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Figure 1.: Navigation performance effect on the point cloud (The Nav std line represents the 
estimated navigation error from the navigation filter; point cloud line represents the distance 
of the points between a MLS point cloud data compared to a reference dataset of the same 
location) . 
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Figure 2.: Shadowing effects when accuracy is inconsistent between point cloud data 
 

 
Figure 3.: Point cloud classification results using CANUPO (Blue: pole class (target object); 
Red: other points not representing the target object; Grey: points that cannot be classified 
by the tool) 
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Figure 4.: Extracted features from classified points (red points indicate the final classified 
pole points, blue points are all the classified points from CANUPO (the blue points from 
Figure 3), green stars indicate the estimated 2D location of the pole object, plotted at the 
same height for visual indication) 
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Figure 5.: Flowchart showing the basic steps of the FEPPA method 
 

 
Figure 6 (a).: ROBIN MLS system 
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Figure 6(b): StreetMapper MLS system (the camera system in the picture was not used in 
this particular test) 
 

 
 
Figure 7.: ICP performance on the tram data (matched data compared to the reference data) 
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Figure 8.: Navigation correction results 
 

 
Figure 9.: PF point cloud 
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Fig 10 (a) FEPPA method 
 

 
 
Figure 10 (b) ICP method 
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Figure 10 (c) Control point method 
Figure 10.: Point cloud correction results after applying different correction methods 
(Green: the corrected point cloud; Orange: uncorrected point cloud; Blue: reference 
point cloud) 
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Figure 11.: Comparison between the number of features and the resulting navigation 
Accuracy 
 

 
Figure 12 (a) Road change detection (comparing data corrected by FEPPA to a 
reference dataset) 
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Figure 12 (b) Corrected point cloud of the road shown in intensity 
Figure 12.: Change detection results after applying FEPPA (colour bar indicates 
difference in metres) 
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ABSTRACT
LiDAR systems are known to capture high density and accuracy data much more
efficiently than other surveying methods. Therefore they are used for many appli-
cations, e.g. mobile mapping and surveying, 3D modelling, hazard detection, etc.
However, while the accuracy of the laser measurements is very high, the accuracy
of the resulting 3D point cloud is greatly affected by the geo-referencing accuracy.
This is especially problematic for mobile laser scanning systems (MLS), where the
LiDAR is installed on a moving platform, e.g. a vehicle, and the point cloud is
geo-referenced by the data provided by a navigation system.

Due to the complexity of the surrounding environments and external conditions,
the accuracy of the navigation system varies and thereby changes the quality of the
point cloud. Conventional methods for correcting the point cloud accuracy either
rely heavily on manual work or semi-automatic registration methods. While they
can provide geo-referencing under different conditions, each has their own problems.
This paper presents a semi-automated geo-referencing trajectory correction method
by extracting features from the pre-processed point cloud and integrating this infor-
mation to reprocess the navigation trajectory which is then able to produce better
quality point clouds. The method deals with the changing errors within a point
cloud dataset, and reducing the trajectory error from metre level to decimetre level,
improving the accuracy by at least 56%. The accuracy of the regenerated point
cloud then becomes suitable for many accuracy-demanding monitoring and change
detection applications.

KEYWORDS
navigation, particle filter, point cloud, mobile mapping

1. Introduction

Light Detection and Ranging (LiDAR), also known as laser scanning, surveys the
surrounding environment by sending out pulsed laser light to target objects and mea-
suring the reflected pulse return times, wavelengths and signal intensity, from which
the distance between the scanner and the object could be obtained. Due to the high
accuracy of laser measurements and the scanner’s ability to scan objects with very high
density in a short time (e.g. more than 1 million measurements per second), LiDARs
can provide very high density and accurate measurements of the surveyed environment
(Lato et al. 2009, Pu et al. 2011, Puente et al. 2013, Mukupa et al. 2017). Therefore,
conventional surveying work are being replaced and improved by using LiDAR based
terrestrial and airborne surveying, mapping and monitoring. It is also being adopted in
more recent applications such as 3D High Definition mapping, autonomous navigation,
etc.

The mobile laser scanning system (MLS) is a popular system which integrates Li-

Manuscript - anonymous Click here to access/download;Manuscript -
anonymous;SR_manuscript_HJanony_v2.pdf
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DARs with a navigation system and installed onto a mobile platform, e.g. land vehicle,
aeroplane or drone. While the LiDAR continuously collects the reflected laser measure-
ment from the surrounding environment as the platform moves, the navigation system
provides the absolute position to geo-reference the laser measurements (Hutton et al.
2016). 3D point clouds can be generated very quickly by integrating the measurements
from the two systems, which can then be used for modelling, mapping, and asset man-
agement, etc. (Williams et al. 2013). Its versatility and efficiency suggests its potential
application in geohazard change detection and monitoring for remote areas. These
works are normally completed by traditional surveying methods or by using terrestrial
LiDAR systems, which provide high accuracy data, but are labour intensive. A main
challenge to using MLS for these applications is its point cloud accuracy, which is often
reduced as the navigation accuracy varies during data collection. The work discussed
here attempts to address this problem, i.e. improving the geo-referencing accuracy for
MLS point cloud data in a more efficient way, so that it can be used for accuracy
demanding applications.

The navigation system used for MLS usually consists of a Global Navigation Satel-
lite System (GNSS) and an Inertial Measurement Unit (IMU), as on the StreetMap-
per system from 3D Laser Mapping Ltd (3DLM). Additional sensors may include
odometer and barometer. Although the integrated navigation system are generally
high performance systems, it is inevitable that its accuracy could be reduced at times
as GNSS positioning relies on receiving satellite signals, which can easily be blocked
or disturbed. IMUs provide relative attitude measurements and accelerations that can
navigate in absence of GNSS. However, these measurement can only provide the nav-
igation solution for a short period of time during GNSS absence as IMU errors tend
to increase very quickly over time without external corrections. Therefore, achieving
high quality navigation in environments such as under thick tree canopy and urban
areas, is a challenging task. As a result, the navigation accuracy does not always meet
the expected accuracy requirement to geo-reference the MLS data. In such cases, the
produced point cloud need to be corrected.

In many MLS applications, the point cloud accuracy is ensured by installing physical
targets in the scan area, which act as control points (Puente et al. 2013). However, as
the targets may have to be installed in remote and difficult to access locations, this
method is both inconvenient and costly due to the amount of human labour required.
Other methods, such as relative registration, are sometimes applied. Yet the improved
correction efficiency comes at a cost of reduced accuracy compared to using control
points (Bitenc et al. 2011, Kukko et al. 2012, Lauterbach et al. 2015, Gézero et al.
2017, Toth et al. 2017).

To reduce the workload required for effective and accurate point cloud adjustments
and corrections, this work presents a semi-automated point cloud correction method
for terrestrial MLS by firstly improving the navigation trajectory accuracy. The im-
proved trajectory is then used to geo-reference the LiDAR measurements, correcting
the changing error within the dataset. This procedure makes use of the feature infor-
mation extracted from the point cloud which is then integrated within the navigation
processing algorithm, i.e. Feature Extraction based Particle filter Point cloud Aid-
ing (FEPPA). While feature matching methods have been proposed for registration
in previous research such as in (Jende et al. 2016), accurate aerial LiDAR data was
applied which does not suffer from the bad navigation errors that land MLS does.
The algorithm here is tested on various sets of real world LiDAR data under bad
GNSS conditions to demonstrate its point cloud correction capabilities. The FEPPA
workflow eliminates most of the tedious manual work, reducing the typical correction
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workload from around a week to under a couple of hours with comparable accuracy.
Section 2 will present the current background in point cloud matching as well as

common navigation algorithms. Section 3 discusses the FEPPA methods, which in-
cludes extracting features from MLS generated point clouds and its integration with
the navigation algorithm. Section 4 will present the test results using the proposed
method. Its capabilities as well as limitations will also be discussed here. The final sec-
tion concludes the work and discusses developments to adapt to future applications.

2. Background on MLS data processing

One of the main motivations for this work was to improve the MLS data accuracy to a
level that could be used for geo-hazard change detection, which looks for the difference
between two datasets of the same area but captured at different times (Mukupa et al.
2017). Change detection techniques have evolved greatly over the past years, from con-
ventional surveying to remote sensing techniques and the recent growing adaption of
LiDAR systems (Maghiar et al. 2016, Xiao et al. 2013, Williams et al. 2013), following
a trend of improved data acquisition with higher density and efficiency.

Point cloud change detection can be achieved by computing the distance of a point
from the comparison point cloud data to its relevant position in the reference point
cloud, i.e. cloud-to-cloud distance measurement. Any non-zero values reflects the po-
sition difference between the 3D points, revealing changes in the physical conditions
of the target area, such as those caused by landslides, slope failure, earthquake, road
damage etc (Lato et al. 2009, Jaboyedoff et al. 2010, Lindenbergh et al. 2015). There-
fore, the level of accuracy required for change detection depends on the type of changed
being assessed. Change detection in geo-hazards are mostly major or obvious changes
in the environment. Therefore the desired point cloud accuracy is within the decimetre
level to identify these changes.

Most monitoring applications nowadays rely on using static terrestrial LiDAR sys-
tems or airborne MLS. However, static systems have limited data coverage and it is
not always convenient to find a suitable scanning location. Airborne systems, on the
other hand, suffer from low data density due to their distance from the ground and
limited views of ground objects. The proposed correction method aims to enhance the
point cloud quality derived from terrestrial MLS so that a more efficient monitoring
workflow could be used for time critical applications in less accessible areas, addressing
issues in modern road and railway environment monitoring (Chen et al. 2015, Network
Rail 2016).

Controlling the point cloud quality from MLS before change detection analysis is
essential, as the inconsistency between compared data includes two aspects:

• the change in position or shape of the object that is represented by the point,
i.e. detected change;
• the relative position error between the two point clouds, i.e. noise and error.

Removing, or reducing, the relative error to a minimum is vital before carrying
out infrastructure or geotechnical monitoring analysis. The following subsections will
introduce the common methods for processing MLS data, including navigation data
and 3D point cloud processing. The major issues that affect the point cloud accuracy
and some common methods to address them will also be highlighted.
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2.1. Point cloud processing

The basic components of an MLS typically consists of one or two 2D laser scanner(s),
a GNSS/IMU integrated navigation system, an on-board computer and storage, as
well as power supply. 2D laser scanners capture relative range measurements from the
scanner to surrounding features which reflect the laser beam. To produce a 3D point
cloud, the 2D range measurements need to be time synchronised and integrated with
the navigation data using the basic steps as outlined below:

(i) Process the navigation data using suitable integration algorithms, e.g. Kalman
filter or particle filter, which produces trajectory data that includes both the
position coordinates as well as the attitude at a high rate.

(ii) Integrate the LiDAR range measurements with a 3D position and attitude by
matching their time stamps to the navigation data, thereby projecting the 2D
range measurement into a 3D coordinate system, i.e. generating a 3D point cloud.

(iii) Merging multiple scans: to increase the density of the point cloud, the same
route is sometimes scanned more than once by the MLS vehicle driving from
different directions, where each scan is known as a flightline (adopted concept
from airborne applications). Merging multiple flightlines into one point cloud
increases data density, hence captures more information of the environment.
However, prior to merging, the data must be corrected for mismatches, i.e. errors,
between the different scans to ensure that all data overlay consistently.

(iv) Point cloud corrections: merging the flightlines ensures that relative errors of
each scan are reduced. If control points were used, the merged point cloud needs
to be matched to the scanned control points. This step reduces the global errors
and ensures that the data fits with the global coordinate system used in the
location of the data capture.

Further data analysis can be carried out once the high quality 3D point cloud is
produced. Usually this procedure tries to imply some ”meaning” to the point cloud,
such as data classification or object recognition, etc.

Due to the data processing procedure, the accuracy of the 3D point cloud is affected
by both the measurement accuracy of the laser scanner as well as the performance of
the navigation system. The laser scanner range measurement accuracies are generally
around 0.5 - 2 cm usually with millimetre level precision; whereas the navigation data
accuracy can be affected by various external conditions, producing errors from a few
centimetres up to tens of metres. Therefore, the accuracy of the point cloud is largely
affected by the navigation system performance (Jing et al. 2016).

In ideal conditions, navigation systems can achieve decimetre or even centimetre
accuracy by using methods such as Real-time Kinematic GNSS positioning (RTK)
(Tang et al. 2015). However, GNSS based navigation is easily disturbed by the en-
vironment causing the accuracy to reduce to metre level or worse. This introduces
errors in the MLS point cloud, and even worse, introduces inconsistent errors within a
single point cloud dataset as the navigation error changes. Therefore, improving MLS
geo-referencing accuracy is cruicial before carrying out data analysis on MLS data.

Two common methods to improve point cloud accuracy are relative registration and
control point geo-referencing. Relative registration requires the availability of another
dataset of the same scan location with higher accuracy, known as the reference data.
The data of concern is then matched to the reference data using methods such as
Iterative Closest Point (ICP), Local Descriptor Histograms or other statistics that can
characterise the point cloud and find matching points between two data (Rusu et al.
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2008, 2009, Marden et al. 2012).
Registration is relatively fast, but the data can only be matched to minimise the

global differences between the two datasets. Therefore, it is unable to eliminate local
distortion and errors, such as those introduced by the navigation system. Further-
more, the performance of registration is highly dependent on the characteristics of the
point cloud data, such as the geometry of the features within the point cloud and the
movements of features between scans.

Geo-referencing using control points achieves unrivalled accuracy and reliability.
Control points have to be installed prior to data capture and surveyed using instru-
ments such as total stations or survey-grade GNSS to provide millimetre or centimetre
level position reference (Puente et al. 2013). The point cloud data is then corrected by
manually finding the targets in the point cloud and shifting the position of the points
representing the target to match the surveyed position of the targets. These shifts
build up a regression function which also shifts the other points in the data accord-
ingly (TerraScan 2016). This method produces better overall accuracy as it is able to
correct local errors within a data. It is especially useful when errors are inconsistent
within a dataset, which is generally the case for data produced by the MLS. However,
this correction process is known to be labour intensive and must be done manually.

2.2. Navigation data processing

Due to its effect on the point cloud data accuracy, ensuring the navigation data ac-
curacy is cruicial to reducing error in the point cloud. Many algorithms had been
proposed to integrate GNSS and IMU measurements for continuous high performance
navigation, including Kalman filter (KF), extended KF and Particle Filters (PF) etc.
Since its introduction in 1960 (Kalman 1960), KF has become an efficient tool to solv-
ing linear prediction and estimations problems, including tracking and navigation. It
continuously measures and estimates the navigation system state, i.e. position, velocity,
attitude and biases, while estimated states are continuously updated by incoming new
measurements. Integrated navigation methods provides continuous navigation even
when GNSS measurement is not available for a period of time.

High performance IMUs will be able to produce acceptable navigation during a
longer period of GNSS outage. However, IMU measurements always grow exponen-
tially over time and eventually exceed the requirement levels if GNSS positioning or
other sources of positioning measurements are continuously unavailable. If additional
external measurements could be integrated when they become available, the naviga-
tion performance could become more reliable. Due to the non-linear characteristics
of external measurements, PF is considered more suitable and achieves better perfor-
mance.

Particle filtering is a recursive Bayesian filtering method that integrates measure-
ments from different sources and predicts the system states, which are represented
by a large set of particles with associated weights, through sequential Monte Carlo
estimation (Gordon et al. 1993, Ristic et al. 2004) . The system state vector Xk is a
discrete time stochastic model expressed as below:

Xk = fk(Xk−1, vk−1) (1)

where fk is the non-linear function of the state Xk−1 and process noise vk−1 at time
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k, . The state vector Xk is recursively updated from observations zk:

zk = hk(Xk, nk) (2)

where hk is usually a non-linear function with measurement noise nk. PF estimates the
state Xk at time k, given observations z1:k up to time k. At each epoch, the predicted
probability density function (pdf) is updated through measurements to represent the
posterior pdf of the current state. As it is usually impossible to obtain the true posterior
pdf, N particles are generated to represent a discrete approximation p(x),

p(x) ≈
N∑
i=1

wiδ(x− xi) (3)

where particles xi are drawn from the approximate density, wi is the normalised weight
of the ith particle, and δ(·) is the Dirac delta function. As N →∞, the approximation
should approach the true posterior pdf. A brief summary to each iteration of a typical
PF procedure for navigation based on (Gustafsson et al. 1993, Ristic et al. 2004) is an
below.

• Initialisation: N particles xi0(i = 1, ..N) are created to represent an estimated
probability distribution of the initial system state p(X0), i.e. for navigation sys-
tems, each particle includes information on location, historic location, its current
state, and a weight. All particles usually start with equal weights, unless other
prior information is available. The weighted average of the particles represents
the initial system state estimation.
• Prediction: the particles propagate through a prediction model, as Eq.1, the prior

pdf of the new state estimate Xk|k−1 at time k is obtained,

p(xk|Z1:k−1) =

∫
p(xk|xk−1)p(xk−1|Z1:k−1)dxk−1 (4)

where Z1:k−1 is a set of all available measurements z up to time k, p(xk|xk−1) is
the probabilistic model of the state propagation defined by the system equation
and estimation of noise vk−1.
• Update: a set of new measurement zk at time step k is obtained to update the

prior via Bayes rule and obtain the posterior of the system state

p(xk|Z1:k) =
p(zk|xk)p(xk|Z1:k−1)

p(zk|Z1:k−1)
(5)

where p(zk|xk) is the conditional pdf of zk given xk, p(xk|z1:k−1) is the prior pdf
at time step k and p(zk|Z1:k−1) is the probabilistic model of the state propagation
defined by the system equation and estimation of noise vk−1. The likelihood of
each particle xik , i.e. the weight wi

k, is computed based on p(xk|Z1:k−1).
• Resample: A weight threshold is defined based on the system requirements and

any particle i with a weight below the threshold is redefined as wi
k = 0. If the

number of valid particles falls below a threshold, the particle cluster is resampled
to regenerate N particles based on p(xk|Z1:k−1). The particle weights are then
normalised.
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• Return to step 2 (prediction) or end process: the weighted mean of the particles
gives the state estimation at the end of each iteration.

With the flexibility to integrate any data source as they become available, PF is
widely adopted for the integration of measurements from different sources. The work
presented here introduces an MLS data correction method by integrating information
extracted from the LiDAR measurements in the point cloud data and integrating them
with other navigation measurements using PF. However, integrating LiDAR measure-
ments can be highly computationally expensive due to its high data rate and density.
FEPPA allows a ”very loose-coupling” scheme that corrects navigation only when nec-
essary and reduces the computational effort. The integration of LiDAR measurements
with a GNSS/IMU system takes advantage of the high accuracy GNSS performance
in open sky areas, high accuracy IMU attitude measurements and periodic corrections
constrained by the feature landmarks in the point cloud data.

3. The FEPPA method

Unstable performance of the onboard sensors of an MLS leads to two main problems:
1) inaccuracy in the produced point cloud; 2) inconsistent accuracy in the point cloud;
as shown in Figure 1, which plots the distance, i.e. mismatch, between the two point
clouds representing the same location, one perfectly geo-referenced and another gen-
erated by uncorrected navigation data. The blue crosses are the estimated standard
deviation from the navigation filter which gives an indication of the navigation accu-
racy; the red triangle line shows the average mismatch between the points within a
point cloud dataset generated during those epoches. The mismatch between the point
cloud data varies as the navigation accuracy changes, thus indicating that the accu-
racy of the point cloud generated by MLS can vary depending how the navigation
error changes. When point cloud data of different accuracies are merged together, the
resulting data can show a ”shadowing” effect such as seen in Figure 2. This inaccuracy
and inconsistency leads to further problems when analysing data, therefore needs to
be minimised.

The proposed FEPPA method improves the navigation accuracy through integrat-
ing the measurements extracted from point cloud features which contains both abso-
lute location information (position within the absolute global coordinate system, i.e.
WGS84) and relative location information (distance between the system and other
features). The sections below will explain the methods used to extract feature infor-
mation and the PF based integration method to enhance navigation as well as point
cloud accuracy and consistency.

3.1. Point cloud feature extraction

Feature extraction and object recognition have been one of the main research areas for
LiDAR point clouds. Mainstream methods include key point detection, classification
and object recognition (Bosch et al. 2007, Zhong 2009, Hansch et al. 2014). These
include identifying unique points of interest within a point cloud even at different
scales, such as corners and sides of objects (Assfalg et al. 2007, Knopp et al. 2010).
Object recognition is the procedure to detect and extract points representing an entire
object or class of features. These methods rely on using unique descriptors to describe
the geometry features as well as other laser measurements, e.g. intensity, which help
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Figure 1.: Navigation performance effect on the point cloud (The Nav std line
represents the estimated navigation error from the navigation filter; point cloud line
represents the distance of the points between a MLS point cloud data compared to a

reference dataset of the same location)

Figure 2.: Shadowing effects when accuracy is inconsistent between point cloud data

to recognise the object points among other data points in the point cloud (Lehtomaki
et al. 2016, Yang et al. 2017). These descriptors specify each object with its unique
identity which are pre-learned by the machine and features/objects are detected from
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the point cloud using supervised or semi-supervised machine learning methods.
The first step of the FEPPA method relies on extracting measurements from stable

features within the dataset. The object recognition/classification method used here is
based on the CANUPO suite developed by Brodu et al (Brodu et al. 2012), which is
available from the open source software CloudCompare. The CANUPO algorithm was
developed especially to identify and classify complex scenes in the natural environ-
ment, such as vegetation, rock, gravel and water, etc. which is not addressed by many
classification tools. The toolset handles large datasets and allows simple user input
through semi-supervised machine learning procedures. The main idea of CANUPO
is to characterise the local dimensionality properties of the scene at each point and
different scales, i.e. how the point cloud objects look like at 1D, 2D or 3D scales. The
learned characteristics help to identify objects or classify points at a later stage.

Within the context of this paper, the main application is the early detection and
monitoring of geo-hazards. The datasets were collected along railways and roadsides.
The CANUPO tool was tested to give relatively better performance for the types
of datasets that were used, thus adopted as part of the workflow. It is used for the
extraction of pole shaped infrastructure, including lamp posts and utility poles etc.,
among other similar natural environment features, e.g. trees.

Figure 3.: Point cloud classification results using CANUPO
(Blue: pole class (target object); Red: other points not representing the target

object; Grey: points that cannot be classified by the tool)

First of all, a descriptor is built in the CANUPO toolbox that can distinguish
between the pole shaped infrastructures of interest (i.e. objects that will not change
shape or position over time) and other objects in the point cloud. It is vital to exclude
trees from the extracted feature dataset as they can introduce large ambiguities during
processing. Once the descriptor is created, the point cloud datasets are run through
the CANUPO toolbox, for pre-processing.

This step classifies the points in the point cloud into three classes: pole points, non-
pole points and unidentified points, as shown in Figure 3. However, the classification
results here are not perfect due to slight differences between the actual objects and
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the descriptor. Therefore, the second step in the workflow, i.e. cleaning the classified
points, is critical. The cleaning workflow was developed in Matlab by the author and
deletes any false-positive points that have been classified as poles by the CANUPO
tool, as shown in Figure 4. The cleaning workflow divides the classified target points
(blue points from Figure 3) into 1m × 1m grids, then filters out the data points if
they were associated with low confidence by the CANUPO tool and the density of the
points within the grid falls below a threshold, which is defined relative to the entire
point cloud density.

Figure 4.: Extracted features from classified points (red points indicate the final
classified pole points, blue points are all the classified points from CANUPO (the

blue points from Figure 3), green stars indicate the estimated 2D location of the pole
object, plotted at the same height for visual indication)

Once the data has been filtered and the ”clean” features have been identified, the
Matlab script extracts further information from the points representing each object,
i.e. [tfi , xfi , yfi ,∆hfi , intensityfi , σfi ], which represent the time of the data capture,
Easting, Northing and height difference in OSGB36 grid coordinates (the geographic
grid reference used in the UK), intensity of the points, and the confidence index of
the CANUPO classification, respectively. The extracted information from a reference
point cloud data is saved as the reference feature information; information extracted
from the comparison dataset is saved as the comparison feature information. These
information will be integrated into the navigation PF to reprocess the trajectory, which
improves accuracy and consistency among the datasets captured at different times.
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3.2. Particle filtering based navigation aiding

The navigation trajectory used for creating the original point clouds is generated from
integrating GNSS positioning data and IMU measurements through loosely coupled
KF, which is carried out by the software given by the navigation system provider. How-
ever, as discussed, navigation trajectory does not have consistent accuracy along the
entire route. This is predominately due to changes and variations in the GNSS satellite
condition and environment when datasets are captured at different times of the day or
year. Hence changing the accuracy of the point cloud data. Therefore, it is important
to ensure that different point cloud datasets are corrected to the same accuracy level
before they can be used to carry out change detection or other similar analysis. The
FEPPA algorithm proposed here reprocesses this trajectory by integrating the feature
information extracted in Section 3.1.

The algorithm follows the basic PF procedures described in Section 2.2 where the
system state model Xk represents the navigation system position information, the
propagation vector follows the measurements obtained from the IMU and the extracted
feature information is integrated to provide measurement updates as explained in
more detail below. The process noise vk is normally distributed with a mean of 0 and
standard deviation given based on the system specifications for position and heading
errors, the measurement noise nk is normally distributed with a mean of 0 and a
standard deviation following the current estimated navigation error which is derived
from comparing the feature locations and the current system location. A basic workflow
chart is given in Figure 5.

As outlined in Section 3.1, the extracted features of interest should remain sta-
ble over time and thus retain the same location information. Inconsistent navigation
accuracy is detected when the same features are geo-referenced at slightly different
locations. Therefore, the position difference of the reference features fref and the

comparison features fi, i.e. ∆dis
fref
fi

, will be used as an observation measurement in-
tegrated into the PF to constrain the navigation error in post-processing. The steps
of the FEPPA workflow is described as below:

1) Estimate the centre position of each of the N features {xfi , yfi ,∆hfi}i=1,...,N

from the data points,

xfi = mean(x1, x2, ..., xq); (6)

yfi = mean(y1, y2, ..., yq); (7)

∆hfi = zmax
i − zmin

i ; (8)

where fi is the feature number, and q is the number of points representing
feature fi. The time stamp of each point representing each feature tiq is saved as
a separate array for reference. The time reference is essential as the navigation
error and point cloud error are correlated by time.

2) Compute the 2-D geometry index of the group of features extracted at the cur-
rent epoch, i.e. FDOP (Feature Dilution of Precision), adopted from the GNSS

11

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Jing_H
Highlight

Jing_H
Highlight



Figure 5.: Flowchart showing the basic steps of the FEPPA method

positioning DOP concept:

FDOP =
√
σ2x + σ2y (9)

where σ2x = xi−x
Ri

, σ2y = yi−y
Ri

, Ri =
√

(xi − x)2 + (yi − y)2, xi and yi are the 2D
coordinates of the features, x and y are the 2D coordinates of the system at the
current epoch. At each epoch, the features selected for computation are features
whose data points were captured within a time threshold of the current epoch,
denoted as ”visible” features in the text below. The selection of ”visible” features
is to ensure that the navigation accuracy representated by the features are similar
to the accuracy of the current epoch. FDOP provides an estimated indication of
whether the extracted feature information could improve the trajectory accuracy
at the current epoch. Small FDOP indicates good geometry layout surrounding
the MLS system, i.e. evenly spread out features along the travelling path on
both sides, therefore these features can be used to give a better accuracy when
post-processing the trajectory; larger FDOP s indicate bad geometry, either due
to low number of available features, or that features are clustered close together,
thus less capable of giving a better accuracy estimate.
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3) Initialise the PF: initialise a set of particles pm around the initial position with
a level of uncertainty σpt based on the trajectory data, where m = 1, ...,M , i.e.
M = 1000, wm

k = 1/M is used here.
4) Propagate the particles based on the measurements from the navigation system,

i.e.

pmt
x = pmt−1

x + ∆x; (10)

pmt
y = pmt−1

y + ∆y; (11)

∆x and ∆y should be derived from the navigation system measurements. How-
ever, in this case, the commericial navigation system used did not provide raw
IMU measurements. Therefore, ∆x and ∆y are derived from the produced navi-
gation trajectory, i.e. the position and heading change between the current and
previous epoch with added process noise vk to allow for errors in the produced
trajectory.

5) The weight of each particle wm
k is reassigned in this step after comparing the

distance between each particle and the location of ”visible” features (i.e. Rfi
pm)

and the distance to the same features in a reference dataset (i.e. R
fref
pm ) :

Rfi
pm

=
√

(pmx − fix)2 + (pmy − fiy)2 (12)

Rfref
pm

=
√

(pmx − frefx)2 + (pmy − frefy)2 (13)

∆Rpm
= Rfref

pm
−Rfi

pm
(14)

If the difference ∆Rpm
is over a predefined distance threshold, depending on

the estimated navigation error, the particle weight wm
k is simply give wm

k = 0;
otherwise, wm

k is the inverse of the difference in the distance, i.e.

wm
k =

1

∆Rpm
· a

(15)

where a defines how quickly the difference in the distance changes the weight. The
position and height information of the points representing each feature is used to
justify the matching between the current feature fi and reference feature fref . If
there should be a mismatch due to several features being too close together, the
range difference will appear to be sufficiently larger than expected, thus giving
a lower weight or 0.

6) Resampling: to avoid the particles clustering towards a wrong location in the pro-
cess or particle impoverishemnt, both of which are common problems in PF if
the wrong weighting and resampling threshold is used, the particles are checked
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for resampling after every iteration. If there are any invalid particles, i.e. any
particles with wm

k = 0, particles with a higher weight wm
k is given higher prob-

ability to regenerate new particles, while low-weighted particles will have less
opportunity to generate new particles, to replace these invalid particles. A sys-
tem noise is added to the regenerated particle cluster. If there are no remaining
valid particles, a new particle cluster is generated based on the current estimated
position. As the feature range measurements can constrain the particles to quite
a small area, resampling will ensure there are always valid particles to continue
the iteration.

7) Positioning estimation: the updated position estimation of the navigation system,
i.e. the MLS position, is computed from the weighted average of all particle
positions, i.e.

{xupdate, yupdate} = {
∑M

m=1(p
m
x · wm)∑M

m=1(wm)
,

∑M
m=1(p

m
y · wm)∑M

m=1(wm)
}; (16)

The PF is continued until the whole trajectory has been reprocessed using the
feature information; generating a new trajectory for geo-referencing, i.e. the PF
results.

8) The PF trajectory is used to update the GNSS measurement data, which is
then reprocessed by GNSS/IMU integration software provided by the navigation
provider, producing the final FEPPA trajectory. The point cloud is re-generated
using the FEPPA trajectory.

The final step is required here as we did not have access to the raw measurements
produced from the navigation system, which was a limitation from the commerial
hardware and software package. The PF algorithm could only update the position
estimations, thus need to be reprocessed in the integration software to provide im-
proved position and attitude outputs before the data can be used to geo-reference the
point cloud. The PF integration method was chosen here due to that the integrated
feature measurements cannot be easily modelled for KF due to their changing and un-
predictable nature. Yet integration of these measurements in PF is a straightforward
procedure.

The FEPPA process is designed based on the assumption that the difference in
the navigation accuracy is reflected by the relative distance shift between the same
features extracted from the corresponding point cloud dataset. The distance shift is
estimated and used to reprocess the trajectory, aiming to reduce the error. However,
it is recognised that the distance shift between the features does not fully represent
the actual navigation error, due to errors being either enlarged or reduced by the
changing attitude measurements of the navigation system. Therefore, the coefficient
a and cut-off threshold are introduced to provide an adaptive weighting scheme. This
reduces the constraint of the measurement update and allows for the slight difference
between the actual navigation error and the distance shift between features.

Analysis on several datasets are given below to discuss the performance of the
FEPPA workflow and some considerations when using the method.
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4. Results and analysis

This section will analyse the performance of the FEPPA workflow on two datasets cap-
tured in different environments and using navigation systems of different performance
levels. The point cloud correction performance of the FEPPA method will be compared
to registration methods and also standard MLS data processing workflows using the
commercial software suite, TerraScan/TerraMatch. The results of the correction is
compared to the reference point cloud using cloud-to-cloud distance computation to
see how well it matches the desired data. The efficiency of the workflow and also minor
problems that need to be considered are also discussed.

4.1. Simulation data and processing

Two sets of MLS data were captured for the analysis of the proposed workflow. The
first dataset was captured along the Nottingham tram line, which simulates railway
and roadside scenarios in terms of infrastructure, covering both suburban and urban
environments. This data simulates the environment which requires infrastructure and
asset monitoring. The second dataset was captured along the A52 highway road near
Bingham, England, which has a mostly rural environment and simulates the a rural
site which requires geohazard monitoring.

The MLS system used for the tram data capture was the ROBIN system from 3D
Laser Mapping Ltd and the A52 road data is captured using the StreetMapper system
also from 3D Laser Mapping Ltd, as shown in Figure 6. The StreetMapper IV system
consists of a Riegl VUX-1 laser scanner and an IGI TerraControl navigation system,
which consists of a NovAtel GNSS receiver and the IGI Fibre optic gyros (FOG) IMU-
IIe. The ROBIN system consists of a Riegl VUX-1HA scanner and the same GNSS
receiver but integrated with a MEMS (Micro-Electro-Mechanical System) IMU, which
is a lower grade IMU compared to FOG IMUs. Specifications for the VUX-1 scanner
is listed in Table 1. The scanner is installed facing backwards of the vehicle with a 50◦

angle to the horizontal plane, allowing the scanner to capture details of the ground
and along both sides of the road. Specifications for the two navigation systems are
listed in Table 2.
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(a) ROBIN MLS system

(b) StreetMapper MLS system (the cam-
era system in the picture was not used in
this particular test)

Figure 6.: Systems used for data capture

Table 1.: RIEGL VUX-1 laser scanner performance

Max
range

FOV Meas.
rate

Resolution Accuracy Precision

VUX-1 up to
920m

330◦ up to
550kHz

0.001◦ 10mm 5mm

Table 2.: IGI TerraControl navigation system

Pos (m) Vel (m/s) Heading (◦) Pitch/Roll
(◦)

FOG-IIe 0.02 0.005 0.03 0.015
MEMS 0.02 0.005 0.01 0.004

Gyro bias
(◦/hr)

Gyro random
walk (◦/hr2)

Acc bias (mg)

FOG-IIe 1 0.07 0.3
MEMS 0.03 0.0005 0.1

For testing and evaluation, a good quality reference dataset is generated. The data
was captured in an environment without any long tunnels or thick foliage which may
potentially block the sky view and reduce navigation accuracy significantly. For both
datasets, the navigation and point cloud data were processed to its best possible
solution using the standard workflow that would be used to deliver data to clients, i.e.
the final navigation accuracy is centimetre level for over 95% of the entire trajectory
and the point cloud data was manually corrected and processed using the TerraSolid
software suite with high quality calibration. These results were saved as the reference
data.

To introduce errors into the dataset, sections of GNSS measurements are deleted
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from the navigation data to simulate loss of GNSS signals. The period of deleted
measurements varies for the different navigation system used, but both produced nav-
igation errors of over a metre. For the tram data, a period of 90 seconds was deleted
resulting in around 4m error; 4.5 minutes of GNSS measurements were deleted from the
A52 highway data producing a maximum error of around 2m. The resulting trajectory
and point cloud data were saved as the comparison data.

Pole features were extracted from the point cloud using the feature extraction work-
flow described in Section 3.1 for both the reference and comparison data. For both
datasets, the most common features used were the lamp posts and utility poles. The
trajectories of the comparison data was reprocessed using the FEPPA workflow to re-
duce the trajectory errors, which can then be used to regenerate the comparison point
cloud so that it matches the reference dataset. Navigation error here is referred to
as the difference between the comparison or reproduced trajectory and the reference
trajectory. The point cloud difference were measured by the Cloud-to-cloud distance
(C2C) tool provided in CloudCompare and results are displayed in colour scale.

4.2. FEPPA performance and comparison

To analyse the correction performance of the FEPPA workflow, registration methods
were also used to match the comparison and reference data and the results were com-
pared to the FEPPA outputs. A series of tools, including Spin image registration de-
veloped by 3DLM, registration tools available in Point Cloud Library, and registration
tools in CloudCompare, were tested for comparison. Although with slightly different
accuracies, all tools presented similar pros and cons for the data that were tested
on. The results from the ICP tool in CloudCompare is given here as an example for
typical problems when using registration for large MLS datasets. The CloudCompare
ICP tool usually gives quick and efficient results with reasonable accuracy in general
registration problems (Wu et al. 2018). However, as with all registration methods, it
is unable to deal with changing accuracy within the same point cloud dataset.

The ICP matching results for a small section of the tram data is shown in Figure
7. Here the point cloud data registered using ICP, shown in orange-yellow points, is
overlaid on top of the reference data, shown in blue. The change in error levels of

Figure 7.: ICP performance on the tram data (matched data compared to the
reference data)
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Figure 8.: Navigation correction results

the MLS data could be clearly seen, where the features between the two data on the
left side of the data are much more closer than the features on the right-hand side of
the data. This reflects one of the main problems of using rigid registration methods
for MLS point cloud geo-referencing, where the errors are inconsistent throughout the
data.

The tram data will be discussed in more detail below, due to its better visualisation
effects. Therefore, enabling clearer comparison.

The FEPPA workflow corrects the inconsistent error within the same point cloud
dataset by reprocessing the navigation data using error estimation extracted from fea-
tures in the point cloud. Figure 8 shows the error of the original comparison navigation
data compared to the navigation error after being processed by two workflows, i.e. PF
and FEPPA. The PF method is actually a part of the FEPPA workflow but only
reprocessing the data up to Step (7) outlined in the workflow in Section 3.2. Results
from using the PF method only is shown in the red dotted line.

The FEPPA results, plotted in yellow lines, shows the results processed by the
complete FEPPA workflow, i.e. outputs after Step (8). As mentioned previously, Step
(8) is required here due to not being able to access the sensor raw measurements. This
step reprocesses the data to update both the position and attitude outputs. Although
it seems that the position error of the trajectory is lower by using PF only, the attitude
measurements are not updated according to the new updated positions, the generated
point cloud data can appear to be ”messy”, as seen in Figure 9.

Table 3.: FEPPA processing results

Before cor-
rection

PF only FEPPA

Tram data RMS (m) 1.051 0.022 0.119
Max (m) 4.224 0.183 0.261

Highway data RMS (m) 0.919 0.145 0.441
Max (m) 1.880 1.669 1.314

Table 3 shows the trajectory error before corrections, after being processed using
PF only and after being processed using the FEPPA workflow. Although the position
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Figure 9.: PF point cloud

errors from the FEPPA results are higher compared to the PF results, this result is
processed by the navigation system’s software, therefore provides an updated position
and attitude result for generating point clouds. RMS indicates the Root Mean Square
Error, calculated by,

RMS =

√∑N
n=1(x̂n)− xn)2

N
(17)

To compare the point cloud correction results, Figure 10 shows the a section of the
final point cloud after being processed by three different methods, i.e. the proposed
FEPPA workflow, ICP registration method and a control point method. Each corrected
point cloud (shown in green) is overlaid on top of the reference point cloud (shown in
blue) and the original comparison point cloud (shown in orange).

(a) FEPPA method
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(b) ICP method

(c) Control point method

Figure 10.: Point cloud correction results after applying different correction methods
(Green: the corrected point cloud; Orange: uncorrected point cloud; Blue: reference
point cloud)

Figure 10(a) shows the reproduced point cloud using the FEPPA method, which
gives an alignment difference of around 2cm overall. Figure 10(b) shows the results
given by the CloudCompare ICP registration tool as described above. Results show
that the error in the comparison data has reduced, but the performance decreases
towards the edge of the data.

Figure 10(c) shows the results of the control point correction method, which is a
more or less standardised manual process used to correct MLS datasets, discussed
in Section 2.1. It usually gives the best results, but require long manual work to

20

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Jing_H
Highlight



survey control points and manually matching the point cloud to the control points.
The standard workflow uses the TerraScan/TerraMatch commercial software (from the
Terrasolid software suite (TerraScan 2016)) to input surveyed control point positions
and manually find those control points in the point cloud, the user must tell the
software the exact points representing the control point. The TerraMatch software
stores this information for each control point and works out a regression model to
correct the point cloud so that the position of the points matches the surveyed control
points. To save the surveying time, here the extracted features used in the FEPPA
process are used as control point inputs. The point cloud is then matched using the
standard workflow described above.

Note that the results from the control point matching method does not seem to give
better results than the FEPPA method. This is due to that in the actual standard
workflow, the control point positions need to be surveyed to the millimetre accuracy
level before being input into the software. Here, the position of the features are ex-
tracted and estimated from the reference dataset using the feature extraction process
described in Section 3.1. Therefore introducing inconsistent errors exist during extrac-
tion and estimation. The quality of the regression model produced by the software
could be reduced by such inputs, thus ouputing lower quality correction results. The
comparison of the results in (a) and (c) simply shows that the FEPPA process is able
to deal with measurement errors in the extracted features better than the TerraMatch
software, which do not expect bad measurements as control inputs. It is not to state
that the TerraMatch will not give good results when the standard procedure and good
quality control points are used.

4.3. FEPPA accuracy analysis

The quality of the feature extraction results and the quantity of the features extracted
are crucial to the performance of the FEPPA method. The effects of feature quantity
on the processed navigation accuracy can be seen in Figure 11. The navigation data
error after processing (in blue ’·’) is plotted against the number of features used during
each epoch to correct the data (in red ’x’). The level of error is reflected by the density
of the blue dots, i.e. darker regions indicate a high density of dots clustered in the
low error section, lighter regions indicate a more spread-out error distribution, which
implies a higher proportions of large errors. The red ’x’ shows the number of features
used in the FEPPA workflow for reprocessing the data. The plots shows that the
resulting navigation error was relatively larger when less features were used in the
correction workflow, whereas the navigation error reduced when more features were
used.

Although the FDOP value is affected by both the number of features used and the
geometry of the feature locations, for the analysed datasets here, it is mostly affected
by the number of features, as the extracted features were mostly spread out on either
side of the navigation system in a similar pattern. The produced FDOP value at
each epoch played a role in changing the weighting scheme in the update step. Low
FDOP values indicated more ”visible” features, thus more measurements integrated
into the workflow, which means that the particles’ weights would change more severely
if the measured range difference was high compared to when large FDOP values were
computed.

Further to the number of features, two thresholds also changed the processing re-
sults, i.e. the time difference and distance difference threshold, as described in Step 5 in
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Figure 11.: Comparison between the number of features and the resulting navigation
accuracy

Section 3.2. . Table 4 lists the navigation processing results for three test datasets after
applying the FEPPA workflow. ”Threshold n” indicates a different pair of thresholds
selected.

The time threshold, which is used to select ”visible” features at each epoch, was
8s for Threshold 1, 2 and 3, 5s for Threshold 4 and 5, and 10s for Threshold 6. The
distance threshold, which is the predefined threshold for particle weighting, is set at
0.5m for Threshold 1 and 6, 0.3m for Threshold 2 and 4, and 0.1m for Threshold 3 and
5. The ”% processed” column indicates the percentage of epochs that produced valid
outputs out of the total epochs that required processing. Invalid outputs are regarded
as epochs where the produced results were unreasonable or could not be processed due
to insufficient feature information available.

Table 4.: PF processing results with different parameters

Data Mean (m) Max (m) % processed
Data 1 Before corrections 0.919 1.880

Threshold 1 0.232 1.646 99.9%
Threshold 2 0.145 1.669 99.8%
Threshold 3 0.107 1.715 97%

Data 2 Before corrections 1.967 9.678
Threshold 4 0.856 9.678 60.9%
Threshold 3 0.473 9.678 60.4%
Threshold 5 0.021 0.164 31.1%

Data 3 Before corrections 0.543 4.038
Threshold 1 0.032 0.648 100%
Threshold 2 0.021 0.386 84.8 %
Threshold 6 0.033 0.678 100 %
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Both the time and distance threshold presents a trade-off between accuracy and
percentage of valid outputs. As mentioned Section 3.2, the ”visible” features are se-
lected by the time difference between the current epoch and the time when the data
representing the feature were captured. Due to that the navigation errors continously
change over time, ideally only features captured in the same epoch can reflect the
same level of error. However, this limits the number of features that can be used
and therefore reduces the update measurement input to help correct the trajectory.
Increasing the time threshold would mean that more ”visible” features could be ex-
tracted, i.e. reducing the FDOP value, integrating more measurements in the filter
and potentially producing better accuracy. However, if the time difference continues
to grow, the additional included features may no longer reflect the navigation error of
the current epoch. In the results for Data 2 and Data 3, a decrease in the accuracy
starts to show when the time threshold increases. Overall for all tested data, 8s is a
tolerable threshold. However, this also depends on the speed of the navigation system
and the density of features in the environment.

For the distance threshold, a tighter threshold, i.e. short distance, should be ap-
plied to improve accuracy, which gives significantly higher weights to particles that
have better range estimations to the features and lowers weights to others. However,
introducing a tighter threshold could reduce the number of valid particles left after
each updating step. Therefore, less capable of dealing with situations when errors are
high in the measurement input. This could reduce the percentage of valid output and
cause the problem of particle impoverishment more frequently. This could be seen in
the comparison of results for Data 1, Threshold 3 and 4 for Data 2, and Threshold 1
and 2 for Data 3, where tighter distance thresholds produced better average results but
also reduced the total number of valid epochs. As such, the actual threshold should be
tuned based on the estimated data accuracy, desired accuracy and feature extraction
quality to maximise the percentage of valid processed data while also reducing the
navigation error.

Finally, an example of change detection result is given below based on the FEPPA
corrected data. Change detection is performed by carrying out C2C computation be-
tween the processed comparison data and the reference dataset. Figure 12a shows a
section of the highway data where a change on the ground (hightlighted in red) had
been detected on a section of the road. Figure 12b shows the comparison point cloud
data coloured by intensity. Here we can see the cause of the change, i.e. a crack on
the road showing up as a diagonal marking along the road. Theses results indicate the
potential of using the FEPPA workflow to reduce the workload for processing MLS
point cloud data and being able to carry out data analysis such as these more quickly.

5. Conclusions and future work

LiDAR systems, especially mobile LiDAR, have become increasingly popular for a
range of applications, including surveying, monitoring and modelling. However, the
methods to correct and control the 3D point cloud accuracy and quality from a mo-
bile laser scanning system has been challenging due to demanding manual workloads.
This paper introduces an improved method to correct the MLS navigation accuracy
as well as the point cloud quality by using the feature information extracted from
the point cloud data. It is demonstrated through two different types of data: 1) a
suburban/urban area with a variety of infrastructure and clear objects; 2) a highway
in the rural environment with overgrowing trees on either side, which causes prob-
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(a) Road change detection (comparing data corrected by FEPPA
to a reference dataset)

(b) Corrected point cloud of the road shown in intensity

Figure 12.: Change detection results after applying FEPPA (colour bar indicates dif-
ference in metres)

lems in navigation and conventional point cloud registration. The proposed FEPPA
method first extracts useful features from the point cloud data and integrates their
location information into the navigation PF algorithm to update the trajectory. The
final step reproduces the point cloud using the updated trajectory. Results show that
the workflow is able to reduce the mean error by around 56% - 88% and the maximum
error by around 93%. One of its main advantages compared to conventional MLS data
processing is the huge reduction in processing time and effort. As most steps here are
automated, less skills and time effort is required to produce a reliable point cloud data.

However, a few issues were briefly mentioned in the paper but not address as part
of this work. First of all, the FDOP was measured as part of the FEPPA workflow.
Yet, in the analysed data, it did not reflect much information on the geometry and
was more of an indication of the number of features available. This was limited to
the environment of the data and the nature of the features were placed along the
road/rail side. The algorithm was also used only to correct the 2D position of the
trajectory due to that thee features were mostly spreadly spread out in the horizontal
plane relative to the navigation location. As there was insufficient height change in
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the features, it was not used to correct the height information in this case. In future
simulations, analysis should be carried out on how the 3D geometry of the features
affect the accuracy. Secondly, the reprocessing procedure in the final step of FEPPA
allows the software to produce a smoothed data and therefore generate clear point
clouds. However, as seen in the results’ plot, the smoothed data introduces some
errors. This is due to the way the software integrated GNSS and IMU data. However,
in this case the IMU provider did not provide an open source IMU data, therefore
limited the possibility of integrating the raw measurements in the PF algorithm. Such
effects should be investigated in future work with open source IMU measurements.
Finally, the feature errors are not linearly correlated to the navigation error due to
the changing attitude measurements of the IMU. How the attitude affects the error
and how the integration should tune parameters based on the attitude measurements
should also be investigated in future work.
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ABSTRACT
LiDAR systems are known to capture high density and accuracy data much more
efficiently than other surveying methods. Therefore they are used for many appli-
cations, e.g. mobile mapping and surveying, 3D modelling, hazard detection, etc.
However, while the accuracy of the laser measurements is very high, the accuracy
of the resulting 3D point cloud is greatly affected by the geo-referencing accuracy.
This is especially problematic for mobile laser scanning systems (MLS), where the
LiDAR is installed on a moving platform, e.g. a vehicle, and the point cloud is
geo-referenced by the data provided by a navigation system.

Due to the complexity of the surrounding environments and external conditions,
the accuracy of the navigation system varies and thereby changes the quality of the
point cloud. Conventional methods for correcting the point cloud accuracy either
rely heavily on manual work or semi-automatic registration methods. While they
can provide geo-referencing under different conditions, each has their own problems.
This paper presents a semi-automated geo-referencing trajectory correction method
by extracting features from the pre-processed point cloud and integrating this infor-
mation to reprocess the navigation trajectory which is then able to produce better
quality point clouds. The method deals with the changing errors within a point
cloud dataset, and reducing the trajectory error from metre level to decimetre level,
improving the accuracy by at least 56%. The accuracy of the regenerated point
cloud then becomes suitable for many accuracy-demanding monitoring and change
detection applications.

KEYWORDS
navigation, particle filter, point cloud, mobile mapping

1. Introduction

Light Detection and Ranging (LiDAR), also known as laser scanning, surveys the
surrounding environment by sending out pulsed laser light to target objects and mea-
suring the reflected pulse return times, wavelengths and signal intensity, from which
the distance between the scanner and the object could be obtained. Due to the high
accuracy of laser measurements and the scanner’s ability to scan objects with very high
density in a short time (e.g. more than 1 million measurements per second), LiDARs
can provide very high density and accurate measurements of the surveyed environment
(Lato et al. 2009, Pu et al. 2011, Puente et al. 2013, Mukupa et al. 2017). Therefore,
conventional surveying work are being replaced and improved by using LiDAR based
terrestrial and airborne surveying, mapping and monitoring. It is also being adopted in
more recent applications such as 3D High Definition mapping, autonomous navigation,
etc.

The mobile laser scanning system (MLS) is a popular system which integrates Li-
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DARs with a navigation system and installed onto a mobile platform, e.g. land vehicle,
aeroplane or drone. While the LiDAR continuously collects the reflected laser measure-
ment from the surrounding environment as the platform moves, the navigation system
provides the absolute position to geo-reference the laser measurements (Hutton et al.
2016). 3D point clouds can be generated very quickly by integrating the measurements
from the two systems, which can then be used for modelling, mapping, and asset man-
agement, etc. (Williams et al. 2013). Its versatility and efficiency suggests its potential
application in geohazard change detection and monitoring for remote areas. These
works are normally completed by traditional surveying methods or by using terrestrial
LiDAR systems, which provide high accuracy data, but are labour intensive. A main
challenge to using MLS for these applications is its point cloud accuracy, which is often
reduced as the navigation accuracy varies during data collection. The work discussed
here attempts to address this problem, i.e. improving the geo-referencing accuracy for
MLS point cloud data in a more efficient way, so that it can be used for accuracy
demanding applications.

The navigation system used for MLS usually consists of a Global Navigation Satel-
lite System (GNSS) and an Inertial Measurement Unit (IMU), as on the StreetMap-
per system from 3D Laser Mapping Ltd (3DLM). Additional sensors may include
odometer and barometer. Although the integrated navigation system are generally
high performance systems, it is inevitable that its accuracy could be reduced at times
as GNSS positioning relies on receiving satellite signals, which can easily be blocked
or disturbed. IMUs provide relative attitude measurements and accelerations that can
navigate in absence of GNSS. However, these measurement can only provide the nav-
igation solution for a short period of time during GNSS absence as IMU errors tend
to increase very quickly over time without external corrections. Therefore, achieving
high quality navigation in environments such as under thick tree canopy and urban
areas, is a challenging task. As a result, the navigation accuracy does not always meet
the expected accuracy requirement to geo-reference the MLS data. In such cases, the
produced point cloud need to be corrected.

In many MLS applications, the point cloud accuracy is ensured by installing physical
targets in the scan area, which act as control points (Puente et al. 2013). However, as
the targets may have to be installed in remote and difficult to access locations, this
method is both inconvenient and costly due to the amount of human labour required.
Other methods, such as relative registration, are sometimes applied. Yet the improved
correction efficiency comes at a cost of reduced accuracy compared to using control
points (Bitenc et al. 2011, Kukko et al. 2012, Lauterbach et al. 2015, Gézero et al.
2017, Toth et al. 2017).

To reduce the workload required for effective and accurate point cloud adjustments
and corrections, this work presents a semi-automated point cloud correction method
for terrestrial MLS by firstly improving the navigation trajectory accuracy. The im-
proved trajectory is then used to geo-reference the LiDAR measurements, correcting
the changing error within the dataset. This procedure makes use of the feature infor-
mation extracted from the point cloud which is then integrated within the navigation
processing algorithm, i.e. Feature Extraction based Particle filter Point cloud Aid-
ing (FEPPA). While feature matching methods have been proposed for registration
in previous research such as in (Jende et al. 2016), accurate aerial LiDAR data was
applied which does not suffer from the bad navigation errors that land MLS does.
The algorithm here is tested on various sets of real world LiDAR data under bad
GNSS conditions to demonstrate its point cloud correction capabilities. The FEPPA
workflow eliminates most of the tedious manual work, reducing the typical correction
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workload from around a week to under a couple of hours with comparable accuracy.
Section 2 will present the current background in point cloud matching as well as

common navigation algorithms. Section 3 discusses the FEPPA methods, which in-
cludes extracting features from MLS generated point clouds and its integration with
the navigation algorithm. Section 4 will present the test results using the proposed
method. Its capabilities as well as limitations will also be discussed here. The final sec-
tion concludes the work and discusses developments to adapt to future applications.

2. Background on MLS data processing

One of the main motivations for this work was to improve the MLS data accuracy to a
level that could be used for geo-hazard change detection, which looks for the difference
between two datasets of the same area but captured at different times (Mukupa et al.
2017). Change detection techniques have evolved greatly over the past years, from con-
ventional surveying to remote sensing techniques and the recent growing adaption of
LiDAR systems (Maghiar et al. 2016, Xiao et al. 2013, Williams et al. 2013), following
a trend of improved data acquisition with higher density and efficiency.

Point cloud change detection can be achieved by computing the distance of a point
from the comparison point cloud data to its relevant position in the reference point
cloud, i.e. cloud-to-cloud distance measurement. Any non-zero values reflects the po-
sition difference between the 3D points, revealing changes in the physical conditions
of the target area, such as those caused by landslides, slope failure, earthquake, road
damage etc (Lato et al. 2009, Jaboyedoff et al. 2010, Lindenbergh et al. 2015). There-
fore, the level of accuracy required for change detection depends on the type of changed
being assessed. Change detection in geo-hazards are mostly major or obvious changes
in the environment. Therefore the desired point cloud accuracy is within the decimetre
level to identify these changes.

Most monitoring applications nowadays rely on using static terrestrial LiDAR sys-
tems or airborne MLS. However, static systems have limited data coverage and it is
not always convenient to find a suitable scanning location. Airborne systems, on the
other hand, suffer from low data density due to their distance from the ground and
limited views of ground objects. The proposed correction method aims to enhance the
point cloud quality derived from terrestrial MLS so that a more efficient monitoring
workflow could be used for time critical applications in less accessible areas, addressing
issues in modern road and railway environment monitoring (Chen et al. 2015, Network
Rail 2016).

Controlling the point cloud quality from MLS before change detection analysis is
essential, as the inconsistency between compared data includes two aspects:

• the change in position or shape of the object that is represented by the point,
i.e. detected change;
• the relative position error between the two point clouds, i.e. noise and error.

Removing, or reducing, the relative error to a minimum is vital before carrying
out infrastructure or geotechnical monitoring analysis. The following subsections will
introduce the common methods for processing MLS data, including navigation data
and 3D point cloud processing. The major issues that affect the point cloud accuracy
and some common methods to address them will also be highlighted.
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2.1. Point cloud processing

The basic components of an MLS typically consists of one or two 2D laser scanner(s),
a GNSS/IMU integrated navigation system, an on-board computer and storage, as
well as power supply. 2D laser scanners capture relative range measurements from the
scanner to surrounding features which reflect the laser beam. To produce a 3D point
cloud, the 2D range measurements need to be time synchronised and integrated with
the navigation data using the basic steps as outlined below:

(i) Process the navigation data using suitable integration algorithms, e.g. Kalman
filter or particle filter, which produces trajectory data that includes both the
position coordinates as well as the attitude at a high rate.

(ii) Integrate the LiDAR range measurements with a 3D position and attitude by
matching their time stamps to the navigation data, thereby projecting the 2D
range measurement into a 3D coordinate system, i.e. generating a 3D point cloud.

(iii) Merging multiple scans: to increase the density of the point cloud, the same
route is sometimes scanned more than once by the MLS vehicle driving from
different directions, where each scan is known as a flightline (adopted concept
from airborne applications). Merging multiple flightlines into one point cloud
increases data density, hence captures more information of the environment.
However, prior to merging, the data must be corrected for mismatches, i.e. errors,
between the different scans to ensure that all data overlay consistently.

(iv) Point cloud corrections: merging the flightlines ensures that relative errors of
each scan are reduced. If control points were used, the merged point cloud needs
to be matched to the scanned control points. This step reduces the global errors
and ensures that the data fits with the global coordinate system used in the
location of the data capture.

Further data analysis can be carried out once the high quality 3D point cloud is
produced. Usually this procedure tries to imply some ”meaning” to the point cloud,
such as data classification or object recognition, etc.

Due to the data processing procedure, the accuracy of the 3D point cloud is affected
by both the measurement accuracy of the laser scanner as well as the performance of
the navigation system. The laser scanner range measurement accuracies are generally
around 0.5 - 2 cm usually with millimetre level precision; whereas the navigation data
accuracy can be affected by various external conditions, producing errors from a few
centimetres up to tens of metres. Therefore, the accuracy of the point cloud is largely
affected by the navigation system performance (Jing et al. 2016).

In ideal conditions, navigation systems can achieve decimetre or even centimetre
accuracy by using methods such as Real-time Kinematic GNSS positioning (RTK)
(Tang et al. 2015). However, GNSS based navigation is easily disturbed by the en-
vironment causing the accuracy to reduce to metre level or worse. This introduces
errors in the MLS point cloud, and even worse, introduces inconsistent errors within a
single point cloud dataset as the navigation error changes. Therefore, improving MLS
geo-referencing accuracy is cruicial before carrying out data analysis on MLS data.

Two common methods to improve point cloud accuracy are relative registration and
control point geo-referencing. Relative registration requires the availability of another
dataset of the same scan location with higher accuracy, known as the reference data.
The data of concern is then matched to the reference data using methods such as
Iterative Closest Point (ICP), Local Descriptor Histograms or other statistics that can
characterise the point cloud and find matching points between two data (Rusu et al.
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2008, 2009, Marden et al. 2012).
Registration is relatively fast, but the data can only be matched to minimise the

global differences between the two datasets. Therefore, it is unable to eliminate local
distortion and errors, such as those introduced by the navigation system. Further-
more, the performance of registration is highly dependent on the characteristics of the
point cloud data, such as the geometry of the features within the point cloud and the
movements of features between scans.

Geo-referencing using control points achieves unrivalled accuracy and reliability.
Control points have to be installed prior to data capture and surveyed using instru-
ments such as total stations or survey-grade GNSS to provide millimetre or centimetre
level position reference (Puente et al. 2013). The point cloud data is then corrected by
manually finding the targets in the point cloud and shifting the position of the points
representing the target to match the surveyed position of the targets. These shifts
build up a regression function which also shifts the other points in the data accord-
ingly (TerraScan 2016). This method produces better overall accuracy as it is able to
correct local errors within a data. It is especially useful when errors are inconsistent
within a dataset, which is generally the case for data produced by the MLS. However,
this correction process is known to be labour intensive and must be done manually.

2.2. Navigation data processing

Due to its effect on the point cloud data accuracy, ensuring the navigation data ac-
curacy is cruicial to reducing error in the point cloud. Many algorithms had been
proposed to integrate GNSS and IMU measurements for continuous high performance
navigation, including Kalman filter (KF), extended KF and Particle Filters (PF) etc.
Since its introduction in 1960 (Kalman 1960), KF has become an efficient tool to solv-
ing linear prediction and estimations problems, including tracking and navigation. It
continuously measures and estimates the navigation system state, i.e. position, velocity,
attitude and biases, while estimated states are continuously updated by incoming new
measurements. Integrated navigation methods provides continuous navigation even
when GNSS measurement is not available for a period of time.

High performance IMUs will be able to produce acceptable navigation during a
longer period of GNSS outage. However, IMU measurements always grow exponen-
tially over time and eventually exceed the requirement levels if GNSS positioning or
other sources of positioning measurements are continuously unavailable. If additional
external measurements could be integrated when they become available, the naviga-
tion performance could become more reliable. Due to the non-linear characteristics
of external measurements, PF is considered more suitable and achieves better perfor-
mance.

Particle filtering is a recursive Bayesian filtering method that integrates measure-
ments from different sources and predicts the system states, which are represented
by a large set of particles with associated weights, through sequential Monte Carlo
estimation (Gordon et al. 1993, Ristic et al. 2004) . The system state vector Xk is a
discrete time stochastic model expressed as below:

Xk = fk(Xk−1, vk−1) (1)

where fk is the non-linear function of the state Xk−1 and process noise vk−1 at time
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k, . The state vector Xk is recursively updated from observations zk:

zk = hk(Xk, nk) (2)

where hk is usually a non-linear function with measurement noise nk. PF estimates the
state Xk at time k, given observations z1:k up to time k. At each epoch, the predicted
probability density function (pdf) is updated through measurements to represent the
posterior pdf of the current state. As it is usually impossible to obtain the true posterior
pdf, N particles are generated to represent a discrete approximation p(x),

p(x) ≈
N∑
i=1

wiδ(x− xi) (3)

where particles xi are drawn from the approximate density, wi is the normalised weight
of the ith particle, and δ(·) is the Dirac delta function. As N →∞, the approximation
should approach the true posterior pdf. A brief summary to each iteration of a typical
PF procedure for navigation based on (Gustafsson et al. 1993, Ristic et al. 2004) is an
below.

• Initialisation: N particles xi0(i = 1, ..N) are created to represent an estimated
probability distribution of the initial system state p(X0), i.e. for navigation sys-
tems, each particle includes information on location, historic location, its current
state, and a weight. All particles usually start with equal weights, unless other
prior information is available. The weighted average of the particles represents
the initial system state estimation.
• Prediction: the particles propagate through a prediction model, as Eq.1, the prior

pdf of the new state estimate Xk|k−1 at time k is obtained,

p(xk|Z1:k−1) =

∫
p(xk|xk−1)p(xk−1|Z1:k−1)dxk−1 (4)

where Z1:k−1 is a set of all available measurements z up to time k, p(xk|xk−1) is
the probabilistic model of the state propagation defined by the system equation
and estimation of noise vk−1.
• Update: a set of new measurement zk at time step k is obtained to update the

prior via Bayes rule and obtain the posterior of the system state

p(xk|Z1:k) =
p(zk|xk)p(xk|Z1:k−1)

p(zk|Z1:k−1)
(5)

where p(zk|xk) is the conditional pdf of zk given xk, p(xk|z1:k−1) is the prior pdf
at time step k and p(zk|Z1:k−1) is the probabilistic model of the state propagation
defined by the system equation and estimation of noise vk−1. The likelihood of
each particle xik , i.e. the weight wi

k, is computed based on p(xk|Z1:k−1).
• Resample: A weight threshold is defined based on the system requirements and

any particle i with a weight below the threshold is redefined as wi
k = 0. If the

number of valid particles falls below a threshold, the particle cluster is resampled
to regenerate N particles based on p(xk|Z1:k−1). The particle weights are then
normalised.
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• Return to step 2 (prediction) or end process: the weighted mean of the particles
gives the state estimation at the end of each iteration.

With the flexibility to integrate any data source as they become available, PF is
widely adopted for the integration of measurements from different sources. The work
presented here introduces an MLS data correction method by integrating information
extracted from the LiDAR measurements in the point cloud data and integrating them
with other navigation measurements using PF. However, integrating LiDAR measure-
ments can be highly computationally expensive due to its high data rate and density.
FEPPA allows a ”very loose-coupling” scheme that corrects navigation only when nec-
essary and reduces the computational effort. The integration of LiDAR measurements
with a GNSS/IMU system takes advantage of the high accuracy GNSS performance
in open sky areas, high accuracy IMU attitude measurements and periodic corrections
constrained by the feature landmarks in the point cloud data.

3. The FEPPA method

Unstable performance of the onboard sensors of an MLS leads to two main problems:
1) inaccuracy in the produced point cloud; 2) inconsistent accuracy in the point cloud;
as shown in Figure 1, which plots the distance, i.e. mismatch, between the two point
clouds representing the same location, one perfectly geo-referenced and another gen-
erated by uncorrected navigation data. The blue crosses are the estimated standard
deviation from the navigation filter which gives an indication of the navigation accu-
racy; the red triangle line shows the average mismatch between the points within a
point cloud dataset generated during those epoches. The mismatch between the point
cloud data varies as the navigation accuracy changes, thus indicating that the accu-
racy of the point cloud generated by MLS can vary depending how the navigation
error changes. When point cloud data of different accuracies are merged together, the
resulting data can show a ”shadowing” effect such as seen in Figure 2. This inaccuracy
and inconsistency leads to further problems when analysing data, therefore needs to
be minimised.

The proposed FEPPA method improves the navigation accuracy through integrat-
ing the measurements extracted from point cloud features which contains both abso-
lute location information (position within the absolute global coordinate system, i.e.
WGS84) and relative location information (distance between the system and other
features). The sections below will explain the methods used to extract feature infor-
mation and the PF based integration method to enhance navigation as well as point
cloud accuracy and consistency.

3.1. Point cloud feature extraction

Feature extraction and object recognition have been one of the main research areas for
LiDAR point clouds. Mainstream methods include key point detection, classification
and object recognition (Bosch et al. 2007, Zhong 2009, Hansch et al. 2014). These
include identifying unique points of interest within a point cloud even at different
scales, such as corners and sides of objects (Assfalg et al. 2007, Knopp et al. 2010).
Object recognition is the procedure to detect and extract points representing an entire
object or class of features. These methods rely on using unique descriptors to describe
the geometry features as well as other laser measurements, e.g. intensity, which help
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Figure 1.: Navigation performance effect on the point cloud (The Nav std line
represents the estimated navigation error from the navigation filter; point cloud line
represents the distance of the points between a MLS point cloud data compared to a

reference dataset of the same location)

Figure 2.: Shadowing effects when accuracy is inconsistent between point cloud data

to recognise the object points among other data points in the point cloud (Lehtomaki
et al. 2016, Yang et al. 2017). These descriptors specify each object with its unique
identity which are pre-learned by the machine and features/objects are detected from
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the point cloud using supervised or semi-supervised machine learning methods.
The first step of the FEPPA method relies on extracting measurements from stable

features within the dataset. The object recognition/classification method used here is
based on the CANUPO suite developed by Brodu et al (Brodu et al. 2012), which is
available from the open source software CloudCompare. The CANUPO algorithm was
developed especially to identify and classify complex scenes in the natural environ-
ment, such as vegetation, rock, gravel and water, etc. which is not addressed by many
classification tools. The toolset handles large datasets and allows simple user input
through semi-supervised machine learning procedures. The main idea of CANUPO
is to characterise the local dimensionality properties of the scene at each point and
different scales, i.e. how the point cloud objects look like at 1D, 2D or 3D scales. The
learned characteristics help to identify objects or classify points at a later stage.

Within the context of this paper, the main application is the early detection and
monitoring of geo-hazards. The datasets were collected along railways and roadsides.
The CANUPO tool was tested to give relatively better performance for the types
of datasets that were used, thus adopted as part of the workflow. It is used for the
extraction of pole shaped infrastructure, including lamp posts and utility poles etc.,
among other similar natural environment features, e.g. trees.

Figure 3.: Point cloud classification results using CANUPO
(Blue: pole class (target object); Red: other points not representing the target

object; Grey: points that cannot be classified by the tool)

First of all, a descriptor is built in the CANUPO toolbox that can distinguish
between the pole shaped infrastructures of interest (i.e. objects that will not change
shape or position over time) and other objects in the point cloud. It is vital to exclude
trees from the extracted feature dataset as they can introduce large ambiguities during
processing. Once the descriptor is created, the point cloud datasets are run through
the CANUPO toolbox, for pre-processing.

This step classifies the points in the point cloud into three classes: pole points, non-
pole points and unidentified points, as shown in Figure 3. However, the classification
results here are not perfect due to slight differences between the actual objects and
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the descriptor. Therefore, the second step in the workflow, i.e. cleaning the classified
points, is critical. The cleaning workflow was developed in Matlab by the author and
deletes any false-positive points that have been classified as poles by the CANUPO
tool, as shown in Figure 4. The cleaning workflow divides the classified target points
(blue points from Figure 3) into 1m × 1m grids, then filters out the data points if
they were associated with low confidence by the CANUPO tool and the density of the
points within the grid falls below a threshold, which is defined relative to the entire
point cloud density.

Figure 4.: Extracted features from classified points (red points indicate the final
classified pole points, blue points are all the classified points from CANUPO (the

blue points from Figure 3), green stars indicate the estimated 2D location of the pole
object, plotted at the same height for visual indication)

Once the data has been filtered and the ”clean” features have been identified, the
Matlab script extracts further information from the points representing each object,
i.e. [tfi , xfi , yfi ,∆hfi , intensityfi , σfi ], which represent the time of the data capture,
Easting, Northing and height difference in OSGB36 grid coordinates (the geographic
grid reference used in the UK), intensity of the points, and the confidence index of
the CANUPO classification, respectively. The extracted information from a reference
point cloud data is saved as the reference feature information; information extracted
from the comparison dataset is saved as the comparison feature information. These
information will be integrated into the navigation PF to reprocess the trajectory, which
improves accuracy and consistency among the datasets captured at different times.
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3.2. Particle filtering based navigation aiding

The navigation trajectory used for creating the original point clouds is generated from
integrating GNSS positioning data and IMU measurements through loosely coupled
KF, which is carried out by the software given by the navigation system provider. How-
ever, as discussed, navigation trajectory does not have consistent accuracy along the
entire route. This is predominately due to changes and variations in the GNSS satellite
condition and environment when datasets are captured at different times of the day or
year. Hence changing the accuracy of the point cloud data. Therefore, it is important
to ensure that different point cloud datasets are corrected to the same accuracy level
before they can be used to carry out change detection or other similar analysis. The
FEPPA algorithm proposed here reprocesses this trajectory by integrating the feature
information extracted in Section 3.1.

The algorithm follows the basic PF procedures described in Section 2.2 where the
system state model Xk represents the navigation system position information, the
propagation vector follows the measurements obtained from the IMU and the extracted
feature information is integrated to provide measurement updates as explained in
more detail below. The process noise vk is normally distributed with a mean of 0 and
standard deviation given based on the system specifications for position and heading
errors, the measurement noise nk is normally distributed with a mean of 0 and a
standard deviation following the current estimated navigation error which is derived
from comparing the feature locations and the current system location. A basic workflow
chart is given in Figure 5.

As outlined in Section 3.1, the extracted features of interest should remain sta-
ble over time and thus retain the same location information. Inconsistent navigation
accuracy is detected when the same features are geo-referenced at slightly different
locations. Therefore, the position difference of the reference features fref and the

comparison features fi, i.e. ∆dis
fref
fi

, will be used as an observation measurement in-
tegrated into the PF to constrain the navigation error in post-processing. The steps
of the FEPPA workflow is described as below:

1) Estimate the centre position of each of the N features {xfi , yfi ,∆hfi}i=1,...,N

from the data points,

xfi = mean(x1, x2, ..., xq); (6)

yfi = mean(y1, y2, ..., yq); (7)

∆hfi = zmax
i − zmin

i ; (8)

where fi is the feature number, and q is the number of points representing
feature fi. The time stamp of each point representing each feature tiq is saved as
a separate array for reference. The time reference is essential as the navigation
error and point cloud error are correlated by time.

2) Compute the 2-D geometry index of the group of features extracted at the cur-
rent epoch, i.e. FDOP (Feature Dilution of Precision), adopted from the GNSS
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Figure 5.: Flowchart showing the basic steps of the FEPPA method

positioning DOP concept:

FDOP =
√
σ2x + σ2y (9)

where σ2x = xi−x
Ri

, σ2y = yi−y
Ri

, Ri =
√

(xi − x)2 + (yi − y)2, xi and yi are the 2D
coordinates of the features, x and y are the 2D coordinates of the system at the
current epoch. At each epoch, the features selected for computation are features
whose data points were captured within a time threshold of the current epoch,
denoted as ”visible” features in the text below. The selection of ”visible” features
is to ensure that the navigation accuracy representated by the features are similar
to the accuracy of the current epoch. FDOP provides an estimated indication of
whether the extracted feature information could improve the trajectory accuracy
at the current epoch. Small FDOP indicates good geometry layout surrounding
the MLS system, i.e. evenly spread out features along the travelling path on
both sides, therefore these features can be used to give a better accuracy when
post-processing the trajectory; larger FDOP s indicate bad geometry, either due
to low number of available features, or that features are clustered close together,
thus less capable of giving a better accuracy estimate.
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3) Initialise the PF: initialise a set of particles pm around the initial position with
a level of uncertainty σpt based on the trajectory data, where m = 1, ...,M , i.e.
M = 1000, wm

k = 1/M is used here.
4) Propagate the particles based on the measurements from the navigation system,

i.e.

pmt
x = pmt−1

x + ∆x; (10)

pmt
y = pmt−1

y + ∆y; (11)

∆x and ∆y should be derived from the navigation system measurements. How-
ever, in this case, the commericial navigation system used did not provide raw
IMU measurements. Therefore, ∆x and ∆y are derived from the produced navi-
gation trajectory, i.e. the position and heading change between the current and
previous epoch with added process noise vk to allow for errors in the produced
trajectory.

5) The weight of each particle wm
k is reassigned in this step after comparing the

distance between each particle and the location of ”visible” features (i.e. Rfi
pm)

and the distance to the same features in a reference dataset (i.e. R
fref
pm ) :

Rfi
pm

=
√

(pmx − fix)2 + (pmy − fiy)2 (12)

Rfref
pm

=
√

(pmx − frefx)2 + (pmy − frefy)2 (13)

∆Rpm
= Rfref

pm
−Rfi

pm
(14)

If the difference ∆Rpm
is over a predefined distance threshold, depending on

the estimated navigation error, the particle weight wm
k is simply give wm

k = 0;
otherwise, wm

k is the inverse of the difference in the distance, i.e.

wm
k =

1

∆Rpm
· a

(15)

where a defines how quickly the difference in the distance changes the weight. The
position and height information of the points representing each feature is used to
justify the matching between the current feature fi and reference feature fref . If
there should be a mismatch due to several features being too close together, the
range difference will appear to be sufficiently larger than expected, thus giving
a lower weight or 0.

6) Resampling: to avoid the particles clustering towards a wrong location in the pro-
cess or particle impoverishemnt, both of which are common problems in PF if
the wrong weighting and resampling threshold is used, the particles are checked
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for resampling after every iteration. If there are any invalid particles, i.e. any
particles with wm

k = 0, particles with a higher weight wm
k is given higher prob-

ability to regenerate new particles, while low-weighted particles will have less
opportunity to generate new particles, to replace these invalid particles. A sys-
tem noise is added to the regenerated particle cluster. If there are no remaining
valid particles, a new particle cluster is generated based on the current estimated
position. As the feature range measurements can constrain the particles to quite
a small area, resampling will ensure there are always valid particles to continue
the iteration.

7) Positioning estimation: the updated position estimation of the navigation system,
i.e. the MLS position, is computed from the weighted average of all particle
positions, i.e.

{xupdate, yupdate} = {
∑M

m=1(p
m
x · wm)∑M

m=1(wm)
,

∑M
m=1(p

m
y · wm)∑M

m=1(wm)
}; (16)

The PF is continued until the whole trajectory has been reprocessed using the
feature information; generating a new trajectory for geo-referencing, i.e. the PF
results.

8) The PF trajectory is used to update the GNSS measurement data, which is
then reprocessed by GNSS/IMU integration software provided by the navigation
provider, producing the final FEPPA trajectory. The point cloud is re-generated
using the FEPPA trajectory.

The final step is required here as we did not have access to the raw measurements
produced from the navigation system, which was a limitation from the commerial
hardware and software package. The PF algorithm could only update the position
estimations, thus need to be reprocessed in the integration software to provide im-
proved position and attitude outputs before the data can be used to geo-reference the
point cloud. The PF integration method was chosen here due to that the integrated
feature measurements cannot be easily modelled for KF due to their changing and un-
predictable nature. Yet integration of these measurements in PF is a straightforward
procedure.

The FEPPA process is designed based on the assumption that the difference in
the navigation accuracy is reflected by the relative distance shift between the same
features extracted from the corresponding point cloud dataset. The distance shift is
estimated and used to reprocess the trajectory, aiming to reduce the error. However,
it is recognised that the distance shift between the features does not fully represent
the actual navigation error, due to errors being either enlarged or reduced by the
changing attitude measurements of the navigation system. Therefore, the coefficient
a and cut-off threshold are introduced to provide an adaptive weighting scheme. This
reduces the constraint of the measurement update and allows for the slight difference
between the actual navigation error and the distance shift between features.

Analysis on several datasets are given below to discuss the performance of the
FEPPA workflow and some considerations when using the method.
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4. Results and analysis

This section will analyse the performance of the FEPPA workflow on two datasets cap-
tured in different environments and using navigation systems of different performance
levels. The point cloud correction performance of the FEPPA method will be compared
to registration methods and also standard MLS data processing workflows using the
commercial software suite, TerraScan/TerraMatch. The results of the correction is
compared to the reference point cloud using cloud-to-cloud distance computation to
see how well it matches the desired data. The efficiency of the workflow and also minor
problems that need to be considered are also discussed.

4.1. Simulation data and processing

Two sets of MLS data were captured for the analysis of the proposed workflow. The
first dataset was captured along the Nottingham tram line, which simulates railway
and roadside scenarios in terms of infrastructure, covering both suburban and urban
environments. This data simulates the environment which requires infrastructure and
asset monitoring. The second dataset was captured along the A52 highway road near
Bingham, England, which has a mostly rural environment and simulates the a rural
site which requires geohazard monitoring.

The MLS system used for the tram data capture was the ROBIN system from 3D
Laser Mapping Ltd and the A52 road data is captured using the StreetMapper system
also from 3D Laser Mapping Ltd, as shown in Figure 6. The StreetMapper IV system
consists of a Riegl VUX-1 laser scanner and an IGI TerraControl navigation system,
which consists of a NovAtel GNSS receiver and the IGI Fibre optic gyros (FOG) IMU-
IIe. The ROBIN system consists of a Riegl VUX-1HA scanner and the same GNSS
receiver but integrated with a MEMS (Micro-Electro-Mechanical System) IMU, which
is a lower grade IMU compared to FOG IMUs. Specifications for the VUX-1 scanner
is listed in Table 1. The scanner is installed facing backwards of the vehicle with a 50◦

angle to the horizontal plane, allowing the scanner to capture details of the ground
and along both sides of the road. Specifications for the two navigation systems are
listed in Table 2.
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(a) ROBIN MLS system

(b) StreetMapper MLS system (the cam-
era system in the picture was not used in
this particular test)

Figure 6.: Systems used for data capture

Table 1.: RIEGL VUX-1 laser scanner performance

Max
range

FOV Meas.
rate

Resolution Accuracy Precision

VUX-1 up to
920m

330◦ up to
550kHz

0.001◦ 10mm 5mm

Table 2.: IGI TerraControl navigation system

Pos (m) Vel (m/s) Heading (◦) Pitch/Roll
(◦)

FOG-IIe 0.02 0.005 0.03 0.015
MEMS 0.02 0.005 0.01 0.004

Gyro bias
(◦/hr)

Gyro random
walk (◦/hr2)

Acc bias (mg)

FOG-IIe 1 0.07 0.3
MEMS 0.03 0.0005 0.1

For testing and evaluation, a good quality reference dataset is generated. The data
was captured in an environment without any long tunnels or thick foliage which may
potentially block the sky view and reduce navigation accuracy significantly. For both
datasets, the navigation and point cloud data were processed to its best possible
solution using the standard workflow that would be used to deliver data to clients, i.e.
the final navigation accuracy is centimetre level for over 95% of the entire trajectory
and the point cloud data was manually corrected and processed using the TerraSolid
software suite with high quality calibration. These results were saved as the reference
data.

To introduce errors into the dataset, sections of GNSS measurements are deleted
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from the navigation data to simulate loss of GNSS signals. The period of deleted
measurements varies for the different navigation system used, but both produced nav-
igation errors of over a metre. For the tram data, a period of 90 seconds was deleted
resulting in around 4m error; 4.5 minutes of GNSS measurements were deleted from the
A52 highway data producing a maximum error of around 2m. The resulting trajectory
and point cloud data were saved as the comparison data.

Pole features were extracted from the point cloud using the feature extraction work-
flow described in Section 3.1 for both the reference and comparison data. For both
datasets, the most common features used were the lamp posts and utility poles. The
trajectories of the comparison data was reprocessed using the FEPPA workflow to re-
duce the trajectory errors, which can then be used to regenerate the comparison point
cloud so that it matches the reference dataset. Navigation error here is referred to
as the difference between the comparison or reproduced trajectory and the reference
trajectory. The point cloud difference were measured by the Cloud-to-cloud distance
(C2C) tool provided in CloudCompare and results are displayed in colour scale.

4.2. FEPPA performance and comparison

To analyse the correction performance of the FEPPA workflow, registration methods
were also used to match the comparison and reference data and the results were com-
pared to the FEPPA outputs. A series of tools, including Spin image registration de-
veloped by 3DLM, registration tools available in Point Cloud Library, and registration
tools in CloudCompare, were tested for comparison. Although with slightly different
accuracies, all tools presented similar pros and cons for the data that were tested
on. The results from the ICP tool in CloudCompare is given here as an example for
typical problems when using registration for large MLS datasets. The CloudCompare
ICP tool usually gives quick and efficient results with reasonable accuracy in general
registration problems (Wu et al. 2018). However, as with all registration methods, it
is unable to deal with changing accuracy within the same point cloud dataset.

The ICP matching results for a small section of the tram data is shown in Figure
7. Here the point cloud data registered using ICP, shown in orange-yellow points, is
overlaid on top of the reference data, shown in blue. The change in error levels of

Figure 7.: ICP performance on the tram data (matched data compared to the
reference data)
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Figure 8.: Navigation correction results

the MLS data could be clearly seen, where the features between the two data on the
left side of the data are much more closer than the features on the right-hand side of
the data. This reflects one of the main problems of using rigid registration methods
for MLS point cloud geo-referencing, where the errors are inconsistent throughout the
data.

The tram data will be discussed in more detail below, due to its better visualisation
effects. Therefore, enabling clearer comparison.

The FEPPA workflow corrects the inconsistent error within the same point cloud
dataset by reprocessing the navigation data using error estimation extracted from fea-
tures in the point cloud. Figure 8 shows the error of the original comparison navigation
data compared to the navigation error after being processed by two workflows, i.e. PF
and FEPPA. The PF method is actually a part of the FEPPA workflow but only
reprocessing the data up to Step (7) outlined in the workflow in Section 3.2. Results
from using the PF method only is shown in the red dotted line.

The FEPPA results, plotted in yellow lines, shows the results processed by the
complete FEPPA workflow, i.e. outputs after Step (8). As mentioned previously, Step
(8) is required here due to not being able to access the sensor raw measurements. This
step reprocesses the data to update both the position and attitude outputs. Although
it seems that the position error of the trajectory is lower by using PF only, the attitude
measurements are not updated according to the new updated positions, the generated
point cloud data can appear to be ”messy”, as seen in Figure 9.

Table 3.: FEPPA processing results

Before cor-
rection

PF only FEPPA

Tram data RMS (m) 1.051 0.022 0.119
Max (m) 4.224 0.183 0.261

Highway data RMS (m) 0.919 0.145 0.441
Max (m) 1.880 1.669 1.314

Table 3 shows the trajectory error before corrections, after being processed using
PF only and after being processed using the FEPPA workflow. Although the position
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Figure 9.: PF point cloud

errors from the FEPPA results are higher compared to the PF results, this result is
processed by the navigation system’s software, therefore provides an updated position
and attitude result for generating point clouds. RMS indicates the Root Mean Square
Error, calculated by,

RMS =

√∑N
n=1(x̂n)− xn)2

N
(17)

To compare the point cloud correction results, Figure 10 shows the a section of the
final point cloud after being processed by three different methods, i.e. the proposed
FEPPA workflow, ICP registration method and a control point method. Each corrected
point cloud (shown in green) is overlaid on top of the reference point cloud (shown in
blue) and the original comparison point cloud (shown in orange).

(a) FEPPA method
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(b) ICP method

(c) Control point method

Figure 10.: Point cloud correction results after applying different correction methods
(Green: the corrected point cloud; Orange: uncorrected point cloud; Blue: reference
point cloud)

Figure 10(a) shows the reproduced point cloud using the FEPPA method, which
gives an alignment difference of around 2cm overall. Figure 10(b) shows the results
given by the CloudCompare ICP registration tool as described above. Results show
that the error in the comparison data has reduced, but the performance decreases
towards the edge of the data.

Figure 10(c) shows the results of the control point correction method, which is a
more or less standardised manual process used to correct MLS datasets, discussed
in Section 2.1. It usually gives the best results, but require long manual work to
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survey control points and manually matching the point cloud to the control points.
The standard workflow uses the TerraScan/TerraMatch commercial software (from the
Terrasolid software suite (TerraScan 2016)) to input surveyed control point positions
and manually find those control points in the point cloud, the user must tell the
software the exact points representing the control point. The TerraMatch software
stores this information for each control point and works out a regression model to
correct the point cloud so that the position of the points matches the surveyed control
points. To save the surveying time, here the extracted features used in the FEPPA
process are used as control point inputs. The point cloud is then matched using the
standard workflow described above.

Note that the results from the control point matching method does not seem to give
better results than the FEPPA method. This is due to that in the actual standard
workflow, the control point positions need to be surveyed to the millimetre accuracy
level before being input into the software. Here, the position of the features are ex-
tracted and estimated from the reference dataset using the feature extraction process
described in Section 3.1. Therefore introducing inconsistent errors exist during extrac-
tion and estimation. The quality of the regression model produced by the software
could be reduced by such inputs, thus ouputing lower quality correction results. The
comparison of the results in (a) and (c) simply shows that the FEPPA process is able
to deal with measurement errors in the extracted features better than the TerraMatch
software, which do not expect bad measurements as control inputs. It is not to state
that the TerraMatch will not give good results when the standard procedure and good
quality control points are used.

4.3. FEPPA accuracy analysis

The quality of the feature extraction results and the quantity of the features extracted
are crucial to the performance of the FEPPA method. The effects of feature quantity
on the processed navigation accuracy can be seen in Figure 11. The navigation data
error after processing (in blue ’·’) is plotted against the number of features used during
each epoch to correct the data (in red ’x’). The level of error is reflected by the density
of the blue dots, i.e. darker regions indicate a high density of dots clustered in the
low error section, lighter regions indicate a more spread-out error distribution, which
implies a higher proportions of large errors. The red ’x’ shows the number of features
used in the FEPPA workflow for reprocessing the data. The plots shows that the
resulting navigation error was relatively larger when less features were used in the
correction workflow, whereas the navigation error reduced when more features were
used.

Although the FDOP value is affected by both the number of features used and the
geometry of the feature locations, for the analysed datasets here, it is mostly affected
by the number of features, as the extracted features were mostly spread out on either
side of the navigation system in a similar pattern. The produced FDOP value at
each epoch played a role in changing the weighting scheme in the update step. Low
FDOP values indicated more ”visible” features, thus more measurements integrated
into the workflow, which means that the particles’ weights would change more severely
if the measured range difference was high compared to when large FDOP values were
computed.

Further to the number of features, two thresholds also changed the processing re-
sults, i.e. the time difference and distance difference threshold, as described in Step 5 in
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Figure 11.: Comparison between the number of features and the resulting navigation
accuracy

Section 3.2. . Table 4 lists the navigation processing results for three test datasets after
applying the FEPPA workflow. ”Threshold n” indicates a different pair of thresholds
selected.

The time threshold, which is used to select ”visible” features at each epoch, was
8s for Threshold 1, 2 and 3, 5s for Threshold 4 and 5, and 10s for Threshold 6. The
distance threshold, which is the predefined threshold for particle weighting, is set at
0.5m for Threshold 1 and 6, 0.3m for Threshold 2 and 4, and 0.1m for Threshold 3 and
5. The ”% processed” column indicates the percentage of epochs that produced valid
outputs out of the total epochs that required processing. Invalid outputs are regarded
as epochs where the produced results were unreasonable or could not be processed due
to insufficient feature information available.

Table 4.: PF processing results with different parameters

Data Mean (m) Max (m) % processed
Data 1 Before corrections 0.919 1.880

Threshold 1 0.232 1.646 99.9%
Threshold 2 0.145 1.669 99.8%
Threshold 3 0.107 1.715 97%

Data 2 Before corrections 1.967 9.678
Threshold 4 0.856 9.678 60.9%
Threshold 3 0.473 9.678 60.4%
Threshold 5 0.021 0.164 31.1%

Data 3 Before corrections 0.543 4.038
Threshold 1 0.032 0.648 100%
Threshold 2 0.021 0.386 84.8 %
Threshold 6 0.033 0.678 100 %
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Both the time and distance threshold presents a trade-off between accuracy and
percentage of valid outputs. As mentioned Section 3.2, the ”visible” features are se-
lected by the time difference between the current epoch and the time when the data
representing the feature were captured. Due to that the navigation errors continously
change over time, ideally only features captured in the same epoch can reflect the
same level of error. However, this limits the number of features that can be used
and therefore reduces the update measurement input to help correct the trajectory.
Increasing the time threshold would mean that more ”visible” features could be ex-
tracted, i.e. reducing the FDOP value, integrating more measurements in the filter
and potentially producing better accuracy. However, if the time difference continues
to grow, the additional included features may no longer reflect the navigation error of
the current epoch. In the results for Data 2 and Data 3, a decrease in the accuracy
starts to show when the time threshold increases. Overall for all tested data, 8s is a
tolerable threshold. However, this also depends on the speed of the navigation system
and the density of features in the environment.

For the distance threshold, a tighter threshold, i.e. short distance, should be ap-
plied to improve accuracy, which gives significantly higher weights to particles that
have better range estimations to the features and lowers weights to others. However,
introducing a tighter threshold could reduce the number of valid particles left after
each updating step. Therefore, less capable of dealing with situations when errors are
high in the measurement input. This could reduce the percentage of valid output and
cause the problem of particle impoverishment more frequently. This could be seen in
the comparison of results for Data 1, Threshold 3 and 4 for Data 2, and Threshold 1
and 2 for Data 3, where tighter distance thresholds produced better average results but
also reduced the total number of valid epochs. As such, the actual threshold should be
tuned based on the estimated data accuracy, desired accuracy and feature extraction
quality to maximise the percentage of valid processed data while also reducing the
navigation error.

Finally, an example of change detection result is given below based on the FEPPA
corrected data. Change detection is performed by carrying out C2C computation be-
tween the processed comparison data and the reference dataset. Figure 12a shows a
section of the highway data where a change on the ground (hightlighted in red) had
been detected on a section of the road. Figure 12b shows the comparison point cloud
data coloured by intensity. Here we can see the cause of the change, i.e. a crack on
the road showing up as a diagonal marking along the road. Theses results indicate the
potential of using the FEPPA workflow to reduce the workload for processing MLS
point cloud data and being able to carry out data analysis such as these more quickly.

5. Conclusions and future work

LiDAR systems, especially mobile LiDAR, have become increasingly popular for a
range of applications, including surveying, monitoring and modelling. However, the
methods to correct and control the 3D point cloud accuracy and quality from a mo-
bile laser scanning system has been challenging due to demanding manual workloads.
This paper introduces an improved method to correct the MLS navigation accuracy
as well as the point cloud quality by using the feature information extracted from
the point cloud data. It is demonstrated through two different types of data: 1) a
suburban/urban area with a variety of infrastructure and clear objects; 2) a highway
in the rural environment with overgrowing trees on either side, which causes prob-

23

Jing_H
Highlight

Jing_H
Highlight



(a) Road change detection (comparing data corrected by FEPPA
to a reference dataset)

(b) Corrected point cloud of the road shown in intensity

Figure 12.: Change detection results after applying FEPPA (colour bar indicates dif-
ference in metres)

lems in navigation and conventional point cloud registration. The proposed FEPPA
method first extracts useful features from the point cloud data and integrates their
location information into the navigation PF algorithm to update the trajectory. The
final step reproduces the point cloud using the updated trajectory. Results show that
the workflow is able to reduce the mean error by around 56% - 88% and the maximum
error by around 93%. One of its main advantages compared to conventional MLS data
processing is the huge reduction in processing time and effort. As most steps here are
automated, less skills and time effort is required to produce a reliable point cloud data.

However, a few issues were briefly mentioned in the paper but not address as part
of this work. First of all, the FDOP was measured as part of the FEPPA workflow.
Yet, in the analysed data, it did not reflect much information on the geometry and
was more of an indication of the number of features available. This was limited to
the environment of the data and the nature of the features were placed along the
road/rail side. The algorithm was also used only to correct the 2D position of the
trajectory due to that thee features were mostly spreadly spread out in the horizontal
plane relative to the navigation location. As there was insufficient height change in
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the features, it was not used to correct the height information in this case. In future
simulations, analysis should be carried out on how the 3D geometry of the features
affect the accuracy. Secondly, the reprocessing procedure in the final step of FEPPA
allows the software to produce a smoothed data and therefore generate clear point
clouds. However, as seen in the results’ plot, the smoothed data introduces some
errors. This is due to the way the software integrated GNSS and IMU data. However,
in this case the IMU provider did not provide an open source IMU data, therefore
limited the possibility of integrating the raw measurements in the PF algorithm. Such
effects should be investigated in future work with open source IMU measurements.
Finally, the feature errors are not linearly correlated to the navigation error due to
the changing attitude measurements of the IMU. How the attitude affects the error
and how the integration should tune parameters based on the attitude measurements
should also be investigated in future work.
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uation of a backpack-mounted 3D mobile scanning system. Remote Sensing.7(10), 13753–
13781.
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