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ELLIPTIC CURVES OVER TOTALLY REAL CUBIC FIELDS

ARE MODULAR

MAARTEN DERICKX, FILIP NAJMAN, AND SAMIR SIKSEK

Abstract. We prove that all elliptic curves defined over totally real cubic

fields are modular. This builds on previous work of Freitas, Le Hung and
Siksek, who proved modularity of elliptic curves over real quadratic fields, as

well as recent breakthroughs due to Thorne and to Kalyanswamy.

1. Introduction

Let K be a totally real number field and let E be an elliptic curve over K with
conductor N . It is conjectured that such a curve E is modular in the following
sense: there is a level N Hilbert newform f over K of parallel weight 2 and rational
Hecke eigenvalues such that L(E, s) = L(f, s), where the L-function on the left is
the Hasse–Weil L-function of E, and the L-function on the right is the Hecke L-
function of f. This modularity conjecture is the natural generalization to totally
real fields of the Shimura–Taniyama conjecture for elliptic curves over the rationals.
The latter is a celebrated theorem due to Wiles [24], Breuil, Conrad, Diamond
and Taylor [23]. The earliest results towards the modularity conjecture for elliptic
curves going beyond the rationals were due to Jarvis and Manoharmayum [13],

and established modularity of semistable elliptic curves over Q(
√

2) and Q(
√

17).
In the last 10 years there has been a dramatic strengthening of modularity lifting
theorems due to, for example, Breuil and Diamond [5], Kisin [16], Gee [10], and
Barnet-Lamb, Gee and Geraghty [2], [3].

By the aforementioned modularity lifting theorems and by now standard modu-
larity switching arguments due to Wiles and to Manoharmayum [18], a hypothetical
non-modular E/K would therefore necessarily have small mod p image for p = 3,
5, 7 and would give rise to a K-point on one of a number of modular curves—we
make this precise later. In [8], the real quadratic points of these modular curves are
shown to be either cuspidal, or to correspond to elliptic curves that have complex
multiplication, or rational j-invariants, or that are Q-curves. The authors deduce
the following.

Theorem 1 (Freitas, Le Hung and Siksek). Elliptic curves over real quadratic
fields are modular.
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Recently these modularity lifting results have been substantially strengthened in
the cases p = 5 and p = 7, respectively by Thorne [21] and Kalyanswamy [14]. This
means that several difficult steps in the proof of Theorem 1 can now be eliminated.
In this paper we build on these theorems of Thorne and Kalyanswamy to prove the
following.

Theorem 2. Let K be a totally real cubic number field. Let E be an elliptic curve
over K. Then E is modular.

The computations in this paper were carried out in the computer algebra system
Magma [4]. The reader can find the Magma scripts for verifying these computations
at:
http://homepages.warwick.ac.uk/staff/S.Siksek/progs/cubicmodularity/

We heartily thank the referee for many excellent suggestions that have improved
the exposition of this paper.

2. Images mod 3, 5, 7 and modularity

Let p ≥ 3 be a prime. Write B(p) for a Borel subgroup of GL2(Fp), and Cs(p)
and Cns(p) respectively for a split and non-split Cartan subgroup. Let C+

s (p) and
C+

ns(p) respectively be their normalizers.
The proof of Theorem 2 is based on the fact that a putative non-modular curve

must have small mod p images for p = 3, 5 and 7 simultaneously. We now make
the conditions for each prime precise.

Theorem 3. Let K be a totally real field and E an elliptic curve over K. Suppose
that ρE,3(GK) is not conjugate to a subgroup of B(3) or C+

s (3). Then E is modular.

Proof. By the aforementioned modularity lifting results, if ρE,3(GK(ζ3)) is abso-
lutely irreducible, then E is modular; a proof is given in [8, Theorem 3] but the
arguments are well-known.

By [20, Proposition 6], if ρE,3(GK(ζ3)) is absolutely reducible, then it is conjugate

to a subgroup of B(3) or C+
s (3). �

For p = 5 we use the following result due to Thorne [21].

Theorem 4 (Thorne). Let K be a totally real field and E an elliptic curve over
K. Suppose 5 is not a square in K, and ρE,5 is irreducible. Then E is modular.

For p = 7 we use the following result of Kalyanswamy [14, Proposition 4.3 and
Theorem 4.4].

Theorem 5 (Kalyanswamy). Let K be a totally real field and E an elliptic curve
over K. Suppose

• K ∩Q(ζ7) = Q.
• ρE,7 is irreducible.

• ρE,7(GK) is not conjugate to a subgroup of C+
ns(7).

Then E is modular.

Kalyanswamy’s theorem is somewhat more precise, but we shall not need its
full strength. We note that Q(ζ7)+ is the only totally real cubic field for which
Kalyanswamy’s theorem is inapplicable. It is for this reason that we consider elliptic
curves defined over that field separately in Section 4.

http://homepages.warwick.ac.uk/staff/S.Siksek/progs/cubicmodularity/
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3. Modular Curves

We quickly sketch some background on modular curves; for fuller details the
reader may want to consult [6], [8, Section 2.2.2], [19]. Let H∗ = H ∪ Q ∪ {∞}
denote the extended upper half-plane. The modular group SL2(Z) acts on H by
fractional linear transformations. The quotient SL2(Z)\H∗ is a compact Riemann
surface of genus 0, and hence is the analytification of a genus 0 algebraic curve
defined (a priori) over C which is denoted by X(1). The set Q∪{∞} ⊂ H∗ forms a
single orbit under the action of SL2(Z), and hence that orbit corresponds to a point
of X(1) which is called the cusp. In fact X(1) has a model defined over Spec(Z) in
which it is identified with P1, and where the cusp is simply the point at infinity.

Let p be a prime and let H be a subgroup of GL2(Fp) satisfying det(H) = F∗p.
Associated to H is a congruence subgroup ΓH which is defined as the preimage
of H ∩ SL2(Fp) under the map SL2(Z) → SL2(Fp). The modular curve XH/C is
the proper algebraic curve whose analytification is the compact Riemann surface
ΓH\H∗. In fact the condition det(H) = F∗p ensures that XH has a model over
Spec(Z[1/p]). The inclusion ΓH ⊂ SL2(Z) induces a morphism j : XH → X(1),
which is also defined over Spec(Z[1/p]). The cusps of XH are the preimages of
∞ ∈ X(1), and thus also the orbits of Q ∪ {∞} under the action of ΓH .

We now come to the modular interpretation of rational points on XH , and here it
is convenient to make an additional assumption, namely −I ∈ H. Let K be a field
of characteristic 6= p. Let E/K be an elliptic curve such that ρE,p(GK) is conjugate
to a subgroup of H. Then there is at least one non-cuspidal point P ∈ XH(K)
such that j(P ) = j(E) where j(E) is the j-invariant of the elliptic curve E. The
converse of this statement is false in general. There is however a partial converse
which is true: if P ∈ XH(K) is a non-cuspidal point and j(P ) 6= 0, 1728 then there
is an elliptic curve E/K such that ρE,p(GK) is conjugate to a subgroup of H and
j(E) = j(P ).

If we take H = B0(p), C+
s (p), C+

ns(p) then XH is the modular curve usually
denoted by X0(p), Xsplit(p) and Xnonsplit(p) respectively. For convenience, instead
of using the standard notation for these modular curves, we shall mostly follow
the notation of [8] and denote these modular curves by X(bp) := X0(p), X(sp) :=
Xsplit(p) and X(nsp) := Xnonsplit(p).

Now let K be a totally real cubic field, and for simplicity suppose K 6= Q(ζ7)+.
By Theorems 3, 4 and 5, a potentially non-modular elliptic curve E defined over
K would give rise to a non-cuspidal K-point P on either X(b3) or X(s3), and
simultaneously a non-cuspidal K-point Q on X(b5), and simultaneously a non-
cuspidal K-point R on either X(b7) or X(ns7). Observe that j(P ) = j(Q) =
j(R) = j(E). Thus we obtain a K-point on one of the fibre products

(1) X(u3)×X(1) X(b5)×X(1) X(v7), u ∈ {b, s}, v ∈ {b, ns}.

We denote the normalization of (1) by X(u3,b5, v7). As E is hypothetically non-
modular, it is non-CM, and in particular j(E) 6= 0, 1728. The maps XH → X(1)
are ramified only above 0, 1728 and ∞, and thus the K-point we obtain from E
on (1) is a smooth point and hence gives rise to a K-point on the normalization
X(u3,b5, v7). Thus to prove Theorem 2 for K 6= Q(ζ7)+ it is enough to show that
K-points on the four possible curves X(u3,b5, v7) are cuspidal. In fact it is plainly
enough to do this for the two curves X(b5,b7) and X(b5,ns7).
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An overview of the proof of Theorem 2. In Section 4 we prove modularity of
elliptic curves defined over Q(ζ7)+. In view of the above discussion the following
two theorems immediately imply Theorem 2.

Theorem 6. Let K be a totally real cubic field. Then X(b5,b7)(K) consists only
of cusps.

Theorem 7. Let K be a cubic field. Then X(b5,ns7)(K) consists only of cusps.

The remainder of the paper is devoted to the proof of these two theorems.

4. Modularity of Elliptic Curves over Q(ζ7)+

In this section we prove Theorem 2 for K = Q(ζ7)+.

Lemma 4.1. Let K = Q(ζ7)+. Let E be an elliptic curve defined over K. Then
E is modular.

Proof. By Theorem 4 we may suppose that ρE,5 is reducible. By Theorem 3 we may

suppose that the image of ρE,3 is contained in B(3) or C+
s (3). Thus E gives rise

to a non-cuspidal K-point on one of the two modular curves X(b3,b5), X(s3,b5).
It is shown in [8, Section 5.4.2] that these are in fact elliptic curves defined over Q
with Cremona labels 15A1 and 15A3. We computed the Mordell–Weil groups X(K)
for X = X(b3,b5), X(s3,b5) using Magma. In both cases we found

X(K) = X(Q) ∼= Z/4Z⊕ Z/2Z.

In particular E gives rise to Q-point on X and so is a twist of an elliptic curve
defined over Q. It is therefore modular by [23]. �

5. Proof of Theorem 6

Let X = X(b5,b7) (in standard notation denoted by X0(35)). It is known
that X has four Q-points and that these are cusps. Let K be a totally real cubic
field. For the proof of Theorem 6 it will be sufficient to show that X(K) = X(Q).
Suppose P ∈ X(K)\X(Q). Let P1, P2, P3 be the conjugates of P given by the three
embeddings of K in Q, and write D = P1 + P2 + P3. Then D is an irreducible Q-
rational divisor on X of degree 3. We shall determine all the irreducible Q-rational
divisors of degree 3 on X and show that none of them arise from totally real cubic
points, giving a contradiction.

The arithmetic of X and its Jacobian are studied in [8, Section 5.1]. The curve
X is hyperelliptic of genus 3. A model for X, derived by Galbraith [9, Section 4.4],
is given by

(2) X : y2 = (x2 + x− 1)(x6 − 5x5 − 9x3 − 5x− 1).

Write ∞± for the two points at infinity. Write J for J0(35)—the Jacobian of X.
Then

J(Q) =
Z

24Z
· [∞− −∞+] +

Z
2Z
· [3(0,−1)− 3∞+] .

Let D1, . . . , D48 be rational divisors of degree 0 on X representing the 48 classes in
J(Q), and let D′i = Di + 3∞+. Recall that D is an irreducible Q-rational divisor
of degree 3. Then D ∼ D′i for some i. We shall write L(D′i) for the Riemann–Roch
space corresponding to D′i and |D′i| for the corresponding complete linear system.
By Riemann–Roch and Clifford’s inequality, dimL(D′i) = 1 or 2. Moreover, if
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dimL(D′i) = 2, then |D′i| contains a base point (c.f. [1, Chapter I, Exercise D.9]),
and therefore cannot contain an irreducible divisor. To sum up, D ∼ D′i for some
1 ≤ i ≤ 48 such that dimL(D′i) = 1. We computed these spaces using Magma;
for this Magma uses an algorithm of Hess [11]. We found that dimL(D′i) = 1 for
precisely 44 of the 48 divisors D′i. For these, letting fi be a Q-basis for L(D′i), gives
D = D′i + div(fi) for some i. We found that precisely 28 of the effective degree 3
divisors D′i + div(fi) are irreducible. However, all of these split over a cubic field
with a complex embedding giving the required contradiction.

6. The modular curve X(b5,ns7)

We shall henceforth restrict our attention to X(b5,ns7). To simplify the notation
we write X = X(b5,ns7). We denote the Jacobian of X by J = J(b5,ns7). The
curve X and its Jacobian J are studied in Le Hung’s thesis [12, Section 6.4] and
we make extensive use of his results. In particular, this curve is non-hyperelliptic
and has genus 6.

The Jacobian J = J(b5,ns7). Le Hung shows that

J ∼ A1 ×A2 ×A3

where ∼ here denotes isogeny over Q, and A1, A2, A3 are modular abelian surfaces
defined over Q. Morever the Ai are absolutely simple. The involution w5 on J is
compatible with the isogeny and acts by multiplication by 1, −1, −1 respectively on
A1, A2, A3. The analytic ranks of A1, A2, A3 are respectively 2, 0, 0. In particular,
by the work of Kolyvagin and Logachëv [17], the Mordell–Weil groups A2(Q) and
A3(Q) are torsion. We immediately deduce the following.

Lemma 6.1. Let A/Q be the abelian subvariety of J that is the image of w5 − 1.
Then A ∼ A2 × A3 has dimension 4. Moreover, the Mordell–Weil group A(Q) is
torsion.

Le Hung’s model for X = X(b5,ns7). We need a good model for X(b5,ns7).
Le Hung [12, p. 47] gives a model which will be a good starting point for us. We
briefly sketch Le Hung’s derivation of his model, but work with projective rather
than affine coordinates. Later we explain how to derive a better model. The curves
X(b5) and X(ns7) are both isomorphic to P1 over Q. Let

F1(x1, x2) = (x21 + 10x1x2 + 5x22)3, F2 := x1x
5
2,

G1(y1, y2) = 64 ·
(
y1 · (y21 + 7y22) · (y21 − 7y1y2 + 14y22) · (5y21 − 14y1y2 − 7y22)

)3
,

and

G2(y1, y2) = (y31 − 7y21y2 + 7y1y
2
2 + 7y32)7.

For appropriate choices of projective coordinates (x1 : x2) for X(b5) and (y1 : y2)
on X(ns7), the j-maps are given by

j : X(b5)→ X(1), (x1 : x2) 7→ (F1(x1, x2) : F2(x1, x2)),

and

j : X(ns7)→ X(1), (y1, y2) 7→ (G1(y1, y2) : G2(y1, y2)).

As X is the normalization of X(b5) ×X(1) X(ns7) we immediately deduce the fol-

lowing model for X in P1 × P1:

C : F1(x1, x2)G2(y1, y2) = F2(x1, x2)G1(y1, y2).
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The curve X is the normalization of this model. The parameterization (x1 : x2) on
X(b5) is chosen so that the 0 and ∞ cusps are (x1 : x2) = (0 : 1) and (x1 : x2) =
(1 : 0) respectively. We shall denote these by a0, a∞. Let ζ7 be a primitive 7-th
root of unity. Let η = 2(ζ7 + ζ7) + 3 ∈ Q(ζ7)+. Then G2(η : 1) = 0. The three
cusps of X(ns7) are (η : 1) and its Galois conjugates. It follows that the cusps
of X are the points belonging to the normalization of C lying above the points
(x1 : x2, y1 : y2) = (0 : 1, η : 1), (1 : 0, η : 1) and their Galois conjugates. Although
these points on C are singular, it is easy to check (c.f. [8, Section 5.5.1]) that there
is only one point on the normalization above each, and to deduce:

• X has two Galois orbits of cusps, both of degree 3 and defined over Q(ζ7)+,
which we denote by c0, c∞;

• The three cusps in c0 map to a0, and the three cusps in c∞ map to a∞ on
X(b5).

• The divisor of x1/x2 interpreted as a function on X is 7 · (c0 − c∞). In
particular, the class [c0 − c∞] is an element of order 1 or 7. There are
several ways to show that the divisor c0 − c∞ is not principal, and so its
class has order 7. One way is by direct computation using Magma, working
with the model D introduced below. Here is another way: we shall show
below that X has gonality 4. As c0, c∞ have degree 3 they cannot be
linearly equivalent.

A plane degree 6 model for X = X(b5,ns7). We used Magma to compute,
starting with the model C, the canonical map and its image. The latter is indeed a
smooth genus 6 curve cut out in P5 by six homogeneous degree 2 polynomials. By
the Enriques–Babbage Theorem [1, p. 124], we know that X is neither trigonal, nor
isomorphic to a plane quintic. Moreover, as the factors Ai of the Jacobian are 2-
dimensional and absolutely simple, we see that the curve is not bi-elliptic. It follows
(c.f. [1, 209–210]) that X has gonality 4 and a degree 6 planar model, with four
ordinary double points as singularities. We used the inbuilt Magma implementation
for writing down this model, and found that two of the four double points are defined
over Q(i) and the other two over Q(

√
5). After applying a Q-rational automorphism

of P2 to slightly simplify this degree 6 model, it is given by the following equation:

D : 5u6 − 50u5v + 206u4v2 − 408u3v3 + 321u2v4 + 10uv5 − 100v6 + 9u4w2−
60u3vw2 + 80u2v2w2 + 48uv3w2 + 15v4w2 + 3u2w4 − 10uvw4 + 6v2w4 − w6 = 0.

On this model D the double points are

p1 = (i : 0 : 1), p2 = (−i : 0 : 1), p3 = (0 :
1√
5

: 1), p4 = (0 : − 1√
5

: 1).

It is clear that D has an automorphism (u : v : w) 7→ (−u : −v : w). The curve
X has an obvious modular involution which is w5. The following lemma proves
that w5 coincides with the automorphism (u : v : w) 7→ (−u : −v : w).

Lemma 6.2. The Q-rational automorphism group of X(b5, ns7) is generated by
w5, i.e. AutQ(X) = 〈w5〉 ∼= Z/2Z.

Proof. As described in [1, p 210–211.] a degree 6 planar curve with four ordinary
double points such as D has exactly five different g14 . Namely, one given by the
pencil of quadrics going through all four points, and the other four coming from
the pencil of lines through each of the pi. Since none of the pi are Q-rational, only
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the first g14 is defined over Q. Now every g26 on such a curve is residual to a g14 .
This means that there is only one Q-rational g26 , namely the one corresponding
to the degree 6 model given by u, w, v above. In particular every Q-rational
automorphism has to come from an automorphism h : P2

Q → P2
Q in the degree 6

model. Such an automorphism h has to preserve the singular locus {p1, p2, p3, p4}
and is in fact uniquely determined by what it does on this singular locus. Of
the 24 automorphisms of P2

Q preserving {p1, p2, p3, p4}, only the ones of the form

(u : v : w) 7→ (±u : ±v : w) are Q-rational. One easily sees that of these four only
the identity and (u : v : w) 7→ (−u : −v : w) are actually automorphisms of the
curve. �

Transferring c0 and c∞ to our new model D, we find that they respectively are
the Galois orbits of the following two points defined over Q(η) = Q(ζ7)+ by

(−4η2 + 21η + 7 : −η2 + 7η : 14), (4η2 − 21η − 7 : η2 − 7η : 14).

We note that these are interchanged by w5 : (u : v : w) 7→ (−u : −v : w) as
expected.

The Mordell–Weil group A(Q). In Lemma 6.1 we defined the abelian subvariety
A of J as the image of w5 − 1 and observed that A(Q) is torsion. We can now pin
downA(Q) precisely. In particular, applying the function field class group algorithm
of Hess [11] (implemented in Magma) to our model D, we obtain

J(F3) ∼= Z/7Z× Z/(7 · 23)Z,

and

J(F17) ∼= Z/2Z× Z/(22 · 73 · 31 · 271)Z.
Hence J(Q)tors is isomorphic to a subgroup of Z/7Z. Recall that the class [c0− c∞]
has order 7. Thus [c0 − c∞] generates J(Q)tors. Now since w5 interchanges c0 and
c∞,

(w5 − 1)([3c0 − 3c∞]) = 6[c∞ − c0] = [c0 − c∞].

Therefore [c0 − c∞] ∈ A(Q). As A(Q) = A(Q)tors ⊆ J(Q)tors = Z/7Z we have now
proved the following.

Lemma 6.3. A(Q) = (Z/7Z) · [c0 − c∞].

7. Proof of Theorem 7

In this section we prove Theorem 7 thereby completing the proof of Theorem 2.
Recall X = X(b5,ns7). Write X(3) for the third symmetric power of X. We shall
prove the following result which immediately implies Theorem 7.

Proposition 7.1. X(3)(Q) = {c0, c∞}.

Proof. Let x ∈ X(3)(Q). By Lemma 6.3 we have (1 − w5)[x − c∞] = ` · [c0 − c∞]
for some ` ∈ Z/7Z. As w5(c∞) = c0 we may rewrite this as

(x− w5(x)) ∼ k · (c0 − c∞)

for some k ∈ {−3, . . . , 3}. We write xF3 , c0,F3 , c∞,F3 ∈ X(3)(F3) for the reductions
of x, c0, c∞ modulo 3 respectively. It follows that

(3) (y − w5(y)) ∼ k · (c0,F3
− c∞,F3

)
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where y = xF3
. Using our model D we enumerated X(3)(F3); this has precisely 40

elements. For each y ∈ X(3)(F3) and for each k = −3, . . . , 3 we tested the relation
(3) and found that it holds only for y = c0,F3

and k = 1 and for y = c∞,F3
and

k = −1. We therefore deduce that xF3
= c0,F3

or c∞,F3
. We would like to conclude

that x = c0 or c∞. As w5 swaps c0 and c∞ and also their mod 3 reductions, we may
suppose that xF3 = c∞. Let µ : X(3) → J be given by z 7→ [z − c∞] and t : J → A
be simply t = w5 − 1. Since xF3

= c∞,F3
, the point (t ◦ µ)(x) ∈ A(Q) belongs to

the kernel of reduction A(Q) → A(F3). However as A(Q) is torsion, this kernel of
reduction is trivial [15, Appendix]. Thus (t ◦ µ)(x) = 0. To conclude that x = c∞
it is now enough to check that t ◦ µ is a formal immersion at c∞,F3 , and for this
we shall use the formal immersion criterion due to Derickx, Kamienny, Stein and
Stoll [7, Proposition 3.7].

Write ΩX ∼= ΩJ for the 6-dimensional space of 1-forms on X/F3. We would
like to write down the 4-dimensional subspace t∗(ΩA). We easily do this since it is
precisely that −1-eigenspace of w∗5 acting on ΩX , and we know the action of w5 on
our model D from which can write down the corresponding action on the 1-forms.
Let ω1, . . . , ω4 be an F3-basis for t∗(ΩA). To check the formal immersion criterion
of Derickx et al. at c∞,F3

we need to check that a certain 4 × 3 matrix defined
in [7, Proposition 3.7], which we denote by M , has rank 3. As 3 is inert in Q(ζ7)+,
we have c∞,F3

= P1 + P2 + P3, where Pi ∈ X(F27) are distinct. This slightly
simplifies the description of the matrix M . Let uj ∈ F27(X) be a uniformizing
element for Pj . Then ωi/duj is a regular function at Pj and we may evaluate
(ωi/duj)(Pj) ∈ F27. That matrix is simply

M = ((ωi/duj)(Pj))i=1,2,3,4; j=1,2,3 .

We computed M and checked that it has rank 3 as required. This completes the
proof. �
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