
experimental design as to what information would improve the chance of estimating the
unknown parameters. The final section underlines efforts made to link in vitro data and
in vivo/clinical data either by extrapolating from a cellular level up to a whole body
level through the use of physiologically based models, or by correlating physicochemical

properties to clinical data.

2.1 Transporters

Transporters are promiscuous in nature across prokaryotes and eukaryotes both for
the uptake of nutrients and exclusion of toxins [29]. Functioning transporter genes in
humans (excluding regulatory subunits) account for nearly 5 % of the total number of
genes in the human body [30]. The promiscuous nature of transporters has spawned two
opposing views on how molecules cross membranes passively: the more mainstream belief
of passive diffusion across phospholipid bilayers; and the belief that passive movement
across membranes is via a host of low capacity uptake transporters, most of which
are currently unidentified [31]. The view of how molecules passively cross membranes,
whether it be through diffusion or a host of not yet discovered transporters, is of little
relevance, it is more the manner for which it occurs, i.e. “passive” movement of molecules
is a very rapid process relative to transporter kinetics and is practically unsaturable in
laboratory experiments (linear uptake across concentrations).

Hallifax and Houston [32] found that the time to reach a plateau for a lipophilic
amine, imipramine, was 30 s in rat hepatocytes and most of the uptake was seen at the
first timepoint of 10 s. The cell concentration:medium concentration ratio (commonly
known as K) obtained in either inactivated cells (no viable transporter) or at high

concentrations of imipramine were similar (K, = 120 and 150 respectively), indicative



of passive permeability and high intracellular binding of these drugs [32].

In comparison the time to reach a maximum for a transporter substrate, rosuvas-
tatin in plated rat hepatocytes was around 15 min [33], and although a K, value was not
stated, it can be estimated from figure 4 in the article, assuming that the concentration
in the medium is the same as the dose at the 15 min timepoint. The K, decreased
around 13-fold from an estimated K, of 90 at 0.1 M to 7 at 300 M ([33], 15 min time-
point). Whilst a very rough calculation, it helps to illustrate the point that the uptake
process drives the cellular concentration for acidic drugs where passive permeability is
less, as seen in the n-fold decrease in K, for rosuvastatin, in comparison to fold decrease
for imipramine where passive diffusion outweighed the transporter element [32, 33].

The rest of this section will be split into two distinct parts; those transporters
that do not require cellular energy (ATP) directly - the Solute Carrier (SLC) family of
transporters, also known as secondary active transporters [29]; and those that are ATP
dependent and are part of the ATP Binding Cassette family of transporters (ABC). To
simplify the notation for transporters across species below, genes will be described in
italics, whilst proteins are not. Human genes, proteins or enzymes will given in capital
letters, or when general features are discussed, whilst for animal specific genes, proteins
or enzymes only the first letter is capitalised [34]. The species will be marked accordingly
or left blank when discussing general features: human (h), rat or rodent (r, depending

on the context), mouse (mu), dog (d) and monkey (mo).

2.1.1 Non-ATP Dependent Transporters

The solute carriers span a broad range of transporters with around 52 different families
and around 400 genes in humans and are mainly membrane bound [29]. They cover
transport across a broad range of substrates: amino acids, organic anions and bile acids,
organic cations, metals, neurotransmitters, sugars and DNA base sugars [30]. SLCs are
ubiquitous in their distribution in the human body from muscle and intestine to the brain
[35] and are therefore important in disease and as attractive drug targets [30, 36, 37].
With so many SLCs across such a broad range of substrates and distribution, it can
be easily seen why some authors state that passive movement of molecules may be as
a result of numerous low capacity transporters [22]. This section will concentrate on
four families in more depth (genes in brackets): the OATP superfamily (SLCO), NTCP
(SLC10A1), OCT (SLC22) and MATE (SLC47) as they are the main SLCs of interest
in the liver, the first two deal with the sodium independent and dependent transport
of large bulky (> 350 Da) amphipathic (mainly) anions which have a small negative
charge at physiological pH (7.4), whilst the second two deal with smaller molecular
weight (<500 Da) (mainly) cations which have a small positive charge at physiological
pH [38, 39].

2.1.1.1 OATP (SLCO)

A major transporter protein family involved in the uptake of weakly acidic molecules

with a molecular weight of > 350 Da (both endogenous substrates and drugs) [38]



across membranes, the organic anion transporting polypeptides (OATP) are ubiquitous
in their tissue distribution in the human body. They are the most abundant of all
transporters in the liver [40], and have a large range of endogenous substrates from bile
acids to prostaglandins [35]. They function using intracellular HCO3; or glutathione
as a counter ion [38] with substrate transported through a positively charged central
pore via a rocker-switch mechanism [3], with two distinct inward and outward facing
sides [41] (see Fig. 2.1). This mechanism is distinct for counter transporting proteins in
that the faces “switch” over, whilst for the other transporters in this chapter, whether
they are non-ATP dependent or ATP dependent seem to act through a “hinge switch”
mechanism, where the substrate binds in an open state and then moves through the
pore as the protein closes and then opens on the other side of the pore, releasing the
substrate (see Fig. 2.2) [4, 5].

. = Substrate
' = Counter ion

Extracellular

Intracellular

Figure 2.1: Schematic of transporter function via a rocker-switch mechanism. A counter ion is
already bound in first step before the substrate binds. The transporter then switches outward
and inward facing sides and releases the substrate and counter ion. The transporter then returns
to its original state. This is a simplification of the process presented by Huang et al. [3] of the
Glycerol-triphosphate mechanism in E. coli.

There are currently six different sub-families of the OATP family [42], and they
have been extensively reviewed in the past literature in detail [30, 35, 38, 43, 44], there-
fore they will be briefly summarised below and updated where new information has
arisen. The main families involved in uptake of xenobiotics into the liver, as well as those
that have been deemed important for study by regulatory bodies (hOATP1B1 and 1B3)
and the International Transporter Consortium (hOATP1A2, hOATP1B1, hOATP1B3
and hOATP2B1) [45] are discussed below.

OATPI1A (SLCO1A2)

OATPIA exists as a single form in humans (hOATP1A2), whilst in rodents there are
multiple subtypes (rOatplal, 1a3-6), which potentially can make exact correlations dif-
ficult between species. As a family, OATP1A protein is found in; cholangiocytes in



humans (liver cells which line the bile duct), hepatocytes in rats [40], with high abun-
dance in brain capillaries, proximal tubules in the kidneys [38] and duodenum [46] in
humans, and is upregulated in certain cancers [37]. The presence of hOATP1A2 in hu-
man intestine was refuted by Drozdzik et al. [47] who found no mRNA or protein in
the small intestine or colon in six organ donors, which was backed up by a proteomics
study in pooled human liver microsomes from 13 donors [48]. However the limit of
quantification (LOQ) was around 1-2 fmol/ug protein for all transporters, whilst most
proteins were measured at a tenth of the LOQ [47]. Glaeser et al. [46] used mRNA
detection, as well as immunohistochemistry and immunofluorescence from biopsies in
10 healthy volunteers to show hOATP1A2 and hMDRI1 both present in enterocytes.
Whilst immunofluorescence and immunohistochemistry clearly showed the presence of
hOATP1A2 in enterocytes, the amount of hOATP1A2 protein was not measured [46].
This suggests that whilst hOATP1A2 is present in the duodenum at least, it was below
the LOQ for the hOATP1A2 peptides used in LC-MS Glaeser et al. [46], Drozdzik et al.
[47]. In rats, 26-32 % of the total hepatic rOatp was rOatplal and la4 making them
important transporters, whilst in human liver samples hOATP1A2 was not observed
[40]. Endogenous substrates in humans and rats include a preference for unconjugated
bile acids (e.g. cholic acid) over conjugated bile acids (e.g. taurocholic acid and glycholic

acid), as well as hormones (e.g. dehydroepiandosterone, estradiol-173-glucuronide) [35].

OATP1B (SLCO1B1, SLCO1B3)
There are two subtypes of OATP1B in humans (hOATP1B1 and 1B3), whilst in ro-
dents there is only rOatplb2 [35]. They are a liver specific family with hOATP1BI,
hOATP1B3 and hOCT1 having the highest abundance of all SLCs associated with the
uptake of drugs in human hepatocytes [40, 49]. hOATP1B1 and hOATP1B3 contribute
12 % and 7 % respectively to the total OATP in human hepatocytes, whilst rOatp1b2 is
similar to the total OATP1B in humans of 16-17 % [40]. hOATP1B3 has been observed
in oncogenic tissues outside of the liver (breast, lung and prostate) [37, 38] and down-
regulation of hOATP1B3 in prostate cancer cells is associated with docetaxel resistance
[37]. Endogenous substrates which overlap with OATP1A vary across rat and human,
with rOatp1b2 transporting less bile acids compared with human hOATP1B1 and 1B3,
and rOatpla transporting the other bile acids [35]. A slight preference for unconjugated
bile acids over conjugated bile acids was seen in in hOATP1B1 and 1B3 cell lines [50].
The reason that hOATP1B1 and 1B3 are of interest enough to the drug regulatory
bodies to warrant inhibition or substrate studies (if > 25 % of the uptake is due to
hOATP1B1 and hOATP1B3) [51] is due to certain hOATP1B1 polymorphisms leading
to reduced activity, putting a greater burden on hOATP1B3 to transport substrates in
the liver. An example of an hOATP1B1 polymorphism is hOATP1B1*15*%15, which is
the result of a single nucleotide substitution of T521>C, and leads to a 104 % increase
in the area under the curve (AUC) of repaglinide in the homozygous 521CC compared
to the wild type 521TT carrier and a tendency for lower blood glucose concentrations
[52]. Tt has also been reported that patients with the hOATP1B1*15*15 phenotype have



a much greater chance of pravastatin-induced myopathy, due to increased concentration
in the plasma [53]. Bosgra et al. [54] found that the activity of HEK293-hOATP1*15
was similar to mock transfected cells for rosuvastatin, and that in a PBPK model for
humans this decreased the total uptake clearance into the liver by 23% [54].

The hOATP1B1*14*14 polymorphism is present in 0.74-0.77 of African-Americans,
and 0.3-0.51 of Caucasians [55] who all have increased hOATP1B1 protein expression in
hepatocytes and therefore an increase in the maximum uptake velocity (Vs ), leading
to a decrease in the predicted plasma exposure of statins, due to an increased liver uptake
[56]. hOATP1B1 and 1B3 are significantly reduced by 3-fold and 8-fold respectively in
caucasian fatty liver [57], making cholesterol lowering drug choice in patients with fatty
liver more important. As well as polymorphisms in hOATP1B1 or hOATP1B3 individ-
ually, in patients where both hOATP1B1 and hOATP1B3 are absent, due to deletions
in the SLCO1B1 and SLCO1B3 genes manifest as Rotor syndrome in around 1 per mil-
lion people [58]. Patients with Rotor syndrome have higher bilirubin glucuronide plasma
levels (conjugated hyperbilirubinaemia) and increased urinary excretion of bilirubin glu-
curonides as well mild jaundice. Interestingly in Slcola/1 b~/ mice, oral administration
of methotrexate gave similar plasma concentrations to wild-type mice, but following in-
travenous administration, methotrexate plasma concentrations were higher in knockouts
and this could be partially attributed to the liver:plasma ratio of 43 in wild type versus
4 in knockouts due to the decreased uptake through muOATP1a/1b [58].

OATP2B1 (SLCO2B1)

OATP2B1 is seen across species, and is separate to OATP2A1 which is ubiquitous in
its distribution [35]. OATP2B1 is found in human intestine, liver, brain capillaries,
eye and placenta, and transports taurocholic acid in both rats and humans, but only
steroid precursors in humans [35, 59]. In human liver, the expression of hOATP2B1 was
found to be approximately equal to hOATP1B3, however in sandwich-cultured human
hepatocytes, the expression of hOATP2B1 was found to be upregulated 7-fold [60]. It is
upregulated in fatty livers, but not enough to counter the reduction in hOATP1B1 and
1B3 [57]. Polymorphisms in hOATP2B1 are associated with rates of minimal residual
disease after treatment [61], as well as survival in prostate cancer [62] and are therefore

important in considerations during treatment of prostate cancer.

2.1.1.2 NTCP (SLC10A1)

Na®™ Taurocholate Co-transporting Polypeptide (NTCP) is an important transporter
that mediates the sodium dependent uptake of anions, and was first noted by Schwarz
et al. [63] due to its saturable uptake of taurocholic acid in rats. It is separate from
OATP in that it co-transports two sodium ions with the substrate into the hepatocyte
[64]. It is liver specific to the basolateral membrane of hepatocytes, and within the
liver of Caucasians it constitutes 6 % of the total abundance of transporters [57]. It
plays an important role in the enterohepatic recycling of conjugated and unconjugated

bile acids in humans helping to maintain bile acid homeostasis [65]. Liu et al. [66]
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Figure 2.2: Schematic of transporter function for co-transport. Substrate binds in the first step,
then moves towards the other side of the membrane. The transporter then switches the “open”
side releasing substrate, adapted from [4, 5].

reported an increase in both conjugated and unconjugated bile acids in individuals who
are homozygous for the S267F mutation in Chinese individuals, as well as decreased
vitamin D levels. NTCP has been reported to correlate with the entry of hepatitis virus

into the liver, and is important in the innate immune response to the virus [67].

2.1.1.3 OCT (SLC22)

There are three members of the organic cation transporter (OCT) family in humans
with a broad ranging distribution throughout the body and they have been covered in
more depth by [38, 68]. hOCT1 is highly expressed in liver [68] and has 12 % of the total
abundance of transporters in human Caucasian males [57]. OCT2 is highly expressed
in human kidney only, but is highly expressed in rodent liver and kidney [68]. OCT3
is highly expressed in the basolateral membrane of liver in human and rodents, and is
important in the homeostasis of the central nervous system [69]. They are polymorphic,
with 20 different alleles for hOCT1 and the allelic frequencies are ethnicity dependent
[70].

The OCT family has a large overlap in endogenous substrates, and is responsible
for the transport of catecholamines, monoamines and neurotransmitters down their re-
spective electrochemical gradient into the cell, but can also move substrates out of the
cell depending on the direction of gradient [38]. The mechanism by which uptake occurs
changes depending on the concentration in the blood, either as a uniporter, or as a more
efficient exchanger with an intracellular organic cation [68]. The change between uptake
mechanisms from a high affinity to a low affinity state, means that the Michaelis-Menten
constant (K,,) or point at which 50 % of transporter sites are occupied, is in the millimo-
lar range (compared to low micromolar for OATP and NTCP), which combined with a

higher passive permeability makes identification of substrates more difficult [68]. Due to
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the large expression of OCT2 in the kidney, observed polymorphisms and clinical DDIs
with the glucose lowering drug metformin, it is listed as a likely target for DDIs [18, 19].
The international transporter consortium recommended conducting studies with both
hOCT1 and hOCT2 in human cell lines because of observed clinical DDIs [45].

2.1.1.4 MATE (SLC47A)

The Multidrug And Toxin Extrusion (MATE) transporter has three members in hu-
mans: MATE1, MATE2 and MATE2K, whilst in rodents there are no analogues that
correspond to hMATE2 and 2K, with rMate2 more similar to hMATE1 [71]. hMATE] is
expressed throughout the body with high expression in adrenal gland, kidney, canalic-
ular membrane in the liver and skeletal muscle, while hMATE2 and hMATE2K only
express in the kidney, but transcripts have been observed for hMATE2K in various tis-
sues [71]. Within the liver, hMATE accounts for 1 % of the total protein abundance [57],
and in the renal cortex hMATE] expression was ten-fold higher than in the liver [72].
hMATE]1 expression was similar to hOCT2 expression in the renal cortex (18 % and
26 % of the relative expression respectively) [72]. There are numerous single nucleotide
polymorphsims (SNPs) in MATE1 and MATE2 amongst different ethnic populations,
all leading to decreased activity [5, 73, 74]. The SNPs in MATE transporters do not
significantly alter the plasma pharmacokinetics of the generally used probe substrate
metformin or endogneous substrate thiamine, but decrease the renal clearance [5, 73, 74],
and depending on which MATE is affected, may increase or decrease the blood glucose
lowering effect of metformin in healthy volunteers or patients with type 2 diabetes [73].

MATE functions as an electroneutral transporter, with an organic cation counter
transported with either H* or Na™ depending on the proton gradient, as well as the
sodium gradient respectively [5, 71]. As such it can transport in either direction, but
this is normally out of the cell. When hMATE1 was co-transfected with hOCT?2 in
HeLa cells, it decreased the uptake of metformin to 24 % of OCT?2 only, in the kidney
at least, and with a similar K, for metformin [5]. This shows that MATE and OCT
act in unison to increase the elimination of organic cations either into the bile, urine or

in the case of the placenta, from the foetal circulation to the maternal [75].

2.1.2 ATP Dependent Transporters

The ATP Binding Cassette (ABC) family of transporters is able to move molecules
out of cells against a concentration gradient, which is an essential way of excreting
molecules that may be seen as toxic to cells. This is at the cost of a cellular energy
source in the form adenosine triphosphate (ATP) and the enzyme ATPase to cleave a
phosphate group, to generate the energy to drive these transporters [7] (see Fig. 2.3 for
schematic). However, it is thought that for MRP1 at least, only one of the ATPases
is active, whilst the fate of the other ATP is not clear [76]. Like the SLC transporters
they are seen across prokaryotes and eukaryotes alike, indeed the first example of a
multi-drug resistance (MDR) transporter was published in 1974 in bacteria that showed

resistance to tetracycline [77]. The isolation of the MDR1 gene in tumours followed in
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1987 [78], and since then numerous examples have been observed in tissues and organs
in the human body as well as oncogenic and infected tissues. There are currently 51
different members of the ABC family from A-G [79]. Four members will be discussed
here due to their importance in drug disposition and DDIs: MDR1 (ABCBI1), MRP1-4
(ABCC1-4), BCRP (ABCGZ2) and BSEP (ABCBI11).

@ = Substrate
— = ABC transport

""" = MDRI1 flippase

Outside

Inside

Figure 2.3: Schematic of transporter function for ATP dependent transport. Substrate binds
to the transporter active site in the first step from inside the cell (solid lines) or from the lipid
bilayer. Binding activates ATPase which cleaves off inorganic phosphate (P;) and instigates
movement of substrate towards the other side of the membrane as the transporter switches the
open side, releasing substrate. Modified from Sharom [6] and Chang [7].

2.1.2.1 MDRI1 (ABCB1)

Multidrug resistance transporter 1 (MDRI1), or P-glycoprotein (P-gp) as it is also known,
is the second most abundant ATP transporter in the small intestine and third most
abundant in the colon [47]. hMDRI accounts for 2 % of the total transporter abundance
in the liver of caucasians [57], where it is present at the canicular side of the hepatocyte
membrane. It is also found in the endothelial cells of the brain, in the brush border
membrane in the kidney, as well as maternal-foetal barriers and blood-testis barrier
[80]. MDRI1 is essential for the removal of toxins away from these organs of importance
as well as protecting the foetus from maternal toxins, so much so, that in dogs deficient
in dMdrl, foetal toxicity and neural toxicity were observed after dosing with ivermectin
(an MDR1 substrate) [80].

The three main polymorphisms that are studied in the literature; 1236C>T,
2677G>T/A and 3435C>T [81, 82|, were reviewed across diseases in depth by Wolking
et al. [81]. What is apparent is the discrepancy between the amounts of hMDRI1 protein
produced in patients with the polymorphisms, partially due to the low patient numbers
in many studies [81]. hMDRI upregulation is associated with resistance to drugs used in:

oncology, epilepsy, and bacterial and viral infections amongst others [80, 81]. hMDR1
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is upregulated in oncogenic tissues, with a lower relapse rate of high risk children with
acute lympoblastic leukemia who possess the 3435CT or TT polymorphism compared to
3435CC (61 % and 40 % respectively, p = 0.02), and an increase in bone marrow toxicity
during therapy with doxorubicin for 3435TT patients compared to 3435CC patients
(p < 0.0001) [82]. B-amyloid is an endogenous substrate of MDRI1 in the brain [81], and
the three polymorphisms above were found to be associated with Alzheimers disease
susceptibility in a meta-analysis of the literature by Zhong et al. [83], with 2677G>T/A
offering some protection, whilst the others increased susceptibility to Alzheimers disease.

MDR1 has been reported to act as a “flippase” or “hydrophobic vacuum cleaner”
for drugs within the plasma membrane, expelling substrates before they enter the cell
[76, 84], but it is also able to move substrates from inside to outside the cell, as the
substrate binding site opens into the cytoplasm as well as the plasma membrane (Fig.
2.3, [6, 7, 76]). hMDRI is able to bind multiple separate drugs with at least four
binding sites [85], some of which can modulate the transport of other drugs at low
concentrations by binding to MDR1 and activating ATP hydrolysis, but are not sub-
strates themselves, whilst at higher concentrations, the same drug may inhibit MDR1
[86]. MDRI transports a large variety of endogenous substrates from small molecular
weight lipophilic substances, e.g. ethinyl estradiol (MW 296 Da, [87]), to large molec-
ular weight peptides, e.g. [-amyloid (MW 4514 Da, [81]). The extensive number of
substrates and distribution in important organs for restriction of drug entry, along with
its role in multi-drug resistance, is why hMDR1 investigations are included in all drug

submissions to regulatory authorities [18, 19].

2.1.2.2 MRP1-4 (ABCC1-4)

Multidrug resistance associated proteins (MRPs) were, like MDR1 above, found due to
their role in multidrug resistance in tumours, with hMRP1 the first to be discovered in
lung tumours and hMRP2-4 following later [88]. There are currently 12 members of the
ABCC family in humans [89] including hMRP1-4 which will be covered here in more

detail as they are important in efflux of xenobiotics.

MRP1 (ABCC1)

hMRP1 is ubiquitous in its distribution, in the plasma membrane of blood-tissue barri-
ers of importance such as the brain, liver, heart, kidney and intestine as well as within
mitochondria, and is extensively covered in the literature [88, 90]. In a meta-analysis of
the literature, the expression of hMRP1 protein in liver was similar to hMRP2 (~ 0.4
pmoles/10° cells) [57]. In the intestine, hMRP1 protein was undetectable, but mRNA
was present, suggesting its presence at low levels [47]. Whilst the distribution is ubiqui-
tous, high expression is limited to certain specialist cells in tissues with a high turnover
rate or protective role, e.g. crypt cells in the intestine, bronchial and bronchiolar ep-
ithelial cells and foetal blood vessels [90]. It is highly polymorphic with at 17 SNPs that
are seen across ethnicities, with four frequent polymorphisms (4002G>A, 2168G>A,

825T>C and 2012G>T) that were seen to increase adverts events in oncology treatment
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[91]. The presence of high intracellular reactive oxygen species (ROS) increases MRP1
expression, and is another reason it is likely upregulated in cancer cells, whilst high in-
tracellular glutathione (a ROS scavenger) downregulates MRP1 expression [90]. MRP1
uses intracellular glutathione to stimulate transport of some endogenous substrates,
whilst others are not stimulated by GSH, e.g. bilirubin and estradiol-173-glucuronide
respectively [90, 92]. MRPI1 is also important in the immune response as the phys-
iological efflux pump for leukotriene C4 in mast cells [90]. MRP1 differs from other
ABC transporters in that only the second ATPase is functional (the right hand side
of schematic in Fig. 2.3), whilst the first ABC region is required for function of the
transporter [90].

In cancer cell lines hMRP1 is found in the plasma membrane of origin tissues
where it would not normally be present, partly due to inhibition of tumour suppressor
genes [90]. In resistant cell lines, it is also found in intracellular vesicles and mitochon-
dria preventing oncology drugs such as doxorubicin from reaching their target in the
nucleus [93]. Intracellular vesicles of MRP1 follow a physiological function, whereby
MRP1 translocates to the plasma membrane when unconjugated bilirubin is present,
acting as a cellular reservoir for excretion as required [90]. hMRP1 has a clinically
recognised role in various diseases due to its presence in sanctuary organs and tissues,
where the overlap with other transporters is small, e.g. cancer, cystic fibrosis, chronic

obstructive pulmonary disease and depression [88, 94].

MRP2 (ABCC2)

hMRP2 is exclusively localised to the apical membrane [95], and is the apical equivalent
of h(MRP1 [96]. Tt is highly expressed in the small intestine (10 % of total membrane
protein), colon (25 % of total membrane protein) [47], and liver (31 % of relative protein
abundance in Caucasians [57]), but less so in the kidneys (5 % of relative transporter
protein expression, [72]), and not seen in the blood-brain barrier under normal cir-
cumstances [95]. The importance of MRP2 in the liver can be seen in humans with
Dubin-Johnson syndrome and Esai Hyperbilirubinaemic rats which are both deficient
in MRP2. Both show increased plasma bilirubin glucuronide levels (both monoglu-
curonide and diglucuronide), jaundice (stress induced only in humans) and enlarged
dark pigmented livers, as well a large increase in MRP3 to try and compensate for the
lack of MRP2 [95, 97]. From the studies in Dubin-Johnson syndrome patients and Esai
Hyperbilirubinaemic rats, it can be seen that MRP2 is the major transporter respon-
sible for conjugated bilirubins in the liver. Wen et al. [98] expressed seven common
hMRP2 SNPs in HEK293 cells and evaluated the accumulation of 2 different substrates
in cell-lines or inside-out vesicles. The SNP S789F had a 1.5-fold increase in calcein AM
accumulation which was due to a 50 % decrease in protein expression, and this SNP was
also noted as “probably damaging” with reference to Dubin-Johnson syndrome and was
close to the SNP R768W seen in Dubin-Johnson syndrome patients [95]. V4171 showed
reduced activity of 30-50 % even after normalising for protein and was observed to show
a decrease in hMRP2 mRNA in the placenta in early gestation [98], but was labelled
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as benign in its effects in Dubin-Johnson syndrome [95]. Estradiol-17-3-glucuronide, a
substrate for multiple transporters including MRP2 was implicated in cholestasis during
pregnancy, likely due to prolonged internalisation of rMrp2 and bile salt export protein
(rBsep), in female rat hepatocytes at least [99], underlying the importance of MRP2 in

the physiological processing of bile salts under normal conditions.

MRP3 (ABCC3)

hMRP3 is the most abundant transport protein in the colon (36 % of total transporter
protein), has a similar abundance to hMDRI in the small intestine (10 % [47]) and 12
% of the relative protein abundance in the liver [57]. It is also the most abundant trans-
porter in the skin, contributing 20 % of total mRNA in the skin [100]. MRP3 is a high
capacity transporter, with a key role in the excretion of bilirubin glucuronides out of the
hepatocytes in the periportal region of the liver into the blood stream. This allows the
uptake of bilirubin glucuronides further towards the central veins by hOATP1B1 and
1B3 to prevent saturation of ABC mediated transporter excretion into the bile under
normal physiological conditions [58, 101]. The function of MRP3 in bilirubin glucuronide
cycling and its upregulation in cholestasis and disease helps to explain the increase in
conjugated bilirubin in the plasma and urine of Dubin-Johnson syndrome patients and
Esai Hyperbilirubinaemic rats, whilst in Rotor syndrome patients or Oatpla/b knockout
mice, total bilirubins (both conjugated and uncojugated) are excreted almost entirely by
the kidneys [101]. MRP3 seems to also act as a reserve transporter that is upregulated
during cholestasis [97]. Like other ABC transporters, hMRP3 is correlated with drug
resistance and survival in cancer, and like hMRP1 seems to be present in cytoplasmic
vesicles (in primary urinary bladder cancer at least, [102]). However in comparison
to hMRP1, knockdown of hMRP3 genes in witro in breast cancer derived cell lines,
improved the effectiveness of doxorubicin, more so than an equivalent knockdown of
hMRP1, potentially making it more attractive as a target for drug-resistant chemother-
apy [102].

MRP4 (ABCCY)

MRP4 is broadly expressed in sanctuary organs (brain, liver and kidneys) as well as
platelets [103-105]. Expression is high in renal proximal tubule cells facing the urine col-
lecting ducts, and high on the luminal side of the brain capillary. In the liver, expression
is variable and like MRP3 is upregulated during cholestasis to increase urinary excre-
tion of conjugated bile acids [104]. hMRP4 is present almost exclusively on the plasma
membrane of platelets, with a similar expression level to Na®™ /K™ ATPase [105]. MRP4
is the physiological transporter for urate, and can transport other cyclic nucleotides, e.g.
cGMP and cAMP, as well other endogenous messengers (e.g. DHEA) [104]. Evidence
for cAMP transport is supported by studies in muMrp4 knockouts, whereby platelets
had a 60 % increase in intracellular cAMP due to defective export, leading to increased
clotting times [105, 106]. hMRP4 is highly expressed (mRNA and protein) in lung cell

carcinoma cells, with mRNA expression up to 1000 greater than healthy surrounding
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tissue [107]. An SNP in hABCCY (3463A>G) has also been implicated in increased
kidney damage in HIV positive patients taking anti-retrovirals [108].

2.1.2.3 BCRP (ABCG2)

Breast cancer resistance protein (BCRP) is a half ABC transporter and may form ho-
modimers or heterodimers with other BCRP proteins. It is highly expressed in the
placenta at the maternal side [109]. BCRP represents > 80 % of the total ABC mRNA
in the blood vessels at the blood-brain barrier (8 times greater than P-gp mRNA), and
20 times greater than in the cortex [110]. Expression is low in liver (0.34 % of rela-
tive abundance [57]), small intestine and colon (lowest expression of ABC transporters
[47, 49]) and kidney proximal tubules [111]. Like MRP4, BCRP is important in urate
transport and detection of polymorphisms in BCRP in erythrocytes are positively corre-
lated with gout, a disease due to insufficient excretion of urate, that leads to painful uric
acid crystal deposition in joints and kidneys [112]. Like other ABC transporters it is
upregulated in tumours, having originally been isolated from the resistant MCF7 human
breast cancer cell line [111]. Increased hBCRP was seen to be associated with more ag-
gressive head and neck tumours, as well as right-sided colon cancer with shorter survival
[113, 114]. However, the presence of higher BCRP mRNA (and also MDRI1) in clear cell
renal cell carcinoma samples from patients was associated with increased survival and
decreased metastasis, that was more limited to the carcinoma compared to surrounding
healthy tissue [115]. This “protective” role for an ABC transporter is counter intuitive
to what one would expect given the ABC transporter examples above, and warrants
extra research. As these studies were all across different tumours and ethinicities (Cau-
casian, Hispanic and Chinese), it may well depend on where the tumour is as to whether
an up or down regulation affects survival. Like hMDR1, hBCRP was also included in
the FDA guidance document with in vitro studies to examine whether a molecule is a

substrate or inhibitor as part of the submission process [19].

2.1.2.4 BSEP (ABCB11)

Bile salt export protein (BSEP) is a phylogenetically ancient transporter that is found in
plants, fish and mammals [116]. It is highly expressed in the liver at the bile canaliculus,
representing 7 % of relative transporter abundance in Caucasian liver [57], and no role
outside the liver has been found [117]. BSEP is vitally important in the transport
gradient of bile salts and the rank order of transport is conserved between rodents and
humans [116]. The importance of this can be seen in progressive familial intrahepatic
cholestasis type 2 (PFIC-2), where in patients, no BSEP can be detected and where the
concentration of bile salts in the bile is only 1 % of normal [116]. Without the efficient
shuttling of the bile salts linked with a deficiency in BSEP, severe cholestasis occurs and
this is positively correlated with the development of hepatocarcinoma in children [118].
Inhibition of BSEP therefore maybe an important factor in the development of drug
induced liver injury (DILI), but not enough to lead to cholestatis itself [119, 120].
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2.2 Metabolism

One cannot really consider transporters in isolation in the body without consideration
of metabolism of endogenous and xenobiotic molecules as well, and this summary is
based in part on the book of Gibson and Skett [121] who describe the complex interplay
between transport and metabolism. The role of drug metabolism in the body is to make
the drug molecule more water soluble, ideally decreasing cell permeability, potency and
toxicity, so that the metabolite has to be transported into the urine or faeces, and from
there it can be safely eliminated from the body. This section will briefly go through
the two “phases” of drug metabolism within the human body and their relevance and
importance to the work presented here, including DDIs, and relevant guidelines from

the drug regulators that are now being applied to transporters.

2.2.0.1 Phase I - Functionalisation reactions

There are two main families involved in the hydroxylation, or functionalisation of a
drug molecule (prior to conjugation) in the body: Cytochrome P450 (CYP, included
here) and the flavin containing mono-oxygenases (FMOs) found within the endoplasmic
reticulum of cells. The latter will hydroxylate only soft nucleophiles on a nitrogen or
sulphur atom, but not on a carbon atom [121].

There are 18 different hCYPs [122], with hCYP1-3 responsible for metabolism
of 78 % of drugs on the market in 2008 (CYP3A4/5, 2C9, 2D6 and 2C19 comprising
80 % of the total) [123], with protein expression that are up to 100-fold greater than
hOATP1BI in hepatocytes [49, 124]. The main CYP responsible for the metabolism of
xenobiotics; hCYP3A4, is also highly expressed in the intestine (as well as hCYP2C9),
brain and kidneys and is therefore important in the amount of drug entering the systemic
circulation from the gut. Whilst hCYP3A4 in enterocytes in the small intestine are
only expressed at 1 % of the level in the liver, the large surface area of the small
intestine makes hCYP3A4 important in limiting systemic exposure of substrates. The
importance of intestinal hCYP3A4 is illustrated where the local inhibition of intestinal
hCYP3A4 by grapefruit juice led to a large increase in systemic exposure [125], has
led to it being included in the drug packaging inserts of hCYP3A4 substrates. An
elegant in-depth meta-analysis on the world-wide population genotypes in 12 CYPs
(56945 subjects) published by Zhou et al. [126] clearly shows the level of polymorphisms
in CYPs across populations, with, for example, CYP3A5*3 as the largest polymorphism
across all ethnicities comprising 41-100 % alleles, whilst CYP2D6 and CYP2A6 show
the largest number of alleles across ethnicities with around 13 different alleles.

With the broad range of drugs that are metabolised by the CYPs, the potential
for DDIs is vast and may, if not left unchecked, lead to death. Therefore a whole
field of journals are dedicated to this and is a major part of any new drug registration
submission to the regulatory authorities [18, 19]. Briefly, if a single enzyme is responsible
for > 20-25 % for metabolism of a drug, then clinical studies with inhibitors must be

undertaken (same for non-CYP enzymes). The drug and its major metabolites need to
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be ascertained in vitro as to whether they are competitive and time-dependent inhibitors
and then, using either static or physiologically based pharmacokinetic (PBPK) modelling
techniques, predict the clinical risk [18, 19].

2.2.0.2 Phase II - Conjugation reactions

There are multiple types of conjugation reactions that occur in the body: glucuronida-
tion, sulphation, glutathione conjugation (all discussed here), amino acid conjugation,
N-acetylation and methylation, with the last reaction seemingly increasing the lipophilic-
ity of a molecule. With the exception of glucuronidation, which exists in the endoplasmic
reticulum, close to CYP3A, the enzymes for conjugation reactions are in the cytoplasm of
numerous cell types common to those described above and for transporters: liver, kidney,
intestine (glucuronidation), brain, and male and female gonads (glutathione conjugation
to “scavenge” reactive oxygen species which may damage the sperm and ovum). The
role of conjugation, will in general, further increase the polarity of molecules by addition
of a bulky molecule which is then transported out of the cell. This is primarily to polar
hydroxyl and primary amides following Phase I functionalisation reactions. However,
glucuronidation, sulphation and N-acetylation can lead to reactive metabolites which
bind to protein or DNA adducts leading to liver toxicity.

The addition of a large bulky glucuronide sugar moiety via the UDP- glucuronosyl
transferases (UGTSs) is important in the clearance of at least 20 % of clinical drugs on
the market mainly via UGT1 and as such are important in their elimination [127].
Carboxylic acid containing molecules (such as statins and NSAIDs) have the potential
to be metabolised by UGT1 into an acyl-glucuronide. Under most circumstances the
acyl-glucuronide is transported harmlessly into the bile and faeces, where the glucoronide
may come off due to intestinal pH or a bacterial glucuronidase leading to re-absorption
and entero-hepatic recycling. Under certain conditions the acyl-glucuronide can migrate
around the aromatic group it is situated on to become a Schiff base, which can then
covalently bind to protein in the intestine and liver, leading to DILI (see Van Vleet et al.
[128] for further details).

The addition of a SO3 group to a molecule is via the sulphotransferases (SULT'S)
with SULT1A1 and 1B1 as the most important in sulphation of molecules in humans, and
comprise 70 % of the SULTSs in the liver (with SULT1B also the main in the intestine)
[129]. SULTSs are important in the detoxification process of molecules in the liver and
intestine, but are also important in the activation of the carcinogenic polyaromatic
hydrocarbons (in particular SULT1A1) [130].

Glutathione is a bulky tripeptide that is transferred to an electrophilic moiety on
a substrate via the enzyme glutathione-S-transferase (GST) family or if the electrophile
is particularly strong, non-enzymatically. There are 7 sub-families of cytosolic GSTs,
and polymorphisms are most common in p, 8 and 7 sub-families. These polymorphisms
are important in various diseases from oncology to neurodegenerative diseases and are
reviewed in depth by Allocati et al. [131].
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2.3 Transporter Substrates and Inhibitors

Examples of typical endogenous substrates have been included in the above sections
where possible for each transporter. It can be observed from the above, that it is
rare for any substrate to be purely specific for one transporter, with the exceptions of
leukotriene C4 (MRP1, [90]) and urate (MRP4, [104]). Subtype specific substrates and
inhibitors for clinical and in vivo studies are hard to find due to overlapping specificities
across both rodent and human OATPs, and it is this that makes clear conclusions from
DDI studies in humans less clear cut. In rodents, knockout animals can be used to
investigate the overall transporters that may lead to human DDIs, e.g. mice lacking
mouse Oatpla/1b, which had 40-fold higher concentrations of bilirubin, 4-fold higher
unconjugated bile acid levels and increased HDL cholesterol concentrations in blood
compared to wild type animals [101]. The human equivalent looks at specific genotypes
and phenotypes to help explain clinically observed DDlIs.

In this section xenobiotic substrates and some inhibitors have been included,
but are far from a comprehensive list of interactions and drugs. Table 2.2 illustrates
the complexity of examining transporter mediated DDIs both from a substrate and
inhibitor point of view. Simple static models have been proposed which calculate the
estimated AUC ratios in the absence and presence of inhibitor (The “R Value” see Eq.
2.1, [19, 132]), or clinically observed changes, where the R value is given by:

I
R Value = 1 + Juptasmalinmaz ,R>1.1 (2.1)

Ki

where fy, plasma is the fraction unbound of the inhibitor in the plasma (the minimum value
proposed in the FDA draft guidance [19] is 0.01, due to error in measurements below this
value), K7 is the inhibition constant (uM, or K¢ for non-competitive inhibition), and
the maximum concentration of inhibitor at the inlet to the liver (I maz) is calculated
according to:

FoFyKyDose
Crnaz + %

Ry

where Cjqz is the maximum plasma concentration of the inhibitor (uM), F,Fy is the

Linmaz (,U/M) =

(2.2)

fraction absorbed multiplied by the intestinal availability, K, is the absorption rate
constant (/min), Dose is the dose of inhibitor (nmol), @y, is human hepatic blood flow
(70 kg male) = 1112(16 % CV)-1450 ml/min [2, 133]), and R, is the blood:plasma ratio.
A R value of greater than 1.1 indicates that there is a possibility of a TrDDI.

As the R Value is used in this situation to determine the maximal inhibitory effect
at the entrance to the liver i.e. the sinusoid, the concentration needs to be estimated at
a site distant from the blood from where it was taken. I, mas therefore takes this into
account through the use drug specific factors: F,Fy which often given as 1 as a worst
case scenario as estimation is difficult [19]. K, which can be estimated through the
determination of the mean residence time following intravenous and oral administration
(see Chapter 6, Table ), or set at as 0.1 /min, the minimum gastric emptying time [132]

and R, which is normally determined in vitro through addition of drug to naive blood
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which is then separated and analysed.

For example, in the case of atorvastatin, the calculated R value with cyclosporine
A (CsA) was 3.1 (Table 2.2), which is greater than the FDA cut-off of 1.1 [19], and makes
further investigations important if this was a new drug filing. In this case the R value,
calculated at a single dose of 380 mg of CsA gave a conservative increase compared to
a clinical study. Healthy volunteers who took atorvastatin for four days and then two
doses of CsA (175 mg) showed a 15-fold higher plasma exposure of atorvastatin and its
metabolites compared to those on tacrolimus, with an increased risk of rhabdomyolysis
in chronic patients [134]. Pitavastatin has been suggested as a sensitive clinical substrate
for OATP1BI inhibition [9], and based on the calculated R values of 65 and 13 for the
potent hOATP1B1 and 1B3 inhibitors rifamycin or rifampicin respectively (see Table 2.2
[132, 135]) back this up. Indeed a 7-fold increase in pitavastatin exposure was observed
when an IV infusion of rifampicin was given [9], confirming the R value calculated
by Hirano et al. [132]. Pei et al. [136] evaluated the effect of irbesartan as well as
the hOATP1B1 521T>C polymorphism (heterozygotes TC versus wild type TT) on
the pharmacokinetics and pharmacodynamics of repaglinide in Chinese volunteers. A
significant increase in repaglinide exposure and glucose lowering effect in the presence
of irbersartan was observed in wild type OATP1B1, 521TT, subjects (see Table 2.2),
but not in heterozygote OATP1B1, 521TC, subjects. This was consistent with lower
OATP1B1 activity in the liver and therefore lower concentration at the site of action of
repaglinide in subjects (see 2.1.1 - hOATP1B1) [136]. Irbesartan is also a substrate of
hOATP1B1 and 1B3 [137]. Unfortunately, the plasma concentration was not measured
in the clinical study [136]. Evaluation of clinical metformin inhibition, like that for
repaglinide, also involves measuring the pharmacokinetic and pharmacodynamic effect
and has recently been reviewed in depth [138]. Two drugs used in oncology (docetaxel
and paclitaxel) have also been included, as drug resistance has been attributed partly
to upregulation of OATP1B3 [37] and MDR1 in tumours [139]. Therefore as well as
potential DDIs in the host, DDIs in the tumour also need to be evaluated to counter

drug resistance.

Table 2.2: Examples of transporter substrates and their inhibitors as well as potential DDI risk

Substrate Transporter Inhibitor R Value Comments Ref
(pmol/min/mg prot) (K;/ICs0, uM) (FDA)

Statins

Atorvastatin ~ OATP1B1
Vinar=3.8£0.3, CsA 3.1 Calculated [140]
K, =0.940.2 0.02+0.0047¢
Vinaz=120, Gem 3244 1.5 Article R value [135]
Kn=0.62(0.45)
Vinaz=120, RifSV 51 Article R value [135]
Kn=0.62(0.45) 0.340.08
Vinaz=6.61+1.2, Ataz 1.3 1 Calculated [141]
K»n=0.84£0.2
OATP1B3
Vinae=2.3£1.4, Ataz 0.37 1 Calculated [141]
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Table 2.2 continued...

Substrate Transporter Inhibitor R Value Comments Ref
(pmol/min/mg prot) (K;/ICs0, uM) (FDA)
K,,=0.7£1.5
OATP2B1
(Vinae=2448, Ataz 5.1 1 Calculated [141]
Km=2.8+1.6)"
NTCP
(Vinaz=2260+1184, [142)
Km=1854108)"
MRP2
Kn=72+16 ATPase activity [143]
MDR1 [144]
Pitavastatin OATP1B1
Vinaz=340, Gem 32(4) 1.08 Article R value [135]
Kmn=1.3£0.3
Vinaz=340, RifSV 101 Article R value [135]
K,,=1.3+0.3 0.3+0.08
Rifp 0.47£0.03 13 Article R value [132]
OATP1B3* [132]
OATP2B1
(Vinae=7.4%1.4, [132]
Km=1.2£0.3)"
MDR1 OATPIB1/MDR  [132]
MRP2 OATP1B1/MRP2  [132]
K,,=8.9+1.4 ATPase activity [143]
BCRP OATP1B1/BCRP  [132]
Diabetes
Repaglinidle ~ OATP1B1 CsA 0.027¢ 3.2 PBPK model [145]
CsA 2 PBPK model [146]
(1.4-2.3)
Gem 1.6 PBPK model [146]
(1.4-2.8)
Tbstn*? Clinical [136]
Inc AUC 34 %
OATP1B3 CsA 0.067¢ 3.2 PBPK model [145]
Metformin OCT1 Clinical [147]
Imip ({87 %) [148]
OCT?2 Clinical [73]
MATE1 Clinical [73]
MATE2 Clinical [73]
Sartans
Valsartan OATP1B1
Vinas=3.910.5, [149]
K,,=1.440.2
Vinaz=33(33-34), Ltnb (2.6)*2 1.06 Article R value [150]
Km=21(20-22)
Ctnb 1t Vinaz & Ko [150]
Gem (39) 1.2 Calculated [151]
Gem-G (20) 2.3 Calculated [151]
OATP1B3
Vinaa=135240, [149]
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Table 2.2 continued...

Substrate Transporter Inhibitor Comments Ref
(pmol/min/mg prot) (K;/ICs0, uM)
K,,=18+6
Gem-G (100) Calculated [151]
MRP2
Vinaz=8951+578, OATP1B1/MRP2 [149]
K,,=30+18
Irbesartan OATP1B1
(Vinaz=17 (9 %), [137]
Km=0.7 (29 %))**
OATP1B3
(Vinaa=27 (56 %), [137]
Kn=11.9 (77 %))**
Oncological
Docetaxel OATP1B1
Vimas=38+47, [152]
K,=04+1.3
Sfnb 0.07*%F¢ [153]
OATP1B3
K,,=0.3240.06 [154]
Vinaz=480190, [152]
Kp=1447
MRP2 [154]
MDR1 OATP1B1/MDR1 [152]
OATP1B3/MDR1
Paclitaxel OATP1B1
Vinae=224£3, [139]
K»=0.4+0.2
OATP1B3
Vinaz=1445, [139]
K,=244+1.4
MDR1 [155]
MRP2 [155]

PC = pre-co-incubation, CsA = cyclosporine, Gem = gemfibrozil, Gem-G = gemfibrozil glucuronide, RifSV =

rifamycin SV, Rifp = rifampicin, Ataz = atazanavir, Ibstn = irbesartan, Imip = imipramine, Ltnb = lenvatinib,

Ctnb = ceritinib, Sfnb = sorafenib, *= minor contribution,*2: also a substrate,*3 = per 1 X 109 cells. R

values calculated according to Eq. 2.1

2.4 Mechanistic Modelling

To gain information regarding the specific uptake of endogenous and xenobiotic sub-
strates via the solute carriers (see 2.1.1) as well as their subsequent inhibition (see Table
2.2), one needs to develop models which allow the determination of their kinetic param-
eters. This can be done in two ways: through the determination of the initial uptake
velocity and multiple concentrations (often through a single early timepoint), or via the
use of a mechanistic modelling approach, normally through the use of ordinary differen-
tial equations (ODEs). The former of these two approaches can be used to obtain good
initial estimates in the latter models, which generally include more model parameters.
Structural identifiability of the models used is an essential pre-requisite for ODE based

models for the estimation of unknown parameters, both in terms of what combinations

23



(if any) of the parameters and states are estimatable from the available observations,

and this will be described in a separate section below.

2.4.1 Structural Identifiability

Approaches for structural identifiability assume a model structure of the form:

z(t,0) = f(x(t,0),u(t),0) (2.3)
(to) = zo(0) (2.4)
y(t,0) = h(x(t,0),u(t),0) (2.5)

where z(t,0) € R is the state vector, u(t) € R? is the input vector, y(¢,0) € R™ is
the observations vector and 6 € RP is the vector of unknown parameters which belong
to the feasible parameter space # € © and f and h are smooth functions. If there is
a second parameter vector § and state vector Z which is then compared simultaneously

with the original model output using successive iterations, such that:

h(a(t,0), u(t), ) = h(z(t,0), u(t), 0)

if in a neighbourhood N € ©, implies that § = 0, then the model is at least structurally
locally identifiable (SI). If N = ©, then the individual parameters §; € 6 are unique

and the model is SGI. If under any circumstances:
h(z(t,0),u(t),0) # h(z(t,0),u(t), )

except when 6 = § = 0, then the model and all the parameters therein are unidentifiable
[24].

Prior to parameter estimation, or indeed the generation of experimental data,
it is important to evaluate, assuming perfect (noise-free) data, whether the proposed
mathematical model is at least structurally locally identifiable. In other words, there
exists a subset of parameters or parameter combinations that are unique or locally
identifiable, with no model parameters unidentifiable, within the premise of the model
structure and observation(s) [17]. Assuming a known input/output relationship, if all
the parameters within a given model are uniquely identifiable, then the model and all
the parameters within the model are structurally globally identifiable (SGI). Without a
formal structural identifiability analysis, it would not be known if the parameters and
the structure of model itself are unidentifiable, and would not affect the output making
any parameter or state values estimated experimentally meaningless as they could be
replaced with any number without affecting the measurement.

Determination of identifiability with micro-rate constant models (see Fig. 2.4)
and macro-rate constant models (those based on the Michalis-Menten equation for trans-
porters) were evaluated using different mathematical approaches by Grandjean et al.
[24], Grandjean [25]:

e The similarity transformation approach - symbolic, proposed for non-linear sys-

24



-

—————
Medium Cell

~

ky
- S3
kp
ka
S1+¥—

kq

ka1

—
kar
- ")

Figure 2.4: Schematic of a micro-rate constant model of ordinary differential equations (ODEs)
derived for initial parameter estimates for substrate (S) uptake into cells and competitive inhi-
bition by inhibitor (I). X; and X5 are the amount of X (S or I) in the medium and bound
to transporter respectively, S3 is the intracellular amount of S. ky and k; are the passive rate
constants into and out of the cell respectively, k, and k,; are the transporter association rate
constants for S and I respectively, assuming free transporters are available, k; and k4; are the
dissociation rate constants for S and I respectively and k; is the substrate translocation rate
constant into the cell from Ss

tems by Vajda et al. [156]
e The differential algebra approach - numeric, via large number integers

e The algebraic input/output approach - numeric, via large number integers [157,
158]

e The observable normal form - symbolic [24]

e Taylor series expansion - symbolic, becomes intractable due to complexity of ex-

pansions [24]

As a micro-rate constant model for substrate only has previously been shown to
be SGI (see [24, 25]), the model was extended to include the binding of inhibitor to
transporter under the assumption of competitive inhibition only (see Fig. 2.4) using
the algebraic input/output analysis method in Maple 2018 32bit (Maplesoft, Waterloo,
Ontario, Canada) using the code provided in Evans et al. [158].

If the transporter components of Fig. 2.4 for substrate and inhibitor are written in

chemical reaction form:

kq
S1+ Ty kﬁ So k% S3 (2.6)
d
ka[
I + Tf = I (27)
kar

where X = the amount of substrate (S) or inhibitor (I), X; and X5 are the amount in
the medium and bound to transporter respectively, and Sj3 is the amount of intracellular
substrate. k, and k.7 are the transporter association rate constants for S and I respec-
tively, assuming free transporters (Tf) are available, k4 and ky; are the dissociation rate
constants for S and I respectively and k; is the substrate translocation rate constant

into the cell from S5. Then the law of mass action for both the substrate and inhibitor
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gives:

ds
dTl = —kyS1 — kaS1 Ty + kaS2 + kuS3
ds
dTZ = koS1Tf — (kg + kt)So
d
D5 _ 118y + kySy — oS5
dt
dI
ditl = —kyrly — kar 1Ty + kqrla + kpr I3
dl
S22 kar Ty — kgt
e 1hly — karla
aT
ditf = —Ty(kaS1 + karl1) + (ka + kt)S2 + kaSs.

(2.10)

(2.11)

(2.12)

(2.13)

where ky and ky; are the passive rate constants for the movement of drug into the cell

for substrate and inhibitor respectively, and k; and kp; are the passive rate constants

for the movement of drug out of the cell for substrate and inhibitor respectively. As it

is rare that T’ is known, but assuming that T, is conserved, Ty can then be eliminated

in Egs. 2.8-2.12 [15, 25] to give:
Ty =T,— Sy — I

giving modified equations for substrate and inhibitor:

%%:—%&@rﬂrJﬁ+M$
ddi;? = kaS1(Ty — Sy — I5) — (kq + k1) S
‘%” = kS
% = —korIh(T, — Sy — Is) + kar L.
% = kot IL(T, — S5 — I) — karlo.

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

To reduce the set of 5 ODEs (3 for substrate (medium, transporter and intracellular) and

2 for inhibitor (medium and transporter)), the transporter compartment for substrate

(S2) and inhibitor (I2) can be factored out based on the conservation of substrate (5)
or inhibitor (I), where at ¢ = 0, all states in the model sum to the doses (Dg and Dy
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respectively) (Eq. 2.20 and 2.21):

Dg =51+ 52 + Ss,
s Sy=Dg— 5 — 83 (2.20)

DI = II + 127
. Iy =D;— 1. (2.21)

This simplifies the mechanistic model from five to three compartments, but retains the

overall same number of model parameters. The model equations are then given by:

ds;
= keSy — koS, (T, — (Dg — Sy — S3) — (D — I
7 £91 1 ( (Ds —S1—8S3) — (Dr — 1)) (2.22)
+kq(Dg — S1— S3) + kpSs
dsS
75 =kpS1+ kK (Ds — S1 — S3) — kpSs (2.23)
dI
d—;:—kaﬂl (T, — (Ds— Sy —S3) — (I — 1)) + kar (I — I) (2.24)

where k¢ and kj, represent the passive rate constants into and out of the cell respectively.
Initial conditions for the model are given by: [Dg,0, D;], and the unknown parameter
vector consists of: {k¢, ka, Ty, ka, ki, kb, kar, kar}. The experimental observation assum-

ing only substrate is measured is given by:
y = kSs (2.25)

where k is a scalar (1/Cell volume in experimental chapters presented here) transferring
from amount (S3) to the measured concentration y. This model (Egs. 2.22 - 2.24) was
found to be SGI using the algebraic input/ouput analysis method [158] in Maple on a
Lenovo Laptop (2.9 GHz, 4 Gb RAM, Intel Core i5-5200U processor), see Appendix A
for output. A downside of this method of analysis is that the three compartment model
for substrate only (including S2) has an observation that is a combination of two states,
i.e. y = k(S2 4+ S3), which is not currently supported in the code presented by Evans
et al. [158] (Evans, personal communication), or in the online tool COMBOS [159]. It
is also not possible to include multiple different doses in the ODEs used in the software
for parameter estimation if they are to be analysed simultaneously (Monolix 2018R2
(Lixoft, Antony, France)).

It was deemed important to evaluate the model form used during parameter esti-
mation, but also in Chapter 4, a mixture of rate constants presented above (termed micro
rate constant in future chapters) and a Michaelis-Menten equation for metabolism led to
the models and the resulting expression in the structural identifiability analysis becom-
ing too complex and intractable for determination of structural global indentifiability.
Therefore, determination as to whether a mechanistic model was at least structurally

identifiable was deemed sufficient. One method to determine structural local identifia-
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bility uses the Identifiability Analysis package, developed by Jirstrands group at
the Fraunhofer-Chalmers Institute in Sweden [16, 160] and implemented here using Wol-
fram Mathematica 11.3 (Wolfram Research Inc, Illinois, USA). Given a set of ordinary
differential equations (ODEs) with an unknown parameter vector, known input and a
set of measurable observations, this method gives a Boolean answer to the structural
identifiability problem, including a list of any unidentifiable parameters and the number
required to be known (degrees of freedom, d.o.f.) for the model to become at least
structurally locally identifiable. The package uses large value random prime numbers
as replacements for the parameters, states and inputs in the calculations performed to
obtain a modified Jacobian matrix of the partial derivatives up to a limit of n + p as
any iterations beyond this will be derivatives of those already present and are therefore
already included [16, 160]. Any symmetries within the matrix (indicating unidentifiabil-
ity) are then destroyed to efficiently determine the local identifiability (or combinations)
of parameters and state variables [16, 160] (see Appendix B and C for examples of a
micro-rate constant model and macro-rate constant model respectively). Another op-
tion for the determination of structural local identifiability is the STRIKE-GOLDD package
[161] in Matlab (Mathworks, Massachusetts, USA), which re-casts identifiability analysis
as an extension of observability through the use of extended Lie derivatives to include
the parameters and initial conditions (in a similar way to that described above). Ini-
tial testing of STRIKE-GOLDD (version 1.0.4.Beta) within Matlab R2017a gave the
same answers as the Identifiability Analysis package, but was often intractable on
a Viglen desktop PC (3.6 GHz, 16 Gb RAM, Intel Core i7-4790 processor) during the
Lie derivative expansion compared to the Identifiability Analysis package and was

therefore not used further.

2.4.2 Initial Velocity Models

An early use of the determination of isolated hepatocyte uptake by taurocholic acid was
described in 1975 [63]. The authors used a centrifugal oil spin technique to separate
hepatocytes from the medium in which they were present into a dense bottom layer
(3M KOH in this case). Determination of kinetics was derived from the initial uptake
velocity, where uptake was deemed to be linear across four timepoints (15, 30, 45 and
60 s). Initial adsorption to the plasma membrane was described through extrapolation
of an early timepoint, which ended before the first timepoint was actually taken and
was therefore determined graphically through the use of a Scatchard plot (bound/free
taurocholic acid against bound). The initial velocity was plotted on a double reciprocal
plot (a Lineweaver-Burke plot, see Fig. 2.5b for example) to obtain the maximum uptake
velocity (Viaz, pmol/min) and Michaelis-Menten constant (K,,, nmol/ml). Competitive
inhibition of taurocholic acid by a conjugated bile acid (taurochenodeoxycholic acid)
was also determined through the double reciprocal plot and via a Dixon plot (1/(initial
velocity) versus incubation concentration) to determine an inhibition constant (K7) that
is approximately half of K, and indicative of higher affinity for the transporter than

taurocholic acid [63].
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Figure 2.5: a Yamazaki plot of initial velocity at 15 sec against pitavastatin incubation concen-
tration, dashed line = total, dotted line = passive, solid line = saturable uptake. Approximate
parameters Vy,q, = 300 pmol/min/10° cells, K,, = 10 nmol/ml b Lineweaver-Burke (dou-
ble reciprocal) plot using “Active” from a. Parameter estimates V4, =1/y intercept= 141
pmol/min/106 cells (RSE = 36 %), K,, = gradient x V4= 28 nmol/ml (RSE = 21 %)

To generate these plots, a detailed experimental design was required, consisting
of: 4 timepoints x 5 concentrations of taurocholic acid x 3 taurochenodeoxycholic acid
~ 60 datapoints. The disadvantage of this method is that use of Eq. 2.26 to obtain the

uptake clearance (C'Lyy, pL/min) from the V4, and K, according to:

Vinaz®

Clw=Fta
m

(2.26)
where x is the concentration of substrate in the medium at ¢ = 0 i.e. the dose, is
that the equation does not allow for passive movement of drug. This can lead to a
deviation of the double-reciprocal plot from linearity at higher concentrations, which
could be seen in a follow up paper which examined the uptake of an anionic substrate
bromosulphophtalein [162].

There are three different techniques (one using curve stripping, and two using
experimental techniques) with the same outcome used to allow for passive movement
of substrate (Py ) depending on the experimental system used (Eq. 2.27). The first
technique was used by Yamazaki et al. [163] who calculated initial velocities over the
assumed linear uptake phase using an oil spin method. The gradient obtained at high
concentrations of substrate (indicative of passive movement of substrate) is subtracted
to obtain the saturable only part of the uptake (known as a “Yamazaki plot”). The
saturable uptake is then fitted to Eq. 2.26 using a non-linear least squares approach.
Examples of a Yamazaki plot and the subsequent double reciprocal plot using data from
Chapter 5 are given in Figs. 2.5a and b respectively. As the Lineweaver-Burke plot is a

double reciprocal plot, as the incubation concentration increases to saturate the uptake
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process, so the points become clustered around the origin and the curve fitting becomes
insensitive (see Fig. 2.5b). The converse is also true, at low incubation concentrations
the velocity can be more variable, for which the curve fitting becomes more sensitive to
(see Fig. 2.5b). However, the obtained parameters from the either the Yamazaki plot or
the Lineweaver-Burke plot can then be used as initial estimates in macro-rate constant
models.

The second technique for the separation of passive and active components, in-
volves using hepatocytes that are kept at 4 °C to stop any “active” processes and uptake
experiments undertaken, this can then be subtracted from the total to again obtain the
transporter-mediated uptake. This technique has many failings, with the main one being
that it is assumed that membrane fluidity does not change at low temperatures [164] and
has been shown to under-predict passive movement of drug in the literature, compared
to estimation of passive movement at 37 °C in a mechanistic model [8, 164-166].

The final method for the separation of passive and active components is fre-
quently used in experiments where plated cell lines (devoid of transporter proteins)
have particular transporter proteins inserted as an expression vector, and the uptake
of substrate compared to the same cell lines where a mock expression vector is used
[164, 167, 168]. The mock expression vector cells will only, in theory, possess passive
permeability characteristics and can therefore be subtracted from the transporter ex-
pressing cell lines. This and the first approach given above are used for calculating

values for passive movement of substrate in cell-lines (see Chapter 3).

2.4.3 Mechanistic Models of Uptake

A mechanistic modelling approach is routinely applied in the transporter literature in
the study of uptake into hepatocytes using Eq. 2.27, and assumes that the difference
between passive movement in and out of the cell is only related to the volume and fraction
unbound in the cell, and that no efflux via a transporter occurs [33, 164, 165, 169, 170]

namely: v
mazl

= Kta
m

+ Paifx. (2.27)

where Py is the passive uptake clearance (ml/min). For Eq. 2.27 to be used in a
mechanistic model it has to be decided where the observations are taken experimentally;
either from the medium [171], from the cells [8, 170, 172] or both cells and medium
[171, 173]. Determining factors as to whether cellular and/or medium concentrations
are measured are: structural identifiability analysis outcomes, time/cost of analysis
(LC-MSMS, or radioactivity) and sensitivity of the method to observe changes between
concentrations as well as the lower limit of detection. It is expected that there will be an
initial small decrease in medium concentration corresponding to the uptake of drug into
cells (see Baker and Parton [170], Soars et al. [171] ), whilst at higher doses of substrate,
one will only see a straight line as uptake is saturated. If extraction is complete from
the medium at lower doses, no information can be gleaned from medium concentrations

only (See Chapter 4), therefore the measure of uptake into the cells will be the main
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focus as this can give a broader understanding of drug disposition into cells (including
metabolism, which may be subtly missed in the medium concentration). An extension
to Eq. 2.27 to include the amount in the medium as well as the cellular amount (in the
absence of metabolism) would give ODEs which are the opposite in sign to each other,
i.e. substrate lost from the medium = substrate gained in the cell. If Eq. 2.27 was
extended to include metabolism via additional clearance terms per metabolite (e.g. as
in Menochet et al. [33]), then substrate lost from the medium would not equal substrate
gained in the cell, unless the metabolite formed is also measured.

There are also certain assumptions with regard to the use of the Michaelis-Menten
equation above (Eq. 2.27) from its original development for enzyme kinetics and that

have been expanded upon for transporters [15, 23, 24]:

1. The initial substrate concentration is much larger than the transporter concentra-

tion.

2. It then follows that the association to the transporter (k, is very rapid) is thus in

rapid equilibrium with the transporter.

3. The free transporter (7) is therefore affected by the dissociation rate constant

from the transporter (kg).

4. The rate limiting step in the transport of substrate into the cell is the translocation

rate constant (k).

As mechanistic models use multiple time courses across concentrations and experiments
(up to 150 datapoints) [8, 33, 164, 170], there should be sufficient information with which
to use the Michaelis-Menten equation in its initial polynomial form using micro-rate
constants, as the maximum number of unknown parameters and states is for a substrate
only model is at most 13 (passive with membrane binding, transporter mediated uptake
and single metabolism rate constant). The combined model output of the amount bound
to the transporter (X2) and the amount within the cell (X3), mulitplied by the inverse
of the cell volume (V) to give a concentration to match the experimental observation

is given by:
1

Veeul

This poses a problem, as one needs to know the number of cells in a sample and also

y = (X2 + X3). (2.28)

which cellular volume to use. Within the literature, there are multiple methods used to
measure cell volume (see Table 2.3): Using radiolabelled markers to determine intracel-
lular volume and the adherent water layer [32, 174, 175]; packed cell volume combined
with microscopy [170, 176]; and the use of proteomics [49]. Which cellular volume should
then be used? Does it depend on the species and also the format (i.e. hepatocytes vs.
cell-lines) that is being looked at? Most importantly, does the cell volume used actually
affect the parameters to be estimated? It is also important to note that the cell volume
will also change depending on the number of nuclei within the cell (proportional to the
amount of histones/DNA [49], which for hepatocytes can routinely be > 1 < 16 [177].
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To decrease the uncertainty in this volume, one could estimate the cell volume as an
unknown parameter for each experiment based on an initial estimate from Table 2.3.
This can give spurious results if the data are sparse for a particular experiment (e.g.
see Chapter 3, pre-co-incubation scenario). Therefore literature values and the mean
or median are used in each following experimental chapter, and then whichever volume
gave the smallest BIC was then used a fixed constant and the data was also normalised

to this value.

Table 2.3: Literature values for cellular volume

Sample Type Method Volume (u1/10%) Ref.

CHO Mean of literature 1.4 [164]

CHO Using fluorescent dye and 1.6 + 0.7 (n = 56) [176]
holographic microscopy

HEK293 Using fluorescent dye and 24+ 0.5 (n = 14) [176]
holographic microscopy

HEK?293 ['4C]-urea 440.2° [178]

Median (HEK?293) 3

Rat H Packed cell volume and 6.5 [170]
confocal microscopy

Rat H [3H]-water, [}4C]-sucrose 3.9+ 0.3 (n =42) [175]

Rat H [3H]-water, [}4C]-sucrose 2.2 4 0.46° [32]

Geometric mean (Rat H) 3.8

Human H sphere of r = 6.76 pm 1.2 [179]

Human H sphere of » = 8.1 um 2 [180]

Human H [®H]-water, ['4C]-dextran 2.3 + 0.3 [174]

Human H ’Proteomic Ruler’ 3(n="T) [49]

Median (Human H)¢ 2.7

HepG2 "Proteomic Ruler’ 0.8 (n=17) [49]

CHO = Chinese Hamster ovary cell line, HEK293 = Human Embryonic kidney cell line 293, H = Hepatocyte, HepG2
= hepatocarinoma cell line, * = adjusted from /mg to /106 using HEK-MOCK cellularity (See Chapter 3, b— adjusted
from /mg to /10% using hepatocellularity [181], © = measured estimates only used)

2.4.4 Micro-rate Constant Scaling

To allow comparison to certain literature values from micro-rate constants up to macro-
rate constants, the equation used to describe saturable uptake needs to be re-arranged
to yield the classic Michaelis-Menten form from the parameter estimates obtained. This
is based on the assumptions listed above (see points 2.4.3 to give the maximum velocity
(Vinaz Eq 2.29) and the concentration at which 50 % of the maximum velocity (K,,, Eq.

2.30). The corresponding macro parameters are given by:
Vinaz (pmol/min/10° cells) = kT, x 1000 (2.29)

where k; is the translocation from the transporter into the cell, and T, is the total amount
of transporters responsible for uptake, and 1000 is the scalar from nmol/min/10° cells
to pmol/min/106.

To enable the concentration at which 50 % either uptake transporters (Ky,.p)
are occupied to be calculated in nmol/ml, the association rate constant (k,) must first

be converted into /M /min/10° cells by multiplying by the medium volume Vj,eqium in
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which 1 x 10° cells are present.

(k‘d + ]{ft)

K, (nmol/ml) = v o
mediuma

(2.30)
To enable the equilibrium dissociation rate constant for substrate (Kp) or inhibition
(K7) to be calculated in nmol/ml, k, or k,; must be converted into /uM/min/10° cells
as per Eq. 2.30.

kar

Kp or K; (nmol/ml) = V1% (haorkur) (2.31)

For non-competitive inhibition, an inactivation constant (Kj,qc¢ (nmol/ml)) is calculated

by multiplying the K; by the dimensionless term « using:
Kinget(nmol/ml) = Ky ypa. (2.32)

These macro parameters can be further scaled to yield uptake clearance (ul/min/10°

cells) in the absence (C'L,,;) and presence of inhibitor (CLyy.qpp) using:

Vmalf
C'Lyp (p1/min/10%cells) = 7 (2.33)

m

For competitive inhibition, within the C'Lyp qpp (Eq. 2.35 ), K, becomes an apparent

Km.app:

I
Ko app(nmol/ml) = Km_up<1 + ) (2.34)
KI.up

where [ is the incubation concentration of the inhibitor.

Vinaz Vinaz
CLup.app = = (235)

K., (1 + KLI) Kon.D.app

For non-competitive inhibition within the C'Lyp.qpp, Vinaz becomes an apparent Vi,az.app

using: v
Vmax.app = mai (236)
1 + Kinact
and v
1+K+) Vimaz Vma:c a
CL — inact — — -app i 237
up.app Km (1 4 K.I - )KmD Km ( )

2.4.5 Parameter Estimation and Practical Identifiability

The estimation of parameters within a mechanistic modelling framework for both fixed
effects (one set of parameter estimates for the population) and random effects (where pa-
rameter estimates vary with the individual) and the estimates of errors on the parameters
therein is termed non-linear mixed effects modelling [182, 183]. Practical identifiability
is concerned not just with the experimental design, but also the model structure. It is
concerned with whether given the experimental data (i.e. discrete data or observations

taken at selected intervals in time), the parameters and their variance can be estimated
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[184]. This is intrinsically linked to structural identifiability described above (see Section
2.4.1). If a model is structurally unidentifiable, no matter how much data one can ob-
tain for the model states presented, then any parameters obtained from the experiment
may be effectively meaningless. If a model is at least structurally locally identifiable,
then the parameter estimates and the variances of the parameters are obtained from
the data and experimental design [185]. By models, we mean state space models of the
form given by Eqs. 2.3- 2.4. The state space models considered, need to be extended

here to include the fixed effects, random effects and their variances [182, 185] so that:

2i(t, ¢i) = f(zi(t, ¢i), wi(t), ¢i),  wi(to) = xo(e) (2.38)

Yij (t, i) = 9(s, 0, z45) + h(di, 0, xi5)eij, 1<i<n, 1<j<my (2.39)

where y;; is the 4§ observation (total observations for individual 4, m;) of the i indi-
vidual (total individuals, n), ¢; is the unknown parameter vector for the i*" individual.
The within-group errors ¢; and residual unexplained variance 7; (with a corresponding
covariance matrix, {2) are assumed to be random variables that are mutually indepen-
dent with mean 0 and variance o2, (Mimii.aN(0,T)). g and h are non-linear smooth
functions of ¢;.

There are multiple software platforms upon which parameters and their variances
can be estimated. Some are free packages allied to R [186], reviewed by [187], or Matlab
(The Mathworks Inc., Massachusetts USA) [188], whilst others are commercial packages
that require licenses (NONMEM (Icon Plc, Dublin, Ireland), Monolix (Lixoft, Antony,
France) and WinNonLin (Pharsight, Missouri, USA)). All of these packages have the
same objective; to obtain maximum likelihood estimates of the parameters that minimise
the variance between the observed and the predicted data [189]. The profile-likelihood
algorithm is an attractive offering, as it combines structural identifiability with param-
eter estimation to generate profiles for parameter estimates [188]. If both upper and
lower confidence limits are obtained, then the parameter is deemed to be practically
identifiable (and thus at least structurally locally identifiable), if a single bound is ob-
tained, as well as an estimate, then the parameter is practically locally identifiable,
whilst a flat profile indicates practical non-identifiability [188]. This method was not
however implemented here as both fixed and random effects models were not instigated,
and also due to the fact that all compartments are defined in terms of concentrations
[188]. For the micro-rate constant models in the experimental chapters, the transporter
compartment volume is not known. The cell volume is in the region of 3 x 1073 ml, of
which the total plasma membrane has been estimated to be 1 % of this volume [49],
which may introduce instabilities in the data analysis.

The package used for parameter estimation was the Monolix suite (Lixoft, Antony
France). In the Monolix algorithm, a mixed effects model is seen as a missing data
problem, comprising the observed data y;; and the non-observed data obtained from the

random effects model (¢;), giving the complete data (y, ¢) = (yij, Pi)1<i<n, 1<j<m [182].
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Monolix uses the stochastic approximation of the expectation maximisation (SAEM)
method, where a stochastic procedure simulates the random effect data (¢;) at each
iteration step ¢**! from the conditional distribution p(.|y;6)) and then updates the
maximisation of the likelihood (arg maxg L) according to the following [182, 190]:

Sk+1 = Sk + Vi (5’ (y, ¢(k+1)> — sk) (2.40)

and

Op+1 = arg max L (sk41,0) (2.41)

where s, is the stochastic approximation, 7y is a sequence of positive step sizes decreasing
to 0, k is the iteration step, S is the minimum sufficient statistics of the complete model,
with a value in a subset of real numbers R™ and 6 is the unknown parameter vector. If
the simulation step is not successful, then the algorithm employs a Markov chain Monte-
Carlo (MCMC) method to obtain ¢ which is then passed to the simulation step above
[182]. Initial step sizes of 1 allows flexibility in the iterations to converge to a local
neighbourhood around the maximum likelihood estimate of the parameters (¢2), then
with smaller step the estimations are refined to ensure convergence [182]. This does not
guarantee that the maximum likelihood estimate of the parameters will be the global
maximum, and therefore every 50 iterations a simulated annealing step is included to
help move the estimates away from a local minimum [190].

Once the algorithm has converged to 6, and assuming that the log likelihood is
sufficiently smooth, then it is possible to estimate the Fisher information matrix (FIM),
and the observed Fisher information of the likelihood is obtained directly from the
simulated missing data [182]. The inverse of the FIM is then the variance-covariance
matrix 2 and the parameter variances can be calculated.

The MIxTran model files for use in Monolix 2018R2 for each experimental chapter
(Chapter 3, 4 and 5), can be found in Appendix F, whilst the data (in .csv) format can

be found in the online version of the thesis.

2.4.5.1 Optimal Design of Experiments

For each of the experimental chapters (Chapters 3-5), the timepoints taken, as well as
the number of concentrations were based on the assumption that each is a hydrophilic
anion at physiological pH and thus substrate for transporter into the cell. As discussed
above (see Section 2.1), the uptake into the cells is slower than more lipopilic substrates
[32, 33] and therefore timepoints tend to be weighted towards the beginning of the
experiment to capture the initial uptake into the cell, whilst metabolism dominates at
later timepoints. The choice of experimental timepoints are therefore based on prior
literature and personal experience, which may offer a sub-optimal experimental design
to reduce the residual error on the estimation of parameters and thus the practical
identifiability of the parameters.
To prospectively design experiments to maximise the information obtained through

the choice of timepoints, assuming that the mechanistic model used is correct, is known
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as Optimal Design [191]. Optimal design of experiments are becoming more common
in pharmacometrics modelling, where, based on literature or past experience, prospec-
tive timepoints can be selected for new clinical trials, for example when timepoints are
limited due to invasiveness e.g. in neonates or young infants or for practicality e.g. in
Phase IIT trials [191, 192]. There are multiple optimality algorithms that take advantage
of the inverse of FIM which gives the covariance matrix [193], with the maximisation of
the derivative of the FIM, termed D-optimality as the most relevant to this work. There
are multiple software packages and stand alone functions that can be used for D-optimal
design experiments, based in R (PFIM [194]), Matlab (PopDes [191]) or both (PopED
[195]). Stromberg et al. [193] evaluated these approaches through simulation of 3000
individuals based on the optimal design. The approaches used either a full covariance
matrix (makes no assumptions regarding covariance between parameters) or a triangular
matrix (assumes no covariance between parameters), as well as the use of either a first
order linearisation (FO) algorithm or the first order conditional expectation linearisation
(FOCE) algorithm [193].

2.5 In Vitro-In Vivo Extrapolations/Correlations

The fate of a drug within the body will largely depend on its physical attributes -
molecular weight, lipophilicity, and the level to which it is charged or not at physiological
pH (pH 7.4). These attributes can be calculated from the structure of the drug itself
such as the pK, value, which describes the pH at which 50 % of the drug is unionised,
or determined via a variety experiments.

One way to compare across the diverse chemical structures of drugs in the clinic
in terms of their physical attributes, and then segment them accordingly uses a system
such as the Biopharmaceutics Classification System (BCS). The BCS segments drugs
according to permeability and solubility [196]. An extension of this, the Biopharma-
ceutics Drug Disposition Classification System (BDDCS) was based on metabolism and
solubility, as these were more likely to be routinely measured in a drug-discovery con-
text [197]. The BDDCS was then further modified to segment according to transporters
[198]. Both the BCS and BDDCS are powerful (1000’s of compounds) yet basic in their
approach in order to understand and extrapolate from in vitro measurements up to the
in vivo or the clinical situation.

If in wvitro inhibition with liver transporters and enzymes, has the potential for
a relevant drug-drug interaction (DDI) in the clinic, an area under the curve (AUC)
ratio in the presence or absence of the inhibitor can be calculated, the 'R’ value as
described earlier (Eq. 2.1). This is used by regulatory agencies in their in vitro guidance
documents [18, 19] to assess the potential for clinical DDIs and is described in more detail
in Chapters 3 and 5.

To scale in vitro data obtained from cellular systems up to whole body requires
the use of scaling factors, e.g. from human hepatocytes up to a full liver via hepatocel-

lularity factors (from 1 x 105 cells up to /g liver [181]) and physiological weights (g of
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liver /kg body weight [2, 133]). The scaled organ can then be linked to other organs of
interest /importance via knowledge of the physiology of each organ (volume, blood flows,
partition into tissue - physicochemical properties etc.) to obtain an approximation of
the whole body. This type of representation is known as Physiologically Based Phar-
macokinetic (PBPK) modelling and is an oversimplification of the underlying processes,
but can give valuable information regarding the disposition of a drug in the body and
the potential for DDIs. An example of a qualitative PBPK model developed to examine
the interaction at the liver as the organ of interest based on uptake into hepatocytes

can be seen in Fig. 2.6 and Chapter 6.

2.6 Conclusions

This chapter gives an outline on the current literature with regards to transporter me-
diated uptake and TrDDIs. It shows the issues that can arise when predicting clinical
interactions based on in vitro data, and may partly be due to the large degree of overlap
in transporter affinities for substrates. However, this may also be due to the redundancy
built into some of the transporters in the body to protect the sanctuary organs, which
are then capitalised on by tumours and microbes.

Secondly this chapter is the basis for the data analysis and experimental tech-
niques used in the following chapters to evaluate in vitro drug-drug interactions across
two systems of increasing complexity: the first examining a single solute carrier (L OATP1B1)
over expressed in a human derived cell-line (HEK293); with the following two chapters
looking at hepatocytes in rats and humans respectively. Therefore, in Chapters 3-5
the experimental techniques are similar, as we are looking at the inhibition of uptake
of a substrate into cells with early timepoints important in the determination of up-
take. This makes the mechanistic modelling processes the same for the determination
of TrDDIs, with additional transport-metabolism interplay and drug-drug interactions

in hepatocytes.
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Figure 2.6: Schematic of the developed semi-mechanistic PBPK model for the concentrations
in the liver compartment (X4) assumed to be involved in the TrDDI between pitavastatin and
eltrombopag, which is linked to the concentration in the central compartment (Xg) via the
concentration in the liver extracellular space (X3) through hepatic blood flow (Q). The dose is
applied as an amount into the stomach (X7), which is then transported into the GI Tract (X3)
with gastric emptying rate constant (kge). Drug is absorbed into X3 with the absorption rate
constant (K,x), where free drug moves into the liver via saturable Michaelis-Menten kinetics
(Vinag.up.x and Ky, 4p. x) and is inhibited by the opposing drug in X3 (I3) via the Ky, (Kr.up)-
Passive movement of drug into and out of the liver with clearances Py; s x and Py . x respectively.
Biliary excretion of both drugs (C'Lp; x ) into Xa through the gallbladder (X5) with bile flow rate
constant (kp;.) where they can be re-absorbed. Both drugs have metabolic clearance from the
liver (CLpet.x), whilst pitavastatin is also cleared into the urine (CLygine.p) with the kidney
blood flow (Qk)
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Chapter 3

Evaluation of Uptake of
2’,7’-dichlorofluorescein and its
Inhibition by Gemfibrozil in
HEK293-OATP1B1 Cells

3.1 Introduction

This chapter deals with the uptake of the fluorescent probe substrate 2’,7’-dichloro-
fluorescein (DCF) in HEK293 cells expressing the human OATP1B1 transporter pro-
tein, and the determination of the inhibition by the anti-diabetes drug gemfibrozil. The
experimental work was conducted at AstraZeneca Cambridge (U.K.) as part of my PhD
studentship and has previously been submitted as a short communication to The Jour-
nal of Pharmaceutical Sciences. Therefore this chapter will, following a brief overview,
evaluate the mechanistic models used in terms of their structural and practical identi-
fiability across different software approaches (see Chapter 2, Section 2.4 for theory and
use of software) and provide an in-depth presentation of model parameter estimation
and model selection.

Gemlfibrozil is used to treat hyperlipidaemia either in monotherapy or in combi-
nation with a statin [199], and in type II diabetes with repaglinide [200]. A study in
healthy volunteers co-dosed with repaglinide and gemfibrozil showed an 8-fold increase
in plasma exposure, as well as a prolonged glucose lowering effect [200]. A similar picture
was observed when cerivastatin was dosed with gemfibrozil with an increase in expo-
sure of nearly 6-fold, along with a non-statistically significant increase in creatine kinase
[201] - a biomarker for rhabdomyolysis, that if left untreated can lead to acute renal
failure [202]. The use of gemfibrozil has been largely replaced with other fibrates that
do not interact with repaglinide or statins [203, 204]. The inhibition of substrates by
gemfibrozil, which is not a substrate for OATP1B1 itself [27] is multimodal, comprising;:

e Metabolite-dependent inhibition of CYP2C8 from gemfibrozil-glucuronide [205].
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e Inhibition of OATP1B1 by both gemfibrozil and gemfibrozil-glucuronide [135, 206].

Drug-drug interaction (DDI) studies with gemfibrozil and OATP1B1 are often
conducted using a human cell line expressing the transporter with a selective radiola-
belled probe substrate such as [*H]-estradiol-173-glucuronide [135]. In early research,
the use of radiolabelled probe substrates can be cost prohibitive, therefore a cheaper
and selective substrate is required. Izumi et al. [168] found that DCF was a good
substrate for OATP1B1, with Vj,4. and K, values similar to those of [*H]-estradiol-
175-glucuronide, the inhibition of DCF uptake by various inhibitors was the same as for
[*H]-estradiol-17 3-glucuronide.

There is increased interest in the evaluation of uptake inhibition mechanisms and
whether the long-lasting inhibition of transporters can explain the discrepancy between
in vitro and in vivo studies [207, 208]. Evaluation of time-dependent inhibition of se-
lected transporters is also now recommended as part of new drug submissions to the
regulatory authorities [18, 19]. Whilst the inhibition of selective substrates by gemfi-
brozil in HEK293-OATP1B1 has been conducted under the assumption of competitive
inhibition [27, 135, 168], the mode of inhibition has not been fully evaluated and will be

the aim of this chapter. This aim will be achieved through the following objectives:

e Evaluate the uptake of DCF into HEK293-OATP1B1 cells and its inhibition by
gemfibrozil to evaluate whether time-dependent inhibition dominates across three

inhibition scenarios (see below).

e Develop mechanistic models to describe the interaction between DCF and gemfi-
brozil via competitive (non-time dependent) or non-competitive (time-dependent)
inhibition to gain further understanding of OATP1B1 uptake transporter interac-

tions.
This was examined experimentally using the following scenarios (see Fig. 3.1):

1. Co-incubation of 1 uM DCF with a range of gemfibrozil incubation concentrations
(1-300 pM).

2. Pre-incubation of gemfibrozil (1-300 M) for 20 min, removal of gemfibrozil and

then scenario 1.

3. Pre-incubation of gemfibrozil (1-300 M) for 5-40 min, removal of gemfibrozil and
then incubation with DCF only at 1 uM for 6 min.

3.2 Experimental Methods

3.2.1 Chemicals and Reagents

2,7-dichlorofluorescien (DCF), gemfibrozil, Hanks buffered salt solution (HBSS), high
glucose Dulbeccos modified essential medium containing L-glutamine (DMEM, D6429),
phosphate buffered saline, Accutase, Triton X-100, geneticin (G418),
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HEPES and the BCA protein assay kit (BCA-1) were all purchased from Sigma-Aldrich
(Poole, UK). Fetal bovine serum (FBS, heat inactivated) was purchased from Gibco
(Thermo Fisher Scientific Inc., Loughborough,UK). Acetonitrile, was obtained from
VWR International Ltd., (Lutterworth, UK) and was of analytical grade. HEK293-
OATP1B1 and HEK293-MOCK cells were generated by the Department of Molecular
Biology, AstraZeneca, UK and were the same cell line as used by Sharma et al. [167].

3.2.2 Cell Culture

Culture of HEK293-OATP1B1 and HEK293-MOCK cells were similar to those used
by Sharma et al. [167]. Briefly, cells were cultured in DMEM containing 10 % FBS
and 1 mg/ml geneticin as a selection antibiotic in 75 cm? or 175 cm? BD Biocoat™
Collagen I cell culture flasks (VWR International, Lutterworth, UK) at 37 °C in a
humidified 5 % COs incubator and were maintained at sub-confluency by splitting twice
weekly in the ratios 1:2 to 1:6 dependent on cell density. Cells were cultured in 24-well
Corning® Biocoat™ Poly-D-Lysine plates for 20-72 h prior to uptake studies following
the addition of a fixed amount of cells (2.5 x 10° cells) [167].

3.2.3 Incubations

DCF was dissolved and serially diluted in DMSO to give stock solutions of: 40, 12, 4, 1.2,
0.4 and 0.12 pmol/ml. For the DCF only incubations, the stock solutions were added to
an equal volume of DMSO and then diluted 1 in 200 in modified HBSS (supplemented
with 5 mM HEPES, adjusted to pH 7.4) and maintained at 37 °C in a deep well 96-well
plate until required to give final concentrations of: 100, 30, 10, 3, 1 and 0.3 nmol/ml. For
the inhibition studies, gemfibrozil was dissolved in DMSO and serially diluted in DMSO
to give the following stock solutions: 120, 40, 12, 4, 1.2 and 0.4 pmol/ml. For the pre-
incubation arm, the gemfibrozil stock solutions were diluted 1 in 400 with modified HBSS
to give final concentrations: 300, 100, 30, 10, 3 and 1 nmol/ml. For the co-incubation
arm (with or without pre-incubation), the gemfibrozil stock solutions were diluted with
an equal volume of 0.4 gymol/ml DCF and then diluted 1 in 200 with modified HBSS.
The DMEM was aspirated, and after a pre-incubation for 20 min in modified HBSS
at 37 °C, the medium was replaced with 0.3 ml HBSS containing gemfibrozil and pre-
incubated for 20 min as required. The DMEM was removed and 0.3 ml of DCF (with
or without gemfibrozil) was added using a multichannel pipette in duplicate (see Fig.
3.1 for experimental workflow). For DCF alone and the co-incubation with gemfibrozil
scenarios (with or without pre-incubation), the medium was aspirated at pre-defined
timepoints (20, 40, 60 and 80 s, then 3 and 6 min (co-incubation only)) and washed
three times with ice cold HBSS and left to dry. For the pre-incubation only scenario,
cells were pre-incubated for 5, 10, 20 or 40 min with gemfibrozil (1-300 nmol/ml), the
medium was removed and 1 nmol/ml DCF incubated for 6 min before aspiration and
treated as above. Four independent sampled wells were taken for each datapoint, with

six independent sampled wells used for the pre-co-incubation scenario.
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Co-incubation (scenario 1) Pre-Co-incubation (scenario 2) Pre-incubation (scenario 3)

Replace DMEM with Replace DMEM with Replace DMEM with

HBSS + pre-incubate HBSS containing gem HBSS containing gem

for 20 min + pre-incubate for 20 min + pre-incubate for 5, 10,
20 or 40 min

Replace HBSS with
HBSS containing DCF
and/or gemfibrozil

Replace HBSS with
HBSS containing DCF
and/or gemfibrozil

Replace HBSS with
HBSS containing 1 uM DCF
+ Sample at 6 min

B S—
~—
D S—

Remove HBSS at timepoints.
Wash 3 times with ice-cold
blank HBSS

Centrifuge at 1300g.
Transfer 50 ul to 96 well plate

§

lRead fluorescence in plate

Add 0.4 ml acetonitrile.
-20°C for 30 min.

reader

Figure 3.1: Schematic of experimental workflow in HEK293-OATP1B1 and HEK293-MOCK
cells for inhibition scenario’s 1, 2 and 3. In each case the cells are already plated onto the
24-well culture plates
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3.2.4 HEK293-OATP1B1 Cellularity

To enable a standard volume parameter for HEK293 cells to be used in the mechanis-
tic models, the concentration of DCF within the cell was normalised to nmol/ml/10°
cells from pmol/ml/mg protein for both HEK293-OATP1B1 and HEK293-MOCK cells.
Following treatment with Accutase® (5 ml per flask), HEK293 cells were taken from
>3 flasks, and centrifuged at 70 g for 10 min at 5 °C in 50 ml Falcon tubes (BD VWR
International, Lutterworth, UK). The cells were re-suspended in 20 ml in HBSS, counted
and diluted in water to give between 3 and 0.05 x10° cells/ml. These were then mixed
1:1 with Triton X-100 and shaken at room temperature for 30 min. Bovine serum al-
bumin (BSA) protein standards were prepared in 1:1 water:Triton X-100 and used as
per the manufacturers instructions (BCA protein assay kit instructions, Sigma-Aldrich).
Briefly, a 1 mg/ml ampoule of BSA was diluted in 1:1 water Triton X-100 to give a BSA
concentration range of 25-1000 pg/ml, 0.1 ml of standard or cell lysate was added to
2 ml of bicinchoninic acid (BCA) working solution, mixed gently and incubated for 30
min at 37 °C. 0.1 ml was then placed in triplicate onto a 96-well plate suitable for spec-
trophotometry and read in an OPTIMA POLARstar plate reader (absorbance: 560+10
nm, BMG LABTECH Ltd., Aylesbury, UK) on three separate occasions. The cellularity
measurements for HEK293-OATP1B1 and MOCK cells were then used to estimate the
total amount of OATP1B1 receptors, which could then be compared to the total number
of OATP1B1 transporters (7,) obtained from the mechanistic models during parameter

estimation:

(OATP1B1 - MOCK)/1000
85000

1,000, 000

Total OATP1B1 (nmol/108¢cells) = < (3.1)
where 85000 is the molecular weight of OATP1B1 in Daltons [101], and 1000 and
1,000,000 scale from mg/10 cells to nmol/10° cells

3.2.5 Sample Extraction and Data Analysis

0.4 ml of ice cold acetonitrile was added to each well and placed in a -20 °C freezer for >
30 min to extract DCF from the cells. The 24-well plates were then centrifuged at 1300
g for 15 min at 5 °C and 0.05 ml of the supernatant was diluted with 0.15 ml water in
a 96 well plate suitable for fluorescence measurement. A standard curve for DCF was
made by serially diluting a 1000 pmol/ml DCF DMSO stock in 80:20 water:acetonitrile
to give: 100, 10, 1 and 0.1 pmol/ml. The standard curve was pipetted in triplicate
onto a 96 well plate suitable for fluorescence measurement and read in an OPTIMA
POLARstar plate reader (excitation: 485+12 nm, emission: 520 nm, BMG LABTECH
Ltd., Aylesbury, UK). The standard concentrations were determined from fitting to a
straight line (y = mx) of the standard curve following blank well subtraction (80:20
water acetonitrile). Inclusion of an intercept in each equation lead to an increase in
the % relative mean square root error (RMSRE, Eq. 3.2) of the predicted standard
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concentrations from 2-3 % to 39-42 % respectively.

n Observed;

1 : — Predicted; \ >
% RMSRE — 100 x \/Z<Observed redzcted) . (3.2)

Sample concentrations were determined following blank subtraction and normalised from

nmol/ml/ mg protein to nmol/ml/10° cells using:

((mean DCF fluorescence - mean blank) ><5>
m

[Cell] (nmol/ml/mg protein) = (3.3)

mg/ml protein x 1000

and

[Cell] (nmol/ml/mg protein) x cellularity
Veell

[Cell] (nmol/ml/10° cells) = (3.4)
where 5 and 1000 scale from 0.2 ml to 1 ml and from pmol/ml to nmol/ml, ’cellularity’
converts from mg/ml protein to 1x 10 cells, and V. is the cellular volume. As multiple
cell volumes have been published (see Chapter 2, Table 2.3) [176, 178], data were nor-
malised to 0.002 ml/10° cells [176], 0.004 m1/10 cells [178] or the median (0.003 ml/10°
cells). Parameters were estimated for all the DCF data using a micro-rate constant
model with two passive rate constants and transporter mediated uptake (see Table 3.1
Eqs. 3.17, 3.19 and 3.21, without inhibition, with observations from Eq. 3.28 ), using
the inverse of each cell volume (see 3.28) and with the weighted BIC (wBIC, Eq. 3.39)
used to distinguish which volume best described the data. An inverse Ve of 333 /ml,
corresponding to the median literature value of 0.003 ml/1 x 10% cells had the lowest
BIC of the three inverse volumes tested, giving a wBIC = 1, whilst the volume from
Boss et al. [176] and the volume from Gillen and Forbush [178] had a wBIC ~ 0 (see
Chapter 2, Table 2.3). Therefore all data were normalised to 0.003 ml/10° cells (with

an inverse of 333 /ml).

3.3 Mechanistic Modelling

Grandjean et al. [8] published a three compartment mechanistic model to describe the
uptake of pitavastatin into hepatocytes (see Fig. 3.2) with first order passive rate con-
stants for movement into and out of the cell (k; and kj respectively). A second order rate
constant for association of substrate (kq) to free transporter (T%), and first order rate
constants for dissociation from transporter (k;) and translocation from the transporter
into the cell (k;) were also included. In this and future chapters, mechanistic models of
this form for substrate with or without inhibitor, will be referred to as micro-rate con-
stant models (see Fig. 3.3a and b) and Table 3.1). If the formation of substrate bound to
transporter (S2) is very rapid (k, >> kg > k;) and the total amount of transporter (7,)
is small in comparison to the amount in the medium (S7), then the micro-rate constant
model can be reduced assuming a pseudo-steady state to obtain the Michaelis-Menten

equation (see Chapter 2, Section 2.4.4 in this and future chapters, see Fig. 3.3c and d)
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Figure 3.2: Modified schematic of the micro-rate constant model published by Grandjean et al.
[8] of ODEs derived for initial parameter estimates for DCF uptake into HEK293-OATP1B1
cells (see Table 3.1, model 1 - gemfibrozil excluded). Sy, Sz and S3 are the amount of substrate
(DCF) in the medium, bound to transporter and intracellular respectively, k; and k;, are the
passive rate constants into and out of the cell respectively, k, is the transporter association rate
constant, assuming free transporters are available, k; and k; are the dissociation rate constant
and translocation rate constant into the cell from Sy respectively

[15].

If the transporter component of Fig. 3.2 is written in the chemical reaction form:

&+n%&ﬁ&; (3.5)
then the law of mass action gives:
% = —kaS1Ty + kqSo (3.6)
D2 KTy~ (hat h)S (3.7)
dd—%’ = kS (3.8)

As it is not normally the case that T is known in practice, assuming that 75, is constant,

then Tt can be eliminated in Eq. 3.7 [15, 25] via the conservation law:

Ty =T, — Sy (3.9)
and is
d_tl = —k.S1 (TO - Sg) + k4S5 (3.10)
ds.

zf:hﬁmn—&y4m+@w2 (3.11)

dS;
o3 _ 12
o ki So (3.12)

If Eq. 3.11 is extended to include inhibitor (gemfibrozil, see Fig. 3.3a and b) that either
competitively binds to the transporter (I3) or forms a complex with the transporter and

the substrate (un-competitive inhibition, I3), then similar to Eq. 3.9:

Ty =T, — Sy — I — I (3.13)
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and Egs. 3.10-3.12 are also extended to include Iy and I3 (see Table 3.1 for relevant

inhibitor equations):

d
% = —kaSI(TO — Sy — Iy — I3) + kgSo — ak,S11y + akgls (3.14)
dsS
7; = kaSl(To — SQ — Iy _dé—B) — (kd + ]Ct)SQ — aka[SQIl =+ a/{?djfg (3.15)
dT?’ = kySy + akyls (3.16)

where k,; and kg are the inhibitor association and dissociation rate constants and « is

the unitless constant defining the type of non-competitive inhibition.

3.3.1 Structural Identifiability Analysis

As per Chapters 4 and 5, prior to parameter estimation, models were evaluated for struc-
tural identifiability (see Chapter 2, Section 2.4.1) using the Identifiability Analysis
package in Mathematica 11.3. Mechanistic models using micro-rate constants (Table 3.1,
models 1 and 2) and macro-rate constants (Table 3.2, models 3 and 4), with one or two
passive rate constants were evaluated assuming that DCF is an OATP1B1 substrate
[209], and that gemfibrozil can bind to the transporter, but is not a substrate itself [27].
The inclusion of the o term within the non-competitive inhibition micro-rate constant
mechanistic model (model 2) gives an indication of the effect of gemfibrozil binding to
the transporter and subsequent binding of DCF to the complex. Here a value of o <
1 indicates that gemfibrozil decreases the binding and translocation of DCF, whilst a

value of a > 1 indicates that gemfibrozil enhances transport of DCF [210].
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a Model 1: Competitive Inhibition

o

Model 3: Competitive Inhibition

Medium * Medium Cell
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b  Model 2: Non-Competitive Inhibition d Model 4: Non-Competitive Inhibition
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Medium — kip Cell Medium | _ ko > Cell
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. kaD S1
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Figure 3.3: Schematic of the micro-rate constant models (a, b, Table 3.1) consisting of medium
(X1), transporter (X2) and intracellular (X3), and macro-rate constant models (c, d, Table
3.2) consisting of medium (X7) and intracellular (X5) mechanistic models. DCF following co-
incubation or pre-co-incubation with gemfibrozil with competitive (a and ¢) and non-competitive
(b and d) mode of inhibition respectively were modelled. * = for pre-co-incubation data only
ksp used as bidirectional passive rate constant
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3.3.2 Parameter Estimation

A single passive rate constant representing movement into and out of the cell is common
in the literature for macro-rate constant models, with the difference in rate only seen
when the parameter is scaled via either the medium or cell volume to a passive diffusion
clearance (Py;f) [164, 170, 173]. For the co-incubation data (scenario 1), modelling the
passive movement of DCF (in the absence of gemfibrozil) through two separate rate
constants as well transporter mediated uptake, decreased the BIC value by 15 compared
to a single rate constant model formulation, making it the best fitting model for the
given data (wBIC = 0.999, Eq. 3.39).

For the pre-co-incubation data (scenario 2), the use of two passive rate constants
within the micro-rate constant models (models 1 and 2, Table 3.1) were not supported,
with in increase in the BIC for models 1 and 2 of 35 and 37 respectively (see Table
3.4 5" and 6 ranked order), and an RSE of 500 % for the population estimate of
kyp. However, two passive rate constants (kfp and kpp) were required for the pre-co-
incubation data macro-rate constant models (models 3 and 4, Table 3.2). This difference
is possibly due to a lack of steady state at the final timepoint of 3 min for the pre-co-
incubation scenario, compared to 6 min for the co-incubation scenario, and some loss
of cells when the medium containing gembfibrozil was changed in the pre-co-incubation
scenario 2.

Therefore for the co-incubation data (scenario 1), all mechanistic models used
two passive rate constants for the movement of DCF into and out of the cell (k;p and
kpp respectively, see Tables 3.1 and 3.2). For the pre-co-incubation data (scenario 2), a
single passive rate constant for the movement of DCF into and out of the cell was thus
used for the micro-rate constant models (models 1 and 2, designated k¢p, see Table 3.1),
whilst the macro-rate constant models used separate rate constants for movement into
and out of the cell (kyp and kyp respectively, models 3 and 4, Table 3.2). Incubation
concentrations of DCF and gemfibrozil were converted to amounts (nmol) by multiplying
by the medium volume (V7 = 0.3 ml).

Initial parameter estimates were obtained for DCF only with micro-rate constants
(see Fig. 3.2) using starting values of 1 in Monolix 2018R2 (Lixoft, Antony, France)
for the transporter mediated parameters (k,p, kap, To, ktp) as no information was
available regarding these estimates, whilst for the passive rate constants into and out
of the cell (krp and kyp, for the co-incubation scenario data), estimates were obtained
from the HEK293-MOCK cell models (2 compartments with passive rate constants). For
the macro-rate constants (Vy,qe.p and K, p) and passive rate into the cell (ksp, taken
from the HEK293-MOCK initial velocity), a Yamazaki plot and Lineweaver-Burke plot
(Fig. 3.4a and b respectively) were used to obtain initial estimates after scaling to nmol.
For both the DCF only co-incubation and pre-co-incubation data, there was very little
passive uptake (see Fig. 3.4a, dotted line, 0.08 /min/1 x 10° cells), and active uptake
was similar between the two datasets in the Yamazaki plot (Fig. 3.4a, solid lines), that
was close to the total (Fig. 3.4a, dashed lines).

The mean calculated parameters obtained from the linear regression of the Lineweaver-
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Figure 3.4: DCF concentration against initial velocity or the inverse velocity plots. Where black
lines and points denote the co-incubation data for DCF only and blue lines and points denote
the pre-co-incubation data for DCF only. a Yamazaki plot for DCF initial velocity at 0.33 min
against DCF incubation concentration. Dashed line = total, dotted line = passive (obtained
using the HEK293-MOCK data), solid line = saturable uptake. b Lineweaver-Burke plot using
“Active” from a, where points are data and solid lines are the linear regression.

Burke plot (Fig. 3.4b, solid lines) were also similar as expected from the Yamazaki plot
(Vinaz = 1/intercept = 142 (RSE = 57 %) and 102 (RSE = 176 %) pmol/min/10°
cells, K, = Vipazx gradient = 10 (RSE = 57 %) and 15 (RSE = 177 %) nmol/ml, for
co-incubation data and pre-co-incubation data respectively). The large errors observed
in the pre-co-incubation data (see Fig. 3.4b, blue triangles) and in the Lineweaver-
Burke plot estimates help to explain the difficulty in obtaining estimates for the pre-co-
incubation data and will be discussed later in the chapter.

As no concentrations of gemfibrozil in the cell were measured, initial parameter
estimates were obtained for DCF only, which were then used as fixed parameter esti-
mates to help improve the robustness of the parameter estimation of the gemfibrozil rate
constants (kqq, kqe and «). The uptake of gemfibrozil in sandwich-cultured human hep-
atocytes has been observed to be via passive means, and is not a substrate of hOATP1B1
[27]. Therefore, the uptake of gemfibrozil was assumed to be by passive means only and
was assumed to be at steady-state in the data analysis. The simultaneous analysis of
DCF in the presence of gemfibrozil for either the co-incubation or the pre-co-incubation
scenarios was then undertaken with no parameters values fixed. Parameter estimates
for the micro-rate and macro-rate constant models (see Table 3.1 and Table 3.2 respec-
tively) were estimated using Monolix 2018R2 (Lixoft, Antony, France). Parameters were
assumed to follow a log-normal distribution, and a proportional residual error model for
the co-incubation scenario mechanistic models, and a combined constant and propor-
tional residual error model for the pre-co-incubation mechanistic models were used.

The final chosen model was based on the weighted Bayesian information criterion
(wBIC, Eq. 3.39) to more harshly penalise over-parameterisation within the models
compared to the Akaike information criterion (AIC, Eq. 3.37) [211, 212], as well as the
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sum of ¢ individual and population prediction of the RMSRE (Eq. 3.2) given by:
AIC = =2.LL(0) +2p (3.37)

and
BIC = —=2.LL(0) + log(n)p, (3.38)

where LL is the log likelihood of the data, n is the total number of data points and p is

the number of parameters.

exp(—0.5A;)
BIC; = ——. 39
wBIC > exp(—0.54;) (3:39)
and
A; = BIC; — BIC,n (3.40)

where % is the inverse of the total number of datapoints multiplied by the sum of the
relative square error of each datapoint i. A; is the difference between the individual
BIC (BIC;) and the lowest BIC (BIC),,) calculated using Eq. 3.40, exp(—0.54;) is
the relative likelihood and )" is the sum m of individual ¢ relative likelihoods from the
mechanistic models with the same number of datapoints used for parameter estimation
(in this case a total of 4 different models) [212].
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3.4 Results and Discussion

3.4.1 Structural Identifiability Analysis

The use of micro-rate constants representing competitive and non-competitive inhibition
in mechanistic models for the uptake of DCF and its inhibition by gemfibrozil (Table 3.1,
models 1 and 2 respectively) allowed the mechanistic models to be at least structurally
locally identifiable given a known input and observations using the Identifiability
Analysis package [16, 160]. The structural identifiability result was not affected by the
use of a single passive rate constant for movement of DCF into and out of the cell (ky)
or separate passive rate constants for the movement of DCF into and out of the cell (k¢
and kg respectively, see Table 3.3).

For the macro-rate constant competitive inhibition and non-competitive inhibi-
tion models to be identifiable (see Table 3.2 models 3 and 4 respectively), K,,, p or K; g
had to be known or V,q..p or the Kjnqt.c had to be known respectively for models 3
and 4 to be at least structurally locally identifiable (see Table 3.3). Alternatively if the
apparent Ky, p.app OF Vinaz.D.app Were used (see Chapter 2, Section 2.4.4), then models

3 and 4 were at least structurally locally identifiable.

3.4.2 HEK?293-OATP1B1 Cellularity

Determination of a cellularity number for HEK293-OATP1B1 cells is important for use
in mechanistic models in order to normalise across data obtained from different ex-
perimental days, as well as a method for obtaining the amount of transporter at the
membrane. This is under the assumption that the difference in the amount of protein
between HEK293-OATP1B1 and HEK293-MOCK cells is only due to OATP1B1 pro-
tein in the membrane. A total of 33 and 31 separate measurements on three separate
days were obtained for HEK293-OATP1B1 and HEK293-MOCK cells respectively. A
geometric mean value of 0.685 (RSE = 4.5 %) mg/10°% cells and 0.620 (RSE = 3.2 %)
mg/105 cells were obtained for HEK293-OATP1B1 and HEK293-MOCK cells respec-
tively, which were similar to human hepatocellularity values of 0.657 mg/10° cells [181].
The abundance of hOATP1B1 on HEK293 cell plasma membranes has been reported
in the literature to be 0.18-0.36 nmols/10° cells [141, 213] and 0.02 nmols/10° cells for
the AstraZeneca cell line (Sharma, P. personal communication), once converted from

fmols/ug to nmols/10 cells, using Eq/ 3.41:

fmol/ug
(0.685 — 0.620)/1000°

Literature value (nmol/10%cells) = (3.41)

The total amount of OATP1B1 present at the plasma membrane was calculated accord-
ing to Eq. 3.1, giving 0.77 (95 % confidence interval = 0.51-1.03) nmols/10° cells, which
was within 4-fold of that found in the literature, without having to measure hOATP1B1

through peptide analysis in crude plasma membrane fractions [141, 213].
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Figure 3.5: Plot of individual weighted residuals (IWRES) obtained from Monolix 2018 R2
against time for model 1. Solid line is the LOESS, dashed lines are the 95 % confidence intervals.
a = co-incubation, blue circles = IWRES, dotted line highlights the mean IWRES of 0. b =
pre-co-incubation, green triangles = IWRES

3.4.3 Mechanistic Modelling and Parameter Estimates

For both the co-incubation scenario 1, and the pre-co-incubation scenario 2, the best
fitting model to the data based on the wBIC and % RMSRE (Egs. 3.39 and 3.2 re-
spectively, see Table 3.4) was model 1 for competitive inhibition (wBIC = 1 and 0.93
respectively, % RMSRE = 111 % and 123 % respectively). The individual % RMSRE
values were similar across all the models (49-59 %), regardless of whether micro-rate
constants (model 1) or macro-rate constants (model 3) were used (see Table 3.4). The
population % RMSRE values varied from 62-112 % across models with the greatest
% RMSRE for the macro-rate constant models (72 and 73 % and 107 and 112 % for
the co-incubation scenario 1 and pre-co-incubation scenario 2 respectively). Individual
parameter estimates (mode of the conditional distribution) were therefore included in
Tables 3.1 and 3.2. For the co-incubation and pre-co-incubation data, the individual
weighted residuals (IWRES) locally estimated scatterplot smoothing (LOESS) line was
approximately 0, with an average IWRES over the timecourse of 0.024 and 0.021 respec-
tively, confirming that the unexplained residuals were normally distributed with a mean
of 0 and symmetrical variance around zero (Fig. 3.5). The LOESS line obtained from R
using the geomsmooth function can be misleading in this context, as the span is adjusted
to fit the data (a span of 0.95 (95 % of data were used) and 1.05 were used respectively,
with the latter value used to prevent a visual maximum for the pre-co-incubation IWRES
data at 2 min).

For the co-incubation data (scenario 1, see Fig. 3.1), model 1 (micro-rate con-
stant, with competitive inhibition) fitted the experimental data well for DCF alone
(Fig. 3.6a, lines and shapes respectively), with saturation of uptake observed within an

incubation concentration of 10-100 nmol/ml. The inhibition of 1 nmol/ml DCF by gem-
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fibrozil was concentration dependent with little change up to 10 nmol/ml gemfibrozil
(Fig. 3.6b, shapes), which was well described by model 1 (Fig. 3.6b, dashed lines).
Non-competitive inhibition of DCF by gemfibrozil was not supported as the best fitting
model, with a wBIC ~ 0 (see Table 3.4).

For the pre-co-incubation data (scenario 2, see Fig. 3.1), model 1 fitted the
data well (Fig. 3.7a, shapes) for DCF alone across the incubation concentrations tested
(Fig. 3.7a, solid lines), with saturation within 30-100 nmol/ml. Compared to the co-
incubation fit, the pre-co-incubation data in the presence of increasing concentrations of
gemfibrozil was more sparse (281 versus 234 datapoints used for parameter estimation
respectively, with incomplete timecourses in the presence of gemfibrozil, see Fig. 3.7),
with the 300 nmol/ml gemfibrozil data excluded due to insufficient fluorescence (close to
background), possibly due to the added wash step prior to co-incubation of DCF with
gemfibrozil. This sparseness made parameter estimation difficult, which can be seen
from the ranges of BIC values between the two scenarios, where the best fitting to worst
fitting model for co-incubation data (model 1 and model 4 respectively) had a A; BIC of
61 (see Table 3.4), whilst for the pre-co-incubation models the best fitting to the worst
fitting model (model 1 and model 2 respectively) had a A; BIC of only 8. It may also be
the case that the number of timepoints needed at each concentration of gemfibrozil for
the pre-co-incubation scenario 2 were not sufficient to differentiate between micro-rate
constant and macro-rate constant mechanistic models

Non-competitive inhibition of DCF uptake by gemfibrozil (Table 3.1 model 2,
and Table 3.2 model 4) was not supported as the inhibition mechanism under either the
co-incubation or pre-co-incubation scenarios 1 and 2 respectively based on the wBIC
(see Table 3.4). To evaluate whether there was a time dependency of inhibition to
support non-competitive inhibition, gemfibrozil was pre-incubated at 1-300 nmol/ml and
removed before addition of 1 nmol/ml DCF (scenario 3, see Fig. 3.1). Pre-incubation
time had no effect on the uptake of 1 nmol/ml DCF, but a pre-incubation with 300
nmol/ml gemfibrozil and then 1 nmol/ml DCF was significantly different from 1 nmol/ml
of DCF only (p = 0.0017, t-test assuming unequal variance in R using the ggpubr
package, see Fig. 3.8). The inhibition observed at 300 nmol/ml gemfibrozil, irrespective
of pre-incubation time, is likely due to the difficulty in removing all of the medium
containing gemfibrozil without affecting the cell density in the well.

It is important to note, that the pre-co-incubation data were sparse in terms of
full timecourses, with some of the gemfibrozil incubations only having two timepoints.
This led to a large range of 268-fold difference in the parameter estimates for the translo-
cation into the cell (k;p = 1.04 (0.05-13.4) /min/10° cells, model 1, Table 3.5), and a
10-fold difference in the dissociation rate constant (kqp = 0.12 (0.06-0.81) /min/105
cells, model 1, Table 3.5). Therefore any conclusions drawn regarding the mode of in-
hibition of DCF following pre-co-incubation with gemfibrozil when taken alone should
be discounted. When the conclusions are combined with the co-incubation scenario
supporting competitive inhibition, as well as a lack of difference over time in the pre-

incubation scenario, it is clear that competitive inhibition alone is supported as the most
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likely mechanism, however, if more data become available this could be re-evaluated.

3.4.3.1 Passive Rate Constants

For the micro-rate constant mechanistic models (models 1 and 2, Table 3.1), the first
order passive constant for movement of DCF into the cell (k;p) was similar for both
inhibition experimental scenarios (model 1 as the best fitting model, Table 3.4): 0.0007
(0.0004-0.001) /min/108 cells and 0.0004 (0.0002-0.0008) /min/10® cells for the co-
incubation and pre-co-incubation scenario respectively, Table 3.5). The macro-rate
constant model k¢p (from models 3 and 4, Table 3.2) were three fold faster than
the micro-rate constant model estimates for the co-incubation scenario (0.0025 (0.002-
0.0033) /min/10° cells and 0.0024 (0.002-0.0029) /min/10° cells respectively, Table 3.6).
For the pre-co-incubation scenario, the estimate of kyp was 20-40 times faster for the
macro-rate constant model (0.0066 (0.0037-0.0148) /min/10° cells and 0.0074 (0.0038-
0.015) /min/10° cells respectively for model 3 and 4, Table 3.6).

Where the parameter kpp was included in the mechanistic model fits (co- incuba-
tion - models 1-4, and pre-co-incubation - models 3 and 4), the parameter estimates were
of the same order, ranging from 0.16 (0.1-0.22) /min/10° cells (co-incubation model 1,
Table 3.5) to 0.5 (0.4-0.6) /min/10° cells (co-incubation models 3 and 4, Table 3.6). This
was > 1000 times the equivalent rate out of the cell for the pre-co-incubation micro-rate
constant model 1 (ksp = 0.0004 (0.0002-0.0008) /min/10° cells).

The micro-rate constant estimates and macro-rate constant estimates for ksp
were all much less (100 and 10 fold respectively) than the HEK293-MOCK estimate
(0.08 /min/10°% cells) obtained through linear estimation (Excel Office 365, Microsoft,
Washington, USA). Subtraction of HEK293-MOCK uptake from HEK293-OATP1B1
cells is common across the literature to make data analysis simpler when evaluating
transporter uptake initial velocity [50, 135, 150, 209, 214, 215]. Based on the difference
between the HEK293-MOCK estimate for kyp and the parameter estimates described
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above, may lead to false estimation of the degree of passive diffusion of a substrate. It was
noted that, for estradiol-173-glucuronide and estrone-3-sulphate, that even after MOCK
subtraction, passive diffusion still had to be included in the analysis of transporter
mediated uptake [214], illustrating the futility in the over-simplification of transporter

mediated uptake.

3.4.3.2 Micro-Rate Constant Transporter Mediated Uptake

For the co-incubation scenario, both model 1 and model 2 had similar parameter es-
timates (see Table 3.5) and total % RMSRE (111 and 112 % respectively) but model
1 had the lower BIC value (1540 and 1560 respectively, Table 3.4). Association to
OATP1B1 was four times faster for DCF compared to gemfibrozil (k,x = 1.89 (1.79-
1.99) /nmol/min/10° cells and 0.44 (0.26-0.6) /nmol/min/10% cells respectively, see
Table 3.5), whilst dissociation from OATP1B1 was similar (5.58 (4.51-6.96) /min/10°
cells and 3.73 (3.39-3.87) /min/10° cells respectively, see Table 3.5). The translocation
into the cell for model 1 (k;p = 2.3 /min/10° cells, Table 3.5) was similar to k,p, but
became the rate limiting step as the amount of DCF at the transporter increased at
the point where k,p >> kgp. The total amount of OATP1B1 transporters (7, = 0.06
(0.04-0.09) nmols/10° cells, Table 3.5) was roughly ten fold below the total estimated
from the cellularity data (0.7 nmols/10° cells, see above), but was only three fold differ-
ent to the literature values and that determined at AstraZeneca. Estimation of the T,
through mechanistic models therefore represents a more dynamic estimate than protein

difference alone.
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Figure 3.9: Covariance matrix of the individual random effects n for model 1 for the co-incubation
scenario

The variance-covariance matrix derived from the inverse of the Fisher information
matrix (obtained through linearisation in Monolix 2018R2, as the Fisher information
matrix could not be obtained through the SAEM algorithm (see Chapter 2, Section
2.4.5)) [190] can be used to evaluate the practical identifiability of the model, assuming
that all the unknown parameters are independent, i.e. the off-diagonal elements are
zeros [184, 216].

Using the estimated individual random effects (7, taken from Monolix 2018R2)
for the co-incubation data (using model 1), a covariance matrix was generated in R
Studio using GGally [217]. There was covariance between T, and k,p and kyp (Fig
3.9) which are all key parameters for the uptake of DCF into the cells, with the largest
covariance of 0.9 between T, and k,p. Interestingly neither k,g or kgo showed this
degree of covariance.

For the pre-co-incubation scenario, models 1 and 2 gave k,p and kyp values that
were 6-10 fold and 46-26 fold less than the co-incubation values respectively (see Table
3.5). For model 1 (the best fitting model), kyp varied 14-fold in the parameter estimate
for scenario 2 (0.12 (0.06-0.81) /min/10° cells, Table 3.5). k;p was similar to the value
obtained for the co-incubation, model 1, but it varied 300-fold in its parameter estimate
(1.04 (0.05-13.4) /min/10° cells, Table 3.5). k. from the pre-co-incubation scenario,
model 1, was the same as the co-incubation estimate (0.47 (0.38-0.55) /nmol/min/10°
cells and 0.44 (0.26-0.66) /nmol/min/10° cells respectively, Table 3.5). kg was approx-
imately half of that obtained from the co-incubation scenario, model 1 (1.76 (1.47-1.96)
/min/10% cells and 3.73 (3.39-3.87) /min/10° cells respectively, Table 3.5). The slower
rates for k,p and kgp, coupled with a slower k4o for the pre-co-incubation scenario,
model 1, compared to the co-incubation scenario, model 1, would lead us to conclude
that gemfibrozil is a more potent inhibitor after pre-co-incubation. Grandjean et al. [8]
evaluated the uptake of pitavatatin across species in hepatocytes, for human hepato-

cytes where incubation concentrations were more limited compared to other species (8

61



kdG

ktD 0 0.4
To -0.1 -0.4 0.2
kdD -04 -0.5 0.4 -0.6
kaD -0.2 . 0 -0.4 0.3
kfD 0.1 -0.1 -0.1 03 -0.1 0.1

Figure 3.10: Covariance matrix of the individual random effects n for model 1 for the pre-co-
incubation scenario

concentrations and 13 concentrations respectively over 4 timepoints), the errors on both
k4 and k; could not calculated [8]. This highlights the importance of obtaining sufficient
data to enable accurate parameter estimations.

Using the estimated individual random effects (7, taken from Monolix 2018R2)
for the pre-co-incubation data (using model 1), a covariance matrix was generated in R
Studio using GGally [217]. Like the co-incubation parameter estimates from model 1,
there was the same covariance between T, and k,p (Fig. 3.10), but not between k,p
and kgp. Instead there was covariance between k,q and kgg of -0.8. Taken together
more information is required to separate the covariance between k, and kg, or a single

parameter should be used.

3.4.3.3 Macro-Rate Constant Transporter Mediated Uptake

DCF has previously been shown to be an OATP1B1 substrate with uptake 41-fold
greater than in mock cells [168], with V;,4, values in the range of 128 +52 pmol/min/10°
cells [168] to 172 (167-178) pmol/min/10° cells [150] (both converted to /10 cells using
the cellularity value determined here) and K,, of 5.3 £ 1.5 nmol/ml [168] to 8.98 (8.14-
9.83) nmol/ml [150].

The scaled Vj,,4..p derived from the co-incubation scenario model 1 (139 (88-215)
pmol/min/10% cells, see Chapter 2, Section 2.4.4) was similar to the literature values
above [150, 168], and similar to the values obtained from models 3 and 4 (217 (141-
332) pmol/min/10° cells and 232 (153-325) pmol/min/10° cells respectively, Table 3.6).
The K, p estimate derived from the co-incubation scenario, model 1, (see Chapter 2,
Section 2.4.4) was also similar to that in the literature [150, 168] and that obtained from
models 3 and 4 (13.9 (12.5-15.7) nmol/ml, 11.2 (10.6-11.5) nmol/ml and 12.1 (10.2-13.4)
nmol/ml respectively, Table 3.6).

Due to the large difference in the range of pre-co-incubation parameter estimates

for k4p and k;p, the parameters were not scaled for macro-parameter comparison. The
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Vinaz.p estimates obtained from models 3 and 4 for the pre-co-incubation were similar
to those for the co-incubation scenario above (127 (104-186) pmol/min/10° cells and
116 (91-180) pmol/min/10° cells respectively, Table 3.6).

The inhibition constant (K7 ) derived from the co-incubation scenario, model 1,
(28.2 (19.4-44) nmol/ml, see Chapter 2, Section 2.4.4) was the same as that for models
3 and 4 (see Table 3.6), and similar to that obtained with DCF as a substrate, and
different substrates in the literature (18.1 £ 3.9 nmol/ml and 31-39 nmol/ml respectively
[135, 151, 168], see Chapter 2, Table 2.2).

The K; ¢ estimates obtained from the pre-co-incubation scenario, models 3 and
4, were lower than those estimated for the co-incubation scenario, and closer to the
estimate obtained with DCF as a substrate in the literature (18.4 (13.5-29.9) nmol/ml,
14.1 (13.5-15.5) nmol/ml and 18.1 £3.9 nmol/ml [168] respectively, Table 3.6).

3.5 Conclusions

This chapter attempted to evaluate the mode of inhibition of gemfibrozil on the uptake
of DCF in HEK293-OATP1B1 expressing cells across different scenarios: co-incubation -
used in the literature to evaluate competitive inhibition [135, 140, 215], pre-co-incubation
- to evaluate competitive and time-dependent inhibition [208, 218] and pre-incubation
- to evaluate lasting inhibition [218, 219]. In addition a HEK293-OATP1BI1 cellularity
value was obtained to aid in the mechanistic modelling of uptake through normalisation
of the data to per/10° cells.

Mechanistic models consisting of rate constants (micro-rate constant models)
were compared to the commonly used Michaelis-Menten reduced models (macro-rate
constant models) to determine whether the increased number of parameters and states
in the micro-rate constant models gave better fits to the data. The micro-rate constant
model fit for the pre-co-incubation scenarios, with a large range on the transporter
parameters and a reduced number of passive parameters, also highlighted the amount
of data required for micro-rate constant models to obtain meaningful parameters.

Across all three scenarios (co-incubation, pre-co-incubation and pre-incubation),
the competitive inhibition of DCF uptake by gemfibrozil was supported, with micro-rate
constants (model 1) giving the best fits to the co-incubation and pre-co-incubation data
(see Table 3.4). Non-competitive inhibition of DCF uptake by gemfibrozil in HEK293-
OATP1B1 cell lines was not supported as the mode of inhibition across all three scenarios
evaluated. The use of macro-rate constant mechanistic models to determine the uptake
kinetics of DCF and its inhibition by gemfibrozil are not supported from both a struc-
tural identifiability perspective (unidentifiable with one degree of freedom), but also from
a parameter estimation perspective, giving higher goodness of fit values when compared
to the best fitting micro-rate constant models (model 3 and model 1 respectively).

Estimation of the total amount of OATP1BI1 transporters from the micro-rate
constant mechanistic models offers a viable alternative to measurement of hOATP1B1

from crude membranes, and was similar to the values obtained both from AstraZeneca
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and the literature (3-fold difference), in addition to gaining a more in depth understand-
ing of binding and transport and supports a mechanistic modelling approach moving
forwards.

To determine whether the experimental design can be improved to decrease the
covariance seen between k., kg and T,, a D-optimal design was implemented for the
co-incubation data scenario with the same number of timepoints and gemfibrozil con-
centrations in R using PopED with the FO linearisation method and either a full or
triangular matrix [195]. The population estimates and random variances from the com-
bined population and individual model (w) obtained from Monolix 2018R2. The use of
the triangular matrix assuming no covariance lead to a D-optimal design with a support
point at 0.33 min where duplicate samples were indicated. The use of a full covariance
matrix lead to no support points and the chosen timepoints were similar to the original
experimental design (0.33, 0.66, 1, 1.33, 3, 6 min). The suggested timepoints for each

are given below (numbers are rounded to give realistic timepoints):
e Triangular matrix: 0.33, 0.33, 2.25, 2.75, 4.25, 6 min
e Full matrix: 0.33, 0.66, 1.33, 2, 2.75, 7 min

The following experimental chapter will take the modelling framework explored
here into a more complex model of hepatocytes, where numerous transporters and en-

zymes are present, making good quality data across longer timecourses important.
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Chapter 4

Evaluation of the Uptake and
Metabolism of Atorvastatin in

Fresh Rat Hepatocytes and its
Inhibition by Cyclosporine A

4.1 Introduction

This chapter deals with the uptake and metabolic clearance of atorvastatin in fresh
rat hepatocytes, and the inhibition of these processes by the non-selective inhibitor
cyclosporine A (CsA). This chapter will determine the mode of inhibition of atorvastatin
by CsA through the use of a mechanistic modelling approach. The experimental data
used here, were collected during my time from UCB Pharma (Slough, UK), and their use
is with the kind permission of UCB Pharma (Slough, UK). The oil-spin method described
here was initially developed as part of my MSc dissertation [220], and modified with a
reduction in oil temperature from 37 °C to room temperature. This work has previously
been submitted to Xenobiotica. This chapter will, following a brief overview, evaluate
the mechanistic models used in terms of their structural and practical identifiability (see
Chapter 2, Section 2.4) as per Chapter 3 and provide an in depth presentation of model
parameter estimation from experimental data.

Atorvastatin is an HMG-CoA reductase inhibitor used to treat hypercholestero-
laemia, and is the third most prescribed drug in the USA [221]. Atorvastatin is taken
up into hepatocytes in a concentration dependent manner with 96-98 % of the uptake as
carrier mediated in rat hepatocytes [165, 172]. Uptake into hepatocytes is reported to
be due to hOATP1B1 and 1B3 as determined in HEK293 cell lines, and rOatplb2, with
little or no passive uptake [135, 222, 223]. CsA is an effective immunosuppressant for use
in organ transplantation, but its use is now limited due to cholestasis and nephrotoxicity
[224] and has largely been replaced by immunosuppressants with less severe side effects,
such as tacrolimus [225, 226]. CsA inhibits the uptake of both endogenous acids such

as taurocholic acid [224] and xenobiotics such as atorvastatin [140] and pitavastatin
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[208] in a competitive [140] or non-competitive manner [208], depending on whether
the inhibitor is co-incubated or pre-incubated respectively (see Chapter 2, Table 2.2).
CsA also inhibits CYP3A4 metabolism and P-glycoprotein [224, 225]. Statins are often
dosed along with immunosuppressants in the clinic to treat the associated hypercholes-
terolaemia that occurs after organ transplantation, making the assessment of inhibition
of statin disposition important [226, 227]. The inhibition seen in vitro with atorvastatin
and CsA (see Chapter 2, Table 2.2) was also observed clinically in healthy volunteers
with a 15-fold higher plasma exposure of atorvastatin and its metabolites compared to
those on tacrolimus, with an increased risk of rhabdomyolysis in chronic patients [134].

Atorvastatin shows high intracellular binding with a determined fraction un-
bound in the rat hepatocytes of 0.011-0.015 [165, 228] and is metabolised by rCyp3a
into two main hydroxylated metabolites, which are also found in human hepatocytes
[222, 229, 230]. Disposition of CsA in rat hepatocytes has been shown to be passive
with no contribution from transporters and reaches a steady state within approximately
5 min with 86 % of the initial dose associated to intracellular constituents [231]. Once
within the cell there is a large degree of binding to membranes and other cellular con-
stituents [231, 232]. Any free drug is then slowly metabolised by rCyp3a [231, 232]. The
membrane binding of CsA was investigated over different incubation timescales and af-
ter 5 min most of the dose was associated with an 85 KDa protein [233], which is the
same molecular weight as rOatp [234]. Shitara and Sugiyama [208] obtained parameters
for the passive diffusion of CsA and then simulated timepoints with which to evaluate
different inhibition sites for CsA (outside and inside) to explain the increased inhibition
following pre-incubation seen in other publications [140, 235].

The aims of this chapter were:

e To describe the use a high throughput oil spin method for fresh rat hepatocytes

using atorvastatin and CsA as an inhibitor.

e Develop mechanistic models to describe the interaction between atorvastatin and
CsA via competitive or non-competitive inhibition of uptake and competitive in-

hibition of metabolism to gain further understanding of the interaction.

4.2 Experimental Methods

4.2.1 Chemicals and Reagents

Atorvastatin sodium was obtained from Sequoia Research Products Ltd (Pangbourne,
UK). Cyclosporine, Percoll, high temperature silicone oil (175633), Krebs-Henseleit
buffer powder (KHB,1L), sodium chloride, HEPES, collagenase (C5138) and trypan
blue (0.4 %) were obtained from Sigma-Aldrich (Poole, UK). DMSO, methanol and wa-
ter were obtained from Thermo Fisher Scientific Inc. (Loughborough, UK) and were of

analytical grade.
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4.2.2 Animals

Male Lewis rats (350-480 g) were obtained from Charles River (Margate, UK). They
were housed three to a cage lined with sawdust, forage mix and shredded paper in rooms
maintained at a temperature of 20 4+ 2 °C with a relative humidity of 45-55 % on a 12
hour light:dark cycle with access to food and water ad libitum. All procedures performed
were approved by the local UCB ethical review committee according to the Home Office
animal procedures act (1986) by licensed individuals. Data were generated from cells

isolated from three rats on different occasions.

4.2.3 Isolation of Hepatocytes

Hepatocytes were isolated using a two stage liver perfusion with collagenase as described
previously [236], with the exception that collagenase was perfused at only 20-24 ml/min
and not 50 ml/min to prevent undue pressure increases in the liver. Under terminal
general anaesthesia with isoflurane, the liver was perfused with a calcium free-buffer
(500 ml Liver Perfusion Medium, Invitrogen, Paisley, UK) at a rate of 25 ml/min in
a humid 38 °C temperature controlled cabinet. The medium was then changed to
modified Krebs-Henseleit Buffer (KHB, 118 mM NaCl, 5 mM KCI, 1.1 mM MgSO4, 2.5
mM CaCl2, 1.2 mM KH2PO4, 25 mM NaHCO3, 10 mM glucose supplemented with 12.5
mM HEPES (pH 7.4)) and saturated with O2/CO2, containing collagenase (0.012-0.013
% w/v). Both the Liver Perfusion Medium and modified KHB containing collagenase
were kept at 38 °C in jacketed beakers and stirred and gassed continuously with 95 %
02/5 % CO2 for at least 20 min prior to use. The liver was then dissected free and
transferred to ice cold modified KHB, the cells were released by the use of a cell scraper
(Thermo Fisher Scientific Inc., Loughborough, UK) and filtered through 70 pm filters
into 50 ml falcons (BD, Oxford, UK). The cells were centrifuged at 50 g for 5 min at
4 °C and the supernatant removed. The pellets were re-suspended in a 30:70 mixture
of Percoll: modified KHB and spun at 70 g for 5 min at 7 °C. This step led to cells of
high viability (> 98 %) as determined by the trypan blue (0.4 %) exclusion test with
greater than 250 x10% cells/liver. The cells were kept on ice throughout isolation and

used within 3 h of isolation.

4.2.4 Incubations

Custom-made 16-channel Teflon blocks (2 columns of 8 round-ended and bottomed
troughs from Radleys, Saffron Walden, UK) were pre-incubated with 2 ml of 2 x10°
cells/ml for 15 min, at 38.9 °C (temperature inside the Teflon blocks was 37 °C) and
109 strokes/min, placed lengthwise in an oscillating water bath (Julabo, Peterborough,
UK); using this technique, cells were gently agitated to keep them in suspension, while
the large interface between medium and air helped achieve adequate oxygen exchange.
CsA (2 mM) was dissolved in DMSO and added during pre-incubation where required
(or DMSO alone in controls), with a final concentration of 10 M. 0.32 ml Omnistrip
PCR 8-tube strips (Thermo Fisher Scientific, Loughborough, UK) were layered with
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50 pl 3M NaCl and 100 gl high temperature silicone oil and placed in a 6-position
PCR strip rotor in an Eppendorf 5417R centrifuge (Eppendorf, Cambridge, UK). High
temperature silicone oil was chosen as its density does not change significantly between
room temperature and 37 °C (1.047£0.006 g/ml and 1.043+0.004 g/ml respectively,
values are mean £+ SD, n=3) whilst still remaining more dense than modified KHB at
37 °C (1.024 £ 0.013 g/ml, values are mean + SD, n=3 [220]). The difference in density
at 37 °C and shape of the menisci before centrifugation (see fig. 4.1, step 2) is critical
to ensure that the aqueous layers do not mix due to “flipping”, and was the driving
factor in miniaturising the assay [220]. Following a pre-incubation of 20 min, 10 pl of
atorvastatin solution (0.05, 0.25, 0.5, 2.5, 5, 25, 50 and 150 nmol/ml final concentration)
in DMSO was spiked into the Teflon blocks using an 8-way multichannel pipette. 8 x 100
pl samples, containing an assumed 2 x10° cells (the minimum number of cells required
to spin through the oil layer), were taken from the Teflon blocks (Fig. 4.1 step 1) at
pre-defined timepoints (0.25, 0.58, 0.92, 1.25, 2.5, 5, 10, 20, 30, 40, 50 and 60 min),
which were chosen based on the initial time limit of the assay, as well as the literature
where the maximum of an uptake substrate is between 5-15 min [8, 33, 172]. The sample
was gently pipetted down the side of the Omnistrip and immediately centrifuged for 5 s
up to approximately 7000 rpm (Fig. 4.1 step 2 and 3). This was sufficient for the cells
to pellet into the bottom of the 3M sodium chloride (bottom layer), and enabled the
generation of a large number of samples within a short space of time (up to 384 samples
in 80 min). The Omnistrips were then transferred to a 96 well matrix latch rack on ice

for sample extraction (Thermo Fisher Scientific, Loughborough, UK).

4.2.5 Sample Extraction and Carryover

Within 2 h of finishing the experiment, the top medium layer and most of the middle
oil layer were aspirated carefully to prevent flipping of layers leaving sufficient volume
of the oil to cover the bottom layer (Fig. 4.1 step 4). The remaining bottom and
middle layer were refrigerated overnight to enable easier disruption of cells. Due to
the centrifugation step the menisci present before centrifugation were vastly decreased,
making sample extraction more straightforward (see Fig. 4.1 steps 2 and 3). 60 ul
of ice cold methanol (containing 600 nM dextromethorphan as an internal standard)
was added to each tube and mixed using a multi-channel pipette on ice until the pellet
was disrupted (Fig. 4.1 step 5). The matrix racks containing the Omnistrips were
centrifuged at 4000 g at 5 °C for 5 min (Fig. 4.1 step 6), 50 ul of the supernatant was
pipetted into a Phenomenex 2 ml deep well plate (Macclesfield, UK) and 250 pl of 40:60
methanol:water added (Fig. 4.1 steps 6 and 7). Standard curves for atorvastatin were
prepared as follows: 5, 1, 0.5, 0.1, 0.05, 0.01 and 0.005 pmol/ml stocks were prepared in
DMSO and then diluted by 1 in 100 in methanol giving final concentrations of 50, 10,
5, 1, 0.5, 0.1 and 0.05 nmol/ml respectively. 50 ul of this solution was then extracted
as per the samples. To examine loss from the medium, 50 pul of the top layer from the
latter two studies was carefully removed from the four lowest concentrations across a
range of timepoints (0.25, 0.58, 0.92, 1.25, 2.5, 5, 10, 20, 30, 40, 50 and 60 min), prior
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Figure 4.1: Flow chart of high throughput assay starting from incubation and separation of
hepatocytes from the media via an oil spin method (steps 1-4) to extraction and analysis via
LC-MS (steps 5-9). The number in the squares relates to the step number in time order as
described in the Methods 4.2.4 section

to aspiration of the top and middle layer, and frozen.

To check for carry over 150 nmol/ml of atorvastatin was incubated in modified
KHB in the absence of cells at 37 °C in a Teflon block. 100 ul of medium was taken
and treated as per samples with hepatocytes. Carry over of atorvastatin was negligible
(< 0.1 %, data not shown).

4.2.6 HPLC-Mass Spectrometry Analysis

Reconstituted samples were analysed by high-performance liquid chromatography
(HPLC) high resolution mass spectrometry (HRMS) operated in positive ion mode using
an Accela HPLC system and a Q-Exactive Orbitrap mass spectrometer

(Thermo Scientific, Hemel Hempstead, UK). For HPLC analysis, a Luna C18 100 A
50 x 2 mm, 5 p column (Phenomenex, Cheshire, UK) was used with a flow rate of 0.6
ml/min at 40 °C. Mobile phase A was composed of HoO 0.1 % formic acid, and mobile
phase B was composed of acetonitrile 0.1 % formic acid. The gradient system used was
as follows: initially, 20 % of B was held for 0.1 min followed by a linear gradient to 95
% of B from 0.1 to 0.8 min, 0.5 min at 95 % of B, a third linear gradient to 20 % of B at
1.3 to 1.31 min, and finally, a 0.49 min re-equilibration period at 20 % of B. Injections
of 10 ul were made by a CTC Prep and Load (PAL) autosampler (CTC Analytics,

Zwingen, Switzerland). For MS analysis, the capillary temperature was set at 380 °C,
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the source potential was 3100 V, and the source heater was set at 350 °C. Data were
acquired in centroid mode at a resolution setting of 35000 (FWHM - Full Width Half
Maximum). The mass spectrometer was operated in a selected positive ion scanning
mode, monitoring for the protonated masses of atorvastatin (MH559.26028) and the
hydroxylated metabolites (MH575.25519) with an isolation window of 4 Da. The internal
standard (dextromethorphan) was monitored at MH272.20151. The HPLC-MS data
were acquired in a single run, processed and analysed using LCQuan software (version
2.7. Thermo Fisher Scientific Inc., Loughborough, UK). Atorvastatin demonstrated
good linearity up to 50 nmol/ml with R2 > 0.99 and a limit of quantitation of 0.05

nmol/ml.

4.2.7 Data Analysis

The bottom layer concentration was converted to cellular concentration using a cellular
volume of per 1 x 10 cells [170, 175]:

[bottom layer](V, + Veerr)
Veell

where V}, is the volume of the bottom layer 3M NaCl (0.05 ml) and V. is the volume

per 2 x 10° cells. As multiple volumes have been reported for the cellular volume (see

[cell] (nmol/ml) =

(4.1)

Chapter 2, Table 2.2), initial micro-rate constant mechanistic models for atorvastatin
only were evaluated with the inverse of the different volumes (0.0022-0.0065 ml per
1 x 106 cells [170, 174, 175]), with the weighted BIC (wBIC) used to distinguish which
volume best described the data. An inverse volume of 906 /ml was obtained giving a
volume of 0.0011 ml/2 x 10° using Eq. 4.1 obtained using an initial estimate of 0.0013
ml per 2 x 10° cells [170], and had a wBIC ~ 1 and was thus the most likely volume.
The volume of 0.00078 ml/2 x 10° cells, and 0.0004 ml/2 x 10° cells calculated using
Reinoso et al. [175] and Yoshikado et al. [174] respectively had wBIC ~ 0, and these
values were therefore not used further. The volume of 906 /ml was then fixed in the
rest of the parameter estimations (including macro-rate constant models). Due to the
large level of extraction of atorvastatin from the media into the cell, atorvastatin could
only be detected in the media in four out of twenty-four samples in the incubations
at 0.05 nmol/ml, and only up to 5 min at 2.5 nmol/ml. The data from medium loss
were therefore not used in any further analysis due to this sparsity (data not shown).
Metabolite identification for atorvastatin was conducted qualitatively without the use
of metabolite standards, therefore whilst the information is useful, it was not included

in the mechanistic models.

4.3 Mechanistic Modelling

The development of a nonlinear mathematical micro-rate constant model, with the use
of two rate constants to describe passive movement of substrate between the medium

and cells (ky and kp respectively), and the movement of substrates via a transporter
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Figure 4.2: Predicted atorvastatin cellular concentration against observed individual concentra-
tion for the best fitting macro-rate constant mechanistic model, Model 3 for all data. Points are
data, The black solid line represents the line of unity where observed = predicted

. a where two separate passive rate constants were used (blue circles). b where a single
passive rate constant and fraction unbound in the cell was used (red triangles)

compartment has been published for pitavastatin [8]. Whilst Menochet et al. [173]
used a single passive clearance, transporter mediated interactions via Michaelis-Menten
kinetics, with the inclusion of a fraction unbound in the cell and medium and Michaelis-
Menten metabolism for the phase I metabolism of repaglinide. Two separate passive
rate constants (ks and k,) were used, as the use of a single passive rate constant with
a fraction unbound in the cell led to a greater deviation of the predicted concentrations
from the observed concentrations for the macro-rate constant models at higher observed
concentrations compared to the use of two separate passive rates constants (see Fig.
4.2b and a respectively).

In the present study, both micro-rate constant (Table 4.1, Fig. 4.3a and b) and
macro-rate constant mechanistic models (Table 4.2, fig. 4.3c and d) were evaluated for
atorvastatin and its inhibition by CsA with two passive rate constants given above, and
the inclusion of metabolic clearance through the Michaelis-Menten equation. As it is
not normally the case that the amount of free transporters available (T) for the uptake
of atorvastatin, assuming the total amount of transporters (7,) are constant, then T
can be eliminated via the conservation law derivation for transporters by adding Egs.
4.4,4.6,4.8,4.10, 4.12 and 4.13 (see previous Chapter 3 Egs. 3.5-3.16):

Ty =T,— Sy — I — I (4.2)

where Sy and Is are the amount of atorvastatin and CsA bound to transporter respec-
tively and I3 is the atorvastatin-transporter-CsA complex involved in non-competitive

inhibition.
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4.3.1 Structural Identifiability Analysis

As per Chapters 3 and 5, prior to parameter estimation, models were evaluated for struc-
tural identifiability (see Chapter 2, Section 2.4.1) using the Identifiability Analysis
package in Mathematica 11.3. Micro-rate constant models for competitive and non-
competitive inhibition (see Table 4.1, Model 1, and Model 2 respectively) were evaluated
assuming that atorvastatin is an uptake transporter substrate and is metabolised, and
that CsA can bind to the transporter and enzyme only but is not a substrate. Macro-rate
constant models for competitive and non-competitive inhibition (see Table 4.2, Model
3, and Model 4 respectively) were evaluated under the assumptions above given for the
micro-rate constant models. The inclusion of the « term within the non-competitive
inhibition micro-rate constant mechanistic models (Model 2) gives an indication of the
effect of CsA binding to the transporter and subsequent binding of atorvastatin to the
complex. Here a value of @ < 1 indicates that CsA decreases the binding and translo-
cation of atorvastatin, whilst a value of o > 1 indicates that CsA enhances transport of

atorvastatin [210].

4.3.2 Parameter Estimation

The incubation concentrations of atorvastatin and CsA were converted to amounts
(nmol) by multiplying by the sampled medium volume that holds 2 x 10° cells (V1 = 0.1
ml). The final chosen model was based on the weighted Bayesian information criterion
(wBIC, Eq. 4.25) to more harshly penalise over-parameterisation (Eq. 4.24) within the
models compared to the Akaike information criterion (AIC, Eq. 4.23) [211, 212]:

AIC = —2.LL(0) + 2p (4.23)

and
BIC = —2.LL(0) + log(n)p, (4.24)

where LL is the log likelihood of the data, n is the total number of data points and p is

the number of parameters.

exp(—0.54;)
BIC; = — 4.25
v > exp(—0.54;) (4.25)
and
A; = BIC; — BIC:un (4.26)

A; is the difference between the individual BIC (BIC;) and the lowest BIC (BIC),in)
calculated using Eq. 4.26, exp(—0.54;) is the relative likelihood and ;" is the sum of
individual ¢ relative likelihoods from the mechanistic models with the same number of
datapoints used for parameter estimation (in this case m = 4 different models) [212].

The final chosen model was also chosen based on the sum of 4 individual and population
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prediction of the relative mean square root error (RMSRE) given by:

1 Observed; — Predicted; 2
% RMSRE = 100 x \/ - > ( Observed. ) : (4.27)

where % is the inverse of the total number of datapoints multiplied by the sum of the

relative square error of each datapoint i.
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Figure 4.4: Atorvastatin concentration against velocity or the inverse of the velocity plots. a Ya-
mazaki plot for atorvastatin initial velocity at 15 s against atorvastatin incubation concentration,
dashed line = total, dotted line = passive, solid line = saturable uptake. b Lineweaver-Burke
plot using “Active” from a. ¢ Lineweaver-Burke plot for the metabolism of atorvastatin

Initial parameter estimates were obtained for atorvastatin only micro-rate con-
stants using starting values of 1 for the transporter mediated parameters (kq4,
kqa, T, kia) and the passive rate constant out of the cell (kp4), as no information was
available regarding these estimates within Monolix 2018R2 (Lixoft, Anthony, France).
For the passive rate into the cell (k;4), and any macro-rate constant parameters (i.e.
Michaelis-Menten), a Yamazaki plot (for uptake, Fig. 4.4a) and Lineweaver-Burke plot
(uptake and metabolism, Fig. 4.4b and c respectively) were used to obtain initial esti-
mates after scaling to nmol (see Table 4.4). The difference in the Yamazaki plot, the
Lineweaver-Burke plot and parameters (Fig. 4.4a and b respectively, see Table 4.4)
for uptake parameter estimates highlight the issues with using these plots. Estimating
inhibition of atorvastatin metabolism by CsA was also problematic due to the diffi-
culty in estimating the terminal atorvastatin gradient in the presence of CsA. Therefore
the K7 et value was estimated based on a difference in metabolic clearances, without
specifically defining the mode of inhibition. The Lineweaver-Burke estimates were then

scaled to nmol/min/2 x 10° cells and nmol for initial estimates. Parameters were ini-
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Table 4.3: Goodness of fit value comparison for micro and macro parameter models for uptake
of atorvastatin with inhibition by CsA

Rank Model Inhibition Type  BIC % RMSRE

order* Number Type (wBIC) (ind + pop = total)
1 2 Micro rate  Non-competitive  5513.8 (0.54) 21 + 49 = 69

2 1 Micro rate ~ Competitive 5514.2 (0.45) 21 + 61 =82

3 4 Macro rate  Non-competitive  5524.8 (0) 29 + 94 = 123

4 3 Macro rate ~ Competitive 5608.0 (0) 29 + 96 = 125

* = Based on total % RMSRE (Eq.4.27) and wBIC (Eq. 4.25)

tially estimated for atorvastatin only with a log-normal distribution to ensure positivity
with a proportional error model in Monolix 2018R2 (Lixoft, Antony France), these were
then fixed to obtain CsA specific parameters before simultaneous determination of all

parameters across the whole dataset (562 datapoints).

4.4 Results and Discussion

4.4.1 Structural Identifiability Analysis

The use of micro-rate constants to describe the uptake of atorvastatin in the presence of
CsA, combined with competitive inhibition of the Michaelis-Menten metabolism (Mod-
els 1 and 2, Table 4.1), lead to both the competitive and non-competitive inhibition
Models 1 and 2 respectively to be at least structurally locally identifiable, with no pa-
rameters required to be known (see Table 4.5). For the macro-rate constant models
(Models 3 and 4, Table 4.2) with two Michaelis-Menten nonlinearities, the models were
structurally unidentifiable unless two of the following parameters were known (see Table

4.5): Vinaz.ups Kmaups Km.met and Ky or Kipqe depending on the inhibition type.

4.4.2 Mechanistic Modelling and Parameter Estimates

The determination of uptake of substrates in rat using a high throughput assay includ-
ing atorvastatin was first published in 2013, with the first individual sample taken at
30 s [166], a high throughput media loss method has also been developed including
atorvastatin [237], with the first timepoint taken at 2 min. The method described here
took multiple concentrations simultaneously at one timepoint using 8-way Omnistrips,
with an early sample possible at 15 s. Time courses over 0.25-60 min for incubations of
atorvastatin from 0.05-150 nmol/ml, in the absence or presence of CsA from all three ex-
periments were obtained with no samples lost due to mixing of the oil and media layers.
A total of 192 samples were obtained relatively simply using this method over a time
period of 68 min. The analysis of data from the three experiments in a single HPLC-
MS run was undertaken to decrease inter-run variability with a mean relative standard
deviation across all datapoints of 25 % and 33 % for atorvastatin in the absence and
presence of CsA respectively.

The best fitting model based on the % RMSRE and wBIC (see Table 4.3) was
Model 2 (micro-rate constant model, including non-competitive inhibition of atorvas-

tatin uptake by CsA, and competitive inhibition of atorvastatin metabolism by CsA,
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Figure 4.5: Plots of atorvastatin cellular concentration against time following the addition of
atorvastatin (0.05, 0.25, 0.5, 2.5, 5, 25, 50 and 150 nmol/ml) in the absence (blue) and pres-
ence (red) of 10 nmol/ml of CsA. Each time course represents one experiment from one Teflon
block trough. Shapes are data from the three separate experiments, the solid line is the aver-
age individual prediction from Model 2, bounded by the max and min individual predictions
(shading)

Fig. 4.3 and Table 4.1 for ODEs). Both Models 1 and 2 were almost equal in terms of
BIC, with a wBIC' that made Model 2 more favourable over Model 1 (wBIC = 0.54 and
0.45 respectively, Table 4.3). The macro-rate constant models (Models 3 and 4, Table
4.2) were unsupported as the best fitting models (wBIC = 0), again non-competitive
inhibition of uptake of atorvastatin by CsA was the best fitting of the two (see Table
4.3).

Model 2 visually fitted the atorvastatin data in the absence and presence of
CsA relatively well (Fig. 4.5, blue and red respectively), with a rapid increase up to a
maximum at the same time as the data, which was more prolonged in the presence of
CsA. As indicated by the initial estimates (see Table 4.4), CsA strongly inhibited the
metabolism of atorvastatin within rat hepatocytes, as can be seen in the flat line in the
individual predictions (see Fig. 4.5).

The population fits for each model had two to four times the % RMSRE compared
to the individual fits (49-96 % and 21-29 % respectively, see Table 4.3), and therefore the
individual parameter estimates are included and discussed here. A plot of the individual
weighted residuals (IWRES) against time obtained from Monolix 2018 R2 for Model 2
look normally distributed with a mean of 0.07, close to 0 (Fig. 4.6), but are outside the
95 % confidence intervals at earlier timepoints, due to the model fits at lower atorvastatin
incubation concentrations which fall outside the maximum and minimum prediction (see

Fig. 4.5 blue data points and shading respectively).
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Figure 4.6: Plot of individual weighted residuals (IWRES) obtained from Monolix 2018 R2
against time for Model 2. Points are IWRES, solid line is the LOESS, dashed lines are the 95
% confidence intervals and the dotted line highlights an IWRES of 0

4.4.2.1 Passive Rate Constants

Across all four models the passive rate constant into the cell for atorvastatin (ks4) varied
little between 1.1-1.8 /min/10° cells, however, in the micro-rate constant mechanistic
models the error around the ks parameter estimate was large (1.3 (0.3-28.5) and 1.1
(0.2-23.3) /min/10° cells for Models 1 and 2 respectively, Table 4.6). In the macro-rate
constant models the error around k4 was small (1.5 (0.9-2.7) and 1.8 (1-4) /min/10°
cells for model 3 and 4 respectively, Table 4.7). The median passive rate constant out of
the cell for atorvastatin (ky_4) for Models 1 and 2 (Table 4.1) were 7-9 times faster than
the rate into the cell, but again the errors were large (7.4 (0.5-44.9) and 9.3 (0.6-36.5)
/min/108 cells respectively, Table 4.6). In the macro-rate constant models (Models 3
and 4, Table 4.2), ky4 was approximately double &y 4 for Models 3 and 4, but with errors
similar to the micro-rate constant models (4 (0.3-19) and 3.3 (0.4-19.6) /min/10° cells
respectively, Table 4.7).

To compare to passive rate constants to the literature values for atorvastatin,
the passive rate constants (kf4 and kp4) are scaled from Model 2 to clearances (Py;f
and Pycr respectively), by multiplying by either the medium volume (500 ul) or cell
volume (0.0055 pl) in which 1 x 108 cells exist. The Py;¢ for Model 2 = 0.55 (0.1-11.7)
pl/min/10° cells) was 11-fold faster than the clearance out of the cell (Pyer= 0.051 (0.03-
0.2) pul/min/10° cells), possibly due to intracellular binding [165, 172, 228]. The Py s of
atorvastatin into hepatocytes is minor (< 1 %) compared to the uptake clearance (C'L
= 3375 (2722-10750) pl/min/10° cells, calculated according the equations in Chapter
2 for Ve and K, (Egs. 2.29 and 2.30 respectively)), therefore though the error on
Py;; estimation was large it is of little consequence in the uptake of atorvastatin. The
percentage of passive clearance to the overall uptake clearance is similar to the literature
for the uptake of atorvastatin in rat hepatocyte suspensions of 1.5 % [172], but less than

the estimated value in plated rat hepatocytes of a 10 % passive contribution [238].
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Table 4.6: Micro-rate constant individual parameter estimates for atorvastatin in the presence
of CsA. Data are the individual mode of the conditional distribution from three separate exper-
iments (Min-Max). All parameter estimates are scaled to per 105 cells, Vipaz.mer Was scaled to
pmol/min and K, and K were scaled to nmol/ml

Parameter Competitive Non-competitive
Model 1 2
Passive
kfa (/min) 1.3 (0.3-28.5) 1.1 (0.2-23.3)
kpa (/min) 7.4 (0.5-44.9) 9.3 (0.6-36.5)
Transporter
kqa (/nmol/min) 2.7 (1.4-12.6) 2.6 (1.2-13.3)
kec (/nmol/min) 1.2 (1-1.4) 0.36 (0.33-0.37)
kga (/min) 0.005 (0.004-0.005)  0.017 (0.015-0.021)
kac (/min) 0.54 (0.53-0.55) 0.16 (0.13-0.2)
kia (/min) 0.3 (0.3-0.3) 0.3 (0.2-0.3)
T, (nmol) 2.3 (1.5-3.7) 2.7 (2-3.6)
@ N/C 0.013 (0.007-0.023)
Metabolism

Vinaz.met (meI/mln)

Kry.met (nmol/ml)*
K1 met (nmol/ml)*

383 (283-590)
36.9 (26-46.5)
2.8 (1.7-8.2)

393 (285-500)
17.7 (8-30.7)
11 (5.5-29)

N/C = not calculated, * = calculated by dividing by V,e;; = 0.0055 ml/10% cells, obtained from initial volume
estimates for atorvastatin only (see above)

4.4.2.2 Micro-Rate Constant Transporter Mediated Uptake

The atorvastatin transporter association rate constant (k,a = 2.6 (1.2-13.3) /nmol
/min/10% cells, Table 4.6), was 10-fold faster than the translocation constant (k4 =
0.3 (0.2-0.3) /min/10° cells, Table 4.6), and were the same for Models 1 and 2. The
atorvastatin transporter dissocation rate constant (kg4 = 0.017 (0.015-0.021) /min/10°
cells) was 150 times slower than k,4 and 20 times slower than k;4 for Model 2. It
follows then, that very quickly k,4 approaches T, (see Fig. 4.8, dotted blue line), and
once atorvastatin is bound, it is likely to be translocated into the cell. The result is that
the Michaelis-Menten assumptions (list 2.4.3) discussed in Chapter 2 hold here for ator-
vastatin. This also partially explains why the BIC values (see Table 4.3) obtained for
atorvastatin are much closer between the micro-rate constant and macro-rate constant
models (A; BIC = 11 between Model 2 and 4, Table 4.3).

The CsA transporter association rate constant (k,c = 0.36 (0.33-0.37) /nmol
/min/108 cells, Table 4.6 model 2), was seven times slower than k,4, whilst the dis-
sociation rate constant (kqo = 0.16 (0.13-0.2) /min/108 cells, Table 4.6 model 2) was
ten times faster than k;4. The difference in k, and k; between atorvastatin and CsA
explains the co-incubation inhibition conclusions in the literature with the Kj,, =
0.9(0.8—1) nmol/ml value determined here (from kyc /kqc), that was similar to the IC5q
in HEK293-OATP1B1 cells of 0.48 +0.34 nmol/ml [140] and 0.3 nmol/ml cis-inhibition
with estradiol-178-glucuronide [208]. The inhibition on pre-incubation therefore comes
from the o term of 0.013 (0.007-0.023), which, if the K7, is multiplied to obtain a
Kinactup value of 0.012 (0.0057-0.023) nmol/ml is the same as that for pre-incubation
with atorvastatin in HEKOATP1BI1 cells (0.021 £0.004 nmol/ml) [140], as well as the

trans-inhibition of 0.026 nmol/ml calculated using estradiol-173-glucuronide as a sub-
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strate [208].

With regards to the o term in Model 2, this is best illustrated using a reaction
scheme (Fig. 4.7), that is more common in the enzymology literature [210, 239]. The
top row of the scheme represents normal atorvastatin transport, with CsA competitively
binding to T’ on the left hand side. When either is bound (S and I respectively), then
an opposing free molecule from the medium (/; and Sy respectively) can bind leading to
a complex I3 via an a term through the current rate constants (k, and kg). Atorvastatin
can then be translocated into the cell faster or slower, dependent on « through ak;a
leaving CsA bound to the transporter. It then follows, that if & < 1 and the amount in
the medium of I; is in excess, that over time the reaction would drive towards I3, with
transport into the cell of atorvastatin then more dependent on ak;4 than k;4 as can be

seen in Fig. 4.8.

kaa kia
S1+ Ty S )5'3 + Ty
+ > kaa  +
e I
kdc/‘ Lkac akdc/“/oékac
akaA: OfktA
I+ 51< I3 > Sz + 12
akga

Figure 4.7: Reaction scheme for the transport of atorvastatin and its inhibition by CsA. Si,
Sy and Ss are the amount of atorvastatin in the medium, bound to free transporter (T) and
intracellular respectively. I, I and I3 are the amount of CsA in the medium, bound to 7'
and the atorvastatin-transporter-CsA complex respectively. k, and kg are the association and
dissociation rate constants, k;A is the translocation rate constant from tranporter into the cell
for atorvastatin, « is the dimensionless term to describe the effect of CsA binding on atorvastatin
transport

To illustrate how the different aspects of non-competitive inhibition affect ator-
vastatin and CsA, parameter estimates from Model 2 associated with the transporter
(kaas kacy kaa, kac, T, and «, Table 4.6) were used to simulate the transporter response
following pre-incubation with CsA using the deSolve package in R [1] (Fig. 4.8). In
the absence of CsA (Fig. 4.8, dotted blue lines), as the incubation concentration of
atorvastatin was increased, so kg4 has a larger effect, seen as the broadening of the

peak.
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Figure 4.8: Model 2 plots of the simulated amounts of atorvastatin bound to the transporter
against time in the absence (dotted blue line) and presence (solid blue line) of CsA. The solid
red line is the amount of CsA bound to the transporter following pre-incubation, and the dashed
red line is the atorvastatin-transporter-CsA complex

After pre-incubation with CsA, the higher affinity atorvastatin competes with
CsA, leading to a decrease in atorvastatin bound (blue solid line), and also a perturbation
in the amount of CsA bound (red solid line), which recovers to near the initial amount of
CsA at lower atorvastatin incubation concentrations as atorvastatin is transported into
the cell. The formation of the atorvastatin-transporter-CsA complex initially starts at
zero and increases over time (Fig. 4.8, red dashed line). As the incubation concentration
of atorvastatin increases, so the complex increases (Fig. 4.8, red dashed line).

The covariance matrix derived from the inverse of the Fisher information matrix
(obtained through linearisation in Monolix 2018R2, as the Fisher information matrix
could not be obtained through the SAEM algorithm (see Chapter 2, Section 2.4.5)) [190]
can be used to evaluate the practical identifiability of the model, assuming that all the
unknown parameters are independent, i.e. the off-diagonal elements are zeros [184, 216].
Using the estimated individual random effects (7, taken from Monolix 2018R2) for Model
2, a covariance matrix was generated in R Studio using GGally [217] (see Fig. 4.9).

Unlike Chapter 3, there was < 0.4 covariance between k,A, kgA and T,. This
may be due a large increase in the amount of datapoints from 281 (DCF co-incubation
scenario) to 568 and the higher concentration of timepoints up to the maximum (5
timepoints up to 3 min for the DCF co-incubation scenario and 6 timepoints up to 5
min here). A covariance of -0.8 was observed between Vi,azmet and Ky, mer (Fig. 4.9

indicative of their relationship in the Michaelis-Menten equation.
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Kmm -0.1 -03 02 0.7
me. 0 02 0 05
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Figure 4.9: Covariance matrix of the individual random effects n for Model 2

4.4.2.3 Macro-Rate Constant Transporter Mediated Uptake

The macro-constant model for non-competitive inhibition of atorvastatin uptake (Model
4) has a Vjyaz.up value similar to the scaled value from Model 2 (Vipaq.up = 850 (680 —
1340) pmol/min/ 10° cells), Table 4.7 and Vynaz.up = 675 (430 — 1116) pmol/min/ 10°
cells respectively). This was similar to the Yamazaki plot Viqq.up estimate = 1253
pmol/min/10% cells, Table 4.4), but not the Lineweaver-Burke plot Vinaz.up €stimate
= 157 (80 %) pmol/min /10° cells, see Table 4.4). The scaled micro-rate and macro-
rate constant parameter estimates compared favourably to that in the literature in rat
hepatocytes (Vinaz.up = 1340 £ 320 pmol/min /106 cells [172]).

The K, estimate for Model 4 (0.09 (0.04-0.17) nmol/ml, Table 4.7) was two fold
less than the scaled value from Model 2 (0.2 (0.04-0.41) nmol/ml) and was similar to that
seen in plated rat hepatocytes (0.3 nmol/ml, although V,4z.4p was low at 58 pmol/min/
mg protein [238]), but less than that in rat hepatocyte suspensions (4 + 4 nmol/ml,
[172]). Cellular volume estimates have a large effect on both the cellular concentration
calculation prior to parameter estimation (Eq. 4.1), but also in the models themselves
with normalised data. Yabe et al. [172] used the literature value of 0.0039 ml/10° cells
[175], which gave a higher BIC for the data presented here, and is therefore a major
contribution to the source of the differences. To get around this, some authors normalise
the data to /mg protein [32, 237, 238] which can be accurately measured, and for rat is
almost equivalent to per 10° cells [32, 181].

4.4.2.4 Metabolism

2-hydroxy atorvastatin and 4-hydroxy atorvastatin were detected within the cell extract
at 15 s in the three highest dose groups (25-150 nmol/ml), whilst in the lower dose
groups (0.25-5 nmol/ml), detection was variable. The peak area ratio of both metabo-

lites was inhibited by pre-incubation by CsA, which was similar to the metabolite only
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Table 4.7: Macro-rate constant individual parameter estimates for atorvastatin in the presence
of CsA. Data are the individual mode of the conditional distribution from three separate exper-
iments (Min-Max). All parameter estimates are scaled to per 1 x 10° cells. V;,q.» was scaled to
pmol/min, and K,,, K1 and K;pact.up Were scaled to nmol/ml

Parameter Competitive Non-Competitive
Model 3 4
Passive
kfa (/min) 1.5 (0.9-2.7) 1.8 (1-4)
kpa (/min) 3 (0.3-19) 3.3 (0.4-19.6)
Transporter
Vinaz.up (pmol/min) 3220 (1460-13000) 850 (680-1340)
K .up (nmol/ml) 0.74 (0.18-1.08) 0.09 (0.04-0.17)
Kr.up or Kinact.up (nmol/ml) 0.1 (0.07-0.22) 0.06 (0.04-1.11)
Metabolism
Vinaz.met (pmol/min) 296 (158-840) 364 (211-950)
Kpm.met (nmol/ml) 340 (251-407) 436 (296-544)
Ki.met (nmol/ml) 1.1 (1-1.3) 0.32 (0.27-0.36)

at higher atorvastatin incubation concentrations (see Figs. 4.10 and 4.11), suggestive of
competitive inhibition. The effect of CsA was greatest on 4-hydroxy atorvastatin for-
mation compared to 2-hydroxy atorvastatin formation at lower atorvastatin doses (Figs.
4.11 and 4.10 respectively, red dotted lines). Amundsen et al. [225] also showed the
inhibition by CsA on midazolam metabolism to be concentration dependent in human
liver microsomes.

Neither of the macro-rate constant models (Models 3 and 4) gave realistic esti-
mates for metabolism with a K, e that was more than the highest incubation con-
centration for atorvastatin (K, mer = 340 (251 — 407) and 436 (296-544) nmol/ml re-
spectively, Table 4.7). This was also the case in the absence of CsA and suggests an
instability in the data analysis and is also related to the structural unidentifiability of
the macro-rate constant models with regard to the K, mer and K7 et (see Table 4.5),
that was not present in the micro-rate constant models (Models 1 and 2), where the
models were at least structurally locally identifiable (see Table 4.5).

Vinaz.met however was similar across all four models (see Table 4.6 and 4.7).
Model 2 had a Viyaz.met of 393 (285-500) pmol/min/10°¢ cells, with a K, mer of 17.7
(8-30.7) nmol/ml, giving a metabolic clearance (C L) of 22 (16-35) ul/min/10 cells,
which was higher than the value in the literature (CLe; = 4.3 + 0.65 pl/min/10°
cells (hepatocytes) - 7.6 £ 0.4 ul/min/10° cells (adjusted from microsomes) [165, 229]).
K7 mer was similar to Ky mer (11 (5.5-29) and 17.7 (8-30.7) nmol/ml respectively, Ta-
ble 4.6, Model 2), on the assumption that for CsA, the concentration inside the cell is
approximately equal to the concentration outside the cell. From the work of Prueksari-
tanont et al. [231], who measured disposition of CsA in rat hepatocytes, it was reported
that 86 % of the initial concentration of CsA was measured in the cell after five minutes,
whilst only 16 % of the initial concentration of CsA was lost over four hours [231]. This

helps to support the assumption for the CsA Ky e seen here.
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Figure 4.10: Plots of cellular 2-hydroxy atorvastatin peak area ratio against time following the
addition of atorvastatin (0.25, 0.5, 2.5, 5, 25, 50 and 150 nmol/ml) in the absence (blue) and
presence (red) of 10 nmol/ml CsA. Each time course represents one experiment from one Teflon
block trough. Points are data (n = 1 — 3) and solid lines are the average peak area ratio
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Figure 4.11: Plots of cellular 4-hydroxy atorvastatin peak area ratio against time following the
addition of atorvastatin (0.25, 0.5, 2.5, 5, 25, 50 and 150 nmol/ml) in the absence (blue) and
presence (red) of 10 nmol/ml CsA. Each time course represents one experiment from one Teflon
block trough. Points are data (n = 1 — 3) and solid lines are the average peak area ratio
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4.5 Conclusions

In conclusion, the data presented here show that the high throughput method developed
is an improvement compared to existing methods for the assessment of atorvastatin
uptake in rat hepatocytes and its inhibition by CsA given the models fits and parameter
estimates. Through the use of mechanistic modelling and comparison of the % RMSRE
and wBIC, a micro-rate constant model describing the uptake of atorvastatin and its
complex inhibition by pre-incubation of CsA was developed (Model 2) and compared
across models (Model 1, 3 and 4). The models all included two passive rate constants
for the movement into and out of the cell for atorvastatin, as well Michaelis-Menten
metabolism and subsequent competitive inhibition by CsA. Non-competitive inhibition
of uptake of atorvastatin by CsA in rat hepatocytes (Model 2) through the use of micro-
rate constant models, was the best fitting of the three models tested (lowest % RMSRE
and BIC, Table 4.3). The use of a structurally identifiable model (Models 1 and 2)
enabled the determination of uptake and metabolic processes that were similar to those
in the literature. Whilst the use of macro-rate constant models (Models 3 and 4) that
were structurally unidentifiable unless two parameters were known (see Table 4.5) were
not able to capture the metabolic processes and as such were not the best fitting models
(see Table 4.3).

Following on from Chapter 3, a D-optimal design for Model 2 was undertaken
using the PopED function in R [195] using eight different atorvastatin concentrations
and 12 different timepoints. Both the triangular matrix and full matrix gave a support
point at 0.25 min (3 and 2 replicates respectively). However, given the difficulty in
taking multiples of the same timepoint using this method, and the variability seen with
the lower atorvastatin incubation concentrations, increasing the entire timecourse at
lower concentrations may decrease the covariance. The optimal designed timepoints are

as follows:
e Triangular Matrix: 0.25, 0.25, 0.25, 1.2, 8.4, 8.7, 25.5, 30, 35, 59, 67 min
e Full Matrix: 0.25, 0.25, 5.6, 9.2, 13.2, 14.3, 20.6, 39, 43, 50, 64, 65 min

Future work should be undertaken to establish the simultaneous analysis of sub-
strate and inhibitor in a single sample so that a more holistic understanding of drug-drug
interactions can be described, and is covered in Chapter 5. Quantification of metabolites
both in the cell and medium should also be evaluated to improve the understanding of
the complexity of metabolism and its inhibition as well as possible effects on uptake

processes.
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Chapter 5

Evaluation of the Uptake of
Pitavastatin and Eltrombopag in
Cryopreserved Human

Hepatocytes

5.1 Introduction

The previous experimental chapters have described the analysis of uptake of substrates
(DCF, Chapter 3 and atorvastatin, Chapter 4) and their inhibition (through gemfibrozil
and cyclosporine respectively) using mechanistic models in experimental systems of in-
creasing complexity from cell-lines to isolated hepatocytes. What was apparent in the
analysis of both of the processes, was that the outcomes were limited by the lack of
measurement of both substrate and inhibitor in the same sample to understand the
interactions in depth. This chapter therefore will evaluate whether the simultaneous
measurement of both a high affinity substrate (pitavastatin) and “inhibitor” (eltrom-
bopag, also a substrate) can improve the fit to the more extensive data available, and
determine through the use of a mechanistic modelling approach the mode of inhibition
between pitavastatin and eltrombopag.

Pitavastatin, which like atorvastatin is one of the family of HMG-CoA reductase
inhibitors and used to manage hypercholesterolaemia [240], was determined in vitro to
be a substrate of OATP1B1 and OATP1B3, with a total fraction transported into cells
of 0.78 by these transporters, and the remaining fraction of pitavastatin through passive
movement based on the total uptake clearance. Pitavastatin is also a substrate of the ef-
flux transporters BCRP and MRP2 [9, 132]. Pitavastatin is more sensitive to inhibition
by rifampicin (OATP, BCRP and MRP2 inhibitor) than rosuvastatin; in vitro, both
in human hepatocytes and MDCKII cells, overexpressing hOATP1B1 or hOATP1B3,
as well as in healthy volunteers [9] and is thus a good candidate to use for evaluat-
ing transporter mediated drug-drug interactions (TrDDIs). In human liver microsomes

pitavastatin is metabolised via lactonisation through the hUGT1A3, which can then be
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further metabolised by hCYP3A4 [241]. However, this route of elimination is relatively
small, compared with the major route of biliary elimination of pitavastatin (53 %) and
a minor 3 % of pitavastatin in urine [240]. The generation of the lactone metabolite
through UGT is also confounded as it is a breakdown product of pitavastatin, which is
in equilibrium with the active acid form, and is therefore seen at similar concentrations
in human plasma in healthy volunteers [9, 242].

Eltrombopag, is a thrombopoietin agonist used in the management of thrombo-
cytopenic purpura, and the dose is individualised based on platelet count to prevent
excessive clotting or lack of effect [243]. It is highly protein bound, and adsorption
to plasma proteins was included in order to obtain an IC5y value that explained the
inhibition of rosuvasatin [244]. In vitro studies found eltrombopag to be a substrate of
hOATP1B1, hOATP2B1, hOCT1 and hBCRP, and is able to inhibit probe substrates
for each transporter [244, 245]. The uptake by hOATP1B1 is disputed in the FDA new
drug filing for eltrombopag [246], maybe due to the large amount of non-specific binding
to plastic [245]. Clinical drug-drug interactions (DDIs) were observed between eltrom-
bopag and rosuvastatin (as a perpetrator, [247]) and lopinavir-ritonavir (as a victim,
[248]). Takeuchi et al. [244] and Elsby et al. [249] both found eltrombopag to inhibit ro-
suvastatin through hBCRP, and reasoned that this was the main cause of the interaction
with rosuvastatin in the clinic through the use of a physiologically based pharmacoki-
netic model (PBPK), as well as a minor contribution from hOATP1B1 inhibition [244].

5.2 Methods

5.2.1 Chemicals

Eltrombopag and pitavastatin calcium were obtained from Toronto Research Chemi-
cals (Toronto, Canada), caesium chloride (C3032), mineral oil (69794, density 0.872
g/1), oil red O (00625), Dimethyl sulfoxide (DMSO, 99.5 %), formic acid (99 %) and
5,5-diethyl-1,3-diphenyl-2-iminobarbituric acid (S518891) were obtained from Sigma-
Aldrich (Stockholm, Sweden). Acetonitrile, methanol, Leibovitz L15 medium (21083027)
and silicone oil (15445005, density 1.08 g/1) were of analytical or cell culture grade and
obtained from Thermo-Fisher Scientific Inc (Gothenburg, Sweden).

5.2.2 Use of Hepatocytes

Human hepatocytes were obtained from BiolVT (Lot Number: LYB, 10 donor LiverPool
(8 Caucasians, 1 African-American and 1 Hispanic, see Appendix E, Brussels, Belgium)
and thawed according to supplier recommended guidelines in Leibovitz L15 medium.
Cells were counted using a haemocytometer in 0.4 % trypan blue, with a viability of
84-87 % over the three experiments and then diluted to 3x10° cells/ml in Leibovitz
L15 medium. Hepatocytes were kept on ice prior to use and were used within 3 h of

defrosting.
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5.2.3 Incubations

0.4 ml of hepatocytes was diluted 1:1 with Leibovitz L15 medium either containing
DMSO blank (0.1 % for pitavastatin or 0.25 % for eltrombopag alone) or eltrombopag
at 90 nmol/ml and pre-incubated at 1.5 x 10° cells/ml for 15 min at 37 °C in 7 ml
glass scintillation vials (PerkinElmer, Vasby, Sweden) in a shaking water bath (Grant
Instruments, Cambridge, UK). Pitavastatin was dissolved and serially diluted in DMSO
to give 0.12, 0.4, 1.2, 4, 12 and 40 mmol/l before being diluted 400-fold into 37 °C
Leibovitz L15 medium. 30 mmol/l of eltrombopag was dissolved in DMSO, then diluted
333-fold to 90 nmol/ml in Leibovitz L15 medium. Incubations were started by the
addition of 0.4 ml of pitavastatin solution at final concentrations of 0.3, 1, 3, 10, 30 and
100 nmol/ml, or by the addition of 0.4 ml of eltrombopag at a final concentration of 30
nmol/ml (final DMSO 0.35 % and 1 x 10° cells/ml hepatocyte suspension). Samples were
taken at 0.25, 0.5, 1, 2, 5, 10 and 30 min following the addition of pitavastatin and the
cells separated using an oil spin method, similar to Nordell et al. [250] and Grandjean
et al. [8]. Briefly, 0.5 ml microtubes (12049877, Thermo-Fisher Scientific, Gothenburg,
Sweden) layered with 15 ul of 4 % caesium chloride onto which 140 ul was added of 8:2
silicone oil: mineral oil, containing oil red O for visualisation purposes. Samples were
taken by transferring 100 ul of hepatocyte suspension into the microtube which was then
centrifuged for 15 s in a Minispin centrifuge (Eppendorf, Horsholm, Denmark), during
which time the hepatocytes passed through the oil into the caesium chloride bottom
layer. The tubes were then frozen on dry ice and the bottom layer cut off once frozen
into a 1 ml deep well plate (260252, Thermo-Fisher Scientific, Gothenburg, Sweden). 50
ul of water suitable for UPLC (MilliQ ELGA water, Merck-Millipore, Solna, Sweden)
and 150 pl of stop solution (50:50 MeOH:MeCN, containing 0.8 % formic acid and 4
nM 5,5-diethyl-1,3-diphenyl-2-iminobarbituric acid as an internal standard) were then
added. Samples were mixed on a plate shaker for 1 h and then stored at 80°C overnight.
Prior to analysis, samples were defrosted and mixed 30 min before centrifugation of the
plates at 4000g for 20 min at 4 °C. Samples were transferred to a conical bottomed
96 well plate for analysis (249944, Thermo-Fisher Scientific, Gothenburg, Sweden) and
diluted 1:1 with MilliQ ELGA water.

5.2.4 UPLC Mass Spectrometry Analysis

Samples were analysed by ultra-performance liquid chromatography (UPLC)high res-
olution mass spectrometry (HRMS) operated in positive ion mode using an Acquity
UPLC I Class system with column and sample manager and a Xevo TQ-S mass spec-
trometer (Waters, Sollentuna, Sweden). For HPLC analysis, a Waters Acquity UPLC
HSS T3 C18 50 x 2.1mm, 1.8 um column (Waters, Sollentuna, Sweden) was used with
a flow rate of 1ml/min at 40 °C. Mobile phase A was composed of 0.1 % formic acid
in MilliQ ELGA water, and mobile phase B was composed of acetonitrile and 0.1 %
formic acid. The gradient system used was as follows: initially, 0.2 % of mobile phase
B was held for 1.3 min followed by a linear gradient to 95 % of mobile phase B from
1.3 to 1.8 min, and finally 0.2 % of B up to 2 min. Injections of 0.3-1 ul were made,
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depending on incubation dose of pitavastatin. For MS analysis the following settings
were used: capillary voltage 0.5 kV; desolvation temperature 600 °C; cone gas flow 150
1/h; nebulizer gas 7.0 bar; collision gas flow 0.15 ml/min. The mass spectrometer was
operated in a selected positive ion scanning mode, monitoring for the protonated masses
of pitavastatin (422.1768>290.1528) and eltrombopag (443.1298>182.9503). The inter-
nal standard was monitored at 336.2126>194.9987. The UPLC-MS data were acquired,
processed and analysed using TargetLynx software (version 4.1, Waters, Sollentuna, Swe-
den). Eltrombopag and pitavastatin standard curves were linear up to 1000 pmol/ml

with R2 > 0.96 and a limit of quantitation of 4 pmol/ml and 1 pmol/ml respectively.

5.2.5 Data Analysis

The bottom layer concentration was converted to cellular concentration using a cellular

volume (Veey;) of 3 pl per 1 x 10° human hepatocytes [49] using:

Bottom I 15.3 il
kdu(mnmhnn::<["0m'a$”]x 53“:>/umo (5.1)
cell

where the cell volume (V) per 1 x 10° cells was 0.3 ul and the volume of the bottom
layer of caesium chloride was 15 pl, a dilution factor of 1000 was used to convert the
concentration from pmol/ml to nmol/ml. As described in Chapter 2 (Table 2.3), there
are various cell volumes that one could use, therefore: the median human volume of 2.7
ul /106 cells; 3 ul /100 cells (human) [49] and 3.9 pl/10° cells (rat) [175] were evaluated
using a micro-rate constant model for pitavastatin only, which was the same as the model
structure used by Grandjean et al. [8], with the addition of a metabolic elimination rate
constant (k., see Fig. 5.1a). The volume of 3 pl [49] had the lowest Bayesian Information
Criterion (BIC) value and a weighted BIC value (wBIC = 0.79, Eq. 5.43) and was used
in the rest of this chapter, whilst the median value of 2.7 ul and 3.9 ul had wBIC =

0.17 and 0.039 respectively and were therefore not used further.

5.2.6 Mechanistic Modelling

A three compartment mechanistic model to describe the uptake of pitavastatin into
hepatocytes through the use of micro-rate constants for passive and active processes
has previously been described [8]. In the present study, this model was extended to
include a first order elimination rate constant (k.) for pitavastatin, and passive and
active uptake processes for eltrombopag (see Fig. 5.1b and c). A requirement for the
micro-rate constant models (see Fig. 5.1a-c) is that the amount of free transporters (77)
available for binding of pitavastatin and eltrombopag need to be known, but it is not
normally the case. As per previous chapters (Chapters 3 and 4), Tr can be eliminated
by a steady state analysis of the states for medium, transporter and intracellularly for

pitavastatin and eltrombopag (see Chapter 3, Egs. 3.5-3.16 for derivation) to give :

Ty=T,—Sy— Iy — I (5.2)
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Figure 5.1: Schematic of the micro-rate constant (a-c, Table 5.1) consisting of medium, trans-
porter and intracellular, and macro-rate constant (d-f, Table 5.2) consisting of medium and in-
tracellular mechanistic models. a and d pitavastatin only used in parameter estimation. Pitavas-
tatin following pre-incubation with eltrombopag with competitive (b and e) and non-competitive
(c and f) mode of inhibition respectively.

where T, is the total amount of transporters responsible for the uptake of pitavas-
tatin and eltrombopag, Sy and I are the amounts bound to transporter and I is the

pitavastatin-transporter-eltrombopag complex.

5.2.6.1 Structural Identifiability Analysis

As per Chapters 3 and 4, prior to parameter estimation, models were evaluated for struc-
tural identifiability (see Chapter 2, section 2.4.1) using the Identifiability Analysis
package in Mathematica 11.3. Micro-rate constant models (Model 1 - competitive in-
hibition of uptake, and Model 2 non-competitive inhibition of uptake, Table 5.1) and
macro-rate constant models (Model 3 - competitive inhibition of uptake, and Model 4 -
non-competitive inhibition of uptake, Table 5.2) with measurement of pitavastatin, and
with or without measurement of eltrombopag were evaluated, both for competitive and
non-competitive inhibition (see Tables 5.1 and 5.2 for observations), assuming that both

pitavastatin and eltrombopag are substrates of uptake transporters [132, 244].
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5.2.6.2 Parameter Estimation

The final chosen model was based on the weighted Bayesian information criterion (wBIC,
Eq.5.43) to more harshly penalise over-parameterisation (Eq. 5.42) within the same set
of observations compared to Akaike information criterion (AIC, Eq. 5.41) [211, 212]
(with or without eltrombopag measurement), as well as the sum of the individual and

population prediction of the relative mean square root error (RMSRE) given by:

1 Observed; — Predicted; 2
% RMSRE = 100 x \/ - > < Observed. ) , (5.40)
AIC = =2.LL(#) + 2p (5.41)
and
BIC = —2.LL(0) + log(n)p, (5.42)
exp(—0.54;)
BIC; = =2 4
wBIC > exp(—0.5A;) (5.43)
and
A; = BIC; — BIC,m (5.44)

where % is the inverse of the total number of datapoints multiplied by the sum of the
relative square error of each datapoint i. L£L is the log likelihood of the data, n is the
total number of data points and p is the number of parameters. A; is the difference
between the individual BIC (BIC;) and the lowest BIC (BIC)y;,) calculated using Eq.
5.44, exp(—0.54;) is the relative likelihood and ;" is the sum of individual 7 relative
likelihoods from the mechanistic models with the same number of datapoints used for
parameter estimation (in this case m = 4 different models) [212].

As eltrombopag was pre-incubated in the experimental design at 45 nmol/ml (or
nmol as the incubation volume = 1 ml) and then diluted to 30 nmol by the addition of
pitavastatin, a micro-rate constant model for eltrombopag only was used to obtain initial
parameter estimates in Monolix suite 2018R2 (Lixoft, Antony France) (see Fig.5.3).
These parameter estimates were then used in a simulation at the 45 nmol using deSolve
in R [1] to obtain initial conditions for the simultaneous analysis of pitavastatin and
eltromobopag, and fitted as free-parameters in the final model. Parameter estimation for
the mechanistic models was conducted within Monolix suite 2018R2 (Lixoft, Anthony
France), where to ensure positivity, a log-normal distribution was assumed for each
parameter in the candidate models, together with a proportional residual error model
for the observations (see Table 5.1 Eqgs. 5.22-5.25 and Table 5.2 Egs. 5.36-5.39 for
micro-rate constant and macro-rate constant observations respectively).

Due to the large number of parameters to be estimated in the combined pitavas-
tatin and eltrombopag mechanistic models, initial estimates for pitavastatin, and eltrom-
bopag only were obtained for the micro-rate constant models (no macro-rate constant

estimates could be obtained for eltrombopag alone). In all the datasets, the pitavastatin
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Figure 5.2: a Yamazaki plot of initial velocity at 15 s against pitavastatin incubation concen-
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ble reciprocal) plot using “Active” from a. Parameter estimates Vi, =1/y intercept= 141
pmol/min/106 cells (RSE = 36 %), K,, = gradient xV,4,= 28 nmol/ml (RSE = 21 %)

= 1200
= L]
g L] L]
(2]
K
g 900 A 4 A
£
g A
L}

S 600 "
Qo
5 .
B, 300
=
©
3
8 o

0 10 20 30

Time (min)

Figure 5.3: Plot of eltrombopag cellular concentration against time following a 30 nmol incuba-
tion. Shapes are the experimental data from 3 separate experiments, and the solid line is the
simulation of eltrombopag (see Table 5.1 Egs. 5.3, 5.5 and 5.7, without k.p)

data at an incubation concentration of 100 nmol/ml was excluded from one experiment
(Triangles in Figs.5.4 and 5.6) due to the large concentrations present compared to
the other experiments. The large concentrations adversely affected the total amount of
transporters available for uptake to more than double the rest of dataset, and therefore
the fits and parameter estimates were also affected. To enable comparisons of the micro-
rate constants to those commonly used in the literature, parameters were scaled under
the pseudo steady-state assumptions to Viaz. x, Kyrx, Kr.x and Kinaer. g, as discussed
in Chapter 2, Section 2.4.4. To obtain initial parameter estimates for the uptake of
pitavastatin in the macro-rate constant models (Models 3 and 4, pitavastatin only) a
Yamazaki plot and Lineweaver-Burke plot were used (Fig. 5.2a and b respectively). The
Vimaz and K, initial parameter estimates were quite different between the two meth-
ods with a 3-fold difference between the methods (V4 = 300 and 141 (RSE = 36 %)
pmol/min/10° cells respectively, K, = 10 and 28 (RSE = 21 %) nmol/ml respectively),
possibly due to a larger influence in the Yamazaki plot of the higher velocities in the

mean value (see Fig. 5.2b points).
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Figure 5.4: Plots of hepatocyte cell concentration against time over 30 min for pitavastatin
(0.3-100 nmol, blue, normalised to ¢ = 15 min) with and without 15 min pre-incubation with
eltrombopag (red). Points are data from three separate experiments. Solid and dashed lines
are the median pitavastatin individual fits from Model 1 with measurement of eltrombopag (see
Table 5.4). The shaded areas are the maximum and minimum individual fits from Monolix

5.3 Results and Discussion

5.3.1 Structural Identifiability Analysis

All candidate models (four micro-rate constant models, Table 5.1, and four macro-rate
constant models, Table 5.2) were evaluated to determine whether, inclusion of the cellu-
lar measurment of eltrombopag in addition to the measurement of cellular pitavastatin
aided in the structural identifiability outcomes within the Identifiability Analysis
package [16, 160]. For the micro-rate constant models (Models 1 and 2), measurement
of the cellular amount of eltrombopag did not alter the structural identifiability result,
with all four models at least locally structurally identifiable, with no parameters uniden-
tifiable as long as the initial conditions were known (see Table 5.3). For the macro-rate
constant models (Models 3 and 4), measurement of eltrombopag was needed for the
models to be at least locally structurally identifiable (see Table 5.3), otherwise there
was one degree of freedom, with one of the following parameters to be known (for Mod-
els 3 and 4 respectively) for the model to be at least structurally locally identifiable:
Kp.p or K1 g, and Vi p oF Kinaet.E-

5.3.2 Mechanistic Modelling and Parameter Estimates

Out of the eight mechanistic models evaluated (see Tables 5.1 and 5.2), regardless of
whether eltrombopag was measured or not, the micro-rate constant model versions were
always the best fitting model (Model 1), with wBIC values = 1 (see Table 5.4, high-

lighted in bold) compared to the macro-rate constant models (Model 3). In the absence
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IWRES
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Figure 5.5: Plot of individual weighted residuals (IWRES) obtained from Monolix 2018 R2
against time for Model 1 in the presence of eltrombopag. a pitavastatin (blue circles) and
measured eltrombopag (red triangles). b pitavastatin without measured eltrombopag. Solid line
is the LOESS, dashed lines are the 95 % CI and the dotted line highlights an IWRES of 0

of measured eltrombopag the macro-rate constant models (Models 3 and 4) had the
largest % RMSRE values for the individual predictions (RMSRE = 16 %), population
predictions (RMSRE = 42 and 46 % for competitive inhibition (Model 3) and non-
competitive inhibition (Model 4) respectively) and thus a total % RMSRE (58 and 62
% respectively, see Table 5.4), and were ranked as 7" and 8 of all models tested (see
Table 5.4). This confirmed the structural identifiability analysis results demonstrating
the utility of a formal structural identifiability analysis a priori (Table 5.3).

The overall best fitting mechanistic model to the data based on the total %
RMSRE and wBIC was the micro-rate constant model, including measurement of el-
trombopag for mutual competitive inhibition (Model 1, Fig. 5.1a and b, RMSRE = 41
% and wBIC = 1, Table 5.4). No model accurately fitted to the population data, with
residuals that were 3-4 times higher than the individual prediction residuals (see Table
5.4), therefore all parameter estimates described below use the individual mode of the
conditional distribution (min-max).

The improvement of fit using micro-rate constants against macro-rate constants
was also discussed by Grandjean et al. [8] who also evaluated the uptake of pitavastatin
in human hepatocytes, and that work is concurrent with the comparison of models drawn
here.

The best fitting micro-rate constant model (Model 1, with measurement of el-
trombopag) fitted the individual data well (Fig. 5.4), with an initial increase in the
pitavastatin concentration at lower doses in the cell to a maximum followed by a de-
crease due to loss from the cell via metabolism (0.3-10 nmol/ml incubation, Fig. 5.4,
solid lines). As the dose of pitavastatin increased (30 and 100 nmol/ml incubation), the

uptake was saturated, and a decrease in concentration could not be observed (Fig. 5.4),
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due either to saturation of metabolism or the large concentration of pitavastatin in the
cell, masking the metabolism. In the presence of eltrombopag, the transporter mediated
uptake of pitavastatin was reduced (Fig. 5.4, dotted lines), which could be overcome by
increasing the pitavastatin dose, until the fits overlapped the pitavastatin only data at
30 and 100 nmol incubation (Fig. 5.4).

The individual weighted residuals (IWRES) for pitavastatin in the presence of el-
tromboag had a mean of around zero, with visually normally distributed errors, whether
eltrombopag was measured (Fig. 5.5a blue circles for pitavastatin and red triangles for
eltrombopag respectively) or not (Fig. 5.5b blue circles).

The macro-rate constant best fitting model (Model 3, with measured eltrombopag
see Table 5.4) fit the uptake of pitavastatin and its inhibition by eltrombopag well (Fig.
5.6). However, the elimination through metabolism was not well fitted (flat blue and
dotted red line, Fig. 5.6), and was due to a 12-fold lower pitavastatin elimination rate
constant for the macro-rate constant model (Model 3, with measured eltrombopag, k.p
= 0.018 (0.014-0.021) /min/10° cells, Table 5.6), compared to the micro-rate constant
model (Model 1, with measured eltrombopag, kep = 0.22 (0.2-0.24) /min/10% cells,
Table 5.5).
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It was important that when eltrombopag measurements were included, that the
model was able to adequately describe the pitavastatin and eltrombopag data as well.
Model 1 (Table 5.1, with measurement of eltrombopag), with a wBIC ~ 1 (see Table
5.4) included eltrombopag initial conditions obtained from the eltrombopag only data
at 30 nmol (see Fig. 5.3) as free parameters in the mechanistic model (final individual
parameter values, Model 1 (min-max): 19.6 (18.9-20) nmol, 0.002 (0.002-0.003) nmol and
2.84 (1.37-4.37) nmol for medium (I;), transporter (I3) and cell (I3) respectively). The
inclusion of the initial conditions as free parameters for eltrombopag was important,
due to the pre-incubation step of eltrombopag from 45 nmol to a nominal 30 nmol,
which based on the dilution of eltrombopag with pitavastatin at 15 min and was not
known. The total initial amount (22.4 (20.3-24.4) nmol) was similar to the nominal
dose (30 nmol) after dilution from 45 nmol. Due to the variability in the data (see Fig.
5.3 data points), the plotted eltrombopag was normalised to the maximum from the
geometric mean of the eltrombopag only data at 30 nmol to give a percentage value.
When pitavastatin was not present (dose = 0 nmol, Fig. 5.7), there was an initial rapid
increase in eltrombopag concentration followed by a decrease after 5 min. After the
dilution of eltrombopag through the addition of pitavastatin doses (0.3-100 nmol), there
was an initial decrease in the eltrombopag concentration, to a new lower asymptote (Fig.
5.7). In the presence of higher concentrations of pitavastatin (30-100 nmol incubation),
the amount of intracellular eltrombopag decreased to a lower asymptote compared to

the lower doses (0.3-10 nmol) as the eltrombopag uptake was inhibited (Fig. 5.7).

5.3.2.1 Passive Rate Constant and Binding

In the best fitting micro-rate constant model (Model 1, with measurement of eltrom-
bopag), the passive movement of pitavastatin into the cell (k;p = 0.00055 (0.00046-
0.00061) /min/10° cells) was much slower (=400 fold) than the passive movement of
pitavastatin out of the cell (kpp = 0.21 (0.18 —0.22) /min/10° cells) (see Table 5.5). For
eltrombopag, the passive movement into the cell for Model 1 (k¢r = 0.05 (0.04 — 0.06)
/min/10% cells, Table 5.5) was 10-fold slower than the passive movement out of the cell
(kop = 0.43 (0.35—0.65) /min/10° cells, Table 5.5). kg was 100 times faster than ksp,
whilst kpg was of the same order of magnitude as kyp. The passive rate constants for
pitavastatin and eltrombopag for the other micro-rate constant models were the same
as described above (see Table 5.5).

In the best fitting macro-rate constant model (Model 3, with measurement of
eltrombopag, see Table 5.4), the passive rate constant into the cell for pitavastatin
(kgp = 0.0047 (0.0045 — 0.0047) /min/10° cells, Table 5.6) was approximately 10 times
faster than for the micro-rate constant model (Model 1, see Table 5.5). The passive
rate constant out of the cell for pitavastatin (kyp = 1.04 (0.54 — 1.42) /min/10° cells,
Table 5.6) was 5 times faster than for the micro-rate constant model (Model 1, see Table
5.5). The passive rate constant estimates for eltrombopag were around 10-fold faster
in Model 3 (with measurement of eltrombopag) (kfr = 0.86 (0.79 — 0.91) /min/10°
cells, kyp = 5.61 (3.98 — 10.7) /min/10° cells, Table 5.6) compared to the best fitting
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Figure 5.6: Plots of hepatocyte cell concentration against time over 30 mins for pitavastatin
(0.3-100 nmol, blue, normalised to ¢ = 15 min) with and without 15 min pre-incubation with
eltrombopag (red). Points are data from three separate experiments, Solid and dashed lines are
the median individual fits from the best fitting macro constant model (see Table 5.4, ranked 4!%)
in the absence and presence of eltrombopag respectively, and shaded areas are the maximum
and minimum individual fits from Monolix

micro-rate constant model (see Table 5.5).

If kyp is scaled up to a passive clearance (Py;y), that is commonly used in the
literature, by multiplying by the medium volume (1000 pl), the Py s p for pitavastatin
is within the lower range of others in the literature (0.55 (0.46-0.61) ul/min/10° cells
and 0.4-13 pl/min/10¢ cells [173, 174, 250, 251] respectively). The value scaled up
from Grandjean et al. [8] was eight times higher (100 ul/min/10° cells) than the largest
literature value, and was similar to that seen for more highly permeable drugs such as
saquinavir (Py;r = 191 (SE = 24)ul/min/10° cells, fraction transported = 52 %, [172])
or glyburide (Pys = 100 (SE = 12) ul/min/10° cells, fraction transported 55 % [250].

If the passive rate constant out of the cell (kyp) is also scaled to a passive clearance
(Piey.p), by multiplying by the cell volume of 3 ul = 0.62 (0.55-0.67) ul/min/10° cells,
and was similar to the value obtained with micro-rate constants by Grandjean et al.
[8] (0.89 (27 %) wpl/min/10® cells). If Py p and Py p are compared, the passive
clearance into and out of the cell are similar when normalised to volume, and confirmed
experimentally, with what is assumed in the literature regarding passive movement of
drug [173, 174, 250, 251]. However, this assumption does not hold when the dominant
uptake process is not transporter mediated, as was the case with eltrombopag in Model
1, with a Py;s g of 52 (40-64) ul/min/10° cells and a Pyt g of 1.3 (1.05-1.94) ul/min/10°
cells, and therefore caution should be used when using a single parameter to describe
passive movement into and out of the cell.

When a single parameter to describe passive movement of drug, the fraction

unbound in the cell (fy cerr) is used in the literature to allow for intracellular binding on
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Figure 5.7: Plots of % of the maximum eltrombopag only cellular concentration against time
over 30 min for eltrombopag in the presence of pitavastatin (0.3-100 nmol) added at ¢ = 15 min,
(normalised to ¢ = 0 min). Shapes are data from three separate experiments. Solid lines are
the median individual fits from the best fitting micro-rate constant model (Model 1, Table 5.4).
Sub-plots are separated by dose of pitavastatin and eltrombopag only control (0)

the passive movement out of the cell [172, 173]. Estimates for f, .. can be obtained
using multiple techniques: heat inactivated hepatocytes [165]; linear regression obtained
using the log Dpp 7.4 across different compounds [172]; parameter estimation [164, 173]
or as separate binding rate constants, either through separate experiments [170] or
during parameter estimation as membrane binding [165, 250]. We used heat inactivated
human hepatocytes across the concentrations used in the experiments, with pitavastatin
(0.3, 10 and 100 nmol/ml) or 30 nmol/ml of eltrombopag, which were then incubated
overnight in a Rapid Equilibrium Dialysis (RED) device. The RED device works with
low volumes across a medium chamber (500 pl) and incubation chamber containing
the hepatocytes (300 pl), and as such has been reported to even out the non-specific
binding (NSB) between the membrane and wells, thereby improving recovery [252]. The

free fraction in the incubation (fy.inc) is calculated as:

[medium chamber] (White)
[incubation chamber] (Red)’

(5.45)

fu.inc =
The amount of non-specific binding to the labware used in the RED device experiment

is important to gain information regarding the recovery of pitavastatin or eltrombopag:

300 - Red + 500 - White
300 - (incubation concentration)’

% recovery = 100 x (5.46)

For pitavastatin, the fy.ine values were similar at 0.3 and 10 nmol/ml (0.87 (9 % rela-
tive standard deviation (% RSD)) and 0.93 (4 %) respectively), whilst at 100 nmol/ml
the data were unreliable (fy.ine > 1). For eltrombopag the f, in. following a 30 nmol
incubation was 0.04 (5 %). The % recovery for both pitavastatin and eltrombopag was
low at 55 % (3 %) and 10 % (5 %), and this may be due to the lack of a RED device

washing step prior to use in the experiment [252]. The f, .y value can be estimated
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using the method of Paine et al. [165]:

fu.cell -V

inc

. Vmedium - kmem
u.1nc

where V. was 3.6 ul for 1.2 x 10 cells, the experimental incubation volume (Vj,.) was
1203.6 pl, Vipedium was 1200 pl and kpen, was the membrane volume fraction (1 % of
the total volume = 0.0036 ul, [165]).

The low recovery for pitavastatatin and eltrombopag makes the use of fy ey in
data analysis unreliable. If the fraction unbound was to be included in the mechanistic
models used here (see Tables 5.1 and 5.2), then the model would be structurally uniden-
tifiable as fy cenr is already included in the rate constants themselves and the parameter

would be inestimable as the value always approached 1 when not fixed.

5.3.2.2 Micro-Rate Constant Transporter Mediated Uptake

The transporter association rate constant (k,x) and dissociation rate constant (kgx)
were similar between pitavastatin and eltrombopag in the best fitting micro-rate constant
model (Model 1, with measurement of eltrombopag, k,x = 0.17 (0.14-0.25) and 0.26
(0.23-0.31) /nmol/min/10° cells, kqx = 2.2(1.97—2.37) and 1.57 (1.42-2) /min/10° cells
respectively, Table 5.5), suggesting similar binding kinetics to the transporter.

The translocation rate into the cell (k;x) was six times faster for pitavastatin than
for eltrombopag (Model 1, with measurement of eltrombopag, 1.65 (1.57-1.74) and 0.27
(0.24-0.32) /min/10° cells respectively, Table 5.5), and was what defined the difference
in transporter mediated uptake between the two substrates. The transporter mediated
parameters were similar across all micro-rate constant models (Models 1 and 2), with the
exception of the eltrombopag translocation rate constant (k;r = 0.0004 (0.0003—0.0005)
/min/10° cells) which was 1000 fold slower in the non-competitive inhibition model than
the competitive inhibition model (see Table 5.5) probably due to k;r being unaffected
by « in the model structure (Eq. 5.18).

The k,p value obtained for pitavastatin in human hepatocytes over 70 s in the
literature was 44-fold faster (7.4 (51 %) /nmol/min/10° cells, [8]) than the k,p value
obtained here, whilst the kyp and k;p were of the same order of magnitude (kgp = 6.3
/min/108 cells (not able to calculate error, [8]) and kip = 4.3 (85 %) /min/10° cells,
[8]). The extended timepoints used here up to 30 min post addition of pitavastatin
(compared to 70 s), also enabled the standard errors of the dissociation rate constant
from the transporter (kgp) to be determined and reduced error on k;p estimated from
the data.
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The total amounts of transporters (T, = 0.18 (0.11 — 0.37) nmol/10° cells) de-
termined from this data set for pitavastatin and eltrombopag are difficult to compare
to measured values of uptake transporters obtained from hepatocytes or liver tissue,
which vary across papers and ethnicity due to SNPs in the transporters (see Chapter 2).
For pitavastatin, hOATP1B1 dominates the uptake process, with a minor contribution
from hOATP1B3 [132], whilst for eltrombopag it is assumed that passive dominates,
but it is also a substrate of hOATP1B1 and hOCT1 [245]. The total hepatic abun-
dance of hOATP1B1, hOATP1B3 and hOCT1 in Caucasians obtained during a meta-
analysis of literature data from liver tissue was ~ 11 pmol/10° cells [57], which is 16-fold
lower than the T, value, assuming that only one transporter site moves one molecule
into the cell. Unlike in HEK293-OATP1B1 cell-lines, where the amount of protein in
hOATP1B1 containing cells and MOCK cells was measured to obtain an estimate of
membrane hOATP1B1 associated protein, making the scale up of the T, more simplistic
(see Chapter 3), there are no such measurements here. The majority of the hepatocyte
donors used in this study were Caucasian, with one Hispanic and one African-American,
with a minimum age of 10 month old, a 4 year old female, with a maximum age of 60
years old (Appendix E). The hOATP1B1*14*14 polymorphism is present in 0.74-0.77 of
African-Americans, and 0.3-0.51 of Caucasians [55] who all have increased hOATP1B1
protein expression in hepatocytes and therefore an increase in the maximum uptake ve-
locity (Vimaz), leading to a decrease in the predicted plasma exposure of statins, due to
an increased liver uptake [56]. Infants upto 1 year old have been shown to have signif-
icantly lower hepatic mRNA for hOATP1B1, hOATP1B3 and hMRP (p = 0.05) [253],
which may also affect the total amount of transporters if the amount of protein was
also decreased significantly. It is not currently known how many molecules are trans-
ported when a molecule binds to the active transporter site. Site-directed mutagenesis
studies have built on the multiple affinities seen for estrone-3-sulphate, and analysed
the data via Eadie-Hoffstee plots to evaluate changes in the Michaelis-Menten kinet-
ics [254]. Tt is within these mutagenesis experiments, through analysis with micro-rate
constants (already discussed in the article, but not instigated, [254]), that more under-
standing regarding how 7T, determined here relates to the number of substrate moieties
transported.

The covariance matrix derived from the inverse of the Fisher information matrix
(obtained through linearisation in Monolix 2018R2, as the Fisher information matrix
could not be obtained through the SAEM algorithm (see Chapter 2, Section 2.4.5))
[190] can be used to evaluate the practical identifiability of the model, assuming that
all the unknown parameters are independent, i.e. the off-diagonal elements are ze-
ros [184, 216]. Using the estimated individual random effects (7, taken from Monolix
2018R2) for Model 1 (with and without measurement of eltrombopag), a covariance
matrix was generated in R Studio using GGally [217] (see Fig. 5.9 and 5.8 respectively).
kyp and k.p had a covariance of 1 with and without measurement of eltrombopag (Fig.
5.9 and 5.8 respectively), which given that the final parameter estimates for these pa-

rameters were the same (see Table 5.5) is not unsurprising and furthers the need to
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Figure 5.8: Covariance matrix of the individual random effects n for Model 1 without measure-
ment of eltrombopag

separate the covariance between the two parameters, potentially through quantification
of pitavastatin metabolites and inclusion in the mechanistic model. The covariance of
0.9 between k,p and T, was the same as that seen in Chapter 3, but not Chapter 4,
where there was less limitation in terms of number of cells and possible experiments.
The large error observed with the measurement of eltrombopag (see Fig. 5.7),
and the use of only a single concentration of eltrombopag, lead to a large covariance of
-0.9 between ks and kyr and of 0.9 between kqr and kg (Fig. 5.9). More experimental
data may decrease the covariance between the eltrombopag parameters, but at the cost

of an extra vial of cryopreserved human hepatocytes and time on an LC-MS.

5.3.2.3 Macro-Rate Constant Transporter Mediated Uptake

For the best fitting macro-rate constant model (Model 3, with measurement of eltrom-
bopag, Table 5.4 4" ranked model), a similar picture was seen as with the micro-rate
constant models. The difference between pitavastatin and eltrombopag was in V. x
estimate (350 (210-1140) and 72 (70-75) pmol/min/10° cells respectively, Table 5.6).
K, x values were the same (19.6 (17.4-20.9) and 15 (13.7-16.9) nmol/ml respectively,
Table 5.6). The scaled V4. p estimate from micro-rate constant Model 1, with mea-
surement of eltrombopag (see Chapter 2, Section 2.4.4), was similar, but with a smaller
range of parameter values (Viazp = 302 (177-639) pmol/min/ 106 cells), whilst K, p
was the same (22.1 (16.7-25.5) nmol/ml). The scaled V4, p estimate from micro-rate
constant Model 1, with measurement of eltrombopag, was similar, but had a wider range
of values compared to the macro-rate constant Model 3, with measurement of eltrom-
bopag (Vimaz.r = 49 (26-118) and 72 (70-75) pmol/min/10° cells respectively), and K, g
of around a half of the macro-rate constant estimate from Model 3, with measurement of
eltrombopag (K g = 7.1 (7.2-9.6) and 15 (13.7-16.9) nmol/ml respectively), that was
the same as the inhibition constant K; g obtained from the micro-rate constant Model

1, with measurement of eltrombopag (K7 g = 6 (6.2-6.5) nmol/ml). K p was half of
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Figure 5.9: Covariance matrix of the individual random effects n for Model 1 including measure-
ment of eltrombopag

Kp,.p (12.9 (9.5-14) nmol/ml).

Literature values for the uptake of pitavastatin in human hepatocytes show a
range for Vi,q..p, similar to that seen here using scaled micro-rate constants with a
literature Vi,qz.p of 65-354 pmol/min/ 10° cells [8, 173, 251]. However, K, p was close
to 10-fold lower in the literature (1.4-2 nmol/ml [8, 173, 251]. The discrepancy in K, p
may be driven partly by the variability in our data, with the higher concentration seen
in one study (triangles in Fig. 5.4) that had the highest T}, estimates, and thus a higher
Vinaz and K.

Whilst eltrombopag was reported to show saturable uptake in mouse hepatocytes,
attributable to uptake transporters [245], it was reported only as an in inhibitor in
the FDA submission document [246]. By measuring eltrombopag here, and relying on
the large amount of data for pitavastatin in the presence and absence of eltrombopag,
uptake kinetics for eltrombopag were obtained. By dividing V42 by Ky, the transporter
mediated uptake clearance (C'L,,) for pitavastatin and eltrombopag can be compared.
CL,, was twice as fast for the more hydrophilic pitavastatin (CLy, x = 13 (11-26)
and 7 (4-12) pl/min/10° cells respectively), whilst Py s was 90 times faster for the more
lipophilic eltrombopag. The percent of transporter mediated uptake for pitavastatin has
been reported to be 90-92 % [250], which was the same here (95 % = C Ly, /(C Lyp~+Pyif),
if this is compared to eltrombopag, where the percent of transporter mediated uptake was
12 %, it is clear that whilst eltrombopag is an uptake substrate, the passive movement

into the cell dominates.
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5.3.2.4 Pitavastatin Elimination Rate Constants

The pitavastatin metabolism elimination rate constant obtained from the micro-rate
constant models (Model 1, with measurement of eltrombopag, k.p = 0.22 (0.2-0.24)
/min/10° cells) was the same as the passive rate out of the cell (kyp = 0.21 (0.18-0.22)
/min/108 cells, Table 5.5), which shows that whilst the model is structurally locally
identifiable, these two parameters can be interchanged (similar to an oral pharmacoki-
netic 1-compartment model where the elimination rate constant and absorption rate
constant can also be changed leading to “flip-flop kinetics [184]). This was confirmed in
the covariance matrix where the covariance was 1 between these two parameters (Fig.
5.9 and Fig. 5.8). As mentioned above, one way of potentially separating the covariance
between kyp and k., could be through quantification of pitavastatin metabolites and
their inclusion in the mechanistic models. This is not trivial, as the main metabolite
seen for pitavastatin in human hepatocytes is pitavastatin lactone, which is also present
as an impurity in the dose, and in combination with metabolism leads to similar pitavas-
tatin lactone and the active pitavastatin acid concentrations in human plasma [9, 241].
Menochet et al. [33] included metabolite kinetics for repaglinide and telmisartan and
found a decrease in the overall relative mean standard error compared to when they
were excluded from analysis and the mechanistic model. It is possible therefore that
this may be beneficial here also.

It is interesting to note, that the best-fitting macro-rate constant model (Model 3,
with measurement of eltrombpag) showed a clear distinction between kyp and k.p (1.04
(0.54-1.42) and 0.018 (0.014, 0.021) /min/10° cells respectively, Table 5.6), however,
ke.p did not influence the pitavastatin data fit and gave a flat profile after 5 min that
did not follow the data (Fig. 5.6). If the kep is scaled from the micro-rate constant
model (Model 1, with measurement of eltrombopag) to a clearance (by multiplying by
3 pul and dividing by 0.657 mg protein/106 cells [181]), then the value of 1 (0.91-1.1
pl/min/mg protein) was similar to that in the literature in human liver microsomes
(2.5-3.4 pl/min/mg protein [241, 256]).

5.3.2.5 Clinical Liability - Static Model

Evaluation in vitro of the potential for clinical DDIs is important to decrease the risk
and to improve patient quality of life. A common method is the static AUC difference in
the presence and absence of inhibitor (the R value, first described by Hirano et al. [132])
and is used to assess the potential for clinical DDIs in regulatory guidance documents
[18, 19]:

I.
FDA R Value = 1 + / “'plas”;; AT if R > 1.1, then a TrDDI is likely (5.48)
I

25 - u asmalin.max . . 1.
EMA R Value = (f 'le ), if R > 1.04, then a TrDDI is likely  (5.49)
I

111



where fy piasma is the fraction unbound in the plasma (set to 0.01 for eltrombopag,
the minimum value proposed in the FDA draft guidance [19] due to error in measure-
ments below 0.01), K7 is obtained from the best fitting model, and I, maqs is calculated
according to:

Cmax + FaFgS(:LDose

Ry

where Clq, is the maximum plasma concentration of the inhibitor (nmol/ml), F,F,

Iin.maz (nmol/ml) =

(5.50)

is the fraction absorbed multiplied by the intestinal availability (pitavastatin=1 [174],
eltrombopag = 0.5 [244]), k, is the absorption rate constant (pitavastatin = 0.1 /min
(minimum gastric emptying time, [132]) and eltrombopag = 0.0084 /min [244]), Qp
is human hepatic blood flow = 1450 ml/min [133]), and R, is the blood:plasma ratio
(pitavastatin = 0.425 [209], eltrombopag = 0.78 [244]) and does not appear in the EMA
equation (Eq. 5.49).

As there are multiple clinical pharmacokinetic studies for eltrombopag, Cipee and
doses ranged from 14 nmol/ml [255] to 18 nmol/ml [243] at 50 mg in patients, to 25
nmol/ml and 29 nmol/ml at 75 mg in healthy volunteers [11] and patients respectively
[243], the calculated R values are summarised in Table 5.7. The clinical risk of a TrDDI
according to R values for the FDA guidance were below the cut-off (R value > 1.1) or
close to the cut-off (R = 1.06-7 at 75mg), similar to EMA R values at 75 mg (see Table
5.7).

Clinical doses for eltrombopag start at 50 mg, or 25 mg in patients with East
Asian ancestry [243], there is less potential for the inhibition of pitavastatin by eltrom-
bopag based on the in vitro data presented here. Takeuchi et al. [244] evaluated the
inhibition of rosuvastatin by eltrombopag using a PBPK model and found that BCRP
inhibition with additional inhibition of hOATP1B1 was the likely cause of the clinical
DDI. BCRP is expected to be in intracellular vesicles in human hepatocyte suspensions
[257], this inhibition cannot be evaluated in the current experimental set-up, without
first plating the cells for several hours. As the dose of eltrombopag is closely monitored
in the clinic due to its pharmacological effect [243], the R values were also calculated
with eltrombopag as the victim and pitavastatin as the perpetrator. No potential effect
was seen, with values all below the cut-offs suggested by the EMA and FDA [18, 19],
likely due to the low dose given of pitavastatin (2-4 mg) in the clinic [9, 258, 259] (with
an estimated I, maz Of 0.5-3 nmol/ml) compared to the estimated Kj p of 13 (9.5-14)

nmol/ml from the micro-rate constant model (Model 1, with measurement of eltrom-

bopag).

5.4 Conclusions

This chapter presented a comparison of micro-rate constant and macro-rate constant
mechanistic models for the uptake of pitavastatin and eltrombopag and their interac-
tion at the level of transporter mediated in cryopreserved human hepatocytes. The

measurement of eltrombopag in the same sample as pitavastatin decreased the residuals
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of the individual predictions. Macro-rate constant models (Models 3 and 4) were never
the best at fitting to the experimental data based on the wBIC with the same num-
ber of datapoints and % RMSRE across experimental set-ups. A mutual competitive
mode of inhibition for the uptake of pitavastatin and eltrombopag (Modell, including
measurement of eltrombopag) was the overall best fitting model of the eight tested.

Future experimental work could evaluate multiple eltrombopag concentrations, as
well as extra timepoints taken during the pre-incubation period, so that initial conditions
for eltrombopag do not have to be estimated in the model, but would be known from
the experimental data. Quantification of metabolites and their inclusion in a micro-rate
constant mechanistic model may help to decrease the covariance between kyp and k.p
and improve model fits.

With the inclusion of eltrombopag measurements, it was interesting to observe
whether this would alter the D-optimal design using PopED [195] in R compared to
the previous Chapter and improve the number of stable points. Neither the obtained
triangular matrix of full matrix design gave any stable points, with the triangular matrix
more akin to the design used in the experimental used here (0.25, 0.5, 1, 2, 5, 10 and 30

min). The timepoints are given as follows:
e Triangular Matrix: 0.25, 0.5, 1, 3.2, 6.2, 12.25, 38 min
e Full Matrix: 0.25, 4.25, 10.2, 11.2, 14, 17, 28 min

The scaled micro-rate constants obtained in this chapter will be used in the next
chapter in a PBPK model, to evaluate whether the marginal calculated R values from a
static model at 75 mg eltrombopag (see Table 5.7 R values in bold) translate in a PBPK

model.
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Chapter 6

Development of a
Semi-Mechanistic Human
Physiologically Based
Pharmacokinetic Model for the
Disposition of Pitavastatin and

Eltrombopag

6.1 Overview

This chapter builds on the work presented in the previous chapter with regard to the
TrDDI between pitavastatin and eltrombopag and, along with the work in that chapter
will be submitted to CPT: Pharmacometrics € Systems Pharmacology. The potential
for a clinical TrDDI calculated using a static interaction model [18, 19] in the previous
chapter (see Chapter 5, Table 5.7), suggested that only at a dose of 75 mg of eltrombopag,
was a small potential for an interaction with pitavastatin likely (R value = 1.06-1.07
at 75 mg eltrombopag and 1 mg pitavastatin). Given the large degree of inhibition
observed in vitro in cryopreserved human hepatocytes with 30 nmol/ml of eltrombopag
(see Chapter 5, Fig. 5.4), it was decided to evaluate the potential for interaction between
pitavastatin and eltrombopag using a more dynamic approach through Physiologically
Based Pharmacokinetic (PBPK) modelling. There are two levels of PBPK models in
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the literature to evaluate TrDDIs:

1. Semi-mechanistic PBPK models: which focus on the organ(s) of interest only (e.g.
Takeuchi et al. [244] included 4 compartments (GI tract, liver extracellular space,
liver and a central compartment) to explain the TrDDI between rosuvastatin and
eltrombopag - the basis for the PBPK model presented below), assuming that these
can adequately explain the PK data and subsequent interactions [54, 244, 260].

2. Full PBPK models include all organs, not just those of focused interest with regard
to TrDDIs, as such they are much larger models [38, 179, 261, 262]. For example
Li et al. [179] included 19 compartments (5 for the liver, and liver extra vascular
space) to evaluate the effect that ethnicity (Japanese and Caucasian) has on the
pharmacokinetics of rosuvastatin and pravastatin following oral and intra-venous

administration).

These are clearly very different approaches, if one was to include inhibitor in a full
PBPK model, this would lead to 384 compartments, and this is where commercial
packages come to the fore, with optimised software to cater such large models (e.g.
SimCYP (Certara, Princeton, USA), Gastroplus (Simulations Plus, Lancaster, USA)
and PK-Sim (Bayer, Leverkusen, Germany)).

There are conflicting articles for full PBPK models with regard to the number of
liver extracellular space and liver cellular compartments that can be used to fit the data,
with 1, 3, 4 and 5 compartments used [54, 261-263], and this also depends on which statin
was evaluated (rosuvastatin, rosuvastatin, pravastatin and cerivastatin respectively, [54,
261-263]). Yao et al. [262] evaluated 1, 3 and 5 compartments for the extravascular
space and liver and found no difference in fit between the number of compartments
considered, and was attributed to the robustness of the use of the “5 liver model” [262].

The aim of this chapter is to qualitatively evaluate the TrDDI between pitavas-
tatin and eltrombopag at clinically relevant doses. As we are interested in the DDI at
the level of the liver only, this will be done through a semi-mechanistic PBPK model in
R using the DeSolve package [1, 186], based on the model of Takeuchi et al. [244].
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6.2 PBPK Model

6.2.1 Identifiability Analysis

As per the previous chapters, prior to PBPK model development, a model for pitavas-
tatin only (Egs. 6.1-6.6, Table 6.1 without inhibition of uptake from eltrombopag) and
then a combined model in the presence of eltromobopag (Eqs. 6.1-6.12, Table 6.1), was

evaluated for structural identifiability, given the unknown parameter vector:

{kge) Ka.Pu kbile’ Vmaz.up.Pu Km.up.Pa Pdif.P7 Pdef.Py CLmet.Pv CLbi.P7 CLum'ne.Pa
Ka.E) Vmaw.up.Ey Km.up.Eu Pdif.Eu Pdef.Ea CLmet.Ea CLbi.E}a

with known initial conditions of the doses of pitavastatin (1 mg) and eltrombopag (75
mg):
[1,0,0,0,0,0,75,0,0,0,0]

and observations of the blood concentration of pitavastatin (y1 = S) and eltrom-
bopag (y2 = Ig). The structural identifiability analysis was carried out using the
Identifiability Analysis package [16, 160] in Mathematica 11.3 (see Chapter 2,
Section 2.4.1).

The PBPK models for pitavastatin only or pitavastatin with eltrombopag were
at least structurally locally identifiable with no parameters unidentifiable if the fol-

lowing were assumed known: Volumes and blood flows, and the fraction unbound

(fu.pl.P/blOOd:plasma = fu.blood.Xa fu.pl.E and fu.L.X)-

6.2.2 PBPK Model Development

A semi-mechanistic PBPK model was fitted to rosuvastatin and eltrombopag separately
to obtain parameters which were then fixed for the simulation of the TrDDI between
the two drugs, assuming that hOATP1B1 was the driving force for the TrDDI [244].
The model developed here (Fig. 6.2) was based on the principle that the uptake of
pitavastatin could be inhibited by eltrombopag in patients based on the data obtained
from Chapter 5. Yoshikado et al. [260] used a PBPK model to adequately describe the
interaction between pitavastatin or fluvastatin with CsA, based on clinical data. The
PBPK model included 5 liver compartments, 3 compartments to allow for entero-hepatic
recirculation as well as muscle, skin and adipose to allow distribution [260]. Both of these
models simplified the uptake into clearances [244] or the ratio of active:passive uptake
clearance [260] to adequately fit the data, but seemed to not describe the time to Cyqz-
As the Michaelis-Menten assumptions for pitavastatin held (see previous chapter), it
was decided to scale the parameters from micro-rate constants to Michaelis-Menten
parameters for pitavatatin and eltrombopag (from Model 1, including eltrombopag in
Chapter 5). These parameters were then scaled directly to a normal healthy 83 kg male
[2] (see Table 6.2), to see if the pitavastatin data could be adequately fitted visually

before the inclusion of eltrombopag due to the greater amount of in wvitro data for
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Figure 6.1: Schematic of the developed semi-mechanistic PBPK model for the concentrations
in the liver compartment (X4) assumed to be involved in the TrDDI between pitavastatin and
eltrombopag, which is linked to the concentration in the central compartment (Xg) via the
concentration in the liver extracellular space (X3) through hepatic blood flow (Q). The dose is
applied as an amount into the stomach (X7), which is then transported into the GI Tract (X3)
with gastric emptying rate constant (kge). Drug is absorbed into X3 with the absorption rate
constant (K,x), where free drug moves into the liver via saturable Michaelis-Menten kinetics
(Vinag.up.x and Ky, 4p. x) and is inhibited by the opposing drug in X3 (I3) via the Ky, (Kr.up)-
Passive movement of drug into and out of the liver with clearances Py; s x and Py . x respectively.
Biliary excretion of both drugs (C'Lp; x ) into Xa through the gallbladder (X5) with bile flow rate
constant (kp;.) where they can be re-absorbed. Both drugs have metabolic clearance from the
liver (CLpet.x), whilst pitavastatin is also cleared into the urine (CLygine.p) with the kidney
blood flow (Qk)
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Table 6.1: PBPK model system of ODEs instigated in R using the deSolve package [1] (see Fig.
6.1)

Compartment Equation
Pitavastatin Stomach (51, ng) % = —kgeS1 (6.1)
Pitavastatin GI Tract (S2, ng) % = kgeS1 — Ka.pS2 + kpiteSs (6.2)
Pitavastatin Liver Extracellu- % = ( — fub.PS3 VmaiuP'P + Pyis.p
lar Space (93, ng/ml) Kmup.s (1 + Km.ip.E) + fubl.PS3
+ Qm fub.p (S6 — S3) + Ko.pSa + Pdef,Pfu.L.PS4> [Vewr.m  (6.3)
dSy Vinaz.up.P ‘
Pitavastatin Liver (S4, ng/ml) dar (f“"bl'Psg Kpup.s <1 + K,.fzp_E) + fubl.PS3 g
= fur.PS1(CLyet.p + CLyi.p + Paey.P) >/VH (6.4)
Pitavastatin Gallbladder (S5, ng/ml) % = CLyi.pfur.rSi/Vaan — kviteSs (6.5)
Pitavastatin Central (Sg, ng/ml) de = (Qu fub.r(93 = S6) — QK CLurine.rSs) /Ve.p (6.6)
Eltrombopag Stomach (I, ng) / % = —kgel1 (6.7)
Eltrombopag GI Tract (I2, ng) % = kgel1 — Ko.glo + kpirels (6.8)
Eltrombopag Liver Extracel- % = <— fupt.el3 wnaz:p'E + Puir.E
lular Space (I3, ng/ml) Kmup.E (1 + T:pp) + fun.els
+ Qu fub.e (Is — I3) + Ka.plo + Pdefﬂfu,L.ELx) [Vewt.r  (6.9)
dly Vinaz.up.B y
Blirombopag Liver (I, ng/ml) & = (s Ko (U i)+ famls
~ fur.BI1(CLier.5 + CLyi g + Picr.) )/Vn (6.10)
Eltrombopag Gallbladder (I5, ng/ml) % = CLyipfur.pls/Vaap — kvitels (6.11)
Eltrombopag Central (I, ng/ml) % = (Qu fupe(Is —16)) /Ver (6.12)

X = S or P = pitavastatin, or X = I or E = eltrombopag, X;_g represent stomach, the GI Tract where absorption takes
place, the liver extracellular space (volume = V. g ), the liver (volume = Vpy), the gall bladder (volume = Vg, p;), central
compartment (volume = V. x). kge = the gastric emptying rate, K, x = the absorption rate, ky;;e = the bile flow rate
(all /min). fy p1.p, fu.pt.p and fy 1. x = the fraction unbound in the blood (pitavastatin), plasma (eltrombopag) and liver
respectively. Qg and Qg are the liver and kidney blood flows respectively (ml/min). CL,,ct.x, CLp;.x and CLyrine. P
are the metabolic, biliary and urinary (pitavastatin only) clearance respectively (ml/min). Vi, g0 up.x and Ky, yp. x are the
maximum uptake velocity (ng/min) and concentration at half of Vi qq.up. x (ng/ml) respectively.
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pitavastatin available.

Pitavastatin was applied as a 1 mg bolus into the stomach (S7) which was then
transferred into the gut, at the rate of gastric emptying (kge, taken as the inverse of
a minimum gastric emptying time of 10 min [132], see Table 6.1). This was sufficient
to allow enough of a time lag to prevent both drugs reaching their respective Ciaz
too early (time to Chaz = Timaz), and was more simplistic than including separate
intestinal segment compartments as used in a full PBPK model [261]. Pitavastatin is
absorbed from the GI tract (S2) into the liver extracellular volume (S3) via the first
order absorption rate constant K, p, (see Table 6.1, Eq. 6.2 and Table 6.2), assuming
that all of the administered dose is absorbed (i.e. there is assumed to be no metabolism
or efflux transporter activity in the gut) [260]. Movement of free pitavastatin (f,p.p =
0.012 (% CV = 42), see Table 6.2) into the liver is with saturable (Vi,qz.up.p and K, up.p)
and passive diffusion (Py p), with diffusion allowed back into the extravascular space
(Pges.p). Any liver (S4) elimination of free pitavastatin is through metabolism (CLyer. p)
or biliary excretion (C'Ly; p) into the gallbladder (S5, volume = 36 ml (% RSE = 2.5),
[264], see Table 6.2), which returns back to the GI Tract via the gallbladder emptying
rate (kpie = 0.0618 /min (% RSE = 11)) to be re-absorbed. The liver extracellular
compartment (Ve,:. g = 556 ml [229], once adjusted to an 83 kg male) is considered as
the lumping of the hepatic portal vein, the hepatic artery and liver blood volume, which
then link to the central blood volume compartment (V,.p) via the central vein through
the hepatic blood flow (Qg). Urinary clearance (CLyyine.p) of free pitavastatin is from
the central compartment through the kidney blood flow (Qx). The clinical study for a 1
mg oral dose of pitavastatin in healthy volunteers included measurement of pitavastatin
in plasma [9], therefore, as the PBPK model was developed for pitavastatin in the blood
(total blood volume = 5820 ml [2], see Table 6.2), the clinical data were converted from
plasma concentration (ng/ml) to blood by dividing by the blood:plasma ratio obtained
from the literature (0.425 £+ 0.162, [209]).

Due to the high level of binding of eltrombopag to plasma proteins (99.8%, [243]),
and the fraction of radioactivity in blood cells of 0-16 % [11], it was assumed that
eltrombopag only exists in plasma (plasma volume = 3460 ml, [2]), and has a volume
of distribution of 2940 ml [244]. The FDA guidance suggests the use of 1 % free drug in
the plasma as a fixed value when the estimated value is below this, due to inaccuracies
in estimation [19]. Given the high level of binding and low recovery (10 %) from the
RED device used in the experiment in Chapter 5, the value of fraction unbound in the
plasma (fy,.p. ) of 0.002 [243], 0.01 and 0.005 were checked, with a value of 0.005 giving
the best visual fit to the 75 mg clinical data for eltrombopag [11]. Eltrombopag was
applied as a 75 mg bolus into the stomach (I;), which was then transferred into the gut
at the same rate as for pitavastatin through kge. The fraction of eltrombopag that was
absorbable and escaped metabolism in the gut (F,Fy in the literature) was reported as
0.5 [244, 246], but assumed to be 1 here. Eltrombopag was absorbed from the GI tract
into the liver extracellular space (I3) with first order absorption rate constant (K, g =

11 /min). Movement of free eltrombopag into the liver is with saturable (V;,qz.up. and
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Kop.up.e) and passive diffusion (Py;r.g), with diffusion back into the extravascular space
through Py . Any liver (1) elimination of free eltrombopag is via metabolic clearance
(CLpet.p) or biliary excretion through the C'Ly; g rate constant into the gallbladder (75,
volume = 36 ml (% RSE = 2.5), [264], see Table 6.2), which returns back to the GI
Tract to be re-absorbed. The liver extracellular compartment links to the central plasma
volume compartment with 5, and no urinary elimination of eltrombopag was included
as only metabolites contributed to the urinary radioactivity in humans [11]. Interactions
between pitavastatin and eltrombopag only occurred at the uptake transporter level
through competitive inhibition of uptake only via their respective K, ., values (see Fig.
6.1, 1+1/Kf.p).
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The PBPK model was generated as a set of ODEs (Table 6.1) that were solved
numerically in R [186] using the deSolve package [1]. To gain an estimate of error
in the model a Monte-Carlo simulation of 100 subjects (healthy male, 83 kg), each
parameter was factored as 100 normally distributed random numbers with a mean of
the parameter estimate, and a standard deviation of 0.2 or 0.3 times the parameter
estimate (for literature derived values and model derived values respectively). The code

for the whole model is given in Appendix G.

6.3 Results and Discussion

Whilst the PBPK models developed here are simulations only, based on the drug char-
acteristics and physiology, the visual fit for pitavastatin alone (Fig. 6.2a, blue line
and shading) fit the data reasonably well and replicated the shape of the blood con-
centration versus time data well (extracted from Prueksaritanont et al. [9], with the
associated errors bars). No experimentally derived parameters (fu.r.p, Piif.p, Pacs.p,
Vinaz.ups Km.up.p and CLy,e p) or other parameters were adjusted in the visual fitting
process (see Table 6.2).

For eltrombopag alone (Fig. 6.3a, blue line and shading), the mean simulation
(blue line) fitted the plasma concentration reasonably well and closely followed the shape
of the plasma concentration versus time data (extracted from Deng et al. [11]), but the
large error shading of the 95 % confidence intervals increased to large proportions during
the eltrombopag elimination phase. Whilst the experimentally derived values (Py;f.p,
Pict.p, Vinaz.up and Kp, up p) required no adjustment, f, r.g was unreliable if calculated
using the same equation as for pitavastatin (see Table 6.2 f, 1 p), and therefore was
adjusted stepwise from 1 to 0.4. The total CL/F value for eltrombopag is low (13
ml/min, [243]), this comprises both biliary (C'Ly; g) and metabolic clearances (C' Lyt ),
with biliary clearance expected to dominate, as 20 % of the dose was eliminated in the
faeces as unchanged eltrombopag. 20 % of 13 ml/min (2.6 ml/min) was not sufficient
to follow the elimination part of the plasma concentration curve and was adjusted to 12
ml/min, with the metabolism set to a third lower at 8 ml/min.

Following a 1 mg dose of pitavastatin, in the presence of 75 mg eltrombopag,
and based on the inhibition of uptake only, the pitavastatin plasma concentration-time
curve Chq, more than doubled from 20 ng/ml up to 41 ng/ml to above the data from
a 2 mg dose (Fig. 6.2b, open circles, taken from the FDA document), without visually
altering the elimination (Fig. 6.2b, solid line). The AUCy_; (calculated using the zoo
package in R) ratio in the presence and absence of a 75 mg dose of eltrombopag (94
h.ng/ml/ 45 h.ng/ml respectively = 2.1) increased by more than the static R models
would suggest (R value = 1.1-1.19 using the EMA guidelines and 1.07 using the FDA
guidelines, see Chapter 5, Table 5.7). The simulated concentration of eltrombopag in
the liver extra cellular compartment following a 75 mg dose (52956 ng/ml at 15 min),
was much larger than the K g value calculated from the in vitro data obtained from the

previous chapter (K7 p = 3138 ng/ml), making a TrDDI more likely with pitavastatin
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Figure 6.2: Semi-mechanistic PBPK model Monte-Carlo simulation fits (100 subjects) for
pitavastatin (1 mg dose) in the absence (a, blue) and presence (b, red) of eltrombopag (75
mg). Circles and error bars are clinical data, extracted from Prueksaritanont et al. [9], solid
lines are the mean, shading denotes the 95 % confidence intervals. Open circles are pitavastatin
(2mg dose) extracted from the pitavastatin FDA drug submission document [10]

as the “victim” drug and eltrombopag as the “perpetrator” drug.

Following a 75 mg dose of eltrombopag, in the presence of a dose of 1 mg pitavas-
tatin, and based on inhibition of uptake only, the eltrombopag plasma concentration-
time curve did not change (Fig. 6.3b). The Pys g value = 11780 (9424-14136) ml/min
(Table 6.2) was much greater than the transporter mediated clearance for eltrombopag
(Vinazup.BE/Km.up.r = 1626 (891 — 3678) ml/min), making a TrDDI unlikely with el-
trombopag as the “victim” drug. Takeuchi et al. [244] also saw no difference in the
simulated eltrombopag plasma concentration following a 75 mg dose in the presence of
rosuvastatin at 10 mg. Whilst the simulated rosuvastatin concentration was altered to
a similar amount as shown here, only if the IC5o was a tenth of that estimated (i.e. 0.09
uM = 39.8 ng/ml). It was shown that pitavastatin was more sensitive to inhibition by
an 1.V. dose of rifampicin than rosuvastatin in a healthy volunteer study (7.6- and 3-fold
increase in AUC respectively) [9], therefore it is expected that the K g value obtained
here would be sufficient clinically to inhibit pitavastatin uptake into the liver, leading
to a TrDDI.

6.4 Conclusions

This chapter developed a semi-mechanistic PBPK model to evaluate the effect of el-
trombopag inhibition of pitavastatin uptake using the scaled data from Chapter 5. The
model consisted of 5-6 compartments (GI tract including the stomach, the liver extra-

cellular space, the liver and gallbladder and a central blood or plasma compartment).
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Figure 6.3: Semi-mechanistic PBPK model Monte-Carlo simulation fits (100 subjects) for el-
trombopag (75 mg dose) in the absence (a, blue) and presence (b, red) of pitavastatin (1 mg).

Points are clinical data, extracted from Deng et al. [11], solid lines are the mean, shading denotes
the 95 % confidence intervals

Pitavastatin blood and eltrombopag plasma concentrations were then estimated using
a Monte-Carlo simulation of 100 human subjects (70 kg male) following a 1mg dose of
pitavastatin with a 75 mg dose of eltrombopag.

The use of a 75 mg dose of eltrombopag doubled the exposure of a 1 mg dose of
pitavastatin (AUC ratio = 2.1) in the 100 virtual subjects without altering the elimi-
nation, whilst no effect was seen on the eltrombopag plasma concentration versus time
profile. This makes the PBPK model a useful tool beyond the static clinical assess-
ment 'R value’ approach at least for substrates that are sensitive to inhibition through
OATP1B, such as pitavastatin.

This chapter represents a preliminary analysis of in vitro data in a PBPK model,
and is highly simplistic in its nature. The previous chapters have all shown that micro-
rate constant mechanistic models offer improved data fits and are more dynamic in the
mechanisms of inhibition than a macro-rate constant model. Future work is therefore
potentially quite extensive, both with regard to a more robust parameter estimation
approach and the development of a model that incorporates micro-rate constants, with

transporter occupancy a key component.
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Chapter 7

Conclusions and Further Work

There is currently a need to evaluate the interaction of drugs in the liver, and at the
liver membrane for all orally absorbed drugs and food. As such the liver “sees” much
higher concentrations than the rest of the body. Prior to submission of a new drug to
the regulatory agencies, assessments have to be made both in terms of hepatic enzyme
interactions, but also the liver plasma membrane transporters at the sinusoid and bile
canaliculus [18, 19]. The interactions of drugs with liver membrane transporters are
currently poorly understood at a molecular level [20]. There is strong interest in terms
of the pharmacology of the transporters and how we can examine and understand these
interactions through mathematical models [20-22]. There is also increased interest in
the evaluation of uptake inhibition mechanisms and whether the long-lasting inhibi-
tion of transporters can explain the discrepancy between in vitro and in vivo studies
[207, 208]. Evaluation of time dependent inhibition of selected transporters is also now
recommended as part of new drug submissions to the regulatory authorities [18, 19]. It
is these interactions and processes that this thesis evaluated in an attempt to further
the knowledge base and understanding in this field.

The objective of this thesis was to improve the determination of transporter me-
diated drug-drug interactions (TrDDIs) in in vitro liver specific cellular systems through
the use of structurally identifiable mechanistic models describing the dynamics of the
interaction between substrates and inhibitors.

Currently the dynamics of interactions through the use of micro-rate constant
models, where steady-state assumptions are not implied in data analysis are less favoured.
Whilst modelling and data analysis conducted using macro-rate constant models using
Michaelis-Menten type kinetics, under the assumption of rapid equilibration of substrate
with the transporter (association with the transporter is almost instantaneous) are more
common.

Therefore this thesis tried to answer the main aim and that above relating to
steady-state assumptions with a series of objectives for a selection of substrates where

active transport into the cell dominates over passive:

1. Develop mechanistic models that characterise the data, and are possible given the

available observations available from in wvitro cellular drug uptake experiments,
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extending the work of Grandjean [25] to include inhibition of transport.

2. Evaluate the effectiveness of both macro-rate constant models and micro-rate con-
stant models with the inclusion of substrate and inhibitor and determine their

structural identifiability for a given model and observations available.

3. Design experiments to optimise the data collected for substrate and inhibitors for
use within the mechanistic models across different cellular systems (human cell

lines, rat and human hepatocytes) under different inhibition conditions.

4. Using the micro-rate constant and macro-rate constant mechanistic models, obtain
robust model fits that adequately describe interaction between substrates and

inhibitors, whilst gaining an insight in terms of model selectivity.

5. Evaluate whether through the use of static clinical interaction models and a more
dynamic PBPK supports the potential for TrDDIs in the clinic in human hepato-

cytes.

7.1 Chapter Summary

Chapter 3 evaluated the uptake of a fluorescent substrate, DCF, as an alternative to
the use radio labelled substrates in HEK293-OATP1B1 cells. Whilst the inhibition of
selective substrates by gemfibrozil in HEK293-OATP1B1 has been conducted under the
assumption of competitive inhibition [27, 135, 168], the mode of inhibition has not been
fully evaluated. The mode of inhibition of DCF by gemfibrozil was therefore evaluated
across three different scenarios: co-incubation with gemfibrozil, to examine for compet-
itive inhibition; pre-incubation with gemfibrozil and then co-incubation with gembfi-
brozil, to evaluate time dependent effects; and finally pre-incubation with gemfibrozil,
to evaluate lasting inhibition. In this chapter, the fluorescence of DCF was measured in
each sample, but the analysis of the concentration of gemfibrozil was not undertaken.

For the micro-rate constant models, compartments representing the amount in
the medium, the amount bound to transporter and the amount within cell were included
in the mechanistic model for DCF. For gemfibrozil, only the amount in the medium and
amount bound to transporter were included. As DCF was measured as a concentration,
the observations in the mechanistic model were scaled from an amount to concentration
by multiplication of the combined transporter and cellular amounts by the inverse of the
cell volume. However, as the total number of cells was not known in the experiments, a
cellularity factor was determined and the data normalised to per 10° cells, enabling the
use of a cell volume/10° cells.

Prior to parameter estimation, the micro-rate constant models and macro-rate
constant models for competitive and non-competitive inhibition underwent a formal
structural identifiabilty analysis. The micro-rate constant models describing the compet-
itive inhibition and non-competitive (time-dependent inhibition) of DCF by gemfibrozil

were all at least structurally (locally) identifiable given known inputs and observations,
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with no parameters unidentifiable. The macro-rate constant models were unidentifiable
unless one of the parameters relating to the Michaelis-Menten uptake (K., K1, Vinas
or Kinact) were known for competitive and non-competitive inhibition respectively.

For the co-incubation and pre-co-incubation scenarios, the micro-rate constant
models were the best fitting models to the experimental data, compared to the macro-
rate constant models based on the BIC values and % RMSRE for the individual predic-
tions under the assumption of competitive inhibition (BIC = 1540 (RMSRE = 49 %)
and 1600 (58 %) for the co-incubation scenatio data respectively, and 1242 (50 %) and
1249 (52 %) respectively for the pre-co-incubation scenario data). Across the scenarios,
the competitive inhibition of DCF uptake by gemfibrozil into HEK293-OATP1B1 cells
was the supported mechanism of inhibition, consistent with the literature.

The estimate of the total amount of transporters (7, = 0.06 (0.04 — 0.09)
nmols/10% cells) on the plasma membrane of HEK293-OATP1B1 cells, obtained us-
ing the micro-rate constant model for competitive inhibition of DCF by gemfibrozil was
similar to that determined using the same cell line extracted from crude membranes at
AstraZeneca (0.02 nmols/10° cells, P. Sharma, personal communication) and supports
the further use of mechanistic modelling for the determination of the amount of trans-
porters, along with more information regarding the binding and transport, in cell lines
at least. This value can then be used in the future to assess inter-laboratory conditions
and during PBPK model development.

Chapters 4 and 5 evaluated the uptake of a statin (atorvastatin and pitavastatin
respectively) and the inhibition of uptake and metabolism (Chapter 4) by CsA and el-
trombopag respectively in suspended hepatocytes (rat and human respectively). Unlike
Chapter 3 which used plated HEK293-OATP1B1 cells, Chapter 4 and Chapter 5 used
hepatocytes in suspensions, and therefore a centrifugal oil-spin method of separating
the cells from the medium was needed, with more timepoints at the beginning of the
experiment to help describe the uptake process and then prolonged timepoints to help
describe elimination through metabolism. Chapter 4 used a high throughput method for
hepatocyte incubations in Teflon blocks containing 16 troughs, whilst Chapter 5 used
individual glass vials. The technique for both was the same - a dense bottom layer into
which the cells reside after centrifugation, separated from the medium by an oil layer
that is sufficiently dense that only hepatocytes can pass through, leaving the medium on
top. For Chapter 4, only atorvastatin was measured in the hepatocytes, whilst in Chap-
ter 5, in addition to the measurement of pitavastatin in the hepatocytes, eltrombopag
was also measured simultaneously in the same sample.

The mechanistic models for both Chapter 4 and 5 were therefore very similar,
with additional metabolism compared to Chapter 3 in the models through Michaelis-
Menten parameters and a first order elimination rate constant respectively. Prior to
parameter estimation, the micro-rate constant models and macro-rate constant models
for competitive and non-competitive inhibition underwent a formal structural identi-
fiabilty analysis. The inclusion of metabolism in Chapter 4 and 5 did not alter the

result for the micro-rate constant models with the models for competitive and non-
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competitive inhibition at least structurally (locally) identifiable, given the model inputs
and observations, with no parameters unidentifiable. For the macro-rate constant mod-
els described in Chapter 4, which included two Michaelis-Menten non-linearities, the
models were unidentifiable, unless 2 parameters relating to Michaelis-Menten uptake
and metabolism (K, up, Krup, Kmmet, Kr.met; Vinaz.up O Kinact.up) were known for
competitive and non-competitive inhibition respectively. Measurement of pitavatatin
and eltrombopag simultaneously in Chapter 5 led to the macro-rate constants being at
least structurally (locally) identifiable, given the model inputs and observations, with
no parameters unidentifiable.

In Chapter 4, a micro-rate constant model for non-competitive inhibition of ator-
vastatin by CsA was the best fitting model to the experimental data with a probability
wBIC = 0.54 compared to competitive inhibition wBIC = 0.45. The macro-rate con-
stant models for non-competitive and competitive inhibitions were not supported as the
best fitting models with ABIC values of 11 and 94 compared to best fitting model re-
spectively. Non-competitive inhibition of uptake by CsA, and competitive inhibition of
metabolism with different substrates were also supported in the literature using macro-
rate constant models [140, 208, 225].

In Chapter 5, simultaneous measurement of pitavastatin and eltrombopag in
a micro-rate constant model for competitive inhibition of pitavatatin by eltrombopag
was the best fitting model to the experimental data, with a decrease in the individual
RMSRE compared to when pitavatatin only was measured (RMSRE = 7 % and 9 %
respectively). Macro-rate constant models were never the best fitting model to the
experimental data, partially due to the inability to adequately follow the elimination of
pitavastatin from the cell through metabolism.

The use of a static clinical interaction models by calculation of the ‘R value’
[18, 19] for the effect of a 75 mg dose eltrombopag on a 1 mg dose of pitavastatin sug-
gested little potential for a clinical TrDDI based on the calculated maximum liver inlet
concentration (R value = 1.06-1.07), despite the large degree of inhibition seen in the in
vitro data. This is partly due to the high level of plasma protein binding of eltrombopag,
leading to an underestimation of the clinical interaction potential. Therefore in Chapter
6, a semi-mechanistic PBPK model was developed which included compartments the
gastro-intestinal tract (GI tract), the blood flow linked to the liver extracellular space
(the liver inlet), where the interaction is expected to take place between pitavastatin
and eltrombopag, and the liver and central blood volume for elimination of drug. The
estimated potential for a clinical interaction for the PBPK model, based on the cal-
culated area under the pitavastatin blood curve ratio, in the presence and absence of
eltrombopag, the AUC ratio = 2.1 was double that estimated using a static model, and
therefore caution should be exercised if a clinical interaction study was to be conducted

between pitavastatin and eltrombopag.
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7.2 Future Work

Across the experimental chapters (Chapters 3-5), the future experimental work follows

similar processes:

e Measurement of inhibitor at multiple concentrations simultaneously with substrate
in the same sample will aid in the structural identifiability of macro-rate constant

models, and help in the estimation of parameters in micro-rate constants.

e The experimental determination of the degree of binding interaction of substrates
and inhibitors can help in the robust fitting of parameters (k, and k) and further

the knowledge of transporter pharmacology.

e Accurate measurement of the total amount of plasma membrane transporters in
different cellular systems (cell lines and hepatocytes) in comparison with that
obtained from micro-rate constant mechanistic models in the same cellular system
used (e.g. like in Chapter 4). This can be used to confirm whether the 7, parameter

value obtained is comparable to the measurement in crude membrane fractions.

e Quantification of metabolites should be considered to improve the understanding of
the complexity of metabolism and its inhibition as well as possible effects on uptake
processes. The use of LC-MSMS analysis should make this relatively straight-

forward.

e An initial D-optimal design analysis was carried out for each of the experimental
chapters based on the best fitting mechanistic model, with the same number of

timepoints and concentrations.

— Chapter 3: The full matrix was similar to that obtained experimentally for the co-
incubation data, with a greater spread of timepoints after 1.33 min. This suggests
that the pre-co-incubation design could be improved using the co-incubation D-

optimal design.

— Chapter 4: Neither the full or triangular matrix removed the stable point at 0.25
min. As the model fits do not fit as well at low incubation concentrations of
atorvastatin, future work should increase replicates at the lower concentrations

before further D-optimal design experiments are undertaken.

— Chapter 5: The triangular matrix was similar to that obtained experimentally, but
with a shift at later timepoints by 1-2 min and a final timepoint at 38 min. This
may assist in the more accurate determination of the elimination rate constant to
separate it from the passive rate constant for the movement of pitavastatin out of
the cell.

e The use of an increased number of substrates and inhibitors will help to build
a relationship with regard to transporter kinetics at the molecular level through

micro-rate constant models.
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The development of a more robust parameter estimation approach for the semi-
mechanistic PBPK model described in Chapter 6 to gain accurate parameter estimates,
rather than a visual fit requires extensive work if the incorporation of micro-rate con-
stants are to be included. Measurement of the amount of transporters in the same
experimental system to allow scaling from in vitro up to in vivo in animals and humans,
as well as the use of micro-rate constant mechanistic models will enable more accurate

predictions of DDIs to be determined a priori, rather than a posteriori as they are now.

7.3 Final Conclusions

This thesis and the chapters herein have shown that across experimental systems, micro-
rate constant models offer a significant improvement in structural identifiability with
each micro-rate constant model at least structurally locally identifiable. The structural
(local) identifiability of a model and the parameters therein was shown in each case to
give an improved model fit to the experimental data, compared to their macro-rate con-
stant model counterparts, which needed up to two parameters to be already known prior
to fitting to experimental data. However, the use of micro-rate constant models also re-
quire sufficient data to cover the timecourse of uptake and metabolism, and as such may
not be wholly suitable very early in research when a transport inhibitor “yes/no” may
suffice. Indeed in Chapters 3-5 (with the exception of the pre-co-incubation scenario
from Chapter 3), both the micro-rate constant and macro-rate constant mechanistic
models were in agreement with the mode of inhibition. This provides evidence that the
micro-rate constant mechanistic models are not over parameterised, but as well as a
mode of inhibition confirmation, provide much more information regarding the binding
kinetics and transport of substrate and inhibitors that could otherwise be missed using
macro-rate constant models. Once more transporter data become available for more
selected substrates and inhibitors where a more in depth analysis is required, then the
use of micro-rate constant mechanistic models for robust parameter estimation should
become the go-to approach for TrDDI assessment. What is apparent across each of the
experimental chapters, is the combined use of simple tools to evaluate whether a mecha-
nistic model is at least structurally identifiable, along with robust parameter estimation
from well designed experiments are essential if the parameters are to be taken into other
models. For example the combined measurement of pitavastatin and eltrombopag in hu-
man hepatocytes assisted in the semi-mechanistic PBPK model development to include

Michaelis-Menten uptake into the liver.

7.4 Personal Reflection

The development of the work presented in this thesis has been both a very enjoyable and
tough experience. Having freedom to be able to learn new concepts and implement them
in mechanistic modelling, such as gaining an understanding of identifiability analysis and

tracking the results of this into the parameter estimates derived from the models clearly
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defines how closely they are linked. If more experimental scientists made this connection
before conducting their research and experimental design, this would be of great benefit
in the prediction of TrDDIs.

Undertaking a PhD really improves the resourcefulness and mental resilience of
any researcher who undertakes one, as you really have to keep going when the results
and models do not go the way you expected initially. As the quote said at the beginning
of this PhD “See first, think later, then test”, should be a state of being during the PhD
and beyond.
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Appendix A

Structural Identifiability of a
Three Compartment Model for
Substrate and Inhibitor
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restart

Loading LinearAlgebra
Loading Groebner

with(LinearAlgebra) :
with(Groebner) :

Many thanks to Dr Neil Evans for the following code:
Forsman Code (modified)

lieDer i=proc(h, f)
local N, V:
N:= Dimension(f) :
V:=map((a, by—>diff(b, a), [seq(x[t], t=1..N)], h) :
DotProduct(f, Vector(V), conjugate= false)
end:

listLieDer := proc(h, £, N)
local Lfs, i, tmp:
Lfs:=T[h]: tmp:=h:
for i to N do

tmp = lieDer(tmp, f) :
Lfs:= [op(Lfs), tmp];
od;
end:

obsIdeal := proc(h, £, N)
local I, Lfs, tmp:

Lfs:= listLieDer(h, £, N) :
L:=[seq(y[t]—Lfs[t+1], t=0..N)];
end:

iorel := proc(f, h)
local n, L:
n = Dimension(f) :
L = obsIdeal(h, f, n) :
UnivariatePolynomial(y[n], map(numer@expand, L), [seq(x[t], t=1..n),

ynll:
end:

ONF Approach Code

SIAio := proc(f, h, np, x0)
local out, n, A, B, pgSub, egn, tmp, ics, soln:
out = iorel(f, h);
n:= Dimension(f) :
A= coeff(out, y[n]) :
B:= eval(out, y[n]=0) :
pgSub = [seq(p[i]=q[i], 1=1..np)]:
egn = A-eval(B, pgSub) —eval(A, pgSub)-B:
tmp = collect(egn, [seq(y[i— 1], i=1..n)], 'distributed") :
eqn = {coeffs(tmp, [seq(y[i—1], 1=1..n)])):
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ics:=eval(listLieDer(h, £, n—1), [seq(x[1]=x0[1], 1i=1..n)]) :
tmp = ics —eval(ics, pgSub) :
egn = egn union {op(tmp)} :
tmp = convert(egn, list) :
soln:= solve(tmp, [seq(q[i], 1=1..np)]) :
out, simplify(ics), soln;
end:

startTime = time( ) :

F = Vector([-p[1]-x[1] —p[2]-x[1]- (p[3]-(d
-x[1]-x[2]) +p[S]-x[2], p[1]-x[1 ] plé6]:
~(p[3]1-(d[1]- X[l] x[2])-(d[2]- X[3])) +p

[11-x[1]-x[2]) - (d[2]-x[3])) +p[4]-(d[1]
(d[1]-x[1]-x[2]) —p[5]-x[2],-p[7]x[3]
[8]-(d[2]-x[3]) ]):

H:=333-x[2]:
Sldio(F, H, 8, [d[1],0,d[2]]);
timeTaken = time( ) — startTime;

3 2 32 2 322
-36926037 d| pi py P4 PgP7 — 36926037 d| p| p, pg 7 + 36926037 d| p, p; pg g — 36926037
2, 2 2, 2 2 2 2
d| dy 1Py pypep7 — 36926037 d| d, pi p, pepy + 36926037 d| d, p, p, p4 PPy + 36926037
2 3 2 2 2 2 2 2
ddyp, Py pgp; + 36926037 d| p| Py P3Py PeP7 + 36926037 d| p| py Py pgP7 + 110889 d
2 2 2 2 2 2 2
DL P2PaPsDP7Yy T 332667 d| p| p,PspsP7Yy+ 110889 d| pi py pspep,y, + 332667 d| p| p,
2 2 2 2 2 2 2 2
PPy — 36926037 d| p, p5 p3 P s — 221778 d| p, Py 5P Py Yy — 332667 d%p] D5 P Ps Yo
2 2 2 3 2
— 36926037 d| p, Py Py P4 PsP7 — 36926037 d| p, py Py PP + 221778 d| p| Py P4 D5 P P7 Y0
2 2 2.3 22 2
+ 221778 d| p\ Py Ps PcP7 Y, T 36926037 d%p2p3p6p8 — 110889 d| p5 ps ps P3 ¥y
2 2
+ 110889 d, d, p\ p, P4 psP7Yy T 221778 d, d, pi p, P47y + 110889 d, d,
2 2.2 2
P\ PyPsPeP7Yy T 221778 d\ d, py py ps 7Yy — 221778 dy dy py Py 4P P7Yy
3 2 3
—221778d, dyp, P, Ps 7Y, — 110889 d, d, p, p,ps g P7 Yy — 110889 d, d, p, ps P P71V,
2 2
— 110889 d| p| py Py P4 D5 D7y — 221778 d| p| Py Py P4 PsP7 Yy — 110889 d
2 2 2 2 2
P1PyP3PsPeP7Yy — 221778 d p\ p) P3P 7Yy — 666 dy py Py pyPs 7Yy — 999 d,
2 2 2 2 2 2 2
PIPyP4PeP7Yy — 666 d\ P Dy pspep7Yy — 999 dy PPy Pgpy Yy + 221778 d, p,
2 2. 2 22 2 2
PyP3PsPePgYy + 221778 d\ py ph p3 p Py Vo + 333 dy py py Pspgyy + 1332 dy py Py ps e g
2 22 2 2 3
Yo 1999d,py Py Pgpgyy + 221778 d) py py Py P4PeP7Yo + 221778 d) py Py P53 Pg P71 Yy
22 2 2 2
— 666 d) Py P45 7Yy~ 1332d, Dy DsPsPeP7Yy — 066 dy Py Dy D5 Pe P71y
—1332.d, p, py Ps PepVe — 221778 d, p3 Py ps PePgyo — 221778 d, p ps pe pg ¥y + 666 d,
22 2 2 2 2 2
PyPsPsPg¥y + 666 dy pps pgpg vy + 110889 d py py pyps PPy vy + 110889 d, p, ps ps
3 2 2 22 2 2 2
PeP7Yo —333d,pypypspepYy — 333 dy pyp5sPspr Yy — 333 dy pipypyps 7Y, — 333 d,
2 2 2 2 2 2 2 2 2
P\ P2P4PeP1Yy — 333 dy Py Py PsPsP7Yy — 333 dy Py Py Pe P71y — 333 dypy Py P4 D5 P71
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+333.d,py P, P4 PeP1Yo — 333 dypy Py P3 PP Yy 333 dypy Py D Py + 333 dy p,y
P3PsPyYy+333 dypypyps Py pr 3+ 333 dypy s P py Yy + 333 dy py ps P py 3 + 333
PIPyD3P4PsP1 Yy + 333 Dy Py D3 paPs Py Ve + 333 L Dyps Ps Pe P Yo + 333 D1 Py 3 Peps ¥

+ D1 Py P45 D7 Yy P\ P2 PaPs 1Yy T PL P2 PsPePr Yo + Py P2 PeP Yo — 333 Py s Py Pe Py
¥ — 666 p, 5 Py Ps Ps Py Vo — 333 Py P P3 Pg Py Vo — Py P2 P Ps Vo — 2 Iy PaPsPePs Vo — Py
P3PePs Yo+ 333 Dy Dy D3 Pals D7 Ve — 333 Dy Py D3 Dale Py Ve + 333 Py Py D3 PaDe D7 Yy

—333 Py pyP3Pely Ve + 2Py Py Pals D7 Yo + 2Py P2 P4 Ps P P1 Yy + 2 Dy PaPEPs D1 Ve

+2py Py s Deps Yo+ 333 D3 p3 Pa Pe Py Vo + 666 D3 py s Peps Vo + 333 D303 Pe s Yo — s
PEPg Yo — 2 P35 Pg Py Vo — PaPsPePs Vo — 333 Dy Py Pys Pe Py Ve — 333 Py D3 DaPs Pe Dy Ve

— 333 p,y 3 PEPg 7Yy — 333 Py D3 Ps Dy Dy Vo + P2 P4 PaP1 Yy + P Pals PsP7 Yo+ P2
Dape DYy + Dy Da Peps Ve + 36926037 d: pi pl p, + 73852074 d' pi p, p p, + 36926037 d-
Py Depy — 36926037 & pt py p, pepg + 110889 &b pt p, p, py v, — 36926037 di p p, pe e

+ 221778 d: p} p,y pe Py v, — 36926037 d; pt p pe p, — 73852074 d; pi p, pe p; — 36926037
& py pep, — 110889 d; p, p3 pey, — 221778 d; p, p3 s Peyy + 36926037 df p\ py Py Pe Py

+ 221778 d} p, py Py peP7 v, + 110889 ds p| py ps pepy v, + 36926037 ds p| p, pe g

+221778 d: p, p, pep, v, — 110889 di p5 ps pey, — 110889 d; p3 pe pg v, + 110889 d, d,
P%P2P4P7y1 +221778 d, dzlﬁpzl’épﬂl + 110889 d, d, p; p, PsPs P71

— 110889 d, d, p, p, pe p,¥, — 110889 d, d, p, p, pe p, ¥, — 110889 d, d, p, ps pe p- ¥,

— 110889 d, d, p, pp pyy, — 221778 d, p; p3 p, ¥, — 443556 d, py py ps P7 Y, — 221778 d, p;
PepsYo— 110889 d, p\ p,y py pypy vy — 221778 d, P py 3 e Py, + 110889 d,

PPy pypsps o+ 221778 d, i pypy PPy Yo — 666 dy p py pypy vy, + 110889 dy

p%pzpspépgyo —3334d, Pipzl’spﬂoyl + 221778 d, p?PZPEPSYO — 13324,

D2 Dy PP Vo, — 221778 d, i pa ps pr v + 221778 d, pt pi pe po vy — 443556 d,

D PaDs PPy + 443556 d, plp, peps v, — 221778 d, pt ps peps v, + 221778 d, p pi p1 ¥,
+221778 d1p1p§p3pép8yl + 666 dlplpgpspéyoyl + 666 dlplpgpSPSyOyl +6664d,p,
P> P Yoy + 13324, p\ b ppg vy, — 110889 d, p\ py py ps peps vy + 110889 d, py py ps
p§p7y1 —1332d,pypyp4pspryyy — 221778 d1P1P2P4P2P8J’o

—1332.d,p, P, p4ps P70y — 333 d1p1p2p§p7y0yl —2331d,p, P, PsPs P70 )

—221778.d, p, p, g ps o — 1332.d, p\ p, Py o3y + 221778 dy py P ps Ps P Yy
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+443556 d, p, pypsPe Yy + 221778 d, p, pspepsve — 221778 d, ps py pepg v, + 666 d,
PaP3Ps Yoy + 666 dy p) ps peyeyy + 1332 dy 3 ps pg py o, + 666 dy ppps oy,

+ 110889 d, p, 3 Py e p ¥, + 110889 d, p, py ps pe p, v, + 110889 d, p, ps e p7 7|

— 110889 d, P2P4P5P2P8yo —666d,pyp,psPP7Y Y, —3334d, P2P§P6P7J’oy1

— 110889 d, pzpsl’zps)’o —6664d, Pzpspél’ﬂoyl —333 dzl’?P2P4P7yoy1 —333 4,
PPy PsPr Yoy — 666 dy i py pg Py Yoy — 666 dypy pypyps P Yoy, — 333 dypy py
pgpﬂ’o)’l — 666 d,p, pypsPeP7Yy ) T 333 d2p1p2p2p7y0yl +666 dy pyp4PsPsP7Y0 Y

+333 d, ) Py PPy oYy 333 dy by Dy PP Yo »y 999 dy py s Peps Yo, 333 dy py
PepaYoyi + 333 P Py oy Ve 666 pi py g py Ve + 333 L pepy vy + 333 DL Dy 3 PabyVod

+333 p pyp3 Ps Py Yoy + 666 i py 3 Ps Py Yo Y) — 333 ) Py Py ps g Yy — 333
1Py PaPePsYo +P1PaPaP1YoVi — 333 P\ Py PsPePs Ve + DL P2Ps Py Ve — 333 Py Py g Py
Yo 21, P2 PPV, + 666 Py Py s 1Yo — 333 Py P4 e D7 Yo + 1332 0 P4 Ps P P71y

— 666 P p4PgP1 ¥y + 666 P} s pep; o — 333 P Py b1 Yy — 666 py 3 Py Ps Py Yoy, — 666 p,
P§P3P6ngoy1 _P1P§P§y(2)y1 _2P1P§P5P6J’§y1 - 2P1p§p5pgy§y1 _p1P§PéJ’§y1

— 2P, P3P Dy Vo ¥y + 666\ py D3 pyDs D7 Yoy + 333 Py pypsDa Py Vo,

+ 666 py Py P3 Ps Ps 1Yo — 333 Py PyP3 PePy Yo — 333 Py PyPaPs P Yy

+4p, Dy PyPsP7Y0Y) 333 Py PyPaPP Y+ 2P PyPaPe 7 Y0 Y1 — 333 Py PyPs PPy Vi

+ 2P, Dy P31V 6Py PyPs PP YY) 333Dy Dy Papg Y T2y Py Pepy Yoy, +333 1,
PaP3 7Y — 666 Py P Ps o7 ¥ + 666 Py py s P 7Y — 1332 py pyps peps Yy + 333 py s
PeP1Yo — 666 P, ps P73 666 3 p3 s pe Py Yoy 666 3 py P Py Yoy —P3 PR Yy, —2
PAP3P6Yo 1 =3 P15 Py VoY) ~PaPsPeYo Vi — 4 PyPsPsPs Yoy ~PaPePs Yol

— 666 py 3P4 PsPs D7V — 3331’21731741721’73’03’1 - 333p2p3p§p6p7y0y1

—999 p, Py Ps PP VoY1 — 333 Py P Dapr Yoy 333 Py paPi ey 3 PyPaPaPy YY)

+333 ) Py Ps PePy Yy + 2 PyPaPs Pe P VoY) +PaPiP1 YY) 333 pypi pepg o+ 4P,
PEPD7 VoY1 + 333 Py ps PPy Ve + 2 D2 s Py Ve V) — 333 D4 s P 7Yy — 666 py s Peps Vi

— 333 plp, pyve + 110889 dt p, p, ppy v, — 110889 d; p3 pe v,

+ 110889 d, d, p, py pg P72 — 110889 d, dy p, p p7v, — 221778 d, p, p, p v, — 221778 d,
P PPy — 110889 d, pi py pyps vy + 110889 d, pi p, p4pgy, — 110889 d, pi p, ps pe vy

+221778 d, p} pype Peyy — 333 dy P} py syt — 221778 d, pt pap, v, — 221778 d,
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PLPapspryy = 221778, pi pypepyyy — 221778 dy pi ps pgpy vy + 666 d, py ppe;

+ 333 dlplpgpgyf — 110889 d| p, py P3P P7Y, T 221778 d| p| Py P4 D5 PV,

— 666 d1p1p2p4p7y% + 221778 dlp]pzpspéy1 + 110889 d| p, p, s PsPg V1
—333d,p,PypsP7Yyy, — 333 d1P1P2P5P7J’? — 110889 d1p1p2pt23p8yl

=666 d, pypyPeP7YeY, — 999 d, pzpspﬂ% +221778 d, p, pézlp6p7yl

+221778 d, p, pyps Pe Py, + 443556 d, p, p, pep, v, + 221778 d, p, ps peps v,

+ 221778 d1P1P2P7y1 + 666 a’lpgpspﬁyoy2 + 666 d1p§p5p6yf + 666 dlpgpéyoyz
+666 d, p3 pg pg s + 110889 d, p, ps pe pyv, — 110889 d, py p, pspey, — 110889 d, p, p,
PPy —333.d, pypypgpryi — 110889 d, py pspg v, — 110889 d, py ps pepy vy

=333, pypspspr ¥y — 333 dy pypspgpryi — 110889 dy py pgpy vy — 333 dy py Py,
—333.d,p\ pypy ¥, — 333 dypy Py 4y Y) — 333 dypy Py pspr VoY, — 333 dypy Pyps P
—333dyp\ Py PPV Y, T 333 d2p2p4p6p7y? +333dyp,PsPsP7)0 ),

+ 333 d2p2p5p6p7y% + 333 a’2p2p§p7y0y2 + 333 dzpzpépﬂ% + 666 p?p4p7y0yl + 666
p?p6p7yoy1 +333 pfp2p3p7yf —333 pfpzpwgyoyl —333 pfpzpspgyoyl — 666

D1 Py Ps Py Yoy Py P2 D7 Vo) 666 by py Py yo vy + 1332 p) pyps Py vy, + 666

P P4PeP1 Yoy + 133291 ps pspy vy — 333 P Py Py Py Y] — 2P PaPs Yot — 2Py PIPs Yy
Vi =Py PaPg o3t + 333 py 0y Py pypy 3t 333 py 0y Py sy ey + 333 Py Py Py Py
+333 Py Py D3 PP Y0 Ys — 666 Py D45 Py ¥y T2y PayPr Yot — 333 Py Py P3Py Yoy
— 666 py Py Ps D6 Py VoY1 +P1 Py Ps 1YY 3 Py PaPsP1 Yo, 333 Py pyPepg oy

+ D1 Py PP Yo Vs T3Py Py PeP7 Yot 666 py D45 Yy Yy — 666 Py PPy Yoy

+ 666 py p4Ps Py Yoy — 1332 py pypg Py gy + 666 py 5 ps Py o yy — 666 py s pgpr oy
— 666 py Popy¥o ) + 333 P03 PPy )i = P3PV Y, — 2 Py Ps oYt — 2 PapsPeoy =2
P3PsPeYoYt =3 P3PsPy o)t —PaPeyo s — 2 PaPePs Yo — 333 PyP3pypepr

=333 py Py s Pe P Y0 Yy — 333 Pyp3 s PeP1 Yy — 333 Py 3 by Yoy — 333 Py psPope i
+666 P, 45 PPy YY1 3 PaPaPsP1Yo N, 333 Dy PyPepy VoY) +PaPyPs P Yo,
+333 p, s Pe Py Yo T P2P3 1Yo Ys + 2Dy Pa Py Yo, 999 s Pe Py Yo ¥y Py PsPeP;
YoYs 40y D5 ey Yot 333 Dy D Py Yoy Py PPy Yo, — 666 D4 D5 PeP1 Yoy, — 666 p,
P3Pe DY Y1 — 1332 py s Py o3y — 666 P ey ¥y — 666 ps ppy vy vy — 110889 d,
Dy payy — 221778 d, i pypy v, — 221778 dy Py pg p7 vy + 221778 dy P\ Py Py Pe Vs
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+ 110889 d, p, p, Ps Py, + 110889 dlplpzpéy2 + 110889 d, p, p, P D3>

—333d,p Py, y, T221778d, p pypp7y, + 221778 d1p1p§p7y2 + 666 a’1p§p6yl Vs

— 110889 d, p, p, Py, — 110889 d, p, ps pe. v, — 110889 d, p, pe v, — 110889 d, p, pe pg v,

—333d,py P71y, —333dypy P07y ¥, +333d, 0y o7y, Y, + 333 p?p7y% + 333
PIP2D4YoYs — 333 1t papy ¥t — 333 pi Py ps ¥y s + 333 P py s vy — 333 P py pg ¥y + 666
P PyP1Y Y2 666 P pyps i + 666 pi ps py vy + 666 pi pg py vy v, + 333 p1 b P13 — Py P
Y4333 9y Py 3 P13y Y2 — 666 Py Py 04 g Vo Vs + 666 py pypype ¥y — 333 Py Py pyps

— 333 py Py P2 Yo Yy + 333 Py Py pey; — 333 Py Py s Py Voys — 333 Py Py ps sy — 333 P s
PeYoys +333 D py1gy; — 3330y PyP Py Yo Yy + Dy PaPr YoV Y P Dy oy +333 D)
PyP7Y] + 666 py pypspryy vy + 666 py pypsps ¥ — 666 py pypepaYods + 333 by pipy 3

+ 666 p, Ps PP Yo Y2 — 666 p\ Pepy VoY, =333 Py Peps Yy = 2Py Ps Vo1 s~ P3Ps Y, —2
P3Pe VoY1 V2 — P3Py — 333 Dy 3 DgPry Vo + 333 Dy pylg¥o vy — 333 Dy 1y P

+333 py py PPy Vi +PaDaP7 Y, 333 Dypi e Yoy, — 333 Py pa Pt + 333 Py D5 Pedo s

— 333 p, ps Pe ¥y + 333 Py 05 De Py VoY + 333 Py Ps P PVt + 2Py Ps D1 Yo 01 Vs + Py Ps 7Y

+333 py peyo s — 333 Py Pyt + 333 Py e s Vo s + 333 Py Peps Vi + P2 De D1 VoV Vs

+ Py 6Py — 333 P3Py, — 666 pypsps Py oYy — 666 p4pspps i — 666 pypg pryi

— 333 P57t — 666 Ps P 1Yoy — 666 pspg pyyi — 333 pgps i + 110889 d, py py pe s

— 110889 d, p, pg vy + 666 i P73, ¥, =333 py Py Ps ¥o s +333 p, Py ps 3 s

=333 PyPeYoy; T 333 PPy Py Yy — 333 PPy Pg Yy Yy T 066 Py DyP7 Y Vs

+666 py Ps Py ¥y ¥y — D3} ¥y 333 D, Ps Pg Yo Vs — 333 Py s ey ¥2 + 333 Py g vy vy

— 333 py ey ¥2 + 333 Dy Pg Py V1 Vs Do 07 Y] Yy — 666 Dy pg 1 31 V2 — 666 ps pg p7 v, vy

— 666 pep7 3y ¥y =333 Py Py vs + 333 py py)5 +333 py py 3y +333 0y P, s

— 333p2p6y§ — 333p6p7y§, [0, 333 p,d,, -333d, (p% + (p2p3 +p5) P, —p2p3p6) ],

~P1 PPy TPy P3P — Py Ps

41=P19,=0,43=05 4, =45 45= - », 2 46=9¢ 97=0. g5

“P1PyP3 T PaP3Ps P\ Ps _
=43} |4,=P1 9=0, 93793 4= 94 45= - » »46=P197= 973 93

~P1 PPy TPy P3P — Py Ps

917 P1r 9749977492937 93 94 =9 95~ ~ 3 s 46~ P>

i

=g

93=4q4 TP, } [91=P1 4= P2 43=P3 44~ Py 95 =Ps 96 —Pe> 97 =P 93 = P3|
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Appendix B

Structural Identifiability Example
with the Identifiability

Analysis Package - Micro-rate
Constant Model

Needs| “Identifiability Analysis”]

deq = {

z)[t] == —01 * z1[t] — O2 * 1 [t] * (03 — z2[t] — z5[t]) + 04 * z2[t] + 05 * z3[t],
z5[t] == 02 x z1[t] * (03 — z2[t] — z5[t]) — (04 + O6) * z2[t],

x5[t] == 61 = z1[t] + 06 * z2[t] — (05 + 07) * x3[t],

z4[t] == —0s * z4[t] — Oo * z4[t] * (03 — z2[t] — Z5[t]) + O10 * T5[t] + 611 * z6]t],
z5[t] == 09 * z4t] * (63 — z2[t] — z5[t]) — 610 * z5[t],

zg[t] == 08 * z4[t] — 611 * z6[t]

b

Dose = 3;

Doseb = 30;

modelStates = {1, z2, 3,4, Ts5,T6} ;

ic = {x1[0]==Dose, £2[0]==0, £3[0]==0, £4[0]==Doseb, z5[0]==0, z6[0] == 0} ;
modelParameters = Table [6;, {i,12}];

observationVector = {6012 * (z5[t] + z6][t])

b

iad = Identifiability Analysis[{{deq, ic}, observationVector}, modelStates, modelParameters, ¢, u]
Identifiability AnalysisData[True, <>]

iad[“DegreesOfFreedom”]

iad[“NonldentifiableParameters”]
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Appendix C

Structural Identifiability Example
with the Identifiability

Analysis Package - Macro-rate
Constant Model

Needs| “Identifiability Analysis”]

deq = {

zi[t] == —61 * z1[t] — (62 * z1[t]) / (63 * (1 + 30 /64) + z1[t]) + 05 * z2[t],
&[] == 01 % 21[t] + (02 * z1[t]) / (O * (1 + 30 /601) + z1[t]) — (05 + O6) * 2]
5

Dose = 5;

modelStates = {z1,z2};
ic = {z1[0]==Dose, z2[0]==0} ;
modelParameters = Table [0;, {i,6}];

observationVector = {333 x z2[t]

b

iad = Identifiability Analysis[{{deq, ic}, observationVector }, modelStates, modelParameters, t, u]
Identifiability AnalysisData[False, <>]

iad[“DegreesOfFreedom”]

1

iad[“NonldentifiableParameters”]

{03, 04}
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Appendix D

Lineweaver-Burke Plots Obtained
From Initial Velocity
Determinations of Atorvastatin in

the Presence of Cyclosporine A
From Chapter 4
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Figure D.1: Atorvastatin concentration against velocity or the inverse of the velocity plots.
a Lineweaver-Burke plot using “Active” in presence of CsA. b Lineweaver-Burke plot for the
metabolism of atorvastatin in the presence of CsA
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Appendix E

Cryopreserved Human
Hepatocyte Donor Sheet Used in
Chapter 5
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vl

Age/
Gender:

38M

35M

34M

48F

55F

BioreclamationlVT

The complete resource for all biologicals

Race:  Cause of
death:

MVA; 2nd
o] to Trauma

c Anoxia

Head
Trauma,
c 2nd to fall

Anoxia; 2nd
to cardio-
c vascular

Head
Trauma due
10 Blunt
AA Injury
Cardiac

Arrest; 2nd
to Seizure
Activity

Anoxic
injury; 2nd
MVA

Caution: This product was prepared from fresh human
known

Height:  Weight:
73" 2641b
71" 82Kg
620 116Kg

kra

57" 150Ib
60" 1596
83" 72Kg

Social history:

ETOH:

e
ETOH In pest -
none last 12

ETOH: social;
Tobacco: yes;
no drug use

tissue. Treat all products de
derived from humen tissues will not transmit infecti

Medical history:

Disc removal

T8I (taumatic
brain injury from

Trach placement
¥1s ago

Influenza A H3
and Comoavirus
posttive. No
other history.

surgery, rapld
heart beat.

Cardiac amest,
HB Vaccine

EBV RPR

Not
reported

196+

Neg

Not
reported

Neg

Not
reported

Neg

Neg

Neg

Neg

Neg

Neg

MV

Not
reported

Neg

Neg

Neg

Pos

Neg

Hepatitis Hepatitis HIV
B C

Neg Neg Neg

Neg Neg Neg

Neg Neg  Neg

Neg Neg Neg

ived materials

ious agents.

asn0

These products are for research use only. Do not use in animals or humans. These products have not been spproved for any diagnostic or clinical
procedures.

1450 South Rolling Road Baltimore, MD 21227

Phone: 410.394.7600

Fax 410.455.1245

‘www.bioreclamationivt.com

Age/
Gender:

4™

10moF

@ BioreclamationIVT

LiverPool™" 10;DONOR MIXED GENDER POOLED CRYOPRESERVED HUMAN

HEPATOCYTES, PEG-FREE
PRODUCT NUMBER: S01205
Lot Number: LYB ** Storage Conditions: below -150°C (vepour phase of liquid
nitrogen freezer)

Test g

>80% post-thaw viability by trypan blue exclusion 86 %

25 million viable cells 8.28  million viable cells
Lot Characterization Results:

Assay
ECOD: total rate of formation of 7-HC and metabolites
UGT/ST:
rate of formation of 7-hydroxycoumarin glucuronide
rate of formation of 7-hydroxycoumarin sulfate
CYPIA2: rate of formation of acetaminophen
CCYP2AG: total rate of formation of 7-HC and metabolites
CYP2B6: rate of formation of hydroxybupropion
CYP2CS8: rate of formation of descthylamodiaquine
CYP2C9: rate of formation of 4*-methylhydroxytolbutamide
CYP2C19: rate of formation of 4*-hydroxymephenytoin
‘CYP2D6: rate of formation of dextrorphan
‘CYP2EL: rate of formation of 6-hydroxychlorzoxazone
CYP3A4:
rate of formation of 6-hydroxytestosterone
rate of formation of 1-hydroxymidazolam

105 pmol/min/million cells

392  pmol/min/million cells
36.1  pmol/min/million cells
329 pmol/min/million cells
92.3  pmol/min/million cells
42.6  pmol/min/million cells
225 pmol/min/million cells
42,0  pmol/min/million cells
23.7  pmol/min/million cells
28.5 pmol/min/million cells
39.1  pmol/min/million cells

127 pmol/min/million cells
81.8  pmol/min/million cells

*The process for producing the LiverPool™ pooled human hepatocyte products is covered by one or more U.S. or foreign patents

and patent applications, including U.S. Patent No. 7,604,929.

**Updated with remaining characterization data.
Donor. as reported to VT:

Serology testing:
Race:  Cause of Height: Weight:  Social history: Medical history: EBV RPR CMV Hepatitis Hepatitis HIV
death: B C
ETOH: 253
drinks daily x
20yrs ;
tobacco: 1 PPD
20 yrs; d
Hoad * maria o
Trauma, several x week
c Fall 81" 64.4Kg for 20 yrs. Asthma IgG+ Neg Neg Neg Neg Neg
No ETOH, Jaundice at birth.
Anoxia; 2nd Tobaccoor  No other medical
H  toDrowning 22" 191b Drug use history Neg Neg Neg Neg Neg Neg
-derived materisl infectious, as no

Caution: This product was prepared from fresh human issue. Treat all products
known test methods can derived from i

‘will not transmit infectious agents.

‘These products are for research use only. Do nol use in animals or humans. These products have not been approved for any diagnostic or clinical

procedures.

1450 South Rolling Road  Baltimore, MD 21227 Phone: 410.394.7600

Fax 410.455.1245

‘www.bioreclamationivt.com



Appendix F

Model files for Best Fitting
Models from Chapters 3, 4 and 5

The data files for Chapter 3 for use in Monolix 2018R2 can be found below, and as a copy in the online

thesis version.

DCFGem_Combo.txt :

DCFGem_PC_Combo.txt:
DCF_Gem_Pre.txt:

The code for the model files for Chapter 3 for use in Monolix 2018R2 for the best fitting model
(micro-rate constant with competitive inhibition for the co-incubation and pre-co-incubation data) are
included below, and all the files are included in the online thesis version:

DESCRIPTION : model to describe DCF uptake into HEK293—-OATPIB1 cells
; and inhibition by gemfibrozil

[LONGITUDINAL]

input = {k13,k31,k12,k21,To,k23,k45,k54}

; input = {k3,k12,k21,To,k23,k45,k54} ; for Pre—Co—incubation data
PK:

depot (type=1,target=x1)
depot (type=2,target=x4)

EQUATION :
; k13 and k31 = kfD and kbD
k12, k21 and k23 = kaD, kdD and kt
; k45 and k54 = kaG and kdG
; x1—3: DCF S1, S2 and S3
; x4—5: gemfibrozil I1 and I2
ddt_x1 = —k12%x1%(To—x5—x2) — kl13*x1l + k21%xx2 + k31xx3
;ddt -x1 = —k12%x1%(To—x5—x2) — k3*xx1 + k21%x2 4+ k3%*x3 ; For Pre—Co—incubation data
ddt_x2 = k12xx1l%(To—x5—x2) — (k21 + k23)*x2
ddt -x3 = kl13*x1 4+ k23%*x2 — k31%x3
ddt _x3 = k3=xx1 + k23*x2 — k3*x3 ; For Pre—Co—incubation data
ddt x4 = — k45%x4%(To—x5—x2) + k54*x5
ddt_x5 = k45xx4x(To—x5—x2) — kb54%x5

cell = (x24x3)=*333

OUTPUT:
output = {cell}

R code for the statistical analysis of the pre-incubation data (DV = % of control):

library (ggplot2)
library (plyr)
library (grid)
library (extrafont)
library (cowplot)
library (ggpubr)
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		ID		AMT		TIME		DV		ADM

		1		0.09		0		.		1

		1		.		0.333		1.16		.

		1		.		0.667		1.16		.

		1		.		1		1.52		.

		1		.		1.333		2.61		.

		1		.		3		5.23		.

		1		.		6		5.88		.

		1		0.09		0		.		1

		1		.		0.333		1.16		.

		1		.		0.667		1.52		.

		1		.		1		1.67		.

		1		.		1.333		2.98		.

		1		.		3		6.97		.

		1		.		6		5.88		.

		2		0.09		0		.		1

		2		.		0.333		1.07		.

		2		.		0.667		3.49		.

		2		.		1		2.51		.

		2		.		1.333		4.74		.

		2		.		3		8.68		.

		2		.		6		7.69		.

		2		0.09		0		.		1

		2		.		0.333		1.34		.

		2		.		0.667		3.22		.

		2		.		1		3.31		.

		2		.		1.333		4.12		.

		2		.		3		9.21		.

		2		.		6		8.68		.

		3		0.3		0		.		1

		3		.		0.333		5.81		.

		3		.		0.667		3.63		.

		3		.		1		4.14		.

		3		.		1.333		8.49		.

		3		.		3		14.88		.

		3		.		6		18.22		.

		3		0.3		0		.		1

		3		.		0.333		6.17		.

		3		.		0.667		4.94		.

		3		.		1		5.15		.

		3		.		1.333		10.09		.

		3		.		3		20.47		.

		3		.		6		21.56		.

		4		0.3		0		.		1

		4		.		0.333		4.38		.

		4		.		0.667		8.68		.

		4		.		1		8.23		.

		4		.		1.333		15.65		.

		4		.		3		26.75		.

		4		.		6		25.76		.

		4		0.3		0		.		1

		4		.		0.333		5.01		.

		4		.		0.667		9.39		.

		4		.		1		11.54		.

		4		.		1.333		13.15		.

		4		.		3		29.7		.

		4		.		6		26.84		.

		5		0.9		0		.		1

		5		.		0.333		6.32		.

		5		.		0.667		5.37		.

		5		.		1		7.99		.

		5		.		1.333		18.08		.

		5		.		3		26.94		.

		5		.		6		38.12		.

		5		0.9		0		.		1

		5		.		0.333		9.73		.

		5		.		0.667		8.35		.

		5		.		1		7.04		.

		5		.		1.333		24.1		.

		5		.		3		37.39		.

		5		.		6		37.25		.

		6		0.9		0		.		1

		6		.		0.333		10.56		.

		6		.		0.667		16.01		.

		6		.		1		14.94		.

		6		.		1.333		29.25		.

		6		.		3		63.33		.

		6		.		6		48.21		.

		6		0.9		0		.		1

		6		.		0.333		11.54		.

		6		.		0.667		19.05		.

		6		.		1		19.14		.

		6		.		1.333		27.28		.

		6		.		3		68.07		.

		6		.		6		48.57		.

		7		3		0		.		1

		7		.		0.333		7.84		.

		7		.		0.667		9.37		.

		7		.		1		16.63		.

		7		.		1.333		30.42		.

		7		.		3		41.89		.

		7		.		6		61.93		.

		7		3		0		.		1

		7		.		0.333		16.41		.

		7		.		0.667		19.75		.

		7		.		1		13.14		.

		7		.		1.333		36.67		.

		7		.		3		61.86		.

		7		.		6		76.02		.

		8		3		0		.		1

		8		.		0.333		27.28		.

		8		.		0.667		39		.

		8		.		1		31.4		.

		8		.		1.333		58.86		.

		8		.		3		135.97		.

		8		.		6		97.41		.

		8		3		0		.		1

		8		.		0.333		27.82		.

		8		.		0.667		46.96		.

		8		.		1		49.47		.

		8		.		1.333		62.88		.

		8		.		3		117		.

		8		.		6		95.89		.

		9		9		0		.		1

		9		.		0.333		13.94		.

		9		.		0.667		17.13		.

		9		.		1		32.09		.

		9		.		1.333		57.87		.

		9		.		3		86.47		.

		9		.		6		79.86		.

		9		9		0		.		1

		9		.		0.333		34.27		.

		9		.		0.667		38.92		.

		9		.		1		23.02		.

		9		.		1.333		78.05		.

		9		.		3		147.31		.

		9		.		6		162.42		.

		10		9		0		.		1

		10		.		0.333		40.61		.

		10		.		0.667		53.58		.

		10		.		1		48.48		.

		10		.		1.333		58.14		.

		10		.		3		151.98		.

		10		.		6		105.19		.

		10		9		0		.		1

		10		.		0.333		54.65		.

		10		.		0.667		69.15		.

		10		.		1		78.81		.

		10		.		1.333		101.35		.

		10		.		3		231.68		.

		10		.		6		117.09		.

		11		30		0		.		1

		11		.		0.333		13.43		.

		11		.		0.667		13.72		.

		11		.		1		39.79		.

		11		.		1.333		50.6		.

		11		.		3		80.45		.

		11		.		6		66.29		.

		11		30		0		.		1

		11		.		0.333		62.73		.

		11		.		0.667		53.94		.

		11		.		1		34.63		.

		11		.		1.333		82.99		.

		11		.		3		149.71		.

		11		.		6		304.57		.

		12		30		0		.		1

		12		.		0.333		18.43		.

		12		.		0.667		25.14		.

		12		.		1		35.78		.

		12		.		1.333		72.28		.

		12		.		3		117.27		.

		12		30		0		.		1

		12		.		0.333		67.71		.

		12		.		0.667		103.58		.

		12		.		1		77.82		.

		12		.		1.333		174.79		.

		12		.		3		339.73		.

		12		.		6		114.68		.

		13		0.3		0		.		2

		13		0.3		0		.		1

		13		.		0.333		2.9		.

		13		.		0.667		4.07		.

		13		.		1		5.59		.

		13		.		1.333		8.06		.

		13		.		3		17.13		.

		13		.		6		22.14		.

		13		0.3		0		.		2

		13		0.3		0		.		1

		13		.		0.333		3.7		.

		13		.		0.667		3.27		.

		13		.		1		5.15		.

		13		.		1.333		8.86		.

		13		.		3		14.96		.

		13		.		6		17.57		.

		14		0.3		0		.		2

		14		0.3		0		.		1

		14		.		0.333		2.95		.

		14		.		0.667		6.44		.

		14		.		1		8.59		.

		14		.		1.333		15.83		.

		14		.		3		24.51		.

		14		.		6		28.71		.

		14		0.3		0		.		2

		14		0.3		0		.		1

		14		.		0.333		3.76		.

		14		.		0.667		5.9		.

		14		.		1		6.8		.

		14		.		1.333		13.06		.

		14		.		3		24.87		.

		14		.		6		28		.

		15		0.9		0		.		2

		15		0.3		0		.		1

		15		.		0.333		3.05		.

		15		.		0.667		3.92		.

		15		.		1		4.43		.

		15		.		1.333		8.86		.

		15		.		3		16.77		.

		15		.		6		20.47		.

		15		0.9		0		.		2

		15		0.3		0		.		1

		15		.		0.333		3.92		.

		15		.		0.667		3.27		.

		15		.		1		4.07		.

		15		.		1.333		9.8		.

		15		.		3		13		.

		15		.		6		29.33		.

		16		0.9		0		.		2

		16		0.3		0		.		1

		16		.		0.333		6.35		.

		16		.		0.667		11.45		.

		16		.		1		8.95		.

		16		.		1.333		12.34		.

		16		.		3		23.88		.

		16		.		6		25.4		.

		16		0.9		0		.		2

		16		0.3		0		.		1

		16		.		0.333		7.78		.

		16		.		0.667		12.7		.

		16		.		1		12.08		.

		16		.		1.333		14.58		.

		16		.		3		25.32		.

		16		.		6		28.18		.

		17		3		0		.		2

		17		0.3		0		.		1

		17		.		0.333		2.54		.

		17		.		0.667		2.9		.

		17		.		1		2.61		.

		17		.		1.333		5.81		.

		17		.		3		9.29		.

		17		.		6		12.78		.

		17		3		0		.		2

		17		0.3		0		.		1

		17		.		0.333		2.9		.

		17		.		0.667		3.05		.

		17		.		1		3.34		.

		17		.		1.333		7.48		.

		17		.		3		8.35		.

		17		.		6		16.12		.

		18		3		0		.		2

		18		0.3		0		.		1

		18		.		0.333		3.4		.

		18		.		0.667		5.81		.

		18		.		1		4.56		.

		18		.		1.333		8.59		.

		18		.		3		16.28		.

		18		.		6		19.59		.

		18		3		0		.		2

		18		0.3		0		.		1

		18		.		0.333		4.65		.

		18		.		0.667		5.99		.

		18		.		1		6.26		.

		18		.		1.333		10.38		.

		18		.		3		16.91		.

		18		.		6		20.13		.

		19		9		0		.		2

		19		0.3		0		.		1

		19		.		0.333		1.52		.

		19		.		0.667		1.89		.

		19		.		1		1.6		.

		19		.		1.333		4.21		.

		19		.		3		6.68		.

		19		.		6		7.77		.

		19		9		0		.		2

		19		0.3		0		.		1

		19		.		0.333		2.18		.

		19		.		0.667		1.82		.

		19		.		1		2.25		.

		19		.		1.333		3.63		.

		19		.		3		6.03		.

		19		.		6		8.86		.

		20		9		0		.		2

		20		0.3		0		.		1

		20		.		0.333		2.06		.

		20		.		0.667		4.03		.

		20		.		1		4.12		.

		20		.		1.333		4.65		.

		20		.		3		8.5		.

		20		.		6		10.02		.

		20		9		0		.		2

		20		0.3		0		.		1

		20		.		0.333		2.86		.

		20		.		0.667		3.31		.

		20		.		1		3.49		.

		20		.		1.333		6.35		.

		20		.		3		9.93		.

		20		.		6		10.2		.

		21		30		0		.		2

		21		0.3		0		.		1

		21		.		0.333		0.58		.

		21		.		0.667		0.58		.

		21		.		1		0.73		.

		21		.		1.333		1.6		.

		21		.		3		2.03		.

		21		.		6		4.14		.

		21		30		0		.		2

		21		0.3		0		.		1

		21		.		0.333		0.87		.

		21		.		0.667		0.51		.

		21		.		1		0.8		.

		21		.		1.333		1.31		.

		21		.		3		2.25		.

		21		.		6		6.82		.

		22		30		0		.		2

		22		0.3		0		.		1

		22		.		0.333		0.72		.

		22		.		0.667		1.34		.

		22		.		1		1.61		.

		22		.		1.333		1.97		.

		22		.		3		3.22		.

		22		.		6		3.94		.

		22		30		0		.		2

		22		0.3		0		.		1

		22		.		0.333		1.07		.

		22		.		0.667		1.07		.

		22		.		1		0.98		.

		22		.		1.333		2.77		.

		22		.		3		4.03		.

		22		.		6		3.4		.

		23		90		0		.		2

		23		0.3		0		.		1

		23		.		1		0.22		.

		23		.		1.333		0.8		.

		23		.		3		0.51		.

		23		.		6		3.85		.

		23		90		0		.		2

		23		0.3		0		.		1

		23		.		0.333		0.29		.

		23		.		0.667		0.15		.

		23		.		1		0.29		.

		23		.		3		0.51		.

		23		.		6		2.9		.

		24		90		0		.		2

		24		0.3		0		.		1

		24		.		0.667		0.36		.

		24		.		1		0.54		.

		24		.		3		1.07		.

		24		.		6		2.06		.

		24		90		0		.		2

		24		0.3		0		.		1

		24		.		0.333		0.98		.

		24		.		1		0.72		.

		24		.		1.333		0.54		.

		24		.		3		2.51		.

		24		.		6		0.9		.




		ID		AMT		TIME		DV		ADM

		13		0.09		0		.		1

		13		.		0.333		0.8		.

		13		.		0.667		2.0		.

		13		.		1		0.9		.

		13		.		3		2.5		.

		13		0.09		0		.		1

		13		.		0.333		1.0		.

		13		.		0.667		2.0		.

		13		.		3		2.9		.

		14		0.09		0		.		1

		14		.		1		0.85		.

		14		.		3		8.24		.

		14		0.09		0		.		1

		14		.		0.333		0.38		.

		14		.		0.667		1.99		.

		14		.		1		7.20		.

		15		0.09		0		.		1

		15		.		1		1.6		.

		15		.		3		5.3		.

		15		0.09		0		.		1

		15		.		0.667		0.6		.

		15		.		1		2.4		.

		15		.		3		5.8		.

		16		0.3		0		.		1

		16		.		0.333		3.3		.

		16		.		0.667		4.8		.

		16		.		1		5.2		.

		16		.		3		11.2		.

		16		0.3		0		.		1

		16		.		0.333		3.4		.

		16		.		0.667		6.3		.

		16		.		1		4.9		.

		16		.		3		10.2		.

		17		0.3		0		.		1

		17		.		0.333		1.23		.

		17		.		1		4.83		.

		17		.		3		22.36		.

		17		0.3		0		.		1

		17		.		0.333		2.84		.

		17		.		1		7.58		.

		17		.		3		21.42		.

		18		0.3		0		.		1

		18		.		0.333		1.2		.

		18		.		0.667		3.3		.

		18		.		1		5.8		.

		18		.		3		14.6		.

		18		0.3		0		.		1

		18		.		0.333		1.0		.

		18		.		0.667		2.0		.

		18		.		0.667		1.5		.

		18		.		1		6.1		.

		18		.		3		21.7		.

		19		0.9		0		.		1

		19		.		0.333		7.3		.

		19		.		0.667		7.1		.

		19		.		1		10.3		.

		19		.		3		15.2		.

		19		0.9		0		.		1

		19		.		0.333		6.4		.

		19		.		0.667		10.4		.

		19		.		1		9.5		.

		19		.		3		15.9		.

		20		0.9		0		.		1

		20		.		0.333		7.11		.

		20		.		1		18.38		.

		20		.		3		19.14		.

		20		0.9		0		.		1

		20		.		0.333		12.13		.

		20		.		1		19.14		.

		20		.		3		47.09		.

		21		0.9		0		.		1

		21		.		0.333		4.6		.

		21		.		0.667		5.4		.

		21		.		1		14.2		.

		21		.		3		33.5		.

		21		0.9		0		.		1

		21		.		0.333		5.2		.

		21		.		0.667		7.5		.

		21		.		0.667		7.1		.

		21		.		1		15.1		.

		21		.		3		39.7		.

		22		3		0		.		1

		22		.		0.333		21.3		.

		22		.		0.667		17.2		.

		22		.		1		28.4		.

		22		.		3		30.2		.

		22		3		0		.		1

		22		.		0.333		16.3		.

		22		.		0.667		25.3		.

		22		.		1		25.3		.

		22		.		3		31.3		.

		23		3		0		.		1

		23		.		0.333		13.55		.

		23		.		1		24.92		.

		23		.		3		95.99		.

		23		3		0		.		1

		23		.		0.333		20.56		.

		23		.		1		38.09		.

		23		.		3		100.16		.

		24		3		0		.		1

		24		.		0.333		12.1		.

		24		.		0.667		14.2		.

		24		.		1		27.3		.

		24		.		3		59.2		.

		24		3		0		.		1

		24		.		0.333		11.8		.

		24		.		0.667		16.9		.

		24		.		0.667		20.3		.

		24		.		1		31.6		.

		24		.		3		77.8		.

		25		9		0		.		1

		25		.		0.333		38.3		.

		25		.		0.667		35.8		.

		25		.		1		41.4		.

		25		.		3		53.9		.

		25		9		0		.		1

		25		.		0.333		34.8		.

		25		.		0.667		49.9		.

		25		.		1		38.6		.

		25		.		3		61.3		.

		26		9		0		.		1

		26		.		0.333		25.39		.

		26		.		1		49.56		.

		26		.		3		130.67		.

		26		9		0		.		1

		26		.		0.333		31.18		.

		26		.		1		64.53		.

		26		.		3		137.30		.

		27		9		0		.		1

		27		.		0.333		29.5		.

		27		.		0.667		39.3		.

		27		.		1		59.5		.

		27		.		3		102.9		.

		27		9		0		.		1

		27		.		0.333		27.6		.

		27		.		0.667		41.2		.

		27		.		0.667		40.5		.

		27		.		1		65.3		.

		27		.		3		144.9		.

		28		30		0		.		1

		28		.		0.333		52.5		.

		28		.		0.667		34.2		.

		28		.		1		46.7		.

		28		.		3		49.1		.

		28		30		0		.		1

		28		.		0.333		49.0		.

		28		.		0.667		54.5		.

		28		.		1		51.9		.

		28		.		3		54.8		.

		29		30		0		.		1

		29		.		0.333		32.60		.

		29		.		1		52.87		.

		29		.		3		98.74		.

		29		30		0		.		1

		29		.		0.333		33.17		.

		29		.		1		79.79		.

		29		.		3		131.71		.

		30		30		0		.		1

		30		.		0.333		31.6		.

		30		.		0.667		34.2		.

		30		.		1		60.0		.

		30		.		3		96.7		.

		30		30		0		.		1

		30		.		0.333		48.2		.

		30		.		0.667		63.4		.

		30		.		0.667		39.4		.

		30		.		1		85.5		.

		30		.		3		151.9		.

		31		0.3		0		.		2

		31		0.3		0		.		1

		31		.		0.333		1.86		.

		31		.		0.667		4.63		.

		31		.		1		1.14		.

		31		.		3		10.68		.

		31		0.3		0		.		2

		31		0.3		0		.		1

		31		.		0.333		1.35		.

		31		.		0.667		4.42		.

		31		.		1		2.27		.

		32		0.3		0		.		2

		32		0.3		0		.		1

		32		.		0.333		2.65		.

		32		.		1		14.31		.

		32		.		3		61.31		.

		32		0.3		0		.		2

		32		0.3		0		.		1

		32		.		0.333		4.83		.

		32		.		1		12.79		.

		32		.		3		45.67		.

		33		0.3		0		.		2

		33		0.3		0		.		1

		33		.		0.333		1.30		.

		33		.		0.667		1.18		.

		33		.		1		6.29		.

		33		.		3		15.93		.

		33		0.3		0		.		2

		33		0.3		0		.		1

		33		.		0.333		1.75		.

		33		.		0.667		1.41		.

		33		.		0.667		2.20		.

		33		.		1		5.95		.

		33		.		3		15.81		.

		34		0.9		0		.		2

		34		0.3		0		.		1

		34		.		0.333		1.04		.

		34		.		0.667		4.53		.

		34		.		1		4.94		.

		34		.		3		11.29		.

		34		0.9		0		.		2

		34		0.3		0		.		1

		34		.		0.333		1.25		.

		34		.		0.667		5.04		.

		34		.		1		3.81		.

		35		0.9		0		.		2

		35		0.3		0		.		1

		35		.		0.333		1.80		.

		35		.		1		7.68		.

		35		.		3		22.65		.

		35		0.9		0		.		2

		35		0.3		0		.		1

		35		.		0.333		2.65		.

		35		.		1		7.39		.

		35		.		3		27.38		.

		36		0.9		0		.		2

		36		0.3		0		.		1

		36		.		0.333		1.98		.

		36		.		0.667		1.18		.

		36		.		1		6.17		.

		36		.		3		15.93		.

		36		0.9		0		.		2

		36		0.3		0		.		1

		36		.		0.333		1.98		.

		36		.		0.667		1.52		.

		36		.		0.667		2.43		.

		36		.		1		5.04		.

		36		.		3		17.17		.

		37		3		0		.		2

		37		0.3		0		.		1

		37		.		0.333		1.66		.

		37		.		0.667		1.04		.

		37		.		1		1.76		.

		37		.		3		2.89		.

		37		3		0		.		2

		37		0.3		0		.		1

		37		.		0.333		2.27		.

		37		.		0.667		1.35		.

		37		.		1		1.45		.

		38		3		0		.		2

		38		0.3		0		.		1

		38		.		0.333		2.75		.

		38		.		1		5.87		.

		38		.		3		16.30		.

		38		3		0		.		2

		38		0.3		0		.		1

		38		.		0.333		2.84		.

		38		.		1		4.64		.

		38		.		3		18.00		.

		39		3		0		.		2

		39		0.3		0		.		1

		39		.		0.333		1.30		.

		39		.		0.667		1.18		.

		39		.		1		4.02		.

		39		.		3		8.78		.

		39		3		0		.		2

		39		0.3		0		.		1

		39		.		0.333		0.96		.

		39		.		0.667		1.07		.

		39		.		0.667		1.30		.

		39		.		1		4.13		.

		39		.		3		11.73		.

		40		9		0		.		2

		40		0.3		0		.		1

		40		.		0.333		1.66		.

		40		.		0.667		3.09		.

		40		.		1		3.09		.

		40		.		3		5.55		.

		40		9		0		.		2

		40		0.3		0		.		1

		40		.		0.333		2.17		.

		40		.		0.667		3.30		.

		40		.		1		3.30		.

		41		9		0		.		2

		41		0.3		0		.		1

		41		.		0.333		1.80		.

		41		.		1		3.41		.

		41		.		3		10.42		.

		41		9		0		.		2

		41		0.3		0		.		1

		41		.		0.333		2.27		.

		41		.		1		2.75		.

		41		.		3		11.84		.

		42		9		0		.		2

		42		0.3		0		.		1

		42		.		0.333		0.50		.

		42		.		1		1.98		.

		42		.		3		5.83		.

		42		9		0		.		2

		42		0.3		0		.		1

		42		.		0.667		0.62		.

		42		.		1		2.43		.

		42		.		3		6.85		.

		43		30		0		.		2

		43		0.3		0		.		1

		43		.		0.333		0.73		.

		43		.		0.667		1.35		.

		43		.		1		0.73		.

		43		.		3		2.27		.

		43		30		0		.		2

		43		0.3		0		.		1

		43		.		0.333		1.45		.

		43		.		0.667		1.25		.

		43		.		1		0.73		.

		44		30		0		.		2

		44		0.3		0		.		1

		44		.		0.333		0.57		.

		44		.		1		1.04		.

		44		.		3		2.08		.

		44		30		0		.		2

		44		0.3		0		.		1

		44		.		0.333		0.85		.

		44		.		1		0.57		.

		44		.		3		2.18		.

		45		30		0		.		2

		45		0.3		0		.		1

		45		.		1		0.73		.

		45		.		3		3.11		.

		45		30		0		.		2

		45		0.3		0		.		1

		45		.		1		0.96		.

		45		.		3		2.66		.




		ID		DOSE		TIME		DV

		1		1		5		77.89

		1		1		5		113.95

		1		1		5		112.21

		1		1		5		101.35

		2		1		10		94.40

		2		1		10		128.71

		2		1		10		97.01

		2		1		10		125.24

		3		1		20		89.19

		3		1		20		113.08

		3		1		20		124.37

		3		1		20		120.03

		4		1		40		107.43

		4		1		40		110.91

		4		1		40		120.90

		4		1		40		114.81

		5		3		5		99.18

		5		3		5		123.07

		5		3		5		117.42

		5		3		5		104.39

		6		3		10		116.55

		6		3		10		132.62

		6		3		10		106.56

		6		3		10		146.09

		7		3		20		99.18

		7		3		20		116.55

		7		3		20		115.68

		7		3		20		129.58

		8		3		40		112.21

		8		3		40		117.86

		8		3		40		114.38

		8		3		40		134.80

		9		10		5		61.39

		9		10		5		92.66

		9		10		5		87.88

		9		10		5		91.36

		10		10		10		86.15

		10		10		10		95.70

		10		10		10		86.15

		10		10		10		119.16

		11		10		20		61.82

		11		10		20		83.54

		11		10		20		83.11

		11		10		20		88.32

		12		10		40		89.19

		12		10		40		96.57

		12		10		40		101.78

		12		10		40		138.27

		13		30		5		57.05

		13		30		5		102.22

		13		30		5		92.23

		13		30		5		105.69

		14		30		10		86.15

		14		30		10		89.19

		14		30		10		83.98

		14		30		10		105.26

		15		30		20		77.46

		15		30		20		82.24

		15		30		20		97.87

		15		30		20		107.00

		16		30		40		104.82

		16		30		40		109.17

		16		30		40		94.40

		16		30		40		124.81

		17		100		5		60.09

		17		100		5		117.86

		17		100		5		106.56

		17		100		5		109.60

		18		100		10		66.60

		18		100		10		83.98

		18		100		10		73.55

		18		100		10		100.48

		19		100		20		71.81

		19		100		20		77.46

		19		100		20		91.36

		19		100		20		69.64

		20		100		40		99.18

		20		100		40		90.06

		20		100		40		85.71

		20		100		40		114.38

		21		300		5		28.38

		21		300		5		49.23

		21		300		5		67.90

		21		300		5		99.18

		22		300		10		32.72

		22		300		10		48.36

		22		300		10		45.75

		22		300		10		56.18

		23		300		20		37.50

		23		300		20		37.50

		23		300		20		47.06

		23		300		20		48.79

		24		300		40		62.69

		24		300		40		58.35

		24		300		40		44.45

		24		300		40		55.31

		25		0		0		91.36

		25		0		0		98.31

		25		0		0		111.34




DCF_Pre <— read.table(”DCF_Gem_Pre. txt” ,head=TRUE)
#Data: ID, DOSE, TIME, DV

DCF_Pre$TIME <— as.factor (DCF_Pre$TIME)
DCF_Pre$DOSE <— as.factor (DCF_Pre$DOSE)

# unequal variation = default, unpaired = default

compare_means (data=DCF_Pre ,DV'DOSE,
method="t.test”,
ref.group = 707)

compare _means (data=DCF_Pre ,DV TIME,
method="t.test” ,
ref.group = ”707)

theme_set (theme_cowplot (font_size=8,font_family = ” Arial”))

figl <— ggbarplot (data=DCF_Pre ,x="DOSE” ,
y="DV”,

add="mean_se” ,
position=position_dodge (0.8),

fill = ”lightgrey”,

width=0.8)+

stat _compare_means(method="t.test”,
label="p.signif”,

label .y=90,

hide . ns="TRUE” ,

ref="0")+

theme (axis.text=element _text(size=8),
axis.title=element_text(size=8)

)+

xlab (” Gemfibrozil_incubation_concentration.(nmol/ml)”)+
ylab (?%-of _DCF_control”)

figl

fig2 <— ggdraw (figl)+
theme(rect=element_rect (fill="white”))

ggsave ("DCF_Pre. jpg” ,fig2 ,width=6,height=3,units="in” ,dpi=600)

The data files for Chapter 4 for use in Monolix 2018R2 can be found below, and
as a copy in the online thesis version.

AtorCsA_Combined.txt :

The code for the model files for Chapter 4 for use in Monolix 2018R2 for the best fitting
model (micro-rate constant with non-competitive inhibition) is included below, and all
the files are included in the online thesis version:

DESCRIPTION : model to describe atorvastatin uptake into hepatocytes
; and its inhibition by CsA

[LONGITUDINAL]
input = {k13,k31,k12,k21,To,k23,Vm,Km, Ki, k45 ,k54,alpha}

PK:
depot (type=2,target=x1)
depot (type=1,target=x4)

EQUATION :

; k13 and k31 = kfA and kbA

; k12, k21 and k23 = kaA, kdA and ktA

; Vm, Km and Ki = Vmax.met, Km.met and KI.met

; k45, k54, alpha = kaC, kdC

; x1—3: atorvastatin S1, S2 and S3

; x4—6: CsA I1, I2 and I4

ddt_x1 = —k12%x1%(To—x5—x2—x6) — kl13*x1l + k21%xx2 4+ k31xx3 — kl2xalphaxxl*x5 + k2lxalphax*x6
ddt_x2 = kl12xx1lx(To—x5—x2—x6) — (k21 + k23)*x2 — k45*alpha*x2+x4 + kb4xalphaxx6
ddt_x3 = k13%x1 + k23%x2 — k31xx3 — (Vm*x3)/(Km*(14+x4/Ki)) + k23xalphax*x6
ddt_x4 = —k45%x4%(To—x5—x2—x6) + kb54%x5 — kd45xalphaxx2xx4 + kb4xalphaxx6

ddt_x5 = k45xx4*(To—x4—x2—x6) — kb54%x5 — kl2xalpha*xxl*x5 + (k21+k23)*alpha*x6
ddt_x6 = kl2xalphaxxl*x5 + kd45*alpha*x2xx4 — (k214+k54+k23)*alphax*x6

cell = 906x%(x2 + x3 + x6)

OUTPUT:
output = {cell}

The data files for Chapter 5 for use in Monolix 2018R2 can be found below, and
as a copy in the online thesis version.
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		ID		AMT		TIME		DV		ADM		OCC

		1		0.005		0		.		2		1

		1		.		0.25		5.79		.		1

		1		.		0.58		5.07		.		1

		1		.		0.92		4.10		.		1

		1		.		1.25		4.73		.		1

		1		.		2.5		5.44		.		1

		1		.		5		5.28		.		1

		1		.		10		4.56		.		1

		1		.		20		3.72		.		1

		1		.		30		2.94		.		1

		1		.		40		2.80		.		1

		1		.		50		2.15		.		1

		1		.		60		2.25		.		1

		2		0.005		0		.		2		2

		2		.		0.25		3.07		.		2

		2		.		0.58		2.77		.		2

		2		.		0.92		2.86		.		2

		2		.		1.25		3.13		.		2

		2		.		2.5		3.27		.		2

		2		.		5		3.49		.		2

		2		.		20		2.64		.		2

		2		.		30		2.13		.		2

		2		.		40		1.72		.		2

		2		.		50		1.65		.		2

		2		.		60		1.61		.		2

		3		0.005		0		.		2		3

		3		.		0.25		1.95		.		3

		3		.		0.58		2.90		.		3

		3		.		0.92		3.15		.		3

		3		.		1.25		4.02		.		3

		3		.		2.5		4.38		.		3

		3		.		5		4.57		.		3

		3		.		10		3.20		.		3

		3		.		20		2.90		.		3

		3		.		30		2.68		.		3

		3		.		40		1.51		.		3

		3		.		50		1.28		.		3

		3		.		60		1.35		.		3

		4		0.025		0		.		2		1

		4		.		0.25		6.57		.		1

		4		.		0.58		14.10		.		1

		4		.		0.92		16.79		.		1

		4		.		1.25		18.68		.		1

		4		.		2.5		24.79		.		1

		4		.		5		25.87		.		1

		4		.		10		24.28		.		1

		4		.		20		19.76		.		1

		4		.		30		17.74		.		1

		4		.		40		13.16		.		1

		4		.		50		12.13		.		1

		4		.		60		8.55		.		1

		5		0.025		0		.		2		2

		5		.		0.25		10.40		.		2

		5		.		0.58		13.60		.		2

		5		.		0.92		13.68		.		2

		5		.		1.25		17.82		.		2

		5		.		2.5		14.19		.		2

		5		.		5		16.33		.		2

		5		.		10		14.15		.		2

		5		.		20		10.73		.		2

		5		.		30		10.12		.		2

		5		.		40		7.72		.		2

		5		.		50		6.87		.		2

		5		.		60		4.64		.		2

		6		0.025		0		.		2		3

		6		.		0.25		8.73		.		3

		6		.		0.58		14.74		.		3

		6		.		0.92		18.31		.		3

		6		.		1.25		21.49		.		3

		6		.		2.5		24.12		.		3

		6		.		5		23.02		.		3

		6		.		10		20.67		.		3

		6		.		20		14.64		.		3

		6		.		30		13.13		.		3

		6		.		40		9.07		.		3

		6		.		50		8.52		.		3

		6		.		60		5.98		.		3

		7		0.05		0		.		2		1

		7		.		0.25		12.90		.		1

		7		.		0.58		25.82		.		1

		7		.		0.92		34.84		.		1

		7		.		1.25		36.54		.		1

		7		.		2.5		45.32		.		1

		7		.		5		50.06		.		1

		7		.		10		44.14		.		1

		7		.		20		37.53		.		1

		7		.		30		28.80		.		1

		7		.		40		23.39		.		1

		7		.		50		21.06		.		1

		7		.		60		19.59		.		1

		8		0.05		0		.		2		2

		8		.		0.25		18.33		.		2

		8		.		0.58		18.27		.		2

		8		.		0.92		22.76		.		2

		8		.		1.25		26.18		.		2

		8		.		2.5		32.66		.		2

		8		.		5		35.49		.		2

		8		.		10		28.39		.		2

		8		.		20		22.17		.		2

		8		.		30		19.03		.		2

		8		.		40		12.87		.		2

		8		.		50		11.96		.		2

		8		.		60		9.69		.		2

		9		0.05		0		.		2		3

		9		.		0.25		15.74		.		3

		9		.		0.58		29.88		.		3

		9		.		0.92		35.54		.		3

		9		.		1.25		42.03		.		3

		9		.		2.5		49.44		.		3

		9		.		5		48.31		.		3

		9		.		10		39.17		.		3

		9		.		20		27.34		.		3

		9		.		30		25.38		.		3

		9		.		40		17.64		.		3

		9		.		50		15.77		.		3

		9		.		60		10.80		.		3

		10		0.25		0		.		2		1

		10		.		0.25		42.98		.		1

		10		.		0.58		87.89		.		1

		10		.		0.92		109.59		.		1

		10		.		1.25		137.90		.		1

		10		.		2.5		201.08		.		1

		10		.		5		248.91		.		1

		10		.		10		168.55		.		1

		10		.		20		154.83		.		1

		10		.		30		113.98		.		1

		10		.		40		82.30		.		1

		10		.		50		69.53		.		1

		10		.		60		44.77		.		1

		11		0.25		0		.		2		2

		11		.		0.25		53.28		.		2

		11		.		0.58		64.45		.		2

		11		.		0.92		85.28		.		2

		11		.		1.25		112.72		.		2

		11		.		2.5		150.19		.		2

		11		.		5		149.14		.		2

		11		.		10		118.61		.		2

		11		.		20		104.02		.		2

		11		.		30		74.53		.		2

		11		.		40		52.72		.		2

		11		.		50		47.70		.		2

		11		.		60		32.87		.		2

		12		0.25		0		.		2		3

		12		.		0.25		52.30		.		3

		12		.		0.58		104.20		.		3

		12		.		0.92		150.91		.		3

		12		.		1.25		166.83		.		3

		12		.		2.5		218.37		.		3

		12		.		5		223.02		.		3

		12		.		10		164.84		.		3

		12		.		20		109.88		.		3

		12		.		30		87.44		.		3

		12		.		40		56.28		.		3

		12		.		50		44.55		.		3

		12		.		60		30.20		.		3

		13		0.5		0		.		2		1

		13		.		0.25		62.71		.		1

		13		.		0.58		114.62		.		1

		13		.		0.92		174.75		.		1

		13		.		1.25		208.40		.		1

		13		.		2.5		301.80		.		1

		13		.		5		397.59		.		1

		13		.		10		355.55		.		1

		13		.		20		257.76		.		1

		13		.		30		178.55		.		1

		13		.		40		122.56		.		1

		13		.		50		86.67		.		1

		13		.		60		52.95		.		1

		14		0.5		0		.		2		2

		14		.		0.25		95.35		.		2

		14		.		0.58		93.78		.		2

		14		.		0.92		132.64		.		2

		14		.		1.25		168.97		.		2

		14		.		2.5		232.48		.		2

		14		.		5		270.16		.		2

		14		.		10		248.18		.		2

		14		.		20		158.78		.		2

		14		.		30		109.87		.		2

		14		.		40		80.99		.		2

		14		.		50		55.39		.		2

		14		.		60		35.63		.		2

		15		0.5		0		.		2		3

		15		.		0.25		81.78		.		3

		15		.		0.58		158.08		.		3

		15		.		0.92		199.50		.		3

		15		.		1.25		255.72		.		3

		15		.		2.5		391.56		.		3

		15		.		5		456.51		.		3

		15		.		10		307.63		.		3

		15		.		20		164.06		.		3

		15		.		30		115.42		.		3

		15		.		40		49.70		.		3

		15		.		50		38.89		.		3

		15		.		60		22.18		.		3

		16		2.5		0		.		2		1

		16		.		0.25		256.66		.		1

		16		.		0.58		348.69		.		1

		16		.		0.92		432.87		.		1

		16		.		1.25		497.95		.		1

		16		.		2.5		576.38		.		1

		16		.		5		901.72		.		1

		16		.		10		1104.86		.		1

		16		.		20		784.93		.		1

		16		.		30		676.03		.		1

		16		.		40		502.92		.		1

		16		.		50		463.82		.		1

		16		.		60		346.65		.		1

		17		2.5		0		.		2		2

		17		.		0.25		531.50		.		2

		17		.		0.58		245.44		.		2

		17		.		0.92		349.48		.		2

		17		.		1.25		420.73		.		2

		17		.		2.5		493.51		.		2

		17		.		5		756.59		.		2

		17		.		10		784.99		.		2

		17		.		20		473.64		.		2

		17		.		30		373.25		.		2

		17		.		40		245.61		.		2

		17		.		50		194.73		.		2

		17		.		60		118.95		.		2

		18		2.5		0		.		2		3

		18		.		0.25		398.15		.		3

		18		.		0.58		452.45		.		3

		18		.		0.92		457.38		.		3

		18		.		1.25		545.63		.		3

		18		.		2.5		979.67		.		3

		18		.		5		821.23		.		3

		18		.		10		1139.79		.		3

		18		.		20		886.15		.		3

		18		.		30		641.69		.		3

		18		.		40		524.54		.		3

		18		.		50		332.27		.		3

		18		.		60		228.64		.		3

		19		5		0		.		2		1

		19		.		0.25		607.48		.		1

		19		.		0.58		526.04		.		1

		19		.		0.92		612.95		.		1

		19		.		1.25		975.70		.		1

		19		.		2.5		1085.85		.		1

		19		.		5		1243.15		.		1

		19		.		10		1168.65		.		1

		19		.		20		1589.26		.		1

		19		.		30		1078.36		.		1

		19		.		40		1005.02		.		1

		19		.		50		949.14		.		1

		19		.		60		944.10		.		1

		20		5		0		.		2		2

		20		.		0.25		821.71		.		2

		20		.		0.58		648.37		.		2

		20		.		0.92		488.46		.		2

		20		.		1.25		537.37		.		2

		20		.		2.5		875.67		.		2

		20		.		5		772.94		.		2

		20		.		10		982.16		.		2

		20		.		20		989.66		.		2

		20		.		30		742.93		.		2

		20		.		40		440.41		.		2

		20		.		50		592.91		.		2

		20		.		60		344.99		.		2

		21		5		0		.		2		3

		21		.		0.25		437.38		.		3

		21		.		0.58		653.42		.		3

		21		.		0.92		660.54		.		3

		21		.		1.25		817.24		.		3

		21		.		2.5		1129.20		.		3

		21		.		5		1400.26		.		3

		21		.		10		1314.59		.		3

		21		.		20		1539.90		.		3

		21		.		30		937.34		.		3

		21		.		40		1193.20		.		3

		21		.		50		659.99		.		3

		21		.		60		661.89		.		3

		22		15		0		.		2		1

		22		.		0.25		1194.32		.		1

		22		.		0.58		1523.19		.		1

		22		.		0.92		1698.65		.		1

		22		.		1.25		1889.70		.		1

		22		.		2.5		1648.33		.		1

		22		.		5		2091.47		.		1

		22		.		10		1682.14		.		1

		22		.		20		2247.69		.		1

		22		.		30		1907.07		.		1

		22		.		40		2319.36		.		1

		22		.		50		2247.38		.		1

		22		.		60		2096.40		.		1

		23		15		0		.		2		2

		23		.		0.25		1439.22		.		2

		23		.		0.58		1250.71		.		2

		23		.		0.92		1329.06		.		2

		23		.		1.25		1358.26		.		2

		23		.		2.5		1527.05		.		2

		23		.		5		1461.10		.		2

		23		.		10		1861.68		.		2

		23		.		20		1606.31		.		2

		23		.		30		1400.33		.		2

		23		.		40		1726.10		.		2

		23		.		50		1612.85		.		2

		23		.		60		1273.35		.		2

		24		15		0		.		2		3

		24		.		0.25		1577.12		.		3

		24		.		0.58		1575.77		.		3

		24		.		0.92		1511.71		.		3

		24		.		1.25		1407.65		.		3

		24		.		2.5		1740.03		.		3

		24		.		5		2397.18		.		3

		24		.		10		1777.85		.		3

		24		.		20		2387.34		.		3

		24		.		30		2375.48		.		3

		24		.		40		1572.29		.		3

		24		.		50		2201.11		.		3

		24		.		60		1632.21		.		3

		25		1		-20		.		1		1

		25		0.005		0		.		2		1

		25		.		0.25		0.65		.		1

		25		.		0.58		0.68		.		1

		25		.		0.92		0.92		.		1

		25		.		1.25		1.16		.		1

		25		.		2.5		1.49		.		1

		25		.		5		2.37		.		1

		25		.		10		3.03		.		1

		25		.		30		3.24		.		1

		25		.		40		3.53		.		1

		25		.		50		3.22		.		1

		25		.		60		2.58		.		1

		26		1		-20		.		1		2

		26		0.005		0		.		2		2

		26		.		0.58		1.30		.		2

		26		.		0.92		1.70		.		2

		26		.		1.25		1.80		.		2

		26		.		2.5		2.09		.		2

		26		.		5		2.65		.		2

		26		.		10		3.77		.		2

		26		.		20		3.78		.		2

		26		.		40		3.25		.		2

		26		.		50		4.23		.		2

		26		.		60		3.26		.		2

		27		1		-20		.		1		3

		27		0.005		0		.		2		3

		27		.		0.58		2.34		.		3

		27		.		1.25		0.85		.		3

		27		.		2.5		0.87		.		3

		27		.		5		2.58		.		3

		27		.		10		2.89		.		3

		27		.		20		3.32		.		3

		27		.		30		2.52		.		3

		27		.		40		2.52		.		3

		27		.		50		3.07		.		3

		27		.		60		2.96		.		3

		28		1		-20		.		1		1

		28		0.025		0		.		2		1

		28		.		0.25		2.98		.		1

		28		.		0.58		4.87		.		1

		28		.		0.92		5.33		.		1

		28		.		1.25		6.45		.		1

		28		.		2.5		7.88		.		1

		28		.		5		11.07		.		1

		28		.		10		15.32		.		1

		28		.		20		16.24		.		1

		28		.		30		17.90		.		1

		28		.		40		17.73		.		1

		28		.		50		15.57		.		1

		28		.		60		13.70		.		1

		29		1		-20		.		1		2

		29		0.025		0		.		2		2

		29		.		0.25		13.18		.		2

		29		.		0.58		8.53		.		2

		29		.		0.92		4.94		.		2

		29		.		1.25		9.14		.		2

		29		.		2.5		6.55		.		2

		29		.		5		9.75		.		2

		29		.		10		11.28		.		2

		29		.		20		17.94		.		2

		29		.		30		17.09		.		2

		29		.		40		12.94		.		2

		29		.		50		15.73		.		2

		29		.		60		12.77		.		2

		30		1		-20		.		1		3

		30		0.025		0		.		2		3

		30		.		0.58		8.00		.		3

		30		.		0.92		8.35		.		3

		30		.		1.25		7.91		.		3

		30		.		2.5		8.71		.		3

		30		.		5		16.04		.		3

		30		.		10		20.69		.		3

		30		.		20		20.53		.		3

		30		.		30		23.72		.		3

		30		.		40		18.18		.		3

		30		.		50		18.71		.		3

		30		.		60		11.32		.		3

		31		1		-20		.		1		1

		31		0.05		0		.		2		1

		31		.		0.25		6.08		.		1

		31		.		0.58		9.32		.		1

		31		.		0.92		9.43		.		1

		31		.		1.25		11.80		.		1

		31		.		2.5		13.37		.		1

		31		.		5		20.88		.		1

		31		.		10		28.66		.		1

		31		.		20		30.76		.		1

		31		.		30		34.83		.		1

		31		.		40		31.79		.		1

		31		.		50		31.22		.		1

		31		.		60		23.74		.		1

		32		1		-20		.		1		2

		32		0.05		0		.		2		2

		32		.		0.25		3.52		.		2

		32		.		0.58		6.41		.		2

		32		.		0.92		8.53		.		2

		32		.		1.25		10.03		.		2

		32		.		2.5		11.87		.		2

		32		.		5		17.68		.		2

		32		.		10		22.55		.		2

		32		.		20		27.35		.		2

		32		.		30		27.33		.		2

		32		.		40		26.82		.		2

		32		.		50		24.00		.		2

		32		.		60		18.65		.		2

		33		1		-20		.		1		3

		33		0.05		0		.		2		3

		33		.		0.58		11.74		.		3

		33		.		0.92		11.67		.		3

		33		.		1.25		15.14		.		3

		33		.		2.5		22.99		.		3

		33		.		5		24.09		.		3

		33		.		10		16.14		.		3

		33		.		20		42.69		.		3

		33		.		30		44.47		.		3

		33		.		40		38.92		.		3

		33		.		50		40.48		.		3

		33		.		60		30.75		.		3

		34		1		-20		.		1		1

		34		0.25		0		.		2		1

		34		.		0.25		28.45		.		1

		34		.		0.58		41.98		.		1

		34		.		0.92		48.89		.		1

		34		.		1.25		51.81		.		1

		34		.		2.5		63.89		.		1

		34		.		5		95.16		.		1

		34		.		10		122.76		.		1

		34		.		20		143.22		.		1

		34		.		30		159.86		.		1

		34		.		40		142.58		.		1

		34		.		50		137.15		.		1

		34		.		60		110.32		.		1

		35		1		-20		.		1		2

		35		0.25		0		.		2		2

		35		.		0.25		23.23		.		2

		35		.		0.58		26.79		.		2

		35		.		0.92		34.51		.		2

		35		.		1.25		39.79		.		2

		35		.		2.5		52.52		.		2

		35		.		5		73.02		.		2

		35		.		10		93.54		.		2

		35		.		20		126.38		.		2

		35		.		30		123.32		.		2

		35		.		40		112.27		.		2

		35		.		50		101.28		.		2

		35		.		60		77.27		.		2

		36		1		-20		.		1		3

		36		0.25		0		.		2		3

		36		.		0.58		73.72		.		3

		36		.		0.92		62.46		.		3

		36		.		1.25		67.38		.		3

		36		.		2.5		90.87		.		3

		36		.		5		187.34		.		3

		36		.		10		239.98		.		3

		36		.		20		182.51		.		3

		36		.		30		294.58		.		3

		36		.		40		199.45		.		3

		36		.		50		179.30		.		3

		36		.		60		254.35		.		3

		37		1		-20		.		1		1

		37		0.5		0		.		2		1

		37		.		0.25		53.07		.		1

		37		.		0.58		78.17		.		1

		37		.		0.92		84.03		.		1

		37		.		1.25		89.29		.		1

		37		.		2.5		111.62		.		1

		37		.		5		170.21		.		1

		37		.		10		222.22		.		1

		37		.		20		247.92		.		1

		37		.		30		263.71		.		1

		37		.		40		250.05		.		1

		37		.		50		228.55		.		1

		37		.		60		188.73		.		1

		38		1		-20		.		1		2

		38		0.5		0		.		2		2

		38		.		0.25		26.74		.		2

		38		.		0.58		50.92		.		2

		38		.		0.92		63.08		.		2

		38		.		1.25		70.51		.		2

		38		.		2.5		84.30		.		2

		38		.		5		129.03		.		2

		38		.		10		173.22		.		2

		38		.		20		231.02		.		2

		38		.		30		231.99		.		2

		38		.		40		186.83		.		2

		38		.		50		162.94		.		2

		38		.		60		111.48		.		2

		39		1		-20		.		1		3

		39		0.5		0		.		2		3

		39		.		0.58		86.54		.		3

		39		.		0.92		84.98		.		3

		39		.		1.25		98.15		.		3

		39		.		2.5		138.80		.		3

		39		.		5		223.52		.		3

		39		.		10		80.26		.		3

		39		.		20		417.96		.		3

		39		.		30		336.00		.		3

		39		.		40		280.35		.		3

		39		.		50		252.34		.		3

		39		.		60		199.99		.		3

		40		1		-20		.		1		1

		40		2.5		0		.		2		1

		40		.		0.25		294.71		.		1

		40		.		0.58		445.66		.		1

		40		.		0.92		400.12		.		1

		40		.		1.25		443.55		.		1

		40		.		2.5		460.76		.		1

		40		.		5		747.70		.		1

		40		.		10		724.44		.		1

		40		.		20		723.26		.		1

		40		.		30		964.49		.		1

		40		.		40		681.16		.		1

		40		.		50		621.36		.		1

		40		.		60		570.61		.		1

		41		1		-20		.		1		2

		41		2.5		0		.		2		2

		41		.		0.25		189.30		.		2

		41		.		0.58		262.61		.		2

		41		.		0.92		346.10		.		2

		41		.		1.25		265.31		.		2

		41		.		2.5		442.51		.		2

		41		.		5		448.69		.		2

		41		.		10		481.81		.		2

		41		.		20		687.28		.		2

		41		.		30		520.18		.		2

		41		.		40		452.11		.		2

		41		.		50		497.17		.		2

		41		.		60		372.36		.		2

		42		1		-20		.		1		3

		42		2.5		0		.		2		3

		42		.		0.58		312.22		.		3

		42		.		0.92		276.30		.		3

		42		.		1.25		217.86		.		3

		42		.		2.5		576.09		.		3

		42		.		10		419.95		.		3

		42		.		20		766.01		.		3

		42		.		30		758.79		.		3

		42		.		40		665.10		.		3

		42		.		50		500.00		.		3

		42		.		60		365.19		.		3

		43		1		-20		.		1		1

		43		5		0		.		2		1

		43		.		0.25		370.23		.		1

		43		.		0.58		597.21		.		1

		43		.		0.92		705.52		.		1

		43		.		1.25		542.52		.		1

		43		.		2.5		732.94		.		1

		43		.		5		1019.54		.		1

		43		.		10		1161.86		.		1

		43		.		20		1256.84		.		1

		43		.		30		1241.93		.		1

		43		.		40		919.05		.		1

		43		.		50		1164.79		.		1

		43		.		60		780.03		.		1

		44		1		-20		.		1		2

		44		5		0		.		2		2

		44		.		0.25		262.86		.		2

		44		.		0.58		347.22		.		2

		44		.		0.92		470.72		.		2

		44		.		1.25		428.54		.		2

		44		.		2.5		540.08		.		2

		44		.		5		778.43		.		2

		44		.		10		901.46		.		2

		44		.		20		872.80		.		2

		44		.		30		794.80		.		2

		44		.		40		889.51		.		2

		44		.		50		626.35		.		2

		44		.		60		865.96		.		2

		45		1		-20		.		1		3

		45		5		0		.		2		3

		45		.		0.58		654.36		.		3

		45		.		0.92		619.33		.		3

		45		.		1.25		644.39		.		3

		45		.		2.5		857.23		.		3

		45		.		5		1707.16		.		3

		45		.		10		1138.11		.		3

		45		.		20		1973.49		.		3

		45		.		30		767.25		.		3

		45		.		40		1221.84		.		3

		45		.		50		1168.52		.		3

		45		.		60		743.68		.		3

		46		1		-20		.		1		1

		46		15		0		.		2		1

		46		.		0.25		1182.43		.		1

		46		.		0.58		1804.80		.		1

		46		.		0.92		1911.68		.		1

		46		.		1.25		1881.84		.		1

		46		.		2.5		1382.28		.		1

		46		.		5		2032.43		.		1

		46		.		10		2156.56		.		1

		46		.		20		2800.81		.		1

		46		.		30		1772.33		.		1

		46		.		40		2211.27		.		1

		46		.		50		2269.01		.		1

		46		.		60		2787.54		.		1

		47		1		-20		.		1		2

		47		15		0		.		2		2

		47		.		0.25		884.45		.		2

		47		.		0.58		1108.07		.		2

		47		.		0.92		1135.06		.		2

		47		.		1.25		970.21		.		2

		47		.		2.5		998.13		.		2

		47		.		5		1308.94		.		2

		47		.		10		1600.53		.		2

		47		.		20		2081.28		.		2

		47		.		30		1283.31		.		2

		47		.		40		1131.30		.		2

		47		.		50		1734.70		.		2

		47		.		60		1714.74		.		2

		48		1		-20		.		1		3

		48		15		0		.		2		3

		48		.		0.58		1423.01		.		3

		48		.		0.92		1516.51		.		3

		48		.		1.25		1988.99		.		3

		48		.		2.5		3207.72		.		3

		48		.		5		2208.94		.		3

		48		.		10		2929.50		.		3

		48		.		20		4286.32		.		3

		48		.		30		2442.46		.		3

		48		.		40		2373.99		.		3

		48		.		50		1408.93		.		3

		48		.		60		2408.57		.		3




Pita_Etm_Combo_all.txt (with measurement of eltrombopag) :

P_E_Init_NoEtm.txt (without measurement of eltrombopag) :
The code for the model files for Chapter 5 for use in Monolix 2018R2 for the best
fitting model (micro-rate constant with competitive inhibition, with measurement of
eltrombopag) is included below, and all the files are included in the online thesis version:

DESCRIPTION: model to describe pitavastatin uptake into hepatocytes

[LONGITUDINAL]
input = {k13,k31,k12,k21,To,k23,k30,k46,k64 ,k45 k54 ,k56,x40,x50,x60}

PK:

depot (type=2,target=x1A)
depot (type=3,target=x1)
;depot (type=1,target=x4)

EQUATION :

;initial conditions:

t0 = 15

x4_0 = x40

x5_0 = x50

x6_0 = x60

; k13 and k31 = kfP and kbP

; k12, k21 and k23 = kaP, kdP and ktP
; k30 = pitavastatin met

; k46 and k64 = kfE and kbE

; k45, k54, alpha = kaC, kdC

; x1A—x3A = pitavastatin S1A, S2A and S3A
; x1—3: pitavastatin S1, S2 and S3

; x4—6: eltrombopag I1, I2 and I3

ddt_x1A = —k12%x1A%(To—x2A) — kl13*x1A + k21xx2A + k31%x3A
ddt_x2A = k12#x1A*(To—x2A) — (k21 + k23)*x2A

ddt _x3A = k13*x1A + k23%*x2A — (k31+k30)=*x3A

ddt_x1 = —k12%x1%(To—x5—x2) — kl13%x1l + k21%x2 + k31xx3
ddt_x2 = k12xx1l%(To—x5—x2) — (k21 + k23)*x2

ddt_x3 = k13xx1 + k23%x2 — (k31+k30)=*x3

ddt_x4 = —k46%x4 — k45%x4*(To—x5—x2) + k54%*x5 + k64*x6
ddt _x5 = k45%x4* (To—x5—x2) — (k54+k56)*x5
ddt _x6 = k46xx4 + k56%xx5 — k64%x6

pital = (x2A4x3A)*333
pita2 = (x2+4x3)*333
etm = (x54x6)*333

OUTPUT:

output = {pital, pita2 ,etm}
table = {x4,x5,x6,x2}
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and

inhibition by eltrombopag



		ID		AMT		TIME		DV		ADM		DVID

		1		0.3		15		.		2		1

		1		.		15.33		0.44		.		1

		1		.		15.5		0.81		.		1

		1		.		16		1.13		.		1

		1		.		17		2.05		.		1

		1		.		20		3.37		.		1

		1		.		25		3.44		.		1

		1		.		45		3.08		.		1

		2		0.3		15		.		2		1

		2		.		15.25		1		.		1

		2		.		15.5		1.65		.		1

		2		.		16		2.77		.		1

		2		.		17		3.74		.		1

		2		.		20		6.25		.		1

		2		.		25		6.32		.		1

		2		.		45		5.75		.		1

		3		0.3		15		.		2		1

		3		.		15.25		0.64		.		1

		3		.		15.5		1.12		.		1

		3		.		16		2.02		.		1

		3		.		17		2.84		.		1

		3		.		20		3.66		.		1

		3		.		25		3.52		.		1

		3		.		45		2.87		.		1

		4		1		15		.		2		1

		4		.		15.25		1.64		.		1

		4		.		15.5		2.04		.		1

		4		.		16		3		.		1

		4		.		17		5.53		.		1

		4		.		20		8.32		.		1

		4		.		25		5.65		.		1

		4		.		45		9.06		.		1

		5		1		15		.		2		1

		5		.		15.25		3.21		.		1

		5		.		15.5		4.54		.		1

		5		.		16		7.36		.		1

		5		.		17		11.12		.		1

		5		.		20		17.63		.		1

		5		.		25		18.93		.		1

		5		.		45		14.63		.		1

		6		1		15		.		2		1

		6		.		15.25		2.1		.		1

		6		.		15.5		2.85		.		1

		6		.		16		5.61		.		1

		6		.		17		8.39		.		1

		6		.		20		13.16		.		1

		6		.		25		10.79		.		1

		6		.		45		8.88		.		1

		7		3		15		.		2		1

		7		.		15.25		3.44		.		1

		7		.		15.5		5.29		.		1

		7		.		16		6.84		.		1

		7		.		17		12.79		.		1

		7		.		20		20.91		.		1

		7		.		25		23.83		.		1

		7		.		45		16.69		.		1

		8		3		15		.		2		1

		8		.		15.25		7.28		.		1

		8		.		15.5		11.1		.		1

		8		.		16		18.96		.		1

		8		.		17		26.06		.		1

		8		.		20		34.93		.		1

		8		.		25		41.51		.		1

		8		.		45		37.21		.		1

		9		3		15		.		2		1

		9		.		15.25		4.57		.		1

		9		.		15.5		6.22		.		1

		9		.		16		10.98		.		1

		9		.		17		14.51		.		1

		9		.		20		23.79		.		1

		9		.		25		27.45		.		1

		9		.		45		24.05		.		1

		10		10		15		.		2		1

		10		.		15.25		10.28		.		1

		10		.		15.5		13.48		.		1

		10		.		16		21.07		.		1

		10		.		17		40.16		.		1

		10		.		20		41.64		.		1

		10		.		25		48.12		.		1

		10		.		45		51.06		.		1

		11		10		15		.		2		1

		11		.		15.25		23.81		.		1

		11		.		15.5		31.84		.		1

		11		.		16		50.69		.		1

		11		.		17		69.05		.		1

		11		.		20		86.82		.		1

		11		.		25		101.31		.		1

		11		.		45		92.94		.		1

		12		10		15		.		2		1

		12		.		15.25		10.24		.		1

		12		.		15.5		15.8		.		1

		12		.		16		23.52		.		1

		12		.		17		33.88		.		1

		12		.		20		45.66		.		1

		12		.		25		55.04		.		1

		12		.		45		58.31		.		1

		13		30		15		.		2		1

		13		.		15.25		27.54		.		1

		13		.		15.5		39.76		.		1

		13		.		16		51.68		.		1

		13		.		17		70.77		.		1

		13		.		20		94.15		.		1

		13		.		25		96.56		.		1

		13		.		45		134.16		.		1

		14		30		15		.		2		1

		14		.		15.25		55.36		.		1

		14		.		15.5		78.62		.		1

		14		.		16		112.65		.		1

		14		.		17		171.8		.		1

		14		.		20		206.15		.		1

		14		.		25		229.26		.		1

		14		.		45		248.83		.		1

		15		30		15		.		2		1

		15		.		15.25		30.02		.		1

		15		.		15.5		44.72		.		1

		15		.		16		58.25		.		1

		15		.		17		83.69		.		1

		15		.		20		107.2		.		1

		15		.		25		109.61		.		1

		15		.		45		117.64		.		1

		16		100		15		.		2		1

		16		.		15.25		69.18		.		1

		16		.		15.5		107.44		.		1

		16		.		16		136		.		1

		16		.		17		165.82		.		1

		16		.		20		300.74		.		1

		16		.		25		284.22		.		1

		16		.		45		366.49		.		1

		17		100		15		.		2		1

		17		.		15.25		196.86		.		1

		17		.		15.5		246.56		.		1

		17		.		16		383.44		.		1

		17		.		17		431.86		.		1

		17		.		20		608.34		.		1

		17		.		25		657.36		.		1

		17		.		45		755.03		.		1

		18		100		15		.		2		1

		18		.		15.25		59.21		.		1

		18		.		15.5		73.16		.		1

		18		.		16		101.75		.		1

		18		.		17		141.38		.		1

		18		.		20		182.62		.		1

		18		.		25		214.66		.		1

		18		.		45		221.36		.		1

		19		0.3		15		.		2		1

		19		.		15.25		0.25		.		1

		19		.		15.25		1415		.		2

		19		.		15.5		0.45		.		1

		19		.		15.5		1664.77		.		2

		19		.		16		0.51		.		1

		19		.		16		1316.07		.		2

		19		.		17		0.63		.		1

		19		.		17		1350.11		.		2

		19		.		20		0.88		.		1

		19		.		20		1306.17		.		2

		19		.		25		1.21		.		1

		19		.		25		1430.89		.		2

		19		.		45		1.12		.		1

		19		.		45		1256		.		2

		20		0.3		15		.		2		1

		20		.		15.25		0.79		.		1

		20		.		15.25		970.61		.		2

		20		.		15.5		1.03		.		1

		20		.		15.5		1119.14		.		2

		20		.		16		1.34		.		1

		20		.		16		953.09		.		2

		20		.		17		1.85		.		1

		20		.		17		1156.16		.		2

		20		.		20		2.31		.		1

		20		.		20		1027.73		.		2

		20		.		25		2.46		.		1

		20		.		25		1040.39		.		2

		20		.		45		2.42		.		1

		20		.		45		1042.95		.		2

		21		0.3		15		.		2		1

		21		.		15.25		0.35		.		1

		21		.		15.25		737.06		.		2

		21		.		15.5		0.41		.		1

		21		.		15.5		668.12		.		2

		21		.		16		0.5		.		1

		21		.		16		534.55		.		2

		21		.		17		0.77		.		1

		21		.		17		638.73		.		2

		21		.		20		1.03		.		1

		21		.		20		647.19		.		2

		21		.		25		1.04		.		1

		21		.		25		557.86		.		2

		21		.		45		1.11		.		1

		21		.		45		615.15		.		2

		22		1		15		.		2		1

		22		.		15.25		1.2		.		1

		22		.		15.25		1584.27		.		2

		22		.		15.5		1.3		.		1

		22		.		15.5		1389.71		.		2

		22		.		16		1.56		.		1

		22		.		16		1281.58		.		2

		22		.		17		2.36		.		1

		22		.		17		1373.89		.		2

		22		.		20		2.55		.		1

		22		.		20		1181.24		.		2

		22		.		25		3.55		.		1

		22		.		25		1342.39		.		2

		22		.		45		2.85		.		1

		22		.		45		1025.18		.		2

		23		1		15		.		2		1

		23		.		15.25		2.8		.		1

		23		.		15.25		1164.67		.		2

		23		.		15.5		3.25		.		1

		23		.		15.5		1103.91		.		2

		23		.		16		4.14		.		1

		23		.		16		989.77		.		2

		23		.		17		4.35		.		1

		23		.		17		885.62		.		2

		23		.		20		6.95		.		1

		23		.		20		1044.52		.		2

		23		.		25		7.41		.		1

		23		.		25		939.03		.		2

		23		.		45		6.87		.		1

		23		.		45		958.14		.		2

		24		1		15		.		2		1

		24		.		15.25		1.01		.		1

		24		.		15.25		612.21		.		2

		24		.		15.5		1.32		.		1

		24		.		15.5		640.63		.		2

		24		.		16		2.01		.		1

		24		.		16		664.19		.		2

		24		.		17		3.12		.		1

		24		.		17		698.55		.		2

		24		.		20		3.79		.		1

		24		.		20		640.77		.		2

		24		.		25		4.34		.		1

		24		.		25		649.35		.		2

		24		.		45		3.81		.		1

		24		.		45		606.35		.		2

		25		3		15		.		2		1

		25		.		15.25		2.77		.		1

		25		.		15.25		1193.59		.		2

		25		.		15.5		3.9		.		1

		25		.		15.5		1462.45		.		2

		25		.		16		5.45		.		1

		25		.		16		1415.57		.		2

		25		.		17		6.15		.		1

		25		.		17		1237.47		.		2

		25		.		20		8.63		.		1

		25		.		20		1281.43		.		2

		25		.		25		8.51		.		1

		25		.		25		1096.58		.		2

		25		.		45		8.88		.		1

		25		.		45		1118.86		.		2

		26		3		15		.		2		1

		26		.		15.25		7.14		.		1

		26		.		15.25		1136.71		.		2

		26		.		15.5		9.19		.		1

		26		.		15.5		1041.26		.		2

		26		.		16		12.88		.		1

		26		.		16		1024.88		.		2

		26		.		17		12.66		.		1

		26		.		17		656.13		.		2

		26		.		20		19.85		.		1

		26		.		20		1083.4		.		2

		26		.		25		21.39		.		1

		26		.		25		1049.35		.		2

		26		.		45		21.78		.		1

		26		.		45		1103.08		.		2

		27		3		15		.		2		1

		27		.		15.25		3.01		.		1

		27		.		15.25		703.87		.		2

		27		.		15.5		3.97		.		1

		27		.		15.5		635.9		.		2

		27		.		16		5.7		.		1

		27		.		16		655.85		.		2

		27		.		17		7.64		.		1

		27		.		17		663.15		.		2

		27		.		20		9.22		.		1

		27		.		20		597.36		.		2

		27		.		25		11.17		.		1

		27		.		25		636.28		.		2

		27		.		45		9.03		.		1

		27		.		45		552.25		.		2

		28		10		15		.		2		1

		28		.		15.25		8.66		.		1

		28		.		15.25		1266.62		.		2

		28		.		15.5		11.6		.		1

		28		.		15.5		1248.83		.		2

		28		.		16		13.7		.		1

		28		.		16		1153.85		.		2

		28		.		17		20.56		.		1

		28		.		17		1251.52		.		2

		28		.		20		22.94		.		1

		28		.		20		1095.74		.		2

		28		.		25		25.07		.		1

		28		.		25		1158.44		.		2

		28		.		45		27.58		.		1

		28		.		45		1182.01		.		2

		29		10		15		.		2		1

		29		.		15.25		20.13		.		1

		29		.		15.25		1095.88		.		2

		29		.		15.5		27.47		.		1

		29		.		15.5		1035.93		.		2

		29		.		16		37.04		.		1

		29		.		16		1126.83		.		2

		29		.		17		47.38		.		1

		29		.		17		1088.94		.		2

		29		.		20		54.85		.		1

		29		.		20		1007.88		.		2

		29		.		25		67.61		.		1

		29		.		25		1166.93		.		2

		29		.		45		56.74		.		1

		29		.		45		1002.58		.		2

		30		10		15		.		2		1

		30		.		15.25		10.53		.		1

		30		.		15.25		729.81		.		2

		30		.		15.5		12.06		.		1

		30		.		15.5		682.02		.		2

		30		.		16		17.35		.		1

		30		.		16		633.62		.		2

		30		.		17		21.4		.		1

		30		.		17		618.74		.		2

		30		.		20		28.45		.		1

		30		.		20		608.21		.		2

		30		.		25		34.14		.		1

		30		.		25		683.69		.		2

		30		.		45		28.9		.		1

		30		.		45		599.94		.		2

		31		30		15		.		2		1

		31		.		15.25		26.63		.		1

		31		.		15.25		1382.52		.		2

		31		.		15.5		31.4		.		1

		31		.		15.5		1329.86		.		2

		31		.		16		43.67		.		1

		31		.		16		1156.33		.		2

		31		.		17		56.57		.		1

		31		.		17		1204.59		.		2

		31		.		20		70.75		.		1

		31		.		20		1196.1		.		2

		31		.		25		59.98		.		1

		31		.		25		890.75		.		2

		31		.		45		87.76		.		1

		31		.		45		983.35		.		2

		32		30		15		.		2		1

		32		.		15.25		62.23		.		1

		32		.		15.25		1189.57		.		2

		32		.		15.5		75.26		.		1

		32		.		15.5		1153.93		.		2

		32		.		16		114.22		.		1

		32		.		16		1218.64		.		2

		32		.		17		132.18		.		1

		32		.		17		1146.32		.		2

		32		.		20		159.89		.		1

		32		.		20		1061.43		.		2

		32		.		25		163.93		.		1

		32		.		25		1010.46		.		2

		32		.		45		176.26		.		1

		32		.		45		1102.17		.		2

		33		30		15		.		2		1

		33		.		15.25		26.77		.		1

		33		.		15.25		668.8		.		2

		33		.		15.5		38.61		.		1

		33		.		15.5		715.76		.		2

		33		.		16		45.83		.		1

		33		.		16		633.41		.		2

		33		.		17		61.09		.		1

		33		.		17		623.34		.		2

		33		.		20		81.99		.		1

		33		.		20		652.6		.		2

		33		.		25		73.56		.		1

		33		.		25		543.53		.		2

		33		.		45		78.92		.		1

		33		.		45		574.79		.		2

		34		100		15		.		2		1

		34		.		15.25		83.21		.		1

		34		.		15.5		84.23		.		1

		34		.		16		149.55		.		1

		34		.		17		162.02		.		1

		34		.		20		195.87		.		1

		34		.		25		258.45		.		1

		34		.		45		241.53		.		1

		34		.		15.25		1383.49		.		2

		34		.		15.5		1026.05		.		2

		34		.		16		1256.06		.		2

		34		.		17		1131.42		.		2

		34		.		20		983.13		.		2

		34		.		25		1130.84		.		2

		34		.		45		1000.32		.		2

		36		100		15		.		2		1

		36		.		15.25		56.55		.		1

		36		.		15.5		71.62		.		1

		36		.		16		101.21		.		1

		36		.		17		112.18		.		1

		36		.		20		166.1		.		1

		36		.		25		175.81		.		1

		36		.		45		174.89		.		1

		36		.		15.25		470.72		.		2

		36		.		15.5		453.1		.		2

		36		.		16		430.66		.		2

		36		.		17		384.81		.		2

		36		.		20		459.69		.		2

		36		.		25		410.46		.		2

		36		.		45		416.81		.		2




		ID		AMT		TIME		DV		ADM		DVID

		1		0.3		15		.		1		1

		1		.		15.33		0.44		.		1

		1		.		15.5		0.81		.		1

		1		.		16		1.13		.		1

		1		.		17		2.05		.		1

		1		.		20		3.37		.		1

		1		.		25		3.44		.		1

		1		.		45		3.08		.		1

		2		0.3		15		.		1		1

		2		.		15.25		1		.		1

		2		.		15.5		1.65		.		1

		2		.		16		2.77		.		1

		2		.		17		3.74		.		1

		2		.		20		6.25		.		1

		2		.		25		6.32		.		1

		2		.		45		5.75		.		1

		3		0.3		15		.		1		1

		3		.		15.25		0.64		.		1

		3		.		15.5		1.12		.		1

		3		.		16		2.02		.		1

		3		.		17		2.84		.		1

		3		.		20		3.66		.		1

		3		.		25		3.52		.		1

		3		.		45		2.87		.		1

		4		1		15		.		1		1

		4		.		15.25		1.64		.		1

		4		.		15.5		2.04		.		1

		4		.		16		3		.		1

		4		.		17		5.53		.		1

		4		.		20		8.32		.		1

		4		.		25		5.65		.		1

		4		.		45		9.06		.		1

		5		1		15		.		1		1

		5		.		15.25		3.21		.		1

		5		.		15.5		4.54		.		1

		5		.		16		7.36		.		1

		5		.		17		11.12		.		1

		5		.		20		17.63		.		1

		5		.		25		18.93		.		1

		5		.		45		14.63		.		1

		6		1		15		.		1		1

		6		.		15.25		2.1		.		1

		6		.		15.5		2.85		.		1

		6		.		16		5.61		.		1

		6		.		17		8.39		.		1

		6		.		20		13.16		.		1

		6		.		25		10.79		.		1

		6		.		45		8.88		.		1

		7		3		15		.		1		1

		7		.		15.25		3.44		.		1

		7		.		15.5		5.29		.		1

		7		.		16		6.84		.		1

		7		.		17		12.79		.		1

		7		.		20		20.91		.		1

		7		.		25		23.83		.		1

		7		.		45		16.69		.		1

		8		3		15		.		1		1

		8		.		15.25		7.28		.		1

		8		.		15.5		11.1		.		1

		8		.		16		18.96		.		1

		8		.		17		26.06		.		1

		8		.		20		34.93		.		1

		8		.		25		41.51		.		1

		8		.		45		37.21		.		1

		9		3		15		.		1		1

		9		.		15.25		4.57		.		1

		9		.		15.5		6.22		.		1

		9		.		16		10.98		.		1

		9		.		17		14.51		.		1

		9		.		20		23.79		.		1

		9		.		25		27.45		.		1

		9		.		45		24.05		.		1

		10		10		15		.		1		1

		10		.		15.25		10.28		.		1

		10		.		15.5		13.48		.		1

		10		.		16		21.07		.		1

		10		.		17		40.16		.		1

		10		.		20		41.64		.		1

		10		.		25		48.12		.		1

		10		.		45		51.06		.		1

		11		10		15		.		1		1

		11		.		15.25		23.81		.		1

		11		.		15.5		31.84		.		1

		11		.		16		50.69		.		1

		11		.		17		69.05		.		1

		11		.		20		86.82		.		1

		11		.		25		101.31		.		1

		11		.		45		92.94		.		1

		12		10		15		.		1		1

		12		.		15.25		10.24		.		1

		12		.		15.5		15.8		.		1

		12		.		16		23.52		.		1

		12		.		17		33.88		.		1

		12		.		20		45.66		.		1

		12		.		25		55.04		.		1

		12		.		45		58.31		.		1

		13		30		15		.		1		1

		13		.		15.25		27.54		.		1

		13		.		15.5		39.76		.		1

		13		.		16		51.68		.		1

		13		.		17		70.77		.		1

		13		.		20		94.15		.		1

		13		.		25		96.56		.		1

		13		.		45		134.16		.		1

		14		30		15		.		1		1

		14		.		15.25		55.36		.		1

		14		.		15.5		78.62		.		1

		14		.		16		112.65		.		1

		14		.		17		171.8		.		1

		14		.		20		206.15		.		1

		14		.		25		229.26		.		1

		14		.		45		248.83		.		1

		15		30		15		.		1		1

		15		.		15.25		30.02		.		1

		15		.		15.5		44.72		.		1

		15		.		16		58.25		.		1

		15		.		17		83.69		.		1

		15		.		20		107.2		.		1

		15		.		25		109.61		.		1

		15		.		45		117.64		.		1

		16		100		15		.		1		1

		16		.		15.25		69.18		.		1

		16		.		15.5		107.44		.		1

		16		.		16		136		.		1

		16		.		17		165.82		.		1

		16		.		20		300.74		.		1

		16		.		25		284.22		.		1

		16		.		45		366.49		.		1

		18		100		15		.		1		1

		18		.		15.25		59.21		.		1

		18		.		15.5		73.16		.		1

		18		.		16		101.75		.		1

		18		.		17		141.38		.		1

		18		.		20		182.62		.		1

		18		.		25		214.66		.		1

		18		.		45		221.36		.		1

		19		0.3		15		.		2		2

		19		.		15.25		0.25		.		2

		19		.		15.5		0.45		.		2

		19		.		16		0.51		.		2

		19		.		17		0.63		.		2

		19		.		20		0.88		.		2

		19		.		25		1.21		.		2

		19		.		45		1.12		.		2

		20		0.3		15		.		2		2

		20		.		15.25		0.79		.		2

		20		.		15.5		1.03		.		2

		20		.		16		1.34		.		2

		20		.		17		1.85		.		2

		20		.		20		2.31		.		2

		20		.		25		2.46		.		2

		20		.		45		2.42		.		2

		21		0.3		15		.		2		2

		21		.		15.25		0.35		.		2

		21		.		15.5		0.41		.		2

		21		.		16		0.5		.		2

		21		.		17		0.77		.		2

		21		.		20		1.03		.		2

		21		.		25		1.04		.		2

		21		.		45		1.11		.		2

		22		1		15		.		2		2

		22		.		15.25		1.2		.		2

		22		.		15.5		1.3		.		2

		22		.		16		1.56		.		2

		22		.		17		2.36		.		2

		22		.		20		2.55		.		2

		22		.		25		3.55		.		2

		22		.		45		2.85		.		2

		23		1		15		.		2		2

		23		.		15.25		2.8		.		2

		23		.		15.5		3.25		.		2

		23		.		16		4.14		.		2

		23		.		17		4.35		.		2

		23		.		20		6.95		.		2

		23		.		25		7.41		.		2

		23		.		45		6.87		.		2

		24		1		15		.		2		2

		24		.		15.25		1.01		.		2

		24		.		15.5		1.32		.		2

		24		.		16		2.01		.		2

		24		.		17		3.12		.		2

		24		.		20		3.79		.		2

		24		.		25		4.34		.		2

		24		.		45		3.81		.		2

		25		3		15		.		2		2

		25		.		15.25		2.77		.		2

		25		.		15.5		3.9		.		2

		25		.		16		5.45		.		2

		25		.		17		6.15		.		2

		25		.		20		8.63		.		2

		25		.		25		8.51		.		2

		25		.		45		8.88		.		2

		26		3		15		.		2		2

		26		.		15.25		7.14		.		2

		26		.		15.5		9.19		.		2

		26		.		16		12.88		.		2

		26		.		17		12.66		.		2

		26		.		20		19.85		.		2

		26		.		25		21.39		.		2

		26		.		45		21.78		.		2

		27		3		15		.		2		2

		27		.		15.25		3.01		.		2

		27		.		15.5		3.97		.		2

		27		.		16		5.7		.		2

		27		.		17		7.64		.		2

		27		.		20		9.22		.		2

		27		.		25		11.17		.		2

		27		.		45		9.03		.		2

		28		10		15		.		2		2

		28		.		15.25		8.66		.		2

		28		.		15.5		11.6		.		2

		28		.		16		13.7		.		2

		28		.		17		20.56		.		2

		28		.		20		22.94		.		2

		28		.		25		25.07		.		2

		28		.		45		27.58		.		2

		29		10		15		.		2		2

		29		.		15.25		20.13		.		2

		29		.		15.5		27.47		.		2

		29		.		16		37.04		.		2

		29		.		17		47.38		.		2

		29		.		20		54.85		.		2

		29		.		25		67.61		.		2

		29		.		45		56.74		.		2

		30		10		15		.		2		2

		30		.		15.25		10.53		.		2

		30		.		15.5		12.06		.		2

		30		.		16		17.35		.		2

		30		.		17		21.4		.		2

		30		.		20		28.45		.		2

		30		.		25		34.14		.		2

		30		.		45		28.9		.		2

		31		30		15		.		2		2

		31		.		15.25		26.63		.		2

		31		.		15.5		31.4		.		2

		31		.		16		43.67		.		2

		31		.		17		56.57		.		2

		31		.		20		70.75		.		2

		31		.		25		59.98		.		2

		31		.		45		87.76		.		2

		32		30		15		.		2		2

		32		.		15.25		62.23		.		2

		32		.		15.5		75.26		.		2

		32		.		16		114.22		.		2

		32		.		17		132.18		.		2

		32		.		20		159.89		.		2

		32		.		25		163.93		.		2

		32		.		45		176.26		.		2

		33		30		15		.		2		2

		33		.		15.25		26.77		.		2

		33		.		15.5		38.61		.		2

		33		.		16		45.83		.		2

		33		.		17		61.09		.		2

		33		.		20		81.99		.		2

		33		.		25		73.56		.		2

		33		.		45		78.92		.		2

		34		100		15		.		2		2

		34		.		15.25		83.21		.		2

		34		.		15.5		84.23		.		2

		34		.		16		149.55		.		2

		34		.		17		162.02		.		2

		34		.		20		195.87		.		2

		34		.		25		258.45		.		2

		34		.		45		241.53		.		2

		36		100		15		.		2		2

		36		.		15.25		56.55		.		2

		36		.		15.5		71.62		.		2

		36		.		16		101.21		.		2

		36		.		17		112.18		.		2

		36		.		20		166.1		.		2

		36		.		25		175.81		.		2

		36		.		45		174.89		.		2




Appendix G

Semi-Mechanistic Human
Physiologically Based
Pharmacokinetic Model for

Pitavastatin and Eltrombopag
Code

Copy of the R code developed in RStudio 1.1.456 with R 3.5.1 [186] using the deSolve
package [1] for the semi-quantitative PBPK model:

This PBPK model was written by Sitmon J. Carter 2019 with
suggestions from Carlos S. Traynor regarding the Monte—Carlo
simulations

Biomedical and Biological Systems Laboratory

University of Warwick

Coventry , UK. CV4 7AL

RiNR R R N NN
BRI R R N NN

library (deSolve)

library (ggplot2)

library (grid)

library (gridExtra)

library (extrafont)

library (cowplot)

library (zoo)

# first time use of extrafont:
#font _import ()

#loadfonts ()

# Model Based on: Takeuchi et al (2014). DMD 45:726—734, with added biliary exzcretion into the gut and delay co
# Clinical data: Prueksaritanont et al. (2014). Br.J.Clin.Pharmacol 78(8): 587—598 (1mg)

# FDA Clinical Pharmacology submission (2014). fig.8: 8mg instant release dose
Prueksaritanont <— read.csv(’Pruesksaritanont_2014_Pita.csv’,6 head=TRUE)

Prueksaritanont$Time <— Prueksaritanont$Time*60

Prueksaritanont$DV<— Prueksaritanont$DV/0.425

Prueksaritanont$Pos_err<— Prueksaritanont$Pos_err/0.425

Prueksaritanont$Neg_err<— Prueksaritanont$Neg_err/0.425

FDA_Pita_2 <— read.csv(’'FDA_Pita_09_2mg_PO.csv’,6 head=T)

FDA_Pita _28Time <— FDA_Pita _28Timex60

FDA_Pita _28DV <— FDA_Pita_28DV/0.425

FDA_2009 <— read.table( 'FDA_Etm. txt’,head=TRUE) # conc in ng/mL 50mg dose

Deng <— read.csv(’Deng_75_-2011.csv’, 6 head=T)

Deng$Time <— Deng$Timex60

Deng$DV <— Deng$DV/0.718

# assuming that 100% of the dose is awvailable to be absorbed (Fa=1)

# CfPP = fu.plasma/BL:PL
theme_set (theme_cowplot (font_size=8,font_family = ” Times_.New_Roman”))
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# Vz for pita. FDA = 226%x0.51=1383.2L. Gives very low plasma values. Total Body Water = 42L
# HPGL:189, Sohlenius—Sternbeck (2006). TozInVit 20: 1582—1588.
# wt of liver: 1695 (% CV = 16): Price (20038). Crit. Rev. Tozicol: 88:5. 469—508
#
# Number of wvirtual subjects:
n = 100
Pitavastatin Specific parameters
ktransP_v = rnorm(n, 0.1, sd = 0.2%0.1) #/min, min gastric emptying time =10’. Hirano (2006)
kaP_v = rnorm(n, 0.07, sd = 0.3%0.07) # FDA doc, ka=1/(MRT-PO — MRT_IV)=1/(4.55(1.87)—2.18(2.03))=
CL_BiPi_v = rnorm(n, 165, sd = 0.2%165) # Biliary CL, Total CL = 384mL/min (AUSPAR 2013)%0.43( fractio
CL_MePi_v = rnorm(n, 155,sd = 0.3%99) # mi/min. 0.22 (0.2—0.24)%0.003%139%1695 = 155 (141—169)
CLur_-v = rnorm(n, 11.5, sd = 0.2x%11.5) # ml/min. Urine. FDA (p.48) = 3% of total = renal clearance
fTP_v = rnorm(n, 0.02, sd = 0.3%0.02) # fu, tissue from RED expt #2
VmP_v = rnorm(n, 29988021 , sd = 0.3%29988021 )  # ng/min/liver. 0.302(0.18—0.64)%421.46%x139%1695 = 29988021 (
Cfpp_v = rnorm(n, 0.012, sd = 0.4%0.012) # fu.pl/BL:PL=0.005 (0.0009) (Aus TGA, 2013)/0.425 (0.162) (I
KmP_v = rnorm(n, 9525, sd = 0.3%9525) # ng/ml. 22.6%421.46 = 9525 (7038—10747)
PdPi_v = rnorm(n, 137.6, sd = 0.3%137.6) # P.diff into heps. ml/min. 5e—4x189%x1695 = 187.6 (108—144)
PdePi_v = rnorm(n, 295, sd = 0.3%295) # P.diff out of heps. mil/min. 0.21%x0.003%139%(1695— (556%1.03):
Eltrombopag Specific parameters
kaE_v = rnorm(n, 11, sd = 0.2%11) # /min, FDA (2009), Ka2 = 0.189/h = 0.008
CL_BiE_v = rnorm(n, 13, sd = 0.2%13) # Biliary CL (ml/min), Total CL/F = 13%x0.52%0.2( Unchanged dos
CL_MeE_v = rnorm(n, 6.8,sd = 0.2%6.8) # ml/min. total CL=13%x0.52%0.86 = 6.76 (FDA, 2009, 64% of
#CLur_v = rnorm(n , 11.5, sd = 0.2%«11.5) # ml/min. Urine. = 0% of total = remnal clearance
fTE_v = rnorm(n, 0.4, sd = 0.2x0.4) # fu, tissue from RED exzpt #2 = 0.001!
VmE_v = rnorm(n, 5102733, sd = 0.3%5102733) # ng/min/liver. 0.049(0.028—0.116)%442%x139%x1695 = 5102733 (291
CfpE_v = rnorm(n, 0.005, sd = 0.1%x0.005) # fu.pl. = 0.002 (Nieto et al (2011). Haematologica 96:e¢33)
KmE_v = rnorm(n, 3138, sd = 0.3%3138) # ng/ml.  T.1 (7.4—7.43)%442 = 3138 (3271—3284)
PdE_v = rnorm(n, 11780, sd = 0.3%11780) # P.diff into heps. ml/min. 0.05(0.04—0.06)%x139%x1695 = 11780
PdeE_v = rnorm(n, 294, sd = 0.3%294) # P.diff out of heps. ml/min. 0.62(0.55—0.67)%0.003%139% (1695
VcE_v = rnorm(n, 2940, sd = 0.2%2940) # ml. Takeuchi et al (2014)
Physiological Parameters
VcP_v = rnorm(n, 5820, sd = 0.1%x5820) # Total blood wvolume (ml). Price et al (2003)
Vext _H_v = rnorm(n, 556, sd = 0.2%556) # ml. Watanabe et al (2009). JPET 328:652—662
VH_v = rnorm(n, 1570, sd = 0.2%1570) # vol of liver (ml). Price et al (2003)
VGaBl_v = rnorm(n, 36, sd = 0.2x36) # Gallbladder volume (mL), Guiastrennec et al (2016)
Qh_v = rnorm(n, 1320, sd = 0.2%1320) # Hepatic blood flow (ml/min)
BiTrans_v = rnorm(n, 0.0618, sd = 0.2%0.062) # /min. Gallbladder emptying rate. Guiastrennec et al (2016).
Qk-v = rnorm(n, 1170,sd = 0.2%1170) # Kidneys blood flow (ml/min), Price et al (2008)

Function

HHAAAAAAFAAA AP 1tavastatin Onl

PitaODE <— function(t, In_Cond,
{with(as.list (c(In_Cond,
# pita lag compartment
dyldt <— —ktransPxyl

# Pita gut
dy2dt <—
# Pita liver extracellular
dy3dt <— (kaPx*y2

— Cfpp*y3x* ((VmP/ (KmP+y3*Cfpp))+PdPi)

+ QhxCfppx*(y6—y3)

+ PdePixy4*fTP

)/Vext_H

# Pita liver (y4)

dy4dt <— (Cfpp*y3* ((VmP/(KmP+y3xCfpp)) + PdPi )
(CL_MePi + CL_BiPi + PdePi)*xy4*fTP

parameters)
parameters)) ,{

compartment (y2)
— kaPxy2 4+ BiTrans*y5 + ktransPsxyl
(y3)

space

) /VH
# Pita GaBl (y5)
dy5dt <— (CL_BiPixy4=fTP)/VGaBl — BiTransxy5

# Pita blood (y6)
dy6dt <— (QhxCfppx(y3—y6) —Qk*xCLurxy6*xCfpp)/VcP

list (c(dyldt,dy2dt,dy3dt,dy4dt,dy5dt,dy6dt))
# pitavastatin only times:
times <— c(seq(0,400,1)) # min

ION

# Initial Conditions for pitavastatin only
In_Cond <— ¢(y1=1000000,y2=0,y3=0,y4=0,y5=0,y6=0)
out <— list ()

# Loop for Monte—Carlo
for (i

parameters _Norm <— c(

simulations subsjects

of n
in seq-along(1:n)){

ktransP = ktransP_v[i] s
kaP = kaP_v[i] s
CL_BiPi = CL_BiPi_v[i]
CL_MePi = CL_MePi_v[i] ,
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CLur = CLur_v[i] s
fTP = fTP_v[i] ,
VP = VmP_v [ i ]

Cfpp = Cfpp-v[i] ,
KmP = KmP_v [ i ,
PdPi = PdPi_v[i] ,
PdePi = PdePi_v[i] ,
VP = VeP_v[i] ,
Vext H = Vext_H_v[i] s
VH = VH_v[i] ,
VGaBl = VGaBl_v[i] ,

Qh = Qh_v[i] >

BiTrans = BiTrans_v[i] s

Qk = Qk-v [i]

)

out [[i]]<— ode(y = In_Cond, times = times, func = PitaODE, parms = parameters_Norm)
¥

newout <— lapply (out, function(x) x[, 7])
newout <— do.call(rbind, newout)

meany6 <— apply(newout, 2, mean, na.rm = TRUE)
qy6 <— apply(newout, 2, quantile, probs = ¢(.05, .95) )

figl<—ggplot (data.frame( m = meany6, q05 = qy6[1, ], q95 = qy6[2, ], time = times))+
geom_line (aes (x=time,y=meany6), colour="Blue”) +

geom_ribbon (aes(x = time, ymin = q05, ymax= q95), fill="Blue” ,alpha=0.3)+

labs (x="Time.(min)” ,y="blood_[ pitavastatin]_.(ng/ml)”)

fig2 <— figl + geom_point (data=Prueksaritanont , aes(x=Time,y=DV),6size=0.6)+
geom_errorbar (data=Prueksaritanont , aes (x=Time, ymin=Neg_err ,ymax=Pos_err))+
ylim (0,100)

A E [t rombopag Onl
EtmODE <— function(t, In_Cond, parameters)
{with(as.list (c(In_Cond, parameters)),{

# Etm stomach

dy7dt <— —ktransPxy7

# Etm gut compartment (y8)

dy8dt <— — kaExy8 4+ BiTrans*yll 4 ktransPxy7
# Etm liver eztracellular space (y9)

dy9dt <— (kaEx*y8

— CfpExy9* ((VmE/ (KmE+y9«CfpE)) + PdE)

+ QhxCfpEx*(y12—y9)

+ PdeExyl0fTE

)/Vext _H

# etm liver (y10)

dyl0dt <— (CfpExy9x* ((VmE/ (KmE+y9*xCfpE)) + PdE)
— (CL-MeE + CL_BiE + PdeE)*yl0*fTE

) /VH

# etm GaBl (y11)

dylldt <— (CL_BiExyl1l0*fTE)/VGaBl — BiTransxyll
# etm blood (yl11)

dyl2dt <— (Qh*CfpEx*(y9—y12))/VcE

list (c¢(dy7dt,dy8dt ,dy9dt ,dy10dt ,dyl1ldt ,dyl2dt)) }) }

#Eltrombopag times
times <— c(seq(0,10800,5)) # min

# Initial conditions for eltrombopag only:
In_CondE <— ¢(y7=75000000,y8=0,y9=0,y10=0,y11=0,y12=0)

out <— list ()

for(i in seq-along(l:n)){
parameters _NormE <— c(
ktransP = ktransP _v[i] s
kaE = kaE_v[i] s
CL_BiE = CL_BiE_v[i] ,
CL_MeE = CL_MeE_v[i] ,
fTE = fTE_v[i] ,
VmE = VmE_v[i]

CfpE = CfpE_v[i] s
KmE = KmE_v [i ] ,
PdE = PdE_v[i]

PdeE = PdeE_v |

VcE = VcE_v|[i]

Vext H = Vext_H_v[i] s
VH = VH_v[i] s
VGaBl = VGaBl_v[i] s

i] )
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Qh = Qh_v[i] ,

BiTrans = BiTrans_v[i]

)

out [[i]]<— ode(y = In_CondE, times = times, func = EtmODE, parms = parameters_NormE)
}

newout <— lapply (out, function(x) x[, 7])
newout <— do.call(rbind, newout)

meanyl2 <— apply(newout, 2, mean, na.rm = TRUE)
qyl2 <— apply(newout, 2, quantile, probs = ¢(0.05, 0.95) )

figA<—ggplot (data.frame( m = meanyl2, q05 = qyl12[1, ], 95 = qyl2([2, ], time = times))+
geom_line (aes (x=time ,y=meanyl2), colour="Blue”) +

geom_ribbon (aes(x = time, ymin = gq05, ymax= q95), fill="Blue” ,alpha=0.3)+

labs (x="Time.(min)” ,y="plasma.[eltrombopag]_-(ng/ml)”)

figB <— figA + geom_point(data=Deng, aes (x=Time,y=DV),size=0.6)+
scale_y_logl0(limits=c(1,30000))+

x1lim (5,10800)

figB

AP itavastatin and Eltrombopag
PitaEtmODE <— function(t, In_Cond, parameters)
{with(as.list (c(In_Cond, parameters)),{

# pita lag compartment

dyldt <— —ktransPx*xyl

# Pita gut compartment (y2)

dy2dt <— — kaPxy2 + BiTransxy5 + ktransPxyl

# Pita liver exztracellular space (y3)

dy3dt <— (kaPx*y2

— Cfpp*xy3x* ((VmP/ (KmP*(1+y9/KmE)+y3*xCfpp))+PdPi)
+ QhxCfppx*(y6—y3)

+ PdePixy4=fTP

)/ Vext_H

# Pita liver (y4)

dy4dt <— (Cfpp*y3* ((VmP/(KmPx(1+y9/KmE) + y3*Cfpp)) + PdPi)
— (CL_MePi + CL_BiPi + PdePi)*y4*fTP

) /VH

# Pita GaBl (y5)

dy5dt <— (CL_BiPixy4=fTP)/VGaBl — BiTransx*y5

# Pita blood (y6)

dy6dt <— (QhxCfppx(y3—y6) —Qk*xCLurxy6*Cfpp)/VcP
#Etm stomach

dy7dt <— —ktransPx*xy7

# Etm gut compartment (y8)

dy8dt <— — kaExy8 4+ BiTrans*yll 4 ktransPxy7

# Etm liver extracellular space (y9)

dy9dt <— (kaEx*y8

— CfpExy9*VmE/ (KmEx* (1+y3/KmP)+y9%CfpE) — CfpExy9*PdE
+ QhxCfpEx*(yl1l2—y9)

+ PdeExyl0*+{fTE

)/Vext_H

# etm liver (yl10)

dyl0dt <— (CfpExy9*VmE/(KmEx*(1+y3/KmP)4+y9*xCfpE) + CifpExy9*PdE
— (CL_MeE + CL_BiE + PdeE)*yl0x*fTE

) /VH

# etm GaBl (y11)

dylldt <— (CL_BiExyl1l0*fTE)/VGaBl — BiTransxyll
# etm blood (yl11)

dyl2dt <— (QhxCfpEx*(y9—y12))/VcE

list (c(dyldt,dy2dt,dy3dt,dy4dt ,dy5dt ,dy6dt ,dy7dt ,dy8dt,dy9dt ,dyl10dt ,dylldt,dyl2dt)) }) }

# Use relevant time depending on plot required:
times <— c(seq(0,400,2)) # min
times <— c(seq(0,10800,5))

out <— list ()
# Initial conditions for pitavastatin and eltrombopag together
In _CondPE <— ¢(y1=1000000,y2=0,y3=0,y4=0,y5=0,y6=0,y7=75000000,y8=0,y9=0,y10=0,y11=0,y12=0)

for(i in seq-along(1l:n)){
parameters NormPE <— c(
ktransP = ktransP_v[i] s
kaP = kaP_v[i] s
CL_BiPi = CL_BiPi_v[i] ,
CL_MePi = CL_MePi_v[i] ,
CLur = CLur_v[i] s
fTP = fTP_v[i]
VmP = VmP_v [i] s
[

Cfpp = Cfpp-v[i] ,

152



KmP = KmP_v[i] ,
PdPi = PdPi_v[i] ,
PdePi = PdePi_v[i] ,
kaE = kaE_v[i] s
CL_BiE = CL_BiE_v[i] ,
CL_MeE =CL_MeE_v [i] s
fTE = fTE_v[i] ,
VmE = VmE_v [ i
CfpE = CfpE_v
KmE = KmB_v [ i
PdE = PdE_v [i
PdeE = PdeE_v
VeP = VeP_v (i
Vext _ H = Vext_H_v[i] s
VH = VH_v[i] s
VGaBl = VGaBl_v[i] s

]
[i] ;
] ,
]
[i] ;
]

Qh = Qh_v[i] )
BiTrans = BiTrans_v[i] s
Qk = Qk_v[i] ,
VcE = VcE_v[i]

)

out [[i]]<— ode(y = In_CondPE, times = times, func = PitaEtmODE, parms = parameters_NormPE)

}

# Pita blood

newout <— lapply (out, function(x) x[, 7])
newout <— do.call(rbind, newout)

# Pita extravascular space

newout2 <— lapply (out, function(x) x[, 4])
newout2 <— do.call(rbind, newout2)

# Etm plasma

newout3 <— lapply (out, function(x) x[, 13])
newout3 <— do.call(rbind, newout3)

# Etm exztravascular space

newout4 <— lapply (out, function(x) x[, 10])
newout4d <— do.call(rbind, newout4)

meany3i <— apply(newout2, 2, mean, na.rm=TRUE)
qy3i <— apply(newout2, 2, quantile, probs = c¢(.05, .95) )

meany6i <— apply(newout, 2, mean, na.rm = TRUE)
qy6i <— apply(newout, 2, quantile, probs = c¢(.05, .95) )

meany8i <— apply(newout4,2 ,mean, na.rm=TRUE)
q8i <— apply(newout4, 2, quantile, probs = c(.05, .95) )

meanyl2i <— apply(newout3,2,mean, na.rm=TRUE)
ql2i <— apply(newout3, 2, quantile, probs = ¢ (.05, .95) )

# Pita Grid plot

fig3<—ggplot (data.frame(m = meany6i, q05 = qy6i[l, ], q95 = qy6i[2, |, time = times))+
geom_line (aes (x=time ,y=meany6i), colour="Red”) +

geom _ribbon (aes(x = time, ymin = q05, ymax= q95), fill="Red” ,alpha=0.3)+

labs (x="Time_(min)” ,y="blood_[pitavastatin]._(ng/ml)”)

figd <— fig3 + geom_point(data=Prueksaritanont ,aes(x=Time,y=DV),size=0.6,shape=16)+
geom_errorbar (data=Prueksaritanont , aes (x=Time, ymin=Neg_err ,ymax=Pos_err))+
geom_point (data=FDA_Pita_2,aes (x=Time,y=DV),size =0.6,shape=1)+

ylim (0,100)

figh <— plot_grid(fig2 ,figd4 ,align="h” ,labels=c(”a” ,”b”))

ggsave (”Pita_Etm_lmg_75mg.png” ,figh ,width=135,height=80,units="mm” ,dpi=900)

FHAAAAHAHHHHHH
# Etm Grid plot

figC<—ggplot (data.frame( m = meanyl2i, q05 = ql12i[l, ], q95 = ql2i[2, ], time = times))+

geom_line (aes (x=time,y=meanyl12i), colour="Red”) +

geom_ribbon (aes(x = time, ymin = q05, ymax= q95), fill="Red” ,alpha=0.3)+
labs (x="Time_(min)” ,y="plasma.[eltrombopag]_(ng/ml)”)

figD <— figC + geom_point (data=Deng, aes (x=Time,y=DV) ,size=0.6)+
scale_y_logl0(limits=c(1,30000))+

x1lim (5,10800)

figE <— plot_grid(figB ,figD ,align="h" ,labels=c(”a” ,”b”))

ggsave ("Etm_Pita _75mg_1lmg. png” ,figE ,width=135,height=80,units="mm” ,dpi=900)
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# Pitavastatin calculations

times <— c(seq(0,400,1))

#AUC Calc: Pita (h.ng/ml)

AUC_PE <— sum(diff(times)*rollmean (meany6i,2)) /60 # Pita AUC in presence of etm
AUC_P <— sum(diff(times)*rollmean (meany6,2)) /60 # Pita AUC in absence of etm

Cmax_PE <— max(meany6i) # Pita Cmaz in presence of etm
Tmax_PE <— which.max(meany6i) # Tmazx (—1) in presence of etm (hr)
Tmax_PE <— (Tmax_PE —1)/60

Cmax_P <— max(meany6) # Pita Cmaz in absence of etm

Tmax_P <— which .max(meany6) # Tmaz (—1) in absence of etm

Tmax_P <— (Tmax_P —1)/60

# FEltrombopag calculations

times <— c(seq(0,10800,5))

AUC_EP <— sum(diff(times)*rollmean (meanyl2i,2)) /60000 # Etm AUC in presence of pita, hr.ng.ml
AUC_E <— sum(diff(times)*rollmean (meanyl2,2)) /60000 # Etm AUC in absence of pita, hr.ng.ml

Cmax_EP <— max(meany12i)/1000 # Etm Cmaz in presence of pita
Tmax_EP <— which.max(meany12i) # Tmaz (—1) in presence of pita (hr)
Tmax_EP <— (Tmax_EP*x5—5)/60

Cmax_E <— max(meany12)/1000 # etm Cmazx in absence of pita
Tmax_E <— which.max(meany12) # Tmaz (—1) in absence of pita

Tmax_E <— (Tmax_E*5—5)/60

Cmax_EPliver <— max(meany8i)

Tmax_EPliver <— which.max(meany8i) # Tmaz in extravascular space (min)
Tmax_EPliver <— (Tmax_EPliver*5—5)

res <— as.data.frame(rbind (Cmax_P,Tmax_P,AUC_P,
Cmax_PE, Tmax_PE,AUC_PE,

Cmax_E, Tmax_E,AUC_E,

Cmax_EP, Tmax_EP,

Cmax_-EPliver ,Tmax-EPliver ,

AUC_EP))

write.csv(res , 'Pita _Etm_PK.csv )
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