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INTRODUCTION

Let G be a Chevalley group over a finite field with g elements and
let B be a Borel subgroup of G. Let H(G,B) be the Hecke algebra of the
pair (G,B). J. Tits showed that the Hecke algebra over C is isomorphic
to the group algebra over ( of the Weyl group. N. Iwahori conjectured
that the Hecke algebra over Q of the pair (G,B) is isomorphic to the group
algebra over Q of the Weyl group. Benson and Curtis proved that this
conjecture is true whenever G is simple of type different from Ej, Eg.
With the help of Springer they proved that the conjecture is no longer
true when G 1s of type Ey, Eg. G. Lusztig constructed an explicit isomorphism
from the Hecke algebra over Q(q*) to the group algebra over Q(q*) of the
Weyl group.

The main purpose of this thesis is to investigate the general properties
of this isomorphism. As a consequence of our investigation we introduce

a way of obtaining orthogonal pri

ive idempotents inside the Hecke algebra.
This thesis has been divided into six chapters.
In Chapter 1 we recall some auxiliarly results about the structure
of Coxeter groups and their associated Hecke algebras. We also recall the
Kazhdan-Lusztig decomposition of a Coxeter group into left, right and two
sided cells and we explain how the cells give rise to representations of
the Coxeter groups and of the corresponding Hecke algebras.
Let Wbe a finite indecomposable Coxeter group satisfying a certain
property (property (A)) for the structure of its two sided cells. We recall
an explicit isomorphism from H"uij(W) to Q(u”) (W) constructed by G. Lusztig,

where Q(u*) 1« the field of fractions of the polynomial ring”Cu*].
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The subsequent chapters are our own work.

In Chapter 2 we find an explicit formula for Lusztlg's Isomorphism
1n the case where W m Dgn the dihedral groups. It turns out that these
groups satisfy the required property (A). Here we achieve our results
using classical properties of the Chebyshev polynomials of the second kind.

In Chapter 3 we investigate the centre of the Hecke algebra over the
polynomial ring f[u], following some ideas of RW. Carter. These ideas
give a natural basis for the centre of the Hecke algebras of dihedral groups
and they lead to an interesting conjecture for the form of a basis of the
centre of the Hecke algebra 1n the general case.

In Chapter 4 we find the images of the central basis elements of
the Hecke algebra of dihedral type determined In the previous chapter, under
Lusztig's isomorphism. Here we show that the images of these elements no
longer Involve u”.

In Chapter 5 we prove results valid for arbitrary Hecke algebras.
Herewe show that the images of the generators T$ of the Hecke algebra under
Lusztig's isomorphism * are given by $(TS) * 1.1 + (UN-1)MFS$
for some Fs € QW.

We give two independent proofs of this result. The second one 1s
based on some conjectures made by RW. Carter and uses the results of A. Gyoja
for the Irreducible representations of Coxeter groups and Hecke algebras.

We also show that 1f ¢ - E aT 1san element in the centre of the
WEW  *w

Hecke algebra with a € f[u], then in most of the cases the image of c under
Lusztig's isomorphism 4, belongs to Q[u](W).

In Chapter 6 we deal with the construction of orthogonal primitive
Idempotents Inside the Hecke algebra. These 1de mpotents are obtained

naturally from the decomposition of a maximal commutative subalgebra Inside
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the Hecke algebra. We shall achieve this decomposition in some special
cases.

Finally we discuss some open questions which arise naturally from
our work, and we make some conjectures which would allow these questions

to be settled.



CHAPTER 1

1.1 Coxeter groups

We shall first state some well known results about Coxeter groups.

A group W given by generators and relations as follows,

W- WS .<5,. 1£1,S, ml, (sIs))ml) « 1, €z, £2 1

or - >

m. -

is called a Coxeter group. When m” » e« we omit the relation (s"Sj) J «
We put S = {$j, 1€ 1).

The Ccxeter graph r associated to a given Coxeter group (W,S) is
by definition a set of nodes labelled by the elements of S, together
with a set Y of edges. An edge is a subset of S consisting of two
elements, such that for s~.Sj € S {s*.Sj} € Y, If and only if m” z 3.
In this case the node 1 is joined to the node j by m.j-2 bonds. If
m7j m 2, then s”Sj m SjS* and s,j,Sj are not joined by a bond.

A Coxeter group W is entirely determined up to isomorphism by
Its associated Coxeter graph.

A Coxeter group (W,S) is defined to be indecomposable if Its
Coxeter graph is connected, i.e. for any s, t € S, there exists a
sequence Sq m s,Sj ,$2.eee$. =t in S for some r Z 0 such that

Sj) 1s an edge for every 1s 1 s r.

Theorem 1.1 If (W,S) is an indecomposable Coxeter group of finite order,

then its Coxeter graph has one of the following forms.



0-0-0- ... -0-0 (1 4 1 nodes)

\
e4 0-0-0- ... -0-0 U 4 2 nodes)
i 0-0-0- ... -07~ (12 4 nodes)
E6 0-0~"-0-0
N —O—
E7 0-0 0—-0-0
s 0-0—0-0-0-0-0
e 0-0-0-0
G2 —
e

Ha o-c”a)
a4 0-0-CE==i)
1, « it u (p «50rpi7)

(p-2) bonds

proof see [5], page 193.

Assume that U m <s”...

StJSiI m e (s<sj:

1, 1s81,j sl

221f 1iJ, Mjj m1 1s a finite Coxeter group. Then U can be

described as a group generated by reflections

in a finite dimensional

i>



Euclidean space. Let V be a vector space over the real field R of
dimension t with basis {«]»....a”}. We define a bilinear form on V by

<, >:VxV-»>Rsuch that (a”,aj) “m<&"aj> m - Cos and extend

by linearity. This form 1s symmetric since mm~”, and <a®,a*> m 1.
Let be the subspace of V defined by m{v € V: <a®,v> m 0>.

Then, dim - t-1 and V m Ra* 0 Hj. We define a linear map T|SV ¢ V
by tj(v) m v-2<ai ,v>a”. Then tj(aj) = -a® and Tj(v) = v for all v 6 H".

2
Thus Tj 1s the reflection in the hyperplane and so m 1. W also

have that (t~Tj) ~ m 1 1f 1i j, and that (v')> - <v,v'> for
all v, v' € V. So there exists a homomorphism e: W-» <Tj..... T]> from W
into the group of isometries of V given by e(s?) - t”.

The form <v,v*> on V can be shown to be non-singular and positive
definite and so V may be regarded as Euclidean space. It can also be
shown that Wacts faitnfully on V and that V 1s an irreducible W-module.
We call V the reflection representation of W.

For any element w of a Coxeter group (W,S) we define the length

of w, denoted by t(w), to be the smallest integer q i 0 such that w is a

product of a sequence (s” ... s”) of q elements of S. We define a reduced
expression of w to be an expression w » s”.....sq where q « I(w).
Letn = (aj,...»£>= n 1s called the set of simple roots

Let * =W(n) m (w(a.), w€ W, a, € n}. * is called the set of roots.
1 1

It can be shown that each a € * has the form a « E XHa, with each
1-1 11
Xi 2 0 or each * 0.

Let+* —fae* a- E Xda,, X420 Vi -1 1), and let
11 11 1



n X1*i Xi SO0 Vl =

++ is called the set of positive roots, *" is called the set of negative
roots, and clearly « m 4+ U $
For any w € W we denote by n(w) the number of positive roots made

into negative by w.

The following proposition provides some well known results about
the t(M).
Proposition 1.2
(i) For any w € W, n(w) = Jt(w)

(ii) Letsi eS w€ Wand w - sl...sq a reduced expression of w. Then

there are two possibili

es.

(a) t(s.jw) =t(w) ¢ 1 and (s”,s1,...,sq) is a reduced expression of s"w.
In this case w'~(a”) € *+.

(b) «(s™w) » t(w)-1 and there exists a j,1 s j s g such that

i

(si,sl,...,Sj_1,Sj+1,...,sq) is a reduced expression of w = In this case

..Sj_1i »sj +i»»==»Sq) is a reduced expression of s”w and

wNaj) €% .
(iii) If Wi1s finite there exists a unique element of maximal length,
denoted by wQ
(lv) Let s,t €S, w€ Msuch that t(sw) m I(wt) and t(swt) = t(w).
Then sw = wt. (For a proof see [6], §2.2, and [6], pages 15, 18).

The Bruhat order relation on U is defined by: For any y, w€ W

we say y s w 1f there exist reduced expressions y * s, s. and
J1l2



u * s”$2 ... Sq with all lying In S, such that {j *Jg .e=e*js) i* a
subsequence of 1,2,...,q.

A Coxeter group 1s called crystallographic If, for all 1 +1J
mij € {2,3,4,6}. Thus the indecomposable Coxeter groups which are

crystallographic are of type A®, B», D”, Eg, E*, Eg, F*, Gg.

1.2 The Hecke algebra of a finite Chevalley Group

Let L be a simple Lie algebra of finite dimension over C. Then,
there is a finite crystallographic Coxeter group W associated to L,
called the Weyl group of L. For each such finite indecomposable
crystallographic Coxeter group W, there is just one simple Lie algebra
which has U as its Ueyl group except when W has type 1 2 3, when
there are two such Lie algebras, called B C

Any such Lie algebra has a Cartan decomposition L m HO E L where
ag*

H is a maximal commutative subalgebra called a Cartan subalgebra of L and L#
is a 1-dimensional H-module of L. The set ¢ of 1-dimensional representations
of H arising in this way is called the set of roots of L. * has a subset n ,
called a set of simple roots, such that each root in 4 is uniquely expressible
as a linear combination of elements of N with coefficients in Z which are
either all non-negative or all non-positive. The set * decomposes in this
way as ¢ = #+ u ¢" where ¢*, #” are the positive and negative roots
respectively. In this root system we no longer assume that roots are unit
vectors, so 1n general this root system is different from the one defined
in 1.1. (Proof of these results can be found 1n [16]).

We can choose a basis for L relative to a Cartan decomposition,

called a Chevalley basis, whose elements are (h , a € 1l, e , a C 4).



The Lie product of any two elements In the basis, 1s a linear combination
of basis elements with coefficients 1n Z.

For each x € L we define adx : L L by adx.y - [x,yj. This 1s
a derivation. For each X € C and for each a € the map ad(x«a) : L “mL
Is nilpotent. Thus we can form exp ad(xe#) which Is an automorphism of L.
We write X#(X) = exp ad (xe#). The Chevalley basis has the property that
the matrix N#(X) of each X#(X) with respect to this basis has entries which
are of the form bx* 1z 0 b € Z.

Now for any field K we can define a Lie algebra L" over K by taking
all K-combinations of elements 1n a Chevalley basis and taking Lie
multiplication as before, interpreting the integers as elements of the
prime subfield of K. LR has a basis {fi#, a 6 n. e#, a 6 *}, where
B# * ha O 1k* *a = ea 8 1K* For each a € *» t € K, let fl#(t) be the matrix
obtained by replacing the entry bX1 by Btl where 6 is the element of the

prime subfield of K corresponding to b e Z.

Define y~(t) tO linear map of L" Into itself represented by
the matrix M#(t) with respect to the basis a€n, ea, a€ *}. Then
It can be shown that Xa(t) Is an automorphism of Lg, for each a € «, t € K.
The group of automorphisms of L~ generated by j~(t) for all a e t € K

1s called the adjoint Chevalley group of type L over K. In particular 1f
K 1s the finite field with q elements Fq, we obtain a finite Chevalley
group which will be denoted by G(q).

For example 1f L Is the simple Lie algebra sIn(C) of all n* n
matrices of trace 0 over C, G(g) will be the group PSLn(q) of all nk n
matrices of determinant 1, factored by Its centre. Let U(q) be the subgroup

of G(q) generated by X#(x) for all a € and all X € F . Let



B(q) = Ne(q)(Ui**)>= the normal-ier of U(<I) G(g). In the previous
example U(q) Is the subgroup of all upper unltrlangular matrices and B(q)
1s the subgroup of all upper triangular matrices. Let ~(q) be the tr-ivial
representation of B(q) over C, and let p be the representation of G(q)

Induced by 1B# %, l.e. P m 1B/g\. Let e * — — £ X . Then
B(a) B(a) IB(a) 1 x€B(a)
e e CB(q), e2 » e, and CB(g)-e 1s a left B(q)-module affording 1g(q) while

CG(q)*e 1s a left G(g)-module affording 1g(q”~ (see ~7]» Proposition 11.21).
We define the Hecke algebra of the pair (G(q), B(q)) to be the endomorphism
algebra of the module CG(g)*e. We write Hj(q) m End”~(1g(q))- Recall that

the group algebra CG(q) 1s Isomorphic as C-algebra with the algebra of

C-valued functions f:G(q) “mC under convolution product, with the element

£ aw.x corresponding to the function f, defined by f(x) » aw,
xtsS(q) * *
x € G(q), ax € t. If f.g are t-valued functions on G(q), their convolution

product is defined as the function f*g : G(q) C given by
fgHx) - £ f(xy_1 .
(fgHx) y€G(qJ( y_1a)

Let A = B(q)g B(q), g € G(q) and consider the C-algebra of all formal
linear combinations of (B(q), B(q)) double cosets, £ C".A, e | under
the following multiplication:

Let A m B(q)gB(q) :l‘J B(q)lg-, A" = B(q)g'B(q) :EJ B(q)gJJ-
Define A-A' m £ * C where the summation 1s taken over all double

cosets C « B(q) cB(q) and pjj A, 1s the number of pairs (1,j) such that

B(gq)g<9i m B(g)*c. It can be shown that this 1s a well defined multiplication,

c

in othle? words the number 1s independent of the choice of the coset

representatives g”, gj , c. (See £14]). Moreover,



Theorem 1.2.1: The following four descriptions of the Hecke algebra of
a finite Chevalley group G(q) with respect to the subgroup B(q) are

equivalent:

< EndC < (3))

(11) e>CG(q)'e where e m — — E x
I1B(a)l x€B(q)

(111) Functions constant on (B(q),B(q)) double cosets, under convolution
product.

(1lv) The set of all formal linear combinations of the form E C..A,

the summation being taken over the (B(q).B(q)) double cosels,AWith

multiplication defined as above (Proof, see [10]).

Theorem 1.2.2: The dimension of Hj(q) is dim Hj(g) m |M], where W is the

Weyl group of L. Hj(q) has a basis{vw, w € W) such that if w * S| ... sq
is a reduced expression of w, thenv m v ...V . e write
for v , 1l m1

Each v< satisfies the quadratic relation
S1 1

v? » g.1 & (g-Dv~ (vA - 1 the Identity of H((q)).

Finally Hj(q) has a presentation as C-algebra given by

H,(Q) - <», e VE|N - g-1 e (g-t)»,. F K)ol e «jv

m?j being the order of s”Sj>.

(For the nature of the elements vw w € W and for a proof see [10]).



Theorem 1.2.3. (J. Tits' deformation Theorem)

The Hecke algebra Hj(q) over C Is Isomorphic to the group algebra
over C of the Weyl group: H”(g) « CW. (For a proof see [15] page 249).

We note that the product of any two basis elements vw of H”(q) Is
a Z-combination of basis elements. So we have a subalgebra Hz(q) of all
Z-comblnations of the basis elements v*. However 1n this subalgebra the
element vw 1s not Invertible since mq’,j ¢ (q'-1)*1. We therefore
extend the ground ring to Include g~ .

Moreover, although Tits showed that Hj(q) « CW, he did not give
any explicit Isomorphism between Hg(q) and CW. Iwahorl conjectured that
HACq) avQN (see [1(J). Benson and Curtis proved that this 1s true whenever
the Chevalley group G(q) Is simple of type + E7, Eg. (See [3]). It 1s
not true when G(q) has type Ez, Eg. (See [4]).

G. Lusztig constructed an explicit Isomorphism between H”" and

(See £123).

The construction makes essential use of the Kazhdan-Lusztlg theory.

1.3 The Kazhdan-Lusztlg Theory

In this section we deal with the theory developed by Kazhdan and
Lusztig 1n order to study representations of Hecke algebras. (See [11]).
Let (W,S) m <s1,...,sjl|s" m 1, s”Sj ... m SjS* ...> to be a finite Coxeter
“mmija mij
group. With such a Coxeter system we associate an algebra fi over the
polynomial ring Z[u], u being an Indeterminate over Z, as follows, fi has

basis elements (T~, w 6 W) and multiplication defined by the rules:
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Tw'Tws " Twws 1f “lws *l(w,)

T? - u.T, ¢ (u-1) T s. €8S.
*1 1 (u-) * 1

It can be shown that H has a presentation as an associative Z[u]-algebra

given by generators and defining relations:

v a2 r(-ov v jre o\ YV
Loy ox * mij *
being the order of s”s,, i i j. The Idea of such an algebra is due to J. Tits, see [5]
11 p. 55.

We extend the ground ring and we define the generic Hecke algebra H(u)

as follows: M(u) -H O Z[uJ, u'*]. We put A = Z[u*. u'*]-
Ztu]

Our first step 1s to define representations of H(u) with respect to
a special basis. These representations are defined in terms of certain

graphs.

Definition 1.3.0. Let Z be the ring of Integers. A W-graph over Z is a
set of vertices X together with a set of edges Y, an edge being a subset
of X consisting of two elenents and with two additional requirements:
(1) For each vertex x € X we are given a subset Ix of S and for each
ordered pair of vertices y,x such that {y,x}€ Y we are given an integer

u(y.x) t o
(2) Let E be the free A-module with basis X. Then for any s € S

=X 1f S € Ix

*<e>m |
ux ¢ u* e u(y.x)y if sil



defines an endomorphism of E, and there is a representation
$:H(u) meEnd(E) such that $(TS) m ts. for each s € S.
For any Coxeter group W we shall construct such a graph. Let
a -ma be the involution of the ring A = Z[u*, u”*) defined by iT m u~*.
Now for every s € S the element Ts is invertible and T~ m u~"Ts + (U“"-1)T".
Therefore it makes sense to extend the involution above to a map

H(u) H(u) defined by EaT mEa T"I. This map preserves addition
w w w

and multiplication but not scalar multiplication.

For any w £ H we define uw « u*<w), Let s be
the Bruhat ordering on W, defined in §1.1. The following results are
valid for an arbitrary Coxeter group W, however we restrict ourselves to

a finite Coxeter group. For a proof of these results (see £11]).

Theorem 1.3.1. For any we W, there is a unique element Cw € H(u) such

that:
Cw m C,, and
c. my* V* “ “ylpywV
where Py w € A 1s a P°'ynom(@ *n u of degree i j (t(w) - t(y) - 1) for

y <**nd py.w m e

Definition 1.3.2. Given y,w € Wwe say y < w if the following conditions
are satisfied: y <w, m - ey and Py wis a polynomial in u of degree
exactly » (t(w) - i(y) - 1). In this case the leading coefficient of Py’w

is denoted by p(y,w). It is a non-zero integer.
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The polynomials Py w defined In Theorem 1.3.1 are given by the

following inductive formula:

P + ucP, - | u(i.*)ul* uj ux P (y s w)
Sy ysz<v
sz<z
1 if sy<y
., C
0 if sy >y

the convention that Px y - 0 1f x i v. (See Theorem 1.1 in [11]).

where w - sv, s € S with t(w) - t(v) ¢ 1 and we make

Remark. The elements (Cw|w € W} defined in Theorem 1.3.1 provide a new

basis for H(u).

Lemma 1.3.3.
(i) For each y < wwith i(w) - i(y) ¢ 1, we have Py w - 1. In particular
we have y < wand y(y,w) « 1

(11) For each y < w with t(w) m i(y) ¢ 2 we have Py w * 1.

For further properties of the Py w see Lemma 2.6 in [It].

Lemma 1.3.4. Let (C* |w€ W) as defined in Theorem 1.3.1, and let s € S.

Then: (1)

K -C if $v<v

z<v
sz <z
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(11) Similarly Interchanging left and right we have
-C Ifvs <v

uC + u* C + u* Z y(zyv)C 1fvs >v
\2 \2 2<v
25 <z

(See Proof of Theorem 1.3 1n [111J).

Lemma 1.3.5. (1) Let x,y € W, s € S be such that x <y, sy <y, sx > x.
Then Px y « Psx y. Moreover x < y If and only 1f y = sx, and this Implies

that y(x,y) * 1.

(11) Let x,y € W, s € S be such that x <y, ys <y, xs >x. Then
Pxy « Pxs y. Moreover x <y If and only If y m xs, and this implies
that y(x,y) * 1.

(See Proof of Theorem 1.3 1n [113).

Now, Lemma 1.3.4(1) and 1.3.5(1) enable us to prove the following:

Theorem 1.3.6. Let r be the graph whose vertices are the elements of W
and whose edges are the subsets of Wof the form {y,w} with y < w. For
each w6 W, let Iw=£w) *: {SeSsw<w). Then Tr. together with
the assignment w Iw and with the function y given in Definition 1.3.2
is a W-graph. (See Theorem 1.3 in [11]).
Since Lemma 1.3.4 provides the action of the generators Ts on

the basis (CJw € W}, It is natural to ask what is the effect of any Tw
on this basis.

The following result is stated for future purposes:
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lemma 1.3.7. Let x.w € W. Then

£

z €U
*(z)**(x)mod 2
where k2(u), X2(u) € Z[u].

Proof. We shall use induction on i(w).

If t(w) « O then w= 1 and our assertion holds. Assume by
induction that our assertion holds for all elements w' with z(w') < z(w).
Let w € W. We write w « sv for some v with I(v) - i(w) - 1. We can

apply our induction hypothesis on Tv Cx* So

¢ E

zZ €W
t(z)*t(x)mod 2

where k2(u), X2(u) € Z[u].
Consider a C2 for which t(z) = t(x) mod 2. Then

-k2(u)c2 if sz <z

kz(u)[uCz & u* C, & u* L p(y,l)C‘] If si >z.
5 5
Now when y < z, then I(z) t t(y) mod 2, therefore i(y) i t(x) mod 2 and the
coefficient of 1s u* g(u) for some g(u) £ ZCul. The coefficient of C$z
is also u* kz(u) and I(sz) t £(x) mod 2, while the coefficient of C2 is

uk2(u).
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Next consider a C2 for which t(z) t i(x) mod 2. Then from the

action of T on the summand z u*x_(u)C we obtain a certain
5 ZEW 2 4

I(z)*i(x)mod 2

linear combination of C ‘s as above and it is easy to check that those
B i

C. for which «(&) t t(x) mod 2 appear with coefficient u*f(u) for some
p
f(u) € Z[u], while those C, for which t(e) = i(x) mod 2 appear with

p
coefficient h(u), for some h(u) € Z[uJ.

Therefore our lemma is now proved.

Corollary 1.3.7. The diagonal entries of the matrix which represents Tw
with respect to the basis {CJx € W} consist only of polynomials 1n Z[u].

The following ideas are due to Kazhdan and Lusztig. (See D13)-

Definitions 1.3.8. Let x, x' € W. We say that x, x' are joined, (x - x'),

if either x < x' or x' < x. We define a left preorder s on Wby saying
L
that x s x' if there exists a sequence of elements of Wix - xQ, Xj,...,xn * x'

such that for each i, 1 £i s n, we have x*_* — x* and there exists an s € S
such that sxi_1 < x~_1 but sx* > x*. We may then define an equivalence

relation on Wby saying x A x* if x s x*¥s x. The equivalence classes with
L L L

respect to the relation -v are called the left-cells of W. Similarly we
define right cells by relﬁlacing the condition on s € S, by x*_jS < x*_* and
x.s > x4. The notation x * x' means that x, x' are in the same right cell.
F%nallylwe can define 2'SidRed cells by replacing the condition on s € S,
by: either sx.._j < x ~ and sx* > x*

or Xxi_jx < xf_i an<* xts > xi*
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The notation s means the 2-sided preorder and x x' means that

LR
x,x"' are inside the same 2-sided cell. Evidently, every left cell lies in
a unique 2-sided cell and the same holds for every right cell. Each left

cell, regarded as a full subgraph of the graph r (Theorem 1.3.6) with the
same sets Ix and the same function y 1s Itself a W-graph. Therefore it
gives rise to a representation of H(u). Nevertheless, this representation

is not always irreducible. However,

Theorem 1.3.9. Let X be a left cell of W= Sn, and let r be the W-graph
associated to X and let p be the representation of H(u) over the quotient
field of A. Then p is irreducible, and the isomorphism class of the W-graph
r depends only on the isomorphism class of p and not on X. (See Theorem 1.4

In C11])-

1.4 The Lusztig Isomorphism
Let Wbe a Coxeter group and S its set of reflections. Let E be
the free f[u*] module with basis {ew, w € W). Let H be the generic Hecke

algebra over $[u*]. We know that the formulae

-ejy if sw<w

E jily.w)e 1f sw>w
y-w y
Sy<y

-ew if wt<w

E’u(y,w)e If wt>w
tw *
yt<y
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define an (H,H) bimodule structure on E. ji(y,w) my(y,w) if y < w and
yly.w) - y(w,y) if w<y.
We also define a left W-module structure on E by
-eu if sw<w
if sw>w
W

Sy<y

and a right W-module structure on E by

ew » E 5(y.n)ey If wt» w
y-w
yt<y
We shall refer to the basis {«ww € W} of E as the canonical basis of E.
Now, the left and right W-module structures on E commute with each
other. However, the left H-module structure does not necessarily commute
with the right W-module structure. For each 2-sided cell X of Wwe shall
construct an H-module Mx of dimension [X| over |[[u*J.

In fact, for each

2-sided cell X of W, we consider the f[u*J submodule Ex of E, spanned by

{e :w s x for some x € X}. Inside Ey we consider Ei the submodule spanned
w LR
by e :wt X, ws x for some x € X>. Put MY = Ev/F, . It is clear that

LR X 7 LX

is an H-module of dimension |X|. Let grad(E)= 6 Mx, summed over all

2-sided cells X of W. It has a canonical basis, the images ew of the elements

ew of E. It is clear that both Ex, Ex are left H-submodules, left W-submodules,

and right W-submodules. Therefore grad(E) is in a natural way a left H-module,
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a left W-module and a right W-module. It 1s clear that the left H

action on the graded module is given by

-ew if sw< w
N m{
ue + u* E y(y.w)i if sw>w
y w y
LR
Sy <y
and by specializing u* 1 we obtain the action of the generators s € W

on the graded module, and therefore the action of any w 6 W.

Definition 1.4.1. We say that the Coxeter group W satisfies the property (A)

if given y.WC W such that:
(1) y-w, (11) {s 6S : sy <y> £ {s €S : sw<w>,

(111) (s € S : ys <y}E (s € S : ws <w) , then y,w are not inside the

same 2-sided cell of W.

Lemma 1.4.2. Assume that W has the property (A). Then the left H-module
structure and the right W-module structure on grad(E) commute. (Proof:

see lemma 2.3 in D2].)

Lemma 1,4.3. Assume that W is a finite Weyl group. Then W satisfies the
property (A). (Proof: See Lemma 4.1 in C1Z].)
The only known proof of this result uses the theory of primitive

ideals in enveloping algebras. No elementary proof of this result is known.
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Theoreni 1.4.4. (Lusztig's isomorphism theorem). Assume that Wis a
finite Indecomposable Weyl group.

(a) There is a unique homomorphism of f[u*]-algebras *: H #Q[u*](W)
such that for any h € H and any w € W, the difference hew - $(h)ew 1s a

linear combination of ey, y not in the same 2-sided cell with w.

(b) Let K be any field of characteristic zero, and x any homomorphism
of fCu*] into K, such that the specialized algebra * H 6 Kis semisimple.
Then the specialized homomorphism of K-algebras * = KW is an
isomorphism.

A more general version and a proof of this theorem is given 1n

Theorem 3.1 in 02 J.

Remarks (1) The theorem above applies to any finite indecomposable CaxetergroupW
provided that W satisfies the property (A). In fact by taking
x:|[u*) -mQ(u*) the natural inclusion, then Hn(ui) “ Q(u*)(W).
(2) When W is a finite Weyl group and q is a prime power and Q(q*) 1s a
field extension of 9 of degree 1 or 2, then by taking x:Q[u*] -»Q(gq*) such
that*(u*) - g* (the positive square root of gq), we obtain
"«(ql) (G(<I)'B<l» “ «(qghoo.
We next describe a procedure for an explicit construction of

Lusztig's isomorphism.

Procedure: Let Wbe a finite indecomposable,Coxeter group which satisfies
the property (A). The graded module over H(u”) when viewed as a left
Hg(ui) module is semisimple and affords the left regular representation of

Hg(u*)* Let L be a field containing Q(u*) and assume that L is a splitting
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field for H]|(ui)= In fact such a f*eld L can be chosen of the form
F(u*) where F « Q 1f W is crystallographic, (see £3], £43),or F = Q(/F)

If Uls of type H3 (see £123.).or F - K 1 If W1s of type H4 (See

£23),or F=Q (2 cos ~"L) If U Is a dihedral group D2n n » 5 or n * 7.
It Is well known that HL Is also semisimple and therefore the

graded module over L has a decomposition Into a direct sum of left

absolutely Irreducible HL submodules. Let

(0) : grad(E) - V,, = ... OV,A 0...0MWL O ... 9
be one such decomposition where - Vvr$ 1f and only If 1 mr, and for each
1€ (1. t), Vjj has dimension dj, for every j m 1,...,dj. We choose

a basis of each constituent VAr and 1n this way we obtain a basis adapted
to this decomposition.

We also choose a full set of Irreducible constituents, namely
X m 1*11- V21..... wt1>*

In order to determine Lusztlg's Isomorphism *, It 1s enough to
determine the Images under $ of the generators Ts, s € S. By part (a)
of the Theorem 1.4.4 we have that Ts and *(TS) act on the same way on

the graded module. Fix an s € S and let *(T ) m Z c .w, c € Q(u*)
5 ucu w w

We wish to determine the cw, we W.

If Vj €X, 1*1i tand has chosen basis (v( n then
Ts v<<> = #(I's)v~~, for every X - 1,...,dr Moreover, for every s € S,
> . .
' Yk

When we consider the graded module as a left W-module with W-actlon obtained

by specializing u® ¢ 1 In the action of Ts, s € S, then U affords the left



regular representation of W. Now each Vj, 1* 1i t becomes an absolutely
Irreducible FW module.

By specializing u* 1 in the matrices which represent Ts, s € S
with respect to the basis adapted to the constituent €X, 1S1St,
we obtain the matrices which represent the generators s and therefore

the matrices which represent every w € W.

Let w€ H and let (fjA(w)), k, X€ {1 ....7~} be the matrix which
represent w on the FW module ,1S1it.
u1l .
»1° I 1s XSd. Then, &(Ts)vJ1) £ cj Z
u-1 wew W-1
Therefore by comparing coefficients of the basis elements on both sides
of the equation T$ = «(T$)v~i”™ we obtain di equations 1n the unknowns
cw, w € Wand therefore from every e X we obtain d* such equations,

1*1St.

Hence from the full set of Irreducible constituents iVl 1 ., Vtl}
t 9
we obtain £ df = |W, equations in the |W unknowns ¢ , w € W.
111

These equations are linearly Independent (see 3.41 In [7]),
and the solution of the system of these equations determines the cw, w €W

and therefore the image of T$ under *.

Example. Let Wbe the Weyl group of type Ag, W S”. Whas a presentation:
<sr s2Is® - i\ - t. (s,s2)3 * 1>. The 2-slded cells are
X, m (). X2 - (5),82,5)s2, S2S,>. Xj - U jSiSj)-
The graded nodule has canonical basts (jw, w C H). The module
Mx obtained by the 2-slded cell X2 has an easy decomposition Into a direct

sum of two left Irreducible submodules, namely
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MY =<ec ,5. . >« <5. e >, hence

*2 *1*2*1 *2 *1*2

grad(E) . <e,> » <es_,e__, > e <K_e «..>» <*s s s >e
i S1 S2S1 s2 sls2 si5>si

It is easy to check that the two summands appearing in the decomposition

of Mx afford equivalent representations of hq(u$)*

Let *(T. ) - £ c .w. Then from the equations
*1 wew w

Ts *w = *<Ts >V w€ il»rsi»ns2sl*sls2s1l} we 064811 6 equations in the 6

unknowns cw, w € W. The solution of these equations gives:

Similar work for T_ gives
*2
(71w RxL  x]RQ o+ *]EQ*]>

o<T,2>mT 1-' *T 1 *2 *

(This example appears in [12]).
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CHAPTER 2

The Lusztig isomorphism for Hecke algebras of dihedral type.

§2.1 General properties of the dihedral groups

The dihedral group of order 2n, n > 1 is defined by
°2n " <si**21#i m*!lm<# (*is2™n " <= We Put s m

The example at the previous chapter, demonstrates the Lusztig
isomorphism for the Weyl group of type A2 which is isomorphic to Dg.
Therefore it is natural to ask the question, whether we can find explicitly
this isomorphism for the Hecke algebras of dihedral type. In order to do
so, we must check that the dihedral groups satisfy the property (A) of the
definition 1.4.1.

For any y,w € D2n we have: y s w if and only if y =wor i(w) > ¢(y).
We also have that If i(w) - t(y) > 0 with i(w) - t(y) - odd, then either
{s€S:sw<w>* {s €S :sy<y)or(s€S:ws<wit {s €S :ys <y>,
but not both conditions hold. By lemma 1.3.5(1) and (1i) we have: y < w

if and only if either wm sy or w * ys”, for some 1 m 1,2.

Lemma 2.1.1. For anyy s w 1" °2n, we have Py wm 1.

Proof.

We use induction on ¢(w). The result is obvious if a@w) * 0.
Assume that our lemma holds for all elements w' with fc(w') < i(w). Let
w e D2n and we may assume that s™w < w, so w * s?v, fc(v) = i(w) - 1.
We may also assume that y € D2n 1s such that t(w) - t(y) > 2 ( Lemma

1.3.3). The inductive formula »rfiich defines the polynomials Py w gives
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| t]Y.v y.v Wiy >y
P + uP -
S.y.v ul y.v u If s,y »y
By Induction we have Py y 1 and so in both cases we obtain

We can now easily determine the 2-sided cells of W. These are:
m (1), X2 - 02n - {1.w0>. X3 - {wO0>, where wQ is the longest element
of W. The cell X2 contains two left cells which are L1 - (wCX"tta,) <t(w)},
L2 *{w € X2: t(ws2) < i(w)} and also contains two right cells

R, m {w € X2: fCSfW) < i(w)}, R2 - {w € X2: i(s2w) < i(w)).

Lemma 2.1.2

°2n satisfies the Property (A).

Proof

Let y.w be two elements Inside the cell X2 such that y Is joined to w,
y-w. Then i(w)-i(y) is odd or i(y)-i(w) is odd. In this case we have that
either {s € S: sw<w} " {s € S: sy<y>or {s €S: ws<w)*{s €S: ys <y),
but not both conditions hold. So our lemma is proved.

Therefore the construction of Lusztig's isomorphism makes sense for
the finite Coxeter groups of dihedral type.

The graded module in this case has canonical basis {ew, w € D2n). The
left action of the generators Tg , 1 m 1,2 on the canonical basis is as

follows:

if SjW > w
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and wt {1.s2»siwo>*

If w- 1, T_ e. mue.
*1 1 1

Similarly, by interchanging the role of s”.s«, above, we obtain the action
of T\ on the canonical basis.

ay specializing u"*1 <=1 we obtain the action of s*.Sg respectively.

§2.2 A set of polynomials Sn(x) € Z[x].

We shall now introduce a set of polynomials Sn(x) € Z[x] called the
Chebyshev polynomials of the second kind, which play an essential role in the
decomposition of Lusztig's graded module of dihedral type into a direct
sum of left H irreducible submodules, and also in the determination of

Lusztig's isomorphism in this case. Many properties of these polynomials and
their relation with other families of Chebyshev polynomials can be found in [1],

pages 774-8. These polynomials are defined as follows:

S_1(x) * 0, Sq(x) « 1, Sj(x) = x, Sk#l(x) = xSk(x) - Sk_1(x) Vk * 1.
The first few of these polynomials are:
S2(x) e x2-), S3(x) = x3-2x, S,(x) - x4-3x2*1,

S5(x> - x5-4x3*3x , S6(x ) = x6-5x4*6x2- 1. S?(x) - X7-6x5.10x3-4x.
n

k-0
n-1

S (x) m I @bk (nk)"'2k If nis odd.
n &0 [
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Proof.

We assume that n 1s odd and that Sk(x) is given by the formula
for all kin .
Then Sn+j(x) m xSn(x) - Sn_"(x) «

n-1
“JT

xf £ (-Dk (n-k)"-2kl - (V. )/2 (-uk (mmk)"*, 2k -
I k.0 k * J k-0 k X

T (O™ 12 &/2()»>(R-K "X

/2 fn-kon+1-
c*1 e E (-1)k .
p Tk ox

n+l
1 an*1>/2
i"*1 e E (-Dk1 o (-2
k-1 -
(n.1)72 n+1-k »n+1-2k
E H 1 k 'x

Therefore Sn+1(x) has also the desired form.

in our inductive hypothesis we assume that n 1s even.

Lama 2.2.2. (1) The numbers Pj - 2 cos ~ . ti i

of the polynomial

(11) The nunfcers Pj = 2 cos ,1iJ S»,

are the zeros of the
polynomial Sm(x) ¢ S|_1(x).

above

The argument is similar if

i «-1, are the zeros
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Proof. (1) Let n « 2m, and consider the polynomial yn-1 « (y2-1)Q(y)

where Q(y) my2'I'2 ¢ y2'"4 & ... & y2+1. Me write

Y) -y-1[(y"™L e, ¢ YT eger> e -]

where Rm_j(y ¢y) finishes either with y ¢y If mlIs even or with 1 1f m

is odd. We puty &y « z.

The zeros of Q(y) are the numbers yj » j «1,...2m-1, *l»_

and for each such y* we have Q(y”) - y™"1 +y~) *oex

Therefore the zeros of the polynomial R ~iz) are the numbers y
j*y

2 cos 1 SJ Sm—l.

Now, there is a recurrence relation which generates the polynomial
V i'l»- For- X2 47 T » N X7 » myX_4° T*>
for every =3,4, ...,m-1.

Hence R ~,(*) - (z"JR ~.jlz) - H,.s(z). «1th RO(i) m 1. Now»« c,*m

that for ell Integers n, Rn(z) < Sn(z). In feet forn m 1 It Is true
since R,(z) m 2 = S ,(z). Assume that Rk(z) = Sx(z> for all Integers Xs
Then,

RKA<I> - (22-2)Rk-,(2) - Rk 3(I> = (*2-2)Sk_,(a) - Sk 3() -

2 SK(2) ¢ <z5k_2<z)-Sk_3<2))-25k.t(2) = 25k(2)-Sk.,(2) - Shjfz).
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In particular (s) =S ~U), and so the zeros of the polynomial

Sm j(z) are the numbers m 2 cos * 10 jiml,

(11) Let n =2m+#l and consider the polynomial yn-1 » (y-1)Q (y) where

Q(y) y2m + ... & y+1l. The zeros of Q(y) are the numbers

yj " e21® n, 1sj s2m We write

Q(y) *ym C(y" ¢7i) & ... ¢ <y ey) ¢0

We put y +y = z and we deduce as before that the zeros of R”z) are the

numbers y‘j +— m 2 cos I sj s m Nowthe recurrence relation which
y< n

generates Rm(z) is

yXx & S (yxt L syl <y e £> - (yX2¢A¢7). VX - 2 AAAAAAAAAA

Hence R"z) - zR "iz) with v 2*" V 2*mz ¢i* @

Induction we can prove that for all Integers n, we have Rn(z) * $n_j(z) & Sn(2)*
For n m 1 1t 1s true since Rj(z) m z+1 - SQ(z) # Sj(z).

Assume 1t 1s true for all Integers X s k. Then
Rk+i(z) - zRk(z) - RK.1(t) m *(Sk(z) & Sk_1(z)) - (Sk_1(z) & Sk.2(z))

W %> *sk(i)-

In particular Rn(i) - SJz) ¢S ~tz), and hence the zeros of the polynomial
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Sm(z) ¢ Sm1(z) *re the numbers pj « 2 cos ,1SJim

Our lemma is now proved.

n-2
(11) Let n = 2m, then (x-2) E (n-2(k+1))Sk(x) - 2 S ,(x)-n
k-0 * 1

m-1
Proof. (1) We have (x-2) z (n-2(k+1)))Sk(x) -
k-0 *

m-1 m-1
- E (n-2(k+1))xSfqx) - E 2(n-2(k+1))Sk(x) =
k-0 * k-0 *
E (n-2(k+1))(Sk.1(x) #S. .(x)) - E 2(n-2(k"1))S. (x) -
k-0 * 1 k-0 K
m-1 m-1 m-1
E (n-2(k+1))S. .(x) ¢ E (n-2(k*1))S. ,(x) - E 2(n-2(k*1))S.(x)
k-0 k*1 k-0 k1 k-0 K

m m-2 m1
E (n-2K)SIf(x) & E (n-2(k+2))S. (x) - E 2(n-2(k*1))Sf(x)
k-1 * k-0 K k-0

m-2 m-2
L (n-2k)S.(x) - n &3S, ,(x) ¢ S_(x) ¢ | (n-2(k.2))Sk(x) -
-0 k k-0 m

I 2(n-2(k+1))S. (x) - 28 .(x) - S (X) . S ,(x) - n
k-0 n "

m-1
. (1) Let n - 2m+1, then (x-2) kFO (n72(k*1))5k(x) - Sm(x) OSmV[(x)rn.
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-2
(11) (x-2) £ (n-2(k.1))$k(x) £ (n-2(k+1))xS. (x) -
-0 k k-0 *

£ 2(n-2(k+1))Sk(x) -
k-0

m-2 m-2 m-2
£ (n-2(k-1))S. .(x) £ (n-2(k.1))Sk ,(x) - £ 2(n-2(k.1))Sk(x) -
k' k-0 k' k-0 k

m-1 m-3 »-2
e £ (n-2k)Sk(x) * £ (n-2(k+2))Sk(x) - £ 2(n-2(k*1))Sk(x)
n * k-0

m-3
£ (n-2k)Sk(x) - n ¢ 4S
k

a3
~(x) ¢ 28 .(x) & £ (n-2(k.2))Sk(x)
k-0 K

£ 2(n-2(k*1))Sk(x) - 4S -(x) - 2S._,(x) - n.
-0 k * 1 "
Our lemma 1s now proved.

§2.3. The determination of Lusztig*s isomorphism for Hecke algebras of
dihedral type.
Our first step 1s to find a decomposition of Lusztig's graded module

into a direct sum of left H-1rreducible submodules.

First case: n « 2m+l. In this case we have two one-dimensional
representations of H, namely Og:Ts u, 1» 1,2 and 0$:Ts” -*-1. These

representations are afforded by the left H-submodules My m <i*> and = <W)>
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respectively. Let N be the subspace spanned by <ew, w € W, wt 1,wQ>.
It 1s easy to verify that N Is a left H-submodule complementary to
<ij> 9 <iw >. We wish to decompose N Into a direct sum of 2m 2-dlmenslonal
left H—Subl%odules.
First we note that N has an obvious decomposition Into the direct

sum of two (n-1)-dlmenslonal left H-submodules, namely

N *<€ ,i. c @& .o8/c. xml , &

2 52’ kfa2 ' TapEm Vr 172
We shall split N1 (similarly Ng) Into the direct sum of m 2-dimensional
left H-modules. Consider the numbers Pj m 2 cos 1&j i mand define

the following sequence of real numbers:
ajr - -1, aj® mSq(pj) M1,..,ajrj - SNip)) ¢ Sx-1(p)) x € {1,2........

(for the definition of the polynomials Sn(x) see 52.2).
Next consider the following elements of the graded module:

+af”™ ife e \ml
w »l %2 1% LRGSR

(9) & po s G, >ng)‘4«,

*2%1*2*1
J) .
RSl
The number of these elements 1s 2m and they all lie Inside the

"r
Ue shall denote by I the field Q (2 cos
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Proposition 2.3.1. The elements Uj, defined above are all linearly
Independent over fn(u*) and for each 1 Sj s m, the pair (uj.Vj) spans

a 2-dlmenslonal left “ul)-submodule, namely Hj. Moreover each Mj 1s

Irreducible and distinct j give rise to non-lsomorphlc such submodules.

the definition of the numbers «P* above. we see that for
im1, W) 5] wskeiamy) » ske2(00> + SK(RI)

ov i (PI) @Sk(P)) w geopys ™ (2%PISK. 1p>.

that 1f A- m-1 then a * = Sml(pJ>

Sm2(pJ> '

). for SApJ) L SK,(PJ) = 0. g gy | (P)S.2<p) * S

2<P1> m (" pj)sm-t(PD-

Assume that Aj .Aj ........ Vinn2. <eee:Um are elements in *uch

m m
that E A.u. ¢ E

u,v, = 0. (R). He shall show that A, » y, - 0 Vjm 1
1 33 j1 3 3 3

v
3
Since each Uj 1s by definition a linear combination of basis elements

which do not appear In the expression of Vj, we can concentrate separately

on the coefficients Aj and Pj. For simplicity we put w, - e ~,
w« me . _ . w *5/. _\ml . Then, 1n the expression E A.u.
2 *1*2*1 m 12! *1 J1 33

the coefficient of a typical element w* 1 i k S m1s of the form

E A.aP”. Since the elements w. are linearly Independent, the relation (ft)

j-1 3 * m
above Implies that E A.a” - O for every 11 ki r. Thus, we have a
jo1 3 *

m .
system of m-homogeneous linear equations of the form n Ajagf « 0,
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In the m-unknowns X4. | claim that any solution of these homogeneous
. ill . .
equations say (z) : {E. : E] » 011 ks m)ls also a solution of
J-1 m L

the system of homogeneous equations (z‘) : {Ek : * ijj_ *0, 1s ks m).

In fact If k m 1, the equation E1 of the systémes E1 s x, ¢ - 0.
because we have defined ajJ) - 1.V 1sj i *. Assume that

the Xj satisfy the equations Ej, EE .EE. Then we look at the

equation Ek+l : Z" Xj»JJj - 0. We recall that aj£{ - Sk(Pj) « S~ipj) - p$ +
linear combination of lower powers of p., for every 11 j 1 m. Therefore by
Induction the Xj satisfy the equation EE+l : Am ijk * 0.

Now, the determinant of the coefficients of the Xj In the homogeneous

system (z') 1s the Vandermonde determinant

. n (prP~ * 0. since Pi
Pi 2 An m21>j21 1 1 J
ml ml mi REERE
Pi »2 Am
A2 6 n So.,m
The argument is similar, for the coefficients pj, j * 1,....m.
Weputz. *i. ,z. *i . . . = ®is_« )"_1s
1 s2 2 S$251S2S1 m IS2sr s2
m
In the expression z p~v,, the coefficient of a typical element zk, 1 sksm
jel 33

Is of the form z pj (aj” eakl{), 1S ki mand we showed that for each

t Sks« .<e» . .Ji} - (2*pd)Sk_1(pJ>. (Not. th.t .<H{ - Sjpj) ¢S...(pj) -0).

Since the elements zk ere Uneerly Independent, the reletlon (ft) Implies thet
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+«Jf}) m0 V 1s ks m Now, we have a system of m-homo-
geneous equations of the form (e) : {E» m ~ U j(«jn + *E+j)*0» * 4 k 4 n)»

in the unknowns y~.
I claim that any solution of (e) Is also a solution of

(*=) : {EE - uj(2 ¢ pj)pJ*l« 0 1s ksm) In fact ifk m 1 this

is true since aj® + a ™ »2 ¢ pj. Assume that for all integers X 4 k-1,

the y.j satisfy the equations EJ. Then we look at the equation

Ek : JEI W i#k”~ * «ki}) “ °* We have * *Kil " (z * Pj)Sk-i(pj>*“(2+pj)C pi~
4Iinear combination of lower powers of pj]. Therefore, by Induction we obtain

that y.| satisfy the equation EE m ~E™ yj(2 & Pj)pj ~ * 0. Now the

determinant of the unknowns yj in the system (e‘) Is

2 ep 2ep2 . L L.y

(2+p1)pl (2+P2)p2 =
a0 @pl n tpi_pi) t 0
j-1 Imil >j*1 171
ml

(2+p1)pl (2+p2)p2 1 .. (2+pmplJ 1
pj v v xS 1,...mand pj * pj if 1

Vet . m

So, the elements {Uj, Vj 1sj s m) are linearly independent over

« (u*) and hence they form a basis for the submodule N~.
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Next we show that for each j, the pair (uj.Vj) spans a 2-dlmensional left (u*)-
module. We shall show that the 2-dimensional subspace spanned by (Uj .Vj)

1s Invariant under the action of T. and T_
*1 *2

By recalling the action of the generators T$" on the graded module

(see $2.1) we have that,

V w V vvS

Cudx * 7%2]) **31))i$,5251 * ="

* 2.<f> *

The following relations hold:
ajl) ealJ* .2 «ij v 1sJsm

*IL K 2%Kkii * RKIL T % id> K RKi % Ckitlx % <*oPsk-1(pd 1% <2%pj 'V 0 j1
- (2»0j)(Sk(Pj) # Sk 1C)) » (2*Pj)*fclj for every | sk i >e!,

J(3) . 210> . (3) . ,<J) . <) . (2*pI)STL2(pd) * >J) =

* (2+pj)Sm2(pj) + (2+pj)Sm_i(pj) * ~ +pj”m -27pj*m -1~ pj"
(2+pj)ann.
Therefore T$ .Vj - uv® e (2-*-pjlu* Uj.

So, the subspace spanned by (Uj»vj) a I®~t Hgq “u*ij-submodule of the graded

module.
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The set (Mg, M3, M*, 1$ j ~ nm> 1s a full set of left irreducible H
modules since the sum of the squares of the degrees is 4m ¢ 2 » 2n.
With a similar argument we can decompose the submodule N? into a
m c

direct sum of left irreducible H-submodules, namely Ng = ® <Qj,"> where

“j W *SI>is2 X *Q)V ,» 2 * - * *jj) H-

-(id). o<4)) .

and the an" are defined as before,

The action of T, , Te. on u., v, is given by:
31 2 R

Ts,-°j mu2j *u‘v "o 1o
1 mm

V°jm-r4 TR FURLFCA

So, eventually we have a decomposition of grad(E) over Qn(u*) Into:

m m .,
grad(E) =M1 9 M. 9 M. 9 Me of left irreducible H-submodules. In

uj-l 31 5

fact, for every 1 sj i m, Hj « Hj.

This will become clearer in the lines below .
We note that 2 « Pj - 2(1 4 cos ~j1) m 4 cos2 ml....
Thu,: Tt).Uj - -Uj Tt).Vj - uVj = 4u‘ cos2 Uj

Vi uHS VR
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We replace u* by uj - 2 COS AH' uJ to obtain

T_. .V. luv_ozu"cos4ruji

(VARY RECTR si V1 i o
Vi ll " 2u* cos 4nr TSg vy W v,

Therefore the matrices which represent T i m 1,2 on each

si

to the basis {uj, v*> are:
T = -1 2u* cos 4r , T u 0
*1 / \ ( \

0 u cos te J

Similarly we replace Gj by uj m 2u* cos dnr j t0 obtain that

which represent T , 1 = 1,2 on Hj, with respect to the basis
*i
T w u 0 , T - -1 2u* cos
T 1 2
2u* cos te -t' 0 u
1SjSm

It is easy to verify that the matrices which represent T~ i

are obtained by conjugation by (° J) from the matrices which

T ,i- 1,2o0nH,.
S1 J

Second case: n ° 2m. In this case we have four 1-dimensional

of H*(ui) *Mch are:

with respect

the matrices

iuj. Vj) see

te

"

« 1,2 on Hj

represent

representations
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»0 1 Ts. * “e Ct I T, *-te Ty -u-

a, mT - u, T.,a-1 T 1.7 - -t

I », i2 5i *2
The representations <jg. 0$ are afforded by the H-submodules Mg - <e”™>
and M * <i > respectively.

0 m
Let M, be the subspace spanned by the element e, m E M )*''=/. c
1 1 k-1 k120 S

By recalling the action of Ts , 1 m 1,2 on the graded module, we have that

Vi *"V
We also have that for every k € {2,....m-1>,

T.52 I(SéZ{k: =u ei*l*z’krl a u* e,<52v ik a ul e,*2*|,>k—1. while for

k - 1we have T__.e - ue. a e..,. , and for k = m we have

s2'7s, S, 828,
T. . vinll - ue,. \Ht:1 a u* e, ,ni-1.
*2 R1*2! *1F20 *2*1t
*
Thus, T$2'01
mu E (-1)k1 e, k-1 au*e *u* e s k"' * *(»,s )k)
k-1 w1*2\ *2*1 k»2 *2*1 *21
* ((ft “xj(,2%1)m-, mUBL * “* *s2s, »

au Vo (-1)k-, i(V ikl au*j 3<-Dk-2i(s25,k-" * ‘-"" ‘45 v )"
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Therefore M. m <0-> affords the representation o.. He put
6-m | (rl)krl e/c _ \k-1 , and a similar argument (Interchanging the
z k-1 *2*1* H
role of to ij) shows that m <d"> affords the representation a”
let *k m iw KK - m He*e XKV S
AN m*<. /e *kmS «,)" k-

It 1s clear that these elements are linearly independent over t(u*).

Moreover,
Ts, ak “ V

T,2 %k mUK * 2 §(525,)k *  *(S2S,)k-' * U' i (*2%)k*1- fer

every k € {2,...,m -2}, while for k m 1 we have

T a- - ua. ¢2u* ir e eu*re,. . %2 , and for k - m1 we have,
TS, »1 1 *9*y 's2*1;

V mi1  U<py ¢ 207 B,V i )l e ut i(SzSi)"-2-

Similarly, by Interchanging the role of s~.Sg we obtain the «ctlon of T$*

onb” 1m 1,2, kml.... m-1. Finally Ts .y* m -y~ k®1,..,m-1, and
i i

T,2 *k m “*k * u* i («2%1k' N> *(»2*,)kS * m . 1-**

Ts, *k * “Mk * "% bk-lt'
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By interchanging the role of *j,$2 we obtain that

,m-1.

Therefore V - <aR, Bk. Y(t»6jl> 1,....m-1, Is an H-submodule of
the graded module, with dimension 4m-4, and 1t 1s readily seen that V
1s a complementary submodule Inside the graded module of the direct sum
My O ML O M2 = Hs, where the 1-dlmenslonal H-submodules Mg, H1, M2,
are defined above.

Ue shall next decompose V Into a direct sum of 2m-2 2-dimensional
le ft H-submodules.

Firstly V has an obvious decompositio_n Into the direct sum of two
(n-2)-d1mensional submodules, namely V - :l/j oq\)/z, where

m-2 ¢ e
1*2" H

ml e . .
(s:52y 77" Tapgy

«@ >
He shall decompose Vj (similarly V2) Into a direct sum of m1 2-dimensional
le ft H-submodules.
Consider the real numbers Pj m 2 cos ¢p 1S j i m-1, and for every J

define the following sequence of real numbers:
«Jj) » 0. ajj) - 1- SO(Pj), a<j) - SI(Pj) .... *{J) - sx-i(Pj)*

X € (1.2 m-1).

We also consider the following elements Inside the graded module.
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U m AWV oiw - (i".v~V
* »>
- <2a<)) e <2))ir2, * <> * a 2)) * «3)>,i(s2%1)2 * — *

*o<F[-3 F 2#i-2 * Fi-1>i(«2.1>-2 & <*i-2 * toii},i{Vv ir |

for every 1sj i m-1.

The number of these elements is 2m-2 and they lie inside the submodule

\Y

We shall show the following.

Proposition 2.3.2: The elements uj# defined above, are all linearly

independent over Qn(u*), and for each 1i j S m-1, the pair (uj.Vj) spans
a 2-dimensional left julj-submodule, namely Vj. Moreover each is

irreducible and distinct j give rise to non-isomorphic such submodules.

Proof: From the definition of ajJ> we have the following relations:
2aj® ¢ a** m2 ¢ Pj
*ij2 * 2¢i-l * W j1*28-2(»f)- ‘0*
PjSm-2(Pj) - Hence *i-2 + 2ai-1 " (2+>j)Sm-2(pJ)

and for every 1s k s m-3, we also have that aj* & 2aj*j & *j[+2 =

* H-1fpj) * 25kApj> * SK4A(PIA “ 2SKApIA * pj V. pi* " i2*pj)Skipd)*

From now on, the argument is entirely similar with the case when n is odd.
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m-1 m-1
We assume that E AjUu. ¢ E
31 33 gt
shall show that Xj - Uj - 0 for
w. *e te _ _ ..o W oo e
1 si m-1 (
expression E A,u. the coefficient of a typical element w. 1i kS m-1
J-1 JJ

has the form E X.ai”, 1 £ ki m-1. Since the elements w. are linearly
j*i J K *

«1
independent, the relation (R) implies that E X<a: = 0 for every 1i ks m-
jo1 JK

So, we obtain a system of m-1 homogeneous equations in m-1 unknowns the A.
h ti fthe form £, : & X4} «0, 1&ki m1. With
whose equations are o e form E, : jEl ﬂak «0, I m-1. i

an argument similar to the one when n is odd, we can show that any solution
of these homogeneous equations is also a solution of the system of

homogeneous equations

* - . - - i -
(E*) (E/k.Jtt)E:L AJpJ« 0, 1i ki m-1).

The determinant of the coefficients In the later system is the Vandermonde

determinant A < n (p4-p4) i O
m-1ii>jil 1

since p4 i pi If i i J. Hence
J

We also put - «s s " *(s s V“1, Then in the exPresslon

1
E y.v., the coefficient of a typical element z. has the form
jj1 13

V Uj@in} ¢ 1 with aJJ) - 0, an* -

sm.i(Pj)-°.
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Hence we obtain again a system (E) « Ek - E +2aj“r Nak+l” =0
{ ]
VvV 1ikSml

and by induction we can prove that any solution of the system (e) is also

a solution of the system
(E*) - (Es-v * ki m-1).

The determinant of the coefficients in the latter system is

m-1
n (2*p.) n (pj-pJ *Osince <t -2vjm and
J-1 J 1 J

Pi *Pj If 1KJ-
Hence pj m 0 Vi Sj i m-1.

Therefore the elements (Uj.Vj) J - 1 1 are linearly independent and
so they form a basis for the submodule Vj. Let Vj * A *J Sm-1.
Then 1t can be shown that Vj 1s a left module. In fact by recalling
the left action of T , i - 1,2 on the graded module, we have that
s1
Ts, W m-*J- t*2“ mu®) *u

Tr, Yl m* v Ts Vj « uVj +uti

By replacing Uj by uj m 2 cos ~ Uj we obtain

PSR ICERY e, uJ\ou u_}102u* cos 7 ij 1SjsSmt

v o j" v Ts, vj mu,j ¢ 2u* 4r
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For the same reason as 1n the case n odd we have that each Vj 1s an

Irreducible left submodule, that Vj 4 Vje and that the set
{Mag, Mj, Mg, Ms, Vj, 1S i i m-1} is a full set of left Irreducible
\VARCIES

Our proposition 1s now proved.

The matrices which represent T. , 1 «

1,2 on V, with respect to
1

the basis {uj, Vj> are

i4’? . T * u 0 1SjSml

o ) 2 ( 2u* co. 42 -1)

With a similar argument we can find a decomposition of the submodule V?,

w oml * * ” n
namely V9" 9 <u,,v.>, where u<, v. are obtained by Interchanging the role
*J-1 J o J J
5j m*J)(i.2*v ,.2>* - e*ii (i(v 1)":V

D3 S(2FN) K X I5)» 1,2 e (K133 K 2902 *¥i-150(,192)—2

(.<J> & 2%i3i)i(S)i2)»-'

Each Vj m <5j.Vj> 1s Irreducible left module, and Vj “ Vj, 1sj Sml

The matrices with represent T, , 1 = 1,2 on V, with respect to the basis
S1 J

{Uj, Vj>, where uj « 2 cos ~ Uj, are
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Proof: In the previous pages we have established a decomposition of
the graded module over fn(u*) Into a direct sum of left Irreducible

H-submodules, for both the cases when n 1s odd and n Is even.
m m "
(1) Let nm 2m+l. Then grad(E) mMvM 9 M, 9 M 9 M. where Mh » <e.>
j-ioJg-i 3 :
affords the representation T. e u 1 m 1,2, H m <eu > affords the
> s “o

2andA{I]. b M A" M o« H

representation T_ -»J , 1 m 1,2.dim M, |
)

A -
1i j Sm Moreover we established that the matrices which represent T

on Mj with respect to the basis {uj, Vj} are

2u* cos 4r 0

) cos ¢l 1 )
n

and that the matrices which represent T_ on Mj with respect to the basis
7.
I

>
(ulj. vj) «re

u u -1 JL
) 1SJSm

" (

It 1s enough to show that T.Si and 4(1éi) act on the same way on each r\q I\q

and on each 1-dlmenslonal submodule. By specializing u “m 1 1n the matrices

2u* cos 4? “1

which represent T above, we obtain the matrices which represent s<t 1 m 1,2.
*1 1

It Is trivial to verify that T and $(T ) 1 m 1,2 act on the same
S1 S1

way on the submodules Mg and Ms.
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In the sequel the terminology blocks of the first kind, means the
matrices which represent a specific element of the group W- D2n on M

j m1,...m, and blocks of the second kind, the matrices of the same

element on Mj, j - 1..... m. | claim that the blocks of the first kind
which represent the element (s.s.)”, k m 1......mare given by
*  Sk(Pj> * sk-1<Pj> - *cps £ W PJ >
I I pps £ V | (Pj> - <Sk-1<Pj> * Sk-2<PJ»

and the blocks of the second kind by

\Y -(sk-1(pJ) * sk-2(pJ,) 2 cos 4f sk-i{pj>

-2 cos Ja Sk.,(Pj) sk(pl) * sk-1(pj>

where Pj “ 2 cos «1iJ S

We concentrate on the blocks of the first kind.

-1 2 cos 1 0
For k m 1 we have s" /
0 ] )= 1
« cos24r * -2 cos ii
therefore s~"Sg-» /
' 2 cos 47 -1 !
Since 2 ¢ pj - 4 cos2”™ , SQ(pj) m 1, Sj(pj) » pij, (pj) =m0, the

assertion holds.
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Assume, by Induction, that the blocks of the first kind which represent

(s.s.)* are of the form

r w * sx-i(pj> 2 cos ¥ *x-i(pj>

{_2 COS 4 Sx-1<pj> - SX-1<pl> * SX-2<pl>>

j)~ 1- (S,82)X (S,s2) is represented by

LW * si-t(pj> 2tosN SX-1<P> I F**PR) 2“sN
2 cos 4? sx-i<p> - (SX-1(pJ> * Sx-2(pI>fl 2 C°SA -
mr*n *12
*21 %22

*1 %« * PP tV»j> * SX-1(»J» " 4 pps‘ ¥ Sx-1(Pj> m
SXtpd) * *X-1<edl * °J * pj SX-T*J* e @*pIV 1 @) .

* pISX(PJ) © SX-1,p3* *V pj>mVojl*VvVI1 (> «

*12 * - 2 CO05 ¥ Sx(pd> *

*21 m 2 cos 4F <* * pj>Sx-1(pj) - 2 cos A (SX-1(pJ> * SX-2(pI» *
. 2 cos [Pj Sx.,(Pj) - Sx.2(Pj)] - 2 cos £ Sx(Pj>.

22 " " 4 cosZ ™ Sx-1(pJ> * SX-1(0J) * SX-2(pJ> - * (2*pj )SX-1(pI> *

* SX-1(pJ) * SX-2<P3>



-50-

* * SX-1ipd) “ QuISA-1(pj) © SX-2(pI)] " <BX-1<RB> * SX(PI»

Hence our assertion holds for every k.

To obtain the matrices Yj we conjugate the matrices Xj by q).
By symmetry, the blocks of the first kind which represent (SgS")*1, k » 1.... m
are
vio- 2 o= 4f sk-i(pj>
2 4r

and the blocks of the second kind are

xj = sklij) * sk-i(y
2 cos % Sk.,(Pj)

<Sk-1«Pj> * Sk-2<PJ»

Simple matrix multiplication gives the blocks of the first kind of the element

(SjSg”~.s”k - 0,...,m, which are
- (sk(Pj) * sk_.(Pj» 2 cos £ Sk(Pj)
2cosilLsk.,(Pj)

* Sk-1(Pj>

and the blocks of the second kind which are
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yl w  Sk<pj> « sk-1<pj) -2 s £ *k-l<pl>

2 cos if Sk(Pj) B pj) *osk-ii.)

By symmetry, we obtain the blocks of the first kind which represent

s2s1) K= and which are

H o= sk((j* * sk-i(pj> - 2COoSs if Sk, (i) -
2008 if Sk(PI) - (SKPI) ¢ sk.,(PI)

and the blocks of the second kind which are

(Sk(Pi) ¢ sk.,(Pj)> 2«* £V pj>
2'« £ sk, (»]) Sk(pJ} + Sk-1(pj)
Now, for every 1 s k sm, let be the matrix which represents the

element of the group algebra 5* on Mj. Then,
r<) -sk.,(Pi) - Sk.2(Pj) 2 cos £ Sk.2(pj)

- 2 cos if Sk_,(pd) sk.,(Pj) + Sk2(j>

Sk((j> * W " ** -2 cos if Sk.,(Pj)

2 cos 4f sk-1(pJ> ' *Gk-1*pJ* * *k-27°pJ A
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Iel<F> ¢ K 2(J) -2 0B 4f ski<>

2008 4r sk-i(j> - <K(Pj) ¢ X, (F))
- <) ¢, (i) 2 08 4f skqj>
- 208 4r LR sk(A> * H1(4>
aPp* [ 1SjSm
.

where A<j) * 2cos ~ CSk(Pj> ¢ Sk 2®i): - Acos £ Sk-](pi>-
Furthermore, PjA*F} - - 2§ cos ¢lsk) @) - sk 3pj>a

- &j cos i15k2P)) _

- 2cos & csk-2er * sk-dip3 ] * beos & k-Fpj7 w
n2cos ik 1j) - Sk.2(j) ¢ PiSk-3(j) - Sk4Pi)]
- Acos it misk-20> - -Fw)l

" e
Therefore R*J> - PJR™j - 1i k5 m When k m 1, then

A<J) = 2cos J1 Rj-D.
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Assume that for all integers X i k, we have mV [~ pj*Al~*  Then
J) mn_i(J I(j) mo S _In )Ar~ - S n
gy Mo i) -1 mo s LA, Serij Al
<ojsk-i<fj> - sk-2<pj»> alj) = sk<0j>Al])
Therefore, the matrix which represents the element of the group algebra

I (n-2K)s.,pn M, is Z (n-2k)R,) 0 Z (n-2k)Afd)
k-1 k-1 k-1 K

0 E (n-2K)S. .(<>)*10)
k-1 « v

Now A (n-2k)Sk_1(pJ)A{J> - 2 cos & (Pj-2) r (n-2k)Sk_,(Pj)

-2n cos * (by Laima 2.2.2(d) and 2.2.3(D).
Hence the matrix which represents the element of the group algebra:

“li.l o s el“*n2 z (n-2k)= , on M, is:
z z 1 2n k-1 n

-7 en(s G -r*)

1a 2u' cos for every J - 1.
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Therefore T acts on every M. In the same way as e(T ) does.
*1 J *1

We next put to be the matrix which represents the element 5

on Mj. It turns out that R IL n jand therefore the matrix

which represents the element of the group algebra

i w_ N
7~ *ET'_';,_L - (ur-n2 E (n72k)i, on M. 1s
-1 J
I (u*a2 '— o n
J [2n cos
LY . So T, also acts on M. 1In the same way as ¢ (!. ) does.
\Z ulcos » -1/ s1 J $1

By symmetry (interchanging the role of s”, s”) we obtain the image *(TS")

and so part (i) of our theorem is proved.

The proof of part (11) of our theorem, Is entirely similar, since the
matrices which represent T, 1 m 1,2 on the irreducible constituents of
the graded module when n «SZm, have the same form as 1n the case n m 2m+l.

In this case, the matrix which represents the element

e
E (n-2K)E- onV, 1ij Sm-lLis © W (ne2igme>
K1 A )

. )
E (n-2K)sk (o) !

0 0 A*J) - 2cos * (pj-2).



_55-
Now Lemma 2.2.2(1) and 2.2.3(11) give
(n-2k)Sk.,(pj)Aj~ - -2ncosif | 1] 1 »-1.

Therefore we can verify that T ,1-1,2 acts on every irreducible
*1

constituent V‘]v and VJ., 1sj *m-1, on the same way as *(T ). This Is
si

also true when we consider each one of the four 1-dimensional representations,
afforded by the submodules Mg, H1, M2, Ms. It Is obvious when we consider
the submodules Mg and M.

For the representation oj : ty ¢ -1, *2 “m1, we have that

/-1 -1e1e1.0if k- odd -V
1Sksml

I #1+1-1-1-0 1fk- even J
and therefore:
+(Tc ) m-1.
‘t

For the same representation, we have that

1- 1e1- 1-0if kmodd 1
-1+1-1+1-01fFk- evenj
and therefore $(T,\)"u .
‘2
The argument is similar for the representation 02 : Sj -» 1, s? = -1.

Thus our theorem is proved.
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We Illustrate the situation by giving some examples.

Unl
MED) gy g 40T ) - T .
i N ocel
H>bgy  )*V ai-r V

>-V =2

H(*j) « v This example appears at the end of Chapter I.

h(b2) _ r1l 4, Dn2)

°g (

*5\/ A
o\ -s1° 2 A
Wl010<,,.5,m'2).
' .
*‘V -V .H]I,i. 3

.Hm! v .
10 2 172

L\% 2*

CoxQaDR] *

(-* 2 *o1'2-,2,1%1V 11

< -1 F2'r 0, 2% trivrl

A

© (xgw, 1%2., 2817+ 1%2%1> *

ARPRLX U okpelapE] k¢ [*2%] 2, 1)
5 5 leme21x1,2, 2,109 »

RQRIRDHR] M KIHRQRIRD K AQX]XQF]*D)
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W(G2) « °12 - (n m6, mm 3)
-(T- ) 1¢u5is*l * <2, 20271

<ex.n!
SO RRALNZ % RIRQRLNZ M ORQRLRQRL K KLR2RIR2' 1>

‘v .V 1e y;{ 8 $-tST i * S2S, - 5,52 . S25,52:
<4 < ARPRQR] @ 2FLFQRL 7 RLFQFLRQ K RN |R2K|F2>-
Remark: We note that when n is even, the images f(Ts ), i m 1,2 do not
ai
involve all the elements of the group D~ In fact, in the images of

+(Ts ) in the examples above, when n is even the elements wQ and SjwQ

do not appear at all.
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CHAPTER 3

The centre of the generic Hecke algebra

Let (W,S) be a finite Coxeter system and let H be the generic Hecke
algebra over the polynomial ring f[u], associated to (W,S). Let Z(H) be
the centre of H.

The following result 1s rather well known. We Include a proof for

the sake of completeness.

lemma 3.1: Letcm E a T.. be an element of H. Then t lies 1n the
wWCW w w

centre of H 1f and only 1f the following two conditions hold:

Cl : asws “ aw *(sws) m t(w), s € S, and

c2 : «, *u»sws - (u-<)*sw If t(sws) - I(w) 2, se S.

Proof: It 1s clear that c lies 1n the centre of H 1f and only If
cT$ - T$c vs €S. We fix a s € S and we denote by Cw(s) the centralizer

of s In W. We can write

t(sw)>t(w) £(sw)>t(w) t(sw)<£(w) t(sw)<t(w) w C Cy(s)
t(ws)>t(w) t(ws)<£(w) t(ws)>t(w) £(ws)<l(w)
wACyis) w*Cy(s) w CCyis) w € Cy(s)

Now cT * T c 1f and only 1f
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EgWTWS ¢+ 1 ..Qurt, *
I(sw)»I(x) t(sw)«(w)
liws )>1(w) I(ws)ct(w)
w « Cn(s) wi Cyts)

xRy < T x (U1) W)
1($w)«t(K)

I(ws)«l(w). w( cw(s)

B *w Tsw ¥ 1\ T... *
I(sw)>I(w) t(sw)>t(w)
i(ws)>I(w) I(ws)<l(w)

wi Cw(s) Wi cyis)

* r*w (u Tsw *

I(sw)<t(w)
t(ws)<t(w). Wi Cy(s).

This condition 1s equivalent to

£>w Tws *
t(sws)«i(w)*2

wt (ns)

* e«

t(sws)=t(w)+2

Wi Ccy(s)

< Tw <> Tws>

<U-1)TW) . 1 *wTw
1<S*)<t(W>
()t (w)

wt Cyis)

1*w(Qu T« * (u-1)Tw) ¢

i(sw)<t(w)

i(ws)>I(w)

wlene

1w Tw
I(sws)<t(ws)
A(ws) <A(w)

wl Cyis)
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I(sws)"t(w)*2

Wt ow(s)
I(sws)*t(w)+2 I(sw)«l(w) I(sws)-l(w).2 t(sws)-t(w).2
W* Cyft)  I(SWS)ct(Sw) Wt Cyt*) w ( cHU)
w C Cyfs)

We now compare coefficients of the basis elements 1”, w £ W on both sides

of the relation cTs « Tsct to obtain

aw - u aWs - (u-1)aw$ |If t(sws) - t(w) & 2
aw - u asws - <u-l)asu 1f I(sws) - t(w) ¢ 2

uaws m uasw 1f I(sws) m I(w) o 2,

and for every w£ {w:w t Cyts) with t(sws)<Il(ws) and I(ws)<l(w)>
» (w: m ( Cjjfs) with t(sw)«l(w) and I(sws)<Il(sw)), we have

Bws ~ %sw”
In the latter case, by replacing w by sw we obtain that aw - a%$ws
for w such that I(sw)>i(w) and t(ws)<Il(w), and by replacing w by ws, we
also obtain that aw - aJWS for w such that i(sw)<t(w) and i(ws)>t(w).

Thus Ay asws for w such that

Our lemma is now proved.
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The following ideas are due to R.W. Carter.

Definition 3.1; Let w, w' € W. We say that w, w' are strongly conjugate

if there exists a sequence x, WX, x.1€ W, i - 1 ,n with

w - Xj. - w* such that for all i, x* sx<s for some s € S with

t( xui ) mft(xj).

Thus, if ¢ - E aT € Z(H) and if w, w' are strongly conjugate
weW  ww

then condition Cj implies aw * aw,.

The relation of being strongly conjugate is an equivalence relation
inside each conjugacy class and so each conjugacy class is a disjoint union
of strong conjugacy classes.

If C 1s a strong conjugacy class we write ac for the coefficient aw

for some w € C. Thus, 1f c =E awT € Z(H), we have c » E arTr, the
woot C cc

summation being taken over all strong conjugacy classes C, with Tr - e T
u weC

Let C, C' be two strong conjugacy classes inside a given conjugacy class.
We say that C* covers C if, 1w € C, s € S such that sws € C' with
t(sws) m t(w) & 2.

Suppose that C' covers C. Let D be a strong conjugacy class. We
say that D is an intermediate class for the pair (C,C') if 3wWE£C, s €S
such that sw€ D, and sws € C'. It is clear that D belongs to a different
conjugacy class from the given one which contains C and C1. If C‘ covers
C, and D is an Intermediate class for (C',C), then condition C2 gives
-c mu.c, - (U-1).,,.

We define a partial ordering on strong conjugacy classes by saying

that C < C' if there exists a sequence of strong conjugacy classes
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with C - Cl.......Ck « C' such that C1+l covers * V 1s 1s k-lI. We define

the length of a strong conjugacy class t(C) » JL(w) for all w€ C. By CM

we denote a strong conjugacy class of maximal length inside a given conjugacy
class. Thus every strong conjugacy class C can be joined to a CM by means

of a sequence of strong conjugacy classes with Cj = C, =CM

and with the property that either covers or covers Vi S 1S X *1.

Therefore we can always express the coefficient a® in terms of a”
for some maximal strong conjugacy class CMand in fact a® mue a”™ ¢ linear

combination of other ac, e € Z. Nevertheless this can be done in many

different ways.

Remarks:ft) If w, w' are strongly conjugate, then aw = aw<. The converse
is not true. For instance if s, s' € S and s, s are inside the same
conjugacy class, then clearly s, s' are not strongly conjugate. However
as = as,. For s, s' are conjugate if and only if, there exists a sequence
[ . sq) with s1 m's, sq = s' such that s*s” has finite odd order
vV 1f i Sqg-1. Now, if sis™1l has odd order n* - 2q ¢ 1, then by repeated
application of the condition Cg and using the fact that the elements
(sisi+i)X» ~S1+1S1~ are strongly conjugate for every X * 1....... we
obtain as e tV 1im 1. g-1. Thus a$ - a#,. (11) It 1s not true
that inside a given conjugacy class, the elements of maximal length are
strongly conjugate.

For instance, when W = Sg the elements (34)(1526), (34) (1625),
(16) (2435), (16) (2534), are conjugate and they have the same length 14,
which is maximal length for their conjugacy class. However, they fall Into

two strong conjugacy classes namely
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CM - {(34) (1526). (34) (1625)). and - {(16) (2435)

(16) (2534)}.

When W « D2n, the theory above enables us to find a natural basis

for the centre of the generic Hecke algebra.

Proposition 3.1: (1) Let n m 2m*1, and let H(D2n) be the generic Hecke

algebra over the polynomial ring Q[u]. Then, a basis for the centre Z(H)

1s given by the following set

T., T/ . xk «J(. » xk- (u-1) E uA'[T, . xkX *T( xk-X
1 1*1*2" t$2s1) x-1 RpR2t %1 1*2*1; s2]
Tw & E uX [T, s x>X. T/ Jmx 3. 1i kSm
wo X-1 I* 1V *1 1S281; $2

(11) Let n * 2m. Then, if m 1s even, a basis for the centre of H(D2n>

1s given by the set

k x1
T., T/ . xk «T/ . xk- (u-1) E uA ‘[T, xk-X *T( )k-X 3
1 (*n*2/ 1%2*1 > x-1 1*1*2; *2 I, 2*r *2
T(,glg*z)\»—l,.k1 ¢ o= o u""1l T«2-T(’§2§l)m71§2 * ke k"'l Tsir TW0
1i ki ml

and when m 1s odd by the set
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T, NkeT/ - k- ZUWNM. . =«x o1, kX
T Gri> | <oix X1 epige w0 weeils2

LT TR LA VARY)

Proof: (1) When n - 2m ¢ 1, the dimension of the centre of H s me 2.

The conjugacy classes of W are given by AQ m {0 ,

Al '« S1S2,0* (S281,)) i " lue. w1l * Is|>s21St5251

Letcm£aT e ZH). We note that (s.s,)J. (s-s,)1 are strongly conjugate

w
Vijimlo... m. So each Aj is itself a strong conjugacy class and therefore

e (s,ij)) m*(S25,)J- 1 m .

The other strong conjugacy classes are: m (s"Sg)* 1 > 1m1,...m
Cj = {(SjS~"".Sj) 1« Tl and CM - <w0). The partial ordering

inside the conjugacy class Am+l is given by the graph:



By repeated application of the relation ac - uac. - (u-1)ap whenever C1

covers C we obtaln-.(also using that a(s” )J “ *(s2s,)J v ' sJ s

1fm=* 1

um J(u-1)a(s2.i)mi*2

1fmi 2
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If mS2
m-2 . (12121) where f(12121)
)

«12121 UK, T -

IfHi 3

. ua - (u-1l)a,
a(sis?)m "o ( ) ‘5251

By Interchanging the role of Sj.Sg we obtain the coefficients

1-1 v 1m1,2,...,m. Hence *(s"s")1”1. “ a(§2§.?i—l. vl Si
fR20 1> -z *1 '

Let ¢ * E aT £ 2(H). Then
«ED,. " w

mATL R KR vk ko *TW O\ 'z *V 1ok mk RQR]H kx| ok T02 %]

- * a(*1s2)" tT(s,52)B * T(»25,)-3 # *W0 Tw0 m

T, * (umal,', -7 u"'—,(“—<)a(S)SZ)»—J»1)ITs’—Tgeg . a§:§2FT§v52 * Téng]

o J*1

(121)
TR2XL X WRI*2  * eAPRRERCT 14232 * v, > 2] *

* * okox XxD)" g (C1*2)B * T< 2%1>*3 * \ \

air1 ¢ 8,62 d 5,52 ¢ 7828, * (u_1) (Ts, + T§3 3
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a,. al2tT

(. al2eT/. . > - u(u-1)(T T ) - (u-1)(T *T
ixg*p! RS Y Vol *1

*2 wQwQx]  wQRIHD!

wpeags T2 P TV ) *T(.f.,)-,h >

¢, [T ou# Jm=1
"o *1*2

ml Je...¢ uNT T >]
wo *2 *1 *2

*T, .
*1 =2*1"

Therefore part (1) of the proposition Is proved.

conjugacy classes are: AQ - {1},

Aj < «* < (525,505 15 IS «l.

* gs, .S25(s2. (5°$2) sl @e)  *2) a
ATRL * (%20 RIRRL e (R2R1RRR2, U (,1%2) CU*11 -
V2 m("0>

The dimension of Z(H) 1s m+ 3.
Each element Inside the conjugacy cless *~ forms by Itself a strong
conjugacy class, and each Aj | 1 J S m-1 1l a strong conjugacy class.
The partial ordering Inside the conjugacy class A" 1s given by the

graph:



‘I(- )

*(5,$2)"-2.S, mu = (.2% )

By interchanging the role of s.,

partial

for the coefficients aw, w € A ~ .

ordering on strong conjugacy classes

B . *(212) , 1
s2'v 's2 ™

"o - (u-,)*(s1S2)P-,

s2 we obtain similar relations from the

inside the conjugacy class Am+p

Now if c aT e Z(H), then we
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replace the coefficients aw for w € Amu V i by the corresponding relations
which express any aw 1In terms of “(s ~ )m’1s2 or a(s1s2)ni'1s1* By

gathering coefficients together in the expression £ a T , we obtain
"«°2n

a basis for Z(H) of the desired form.

When m 1s odd, then the conjugacy classes are:

Ou<1). Aj. 13 4H-1. - (s].52$,$2....,($,52)"",s1) .

Vi ' 02,221 *2 T 2 Arp*<>e

With a similar argument we obtain a basis for Z(H), and our proposition
1s now proved.

We note that under the specialization u 1. the basis above
specializes to the class sums.

Let W = Sn the symmetric group and let H be the generic Hecke algebra
of symmetric type over the polynomial ring Q[u,u James and Dipper

defined elements called generalized Murphy operators by
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By specializing u » 1 we obtain the standard Murphy operators (See [13]).

James and Dipper proved (see [8]) the following:
() La, Lj,...,Ln_j commute with each other

(I1) The algebra they generate contains the centre of H. Using Murphy's
construction for the centre of the group algebra of the symmetric group
(see [13]) they showed that the centre of H consists of the symmetric
polynomials 1n the Lg, Lj,...,Ln_j.

Moreover they showed that for any partition X of nX h n say

X m (Xj.Xgf*) there exists a unique basis up to a scalar multiple of

the centre of H say {y *~,X n) with the following properties:
() The coefficients of the Tw,s Involved 1ny ~ belong to Z[uJ
(rry y ~ Involves Ty , where u® m (1 2 ... X?) (Xj ¢« 1 ... X] & X2)

and does not Involve Tu for y i X
u

(I11) The coefficient of Ty Is a power of u.

In fact their construction implies that y ~ does not Involve any other
element Tw with I(w) minimal and w belongs to a different conjugacy class
from the one determined by the partition X, and that the basis {y ~, X hn)

specializes to the class sums under the specialization u “m 1.

Examples: Wm Sj, Sy m (12), s2 * (23).

The conjugacy classes of U are:



{1). (*D*2y*1*2*1>»
Xm 3 ux m(123) - s,s2

X e 21 ux m(12) (3) - 5,

X - 111 ux = (1) (2) (3) -1

A Dipper-James basis 1s given by the set of elements
", KTV @2, U2
H-S4. sim (12). *2 m (23), *3 m (34)
The conjugacy classes of Ware:
(@):  (FI*3«2. *2%1*3» *3¥2*,» *F1F2*3y» *F1F2*F1*3I*2» *2*3*1*2,1)
@D: {s,s2, s2s,, *2*3» *3*2» *1*38281> “i VtV *1*2,3*2* VsV I 1
(22): {s,s3. *2*i*3*2° *1*2*1S3S2S1 *

QL1): (Sj, S2. s,. *Frele|e *2e3 Dy *132%32¢ 1>

(1111): (>>-
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X - 4 WA " (1234) - s,52s3
X - 3L WA (123)(4) - s,s2
X - 22 A" (12X34) - s,s3
X e 211 «y» (12)(BH4) = s,
xemi g @)@ »
A Dipper-James basis is given by the set of elements (y» » AlJr4)

yé - “ZV23*TW ,* TiV 2*wW *
* (u3-u2'ul(Ts,s2s,s3s2 * T.2.35,52.,> * (2u2-u-,)T.|.2.1.,sts, *

¢ “2(%-')<Ts)s2s)s3 * Ts2s3s2s, * Ts,s2s3s2 * Ts,s3s2s, Ts213*2>

su(u-1)2T L
$1S283S2S1

y13,) - p3,T$)s2 & Ts2s, * Ts2,3 * A jSj1 *
* UZ(Tsls3s251 * V. 2V 2 * T*2S3S2S1 * X*1,2,1,3>** ““' """ « iV /S W

® 2u(“-'>Ts,s2s3s2s, * ulu-,)(T.2«2»23*2 *V s W [11%*

* U " 2 T, *2«,»3*2*1



y T, 1R R U TR2*1*3*2 Tr|, 2»)»3,2,i

y(@’e e % * *T.2V 2> % T*I*2*3*2*1

We next provide an alternative basis for the centre of H(S4) based on the

partial ordering on strong conjugacy classes.

The strong conjugacy classes Inside S4 are: (Indexed by the conjugacy

classes Inside which they occur)

(1) - ci4
(s)=C , .{$})-¢C , .0} .C_ .,

1 212 A 2 2r,B 1 21\C
<*p2.%2%,) - C3|>A. (ijSj. 132> « c31.8
(s.s,) - C. is.s.s.) - C , L kkQRQRDR ¢ M

13 2A 2 260 TEEE L

sk wgxD KDk X xxpx|t *(xpxgx | CCA
(*2%q*2*1 *1x2*qRD *1*R2*1 A *2%1*3» - C31.

. , mC 2
(*2%1%3%2% " C22.b° tS*S2S3*2*1) 21
FRLFQHHFZHY’ *2X1*ZF2*1* ' Ce.B

The partial ordering on the strong conjugacy classes 1s given by:



-4

,Ce¢ Cv Um cimy(i
r \kt cPa** (vU
9 S* Foc \Ke Go«\juda.tij CPav. W

9 cm,C
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A basis for the centre of H(S") Is given by the set of elements

T & u(T T T T

V<> Lt
FLF2*I*I*2 *2*1*3*2*1 *1*3*2 *2*1*3 *1*2*3 *3*2*1

* T .7

-<ll- 1)l 2u(u-1)T - u(u-lXT LT
*1*3 *2*1 *2*3 *3*2

.. s,
*2*1*3*2 *1*2

eu(u-1)2 (T. «T T )
*1 *2 *3

T *T *

AT o7
e I

*1*3*2*1 *1*2*1*3

(U -u+1)(T . *1 <1.. *T,.1
*1*2 *2*1 *2*3 *3*2

-(u-"HT T T T ) ¢ <u-l) T
*1*3*2 *2*1 3 *123 *321 *1

(Uu-1)(T . s &Ts. , )- <u3-u2 ¢U-1XT . T T >
*1*2*1 S2*3*2 *1

*22> - T L.o»uT L. eu2T
FIF2*1H*1A *2X1*3%2 *1*3
T +u(T T ) ¢u*(T T T )
*1*2 *Br2*]1 **2*L *2%3*2 *1 *2 *3
,0111) . T

In contrast with the Dlpper-James basis given above, this basis

Remark:
has the

has the property that for each partition A |-4, the element v

form:

£ Tw
£(w) = maximal Inside the conjugacy class determined by A

¢ linear combination of T~'s where Tw 1s not of maximal length 1n any

other conjugacy class different from the one determined by A.
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CHAPTER 4
The determination of Lusztlg's Isomorphism on the centre Z(H)

of the generic Hecke algebra of dihedral type

In Chapter 3, we found a basis for the centre Z(H) of the generic
Hecke algebra of dihedral type (see Proposition 3.1). In this chapter,
we shall determine the images of the basis elements under the Lusztlg

Isomorphism

{T1* T(sts2)k* T(s2S1)K awqupaxg * AxQx X T* )
where k m 1,...m 1f n m 21 and k » 1,....m-1 If n « 2m, and X m 0,1 ,...,m-1.
In §2.3 we achieved a decomposition of the graded module grad(E) of dihedral
type over Qn(u*) Into a direct sum of left H-irreducible submodules, for
both cases n * 2m+l and n ®m 2m, by means of the Chebyshev polynomials of
the second kind.

To these decompositions we adapt the basis {¢”, uj, Vj, uj, v», 1 £j s m,
*w o “or case n * and uj* W* “j* A* ] *nily ew
for the case n « 2m. (See also S2.3, for the definition of the basis elements
in both cases n odd and n even).

We first determine the matrices which represent each element of the
canonical basis of HiDgp) on each direct summand of the decompositions
mentioned above with respect to the corresponding basis. We concentrate on
the 2-dimensional summands whose number Is 2m 1f n * 2m & 1, and 2m-2 if

n * 2m
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The terminology blocks of the first kind and blocks of the second
kind Is as 1n the proof of Theorem 2.3.1, and will be adopted here, for

the elements of the canonical basis of H(D2n).

Lemma 4.1 (1). The blocks of the first kind which represent T(s" )k ,

km 1. are given by:

- uk[sk(0j) & sk.,(Pj): -2u2k-''2 cos Sk. 1(pJ)

Ju 2k*'/2 cos £ Sk.,(Pj) _ukCSk.1<Pj) * Sk-2(Pj)1j

where pj m 2 cos »loo.o.,« If n- 2m+1, or j»1,....m-1 If n » 2m,
and the polynomials S”ix) are defined 1n §2.2.
The blocks of the second kind which represent T,_ \k, k- L...
=g

*pt
are given by:

Y(U) ukesk_1(pd) & Sk_2(P )] 2u2k’ /2 cos if Sk.,(pj)

A2u2k-'/ 2 cos £ Sk.,(Pj) uk[SKk(Pj) & Sk.,(Pj)]

jm1l,...om 1fn« 2m+l, orj » 1,....m-1 1f n = 2m.

(11) The blocks of the first kind which represent T/s $ \k, k m 1,....m

21 /Ju\
1f n m 2m+1, or k m 1,....m-1 1f n m 2m, are given by the Yj and the

blocks of the second kind by the Xju~.
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dIl) The blocks of the first kind which represent the element k$n
kmO0,1,....m If n» 2l or k « 0,1 ........ m1l If n - 2mare given by:
-uk[SIt#i) * Sk.,(Pj)] 2u2k*,/2 cos & SkPJ)
-2u2k*’*2 cos £ Sk.,(Pj) Ok*’ csk(pj) ¢ Sk.,(Pj)JI
Jm1 .m If nw2ml orj » lo... ml if nm2m
The blocks of the second kind vrfilch represent J, \k are given by
1*1*2' S1
uw “  tskpj) * Sk.,(Pj)3 -2u2k*,/2 cos £ Sk.,(Pj)
2u2k*,/2 cos Sk(Pj) 'U CSk(Pj) * Sk-1(pj)]
jom 1o mif n« 2m+l, or j m 1,...m-1 1f n - 2m.

(1v) The blocks of the first kind which represent the element T ~ s jk#"

k- 0,1,....,m1 are the and the blocks of the second kind are the

Proof: We concentrate on the blocks of the first kind. For k - 1, the

result Is true since Ts pi 2u* cos * 1, and Ts > pi
1 Le u N 2 Julcos j? -1
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Therefore T,, . ¢ u[4 cos2 to -1] - 2w
*1*2

2,32 cos jl1

where 4 cos2 1m (2 ¢pj)- 1m1epje=Sq(pj) ¢SI(pi).

Assume by Induction that the blocks of the first kind, which represent

T/, e \A are of the form:

AV

'UxCs,(0j) * Sx.,(pj)D 2u2i' ,/2 cos £ Sx.,(0j) ~

Antn «*E SSME> *W j»

Then T- . %Al m T/. . VA T_ { Is represented by
12! 's182" S1s2

- xesx(Pi) #sx_(P)D  -auzx_.s2 cos to K,(HT  uwopi) -2urcos »

A
200%% 77 «* HE\ -\ W XIS i pistex-2 )3 2u3/2 cos

where
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ux*’'(1 & Pj)CSx(Pj) & sx.,(pj)3 - «u**" cos2 Jf Sx.,(Pj) =

= ux*'<l . Pj)CSx(pj) ¢ Sx.1(pJd>] ' "X*'(2 * pJ)SX-t(pj > *

muxX*ICsx<pj> * V | (pJ>* °Jsx(pJ)*pIsx-i<pj) m 25X-t(pJ)' pISX-1q))] =

jsxPj) - sx., (Pj) . sx(Pj): - ux* [sxtl(Pj) . sx(Pj)].

L<U* .. 2u2X*,/2 cps it CSx(Pj) & Sx.,(Pj)] * 2u2x*'/2 cos it Sx.,(pj)

2u2x*1/2 cos it Sx(pj)

J(U) . 202X.3/2 coj £ (HpjlSAtpj) - 2u2X*3/2 cos it CSx.,(Pj) * Sx.2(pj)3

2u2x*3/2 cos it CpjSx.,(pj) - Sx.2(pj)J - 2u2x*3/2 cos it Sx(Pj)

em ' m' 4 CO%L JS “*w* Sx-t(pJ> * uX*'CSX-1(pJ) * SX-2(pJ)]

e - (2*pjlux*,Sx. 1(pJ) & uX+,CSx_1(pJ) * Sx.2(Pjn

B ~UX*ICpISX-1<p)) W SX-2(pJ 1*SX-1(pJ)] m ="X*'CSX(pd) * SX-t(pJ)]-

Thus the blocks of first kind which represent the element T ~ # have
also the required form.To obtain the matrices YjU™ we conjugate the matrices

xJu) by <



Part (11) can be proved 1n a similar way. Finally matrix multiplication

by T and T gives (111) and (1v) respectively, so our lemma 1s now proved.
*1 ‘2

Remark (4.1). We note that the blocks of the first kind, which represent

T/ _ xk and T/e . xk are mutually obtained from one another by conjugation
1,iv I *2*r

by the matrix (® gq). The situation 1s similar for the elements T"s $ jks”
and T, xk

uz2v *2
We shall now distinguish between two cases.

First case: n - 2n e 1.
In this case, a basis of the centre Z(H) of the generic Hecke algebra
Is given by the following set of elements:

k
o"Vv vk " T("f*z)'k + T[,Sgii)k - (u*1) x VU ' CT(s1s2)k_xsl + T(*2*1)k’xs23"

T

¢ Z
X1 CT(-1S2)- x«, * T(s2s,)mV
We recall the decomposition of the graded moudle into a direct sum of

irreducible left H-submodules. This decomposition is,

m .,
grad(E) - Mi « H, 0 M. 0 M, where M,,, H afford the 1-dimensional
j-t o J
representations on : T, u, i - 1,2, and o. : Te -1, 1m12
u si s S1

respectively, and Mj 1s a 2-dimensional H-submodule with basis {uj, Vj),
which 1s Isomorphic to the 2-dimensional H-submodule Hj which has basis
(“j* ~j* *for every J * 1 ,...m. Our first step is to establish the action
of the basis elements of the centre on the irreducible submodules appearing

1n the decomposition of grad(E), with respect to the above basis.
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It 1s well known that each element of the centre 1s represented on
an Irreducible constituent of dimension say d, by a scalar multiple of the
identity matrix 17,

The elements is represented on Mg by:

2u2k - (u-1) | uX-1 2u27k*X* - 2uk, k m 1,

X-1
and it is also represented on M by:
2- (u-1) E ua '(-2) - 2u\ k - lo.m
X-1

The element vmtl is represented on My by:

umtl ¢ Z uX2u2(m' x)+1 - W'*1 e 2 E u2m Xl -
X-1 X-1

1-2 E ux- -2u" - 2um1 - ... - 2u - 1.
X-1

Let yjk"x 12 be the matrix which represents vk on the 2-dimensional
constituent M, j - 1,...tm ( x 12 the corresponding matrix on Mj).
We shall determinel yjk~.  We write v. as:

k-1
vee TS+ o Tice xk )y £ v EErys e/ N\t
k "s2* | i»0 Is1s2; S1 R2x1t 2

We recall the matrices which represent the elements TA, w e D2n on the
blocks of the first kind (see Lemma 4.1) and we concentrate on the diagonal
entries of these matrices.

It turns out that the diagonal entries of the matrix which represents

T(s s )k ¢ T*s s jk have the form uk[Sk(pj) - Sk_2(pj)3 and the diagonal
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K—(fi +1

entries of the matrix which represents -@-1) € U m s\, w/5.V ]
1-0 Rlx2r X1 Ml R ]

have the form - uIS*"]'(url)9 ki’El [S#(pJ &S f(pJ]. Therefore

1-0 *J u J
wlk) - uk[Sk(pj)-Sk_2(pj)]-u,I' 1(u-1)2CSlc_1(pj ) +2Slc_2(pj )*...*2S 1(pj )*2S0(pj )].
The matrix X 12 is adbtained by conjugating yjk*x12 by @ J) ad 0

Hjk> " ~jk)*
Similarly let yj"”-1” x 12 be the matrix which represents vm+l on Mj,
1Sj Sm(or y"m+l* x *2 the corresP°ndin9 matrix on Mj). With a similar

argument, and taking into account that Sfi(pj) + Sm_j(pj) “ O» we find that

YO - ~«"(U-OCSAtpj) # 25K.2(Pj) & ... # as”pj) & 2S0(Pj)].

We shall now simplify the expressions yjm+1®» 1S 3 £ m.

In order to do so, we introduce certain families of polynomials. The
Chebyshev polynomials of the first kind Tk(x) are defined by:

Ta(x) - 1, Tj(x) » x, Tk+1(x) » 2xTfg(x) - T~ U ). VK* 1 and they have

the property that for every e. Tk(cos e) = cos ke. Clearly Tk(1) « 1 and

kind have been already defined by sq(x) « 1, S”(x) = x, Sk+j(x) * xSk(x)-Sk_"(x)
V k 2 1, and they have the property that Sk(2 cos e) = s k*~9 [see [1],pp.776-8
Define Vk(x) by VQ(x) - 2, VAx) = x, VK(x) - Sk(x) - Sk_2(x) V k * 2.

We can easily show by induction that Vk(x) * 2T. (x/2). Define

M x) - ,‘g“,,f,) 1 for every k * 0.

k x-1
Let ej = , and let * Sk_j(2 cos 0j)+2Sk_2(2cosej)+...+2S0(2cos0j),

1Sj Sm, 1i ks m. Then
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Lemma 4.2: (1) V(2 cos 6J) - 2 cos k6j likim 1ilJim

(11) Et’(" - E 2y cos(k-u)6j ¢ k, 1i J Sm, 1Ski a.
y-1 J
Proof: (1) This follows from the fact that V~ix) m 2Tk(x/2) and Trieos 0j) =
cos Kk6j.

(11) From the definition of Rk(x) and using the fact that T*ix) »
2xTk(x) - Tk-1(x)» we can easily show that Rk+1(x) ®m 2xRk(x) - Rk_|(*) ¢ 2»
for every k.

By Induction, we can also prove that (using also the fact that

Sk<.,(x) = x Sk(x) - Sk.,(x))
RK., (x> - Sk_,(2x) & 25k.2(2x) & ... & 2S,2x) . 2S,(2x), 1S k S m.

Therefore,

1-c0s (k9j)
ili = Rk.,(COS 6j
i ¢ D 1 - COS 0j

Moreover (1 - cos 0.)( E 2y cos(k-y)0., ¢ k) =
Joy-1 J

k-1 k-1

E 2y cos(k-u)0<e k - k cos 0. - E 2u cos(k-y)0. cos Ox =

y-1 J J M-1 J J

E 2y cos(k-y)O.¢ k- kcos Ox - E y cos(k-y+1)04 - E y cos(k-y-1)0i m
y-1 J J y-1 J y-1 J

1- cos (k0j). Our lemma Is now proved.

We next show the central character table of the generic Hecke

algebra of dihedral type for the case n - 2me 1.
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VO »1 V2 V. V..t
«© 1 2u 2u2 . u* " l2un2u2s-v.. . .2u*
Hs 1 & 2u2 .- 2u* -2u"'-2u, """ - .-2u-1
1 ual-(u-1)2A]  uZaj-u(u-D22J e u'alful™,(u-1D2AQ 1Au-0AJ
Mz 1 uza]-u(u-Q2A] =" umA2-u"",(u-,,2A2 u-(u-H~
ys 1 ual-lu-D 28 u2a]-u(u-i)2A]  eee  U“iJ]UTT(U-1)2A2 Ut (u-109

1 ui"-(U-1)22"  j2a"-u(u-1)2A2 e UN-Im=-(US)Z u (u-DA

In the table above, MQ, Ms> Mj, 1 Sj Smis a full set of left irreducible
H-modules, {vQ, vk, 1 $ k £ m, vm+1) is a basis of the centre of the generic

Hecke algebra,

» 2 cos sl *k*a, 1 *jsm

Ak = Rk_i(cos 6j), 1Sks«, 1Sj Sm
The entries of this table, represent the scalars according to which the basis

elements of the centre of H act on the irreducible constituents.



By specializing u
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1, we obtain the central character table

dihedral group Dgj,, n m 2» ¢ 1.

Mo

Ms

H1

M2

*3

1

1

1

] [.1

2

EcosSL

2 cos nf

2cos”

2cosl=

2]

2 .- 2

2 1
2cos IT 2% *1?
2005 2as
2c°s J|2 2 cos

2005 TT 2cos”

of the
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In our case all characters are real valued. Ue have two characters of
degree 1 namely x ~ » an<* m characters of degree 2. With the aid
of the orthogonality relations we can verify that the matrix C determined
by the central character table of the group W ls Invertible with inverse

matrix C where

1 1 2 2 2
M 7n n n n
1 1 2i . 4t 2 2mt
7n neosfh Lo n n
1 1 2 4it 2 a8
7n  7n  n cos "iT n €95 T n n
1 1 2 61 2 __12*
7n 7n A COSTH n cos — e ncoslIT
* - |
i1 2 ' oneim
7 2n RACOSIA n n e e e« Hcos —
1 1
m ~7n 0 0 0

Every entry of the 1th column 1i i s m#2 of the matrix C is given by the

corresponding entry in the ith row of the character table of the group D2n
multiplied by the di (di * 2, 3 s 1 s m+2)and divided by the order of the
group.

Now if z is a typical element of the basis {vQ, vk 1s k s m, vim+l*
of the centre of H, then z acts on every irreducible constituent of the
graded module according to the information given by the central character
table of H. If & is Lusztig's isomorphism, then *(z) is a certain linear
combination of the class sums, and each class sum acts on the irreducible
constituents according to the information provided by the central character

table of the group 02n, n = 2m + 1.
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Furthermore z and «(z) act In the same way on the graded module
and therefore the coefficients appearing 1n the expression of $(z) as
linear combination of the class sums are polynomials In the Indeterminate
u with rational coefficients.

We shall determine these coefficients explicitly.

In fact 1f A - (air), 1,rc {1,....m+2} Is the matrix describing
Lusztlg's Isomorphism on the centre of H with respect to the basis {vQ,
vk, 1i ki m, v~), then A m CA, where £ 1s the Inverse of the central
character matrix C of the group 02n and A Is the matrix determined by the
central character table of H.

We now compute the entries a , 1, r e {1,2...... m+2}. We shall make
use of the trigonometric Identities:

2 cos acos b mcos(a ¢b) ecos(a - b) and

sin(p*])x
N #COS X #COX 2X & ... 4 COS pxr% Sn(p*D

If 1 mm2 and r < m+2 then a*r - 0.

If 1 mmt2 and r & m#2, then *~r mJ? (U+L)(un-1 & ... & u+l).

If 1m1r € {2,3.......m+1}, then

ij., - 2 cot 2'r~I>J1 , thus - 2(-7) * -1 -

- 2cos(r-»*?e 4 cos(r-3)j|i+ ... v (2r-4)cos ijj1 + (r-1), h.nc.



" ji . 2 £ cos(r-2>Ili 4 £ cos(r-3$[I*....(2r-4) Zcos " *«(r-1>
J1 r'1 J-1 " J-1 " J-1 "

S(2*4 L 00* 2r-4) {- > % (r-1) . . (r-1) - .<r-l)jn-r.1) ,

Thus 41r- - “r V DilrIH"-rtll , 1- 1.1 £ (2.3 ......™1).

Let 1 m 1, p» m+2. Then

alme3 " 2F QU2 e 202 2uIMT-207-2umT,- L. -2u-n e | u"(u-1) £AE
J-1
Now ill m<*ecooooe 2,-2K=:> ¢-2«m —aifli asipll -
So alnw2 = [u2"**2u2"b...r2u"H"-2um2u”™’-...-2u-1 & 2m(m1l)um(u-1)]
i (u-.)cV (2x*1)uZmx & (n+2mm+l))Jume £ (2. - 2» & 1)u"'xJ.
n £-0 -

If 1>1, r € {2,3,....m+1}, 1 m r, then

*XEL*2UH ; 2COliig u i. co,
ir zn zn n n n
. . - 1 i)i*
I# r-2(u 1)2]._2) COt.L%I)I .21[_'
Now £ 2 cos .oosiirdlh . dcosw A |

J-1 J-1

Also £ cos 2(r~,)Jr 11
J-1 "
£ COS 2(r-1)J.[2 cos(r-2) -1l & 4 cos(r-3)E{ja-...»(2r-4)cos " 4 (r-D)
J-1
I 11\ tcos(2r-\-2) - cos £ )) - (r-1) £ cos (r~1*2J1
J-1 £1 " " J-1

-d*2*3*. . * r2>-iyi--irziym -1-11.
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h . ™o 1y . omr**(u-i)* irill!

- ut' e k.ey>l our-2(u-1)2. 1» 1. re {2.3..... »*1). 1 *r.
Let 1 > 1«1/ m+2, r - »+2. Then *Im+2 *

. jL [u2— " e2u2m» ... * 20— ' . 2um. 2u" 'l - ... - 2u-1] &

el u*(u-1) cos(l-1) -i* i¢.

Now cost1-1) y = cos(l-1) R(TI (@)cos Rij|l * m).
n " . n
We can have 1 - 1 - mk 1 fk-m-1 + 1. Thus,

cosd-D-ii mcosd-1)iil kll (2k)cos(— kE[I + 2(71*1)Cos(<-1£ﬁ£ .

oV (@cos K& e m
k— 1%2 "

"l k-[cos(i em- k-I1)*iT & cos(— 1-k*I&Eji] &
k-1 " B

* (m-1*1)C1 & cos U hlijjg, £ k[cos(l«-k -1)~ 1 o cos(m-1-k*1 £ ji] +
" k-m-1*2 "

¢+ mcos (1-1)"i. Thus, I cos(1-1i7jjd
m1 s m1 .
- Z k¢ (m-1+1)(m - ir) - Z k+ m(- w)
k-1 £ k-m-1+2 £

itk . (-1*1) & (= 1*1H 2"11)
k-1 £ £

m(mrii #iT~1U.n -5 - ¢ [n(m-1+1)-m2].



w1

- (U-D[u2BuanT 146U, 0. A(l) TR 2n(m-161)-252)< #(D1 )V
. _L (u-1)C r (2X*1)u2" 'X4(n+2n(«-1*1)-2m2)u™'e " (2m-2x"1)um_X]
Zn Xx»0 X-1

with 1> 1, \tme2.

Finally let 1> 1, r € {2,3....... m+1) i + r. Then,
(¢ *¥cos< ”™M.co ,«r-,)"

rlnu r'z(u-i)2 1 co»d-i) n 'yrri"

£ 2 cos(1*1) ¢ijjl cos (r-D”AS " *7 m7 m

J-1
" cos(l-t) ~ y . m £ cos/(i-l) lz* (2X)cos(r-(x.1)&ji * (r-1)J.
J-1 " rl J-1 " x-1 "
So, 1f 1 > r then cos (1-1) f cos V X - . .....r-2}because

i-1 mr - X- 11fr-1 > 0. Thus when 1 > r, then

icos (i-D ~y ., =m

m £ [r£2 X.cos(r*1-x-2)?j[l] * £ C£ X cos(1-r*>)2"lI3 & (r-1) £ cosil 12"
j-1 X=1 j-1x-1 j-1

(142 & ... & r-2) & (r-1) (-£)-- (r~1(r'2> - - - tr'; )2
)\2 (r-1) 1>r, Ltr.

Hence air - ur"2 (u-1

If r > 1, then cos(r-X-I) =cos (1-1 for X - r-1.

+3u+t)
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Now cos(I-1) -iT AM_1 -

H1-1 )
—cos(l—l)qc" XE1 (2x)cos(r-X-1)~L ¢ 2(r-i )cos(1-1)
5
r-2
L+ t (2x)cos (r-x-1) ~ & (r-1)
X-r-ul

So E cos(I-1)
J-1

m r-1-1 -, 9.
« £ [ I X (cos(r+i-x-2) ecos(r-1-£)i¢i J] ¢
§o1 o x1 " M

¢ (r-1) £ (@ ecos lil-DI») ¢
J-1 "

« £ [V X [cos(r*1-x-2) ¢ cos(r-i-X) 2ji£1] &
J-1 Xer-1+1 " "

¢ (r-1) £ cos

J-1
r-1-1 . r-2
m- EX* () n-W) - EX  -— M *
X-1 c X-r-1*1 c
-V Xe @D . @Hy -iai. -
X-1 1 *
- (21D < IrjIl L rjuU il L, Irjui

Hence, when 1i r, r >1, then

*1r ' - 1 “r'2(u-1)2 C-t=¢i)-n - ir200 ] .

- ur2@UD2ERY? - (-D]-
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For the convenience of the reader we summarize our calculations In the

following matrix.

We put K(1,hk2) mV  (2X*1)u2w X & (n*2m(m*1))u"* t (@m-2x*Lum_X,
X-0 X-1

and K(1,m*2) m Z (2X"1)u2l""X & (n"2n(a-Ul1l)-2m2)um & Z (2m-2X*1)u"'X
X-0

for every 1 m 2,3.......... e»l.



'9q pinoys 11 Se Xuyew A1Uapl dY) SAU00S] N0 XLJew ay) ‘T 4 N azife1oads awn B\



_95-

We give some examples to Illustrate the situation

1) U-D6,n- 3-21 1, « =1

A basis of the centre of the generic Hecke algebra H 1s given by:
* N 1 - -
Bt vV ss vt s *1S”
R WTg &b * Ty, * T

The matrix which describes the Lusztlg Isomorphism on the centre of

H(Dg) with respect to this basis Is given by:

1 -l (u-1)2 o (U-1)(U2 ¢ 7 u+1)
0 uey (U-1)2 C (-2 e u ¢ D
0 0 g (U+l)(u2+utl)

The Information given by this matrix 1s that:
*(v0) - 1.
«V,)) - -] (u-1)*U(ll &-j (u-1)2) (SjSg & S2S])
«(V2) -~ (u-1)(u2+7u+1)*1 &~ (-1)(u2+u+1)(s1s2 + SgSj) &
¢ ¢ (Utl)(u2+ut+l)(sl ¢ s2 ¢ S1S2SI

(11) W- DI, n-5- 22 ¢ 1, m- 2,

A basis of the centre of H 1s given by:
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v, - T,.oow, T . QT,' - (u—l)(T$‘0TSj).

V3 2 W28 TRar? ~ gie0q) ¢ TRy ~u-(g T )
u e YoX (. *T. )

The matrix which describes the Lusitlg Isomorphism ¢ on the centre of

1 -5 (U-1)2 - Ju(u-1)2 w7 (U-1) (UAt3UB*17U2BKe-1)
0 uen (U-1)2 -¢u(u-1)2 <3 (u-1)(u4»3u3*7u2*3u»1)

0 N (u-1)2 u2+ J u(u-1)2 WJiu-1)(u4+3u3-302+3u+1)

0 0 0 ja (UL UA+HU3TU2HIHY)

Second case n « 2m:

When m 1s even, a basis of the centre of H(D2n) 1s given by:

k  x-1
v aT,, v. *T/e * T/ \k - (u-1) i u [mi . * T/ LS
o 1* Kk AS251" X-1 <S182'51 ‘ri's . j
k» 1,
umm T(s,s2)-i] ** T(s2s,)™? u T
«-**"mV i1 C * yTSIS?).
and when mIs odd by: vQ, v, km 1,....m-1,
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We recall the decomposition of the graded module Into a direct sum of
Irreducible left H-submodules. This decomposition Is,

m 1
grad(E) - HQ9 M, 9 M, 9 ME Q Vj 9” Vj, where M, Ms, Hyt M2 afford
the 1-dlmensional representations o0 : T$" *u, 1 m 1,2, a% : Ts" e -1.

1. T. -u. o, : T. -u, T, -1, respectively.
»9

Vj Is a 2-dlmenslonal H-submodule with basis {uj, Vj) , which 1s Isomorphic

to the 2-dimensional H-submodule Vj vrfilch has basis {uj, Vj), j = 1.....ml

(see 82.3 for the definition of uj, Vj, uj, Vj, j » 1,...,m-1).
We first establish the action of the central basis elements on the several

Irreducible constituents with respect to the corresponding basis adapted to them.

they are respected by 2u
If k 1s odd, then, on the M. vk is respresented by - (uk*l i

If k 1s even, thenjOn Hy vk 1s represented by

k k_1 .
2uk - (u-1) Z ux- V.ox - ut **1 - (u-l)  Z uX_1fuk
X-1 X-2
Xm odd X - even
Kk k_1 .
- 2uk - (u-1)C Z (uk"' - uk) & t (uk - uk-"'n m 2uk.
X-1 X-2
Similarly we can verify that on Mj, vk Is represented by -(uk* eu ' ) If

k Is odd, and by 2uk 1f k Is even. The element vm 1s represented on M by
uml t uzm2 t t u«>,nd on ms by -(u""'" e u""2 & ... & t). for both c.s.s

m even and m odd.



When m 1s even, the element

m1

V. - E U.*".' T, L-X* T u,>A<_1 T/c . xmx . Thus, vmis represented
X-1 IslV s . X-2 1,2% r*2 m
X- odd 1 X- even
on M. by mrl u)’&'l V™R e v ux 1 Unix#l . (u" + u®-1) and On
1 X-1 X-2
X- odd X-even

Mg, vm is represented by - £ (u" e u"”1). When mis odd then

m m-1
v - E ux'*T, s mXe C ux: Tf. « and now v* is
[] X-1 1,1V «. X-2 Is* V *2
X-odd X- even
represented on M* by
- - ~ - mL o .m-1
il uf\l LR z uﬁl U»X.I.,,g,u
X-1 X-2
U=l ut-XRe *V u'-* L LED e L el ot
X- 1 X- 2
x- odd X- e
The element 1s represented on M) by u2m ~ + u2m 2 ¢ ... + umand on
Ms by -(um_ e un’2 ¢ ... & 1). for both cases m even and m odd.

With a similar argument as for the element vmwe can verify that when
m Is even vm+" 1s represented on by - ~# (um+ um 1) and on Mg by
J (um e un'1). while when m is odd vmtl 1s represented by ” um ¢~ um' 1
and by - ~ um_l -~ umon Ml and Mg respectively.

Finally the element v*g - Is represented by:
u2m, 1, um, um. on My, Ms, Mj. Mg respectively (when m 1s even) and by:

u2m, 1, -um, -um on the same modules, when m is odd. We next determine

the action of the central basis elements on each 2-dimensional irreducible
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submodule. This has already been done for the elements v*, k = 1.....m-1,

with the only difference that now pj m 2 cos *"2- m2cos * (tsJs «-I

We also recall that Pj are the zeros of the polynomial ~see Lemma
2.2.2(1 ).
R m m1 m_1
Assume m Is even and write v - Z u T/_ . \1-1+ E u T/ . \1-1
(2 IslVs, 1-1 15251°s,
1« even 1 1l-odd c

We recall the matrices which represent the elements Tw, w € Dgn on the
blocks of the first kind and we concentrate on the diagonal entries. Let
X<J> x Ig be the matrix which represents vm on the 2-dlmenslonal constituent
Vi, 10 j i * *2 the corresP°ndin9 "»trix on Vj).

It turns out that the diagonal entries of the matrix which represents

vm have the form

u" v CS,.,<Pj> & S1-2<PJ>3 mg*'1 " Cs«I<pj> & si-2<Pj>3- ,nd
1-odd 1-even

um E CSAA(pj) ¢ S~Aipj)] “u" 1~  CSirCpj)
1-even 1-odd

Moreover,

um E  CSLICpI) & st_27Pjr 7~ ~ * S1-27PI N
1-odd 1-even

mi21S,-2<Pj> * S1-3<Pj»] ’ 2 * S1-1(pd>3 *

mu*"(u-1) ~ S.,.2(pj) ¢ u* " sl-3<0j> - “* ,J2 S1-1(Pj>

l-even l-even 1-even

(since S_1(x) - 0O and S~tpj) - 0)
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mu -V 1) E S4_,(pJ eu"_1(u-1) E S. .(Pj) =
1-2 1cJ 2 N
l-even l-even

Ut @W-DSOP)) ¢S,CPj) ¢ ... ¢sn.3Pj) *sp2Pj>3=1i ji

Similarly we can calculate that

12 CS- IpJ>* S1-2(03)1 " SI-10* * S1-2(pJ*3

l-even 1-odd

mumV |)[S O(Pj) & s|<Pj) * ee= * Sm-37pj* + Sm-27pj "
Therefore

X«> o ul'-1(u-1)CSO(pd) + S,(pj) ¢ ... + V3 <PI) * S»-2(pJ,i’ *md tlnc*
x lg 1s obtained by conjugating x ~ x 12 by q) we also have
X<J) m X<J). 1SJ S»-1.

An entirely similar calculation shows that when m 1s odd

v . | u'-1 T. , >11 & " u*"1l T, ,1-1, 1s represented on V,
[ ] 1.1 Isls2’s. 1-2 Is2sl's,

1-odd 1 i-even
and Vj by the same multiple of the Identity matrix 12> The same multiple
of the Identity matrix j2 appears when we consider the element v(R+ in
both cases m even and m odd.

Finally by Lemma 4.2 using the fact that Sm ~(pj) <0, 1Sj Sm-1,

we obtain that
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0 1f j - even

1i J s«l

To summarize our calculations, we conclude that the elements vm and vm+"
for both cases meven and modd, are represented on each 2-dimensional
constitutent Vj, Vj, 1sj i »1 by A®) x 12 and x 12 respectively,
where
0 if j * even
ERVANT] if j . odd.
5

Finally the matrix which represents T on V, is (see Lemma 4.1)
wo J

u"'CSm<Pj> ¢ V i pj»

2u2nHV\os it SB

i pj> U ts»-1(P) eV z'pi»
Using the fact that Vi<pj> 0 and Sm(Pj) * pjvi(ei) - v 2(Pj) ‘S»—Z(P‘])'
we obtain that this matrix above is o x | where 2<p>t
sin(m-1)e ) n ifj - odd
Moreover Sm2(pj) ® i, m - cos(m6j) = L 1fd - evenJ
Therefore m 1tu" 1f j modd “I

O Lu IfJ - everj

We next exhibit the central character table of H(D2n), n = 2m, for both

cases m even and m odd.



»

Vi

Central Character Table of H(D2n) n * 2»,

Y a0
A a0
42) 2
o) Y

aai--D2A]  wA-u(u-DH2»

-@-D2r 4w A

PAUHIL)2'

A1
1

-2

.- (uv2

y - 14§ 1-4"-2(u-D2ii .1

e U= = 2¢, D2

UL 2-

m even

J(uvi)

-\ (uv.yp

“fbnis*
0

NcosJe

A @D lasere v @D RSrme

YW )

fluvi)

rise
0

Y] 1-oos

Vz

H
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n the table above e - jj , 4jj = 2 cos , tsJ s m-1, and

iiJ m Rk.,(coa 8j). 1S ks m-1. 6j - {H,. Ms, M,. > Vj. 1SJ] S ml>
Is a full set of left Irreducible H-modules, (V]|, 0 i 14 m+2) is a basis
of the centre of H, and the entries of the table represent the scalars
according to which the basis elements of the centre, act on the Irreducible
constituents.

By specializing u -» 1 we obtain the central character table of Wm D,

n = 2m, m even which determines the central character matrix C m

| 2 2 2 m m
1 2 2 2 m m
1 -2 2 ecee -2 m m
1 -2 2 2 -m m
1 2 cos s 2 cosE oo Zcos 0 0
1 2 cos £ .... jicosiijtih 0 0

LR N — 2(m-1)n ? rn,(i"-t)2ir
*co*
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The inverse of the central character matrix C is given by C =

m n 7n n
1 1 1 .
2n "ZF i«-4- s

1 1 1 1 lco$ lajji
mn 2n  ~7n 5«“nr1l

1 1 1 1

n  "7n m 0 0

1 1 1 1

m  <Tn " 0 0

1 1 1 1 1 _1
n n m m eeee m

Every entry of the ith column of the matrix C is given by the corresponding
entry in the ith row of the character table of the group D2n. n * 2m, m even,

multiplied by the degree di and divided by the order of the group.



Central character table of n * 2m>m °dd.

»1

*Z

Vi
2u Zur-' u2m1’. o™
2u Zu"- Hut-1+ L ki*l)
-(uvl) 2U"-1 - «iou»-1-tjiout
-(u2*1) Zu ajlu" e u"-1

U4i-(u-1)2¢]

U42-(u-1)242

VAV (u-1)2A0

uval-Vu-D 20

u-,6 ru-2u-i)2y.i

u"-,4 . 1-.u*"2 (u-Ifir,

N4 -2 S 28

“LTCi-r2 10212200

TO

“ INSTTé

uz'

-SOl-
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By spediillio* u ¢ 1. we obUIn the Centril Chiricter Ubie of the
group W- 02n. n - 2«. modd. which determines the centril chiricter

matrix C =

1 2 2 m m 1
1 2 2 -m -m 1
. -2 2 -m m a
12 2 m - a
1 2«*s 2«»V - 0 0 -1
1 2«wr? 2 cos - 0 0 1
1 2 7T 2»*V - o0 0 1
1 2g,, is™il 2cos?lig . o 0 1
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Let A= (*jr) Irr € {1,2...... m+3} be the matrix describing Lusztig's
isomorphism on the centre of the generic Hecke algebra H(D2n) with respect

to the basis {vQ, v, 1i k Sm-1, vm, vm+l, vm+2>. Then

A « CA(or A = C'A*) where C is the inverse of the central character matrix
C (when m is even), C" the inverse of the central character matrix C*
(when mis odd), and A, A' the matrix determined by the central character
table of H(D2n) for the cases meven and m odd respectively.

The calculations are entirely similar as in the case n odd and they
are omitted. We provide the result of our calculations in a matrix form

in which we use the following notation.

for every 1 =2,3,...,m.
Km+l m+1) - K(ft.2,m*2) - LT . ... . 1] . { (u" eu"")
K(m.1 ,m+2) . K(m.2,m.1) =~ [u"'" +1)- { (u" «iT"")

¢ 7 (m-i.hu”

]



'3 piNoys 11 Sse Xurew Aujuapl aq 0) sazifeldads anode Xuyew ay) T 4 N aziferoads aw LBya
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We Illustrate the situation by giving some examples.

(1) W=Dg, n*4, mm 2.

A basis for the centre of H(Dg) 1s given by the set of elements

vo * Ti» vi “ Tsyg2 + Tgog1 " <'-1>CTgy ¢ T§23

c »2 *2*1*2 S1

The matrix A 1s given by:

- ? o g (u-)(u2e6url) ¢ (u-1)(u2*0*l) B (2" 2
0 u+A (u-1)2 J (u-1)(u*1)2 £ (u-1)(u»r1)2 B an-1)2
0 0 ¢ (u.1)3 A <wl)(u-1)2 et
0 0 ¢ (u.)(u-1)2 C(u.i)3 Lt
0 j (u-1)2 B (u-1)3 B (u-1)2 uz *B U

The information given by this matrix is that
0(’D> -’
e(e) - -3 (uan2ar U U208 52 4 sas18 4 i Au-12(S082)2
«(V2) -5 (u-1)(uWl)-1 J (u-1)(u*1)Z(S,S2 & S2%,) *
¢J (u.))3(s,s2s1 ¢ S2) 5 (u.1)(u-U 2(s2s1s2 ¢ s,) *

e~ (u-1)3(s,*2)2
»(W3) -~ (U-1)(U2.6u.1)-1 *5 @U-1)(u.1)2(s,s2 ¢ S25,) ¢

g @U.1Ku-1)2(F,s2s, ¢ *2) » j @*1)3($2s.,72 ¢ *,> ¢ 5 (u-02(s,$2)2
*(VA) - ¢ 2-1)2-1 ¢ § @2-1)2-(s,*2 ¢ s25,) ¢~ (Il*zsl * 2%

(>25,>2 ¢ «,) ¢ Cu2 ¢ j (u2-1)23(s1*2)2






1 _5 D2 - f u-Nz A U-D@W e 28 + 1202 + 2uH) cu-DUis 2B e 2Re2ueD 5 3,9

0 & 1<u-1)2 - ~uu-1)2 A u-DWe22B+6R2+2u+ 1) mU-DUAt 203602200 1) JMu3-1)2

0J D2 uuu-D2 " @D+ i -D@U4e2u3 e 21+1) ir(“3-i2
TI-10
0 o 0 {u3h 43452 ¢ U ¢ 0 A (uBud-203-212 ¢ U+ 1)) ot
N u6 -1
0 0 0 ¢ {ub*id-u3-22eue 1) U3tud+au3+au2 ¢ U ¢ D) “ire

0 £ @D2 Juu-N2 I U-T)(UA2B-62-rT) B 1) 420360 2+2u+1) Ut~ @B-1)2
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CHAPTER 5
The general form of Lusztig's Isomorphism and its restriction to

the centre of the generic Hecke algebra

In this chapter we shall generalize the results of Chapters 2 and 4.
In §81.4, we gave a procedure for the determination of Lusztig's isomorphism.
It Is clear that the larger the order of the group W becomes, the harder it
is to find an explicit formula for this Isomorphism. We wish to find some
information which will simplify this procedure and enable us to establish
a general formula for this isomorphism. The starting point of our investigation
was the determination of Lusztig's Isomorphism for the symmetric group S”.
Let W be the*symmetric group S4, given by a presentation
H. <*»*2»*3 : *1 ” 4 m *3 - 'e (V2> * <$2S3)3 “ '= *1*3 ' *sV-
There are ten left cells in W, given by:
X0 -{1). L, m (*f**2%1* g3*2*1>* L2 " <s|lV s2’ S3S2>*
L3 * {S1S2S3’ #2S3,53}° ML " {S1S3* S251S3)#
M2 * i$1S352* S251S352} * N1 ' iS2S3S1S2*r S351S2S1* S1S251)*
N2 " {S2S3S2* S1S2S3S2* S1S2S1S3S2>*
N3 ' is2S83S2S1* S1S3S2S1S3* S1*2S1S3]J* X4 “ iS1S251S3S2S1

There are five two-sided cells in W given by:

V *mh UL2UL3* X2 “MLUM*V N1 UN2 UN3- X4 *
We consider the free f[u*] module E with basis {ew, w € S”}, and we make
it into left H-module with action described in §1.4 where
H is the generic Hecke algebra over the ring f[u”~]. Then we construct the
graded module grad(E) (see also §1.4) with canonical basis {¢w, w € S4>.

We know that grad(E) affords the left regular representation of H.
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Now, each left cell gives rise to a W-graph according to Theorem 1.3.6.

The W-graphs arising from the left cells are

cd. cekD O R G&y-CD - <E£D- “3 2 )
The circles represent the vertices, and inside each circle we describe the
Indices 1 for which s"w <w, 1 - 1,2,3, and w is the vertex represented by
the corresponding cycle. The function y 1s identically 1 and it is omitted.

Each such W-graph gives rise to a representation of H over Q(u*) which
by Theorem 1.3.9 is irreducible.

For each left-cell say C, we consider the subspace Vc of grad(E) spanned
by {¢w, w€ C). Then VE is an irreducible left H'(ul) module.

We next provide the matrices which represent T, 1 m 1,2,3 on the
various modules Vc, with bases C

T 1s represented on W , V. . W, Ww , W by the matrices:

s1 x0 L1 i N1 v
<>, ~1 u* 0 . Fi “ \ o o”
0 u o0 L° - J - -1 0
o 0 u 0 0 -1
respectively.
The matrices representing on these modules are
o 2 o o O N <T (-1
w1l i*- 0 u o0
) [3) 0 o

and the matrices representing T are
*3

(u). n o 0 P czl -~ 0 0 -1)

Li u* -1 0 0 u
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Let o(T. ) be the Images of the generators T , 1 m 1,23, under the
s
Lusztig Isomorphism *.

Let #(1,,) = | £ Q(ueé). The generators si are represented
ﬂ wes4 w w

on the various modules Vc with bases C according to the matrices obtained by

the ones above by specializing u* 1. Therefore we can work out the matrices
which represent every w € S4 with respect to these bases. Using the fact

that T and $(T ) act on the same way on the graded module and comparing
coefficilents of ?rl\e basis elements on both sides of the equation Ty ew**(Ts )ew
we obtain from each irreducible representation of degree d € (1,3,2,13,1\]"d"> *
equationsIn the o 1', w€ S4, 1 m 1,2,3. Thus we obtain a total of 24
equations In 24 unknowns C ~ . These equations are linearly independent and

the solution of the system of these equations gives

Vey T T AR C*2 * sls2 ' *2x] * *1%2%]]
(u*s 1%
[-*2%3%2 & »,«2«3«2 - *2*3*2*] & * *F2*3F* 3 *
12
i \2
CHD*Z * KGR M KIAFED * AFRDH] | RDAZA] + KRR A RGEDK]
sk KyR{%(Q
i 2
AT$) =tji-1 e UJi s2 & A-jA-C-*i"*3"*t*2**2§i 3"*3 1*2*1 * 3
I 2
. [+ *3%2%r*1*2%3 ]Gk ek ] Q] Kk DR AR DR RR] Kok | RDR] HFXD 4
FHRQARZXQX]*23
-(Ttj) * Tk %3 * Crap % kR M AQKZ * KQxZAD] *

(U A2' CURI*Q¥] K RFRIRDR] 1 RQRIRDRF K KFRQXIADAB] X

* [ - %2 LHA*IHDKGH] RDHR K] RDRGHA DR XG4 KFH QK] ~HFH]KDRHAQRFH2*(
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We note that the coefficients of la and s, In the Images of $(T 1) are
i s
»nd U7l respectively and that c<<>. c<*> while c*11 . - c.*1* . Thus
c W " w 5"

Thus If w€ CH(Sj), wt 1,Sj, 1 m 1.2,3, then C\f\ll) m 0, where CM(s”) denotes
the centralizer of s In W. (Compare these remarks with the formulae giving
the Isomorphism « for the dihedral case). Thus the coefficients of Sj, s”Sj
In ¢(TJ ), and the coefficients of sjs2s3s2si’ s ~s ~ s ~ 1n$(Ts ) and the
coefficients of Sj, s"s3 in ¢(T$ ) are all zero. There are certainly other
elements w for which w 0.

We now prove the following:

Theorem 5.1: Let Wbe a finite Indecomposable Weyl group, and « be the

Lusztlg Isomorphism between the generic Hecke algebra over Q(u*) and the

group algebra of Wover H(u*). Let *(T.) = z c.w, cw € Q(u*). Then
s wE€ W "
(O c, mjjigl . S «T 1 ecw’ cws-cwm=Sw V" " 'e

(11) «(Ts) - ~-*1 &~ * & (u*-1)2Fs , where F € QW, F$ does not Involve

1, s, and Fs satisfies the properties Fs m °* sfrs * "% » Fss m Fs*

Proof: We consider the graded module over Q(u”) with the canonical basis
{cw, w€ W). We fix an s € S and let W m {w € W: sw < w),
W e (we€W: sw>w). Then Wm Wj UW, and 1f d* = |W*|, 1 = 1,2, then
d* m -iyi- since the map W-mW such that w sw 1s clearly a bljectlon.
We order the canonical basis so that {¢w, we W) - {{w, w € Wjlu{ew,w € W2),
and then, the matrix which represents T$ on grad(E) with respect to this

ordering of the canonical basis 1s (considering Ts acting on grad(E) by the le ft)
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The action of Ts on ew is given in §1.4. . . Id is the identity matrix
of size dj, 0 is the zero matrix of the same size and Es is a matrix also
of the same size whose entries are integers.

We consider the image of Tg under $ and we write $(TS) m Cy*1 ¢ I C...W.
W w

When we view the grad(E) as a left H-module and as a left W-module with
actions described in 51.4, then it affords the left regular representation
of H and Wrespectively. We also recall that Ts and ¢(Ts) act on grad(E)
in the same way. Since the trace of any w € W, w + 1 for the regular

representation of W 1s zero, we obtain that the trace of the matrix A(TS) 1s

W = Cj |W], therefore cl1 = . We next write 4>(TS) * f$(u) + u*gs(u),
where f (u), g (u) belong to Q(u)(W).

We also write A(T$) = Es

Therefore the elements of the group algebra fs(u), g$(u) are represented
on grad(E) with respect to the ordered canonical basis as above, by the

matrices:

By specializing u* 1 we obtain the matrix which represents the generator

s, so
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Thus gs(u), and g$(1) act on the same way on grad(E), and so
gs(u) 1 9#(0 € tw.

Let a be the following element inside Q(u”)(W).
oL ML, e3> . u*gs<1>.

Then, the matrix which represents a on grad(E) with respect to the ordered

canonical basis as above, 1s

Therefore «(T$) m~""-1 9#0 ) & u~g$(1).

Put Fs m - J gs(1) to obtain
*(T() - 1 e“€is & (u*-1)2Fs, where F$ £ *u. Fs does not Involve t.
Now the matrix which represents F$ on grad(E) with respect to the ordered

'C3

1s the zero matrix so m 0.

canonical basis is Thus, the matrix which represents F*

Suppose that F mc'.s & E c*.w. Then, the matrix which represents
s s wjM.s

sFs on grad(E) with respect to the ordered canonical basis is
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9 .
>d, Es % o E# o lES
0 0 0 0
0 1A
L_ g 4
Thus sF. m-F_le. e'.t ¢« Z SVm-c'.s - i c *w i.e.
s 5 wl,s w s wjM,s w
c'.l & | c wm-c'.s - z ¢ .w, and therefore we obtain that
s wM,s sw 5 wjM.s w

Cj m0and c¢sw - -c", ni<1,8. Therefore F$ does not involve the element s
as well.

The matrix which represents the element F$.s is

Thus F$s - F$ and so c* mcrs wi 1,s.

Our theorem is now proved.

Now for every generator s® of the group W, we write

,ul-1>2 Fs,
\. « (u+l - 2u*)Fs . We put g* gs m -2FS and
V"> - T1"'""'T1"'1 Sl-

ue note that f (u) depends upon u, while g, does not.
*1

S1
Proposition 5.2: (1) g* m 0, - -gl.g,si - gf
(2) f* «ul & (u-1)f,. gifl & frg, - (u-i)gi, gifigl m 0. fAf* * "“gr
3) g,9j - .g/\j - Sjog & o xjE - §>§.afor 1tJ.




-120-

(4) fifjfl "e ~ "e e for "ij £ R2MB> ** i ,nd
T * xy *
vV /io-fjvij - 1% 3-
Proof: (1) It Is clear from the fact that m -2F$” and SjF#~ “ "Fs™

F$iSL “ Fe1=Fe1 - °*

(2) The matrix which represents f< on grad(E) with respect to the canonical

basis (the basis elements being properly ordered)

matrix which represents g
-

represented by and the element u*1 ¢ (u-I)f* 1s also

"*D -J

represented by the same matrix, so f| m u*1 ¢ (u-1)fj. The element

91f1 + F191 rePresented by the "»tplx

and therefore - 0 since g* m 0, while m (u-Hfrgnr - fAfIN >
n (u-1)figi - (U-1 ¢ (u-1)fi)gi m -ugr

(3) We write U « Hj UU2 U u where
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M( e WEW: tjw <w, SjW <w). U2 « (UeH: s(w<w, s"w >w)
Wj » fweW : sfwv »w, SW <w}, W4 - WE W: $,» >w, SjW »w)

Let d, be the cardinality of W,, 1 - 1.2,3,4. and we order the elements
of the canonical basis of grad(E) according to the decomposition of W above.
The matrices which represent s,, g, with respect to this basis are

respectively

0 A«ly C«> 7 0 *R> c(,>_
“l
0 -1x B(1* D(1* and 0O 0
d2
o o idj 0 0 0 0 0
0 0 0 Ix 0 0 0 [o]
da
where BA", C*1*, 0 ~ are matricetof size d, x dj, d2 * dJP

d, * d4, d2 x d4 respectively.

Therefore the element s”-g, 1s represented by the matrin

The matrices which represent sy gj are respectively

AG> 0 c(i) o AG 0o C&7
A
0 0 0 and 0 0 0 0
0 b () 0 B<J) 0 DU>
" d3
0 0 0 0 0 0 0
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where ,B~r, CAH, are matrices of size dj x dg, d3 x dg, dj x d~,
d3 x d4 respectively.

Therefore the element Sj-gj 1s represented by the matrix

Hence the elements s”~-gi and Sj"9j* 1t J commute, 1.e.

Si‘j - SI») m»1*) * " X%l e Shl e«j*1*0jV or
8lcd ' 8JOI © V j * JOF ' SIn ' »Jsl * *js1 * ‘1% 1%

(4) Let 1i J. The elements f~, fj are represented by the matrices

Hence f~fj » fjf~ for 1+ j and fjfjfr ...» fjfffj ... for m” € {4,6},
nijox vijo*
while fAJF, - - f5fi 7 o (-DFPFj - @l o (Uu-DFF, =

mutfj-f,), 1tim
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Ue next provide an alternative proof of Theorem 5.1 based on some
conjectures made by R.W. Carter.

This proof illuminates the procedure described in §1.4, for the
determination of Lusztlg's isomorphism. It has an interesting connection
with the orthogonality relations for group characters, and it provides
information which Is going to be used In the next chapter.

We recall (see definition 1.3.0) the definition of a W-graph over Z,

for a Coxeter group W.

Definition 5.0: We say that a W-graph 1s even, if there is a map
sgn @ X *{-1,1} such that u(y,x)sgn(x)sgn(y) - -piy.x) for any distinct
x,y € X.

Let Wbe a finite crystallographlc Coxeter group, and let H be the

generic Hecke algebra over the field 9(u*). We shall make use of the following:

Theorem 5.3: (1) Every irreducible H-module is afforded by a W-graph over Z.
(2) An irreducible H-module is afforded by an even W-graph over Z, if and
only 1f It Is not exceptional.
(For the definition of an exceptional representation and also for a proof
of this theorem, see f9j).
We now consider the graded module grad(E) over Q(u”), associated to a
finite crystallographic Coxeter group (l.e. a Weyl group), and we view It
as a left H-module. We know that grad(E) affords the left regular
representation of H and as it is also semisimple, it has a decomposition
into a direct sum of left absolutely irreducible H-submodules (H splits over 9(u*|.
Let grad(E) =Vn 9 ... e VId 9 ... 9 Vt1 § ... 9 Vtd be one such

decomposition, where each Vjr has dimension d*, 1i 1$t, 1i ri d* and

Vvir “ Vjs 1f and only 1f 1 * J*
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Let X >[v1lt......be a full set of Irreducible constituents. For the

sake of simplicity we relabel the members of X by putting Vi s 15 t.
According to Theorem 5.3(1), for each Vr 6 X, 1sr j t w can choose a

basis Br « {Vj......vd }, such that 1f €Br, 1j ks dfl and T$ Is a

generator of H, then

If s € 1I(v.)

uvk * 1 1f 5 ° I(V
*1£Br

with w(v{*vk) € Z and Y being the set of edges.

We fix an s € S and suppose that among the basis elements of B . d elements
1

ror
vk are such that s € Kv*), 1 s ks dp and that dr elements are such
that st I(v?). Then dp & dp - dV and we can arrange the elements of Bp

1n such a way so that the matrix which represents Tf, s flxed*wlth respect to

B,. has the form

la u E
ul
r2_
whose Id , Id are the Identity matrices of size dp , dr respectively, 0
rl r2 12
1s the zero matrix of size d,, xd, , and E, 1s ad x d, matrix whose
r2 rl s rl r2

entries are Integers.

.,V . ), be this arrangement of the

V.
ari«l ar

»met Br

rl
basis elements of Br' with s € I(vk), 1i ks dr”‘ and s | I(Vx)’ dr" <k i dr'

With respect to this arrangement of the basis elements of Br, the matrix which

represents T ,, s' + s 1s not necessarily of the same form, but Its entries
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still Involve only polynomials In Z[u”j. By specializing u* 1 we obtain
the matrices which represent the generators of the group U, and therefore
the matrices which represent every w € Wwith respect to B
r<;>(«)). 1j £{1...... dr).
1 with respect to B .
r

Let vk 6 Br, | s ks dp and let w. = e
K 1-1

Suppose that *(Te) - E c¢ w 1s the image of T. under the Lusztlg isomorphism
s WV w

4. cw€ Q(u*). Then #(Ts)vijt- E oW z m T$vk, since Ts and

4(T$) act on the same way on the graded module.
Therefore, by comparing coefficients of the basis elements v* on both
sides of the equation above, we obtain dr equations in the unknowns c”, w € W

of the form

e ffc'oOc, mx . x € {-1, o, u, eu*. e €2>.
wew 1K w

Hence from the constituent Vf € X, 1i r s t we obtain in this way d?
equations 1n the unknowns cw, w € W.

We now recall the form of the matrix *r(Ts) which represents T? on Vr.
All diagonal positions 1n this matrix are u or -1. Also u, -1 do not occur
except on the diagonal. We also emphasize the fact that every position of
this matrix, gives rise to a certain equation 1n the unknowns c”, we Win a
way we have described above.

The striking thing about these equations 1s that some of them behave
better than the others.

The following definition and conjectures appearing in Proposition 5.4

are due to R.W. Carter.
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Definition 5.1: An equation Lfi,r"(w)c_. >A . 1Lk C (1.
- vew 1k w r

in the unknowns cw, we W 1s called amenable with respect to s, If the form

E fik,(w)c, 1s a linear combination of c., c_, c ec. , c - c for all
" 1 5 W sw w ws

w€W with wf 1,s.

Proposition 5.4: (1) Every position -1 on the diagonal gives rise to an
amenable equation.

(2) Every position which occurs In the same column as a -1 on the diago nal
gives rise to an amenable equation.

(3) Every position u on the diagonal gives rise to an amenable equation.
(4) Every position which occurs 1n the same column and row as a u on the

diagonal gives rise to an amenable equation.

€ I(vk). Then Tsvk ® -v~, 11i k ‘V

*T.) -c..1 ¢e $¢ E E
' . » weW w weu
WS >w ws<w

w/ 1 WJ*S

- * -
\ \ vagwcww+ wew WS
wWSSW wsSW
w* 1 W»H
Thus,
+<Ts), k + E vy f oz
) 1 WEW « K) wew ws(ws)-vk
ws>W ws>w
w1
E ¢ (w _
weu w Ve wku Oug(W-V -

wS>W ws>w
WM W»M



ad

" Svk' cvk4 1 S/E * ESJE firn)v4)
n k Sk we€w 171 1k 1 wEWWE il ik 1
Ws>W WS>W

w)<1 W»M
Therefore, by comparing coefficients on both sides of the equation

V*k me<V-vk m*V ' * ks dr). we obtain

wew 4 117
WS>W
« 1
E fi*(>>(*, - «wu) mOIf 1t k, 1s1lsd,
weu k « « r
WS>wW
W* 1

Both these equations are amenable with respect to s.

In order to prove (3) and (4) we consider an element € Br with
dr.<ks dr- l.t. S* I(»k>. Me now write
*(T) - ¢ Z c we E ¢ w
rl14V s 4 WEU W WEW W
swsw swew
wi 1 Wf<S
¢ Z cwe
[ Y * WEW w wiky caws*
swow Swow
wrrl wrM

- ~j
so .<y .,k c1vk 4 c«(s"V'K) ‘wéu C* |w.vk) 0W§U<
Swew SWW
WIH w*|



-128-

drl
50 s vk mwk* .S, ‘(W v €z
drl
He put p(vl.vk) - ujk, so s.vk - 4 ¢
vk ¢ £ Hik v
. . *1 )
Let w € Wwith sw > w.w j< 1 and let wivy m 1El fflt (W)vl friviwlv.
=l il
Then (sw)v. * - E * T fir'lwKv, ¢ E “
* =1 1k *id, 'k 1 e LV
d. r)
Then #(T#. wi <V k eesivk ® F “ikvi> o
il dr
¢ | E
wew _ 1
s, wj<l A *
dr, dr ) dr,
¢ E - oer . i .
r= cswC-(r, "{i>>*1 14, I irox., ’_]!' ji vi)l-

sw>w,w/1
By comparing coefficients on both sides of the equation

Ts vk « ¢(Ts)V|(t dr® < k i dr we obtain:

£ u
wow
sw>w, w/l
and
" ffsw> - 0 If At k. dr) < 1i dr
SWSWWH

Both these equations are amenable with respect to s. Our proposition 1s

now proved.
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Remark 5.4: From the proof of (3) and (4) of Proposition 5.4 we see that

1f vit vk are such that {vA.v~} € Y, Y being the set of edges, then by
comparing the coefficient of the element v* on both sides of T$*vk m ¢(T$)*vk,
we obtain the equatlon:c$ p~ ¢ integral linear combination of =u*p”,
Vik * If <viBvk>H i 1i i i dr we obtain the equation:

linear combination ofe * 0 .
W<l s
We shall show that both types of these equations in the unknowns cw

are not amenable with respect to s.

Proposition 5.5: The total number of equations of type (1), (2), (3), (4) of
Proposition 5.4, Is equal to |CyCs)| +~ (JW]- |Cw(s)|), and this number is
the same as the total number of linearly independent combinations of Cj, c(,

cw + csw* cw " cws» where 5 1s fixed and w€ W, wf 1,s. Cw(s) denotes the

centralizer of s in W

Proof: The number of entries of the matrix Ar(Ts) which represents Ts on the
constituent Vr with respect to the ordered basis Br, which give rise to

amenable equation of type (1), (2), (3), (4) is d2 e d2 ed d . Thus,
rl r2 rir2

the total number of equations of these types obtained from all the inequivalent

t 2 t 2 t
irreducible constituents is z d ¢ E d ¢ E d d
r-1 rl1 rl r2 r«d rl r2

The trace of the matrix Ar(T$) Is: Trace Ar(Ts) - ud” “ dr = By
specializing u 1 we obtain the trace of the matrix which represents s on Vr
with respect to the ordered basis Br, 1i r &t. Let C*is) be the centralizer
of s in W, Kj the conjugacy class of s, xj** be the irreducible character which
corresponds to the constituent Vr, defined by x|r” xjro(x)» x € Kj.

The second orthogonality relation gives: |Ow(s)] = E~xjI* X ~i wbere xj"

is the complex conjugate of xj1™* Here we have xjri “ xj**" because s2 - 1.



-130-

t
so. - |cw(s)] . 2 * d d

Hence [CM(s)] (M - Iow(s)l)

Next we calculate the number of linearly independent combinations of

If w€ Cw(s), wt 1,s, then w gives rise to two such combinations, namely
Cw + Cew* Cw " Cws* For sw * ws an<* element sw 9"v®s rise to the
combinations +c"t -csw$ =c. - c”, and these are linearly
dependent on those already obtained. Thus, for every w€ Cw($), wf 1,s,
the pair (w,sw) contributes to two such linearly independent combinations,
and therefore the whole of Cw(s), contributes to [Cw(s) | such linearly
independent combinations (counting c”, c$ as well).

Now, if w€ W, wt Cw(s), the quadruple (w, sw, ws, sws) contributes
to three such linearly independent combinations, namely c* ¢ c "t c”
c« * csws- For- the combination cJW - csws - (c,, . csw) - (c,, -c”~ M c” ec,
and this Is a linear combination on those already obtained. Therefore, the
total number of linearly independent combinations of c”, cs*cw * csw*
c» mcws' we w* ,s exactly |Cw(s)] ¢J (MW - |ow(s)]), and our
proposition is now proved.

We recall that these equations of type (1), (2), (3), (4) are all linearly

independent as they are obtained from inequivalent irreducible representations
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of the group W (see procedure in §1.4 for the determination of Lusztig's

isomorphism $). Hence

Corollary 5.5: Both types of equations in the c”, w € W, obtained by the
inequaivalent irreducible representations of W, mentioned in the Remark 5.4,
are not amenable with respect to s. For, otherwise we would have a system
of N say linearly independent equations In M unknowns the , G, cM+ ch,
av - cws. wf 1,$, with N > M. The matrix of this system has rank at most H.
So the rank is exactly Mand therefore the remaining N-H amenable equations
with respect to s, would be linearly dependent on the previous M. This is a
contradiction.

For example 1n case W= S”, s m Sj, the first 0 in the third column of the
first 3 x3 matrix which represents T , 1s the right-hand side of the

*1
following equation:

IR 4 RFLDRQFL 4+ CK1*3*2 C*1*2*3 XL *3*2*1 C*1*2*1*3 Cr2*1*3*2

S§182S3*2 S$1S283S2S1 S1*25183S2 Cs253S251S2 Cs1*2s1s3*2s1
This equation 1s not amenable with respect to Sy

Also, the u* appearing in this matrix is the right-hand side of the equation:

1 C*1*2 Cc*2*1 A*1*3 Cr1*2*1 C*1*¥3*2 * C*3*2*1 *2*1*3

°S1*3*2*1 % * 1*3*2 C*2*3*2*1 C*2*3*2*1*2’
This is also not amenable with respect to s”.
We can now give an alternative proof to Theorem 5.1.
Second proof: Part (i) is now an immediate consequence of Propositions 5.4 and
5.5. For, we put A = | ¢J (JW] - [CH(I)]). Then, the system of A-
amenable equations with respect to s 1n the A-unknowns c”, cs, cw + csw,

Qv ' Gvs’ wt 1rs a unique solution. Such a solution is:
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*1 mT 1' % mT 1 «S. ¢cs«’ °- cw- & ' e "
So this is the only one.
In order to prove part (ii) we consider the set of |W equations in the
MW unknowns cw, w € W, obtained from the several inequivalent irreducible
representations of W. From these equations we omit those coming from the
irreducible constituents which afford the representations of H

°0 : Ts u vs 6s*and °s : Ts"m vs € S* These Rations are

Z ¢ «uand z (-1)A" e m -1 respectively.
WEW weu

So we are left with W - 2 linearly independent equations whose type

is one of the following (see Proposition 5.4 and Remark 5.4)

cl ¢ Cs + integral linear combination of *u
wiM.S
Cj - + integral linear combination of = -1
w*1ls
XCs ¢ integral linear combination of » Xu*., X €2, Xi 0
wjM ,s
Integral linear combination of c «0 .
w/l,s
In these equations we replace q* by and respectively and we

divide the third type of equations by the non zero integer x. Thus we
obtain a system of |[WM - 2 linearly independent equations in the [w] - 2
unknowns c”, wt 1,s.

The coefficients of the unknowns cw, w f 1,s are rationals and the right-
hand side of these equations is now either 0 or (u* -1)~. This system has a
unique solution in the c "t wf 1,s and therefore we obtain that each cw> wt 1,5

is a rational multiple of (u”-1)*. Thus
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*(Ts) m "2"*1 & ~-*s & (u*-1)"Fs where F$ e QVand Fs does not involve 1,s.

Moreover, Jtek *£ CMW » C ( <R. TWtH

sF - s(z ¢ w) - i Ca*w = z c w- - r c.w- -F .
s wjM, s w w*l,s w w/l,s sw w/ls w 5

and
F..S - ( e c'.w)s - e c%hs - e cwm e c*-w - F .
s wM,s " wM,s " w>M,s  ws wjM.s * s

Corollary 5.6: (1) If w€ Cw(s), wt 1,s then cw- O

[¢%5) £ c = E c 0
I(w)>odd i(w)*even
w/s

Proof: (1) 1s obvious and for (11) we note that since cw - cws, w ik 1,s

we have E
£,(w)=odd i(w)=even

w*s wxd
The equation which is obtained from the one dimensional constituent which

affords the representation Ts *u vs € S, is

E cC - u. so 2 E 0,s0 E <
vtfl.s w l(w)ceven I(w)*even
wM w

Proposition 5.7: Let Wbe a finite Indecomposable Coxeter group not of type Ej.Eg,
H~.h~and let H be the generic Hecke algebra over the polynomial ring $[u] associated

with W. Letc - e *uT » aw€ Q[u] be an element of the centre of H. Then,
wew w o w

the image *(c) of c under the Lusztig isomorphism « belongs to Q[u](W).
Proof: The case where W 1s a Coxeter group of dihedral type has been treated
in Chapter 4, so we may assume that W 1s a crystallographic Coxeter group.
We consider the graded module grad(E) over Q(u*) as a left HA"Jj-module with
action described in §1.4. Then it has a decomposition Into a direct sum of

le ft irreducible submodules each one occurring with multiplicity equal



-134-

to Its dimension. Let V be such an irreducible submodule. Then V can be
afforded by an even W-graph over Z (see Theorem 5.3(2)). In other words,

there exists a basis X of V such that for any x € X and s € Wwe have

X IFS€I1X
v = .
ux ¢ u* E y(y.x)y if sl I(x)
yex
sei(y)

with (y,x) C Z and there Is also a map sgn : X = (-1,1) such that

u(y,x) sgn(y)sgn(x) » - p(y,x) for any distinct x,y in X. We shall show
that for any w€ W, T x m | A (u)z ¢ z u* k,(u)z , where A_(u), k (u)
* X 2 Z€X z 2 2

sgn(z)sng(x)=1  sgn(z)sgn(x)«1
belong to Z[u]. As in Lemma 1.3.7 we argue by induction on t(w). When

I(w) m 0, wm 1 and we have nothing to prove. We assume that our assertion

holds for all elements w' with i(w') < t(w) and let w m sv with i(v) « I(w)-1.
Then by induction we have T,x m z A_(u)z + | urk (u)z =
v zex z zcxX z
sgn(z)sgn(x)*1 sgn(z)sgn(x)— 1

m E X,(u)z ¢ Z X (u)z *

X 2 ZEX 2
sel(z) ,sgn(z)sgn(x)=1 s£l(z),sgn(z)sgn(x)-1
* E  u*k,(u)z * E  uJk,(u)z

zex ZEX _ 2
sel(z),sgn(z)sgn(x)=-1 s"Kz~gnizJdsgntx)— !
Therefore T. T x m — E X,(u)z 4*

s v z z

EX
sel(z),sgn(z)sgn(x)=1

+ E X.(u) [uz & u* E p(y.z)y3 - E u*k_(u)z +
zex 2 yex zex z
sEl(z) sel(y) sel(z)sgn(z)sgn(x)— 1

sgn(z)sgn(x)«l
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¢ E u* kz(u) [uz & u* u(y\x)y'd

Now we note that the coefficient of y in the expression above is a polynomial
of the form u* fy(u), fy(u) € Z[u] and these y have sgn(y) - - sgn(z), so
sgn(y) m - sgn(x) while the coefficient of y' is a polynomial gy,(u) € Z[u]
and these y' have sgn(y') m sgn(x). So our induction is now complete.

In particular the diagonal entries of the matrix which represents any
Tw, w € Wwith respect to the basis X are polynomials 1n Z[uJ. Hence if

c- z awlw, aw € #[u] is an element in the centre of H, then c is

represented on the irreducible module V of dimension say d with respect to
the basis X, by a scalar multiple of the identity matrix 1”, and therefore
this scalar is necessarily a polynomial In QCu]. Since ¢ and «(c) act on

the same way on the graded module we conclude that «(c) belongs to Q[u](W).

Remark 5.8: The result above fails if Wis one of the Coxeter groups Ej, Eg,
H3, H~. For Instance let U be the Coxeter group of type H”. A decomposition
of the graded module over f(u”,75') Into a direct sum of irreducible left
H-submodules and a W-graph for each one of them is provided in [12] page 496-7.
It can be shown that Hg ** Ag x C2 (see [5] Ch. 6, page 231, exercise 11),
where Ag Is the alternating group on 5 symbols. Therefore the centre of Hj
1s a cyclic group of order 2, say Z m {1,a>, az » 1.

The element a is represented on every irreducible representation of W
by a scalar multiple of the identity matrix, and since a2 m 1 this scalar is
either 1 or -1. When we consider the reflection module V (see Ch. 1) which
is a faithful module, then this scalar must be -1. So a transforms every
positive root Into a negative one, and therefore a m wQ, the element of

maximal length in W, so Z = {1,wQ).
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There are three fundamental reflections Sj, $2* s”, and we know that
for every 1 m 1,2,3, there exists an element 6 Wsuch that wQ m s ~ with
t(w0) m t(s.|[Xj) m t(xj) & 1. Since wQ commutes with s* we also have wQ m x ~ .

and
*1 *1*1 *1

So Tw commutes with every T i m 1,23, therefore T belongs to the centre
o si wo
of H.

Nevertheless there exist irreducible representations of H on which T
wo

is represented by ul5"2 or -ui5”2 (see [12J, page 497).
The following result relates an algebra defined by Gyoja (see [9J) to
the Lusztig isomorphism. We denote Gyoja's algebra over the polynomial ring

Z[u*J, associated to a Coxeter group W by G(W) , u* being an indeterminate

over Z. This is an algebra given by the following presentation. For every
generator s of W, G(W) has generators s(0) and s(1) subject to the relations
Z[udd

s(0)2 = s(0) (R)

s(0)s'(0) = $'(0)s(0)
s(0)S(1) - s(t)
s(t)s(0) - 0
together with additional relations given as follows:
Let T be an element of G(W) defined by T m -s(0)+u(1l-s(0))+u*s(1).
s Z[u*J s
Then, we require that the elements T$ satisfy the homogeneous Coxeter relations,

«o». T. , m"j being the order of 1aj

T T .
S1 S s1

w1y * * (o
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The relations (R) above imply that s(1)2 m 0 and this enables us to show

that T$ also satisfies the quadratic relation l.e. T2 m ul & (u-1)T$.

eu(v. 'V *E€S*
where H 1s the generic Hecke algebra over Z[u*] associated to W.

Let E be Lusztig's graded module over Z( with canonical basis
{ew w € U>. Gyoja showed that E can be made into a left (similarly right)

G(W) module by defining

if swe<w
if sw>w
and
if sw>w
if sw<w
The interpretation of y w and p(y,w) is given in fl.4. This action gives
an action of T$ on because we can easily verify that
if sw<w
I y(y.w)e if sw>w
ylty* sy<y

Therefore the left and right G(W) action on E induces a left and right

HQ(u*) actlon on E*(u*) by definin9 Ts ew": W ew™* T.V
We know that affords the two-sided regular representation of
H(j(uJ). Hence the map $u is injective and so we can regard H”ulj as a

subalgebra of G(W). Let EndQ (Eq”u§j) be the endomorphism of E which commute
with the right action. Since E~(u$) affords the two sided regular

representation of H| (u*)» the hg(u”) action on EQ(u*) 9*ves r*se t0 an
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algebra isomorphism a : H ~1j « EndQ (Eq(u*)»

Moreover Gyoja showed that the left and right G(W) action on E commute (see [9]
Lemma 2.11).
Let b : GW) EndQ(E ~ uJ” be the algebra homomorphism defined by the

left G(W) action on Eq” 1'j. Then the map a~"b restricted to hq(ul) ’'s the
f(u*)
identity map. 1.e. a1 bju s » du ., and hence the map b Is surjective.
I

HQ(u*) HI (u4)

Proposition 5.9: Let Wbe a finite crystallographic Coxeter group and let

¢(Ts) - fs(u) & u*g$, be the image of the generator Ts of the generic Hecke
algebra over Q(u*) under the Lusztlg isomorphism, where f$(u) * *
Hjl.s - and gs € QW. Then, there exists a surjective homomorphism of

algebras e: GMNW) |W such that

6(s(0)) mj (1 - s ¢ g$) and e(s(1l)) - gs

Proof: By specializing u* ® 1 we obtain an algebra homomorphism

. QW -» Gq (W) such that +j(s) = -s(0) & (1-s(0)) & s(1).
Therefore the left and right action of the element -s(0) & (1-s(0)) + s(1)
on Eq gives rise to a left and right action of the group algebra QW on Eq.
In fact Eq affords the two sided regular representation of W. Therefore,
the left Waction on E* induces an algebra isomorphism a : QU EndQ(E")
where EndQ(E”) are the endomorphisms of E* which commute with the right
Waction. Let b be the algebra homomorphism induced by the left GAW) action
on Eq. Then 6 : Gq(H) “mEndQ(E”~) 1s surjective, since a"1l 6|y = IgW-
Hence, under the surjective map a"* 5 : GNW) -»<|W, every element g of
Gq (W) maps to an element of QU which is determined by the property that
induces the same element of EndQ(E|) as the element g. Such an element

inside QW is unique. We put e ma’15.
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Now we consider the endomorphisms of Eq Induced by the elements
s(0) and s(1) (see relations (Rj) and (Rg) above).

Let »(T$) - fs(u) & u*gs, gs £ »W,
~ajL,. 41, . Hjlgt . YA | AP

Ue recall that with respect to a suitable arrangement of the elements of
the canonical basis of E, the matrices which represent fs(u), g$ are

respectively

(see, first proof of Theorem 5.1).

By specializing u* 1 we obtain the matrix which represents s e Wand

which is i Esz,
L1

No. 1f sw <. then 7 (1-s*gs).«w - j - 7<™*tw> * 0-*. ' V. “"hle 1f s" * "e

thai \ («o«,>=% m7 -7 el *

In other words, the element ~ (1-s+gs) induces the same endomorphism of

Eq as the element s(0) and hence e(s(0)) « ~ (1-s+g$).
We also have that if sw < w then g .e 0 « s(l)e , while if sw > w then
T, e =ue® ¢ u | u(y.w)e (see left action of H on the graded module,

y Lt \ sy<.y
in §1.4).

Hence g e = z y(ytw)e = s(l)e if sw>w
y ft w, *y<y 'y
In other, words, the element gg induces the same endomorphism of E”, as the

element s(1), and hence e(s(1)) « g$. Our proposition is now proved.



CHAPTER 6

6.1 A maximal commutative subalgebra of the generic Hecke algebra.

Let U be a finite crystallographic Coxeter group and let H be the
generic Hecke algebra over K m f(u*), which Is a splitting field for H.

Let V|, V2....tV$ be a full set of left Irreducible H-modules with

K-dlmenslons d”, 1 m 1...... s respectively. According to Theorem 5.3(1),
every can be afforded by a W-graph over Z. Such a W-graph determines
for each a K-basis with properties described 1n the previous chapter,

and therefore we obtain 1n this way a full set of Irreducible matrix
representations for H, namely AMA2...... A#.
Since H 1s semisimple we obtain a K-algebra Isomorphism
s
it : H -Ji. M, (K) such that
1-1 1

ir(h) - (Aj(h)......A$(h)). Vh € H.

Inside H we define M(u) {h € H such that A,(h) 1s a diagonal matrix
V1e1,..,s). Then clearly M(u) 1s a maximal commutative subalgebra of H.
s
It 1s clear that the K-dlmenslon of M(u) 1s £ d,. It 1s also
-1 1
Important to emphasize that the definition of M(u) depends on the chosen
W-graph.

On the other hand we define Inside H a subset

L<U> '/ wlw CeT* * H SUCh thst C* * C* UC« ' “ C«s * 0 for
t all pairs (w,s) w€ W, s € S such that t(sws) - I(w) ¢ 2.

It Is clear by Its definition that L(u) does not depend on any W-graph.

There seems to be an Interesting connection between M(u) and L (u).
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Proposltlon 6.1: Let M(u), L(u) defined as above. Then M(u) ¢ L(u).

Proof: Let h « z ¢ T be an element of M(u) and we fix a generator s e S.
wew *w
We know that for any wc Wwe have either t(sws) m t(w) or t(sws) m t(w) *+ 2.

If wl Cw(s) and 1f i(sws) m t(w) then t(sw) + i(ws) (see Proposition 1.1 (Iv O .

Therefore we can write

hm E c z c
wew wew, wACy(s) w+ wewo*1" wew
I(sws)-i(w)+2 i(sws I(sws)-i(w)-2 wecow(s)

T ke W wew, wACy(s) weW, wt cw(s)
I(sws)»t(w)+2 I(sw) >I(w) I(sw)<i(w)
I(ws) <t(w) I(ws)>i(w)
z T * z 3
Wé‘w CVWVTW weW, weQN(s)cw w weW, WeCy(s)C
I(sws)-t(w)-2 l(ws)>t(w) t(ws)<i(w)

wew wew witw wew
jt(sws).jt(w)+2 jt(sws)*i(w).2 i(sws)-i(w)»2 t(sws)-l(w)*2

I c,
WECY(s) weC”"s) ws ws

t(ws)>I(n) t(ws)>I(w)

Let Br be the basis determined by a W-graph and adapted to \r 1 s r s s.
Then we can arrange suitably the basis elements (as in Chapter 5), so that
the matrix which represents T$, s fixed, with respect to Br has the form

u‘e where | . and | . are the identity matrices of size

A ’ 'L r2

0 “1d.

d and d respectively, E. is ad x d matrix and 0 1s the d x d

rl r2 s rl r2 r2 rl
x. and dr) . dr? . dr. Latp; be the matrix which

represents an element T*, t(sws) » I(w) &2 on Vr with respect
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et : n
to Br* where ﬁ\A 1s a drr, X drI matrix, B‘;“'; Is a dr" X dr2 matrix,
kI 1s a d,_ x d__ matrix, and 1? Is ad x d matrix.

i r2 w r2 r2

Then, the matrix which represents Is

< “YAWES * <

< <

t(sws) I(w)*2

the matrix which represents Tsw 1s

< o oww < + e
I(sws) - t(w)+2
< <
the matrix which represents Tsws,tl
< EsC
L< “3/2ti Es =
If we CW(«) with jiGwi) >t(w )
< * < n *U'E.C -Bw * “"EslLw
< u*<es * < < <

Therefore, If w£ Cw(s). t(ws) >t(w), then kE - 0. Hence, the matrix

which represents h on V with respect to B has the form

t (c -c *uc -uc I kT
WEH :t(sws)«l(w)+2
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Having assumed that h € H(u), we must have that

! H-Cy , 4« Ky o_
wWeW ¢ t(sws)tw)*2 (CW %S < C«ngl uc«g\/‘;\;g y, m

As we have mentioned above, for each w with ¢(sws) = ¢(w)+2, is a

d” x dr matrix. We consider the quantities cw-cws & uc$w - ucsws as

unknowns, wt Cw(s), ¢(sws) * I(w)+2. From each Vr, 1 s r s s we obtain

d d homogeneous equations in these unknowns, hence from the full set of
rl r2

s
irreducible H-modules {V],...,V75> we obtain pfl dl"ld\"Z homogeneous equations
in these unknowns.
On the other hand, the number of these unknowns is the same as the number
of distinct quadruples (w,ws,sw,sws), wt C (s), which is equal to
M- Iow(s)|

The latter number is equal to z d d (see Proposition 5.S).
r-1 rl 2

Let W1 be the subset of Wdefined by w' * {w € H : ((sws) m ¢{(w)+2). Let

< - (fij’d j) w€ WL, 1sr is. W shall show that the functions
f.jl" : T.WV C(ry w € W1 for all r, 1, j are linearly independent over K.
In fact, let £ aln - 0 for all w€ Wi . We note that
igaro o

M TVl st oM v e d e, ) ¢ F§ e
for we H*. He recall that Ifw £ ow(s) then K*r) - 0, while 1 fni crtx)
then it gives rise to quadruple (XS, sX, 9) with ¢(3s) = ¢((X) ¢ 2 ad
x e (W,ws,sw,sns>.

Hence if £ aft* m O for all W€ Wi, then £
1J.r 1 " 1j.r w

for all w€ W, and so £ ain fir(h) * 0 for all h € H.
ij.r 11w

So, (by 3.41 in [7]) we obtain aj~ = 0, for all 1J.r.
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Thus our system of E d d® homogeneous equations in the same number
r«l rl r2

of unknowns, the cw - cw$ + ucsw - ucsw$, I(sws) » ¢(w)+2 has only the trivial
solution.
In other words cy - cw$ + uc$w - ucsw$ * 0 for all w with Jt(sws) m £(w)+2.

Our proposition is now proved.

Remark: The argument above applies to any finite Coxeter group, not
necessarily crystallographic, provided that every irreducible module can
be afforded by a W-graph, and K is a splitting field of H.

Now let tj be the maximum number of linearly independent expressions of
the form cw - cws ¢ uc$w - ucgws for all pairs (w,s) we W, s € S such that
t(sws) - i(w) & 2.

In other words j,j is the rank of the matrix determined by a certain
number of homogeneous equations of the form cw - ¢ ucjw - ucsw$ * 0,
for all pairs (w,s) such that ¢(sws) - I(w)+2, in the U] unknowns c , w€ W.

s
Then, the K dimension of L(u) is W - £, s E d. . By specializing
1 11 1

u* 1, every becomes a left irreducible QW module, and we can similarly
define M(1) = {fi € QW such that A~(fi) is a diagonal matrix V i - 1..... s}, and
L(1) - { e c™w, cw € Q such that c*-c*ac” - cJWS - 0, for all pairs (V,s)
w€ W, s €S such that t(sws) = i(w)+2>.

An entirely similar argument as in Proposition 6.1 shows (by specializing
u* » 1) that H(1) c U(1).

Let be the rank of the matrix determined by a certain number of
homogeneous equations of the form c” - cws ¢ csw - csw$é - O for all pairs
(w,s) such that Jli(sws) = i,(w)+2, in the IWI unknowns c , we W. Then the
dimension of L(1) is WM - i, z ;
1 11
QU is isomorphic as a f-algebra with the algebra of Q-valued functions f:W -» Q,

d,. We next recall that the group algebra

under convolution product, with the element (e:U ch corresponding to the
ul
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function f, defined by f(w) mc”, we€Ww, €f.
If f, g are 9-valued functions on U, their convolution product 1s

defined as the function f*g : W 9 given by
(f-g)(w) - I f(wz"1)g(z).
zeu

Proposition 6.2: (1) L(1) 1s a subalgebra of 9w.
(2) dim L(u) S dim L(1).

Proof: (1) It Is enough to show that L(1) Is closed under multiplication.
We note that every element of L(1) determines a function f : W 9 such that
f(w) - f(ws) o f(sw) - f(sws) - 0 for all we W, s € S.

Let f,g be two such functions. We shall show that the function h : W-m9,

defined by h(w) « E f(wx"')g(x) has also the property h(w)-h(ws)+h(sw)- h(sws)-0
xeu

for all w€ W. s € S.

In fact h(w)-h(ws) & h(sw) - h(sws) =

E  f(wx"")g(x)- E f(wsx'*)g(x) ¢ E f(swx")g(x) - E f(svrex")g(x)
Xeu Xeu Xeu Xeu

m £ f(wx_,)g(x)- E f(wx_1)g(xs) & E f(swx"')g(x) - E f(s«x ')g(xs)
eu Xeu Xeu Xeu

= E (flux”’) & f(swx""))(g(x) - g(xs)) -
xeu

* E (Fwx", )*f(swx',))(g(x)-g(xs)) & E fwx", pf(swx',))(g (x)-g (xi)
Xeu Xeu
I(sx)>t(x) i(tx)<t(x)

= E (f(wx-1) & f(swx-")) (g(x) - g(x$)) ¢
Xeu
I(sx)>1(x)

+ E (f(wx* 's) & fiswx"1*)) (g(sx) - g(sxs))
Xeu
I(sx)>1(x)

[} E (F(wx~")-f(wx~~s).f(swx””) - f(swx-,s))(g(x) -g(xs)) m 0.
Xeu
I(sx)>1(x)
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(2) In order to prove (2) we observe that the matrix say A determined by

that I(sws) m i(w) ¢ 2 in the |WM unknowns c”, w € Whas entries 1, -1 or O.
Let r be the rank of A. Then there exists an r x r minor whose determinant
5 is non zero. Let B be the r x r matrix with determinant D.

On the other hand, the matrix say A determined by the homogeneous
equations cw “ ¢ ucsw - uc$ws « 0 for all pairs (w,s) such that
I(sws) m i(w) & 2, has entries 1, -1, u, -u. Let B be the r x r matrix
inside A which under the specialization u 1 specializes to the matrix B.
If D 1s the determinant of B, then D 1s a polynomial In u, namely $(u).
Moreover $(u) t 0 since $(1) + 0. Therefore 1f r is the rank of A, we have
ri r. Hence dim L(u) m W - r s |H - r = dim L(1).

Our proposition 1s now proved.

In the case where L(1) is a set of commutative elements then M(1) - L(1)
and so by Proposition 6.1 and 6.2(2) we also have M(u) - L(u) and so M(u)
does not depend on a chosen U graph.

X s
It is also clear that M(u) KA, (K-algebra isomorphism) where x - L d..
11 1

Thus M(u) 1s a semisimple K-algebra and the identity 1”uj has a unique

decomposition into a sum of orthogonal primitive idempotents, namely

X
I's £ e, e. CM. We shall determine this orthogonal idempotent decomposition

-1 1 1
in some special cases.

In the cases to follow it turns out that M(u) - L(u).
Let Wbe the symmetric group S~. A W-graph for each irreducible H module isgiven in
Chapter 5, and the sum of the degrees of the irreducible representations is 10.
The order |Cw(s”)]| of the centralizer of s* In WAl - 1,2,3 is 4 and therefore

the number of all expressions of the form CW'CWS|+UCSJW SiWs;
3 H| - iclisJdIl 1
Jlis?ws.) * t(w)+2, 1 - 1,2,3 is equal to z -- e meeee ¢ 15,
11 1 - 1 4

There is one non trivial relation between these expressions namely,
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- <e«_ - C uc
211 12 wpran) - A *3#2 *2%3%2
¢ uc + uc.
S2S1  Cs2s1*3 *3*2*1 UC$2*3*2*1 1*2 *LF2*Z T MRLFBF2
*L*2*3*2 *1*2*1 C*1*2*1*3 13 21 ivsVvi’
" (c. ) ‘
*ox]*3 *1%0*3
u(c_ c. . . euc. , )
*13 2 1
*]xOXIKD

Hence there are 14 linearly Independent expressions of the form

- s.w I(sIw*1>*»(«)e 2. 1- 1,2,3 and so
P, ( ()
the dimension of L(u), 1s 10. Hence M(u) m L(u). A basis for L (u) 1$ given

by the following set of elements:

Va - T.
Vi *1 B R B I o
v, m-uT. euT - uT - uT. T,
*1*3*2

v3 - (1«i)T - (umi™)T * (1«i)T - uT T s "uTfsss *Tssss
J si s? sis? s?si S9P%R 3P8RRD siisy B8 2
». - -(u2.u3)T * (u*u2)T * 2)T - uT T, . . - ul

( Ty 72T = (wa2)T g ) S0 £o5352 Fro%1

T

*2321
vs - (u2.u)T - (u2«i3)T - uT ® (utu2)T . & T
o s2 $3 *1*2 *2*3 *1x2*1

UT*1*2*3 T*1*2*1*3
~2v,
*2 *3

*I*Z*F2*]
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vimuT_ eUT euT s utl
7 S1 s2 s3 S251*2 *2*3%2 *F2*3F2*1

». e @3)T - 22T * @U3)T . uT 5 -u2l  -u2l
8 I, *2 i3 *1*2 *2*1 *2*3

e uT ¢ lu-u )T * i ¢ (1-u)T

S1825183s2 F2XZF2*LF2

In order to find this basis, we consider a typical element h m £ cT of
WES4 m ™

4 uc, - u *0,

L(u) and with the aid of the relations Co ” Cusn shw C snwsh
1 m 1,2,3, we express the coefficients cw in terms of cw, where w' have bigger

length than w. We also make use of the fact that ce
*2*1*3*2*1 $1S2S81S3S2

which 1s a consequence of the relations:
Cs2S51S3S2  Cs2S1S3S2S1 UCs1S2s1s3s2 UCs1S2S1S3S2S1  °  ~

©82S1S3S2  S1S2S1S3S2 UCs2S1s372s1 U°s1S2S1S3S2S1
Then, we substitute the expressions of the ¢ obtained in this way, 1n h

to obtain h m 2 cm v., for certain c
1«0 1

Finally we determine a system of orthogonal primitive idempotents for
the Hecke algebra of the group S*. This system arises from the decomposition

of M(u), as described above, and consists of the following set of elements:

en = T- -y -- £ T
u \+uE+u+1) wesd  w
L R -I:? -------- <uT.-T XT. T oT T +T T . )
' (u+1)(u3+uz+u+l) *os1 ' s2 $3 *3 2 *2*3 *2*3*2
42 (UTT HUT*T., . )T. *T T, *T
u(uel)(u 1 *2 1 *1*3*2 1 *1 *3 *1*3
<<> 1

(U*1)(u%uEci*1) S,S- S39 *1%2%1
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eil' ST AT KT, T, 6T

S TTyIPT )T 4T )
UL GAUFL) 1 S1 3 *1Rg 2%3 )

)<uTrlT. <“21|17 T'*fl. <t,101 "t t.*301 *l’%

s I G (03T, 2T -
(U*1)(u eUr<u*t) *2 *3 **3 *3*2
<25 Y wior.-uTC -uT. 4T ) (u2T T, XTI, . T.)
TOET 3Ry ST s x3 waxs 185870
2 w27 2 T.)
<2>. *T.
(U+1)(uJ-HT*U*1) 1% x2 %1% *2%1 51§2’§1'¥(¥'1L *3

(-1 *(w) 6-t(w)

The element eQ 1s determined by the fact that It 1s represented by (1) on
the one dimensional submodule which affords the representation T —» u,

1 =1,2,3, and by the zero matrix on every other Irreducible sub%lodule.
Similarly the element eg is represented by (-1) on the irreducible
submodule which affords the representation T —= -1 ,1« 1,2,3, and by the

*
zero matrix on every other irreducible Submodlule.
The elements e j~ j » 1,2,3 are represented on the first three
dimensional irreducible submodule VL (see Chapter 5 for the definition of
VA7) by the diagonal matrix which has 1 in the j entry and O elsewhere, and

by the zero matrix on every other irreducible submodule.

The elements ej(z)j » 1,2,3 are determined similarly by their action on

Finally the elements e”, eg are represented respectively on the two
dimensional irreducible submodule WM by the matrices (g ®) and and

by the zero matrix on every other irreducible submodule.
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1f n * 2m+1, or k * 1,....m-1 If n - 2m we consider the quadruples

w
Each of these w appears at the bottom of such a quadruple only once and it 1s

related to elements of length bigger than the length of w. Therefore 1t

i - - B
1s clear that the expressions e, C">i * uc*i__ uce V\KJ: for we {( i $i.)
and ¢ - ¢ 4 uc_ M- uc, for w€ {(*=* -f.) are all linearly independent.
w $2 F2HR2 15

The number of these expressions Is 2m 1f n * 2m+1 or 2m-2 1f n * 2m. Thus the
dimension of L(u) 1s (4m+2) - 2m m 2m ¢ 2 1f n ®m 2m ¢ [jOr 4m - (2m-2) - 2m*2
If n- 2m. In both cases the dimension of L(u) Is equal to the sum of the
degrees of the Irreducible represevr;talions of H and hence M(u) m I(u).

In order to establish a decomposition of 1”uj into a sum of orthogonal
primitive idempotents, we need some properties of the polynomials Sn(x).

We recall that the polynomials Sn(x) are defined by
Sq(x) « 1, Sj(x) ™ x, Sn+1(x) - xSn(x) - Sn_1(x), vn fc 1.
In Chapter 2 we showed that the numbers pj m 2 cos I'i j i ml are the

roots of the polynomial Sm ~(x), while the numbers pj * 2 cos 1Sj Sm

are the roots of the polynomial Sm(x) ¢ Sm j(x).

Lemma 6.3: (Sum formulae):

(1) Let pk m2 coslzgw 1 1S ks H. Then z (x+1)S.(pJ » n (pb-p-).
A K j1 K J
JA

(2) Let p» m 2 cos * 1s ks m-1, and let m be odd. Then

m-2 m-1
z (X+1)S.(p ) » 11 (pk - pJ. If m1s even, then
X»l X k J-1 * J

X-odd JA
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m-1

&1 x *\-ligk} mjs, (pkp))

X=odd

Proof: (1) We know that the numbers pk are the roots of the polynomial

S.(x) * S, _,<x>.
m2 .
If mis even, then Six) & Sm ,(x) - j (—1)'5'm/k> -2k

(m-2)/72

£ i-1)k (" ' k)x"-'-2k, while if m is odd, then
k-0 *

Sm(x) + Sm-d(x) - (“el1>/2 (-1)k(mk)xm 2k ¢ (V. )/2 (-1)K(*-*-k)x"" 1 2k.
m m1 k-0 K k-0 k

Let be the X elementary symmetric function on the p”, 1 £ k s m,given by

12 Pix

1s <R<e=c<hin
Then m(-t)k("kk) if £- 2k kK21 "l
I(r1}'§*lv(ﬂili'§<) ifx-2kel, k20 j
We know that there exists at most one polynomial of degree <m-1, say
fm(x) vrfiich at the mdifferent points .... PIn, assumes given values
m
fm(pk) “ .1~ (p~-pj)* By Lagrange's interpolation formula there is always

one polyn&rfal of degree sm-1 which assumes the given values at these points.

It is the polynomial

iy (0 e e 0N ) Qén)

W
(Pk-p> v (pKick-1,<PK'PK*1*" = k'Pirl
m m m
Tmlpk—>* n (pk"ij*WSObta'" fix) - z n (x-p.). W

m k-l j-i J
Ifk Jirk
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»-1

shall show that f (x) - E (x*1)S.(x) and then (1) follows. Let
X-0 X

1i * eee KV A "* 1 C (1 eeeee"ml). Then every summand of

fm(x) contributes to the expression (-1 )r p~p” ...Pi except from the

summands which correspond to k » FHRQA K G> T X

Thus fix) mmxm1 & 2z (-1)X(m-x)o. xm~X-1. We assume that m is even
m X-1 X

(the argument is entirely similar if m is odd). We substitute the

m-2
f-(x) = nwl"1 e £ (-1)x(n.-x)(-1)k(,"-K)x""*x" 1 .
" k

X-2
X-2k
oV DA CDRALE KX
X-1 k

w2 k.
C (1)k ‘<m-2k.2)(Mk+1xm2kL

m/2 1«
¢ E (1)* l(m72k+1)(m‘;kl\vm'2k
k-1 L

m/2
Therefore f(L1(x) * E (-1)K1{m-2k+1)(
k-1

(m-2)/2 v m-1-kx m-2k-1
k£1 1)k (2K

m/2
fo(x) m | (-1)k", (m-2k+2)(nTki 1)xm"~ k+1
k-1 k

(»-2)72 (m-2)/2
E (-DkL(m-2k) (2 fxm-"k-l £

Thus fix)

Ho)K(* ;I K)x"

K—

1
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Therefore f (x) - £ (x*1)S.(x).
m X«0 X

Thus part (1) Is now proved.
(2) The argument Is similar. We assume that m is odd, the proof being
similar if m 1s even.

We recall that the numbers Pj * 2 cos * , 1jJ j ml are the zeros

m-1/2 .
of the polynomial Sm j(x) « £ (—l)ik (lf'l'klxn'l'Zk We know that
k«O

there exists at most one polynomial of degree $m-2, say H" ~* )e which at
m-1

m-1 different points Pl....... PIn | assumes given values Hm 2(pk) = n
m

By Lagrange's interpolation formula there is always one polynomial of

degree sm-2 which assumes the given values at these points. It is the
polynomial
H_2(,) -V nh.20) - . 0-p-)
k*1 (Pk-p.)... (pk<>k-1)(Pk"Xk.1," -<%"'»-1)
ml ml
n £ n x )
k-l j-1 -PJ
ii'k
Let o *

£ Pi p
15 }1; 12< . <1ASm-1 1 12 « be the X elementary

symmetric function on the pj.

fo If x - 2k+1 ki 01

(L (-1)k ("'K'k)  1f X = 2k. 1
IF1$1 <2< ...<Irsb-l, rE {1,2... m2}, then every sumand of
Hn 29 contributes to (-Dr p* p* ...p° except from the sumands which
correspord to k - 1, 12,...,1p. Thus, H{2() = (m-Lxm™ &
)\(/_1 (UX(ieXD) o X"x2 - (-DX"2 - \){_2 COxXMx-1) o).( X"x2 Qy

X*2k
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Lemma 6.4: (Orthogonality formulae)
(1) Let p* - 2 cos . 1sks». Then V s,-1-x(pk)(Sx(pJ) * Sx.|(eJ)> m°’

for every 1i j i m, j + k.

1 m-2
(2) Letpj“2cos— , 1&ks m-1. Then SB_2-x"pk* *or every
Uu JiH JM
Proof: (1) We recall that the roots of the polynomial Sm(x) ¢ ,(x) are
the numbers pj m 2 cos . 1ij S. fix a k, 1s ki mand we shall
show that

sn(x) & S"jix) m-1
Xio V .-x (<lc<sx<x) 4 Sx-l‘«>>-
m-1

In feet <«(*) lo SI, 1L.x(ek>(*J(i<) * Sx.,(x)) -

W S IV *AV 2W pk,<SX-10e * Sx-20))-

Now for every x 2 2 we have S~(x) - xS ~U ) - Sx-2(x), and so

X[SA_~(x) & S”_2(x)] m S”A(x) + 4 SM 2(x) ¢ S”_j(x). Wealso have

Pk S-x"Pk~ " ~Am-x+I*Pk* " Sm-x-1pk* V x “ 2 , 3 , Therefore,
m-1

<P X0 SE-l-X<KL (X)) *F VL ke *

. PRS- 1P > 2 * SX-1() * (,2 Sr-xifk , (K-20)+X-3<>

-J2W 1 <Pk><Sx-.<X) * W X)) " J, W.WXSx-1"«» *3SX-200)

1 (X-PN.-tPe> * S-x(EK)(SX(X) 4 Sx-1(x» *V X)) *W x) *

4V 2 (P> 4d 3 (1,(Sx-1(x) 4SX=-300) - S-1(PK) (" 4x)"
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I, S-X(pk><SX<X> * SX-1<X» - ¢ 3V x V ‘V i‘«> & SX-3<X»

®m Sm(x) *V i1*1 * Sm-2(pk* ' pkSm-1*pk’' ' Sm-1°Pk™ *

") *S-1() *pk V I W 1-Vok1® pk Sn-i(ie T VIAk* *

mYV x>*W o« -
Now part (1) Is proved.

(2) Werecall that the numbers Pj “ 2 cos * 1i j j n-1 are the roots

of the polynomial sm ~(*)* We fix a k, 1 s ks ml1 and we shall show that

S 1) m2

rr— — S, (x)S 2 .(pk). In fact
Kk ado SK008, 2P0

m-2 m
X'P> x-0  SK*X*Sm-2-X*pk) " (x"pk) XJ.Z SX-2<X)S.-X(sk*

f x XJ2 Sx-2<x)Si»-x(pk) " °k x"2 Sx-2<x,Sm-x<pk) -
Moreover, xS*_2(x) - S”~_1(x) & S*_3(x) V X - 2..... m and

-pk V. x V. * m sm-x»>1l(pk> - Sm-x-1(pk>- Therefore,
m-2
(x-pk) ~ SX*X*Sm-2-x"pk*

L L Shx(p)<se-109 + Sx-3%,) ™ X2 Sx-2K=S-¥otpk * Sn-x-1<pk.) *
SN-1(x)” S-30¢ * X2 G- (K , (SX-1(X,*SX-3(x,) * Sn-21Ix,S1(pk, *Snl-30c(S™ 7 L%,
Xi2 SX-ZXH -3 LApkE * Sn-x-1(k ) *

Sm-t(x)*Sm-3(x) * XJ2 Sm-x(pk,Sx-t<x) * XJ2 Sm-x(pk,Sx-3(x,'Sm-2(x,S 1(pk>
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' Nei-SANPKAM M S»-3(x*C Sx-1<X,S»-X(pk) * 3 Sx-3"x/i-xNive
* Sm-1(x* * Sn-x(pk)Sx-1(x) * E2 A " He-3"x" *

* 33 SXPRSBXN T 920X, SHEK) * N-300S2(\) * | Sx-1(X,$-X<TK)
- S-1<«k> - J 7 MX-3X"Sc-x<pk™ - W x>
Now our lemma is proved.

Lemma 6.5: (Multiplication formula)

(x)Sj(x) =~ sj-t.2k(x) v 1Sj-
Proof: We use induction on 1. If i m 0. it is obvious. Assume it 1s true
for all integers $1-1. Then
Sj(x)Si(x) - [xSjAUJ-SAUIDSjU) - (x)Sj(x) - SL2(x)Sj(x) m

1-1 1-2

" x K, SI-1.1.2k(x) " kIO SI-1.2.2K(Q)"

Moreover - Sj.(.2.2k<«) * Sj.1*2k(x)- Hence

1-1 1-1 1-2
SL(X)Sj(«) - A sJ-1.2.2k(x* * kIj §-1.2k(x> * KIO Sj-1.2.2Kk(x) *

* A0 SI-1*2K(X)-
A»o

Lemma 6.6: r S_, .(x)(S.(x) «S. ,(x)) « 1 (x+1)S. (x).
0 nlx * * 1 *

Proof: Assume m is odd, the argument being similar If mlIs even. We have

XEi Sc-1-X (x) (SX(x) * SX-1(x)) *
m

TA%S SX()S»-1-x(x) * i) SX-1(X,SM-1-X(x)
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- 21 S((x)Sj(x)
1«d 1<)
1+) -m-1 Uj-a-2
1C(0.1... 1€{0,1 ...

Now, the number of pairs (i.j), 1 <J, i «J - m-l, i £(0,1,...,272}
is clearly 2*1. Each such pair gives the number j-i £ {2,4..... m-3,m-l),
and therefore, (by means of 6.5), for a given X £ {1.3....... m-2), the
polynomial appears in the product S*xJSjfx), unless if j-i > m-x.
The number of pairs (1,J) such that j-i > m-x is clearly ¢¢1 . Hence the
number of pairs (i.j), i <j, i «j - m-t, i £{0,1....... 272), for which the

corresponding product S((x)Sj(x) contributes to S (x). XE {1,3
is -j-

Similarly, the number of pairs (i.j), 1<J, I.J =m-2, i £ {0,1.......
for which the corresponding product (x)Sj(x) contributes to

Sm-x<x>. * e (2.4.....m-l) is 2”~IL. Hence,

¢ 0 V x>sm-i-x<>) *J, SX-17Sm-1-x"

m-2 (m-1)/2 m-t m1
[} E (m-x)S (x) E S + E (m-X*1)S,, - E (x*t)S.(x).
i * k-0 x-2 "X x-0 X

X-i
X«odd x=even
Lemma 6.7:
n (m-1-21)sm 2 21 with SQ(x) m *$ even» or with 2Sj(x)\
\1f m 1s odd. /

Proof: For the sake of simplicity we call Cm2(x) the left hand side of the

equality we wish to show.



We also put D (x) -

Hence Cm 2(x) becomes

cm2<x) '
L] r

OjtxJ+DjtxJS,(x)

- OJiXMjtxJSjtx) ¢

* JL Dr*1<x)Sr-2<x> * W x> *

m
£ D (x)(S
-3 r r
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z ((L)X'rsl(X) Vre {3,4.... in).
X-r

_(x) ¢S
i

Or (x)sr_2(x)+Sn|_2[,i) + r£Ar(x,Sr-3 (x A+ m-3°K)*

or(x)Sr_2 (x) . (S1()-1)Sm_3(x) +S@2<x) (x)S™ )

X-2

- 03(x) ¢ SAXKOgixJINix))™* SP-t(*) (Or (x)40Pe1())N(SL(X)-1)S|B.3(X) +

¢ Sm-2(x> * Sm-3(x> * XLFZ("’ XW X> *

m-2 m
D3(x) # 2S.(X)S__3(x) ¢S 2(x)# z S»(x)S (x) « z (-1)XS_ <x).
c

Assume m is odd, then

r 4 r c m-r X-2 m-X

Cm-2(x) * D3(x) * 2S1()W  x) * $%-2(x) * Y4 W x)Sm33-rix) * nA*>
s (m-5)/2 m
m °3<x) © 2V x)W x) * W X>*27r]), w X,S.-3 -r(x>* x> *
- 03(x) ¢S 2(x) * z (“1XS .(x) +2 z S.(x)S .(x)
X-2 mX 1<j 1 J
uJ-m-2
1€ (1,2

If mis even, then
Cm -2/ * °3AXA + Sm-2/xA + EAMIA SmaxAXM+ \E ARix)Sj(x)+ T

& ) A AV

1ej *m-2
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Moreover Dj(x) " C-Dxsm (x) E t-1)x'3S. Ax) & E (-1)XS A -S
A2 m x X-3 "+ x A*z( Ve, X n-2(X)-
Therefore
cm-2(x) * 2 2 Sf(x)S . (X if mis odd
"C() 12 1()J()

1*j «m-2
1£{0,1,....Sip}

or
cm-2(x) “2 E . S-(x)S ,(x)
an 1<j 1 J I A~ <o ' ,f*" 1s even.
1+j m m-2
1 £{0,1,....,S'p}
When m Is odd, then the number of pairs (i,j) such that 1<J, i ¢J - m-2,
1£{0.1... 542), 1s IEL
Each such pair gives the number j-i € {1,3,...,m-4,m-2} and therefore
for a given X € {2.4 ... m-1>, the product S~"xJSjix) (see Lemma 6.5)

contributes to S~”"ix), unless if j-1 > m-x. Clearly the number of pairs

(1,J) such that j-i > m-X is , and therefore the number of pairs (1,j),
i <j*i+jmam-2, ic{ 0 , 1 for which the corresponding product
Si(x)Sj(x) contributes to Sm x(x) is , X 6 {2f4.....m-1>.

Therefore, when m is odd

C2<«> ' 2 V. a<e * (- x*"S,.x(x).
X«even x-even
When m is even, a similar argument shows that the number of pairs (1,j), i <j,
i #j «m2, 1€ {0,1..... such that the corresponding product S~(x)Sj(x)
contributes to S *x ). a £ {2.4 -2) 1s ~ . In this cese
m-2
Cm-2(,) ™ L, X)S.-A(,) * Jva2wT *
X*even i-TT -l
m-2 (m-23}/2 m
E (M-A)S ,(x) ¢ Ak(x) - E  (X-A+1)S
A*2 m"x -IE«O % A-2 -

X*even Areven
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t(j)-
@i (pj-prHuUr-upj+l) k-1 U 'k S-k(I>5]c-
1/j
(2) Let n m2m. Then the following set of elements inside H(Din) forms a

system of orthogonal primitive idempotents whose sum 1s hﬁl(gz .
ni

en m -- e
(e 1)(un’e..«

° iunr e
(u+1Jiu""1* .. .eu+l) \I\ED2n

t,<w) ma<(>e)
(-1) u T , where t,(w) is the number

e m- 7 E
homatt (uEl)i weB,

of s™'s in a reduced expression of w € D2n
1 , 2w

e ®-qrr E (-1) u z' 'T , where t-(w) is the number of
(u+1IT ch2n

s2's In a reduced expression of w € D2n, and for every 1s j s m-1, the

pair {ej~, e ) where

>m  im 2
mu I (pj~p")(u -upj+1)
1*)
©KE® Utk [ X-k+2 Sm-E(P§) * (0 >k'1 7 2<- )X <* > WaP (P 1Qk#
249)

n 1?1 (pj—ijiu/‘—up"‘jti)

1t uB k', [m "(-1)X'kS  (pj*(-1)k'’ E (-1)k(X-1)S .(p,)JQk
k-0 k-k*2 [ IRl 2 x-2 mx ] k

"y
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Proof: We shall make use of the decomposition of the graded module grad(E)
Into a direct sum of left Irreducible H-submodules (see at the beginning of
§6.2), and we consider the basis BQ adapted to this decomposition. We also
recall that the submodules M) - <e,> H$ m <ew >,

form a full set of left Irreducible H-submodules. Let Ag.Aj .Aj. 1i J s mbe
the Irreducible matrix representations obtained in this way, with degrees

<0 *ds m1,dj» 2, 1i j i a. Then, under the isomorphism ll(see beginning

of $6.1), we have

n(h) - (Ag(h), A,(h)..y h),A $(h)), V h € H.

We first consider the elements e j*, 1s j i mand we shall show that e j*
Is represented on Nj by the matrix (J J) and by the zero matrix on every
other Irreducible constituent. It Is clear by their definition that Qk
belongs to L(u) » M(u), and so e |~ belongs to L(u). Therefore ej” is

represented by a diagonal matrix on every irreducible constituent. Now

each Qk is represented by: uu2k"2 - u2k_i e uu2k_i - u2k m 0. Soe|” 1s
represented by (0) on Mg. Similarly each Qk 1s represented on Ms vrfilch
affords the representation T -1, 1 m 1,2, by:
u(-1)2k 2 - (-1)2k ~ ¢ u(-1)2k”» - (-1)2k » 0, and therefore ej” is also
represented by (0) on Ms.

By recalling the matrices which represent the elements T* on M#,

1 s x £ m(see Lemmad.1) we obtain that each Qk is represented on by the
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B<t> - U(k-'(St. t(px) . Sk.2(p>))) - Uk(Sk.,(P)) + Sk.2(Pk)) -

- UUK I(sk., (P . sk2(PX)) . uk(Sk.,(p>) . sk.2(Px)) - O.
while the Akx” ere given by the following relations

*{x) - u2-uPl & 1, A”x* - u(l Px)(uZ2-upx *1),

A<> . u(-uk-’(Sk.2(Px) . Sk.3(Px)))w uk'1{Sk.,(Px) & Sk.2(Px)) ¢

o U(UK(SK_j(PX) & S”.gth))) - uk(SKk(Px) & Sk_,(PX))

wk(Sk-2<>A) * AK-3(pA>* * <uk', * uk*, (S k-1tpA) * Ak-2(px.)
uk(Sk(Px) + (p*)). for k m 3,4 m.
Moreover SACp”) m PASAADA) » AK-2ApxA AOF LA m an<* therenor«
Sk-2(eA) * Sk-3(px) * PACk-1V * Sk-2(px» * sk(pe © Sk-ltpx>*
Hence A<X) - -ukPx (Sk.,(Px) * Sk_2<.x)> . (uk'' . uk*')(Sk_,(px> ¢ Sk.2(Px>)

® uk ‘(ur-up”+1)(Slc_*(p”) ¢ Slc2(p”))= k m Si.e.tR. and so we eventually have

ANX) m ‘(ur-up”r+IM S”ip”) e Sjrtpn)) for 1i k &m. Therefore the
element e(-l)
F(X)
o o (u -upx*1) ~ W  pj)(Sk-1(px)+Sk-2(p>))-
u n (pj-p)(u -upj+l)
W
Now If X f j» then Lemma 6.4(1) Implies F X* »0 . If X mJ then Lemmas 6.6

and 6.3(1) Imply F*X' -1 . We next consider the elements e2~n . 11J 1 m And

we shall show that e ' 1s represented on Mj by the matrix

by the zero matrix #n every other Irreducible constituent.
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It Is easy to verify that 1t Is represented by the zero matrix on Mg, Ms,
simply by looking at the action of Qk on these modules, \ i ki m, which
turns out to be the zero action. We recall (see Remark 4.1), that the

matrices which represent the elements T/_ _ vp and T. »p, y m1l.... m
wp

on the constituent M”, 1 i A £ m, are obtained from one another by

conjugation by the matrix

1 D

The same Is true for the elements T
($1S2)Us, and TEZ* V2V = .. oooo...
*
Therefore the matrix which represents on is given by conjugating the
matrix which represents Qk on by p "] .
u
In other words the matrix which represents on 1s
p N rv* <N po n p o-~i
Il oj [0 oj 11 oj [0 F(x"j
Thus Is represented by the matrix |0 0! on and by the zero

Iy

matrix on every other Irreducible constituent.

Finally we consider the elements eQ and e . We put P(u) m (u+l)(un V .

We write eft m m (Tw & T ) for 1- 1,2 . Then
P(u)
*iw
1
(T.
S1 0 p(u) WE W
S,

affords the representation T “u, 1m1,2.
Moreover eQ belongs to lhé centre of H and since Tw.eQ « u'M ‘e@

2
every w € W, we have eQ « eQ. We similarly write the element eQ as

4u*1)
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e -J -t (-1 )*<e>,"-*<e> T I(-1) e T 1
o P w w w SIW
SV

C r (-Dt(“>un-I(w,T | (y-)T 3
w sr

m-e_, for 1 m 1.2
a

Therefore HeO affords the representation Tij ¢<1,1« 1,2. We also have

that e belongs to the centre of H and since TweQ m (-1)*1 ye for every w € W,
we have eé « eQ. It 1s now clear that the simple components of H are given by
HeO, HejJ> » HeN ), 1s i i mand He”.

Moreover Heg annihilates every other component different from Itself.
Therefore eg 1s represented by the zero matrix on every Irreducible module
different from Mg, which affords the representation Ts u, 1« 1,2.

The argument 1s similar for the element eQ.

So part (1) of our theorem Is now proved.

(2). Let n - 2m. We now make use of the decomposition of grad(E) as
m-1 m-l a
grad(E) - MQ O Ms 9 M, 9 M2 Vj 0" Wt where {Mg, Ms, M1, Mg, Vj( 1s j i m-1]

1s a full set of left Irreducible H-modules. To this decomposition we adopt
a basis B1 - {«1.57. 0J. 02» vi* uj» vj, 1aj i m-1) with

Vj m<uj, Vj>, Vj m<uj, Vj>, j m 1 m-1. Let Ag. As. Rj. RgtAj. 1i J i «-11

be the Irreducible matrix representations obtained In this way with underlying
modules Mg, Ms, Mj, Mg, Vj and degrees dQ « ds - d* mdg m 1, fj m2, 1sJ s m-1.
Then under the Isomorphism n we have n(h) m (Ag(h),A$(h), Rj(h),Rg(h),
Ay(h)......V 1 (h)), for every h € H. We first consider the element e | ",

1£j &m1l and we shall show that ej” 1s represented on Vj with respect to

the adopted basis {ui, v.) by the matrix M 01 and by the zero matrix on
R o 0J
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every other irreducible module Vj* j i j', Mg, Ms, M~ In order to

do so, we need the action of the quantities Qk, 1 * ks mon the several
irreducible modules. This has already been established for the 2-dimensional
modules VA, 1 s A Sml (see case n odd) and for the modules My, M$ which
afford the representations T > uand T “m-1, 1 m 1,2 respectively. We
have to consider the action of Qk on Mj, M2 which afford the representations

T, ¢ -1,

L E i
5, u and Ts, Sm U TS 1 respectively,

T2 7 2
On the module Qk is represented by: (-1)*-1 uk - (-1)*1 uk~* +
(-1)k"" uk* - (-1 )k uk - (-1 )k 1 uk"'(u*1)2, and on the module M2 Is
represented by: (-1 )k 1 uk - M )k"' uk & (-1)k uk - (-1 )k uk - 0.
To summarize the action of Qk, 1 S k S mon the several Irreducible

modules we have:
H, :Qk-0, Ms :Qk-0, M, :Qk* C-1)k1 uk ,(u*L)2.
M2 @ Qk and on VE* 1 S | S m-1, Qk 1s represented by the matrix
a , where

0 °J

A< > - uk“1CSk. 1(pi) # Sk.2(pil)3(u2 - up~1), 1S ks m. with Art) =

um~1SJil_2 (pJl) (“2-upA*l) (since - 0).
i ma 2
We adopt the notation G, m: mu n (p4-p*)(u -up>+1).
J 1-1. 1ij J
We must investigate the action of e”/ only on the modules Mj and VA, 1 SIS m-1.
By taking Into account the way 1n which Qk acts on M*, 1s ks m, we obtain

that 1s represented on Mj by:

G=1GE)2 el (DKM i (CDXKS L (pAt-DIL " (-DXU-1)S  (Pj)3 =
Gj k-0 X-k+2 mA 3 X-2 mA J

-1/ \2 m-1 m . m-1 91 i. m %
U— [ ro(Lt)V  <p.) e r (-1)2k (i (-i)kU-i)s_..(
" J k-0 x-2

m J ()]
G, k-0 X-k.2 *J
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u-vt)g .
3 MCEL £ M)FRLtps) - £ <-1X(-0S - (p))J.

In the last expression the coefficient of smx(pjK X € {2,....m} Is

*e )2 IN* (<D x - (<17 (x-1)J - 0.
Bj k-0

Hence e f* 1s represented by the zero matrix on the one dimensional module H1.
Using a similar argument as 1n the case n odd, we find that ekl)
onal module VA, 1 s | S ml by the

where 1

E(-1)X(X-1)S1 x(pj )) [V (-1 )k*, (Sk. 1(p1)  Sk(pt))]

¢ (D)2 @"2(->)x(x-i)shx(@l))sm2(pl).

Moreover £ (-1)k"1(Sk_1(pJt)+SkCpl)) =«HSACp~I-Sjtp~I+~EN (-1 )k 's™ip”) &

* 43 (-7)k' ' Sk-1(PI> * Ct i <-)"BV 2 (P>
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Therefore we have established that e j* is represented on the constituent
Vj, 1 £j S ml by the matrix 0 1 and by the zero matrix on every
other irreducible constituent VA, t t j, Mg, MB, M, Mg.

The argument 1s entirely similar when we consider the elements e | "i
1% j £ m-1. The action of the quadruples Qk on the four one dimensional

submodules My, M8, M*, Mg is given by:
HO : Qk - 0, Ms: QR- O, M, : Qk- O, M : Qk & (-1)1'1 uk_1(u*1)2,

1 &k &m, and therefore e ~ 1s represented by the zero matrix on every one
of them.

On the other hand, Qk 1s represented on each VA, 1i 1i ml by a matrix
which Is obtained by conjugating the matrix which represents Qk on V~, by

f] . Hence Q. 1s represented on V. by
0]
1 n o
19 b &f 7
Thus e£” is represented by the matrix

, e We have already shown
0. °
1 2

(see the case n odd), that Heﬂ, Hea afford the one dimensional representations

on every V#, 1 j*J. 1S j S m-1.

finally consider the elements eﬂ, eo

T »>uand T + -1 1 m 1,2 respectively. Thus we have to consider only the
si
elements e , e .
°1 °2
For every wtO 2r let £/(w), t2(w) &e t*16 number of s”'s (respectively
s2's) 1n a reduced expression of w.

We write
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in-jtj (w)-1
T & e(-1)

C E (1)1 u

°l mu (u+1) wislwsw

£EW mt,MW) £,@W) m£, @)
1) u T + E (-0 " u T

—C 1 -
mum_1(u+1)™  WISgUSW
Therefore,
*
ic« = —Tce 0™ il e E D
S1 °1 (u»1l)Z wisw>w 1 WIS.W>W
-e and,
°1 . .
. -X. VWY Jtiiwy n
Ts_ en M— M7 A E M > u T _ & E (-D u
s2 °1 mu (u+1) WIS~W>W S2W w:s~w>w
= ue .
°1
-1, Ts u. Similarly by

Hence He® affords the representation Ts
e

considering pairs (w,ws,) or &w,wsﬂ we can verify that e T
1 o, S, o,

T *ue , and so e is a central element inside H.
\

e
°1 s2 o

. £,(«) m-uM *i(*»*1 —
L, - mmm  —* E (-1)Z u 2 T E(-1) u
°2 mum ‘(u-*1)E w:is2wsw W wis2wew
1?2(w) m-ju(w)

-7 C E (-1)~ u 2 T e E
ir wsw>w * WiS,W>W

and T e ce T

me T « ue s
°2 s2 ®2 s2

and we can easily show that T_ e_
*j u2 *1

belongs to the centre of H and He
°2

Hence e
°2
T u, T -1. Moreover
S1 *2
Al(w) th(w) ~ " A AXEZ N tt(w)
Tw e - (-1) u and T e = (-1) u for every w6 D.

Vv

(-0 2 u 2 TfJ
slw
=-e

affords the representation

Similarly we write

Ts2w
*

o
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We also write W= {1} u u u Aj u {(s"Sg)1}, where

*1 * (<sts2”><s2s| - "Si! m-l). A2’ 1i j S i
*3 % o1 S j s m» Thus
m b 2wyt 1, (w) )
[V ' )«, . with
1 imi"™"L(u*1) wew
mHE2(w)-£ 1(w)
Z u uV(2m-2)u* («oir.
wew
°1 °1 2

Now the simple components of H are clearly

J) a . i -
HeB, Heo, He .Heoz. He&) 1ij Sm-1.

Each such component annihilates every other component different from Itself,

so the element eQ is represented by the zero matrix on every irreducible

module different from HQ which affords the representation T u. 1- 1,2.
The argument 1s similar for the elements eo, er' 902' Our theorem is now
proved.

We next give some examples to illustrate the situation.

m3-2.1 1, m-1,p~-2

c°s H- =
. i
. £ v 1 (-1)1
co We06 a  (U*1)(udeint) WeDB
(1)
s . (uT,-Tt (T, . T.)
Whu*1 Cuv, T§1 uT< -T<

x9n n _ k| <uT,-Ts )(T| &T.)
2 IZ*]il*l [uwr $§2 |T*t s2*1 u «411 -1
(2) W@B2). Dfl, n» 4« 2.2, m- 2, pj >2 cos £ >

[ E Tw. e B ey gl ( S— E (-1)I<l,,ud4t(w)T,
(u*1)(u3*u”u+l) weDR * ° (u*1)(u%u%u*1) weD.

os
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21

[up.(uT,-T  +uT -T )*uT T «|T T,
u(p2-p,)(u2-up2*1) 2 1 s1 s2 S1S2 s2st  S1*2*1 FRLF2 RRLR2>

" UG S T TS PEE T T ST T

*uT

L2 Lo jup.(uT.-T wT- T T T
U2 up2+1) - R R T B S B

-V

p; U e <«Tr T, Yup, T+ T _ N(T|*T )
ulPj-P Afu -up2+1) 1 s2° 21 *172° 1 s1

(4) WG2) « D12, n - 6 m 2.3, m- 3, pl m2cosJ m 1, p? «2cos If - -1.

i« *

)
(uel)(u +u tu +u*1) we0)2 w

e o T 2 ()M W)
(u+1)(u3+u +uJ+u +u+l) wcD"2
T,-u'T +u Tc -u'T . -u T. . «uT. . . -u‘T.

i 3u2@+l)2

8*uT(s,s2)2 * uT(s2s,)2 - T(s,s2)2,, & "T(V 1>*j - T(s,s2)3

1
°2  3u (u+l) B *1 251 S1S2 S2S1S2 S1S281
uT(*2*)2 * uT(S,s2)2-T(s2S,)% & uT(.,*2)f;T(s,*2)3
(1) lb uzZ(uT,-T  «iT _-T y2uT AT uT -T. 21*
ZQ? wrlj 1 s, s2 s,s2 s2s, s2s,52 1*1*2) >
TC2*12 * T<i2>l, * UT(2*1>s2 * T(*1*2>3
B R e Qt. -T (i T. . 2uT . &T,s, ,2)(T. . T )
6u (U -u+l) 1 *1 1 *2%]1 1%2° 1) ' *2
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ez Eu'l?*_l]' V2T T, T VAT, T o i g o Ty D

FACe(ai)2 * T(«2.,)222 * uT(.1.1}*.1 = T(s,*2)3

e rUTE TE)C2T 2T, 5 01/ AHT.. o T
 BU U UTE TR CA 2T, 3 U gpHT - ¢ )
OF> " S 7T QRGTT T ST T 2T 2 AT, 2 S
AZ(uturl) g g g el T i T b -
* ?u%(ui <V lTS(_L>("2Tf. UTWIQ »t (*ski%v. T]l0 T,_Az*
€127 i i~ Q2QT,-T nit T )l 2, 24T , 2. 3
2 20uruel) I L S T AL P S

R M S— <uT,-T )(“2T,-uT, 2 o T. 2 0T e Tg).
2uZ(u+u+1) 1% T epF o 1 M
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OPEN QUESTIONS

We now mention two open questions which arise naturally from our

work.

(A): In Chapter 3 we investigate the centre of H following some ideas of
R.W. Carter. These ideas give a natural basis for the centre of Hecke
algebras of dihedral type, and under the specialization u “m 1 this basis
specializes to the class sums.

These elements are parametrized by the conjugacy classes of the
group and for each conjugacy class C a typical element Zg of this basis

has the form: zr = £ T + linear combination of other
L t(w)<maximal Inside C w

Tw's not involving any T~ with w of maximal length 1n any other conjugacy
class different from C.

In the same chapter we determine a basis of the same form for the
case W» S~

It 1s therefore natural to make the following conjecture:

Let H be the Hecke algebra over the polynomial ring fl[u] associated
to a finite indecomposable Coxeter group W. Then there exists a basis
{ Zg|C runs over the conjugacy classes of Ws of the centre of H, where each

Zr has the form zr m £ T + linear combination of other
u t(w)=maximal Inside C w

Tw's, not involving any T~ with w of maximal length in any other conjugacy
class different from C.

Furthermore the coefficient of each T Involved in Zg belongs to
Z[u], and this basis specializes to the class sums under the specialization

ue 1.
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(B): In Chapter 6 we have Introduced a maximal commutative subalgebra
M(u) Inside the generic Hecke algebra. The definition of this subalgebra
depends upon a chosen W-graph.

Nevertheless we have evidence that M(u) does not 1n fact depend on
the choice of the W-graph. To prove this it would be enough to show that
M(u) = L(u). In order to show this It would be sufficient to prove that
the subalgebra L(1) of QW is commutative. We conjecture that this 1s true
for all finite Coxeter groups W.

The validity of this conjecture together with the results of
Proposition 6.1 and 6.2(1i) would imply that M(u) m L(u). This result
might be of significant help in the effort to decompose the identity of
M(u) into a sum of orthogonal primitive ideompotents.

We have checked the truth of this conjecture when Wls a dihedral

group and when W is the symmetric group $S4.
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