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Abstract 

The mechanical properties of steel are strongly influenced by its microstructural 

features such as phase balance, grain size, dislocations and precipitates. In order to 

obtain accurate quality control of steel products, it is desirable to be able to monitor 

the mechanical properties non-destructively. It is known that the low frequency 

inductance (where the effect of eddy currents are negligible) measured using an EM 

sensor depends on the relative permeability of the sample and that the permeability is 

affected by microstructural parameters (i.e. phase fraction / distribution and, to a lesser 

extent, grain size are the important features in dual phase, DP, steel).  

A variety of electromagnetic sensors have been reported for non-destructively 

assessing the state of steel microstructures including; monitoring the recovery and 

recrystallisation processes in-situ during heat treatment, phase transformation and 

detecting decarburisation in steel rod both on-line and off-line, etc. Recently it has been 

shown that electromagnetic sensors can measure the phase fraction in DP steel but the 

effect of strip thickness was not assessed.  

This research work discusses the development of an EM sensor system that can be used 

to assess the microstructure (and hence mechanical properties) of commercially 

produced DP steels (in particular phase balance and grain size) with a range of 
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thicknesses in a steel works test house environment, specifically, it focuses on 

employing an EM sensor system in the prediction of ultimate tensile strength for DP 

steels of any sheet thickness. 

In this project, a set of heat treated DP600 grade of 1.4mm thickness and commercial 

DP steel samples, including DP600, DP800 and DP1000 with a range of strength levels 

and thicknesses, and produced in different strip mills, have been assessed. The sensor 

outputs have been correlated to microstructural phase fraction and mechanical 

properties.  

 

Firstly, the magnetic properties of commercial DP steel samples were investigated 

through the major hysteresis loop and minor hysteresis loops. Measured coercivity 

from the major loop showed that the coercivity was affected by phase fraction 

(ferrite/martensite percentage) and ferrite grain size where the coercivity decreased 

with increased ferrite fraction.  

 

Three types of minor loop configurations were used to derive incremental permeability 

values; the minor loop deviations from the initial magnetisation curve (µIc); the minor 

loop deviations from the main B-H loop (µBH) and the minor loop deviations from 

amplitude sweep (µi). It was found that although the incremental permeability values 

are not precisely the same for the three sets of measurements, similar trends for the DP 

samples can be observed where the incremental permeability values are affected by the 

phase fraction and ferrite grain size. 

 

The effect of magnetic field on permeability for the DP steels was studied. It was shown 

that the incremental permeability increases with the applied field amplitude until 
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reaching a maximum value at a certain applied field amplitude (i.e. very close to the 

coercivity values) and then drop at higher applied field amplitude and converge to a 

similar permeability value. The initial gradient and the peak position for the samples 

are different and would allow them to be distinguished from each other.  It was 

observed in the commercial DP steels with a range of ferrite fraction (72 to 79%) and 

a range of average ferrite grain size (from 6 to 10µm), that the effect of ferrite grain 

boundaries on permeability is more significant than the effect of ferrite fraction within 

the range studied. 

 

Finally, the measured magnetic properties were used to develop a link between 

microstructure and mechanical properties for DP steels, using a readily deployable EM 

sensor that can be used with large strip steel samples. The deployable sensor geometry 

and operation rely on a relatively low magnetic field being generated in the sample and 

therefore low field incremental permeability being the relevant material parameter 

being assessed.  Initially, the effect of ferrite fraction for the laboratory heat-treated 

DP600 samples, with the same thickness (1.4mm), on EM sensor output signal (i.e. 

mutual real inductance) was investigated. It was found that the real inductance value 

at a low frequency (below approx.100 Hz) is dominated by differences in the relative 

permeability of the samples, showing an approximately linear trend of increasing low 

frequency inductance value with increasing ferrite content. The increasing amount of 

ferrite, which possesses a much higher relative permeability than martensite, showed 

higher real inductance value (in the range of 35 -70% ferrite fraction in these DP steels).  

The measured real inductance at a frequency of 10Hz was compared with the 

mechanical property (hardness). An approximately linear decrease in real inductance 

at 10 Hz with the hardness value was found for these samples.   
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EM sensor measurements were then carried out for the commercial DP600, DP800 and 

DP1000 samples with different thicknesses (1 to 4 mm). The EM sensor system 

showed a significant effect of thickness on the signal with thicker strip showing a much 

higher mutual inductance value for the same microstructure. This is due to the skin 

depth (for this sensor, operation frequency and material characteristics) being larger 

than the sample thickness, therefore a thicker sample gives a large sensor response. To 

deal with this problem, a calibration curve (a plot of real inductance versus 

permeability for different thickness of material) was constructed using a FE model for 

the sensor and sample geometry. Therefore, an electromagnetic sensor – sample FE 

model, developed in COMSOL multi-physics software, has been developed to 

determine the relationship between the low magnetic field relative permeability and 

microstructure (phase balance and grain size). The model has been validated using 

commercial DP steel sheets of 1 to 4 mm. 

It was found that the ferrite grain size affects the magnetic properties in DP steels as 

the grain boundaries act as effective pinning points to magnetic domain movement. 

Therefore, the magnetic permeability in DP steels is affected by ferrite grain size and 

ferrite fraction, both of which affect the tensile strength, therefore a single relationship 

between permeability and tensile strength results. The low field relative permeability, 

which is the permeability value derived from the EM sensor (e.g. U-shaped sensor), 

can therefore be used to predict the tensile strength in commercial DP steels. 

 

The relationship between permeability and field was employed to develop the 

technique. Therefore, U-shaped sensor modification was carried out to increase the 

accuracy of tensile strength determination, this was done as part of a case study for 

Tata Steel Jamshedpur to evaluate DP steels. 
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1 Introduction 

1.1 Background 

The increasing requirements of fuel efficiency as well as the need to comply with the 

international environmental regulations regarding greenhouses gas (GHG) emissions, 

recyclability and resource reduction, have motivated and/or even forced the 

automakers to produce more fuel-efficient models by decreasing their weight. In order 

to provide passenger safety and vehicle performance that fulfils the automakers' 

requirements and takes advantage of the new high strength steels, a new vehicle 

architecture based on novel design concepts has been developed. The use of advanced 

high strength strip steels with both high strength and excellent formability offers the 

unique option of combining weight reduction (by using thinner gauge of material) with 

improved passenger safety.  

Dual phase (DP) steels, a first generation of Advanced High Strength Strip (AHSS) 

alloys, are being increasingly used by the automotive industries, as they are a suitable 

alternative for plain carbon steel components such as bumper, body side inner/outer 

and other automotive applications [1, 2] . The DP steels are characterised by a 

combination of continuous yielding behaviour and relatively large tensile strength that 

results in excellent formability [3].  

DP steels have a microstructure consisting of a continuous soft ferrite matrix and hard 

dispersed second phase (martensite) particles throughout the matrix. This 
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microstructure can be compared with a composite where the hard-soft mixture 

contributes to a high ultimate tensile strength, high strain hardening rate and long 

period of yielding [4]. Therefore it is possible to get a combination of high strength and 

suitable ductility which is almost impossible in conventional steels [5]. 

The simplest way to achieve this microstructure is intercritical annealing of an initial 

ferritic-pearlitic structure in the austenite-ferrite region then followed by adequately 

rapid cooling to allow the transformation of austenite to martensite [6]. An alternate 

approach is via controlled cooling on the run out table and subsequently on coiling 

after hot rolling of strip. This has the advantage of increased efficiency (no subsequent 

heat treatment stages) but is also more challenging to control to achieve the desired 

microstructures, Figure 1.1. 

 

 

Figure 1.1: Cooling patterns and microstructural evolution in the production of 

martensite and DP steel. Martensitic steels are produced from the austenite phase by 

rapid quenching, dual phase steels are produced by controlled cooling from the 

austenite phase (in hot rolled products) or from the two-phase ferrite + austenite phase 
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(for continuously annealed and hot dip coated products) to transform some austenite to 

ferrite before rapid cooling to transform the remaining austenite to martensite [6]. 

 

Much research has been done on the role of phase percentage of martensite, as one of 

the most important features affecting the mechanical properties of DP steels. It has 

been found that a higher volume fraction of martensite gives an increase in the yield, 

ultimate tensile and hardness of DP steel, while a decrease in the elongation of DP steel 

is seen [7-10]. For example, Marder et al. [11] discovered a linear relationship between 

martensite volume fraction between 10 - 65% and ultimate tensile strength. 

Determination of phase percentage (i.e. martensite fraction) is therefore very important 

to allow prediction of mechanical properties from microstructure in DP steels. 

A variety of techniques can be used to characterise the microstructure of DP steels, the 

most frequently used is optical microscopy and/or scanning electron microscopy 

(SEM) on polished and etched samples. These conventional methods to obtain phase 

information are destructive, and time consuming, as they require a small piece of 

material to be removed from the strip / component.  

In recent years, the use of magnetic techniques based on EM sensors, for non-

destructive testing have increased [12-21]. These range from systems where high 

magnetic fields can be generated so that coercivity can be determined, to those where 

low magnetic fields are used.  It has been shown [22] that there is potential for using a 

low magnetic field U-shaped EM sensor to distinguish the microstructure in DP steels 

within a certain range of ferrite fraction (i.e. 35-72%).  

Previous work [22] has established finite element (FE) based models to relate the 

microstructure (phase balance) to the magnetic property of low field permeability, 

allowing the microstructure (ferrite fraction) to be determined from the EM sensor 
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signal. In that work only single sheet thickness DP steel samples were considered and 

a full sensor model, which could take into account sample geometry, was not 

available. Only simple correlative relationships between the EM sensor signal and 

mechanical properties were therefore available for the single sheet thicknesses, and 

only a limited number of samples had been tested.   

To develop a deployable system for accurate quantification of all DP steel strip 

samples, and hence properties, a much larger range of samples needs to be considered, 

and a calibrated sensor that can measure different thicknesses is required.   

 

In addition the role of applied magnetic field on the signal to allow sensor optimisation 

is important. 
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1.2  Aim 

The aim of this research is to investigate and develop the link between EM sensor 

measurements, microstructure and mechanical properties in a range of advanced high 

strength strip steels in varying thickness, in particular dual phase steels. Whilst it is 

known that EM sensors are sensitive to the phase fraction in DP steels, and hence there 

is potential for a deployable sensor to be used in a steel works test house environment 

to determine microstructure, the effect of strip thickness and applied magnetic field, 

within the range generated by the deployable EM sensors, has not been assessed.  The 

aim of this research is to develop and calibrate an EM sensor system that can measure 

the permeability of commercial strip steel, with a range of thicknesses, and to relate 

this to the microstructure, specifically phase fraction. The effect of ferrite fraction and 

ferrite grain size on the permeability, and hence EM sensor signal and consequently 

predictability of mechanical properties was also be assessed in the latter stages of the 

work. In addition a modified sensor system is proposed to increase the reproducibility 

and sensitivity to measuring tensile strength in DP steels, based on the understanding 

developed for the effect of applied field on permeability and making changes to the 

sensor design through use of an FE model. 
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1.3  Achievements and Contributions of this Thesis 

This thesis presents an approach for characterisation of dual phase steel microstructure 

and the technique has been implemented to predict the tensile strength (and phase 

fraction) by designing an EM sensor system for the EM properties of commercial DP 

steels. 

The designed laboratory sensor system can quantitatively predict mechanical 

properties (i.e. tensile strength) of commercially produced DP steels for any sheet 

thickness. As the sensor is relatively small (sensor dimensions of 100mm x 25mm) it 

could be used to assess any variations in properties across large sheets for product 

uniformity assessment and/or to allow more targeted microstructural or mechanical 

property characterisation. Moreover, information about the ferrite fraction in the steel 

can be obtained from the EM sensor if the grain size remains similar (i.e. similar prior-

processing history), which can be used to assess the quality of the heat treatment (for 

example temperature-time achieved during annealing to produce the DP 

microstructure). 

In addition, the relative influences of grain size and phase balance on the tensile 

strength and magnetic properties in dual phase steels are presented to provide 

fundamental understanding for the relationship between EM sensor values and strength 

in these materials. 
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2 Theory of magnetism and magnetic 

properties 

This chapter presents an overview of the fundamental theories related to magnetism 

and magnetic properties of materials. First, the theory of magnetism and magnetic 

fields will be explained. Then, the fundamental magnetic division of material, magnetic 

domain, hysteresis loops and Barkhausen noise effect will be covered. Following that, 

the different classes of permeability and the effective factors on magnetic properties of 

steel will be discussed. 

2.1 History of magnetism 

The history of magnetism dates back to 600 B.C and magnetism has initially been 

explained to the ancient world as the “tractive force that exists between two bodies” 

[23]. The Englishman William Gilbert was the first one who investigated the 

phenomena of magnetism scientifically. W. Gilbert’s findings suggested that 

magnetism was the soul of the Earth. Oersted found a link between magnetism and 

electricity. The effect of magnetic and electric fields on one another was reported by 

Ampere and Faraday but the theoretical foundation to the physics of electromagnetism 

was established by Maxwell [24]. The fundamental electromagnetism relationships 

rely on Maxwell’s equations, which describe how electric charges and electric currents 
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create electric and magnetic fields. Moreover, they describe how a magnetic field can 

generate an electric field and vice versa [25]. 

 

 

2.2 Magnetic field 

Magnetic field strength and the intensity of magnetisation are two fundamental 

magnetism quantities. When a magnet is placed close to a piece of iron, a magnet 

attracts the piece of iron even though the two are not in contact; this action at a distance 

is said to be caused by the magnetic force or magnetic field [23]. This field might be 

explored when iron filings are sprinkled around a magnet; they appear in lines, converging 

towards the poles. These lines indicate the direction of the magnetic field and show the 

lines of force emanating from the S pole and converging on the N pole [26]. The conceived 

endless lines pass from a magnetised material into the air at a north pole, enter again at a 

south pole, and pass through the material from the south pole back to the north pole to form 

a closed loop. [23]. 

 

 

2.3 Magnetic field vectors 

It is important to define the magnetic properties of materials in terms of a number of 

quantitative field vectors. The magnetic field can be generated either by an electrical 

current or by a permanent magnet. One of the simplest ways to generate the magnetic 
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field is by passing an electric current through a multi turn coil or solenoid and hence 

producing a magnetic field, which is calculated by Equation 2-1 [23]; 

 

𝐻 =
𝑁𝐼

𝐿
     Equation 2-1 

 

Where N is the number of turns in the coil, I is the electric current in the coil in ampere, 

L is the length of the coil. A schematic diagram of such arrangement is shown in Figure 

2.1. As it is clear from Figure 2.1 and Equation 2.1, the magnetic field strength H within 

a coil depends on the number of the turns N, carrying a current magnitude I, and the 

length of the coil L. The units of magnetic field strength H are ampere-turns per meter, 

or just amperes per meter. The magnitude of the internal field strength in a substance 

that is related to an H field is called the magnetic induction or magnetic flux density, 

donated by symbol B. The units for B are webers per square meter (Wb/m2) or teslas 

(T). Both H and B are field vectors, being characterised by direction and magnitude. 

As can be seen in Figure 2.1, the relationship between the magnetic flux density B and 

the magnetic field strength H can be expressed by Equation 2.2 [23];  

 

 

𝐵 =  𝜇 . 𝐻     Equation 2-2 
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Figure 2.1: (a) The magnetic field strength (H) as generated by a cylindrical coil 

depends on the number of turns (N), the applied current (I) and the coil length (L). The 

magnetic flux density in the presence of a vacuum (B0) is equal to permeability of a 

vacuum (μ0 =1.257 x 10-6 Henries /metre) or 4π x 10-7 (H/m) multiplied by the magnetic 

field (H). (b)The magnetic flux density within a solid material (B) is equal to the 

permeability of the solid material (μ) multiplied by the magnetic field (i.e. B = μ. H) [27]. 

 

 

The parameter μ is called the permeability, which is a property of the material through 

which the magnetic field passes and in which B is measured. This indicates that the 

value of magnetic flux density B depends on the material and the applied magnetic 

field strength [23].  

The units of permeability are henries per meter (H/m) or webers per ampere-meter 

(Wb/A.m). This is also the case for in vacuum illustrated in Figure 2.1, where the 

magnetic flux density in vacuum can be expressed by Equation 2-3 [23]; 

 

𝐵0 =  𝜇0. 𝐻   Equation 2-3 
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In addition to the above parameters, several parameters may be used to describe the 

magnetic properties of a material. One of these parameters is the relative permeability 

which is the ratio of the permeability in a material to the permeability of free space, 

denoted by symbol μr, as presented in Equation 2.4. The permeability or relative 

permeability of a material is described as the measure of the degree to which the 

material can be magnetised or the degree of magnetisation in a material when a B field 

can be induced in the presence of an external H field [23]. 

 

 µr =
µ

µ0
      Equation 2-4 

 

 

Magnetisation, M, is another field quantity of the solid, defined by Equation 2.5. It is 

clear that the magnetic flux density (B) is a function of magnetic field strength (H) and 

magnetisation of the material (M) in the presence of a magnetic field strength (H), the 

magnetic moments are likely to line up with the field and to reinforce it by virtue of 

their magnetic fields; in Equation 2.5, the term  𝜇0𝑀  is a measure of this contribution 

[28]. 

 

 

B =  µ0H +  µ0M    Equation 2-5 
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2.4 Origins of Magnetic Moments 

The variation in macroscopic magnetic properties of materials is a consequence of 

magnetic moments associated with individual electrons. Since some of these concepts 

are relatively complicated and involve some quantum-mechanical principles, only an 

overview will be provided. 

Each electron in an atom possesses magnetic moments which originate from two 

sources, one is from the orbiting electron’s motion as illustrated in Figure 2.2 (a) and 

the second one is from the spinning electron which is directed along the spin axis as 

shown in Figure 2.2(b). A moving charge (electron) may be considered as a small 

current loop and causes a very small magnetic field to be generated, which in turn 

makes a small magnetic moment along its axis of rotation [29]. 

 

 

 

Figure 2.2: Schematic illustration of the magnetic moment originates from orbital 

motion (a) and electron spin (b)[27]. 

 

Electron spin generates another magnetic moment that can be only in an “up” direction 

or in an antiparallel “down” direction. Therefore, every electron in an atom may be 
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considered as a small magnet with permanent orbital and spinning magnetic moments 

[29]. 

 

2.5 Fundamental Magnetic Division of Materials 

Solids and materials can be classified into three major groups based on their magnetic 

properties behaviour. The types of magnetism include ferromagnetism, paramagnetism 

and diamagnetism. All materials show at least one of these types, and the behaviour 

depends on the response of electron and atomic magnetic dipoles to the application of 

an externally applied magnetic field. The following section will initially include an 

explanation on the characteristic of the three main classes of magnetisation; from 

which the base material for this thesis will also be stated. 

 

2.5.1 Ferromagnetism 

Ferromagnetic material can be magnetised by an external magnetic field and these 

materials have the ability to maintain their magnetic property in the absence of the 

external field [30].  In ferromagnetic materials, in the absence of an external field there 

are local magnetic moments with random alignments (domains) and hence, zero overall 

magnetisation. The presence of an external magnetic field aligns such local magnetic 

moments into a larger domain, generating a greater magnetisation for the material. In 

addition, an increase in the magnetic field will increase the material’s magnetisation. 

Moreover, these materials have the ability to maintain their magnetic properties in 

conditions where there is no external magnetic field. It means on removing the external 
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magnetic field, magnetisation does not return to zero and a record of the applied field 

remains in these materials, as depicted in Figure 2.3 (a) [23]. 

As mentioned earlier for each electron in an atom the spin magnetic moment is ± µB 

(spin up and down) and for the magnetic moment originated from the orbital motion is 

ml µB, where ml is the magnetic quantum number of the electron. The net magnetic 

moment includes both spin and orbital contributions. In an atom with completely filled 

electron shells there is total cancellation when all electrons are considered. In this case, 

materials composed of atoms with completely filled electron shells cannot be capable 

of being permanently magnetized [31, 32].  

 

Common ferromagnetic materials are iron, cobalt, nickel and their alloys [30, 33, 34].  

In the transition metals that possess unpaired electrons, the energy levels in 3s and 3d 

shells are similar and the electron clouds in these shells show an overlapping state. The 

quantum mechanical forces of exchange acting between electrons in neighbouring 

atoms cause the electrons to align such that their spins are parallel to each other [34]. 

The local alignments result in local magnetisation but in the absence of any external 

field, overall magnetisation is zero [30, 34] . In the presence of a magnetic field, the 

magnetic dipole experiences a torque which tends to be aligned into the magnetic field 

direction. When all the local magnetic moments are aligned with the external magnetic 

field at a given level of magnetic field, a stable magnetic structure is formed and at this 

stage the material remains permanently magnetic [30]. The important attributes of 

ferromagnetic materials are dependence of permeability on the magnetic field strength 

and on the prior magnetic history (hysteresis). These materials approach a finite limit 

of the magnetisation as the field strength is indefinitely increased [23]. 
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Figure 2.3: Typical magnetisation curves of (a) a ferromagnetic; (b) a paramagnetic; 

and (c) a diamagnetic material [23]. 

 

2.5.2 Paramagnetism 

The total magnetic moment in paramagnetic materials with a complete electron shell 

becomes zero due a balance in the spin up / down directions. The permeability of 

paramagnetic materials is only slightly greater than one usually between 1 and 1.001. 

These materials do not show any hysteresis and their permeability is independent of 

temperature and field strength and they cannot be magnetised using a field [30, 35]. 

Among the paramagnetic substances are many of the salts of iron, the elements 

potassium, sodium and oxygen and ferromagnetic materials above their Curie 

temperature point [23]. 
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2.5.3 Diamagnetism  

Diamagnetic materials are a class of materials with a very weak form of magnetism, 

where the magnetisation is directed oppositely to the field. It means that their 

permeability is somewhat less than one. Figure 2.3(c) illustrates the response of 

magnetisation for a diamagnetic material with applied magnetic field. The magnitude 

of the induced magnetic moment is extremely small, and in a direction opposite to that 

of the applied field.  Diamagnetic substances, therefore, are repelled from the poles of 

an electromagnet, moving towards weaker fields [23] .  

 

2.6  Magnetic domains 

In magnetic materials, a magnetic domain is a region within the material in which the 

magnetisation is in a uniform direction and the magnetic fields (dipole moments) of 

atoms are aligned and grouped together [23, 35]. Figure 2.4 illustrates a clear example 

of the domain structure in ferrite grains of a specimen of fully killed normalized steel 

(FKN). Several domains with different shapes and sizes can be observed in each grain. 

In Figure 2.4 (a) and Figure 2.4 (b), the domain walls can be clearly revealed with their 

contrast reversing from bright to dark or vice versa between the over and under focused 

images. Figure 2.4 (c) indicates the grain boundaries in the microstructure. For more 

clarity, Figure 2.4 (d) schematically illustrates the grain boundaries and domain walls. 

The grain boundaries have a major effect on the domain size and configuration. Closure 

domain structures (e.g. A and B) are visible next to grain boundaries and the grain 

boundary orientation changes sharply (e.g. at C, D and E) throughout the 

microstructure. Complex interactions take place between domain walls within the 
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ferrite grains (e.g. at F, G, H and I) [36]. Magnetic domains are separated by boundaries 

called Bloch walls [35], the ease of movement of these walls is a very important factor 

in the use of magnetic non-destructive measurement techniques such as 

electromagnetic sensors and MBN [20]. 

 

 

Figure 2.4: Electron micrographs of the domain structure, the domain boundaries and 

the grain boundaries in ferrite grains of an FKN steel. (a) under focused and (b) over 

focused images revealing the domain structure, (c) grain boundaries, (d) illustrating 

domain boundaries (dashed lines and the grain boundaries (continuous lines), A, B 

closure domain structures; C, D, E sharp changes in grain boundary orientation; F, G, 

H, I interactions between domain walls within a ferrite grain [36].  
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The domain wall is shown schematically in Figure 2.5. In ferromagnetic materials, the 

domain walls are where the magnetisation rotates from one easy direction to another 

direction, the domains rotate towards the direction of applied field and consequently 

makes a greater flux density in the material [33, 35]. Therefore, domain walls must 

move to allow the domain to grow in size. Figure 2.6 illustrates the magnetisation 

process and the effect of the applied field on the domain structure of a typical 

ferromagnetic material and Figure 2.7 shows the domain wall movement and pinning 

in the magnetisation process. For the initial applied field only the domains aligned in 

the direction of the applied field will grow while domains that are perpendicular to the 

applied field may change shape but there is no change in their polar direction [32]. The 

domains that are perpendicular to the applied field will start to rotate when stronger 

fields are applied and are destroyed once the material reaches saturation [37]. If the 

domain walls return to their original position this means that the magnetisation is weak 

[23]. If the applied fields are strong enough and have adequate energy to move domain 

walls past crystalline imperfections such as precipitates, dislocations and grain 

boundaries then returning back for the domain wall to its original position may not 

possible, i.e. when the field is removed from the material, these defects may act as 

obstacles to domain wall movements and prevent the domain walls from returning to 

their original position. Therefore, an opposite applied field is required to return the 

material to its original state [37]. 
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Figure 2.5: Schematic diagram of 180º domain wall structure [34] 

 

 

 

Figure 2.6: Magnetisation process and effect of applied field on the domain structure of a 

typical ferromagnetic material [32]. 
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 Figure 2.7: Schematic illustration of domain wall movement and pinning in the 

magnetisation process. (a) Sample in initial state without any external field 

(unmagnetised state), domains are evenly sized; (b) low magnetic field H applied to the 

sample, domain parallel with the applied magnetic field grows at the expense of the 

domain which is antiparallel to the applied field, domain wall becomes pinned; (c) 

stronger magnetic field H is applied, further movement of the domain wall takes place 

but the defect (pinning point) cannot be overcome; (d) high magnetic field H is applied 

and domain wall passed through defect, the domain wall is now free to move and the 

favourable domain grows [32, 38]. 

 

In ferromagnetic materials, the formation of magnetic domains reduces the overall 

magnetic energy. Although due to the demagnetising field, the number of magnetic 

domains increases, and as the dipoles within domain walls are not aligned in the easy 

magnetisation direction this makes the overall energy of the system increase. Therefore 

a steady state (i.e. minimum energy state) can be reached, by a specific number of 



21 

 

domains in a special arrangement, which is influenced by parameters such as the grain 

size and shape, any crystallographic texture and the intrinsic magnetic properties of the 

material [39]. 

 

2.7 Magnetic Hysteresis 

The relation between magnetic field strength H and magnetic flux density B was 

mentioned in Equation 2.2 and that equation can be expanded as Equation 2.6;  

 

 

B= H= 0r H = 0(H+M) = 0(1+X) H   Equation 2-6 

 

 

where M represents the magnetisation of the material which represents how strongly a 

region is magnetised and X is the magnetic susceptibility which indicates the degree of 

magnetisation of the material in response to an applied magnetic field. Equation 2.6 

indicates the flux density is influenced by the magnetic field strength, via permeability 

and by the magnetic susceptibility of the material [23]. 

The relation between magnetic field strength H and magnetic flux density B in a 

ferromagnetic material can be illustrated in a complete hysteresis loop (Figure 2.8). In 

a ferromagnetic material without previous magnetising history (demagnetised 

material) when the magnetic field strength (H) increases, magnetic flux density 

increases proportionally along “Oa” in Figure 2.8, until the saturation point “a”. The 

point “a” is called the magnetic saturation point at which most of the magnetic 
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domains are aligned. If the magnetic field strength (H) reduces to zero, B does not reach 

zero due to the residual magnetism remaining within the material. This value of 

induction (B) for when field strength is zero (i.e. H = 0) is referred to as the residual 

induction (Br) and called remanence. Ferromagnetic materials have this ability to 

maintain a magnetic field more easily after an applied magnetic field has been removed 

[23, 35].  

A reverse magnetic force H (called coercive force Hc) is needed to reduce the magnetic 

flux to zero, at point “c” in Figure 2.8, this point is called the “coercive point” and this 

process is called demagnetisation. The coercivity (Hc) describes the intensity of the 

magnetic field required to reduce magnetisation to zero after a ferromagnetic material 

has been magnetised to its saturation point [30, 35]. Thus in ferromagnetic materials, 

coercivity may determine the materials resistance to demagnetisation. The coercivity 

is measured in Oersted or ampere/meter [23].  

 

 Ferromagnetic materials with low coercivity are known as magnetically soft and can 

be used to make components which require rapid magnetisation or demagnetisation 

such as magnetic tapes or transformer cores and materials with high coercivity are 

known as magnetically hard and are used to make permanent magnets [23]. 

Further increasing the reverse field causes the material to reach the opposite saturation 

point “d” (the path cd in Figure 2.8). If the magnetic force gradually decreases to zero, 

the residual magnetism present in the material would be equal to the value of “b” , but 

in reverse at point “e” in Figure 2.8 [35, 40].  
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Figure 2.8: A magnetic hysteresis loop for a ferromagnetic material, magnetisation curve 

(dotted) and hysteresis loop (solid), some important magnetic quantities illustrated [40] . 

 

The lag of induction behind the reduction in applied magnetic field shows that for any 

magnetic measurement, the first concern is prior magnetic history of the material. It 

can have particular implications for any electromagnetic non-destructive testing 

technique, as the measurements that are taken can be misrepresentative therefore 

depending on the type of measurements it is necessary to demagnetise the specimen 

[30, 35]. 

 

2.8 Classes of Permeability  

The normal permeability or cyclic permeability is often denoted as permeability (µ), 

and is typically measured as the ratio of B/H, when the material is under the “cyclic 
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magnetic state” [23]. It is worth noting that for this measurement the material is initially 

demagnetised by applying a high enough amplitude field to achieve saturation state, 

then reducing the cycle magnetic field amplitude incrementally to zero [23, 30]. 

Permeability can be defined in a number of ways such as initial permeability, maximum 

permeability, incremental and differential permeability. Figure 2.9 illustrates the 

permeability curve of iron and the permeability curve is represented by plotting the 

permeability µ against either magnetic field (H) or magnetic flux density (B). In any 

case, the permeability curve increases from a point on the permeability axis above the 

origin (the initial permeability is non-zero) to reach a maximum value, called the 

maximum permeability, and falls off rapidly and then more slowly toward a value of 

one (not zero). The maximum permeability (µmax) is the largest value of normal 

permeability gained by varying the amplitude of magnetic field strength, H [63]. The 

permeability curve may describe the behaviour of a material [30, 39]. 

 

Figure 2.9: Permeability curve of Iron as a function of field, the maximum permeability 

is the largest value of normal permeability[23]. 
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Figure 2.10 shows the initial permeability of iron, nickel, silicon – iron and Permalloy. 

The initial permeability is the limit approached by the normal permeability as H and B 

are decreased toward zero and initial permeability is usually considered to be the value 

at very low magnetic field strength [23].  

 

 

 

Figure 2.10: Initial permeability of iron, nickel, silicon – iron and Permalloy, the curves 

showing permeability vs field strength and initial permeability, which is usually considered to 

be the value at very low magnetic field strength [23]. 

 

 

The next form of permeability is called the incremental permeability (µΔ), which is 

referred to as the permeability measured with a superimposed field. For this 

permeability a biasing magnetic field is applied, being held constant, and another field 

is applied and alternated cyclically, making an alternating magnetic flux then the 

incremental permeability is calculated by Equation 2.7 [23, 35]. 
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µΔ = ΔB/ ΔH     Equation 2-7 

 

The incremental permeability is linked to the minor loop hysteresis curve. Basically, 

three minor loop configurations can be used to derive incremental permeability values; 

deviations from the major B-H curve, deviations from the initial magnetisation curve 

and minor loop amplitude sweep deviations [41]. 

Differential permeability is another form of permeability that occasionally is used. It 

is simply the slope of the B versus H curve or dB/dH [23]. 

Finally, the most functional term of permeability is relative permeability, which is very 

useful in classifying the permeability of one material in comparison with another.  

Relative permeability considers the permeability of a material for a given field in 

relation to the magnetic constant, otherwise known as the permeability of free space 

(μ0), 12.6 x 10-7 T/m.  Ferromagnetic materials have relative permeability values of 

more than one and paramagnetic materials have a relative permeability of close to 1. 

Therefore, this term of permeability can be used as a scale to compare the magnetic 

property of materials [40].  

2.9 Magnetic Barkhausen Noise (MBN) 

The magnetisation process of a polycrystalline ferromagnetic material does not take 

place continuously and a series of sudden changes occurs causing jumps. These 

magnetisation jumps are very small and magnification of the magnetisation curve is 

required in order that the steps can be seen (as shown in Figure 2.11), they can however 

be heard with the use of a microphone as they produce a crackling noise. These 

magnetisation jumps can be interpreted as discrete changes in the size or rotation of 
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ferromagnetic domains. During magnetisation (or demagnetisation), as the domains 

grow, shrink or rotate in accordance with the applied field, the domain walls become 

pinned and unpinned as the applied field increases or suddenly rotate. The combination 

of domain walls overcoming the pinning points and abruptly changing orientation at 

higher fields causes a release of energy which is called the magnetic Barkhausen noise 

effect (MBN) [23]. In fact, MBN is the irreversible “jump” of domain walls over local 

obstacles acting as pinning sites, such as dislocations, grain boundaries, imperfections 

and inhomogeneities. Therefore, analysis of MBN can give information on the 

interaction between domain walls and microstructure or stress configurations [42]. 

 

 

Figure 2.11: The magnetization curve of a ferromagnetic sample is stepped; each step 

corresponds to a change in the intensity of magnetization [23]. 
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2.10 Effective Factors on Magnetic Properties of 

Steel 

It has been well documented that the magnetic properties of ferromagnetic materials, 

such as permeability, coercivity, remanence etc are strongly related and dependent on 

many material characteristics such as, metallurgical structure (e.g. grain size, phase 

balance and texture), chemical composition, hardness and mechanical stress [43-51]. 

Therefore, the link and effect of each individual parameter on magnetic properties is 

significant and can be interesting from a physical point of view, and with regard to 

possible applications in non-destructive testing and on-line monitoring of material 

characterisation. In the following sections a summary of the significant factors 

including grain size, phase balance, temperature, magnetic field and orientation of 

microstructure that affect permeability will be discussed.  

2.10.1  Variation of Magnetic Property with Temperature 

Temperature is the most significant factor on magnetisation of ferromagnetic materials. 

The greatest influence of temperature upon magnetisation for ferromagnetic materials 

occurs at the Curie temperature (Tc).  In steels, with a low applied field, permeability 

increases with temperature up to the Curie temperature (Tc) and it drops to a value of 

1 very quickly when the temperature exceeds the Curie temperature (Tc) and the 

material changes from ferromagnetic to paramagnetic. At this point the magnetic 

moments within the material become misaligned and cancel each other out due to a 

combination of exchange energy and internal thermal energy changes [23]. Figure 2.12 

illustrates the effects of temperature on permeability at different applied magnetic field 
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strengths for iron. It can be observed that when a high applied field is used the effect 

is reversed and permeability decreases as temperature increases [23]. 

 

 

 

Figure 2.12: The effects of temperature on permeability value for iron at varying 

constant magnetic field strengths [23]. 

 

2.10.2 Variation of Magnetic Property with Grain Size 

The magnetic properties of steel are associated with its domain structures (e.g. domain 

size) and domain wall motion. Magnetic properties are affected by grain size due to the 

generation of closure domain at the grain boundaries, which creates barriers to the 

movements of the domains during magnetisation [44, 45, 52-57]. It has been reported 

that the magnetic domain size is proportional to the square root of grain size in the 

range of between 0.05 mm and 1.0 mm [44]. A linear trend between inverse ferrite 

grain size and coercivity, Hc has been observed for steel, Figure 2.13 [54].  
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Figure 2.13: Coercive field Hc plotted against inverse ferrite grain size [54]. 

 

It has also been reported that there is an increase in the relative permeability value as 

the ferrite grain size increases from 14 to 52 µm (single phase microstructure of ferrite) 

[53]. The effect of grain size on the induced magnetic saturation (Bmax) and changes in 

the hysteresis curve as a result of variation of grain size are given in Figure 2.14. It can 

be clearly seen that the induced magnetic saturation decreases with grain size 

coarsening [41]. 
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Figure 2.14: (a) Influence of grain size on the magnetic hysteresis curve in AISI1005 steel (b) 

effect of grain size on the induced magnetic saturation ( Bmax ) in AISI1005 steel [43]. 

 

 

Zhou et al. showed that in a low carbon steel heat treated to give grain sizes from 13 to 

64 µm each ferrite grain contains a single domain packet and the increase in grain size 

from 13μm to 64μm results in an increase in the domain packet size and hence an 

increase in the relative permeability value [22, 55].  However, multiple domain packets 

per grain were seen for a very large grain size (i.e. 223μm in a pure iron sample), Figure 

2.14 [22].           
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Figure 2.15: Magnetic domain structure of Fe-0.17C (heat treated at 1300 °C for 1 hour), 

showing ferrite grain boundaries (red) and multiple domain packets per grain (yellow) [22]. 

2.10.3  Variation of Magnetic Property with Chemical 

Composition 

Chemical composition can affect magnetic properties in steel. Overall, increasing 

carbon content increases hardness and strength – the effect on magnetic permeability 

is seen via the change in phase balance rather than as an effect of changing carbon 

content in solid solution. Si provides some solid solution strengthening but at the levels 

seen in DP steel (typically < 0.2 wt%) has little effect on permeability [23]. Mn is also 

a solid solution strengthening element in steels and is typically present in the range 

1.8– 2.1 wt% in DP steels. The average grain size decreases as Mn content increases 

which deteriorates the magnetic losses[58, 59]. Moreover, it is noted that for a given 

chemical composition, the magnetic properties are generally improved by lowering the 

sulphur level [23, 59, 60], but all the DP steels considered are commercial grades with 
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very low sulphur levels, therefore it is not expected that there will be any effect of 

sulphur for these steels. 

2.10.4  Variation of Magnetic Property with Phase Balance 

Tanner et al. suggested the coercivity value Hc, is a function of ferrite and pearlite 

fraction. Figure 2.16 shows the pearlite content has clearly a major influence on the 

coercivity where the coercivity increases with pearlite content. This was stated to be 

due to the boundaries between cementite lamellae and ferrite within the pearlite grains 

acting as strong pinning sites and these appear to be about an order of magnitude 

greater than the sites associated with ferrrite-ferrite boundaries [54]. It can be seen from 

Figure 2.16 that the effect of increasing pearlite content is particularly significant for 

fractions from 15 – 20% with the increase in coercivity being significantly less for 

higher fractions. 

 

 

Figure 2.16: Coercivity plotted against pearlite fraction [54]. 
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Zhou et al. [61] established a microstructure-permeability FE model for determining 

the relative permeability based on actual microstructure and showed the effect of ferrite 

fraction on the relative permeability for 0.17–0.8 wt %C steels with ferrite–pearlite 

microstructures with uniform second phase distribution. From Figure 2.17 it can be 

seen there is an increase in the relative permeability value as the ferrite fraction 

increases across the full range of ferrite fraction, although the effect of ferrite fraction 

is small for values greater than abount 85 - 90%.  

 

 

Figure 2.17: Relative permeability change with ferrite fraction in ferrite + pearlite 

microstructures, there is an increase in the relative permeability value as the ferrite fraction 

increases [61]. 

 

Thompson et al. considered the magnetic properties of ferritic steel as a function of 

carbon content and showed the maximum relative permeability and remanence 

decrease with increased carbon content while coercivity increases with increased 

carbon content (Figure 2.18 and Figure 2.19) [49]. The reason could be explained due 

to the influence of the fraction of pearlite phase, which has a lower maximum 
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permeability and initial permeability compared with ferrite. The microstructure for the 

steels with carbon compositions of 0.44-0.87 wt% C mostly consists of pearlite, which 

explains their low permeability values since, when the magnetic field is applied then 

domain wall movement occurs and the magnetic properties will be dominated by the 

pearlite phase. On the other hand, for the 0.17 wt % C steel which mainly consists of ferrite 

phase, during the initial magnetisation the majority of domain wall movement occurs 

within the ferrite grains where they need low field strengths to move, while domain wall 

movement in the pearlite area occurs at a higher field. Therefore, the magnetic property of 

the 0.44-0.87 wt %C steel is dominated by pearlite phase and magnetic property of the 

0.17-0.44 wt% C steel is dominated by the ferrite phase which has a higher permeability 

value [49]. 

 

 

Figure 2.18: Plot of variation of maximum relative permeability and applied field at which 

this occurs with carbon content in ferrite- pearlite steels [49] 
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Figure 2.19: Plot of coercivity and remanence with carbon content in ferrite- pearlite steels 

[49]. 

 

2.10.4.1 Phase Type - Ferrite, Pearlite, Martensite 

Materials with different phases in steel (such as ferrite, pearlite, martensite etc.) offer 

diverse permeability values. For instance, for a fully ferritic structure only the grain 

boundaries have a major influence on the domain wall motion under an applied field 

but there are many more pinning sites for domain wall motion inside a pearlite grain 

compared with ferrite. In martensitic microstructures there can be a large density of 

dislocations which can decrease the mean free path for domain wall motion, hence the 

coercivity value of these samples shows an increasing order of ferrite < pearlite < 

martensite and the order for permeability is martensite < pearlite < ferrite [62]. The 

differences between permeability values for these phases can be also observed from 

the B-H loops for ferrite, pearlite and martensite as illustrated in Figure 2.20 [62]. It 

has been reported that permeability decreases (as a result of the more effective domain 
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wall motion pinning effect) with an increase in cementite lamellae thickness and a 

decrease in inter lamellar spacing [62]. 

 

 

Figure 2.20: Hysteresis loops B versus H for ferrite, pearlite, martensite and ferrite + 

cementite. The hysteresis loops report the highest coercivity value order is ferrite < 

pearlite < ferrite + cementite < martensite and the highest permeability (steepest slope 

dB/dH ) value for ferrite and the lowest permeability value for martensite [62]. 

 

 

 

2.10.4.2 Phase Distribution  

Second phase may affect the magnetic property and this effect can be due to the amount 

of second phase or/and can be related to the distribution of the second phase. It means 

that, besides the second phase balance, the morphology of the second phase 

microstructure also has an effect on magnetic property [63]. 
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Work completed by Zhou [64] also found that there is a significant difference in 

permeability values from the direction of the field with respect to the orientation of any 

second phase banding in the microstructure, as shown in Figure 2.21. 

 

 

Figure 2.21: The modelled effective permeability (Mur) results and flux distribution in a 

DP800 steel microstructure. Left: SEM image showing phase distribution of ferrite 

(dark) and martensite (bright); middle: modelled magnetic flux distribution when 

horizontal and, right, vertical magnetic fields are applied[64]. 

 

As well as the above mentioned factors, the role of precipitates in steel needs to be 

considered as an effective parameter affecting the magnetic property since precipitates 

can act as pinning points. It has been shown that there is a significant drop in coercivity 

for steel after tempering which can be attributed to the recovery of dislocations, 

coarsening of the martensitic laths and also coarsening of precipitates [41]. 

Papaelias et al [65] studied the effects of ferrite distribution, contiguity and orientation 

upon impedance response. Simulations on random ferrite distributions showed that 

impedance response follows a linear relationship with ferrite volume fraction when it 

does not exceed 20% of the total volume fraction. Above volume fraction of 20%, 

whereas ferrite grains start connecting with each other, the electromagnetic field is 
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affected more by the increased contiguity of ferrite forming a favourable ferromagnetic 

path which shows a higher impedance signal. 

 

 

2.10.5  Variation of Magnetic Property with Crystallographic 

Orientation  

Magnetic properties in single crystals of iron (and of other magnetic materials) depend 

on the direction in which they are measured. For instance, for a single crystal of iron 

(BCC crystal structure) containing about 3.8% silicon, the measured permeability in 

the three principal directions are seen as [100] highest, [110] intermediate and [111] 

lowest (Figure 2.22). It means for this material there is a crystallographic direction in 

which magnetisation is easiest and saturation is achieved at the lowest magnetic field. 

The easiest magnetisation direction for nickel (FCC crystal structure) is [111] and the 

hardest crystallographic direction is [110]. 
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Figure 2.22: Dependence of permeability on crystallographic direction in iron 

containing 3.8% silicon (red) and nickel (blue) [29].  

 

Figure 2.23 illustrates BH loops measured for a 3% Grain Oriented Si Steel (GOSS) 

sample at four different directions in terms of applied field including; transverse 

direction (TD), rolling direction (RD), 45o to the rolling direction, 54o to the rolling 

direction. The highest flux density is recorded in the RD sample meaning that RD is 

the most easily magnetised direction hence highest permeability is seen in this direction 

while the sample measured with orientation 54o to RD showed the lowest flux density 

for the same applied field, hence 54o to RD is the hardest direction to magnetise [38]. 



41 

 

 

Figure 2.23: Magnetic hysteresis loops recorded for 3%Si Steel samples in four different 

applied field directions into the samples including, transverse direction (TD), rolling 

direction (RD), 45o to rolling direction, 54o rolling direction [38]. 

 

 

2.10.6  Variation of Magnetic Property with Strain/Strain 

It has been shown that the initial permeability and the maximum relative permeability 

decrease with an increase in plastic deformation [66]. This is believed to be due to the 

formation of dislocations and the increased number of pinning sites for domain wall 

movement [50]. The plot of maximum relative permeability and initial permeability 

with plastic deformation are illustrated in Figure 2.24 and Figure 2.25 respectively. 
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Figure 2.24: Plot of initial permeability with plastic deformation in pearlite- ferrite steels [50]. 

 

Figure 2.25: Plot of maximum relative permeability with plastic deformation in 

pearlite ferrite steels[50] 
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Sipeky and Ivanyi [67] looked at the hysteresis loops under different applied stress in 

silicon steel. It has been concluded that applied tensile stress increased coercivity, 

permeability and the gradient of hysteresis curves and consequently decreased the 

energy loss under the same applied tensile stress, as shown in Figure 2.26. 

 

 

Figure 2.26: Hysteresis loops versus the stress (0MPa to 136.66MPa) at 10 Hz 

measurement frequency in GO silicon steel 

 

 

Similar results were obtained by Kwun and Burkhart [45] in an investigation in ferritic 

stainless steel to see the effects of tensile stress and compressive stresses on the 

magnetic property. The measurements showed that the hysteresis loop shapes were 

significantly changed by the application of tensile and compressive stresses as 

illustrated in Figure 2.27. Moreover, the hysteresis loop shapes showed compressive 

stress decreased magnetic induction (B) and that tensile stress increased the magnetic 

induction (B). 
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Figure 2.27: Effect of stress on the magnetic hysteresis loops for AISI 410 ferritic 

stainless steel in both compression and tension (1 KSI = 6 MPa) 

Residual stresses are the stresses present in a material which is free from an external 

load. These stresses are present in many assembled structures and manufactured 

components, although their effects are often not evident until the components or the 

structures are subjected to external loads or exposed to an adverse environment. The 

residual stresses are superposed upon loading stresses, thus the determination and 

control of residual stresses resulting from the intentional or unintentional thermal and 

mechanical loading of steels during their production or manufacturing process, as well 

as during their lifetime, is a challenge for both the relevant industries and the scientific 

community. Magnetic properties result directly from the movement of domain walls 

and the original domain configuration. In reality, solids are typically somewhat 

magnetically anisotropic. The magnetisation varies with direction depending on the 

domain configuration. This anisotropy is influenced by, stress induced anisotropy 

(magnetostrictive anisotropy), crystalline texture, magnetic annealing and non-uniform 

plastic deformation [68-70]. This gives rise to a macroscopic easy axis, or direction of 

easy magnetisation. For a polycrystalline sample with a single easy axis an excess 

population of 180 ° domain walls may be considered to be aligned in the easy axis 
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direction, while the remaining 180 ° domains walls are isotropically oriented [71]. The 

EM sensor is sensitive to changes of both microstructure and applied stress. Therefore, 

EM signal can be converted to residual stress values by using an appropriate calibration 

curve if the microstructure remains constant (or is known and an appropriate model is 

developed).  For the DP steels considered in the work presented no residual stress is 

expected as the samples are thin sheets in the as-received condition (either hot rolled 

or cold rolled and annealed).  The effect of applied stress has been considered in 

parallel work, for example [38] where sensors used in-line for inspection of strip under 

line tension were being considered and no significant effect of stress is anticipated. 

 

 

 

2.10.7  Variation of Magnetic Property with Applied field 

The effect of applied field on magnetic permeability has been investigated [50, 72]. 

Figure 2.28 illustrates the permeability values in ferrite + pearlite microstructure steel, 

where the pearlite percentages varying from around 20% to 100%, as a function of 

applied field [49]. At low applied field reversible magnetisation dominates, as the 

applied field increases the irreversible component is introduced and the gradient of the 

curve increases. These plots show a smooth curve with a peak near the coercive force. 

The increased pinning, seen in the microstructures with higher amounts of pearlite, 

results in a lower relative permeability and reduced gradient of the initial magnetisation 

curve. The decrease in the peak permeability and broadening of the curve is attributed 

to saturation [66]. 
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Figure 2.28: Permeability values of pearlite fractions varying from 0.19 to 100% as a 

function of applied field [50] 

 

 

 

2.10.8  Variation of Magnetic Property with other 

microstructural parameters  

Non-magnetic inclusions and non-magnetic intra-granular precipitates influence 

permeability by pinning domain walls [73-75] due to the surface tension effect, and the 

effect of internal magnetic poles [74]. It has been found that the coercive force depends 

both on the total volume fraction of inclusions and the state of dispersion. For a given 

composition of alloy, for particles both much larger (which typically have low number 

density) and much smaller (which may have high number density but will have a low 
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pinning force) than the thickness of the domain wall, the net contribution to the 

coercive force is small [74]. In addition, the maximum effect on coercive force (i.e. the 

strongest pinning) occurs for particles of size about 120 nm in ferrite phase in carbon 

steels. 

 

 

 

2.11 Summary  

This chapter covered some important fundamental theories of magnetism and magnetic 

properties of materials. Following that, the effective factors on magnetic property were 

analysed. It was explained that the permeability of steel is affected by intrinsic 

parameters such as microstructural features and/or extrinsic parameters such as applied 

field. 
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3 Fundamental EM Sensor 

3.1 Maxwell’s Equations 

The fundamental electromagnetism relationships rely on Maxwell’s equations. These 

equations describe how electric charges and electric currents create electric and 

magnetic fields. Moreover, they describe how a magnetic field can generate an electric 

field and vice versa. Maxwell’s equations consist of Gauss’s law, Gauss’s law for 

magnetism, Ampere’s circuital law and Faraday’s law of induction. Gauss’s law 

signifies that electric charges are the source for the electric field; Gauss’s law for 

magnetism indicates that magnetic monopoles do not exist; Faraday’s law signifies 

how an electric field is produced by a time changing magnetic field; and finally 

Ampere’s circuital law indicates the reverse process. These four partial differential 

forms of Maxwell’s equations are listed below [76-78]; 

 

Gauss’ Law: ∇. 𝐸̅ = 𝜌/𝜀0 

 

 Equation 3-1 

 

 
Gauss’ Law for 
magnetism 

 

∇. 𝐵̅ = 0 

 
 
 

Equation 3-2 
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Faraday’s Law of 
induction: 

 
 

∇ × 𝐸̅ = −
𝜕𝐵̅

𝜕𝑡
 

 

 

Equation 3-3 

 
Ampere’s circuital Law: 

 

∇ × 𝐵̅ =  𝜇0𝐼𝐷 +  𝜇0𝜀
𝜕𝐸̅

𝜕𝑡
 

 
 

    

 Equation 3-4 

 

 

Where E presents electric field intensity, ρ is the free charge density, ε is permittivity, 

𝜇0 is permeability and 𝐼𝐷 stands for current density. In addition, the relationship 

between electric field (E), magnetic field (B), magnetic field strength (H) and electric 

displacement (D) are presented by constitutive equations below: 

 

 𝐵̅ =  𝜇0𝜇𝑟𝐻 

 

 Equation 3-5 

 

 𝐼𝐷̅ =  𝜎𝐸̅  

 

       Equation 3-6 

 

 𝐷̅ =  𝜀𝐸̅ 

 

Equation 3-7 

 

where the symbols of μ, 𝜎  and ε denote the permeability, conductivity and 

electromagnetic constant permittivity of a material respectively [76, 78]. 

3.2 Inductance   

Inductance for a straight wire with length l is calculated by Equation (3.8) as shown in 

Figure 3.1 [79]. 
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Figure 3.1: Inductance for a straight wire with length l and diameter of 2r, is calculated 

by L=200l (ln (2l/r)-1) x10-19 [79] 

 

L = 200l (ln (2l/r)-1) ╳10-19   Equation 3-8 

 

Where I is the current (in Amp) and r the radius of the wire (in mm). 

 

 For a straight very long wire, Figure 3.2, the magnetic field at point p is measured by 

[79]; 

 

 

Figure 3.2: Magnetic flux density and magnetic field at point p with R distance from  a  

straight very long wire can be expressed by B=
µ.µ𝒓𝑰

𝟐𝝅𝑹
 and H=

𝑰

𝟐𝝅𝑹
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H =  
𝐼

2𝜋𝑅
      Equation 3-9 

 

 

 

and magnetic flux density is calculated by; 

 B =   µ.µ𝑟𝐼
2𝜋𝑅        Equation 3-10 

 

 

 Where I is the current (in Amp) and R is the distance from point p to the wire (in mm) 

 

Inductance for infinite cylindrical coil helix is calculated by (Figure 3.3) [79]; 

 

Figure 3.3: Infinite cylindrical coil helix with diameter of 2R [79]. 

 

 

 

L = 
𝑁2µ 𝐴

𝑙
     Equation 3-11 

 

H = NI (for R<<l       Equation 3-12 
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where A coil  is the area of the coil(m2) and N is the number of turns in the coil.  

 

According to Faraday’s law when the magnetic field that flows through a conductor 

changes, a current or voltage is induced in the conductor. This phenomenon is called 

the self-induced inductance, which is opposite to the original flux change (i.e. negative 

sign) [22-23]. Self-induced inductance is indicated by Equation 3.13 [80]; 

 

L = 
𝑁1  𝜑

𝑙
     Equation 3-13 

 

Where N1 is the number of turns in the coil and 𝜑 is the flux in Wb and I is current in 

A. 

If two multi turn coils are kept close to each other, with a varying magnetic field due 

to varying current flowing through one, a voltage is generated in the other one. This 

process is called the mutual inductance and it is achieved by Equation 3.14 [80]. 

 

ML = 
𝑁2  𝜑 

𝑙
      Equation 3-14 

 

 

Where ML in Wb/Amp and N2 is the number of turns in the second coil. 
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The mutual inductance is related to the relative permeability of the sample and can be 

simplified by Equation 3.15; 

 

ML = 
𝑁2   𝜑

𝐼
  = 

𝑁2   𝐵𝐴

𝐼
 = 

𝐴 𝑁1𝑁2µ0µ𝑟   

𝑙
      Equation 3-15 

 

Where ML is mutual inductance in Wb/Amp, N1 is the number of turns in the first coil 

N2 is the number of turns in the second coil [79, 81]. 

3.3 Impedance  

Impedance stands for all forms of opposition to electron flow, including reactance and 

resistance, where reactance is inertia against the motion of electrons and resistance is 

friction against the motion of electrons. Resistance and reactance are measured in the 

unit of ohm (Ω) and mathematically symbolised by the letter “R” and “X” respectively. 

The complex quantity of impedance is presented by two parts; the first part is “R”, the 

real part of resistance and the second part is the imaginary part. Impedance is measured 

in the unit of ohm (Ω) and mathematically symbolised by the letter “Z”[81]. 

 

Z=R+ jX      Equation 3-16 

 

 

 Imaginary impedance is defined as the impedance 90 degrees out of phase or leading 

with the driving current. Inductive reactance interprets into a positive imaginary 

impedance (the impedance value +90º). In electromagnetic sensors, imaginary 
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impedance relates the induced voltage in the sensing coil and real impedance represents 

the losses in the EM sensor [79, 81]. 

 

The impedance for a circuit with inductor and capacitor is calculated as Equation 3.17 

[23];  

 

 

Ztotall =ZR+ZL+ZC        Equation 3-17 

 

 

So for a circuit without an inductor and capacitor the impedance is purely real as in 

Equation 3.18 [81]; 

 

ZR=R     Equation 3-18 

 

Ideal capacitors and inductors have purely imaginary impedance as in Equation 3.19 

and 3.20 respectively [81]; 

 

Zc = 
𝟏

𝒋𝒄
    Equation 3-19 

 

ZL = 𝒋L    Equation 3-20 

 

where 2f 
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Inductance is calculated as Equation 3.21 [81]; 

 

L = 
𝒁𝑳

𝒋
    Equation 3-21 

 

 

 

3.4 Eddy Current Theory 

The tendency of magnetic flux (or current) to become distributed throughout the cross 

section of a conductor is affected by two independent phenomena known as proximity 

effect and skin effect [23, 32]. Foucault current or Eddy current theory is based on the 

fundamental EM theories provided in section 3.2. The basic principle for this 

phenomenon is Faraday’s law. When the magnetic flux in a conducting medium 

changes with time, an electromotive force is generated in the plane at right angles to 

the direction in which the flux is varying, and there is a resulting flow of current within 

the material. These eddy currents depend on the resistivity and permeability of the 

specimen, frequency and the geometry of the specimen [23]. The eddy current effect 

prevents the field from penetrating to the interior of the material. Therefore, the 

magnetic induction drops from the surface toward the interior. The eddy currents cause 

an increase in the resistance of the coil. In addition, the eddy currents generate a 

magnetic field and change the inductive reactance of the coil [78, 79]. The principles 

of eddy current generation are schematically illustrated in Figure 3.4. 
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Figure 3.4:Typical eddy current generation [79]. 

 

 

The skin effect is the tendency of magnetic flux and current to become distributed 

throughout the cross section of a conductor such that the flux, or current, density in a 

thin layer on the surface of the conductor is much more pronounced Figure 3.5.  

 

 

 

Figure 3.5: Skin depth illustration, in the skin effect the largest amount of current 

density can be seen at the surface of the conductor and current density decreases by 

increasing the depth. The eddy current density near the surface of the conductor is 



57 

 

much greater than the inside the conductor which is called “skin depth”, defined as the 

distance over which the electromagnetic wave falls to 1/e or 37% of its original value. 

 

The skin effect is calculated by equation 3.22 and 3.23; 

 

Δs =√
𝟐𝝆

𝝎𝝁
 

Equation 3-22 

 

 

 Δs =√
𝝆

𝝅𝒇𝝁𝟎𝝁𝒓
 

Equation 3-23 

 

 

 

where ω=2πf, f is the AC excitation frequency in Hz, ρ is the resistivity of the 

conductor,  

 µ is absolute magnetic permeability (µ= µ0 µr) and e =2.718. 

 

3.5 Frequency Dependence of Permeability 

Magnetic permeability measurement as a function of frequency is challenging as the 

signal is affected by many factors, such as the electric conductivity of the material, the 

eddy current effect, dimensions and shape of the sample. A study by Bowler has been 

done to characterise metal plates by means of model-based, broadband, four-point 

potential drop measurement technique [82] . The study has shown that the real and 
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imaginary parts of the permeability (µ) of a steel sample (alloy 1018 - low-carbon steel) 

are complex and it can be a function of frequency, as illustrated in Figure 3.6. 

 

 

Figure 3.6: Real and imaginary parts of relative permeability as a function of 

frequency [82]. 

 

 

 

3.6 EM sensor function 

Figure 3.7 shows different laboratory EM sensors in term of geometry. Cylindrical EM 

sensors (air cored/ferrite cored) have been designed for rod and bar samples where the 

samples are placed within the cylindrical sensor body. U-shaped EM sensors (or H-

shaped) are basically used for flat surfaces (sheet samples). EM sensors consist of an 

excitation coil and sensing coil. The EM sensor's excitation coil is driven by an AC 

voltage and induces an alternating current magnetic field into the sample. The sensing 

coils pick up changes in the magnetic field caused by the test sample. The EM sensor 
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can be operated at frequencies from 1Hz to 1MHz and measures inductance (real 

inductance and imaginary inductance). 

 

 

Figure 3.7: Different geometry cylindrical and U-shaped multi frequency EM sensors, 

including U-shaped ferrite core, cylindrical air-cored and cylindrical ferrite cored. 

 

Figure 3.8 illustrates a typical EM sensor response curve that has been operated at 

frequencies from 10Hz to 100 kHz for a DP1000 sample. The EM sensor is sensitive 

to magnetic permeability and electrical resistivity of the material being tested. At low 

frequency the eddy currents in the sample are very weak; the contribution to the 

inductance change is mainly from the magnetisation of the sample and therefore the 

real inductance measured is related to the sample permeability. As the frequency is 

increased, the effect of the eddy currents becomes more dominant, i.e. the inductance 

reading is affected by the samples resistivity. 
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Figure 3.8: Typical EM sensor multi frequency measurement and dominant materials 

parameter affecting the curve. 

 

It is worth mentioning that permeability is a physical property of material whereas 

inductance is a physical property of a coil that describes how a magnetic field is 

generated when an electrical current is sent through material. The measured real 

inductance from the EM sensor is sensitive to both changes in sample geometry and to 

changes in the relative permeability and resistivity of the steel, with the low frequency 

inductance values being directly related to the permeability. As the frequency is 

increased, the effect of the eddy currents becomes more dominant, i.e. the inductance 

reading is affected by the samples resistivity. There are known relationships between 

magnetic properties (for example coercivity or permeability) and mechanical 

properties (hardness or strength).  Therefore the low frequency EM signal can be 

directly correlated to the mechanical properties for samples of constant thickness. 

However, the sensor signal cannot be correlated to strength directly if different 

thickness samples are assessed unless a calibration curve to account for thickness is 
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generated – using a model to determine permeability from a given sensor and sample 

thickness avoids the need for lots of calibration samples. 

 

 

3.7 EM Sensor and microstructure-magnetic property 

models 

Building a model facilitates the design of the sensor and sample set-up, the sensor and 

sample interaction, the effect and the significance of changes in each materials property 

on the EM sensor signal.   

The model can be carried out in order to generate frequency-domain responses of the 

sensor/sample in term of real inductance between the excitation coil and sensing coils 

and later can be utilised to determine the relative permeability of the samples by fitting 

with experimental. 

Magnetic permeability – microstructure model has been used to determine the relative 

permeability of steel based on actual microstructure where the model shows the effects 

of grain size and phase balance on permeability. 

 

 

3.8 Summary  

The fundamental EM sensor relationship including Maxwell’s equations, inductance 

and impedance were discussed. It has been explained that a typical multi frequency 
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EM sensor is sensitive to electrical conductivity (resistivity) and permeability of the 

material being tested where at low frequency the inductance corresponds to 

permeability of the sample as the effect of eddy currents are negligible. 
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4 Methods of steel microstructure 

characterisation 

 

 

This chapter provides a basic introduction to the most commonly used methods of 

microstructural characterisation to observe and interpret the microstructure of metals 

and steels. The whole range of techniques from optical microscopy, electron 

microscopy, ultrasonic and thermal analysis are briefly explained, followed by X-ray 

and ultrasonic technique. The basic principles for each technique and interpretation of 

microstructural features are explained. 

Finally, magnetic techniques are presented and will be explained on the basis of the 

fundamental magnetic properties discussed in Chapter 2, to allow correlations to 

microstructural features for characterisation of steel. Moreover, existing commercial 

EM sensors for characterisation of steel will be introduced at the end of the chapter. 
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4.1 Conventional Methods  

4.1.1 Optical Microscopy 

The optical microscope is a commonly used tool for the characterisation of steel. In 

this method, the light is incident on the sample and a magnified image is generated by 

a combined action of eyepiece and objective lenses [83]. Meticulous surface 

preparations are required to reveal the needed details of the microstructure. For this 

aim the specimen surface must first be ground and polished to a smooth and mirror like 

finish (1 micron or ¼ micron surface finish) followed by chemical etching if necessary 

as chemical reactivity of the grains of some single-phase materials depends on 

crystallographic orientation, then in a polycrystalline specimen, etching characteristics 

vary from grain to grain [84]. This results in a different reflectivity of different regions 

of microstructure that makes a contrast in the image [83]. 

The maximum magnifications achieved in this type of microscope are in the range of 

1000-2000X and many microstructural features of common interest can be observed 

and quantified such as determination of grain sizes/distribution, shapes, amounts of the 

different phases in multi-phase systems and precipitates (larger than 0.2 micron).  

The maximum resolution achieved by optical microscopy is limited by the wavelength 

of light, it means the maximum resolution is around 200 nm. Some structural elements 

(e.g. dispersoids, fine second-phase precipitate particles) possess much smaller 

dimensions, therefore more powerful microscopes are required in order to observe 

these items (Figure 4.1) [29]. 
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Figure 4.1: The maximum resolution (minimum d) is typically about one-half of the 

wavelength. The limit of resolution for an optical microscope which uses visible 

radiation (λ=300–700 nm) is about 200 nm [29]. 

 

 

4.1.2 Scanning Electron Microscopy 

The scanning electron microscope provides the microscopist with higher resolution 

than optical microscopy. In this method, the surface of a specimen to be assessed is 

scanned with an electron beam, which is generated by heating a tungsten filament (or 

lanthanum hexaboride filament) and the reflected (or backscattered) beam of electrons 

is collected and then displayed at the same scanning rate on a cathode ray tube (CRT). 

The electron beam interacts with the specimen and generates a variety of signals, 

including backscattered electrons, secondary electrons, characteristic X-rays, Auger 

electrons, and cathode luminescence (Figure 4.2). These different signals can be used 

to obtain valuable information about the microstructure of the sample; 
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Figure 4.2 : Schematic diagram of the core components of an SEM microscope [85]. 

 

4.1.2.1 Secondary electrons  

These are produced by interaction between the primary electrons in the electron beam 

and the loosely bound electrons in the atoms of the specimen.  Secondary electron 

imaging technique can be used for examining microstructures, usually in combination 

with chemical analysis using X-ray signals. 

4.1.2.2 Backscattered electrons 

Backscattered electrons are formed by multiple small-angle or single large-angle 

scattering events that mostly depends on the atomic numbers of the elements. In this 

technique, particles and phases with a higher average atomic number are indicated as 
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bright regions because a large portion of primary electrons are backscattered. 

Therefore, backscattered electron imaging may be used to distinguish between particles 

and phases with different average atomic numbers.  

 

4.1.2.3  Characteristic X-rays  

In scanning electron microscopy when the primary electron beam has sufficient energy 

to knock out electrons from atoms, the X-rays generated from the sample may be 

employed to determine the chemistry of the specimen using either energy dispersive 

spectroscopy (EDS) or wavelength dispersive spectroscopy (WDS) where the intensity 

of the excited X-radiation is collected as a function of the wavelength. Moreover, the 

X-ray generated from the sample can produce an elemental map (or X-ray dot image) 

showing the distribution of different elements in the specimen [86]. The morphological 

data from secondary electron images with compositional information from EDS 

provides compositional mapping of the chemical components in the microstructure.  

Analysing electron backscatter diffraction (EBSD) provides quantitative 

microstructural information about the crystallographic nature of specimen. It reveals 

texture, grain boundary, grain size, grain orientation and phase identity of the 

specimen. 

 

 

4.1.3 Transmission Electron Microscopy  

Transmission electron microscopy (TEM) is a microscopy technique in which a high 

energy electron beam is transmitted through a sample to form an image. In this method 

contrast in the image is formed by differences in beam scattering. The specimen size 
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for TEM analysis is normally required to be a 3mm disc and must be prepared in the 

form of a very thin foil (typically less than 100 nm in thickness) as solid materials are 

highly absorptive to electron beams. The thin film is obtained by either conventional 

electro polishing methods (for conducting samples like metals/alloys), ion milling (for 

non-conducting samples) or focussed ion beam technique. The specimen preparation 

for TEM analysis can be challenging and time consuming. The transmitted beam may 

be used to obtain the crystal structure and microstructural information. 

 

4.1.4  High-Temperature Microscopy 

High temperature microscopy is essential for monitoring and in-situ characterisation 

of microstructural changes that happen at high temperature with wide applications in 

different areas of materials science. High Temperature Confocal Scanning Laser 

Microscopy (HT-CSLM) is used to observe in situ and in real-time metallurgical 

reactions and transformations at high temperatures (up to 1700oC). 

In this technique, a laser is scanned across the specimen, focused at a particular depth. 

Light from the specimen passes through a small aperture (pinhole) which selects only 

light which contributes to an in focus image. Figure 4.3 shows a schematic 

representation of the furnace chamber for a high temperature confocal scanning laser 

microscope. The sample is inserted into the top half of the furnace chamber where the 

atmosphere is controlled to avoid oxidation of the sample at high temperature [87]  
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Figure 4.3: Schematic representation of the LSCM chamber[87] 

 

 

4.1.5 3D Atom Probe Microscopy (3DAP) 

Three-dimensional atom probe (3DAP) is used to assess compositional variations on a 

very fine scale. Such studies are difficult or not possible using other techniques (e.g. 

X-ray diffraction or TEM). For example, investigation on Al coatings deposited on a 

304 stainless steel substrate revealed a cubic phase (-ferrite phase) with a chemical 

composition of predominantly Fe, Cr, Ni. This result could not have been obtained 

from other analysis techniques such as X-ray diffraction and TEM [88, 89]. 

 

4.1.6 Thermal Analysis 

In thermal analysis, the properties of materials are investigated based on temperature 

variations. Several types of thermal methods are in use and examples include 

coefficients of thermal expansion, specific heat capacities, melting and solidification 
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temperatures or enthalpies and characteristic thermal effects are some of the areas of 

high interest in metallurgical applications. 

One of the most common thermal analysis techniques employed for phase transitions 

in steel is dilatometry. In this method the coefficient of thermal expansion is precisely 

measured. In other words, dilatometry utilizes the variation in volume associated with 

nearly all transitions and measures the change of length of a sample as it is heated up 

and cooled down at a fixed rate. Dilatometry technique has served to estimate the 

fraction of constituent phases and gives the phase fraction as a function of temperature 

and time, by which the transformation kinetics can be evaluated as well [90-93]. 

Dilatometric method has been used for quantifying the austenite to ferrite/pearlite 

transformation [91, 92]. In situ studies of reaustenitisation in a low carbon micro 

alloyed steel have been carried out by dilatometry [94]. 

 Jun-Yun et al. used a dilatometric analysis to estimate the volume fraction of ferrite / 

martensite in dual phase steel (as shown in Figure 4.4). Furthermore, it was shown that 

dilatometry can provide a history of phase fraction along the given thermal cycles, 

which can be helpful to investigate the transformation kinetics or to design thermal 

process to obtain optimal microstructure [95].   
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Figure 4.4: An example of dilatometric experiment to estimate the martensitic volume 

fraction in steel: (a) used thermal cycle and (b) an example of corresponding dilatation curve 

(a portion of dilatation curve can be linked to corresponding stage in the heat cycle by the 

same colour of line) [95]. 
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4.2 NDT Techniques for Steel Characterisation  

4.2.1 X-ray  

X-rays are high-energy electromagnetic waves with a wavelength between 10-3 and 101 

nm. When a beam of X-rays impinges on a solid material, some parts of the beam will 

be diffracted by the electrons associated with each atom or ion that is in the beams 

path. It is possible to determine the molecular or atomic structure of the material by 

measuring the pattern and spacing of the diffracted X-rays beam since the grouping of 

electrons affecting the diffraction within the measured structure will provide a specific 

signature (diffraction pattern). This signature is analysed to determine the mean atomic 

spacing and disorder in a single crystal or polycrystalline structure. Basically, the 

experimental technique based on X-rays employed in material science and engineering 

may be categorised into three main classes [96]. In terms of qualitative and quantitative 

chemical analysis, X-ray fluorescence spectroscopy is extensively used [86, 96]. X-ray 

radiography is used as an imaging technique to show internal structure due to the 

variation in intensity of absorption [86]. 

The X-ray diffraction (XRD) method can be either a reflective technique or a 

transmission technique which offers a precise study of the structure of crystalline 

phases [96]. It obtains information based on the ability of crystals to diffract X-rays in 

a characteristic manner. The principle of XRD is based on the diffraction of X-rays by 

periodic atomic planes and the angle or energy-resolved detection of the diffracted 

signal [96]. The geometrical expression of XRD technique can be clarified by Bragg’s 

law. Equation (4.1) quantifies Bragg’s law and Figure 4.5 gives the details about 

geometrical condition for diffraction and the determination of Bragg’s law [96].  
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n λ = 2dhkl sin 𝜃                                           Equation 4-1 

 

 

 

In Equation 4.1, n is the number of wavelength, λ is the wavelength of the incident 

beam (in nm), dhkl is inter planar spacing and θ is the angle of incident beam to the 

targeted solid [96]. 

 

 

 

 

Figure 4.5:Schematic geometrical condition for diffraction and the determination of 

Bragg’s law[29]. 
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In the XRD technique three parameters including the peak intensity, the peak position 

and the peak shape are significant to interpret. The peak intensity gives information 

about quantitative phase analyses, texture and crystal structure. Chemical composition, 

space group and lattice parameters can be identified by the position of the peak. Finally, 

crystallite size can be investigated by the peak shape [86, 96]. The phase fractions and 

lattice parameters of martensite/ferrite, austenite, M23C6 and M2X have been monitored 

by in situ X-ray diffraction technique during tempering of a martensitic stainless steel 

[97]. From Figure 4.6 (a) it can be clearly seen that there is transformation of martensite 

(with two peaks) into ferrite (single peak) with their (101)/(11 0) reflections during 

heat treatment alongside the presence of austenite with its (111) reflection. The 

precipitates are not observed in this plot but they can be seen in Figure 4.6 (b), in six 

clear diffraction peaks from M2X to M23C6 [97]. In addition, the X-ray diffraction 

procedure can be employed to measure the microstructural phase balance [97-103] or 

steel crystallographic texture [86, 97, 102].  



75 

 

  

Figure 4.6: (a) X-ray diffraction procedure can be employed to determine the 

transformation of martensite (two peaks) into ferrite (single peak) with their (101)/(110) 

reflections alongside the presence of austenite with its (111) reflection. (b) The precipitates 

that form are characterised in six clear diffraction peaks fromM2X to M23C6 [27]. 

 

The method has been reported to be successful and widely used which is relatively 

unaffected by environmental issues such as dust. On the other hand, most analytical X-

(a) 

(b) 
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ray diffraction measurements are lab based and samples are usually required to be very 

small size (less than a 10mm cube). In addition, X-rays are generated during the 

measurements technique which may have enough power (i.e. radiation dose) to cause 

radiation burns (ionisation) [104], therefore this technique requires specific shielding 

to prevent exposure of workers to stray X-rays generated during measurement. The X-

rays technique is a relatively expensive method [104, 105]. 

 

4.2.2 Ultrasonic Testing  

Ultrasonic non-destructive technique uses high frequency sound waves (above 20 

KHz) to conduct examinations of materials [106]. This technique functions by 

introducing transmit ultrasonic pulses into the specimen under inspection; the pulses 

are reflected from the back surface of the sample [107]. Figure 4.7 illustrates an 

operation of a UT system in pulse-echo mode. The pitch-catch technique is used when 

the material being tested has a high attenuation coefficient, the amplitude of echo 

waves are not large enough to give clear reflections for evaluation. In this technique, 

two transducers are located in line on opposite sides of the samples, one acting as the 

transmitting and the other as the receiving probe [108]. 

 

 



77 

 

 

Figure 4.7: Operation of a pulse-echo UT system [109] 

The features of the wave such as the amplitude of the reflection and the time taken for 

the reflected pulse to be received are affected by the sample’s microstructural 

characteristics and dimensions [107]. In term of methods for generating and detecting, 

many different ultrasonic measurements exist; including basic ultrasonic testing, 

electromagnetic acoustic transducers (EMAT), electromagnetic acoustic resonance 

(EMAR) and laser ultrasonics [106, 107, 110]. Propagation of sound waves, loss of 

amplitude (or attenuation) and analysis of backscattered signals are affected by 

microstructural parameters (e.g. grain size, composition and crystallographic texture) 

or defects (e.g. inclusion or crack) [106, 107, 110-117].  

The ultrasonic pulse-echo technique can be used to differentiate between different 

amounts of cold working in stainless steel, since a more deformed structure introduces 

a greater amount of dislocation density through the material and gives a slower sound 

velocity [114]. 

The thickness of a hardened surface layer was characterised by ultrasonic techniques. 

From Figure 4.8 (a) it can be observed for induction-hardened components, the 

transition from the coarse-grained base material to fine-grained surface layer is abrupt. 

In this event the microstructure changes within a small transition zone (one mm) from 
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martensite, near the surface, to the ferrite/ pearlite state of the parent material. An 

ultrasonic pulse is applied into the sample and the sound waves propagate within the 

hardened layer without any significant scattering but noticeable scattering appears at 

the transition zone (Figure 4.8) [107, 116]. 

 

 

Figure 4.8: (a) Micrographs of the transition zone at induction-hardened component, 

hardness distribution, (b) An ultrasonic pulse is coupled into the sample Typical 

(a) 

(b) 
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backscattering signals at the transition zone from hardened surface layer to the base 

metal [116]. 

  

Recrystallisation in austenitic AISI 316 stainless steel was studied using laser 

ultrasound [111]. It was observed that there is a nearly linear relationship between 

velocity and measured recrystallised fraction that results when the texture change 

happens uniformly with time during the recrystallisation process as the velocity of 

ultrasonic waves is strongly affected by the elastic property which is dependent on the 

crystallographic texture, while attenuation of the waves is dependent on the grain size 

and dislocation density, Figure 4.9 [111]. 

 

 

Figure 4.9: Velocity as function of measured recrystallised fraction for 316 austenitic 

stainless steel at room temperature, there is nearly linear relationship between velocity 

and measured recrystallised fraction [111]. 
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Ultrasonic techniques have been used for determination of grain size [106, 107, 110, 

113, 117]. Figure 4.10 indicates the grain size value measured by ultrasonic technique 

(dUS) in comparison to the grain size measured by metallographic method (dmet). It has 

been reported that the ultrasonic velocity decreases with decreasing grain size in 

maraging steels [113] and electromagnetic acoustic resonance (EMAR) has been used 

to detect the mean grain size of  dual phase steel plate [110]. 

 

 

Figure 4.10: Comparison of average grain size measurements made by ultrasonic 

method (dUS) and grain size measurements made by optical microscopy ( dmet ). There is 

good agreement between the ultrasonic measurement and grain size estimated by 

microscopy [113]  

 

 

Freitas [115] used ultrasonic measurement to identify ferrite, pearlite and martensite. 

In that experiment the lowest value of ultrasonic velocity was observed for the 



81 

 

martensitic microstructure in relation to the other microstructures (Figure 4.11). In 

addition, from Figure 4.12, it can be seen that martensite was the most attenuating 

microstructure and ferrite–pearlite with larger pearlite interlamellar spacing was the 

least [115]. The lowest ultrasonic velocity and the highest value of ultrasonic 

attenuation verified for martensitic microstructure can be explained by the great 

amount of internal tension from crystal lattice distortions [112, 115].  The results point 

out that whilst martensite can be differentiated from pearlite / ferrite + pearlite it 

appears to be difficult to separate ferrite from ferrite + pearlite or pearlite from ferrite 

+ pearlite as there are variations for ferrite + pearlite depending on the phase fraction 

that means there is not a clear relationship. There have been no reports on the use of 

ultrasonic technique use for dual phase steel characterisation. 

 

 

Figure 4.11: Average ultrasonic velocity measurements for longitudinal waves with 4, 5 and 10 

MHz of frequency for AISI 1045 annealed (A), quenched in water (WQ), 1080, 1020 and 1006. 

The lowest value of ultrasonic velocity was observed for the martensite in relation to the other 

microstructures [115]. 
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Figure 4.12: Average ultrasonic attenuation measurements for longitudinal waves with 4, 5 

and 10 MHz of frequency for AISI 1045 annealed (A), quenched in water (WQ), 1080, 1020 

and 1006. The  highest value of ultrasonic attenuation was observed for the martensite in 

relation to the other microstructures [115] 
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4.2.3 Magnetic Techniques  

A large portion of structural components are made of ferromagnetic steel. The 

mechanical properties of steel are affected by the microstructure, texture and residual 

stress state. With the understanding of ferromagnetic properties and magnetic theory, 

the interaction between lattice imperfections and Bloch walls is explained. Relying on 

this principle, various magnetic techniques for non destructive evaluation have been 

introduced. Out of all available methods, magnetic hysteresis, magnetic Barkhausen 

noise, incremental permeability, upper harmonics, and dynamic magnetostriction are 

very promising methods for materials characterisation. 

The principles of magnetic properties were discussed in Chapter 2. The following 

section explains how microstructure can be correlated to measured magnetic 

parameters through the hysteresis B-H loop (coercivity and permeability etc.) and 

Barkhausen effect. Initially, lab based techniques are presented followed by 

commercial techniques for characterisation of steel. 

 

4.2.3.1 Lab based Technique 

4.2.3.1.1 Magnetic hysteresis 

Characteristic relationships between magnetic induction (B) and magnetic field 

strength (H) are observed for ferromagnetic materials. Values derived from the major 

hysteresis loop, such as coercivity, permeability, saturation magnetisation and 

remanence, can be used to quantify the magnetic hardness of a material, which in turn 

is indicative of material hardness or mechanical property [49, 50, 54]. In addition to 
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these major loop properties, information can also be derived from small minor loop 

deviations from the major loop or initial magnetisation curve.  

 

Takahashi et al. [118, 119] analysed the minor hysteresis loops of cold rolled low 

carbon steel in connection with the rolling reduction. From Figure 4.13, it is clearly 

seen that the cold rolling process decreases the magnetisation. This is believed to be 

due to the fact that dislocations produced by cold rolling act as obstacles to the Bloch 

wall displacement. In addition Figure 4.13 illustrates the magnetisation process before 

the saturation can be divided conveniently into three stages; initially a linear increase 

of magnetisation with H then sharply increases in the second stage and finally shows a 

gradual increase with H [118]. 

 

Figure 4.13: Minor-loop magnetisation as functions of H before and after cold rolling in low 

carbon steel, each data point represents the value of magnetisation (Ma) for each minor loop 

measured with Ha [118]. 
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Magnetic hysteresis loop measurements have been used to study changes of minor 

loops during creep in power plant steels (Cr–Mo alloy steels) [41, 72, 120]. Since, 

creep damage is associated with microstructural changes due to the formation of Cr-

rich carbide precipitates, coarsening of martensite laths into broader ferrite laths, 

formation of an equiaxed ferrite grain structure with grain growth, and cavities etc., as 

well as changes in distribution and density of dislocations. These defects act as 

effective pinning points for magnetic domain walls and will disturb their movement. 

Consequently, it results in changes of magnetic properties during creep (shown in 

Figure 4.14). 

 

 

Figure 4.14: A set of minor hysteresis loops of 1Cr-0.5Mo-0.25V ferritic steel, (a) 

measured before and (b) after creep tests (at 923 K under tensile stress of 25 MPa). The 

decrease of the coercive field during creep is observed. The dotted lines correspond to 

the major loop [120].  
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The surface decarburisation layer of steel was quantitatively and non destructively 

investigated by magnetic hysteresis [121]. High silicon 54SiCr6 spring steel was 

annealed in air at 800º C for 1, 4, 8 and 20h in order to obtain different decarburisation 

layers. Figure 4.15 illustrates the hysteresis loops for these samples, compared with the 

usual sigmoid shape, the loops become more and more bulged with annealing time in 

air and the coercive field value decreases [121].  

 

 

 

Figure 4.15: Hysteresis loops measured for high silicon 54SiCr6 spring steel samples 

annealed in air at 800º C for 1, 4, 8 and 20h in order to obtain different decarburisation 

layer [121]. 

 

A study completed by Gurrachaga et al. [122] showed that coercivity is sensitive to 

recovery and recrystallisation with coercivity dropping as the amount of time for 

recovery increases. That study showed that as recrystallisation takes place at higher 

temperatures the drop in coercivity is more significant than for recovery, Figure 4.16.  
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Figure 4.16: Evolution of coercivity as a function of annealing time for different 

temperatures in IF steels.  The decrease in coercivity for the 650oC annealed sample 

after 1000s was due to the onset of recrystallisation [122]. 

 

It has been shown that the coercivity can be correlated to the microstructural features 

such as grain size and texture [44, 52, 54], carbon content [54], dislocation density [53] 

and phase changes in steels [52]. 

A study completed by Petryshynets et al. [52], (as shown in Figure 4.17 ) on electrical 

steel showed that there is an inverse relationship between grain size and coercivity (in 

agreement with Landgraf et al. [56] and Lukin et al. [123]) at room temperature and 

they used the relationship to suggest that it is possible to estimate grain size in electrical 

steels using coercivity measurements during steel manufacturing, although the study 

does not mention any practical solution of taking coercivity measurements on moving 

steel at high temperature. 
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Figure 4.17: Linear inverse proportionality between the coercive field and grain size  

(measured through the intercept method) in electrical steel where there was no other 

microstructural change [52]. 

 

Coercivity measurements have been used to examine the mechanical properties of 

steels. It has been observed [41, 72, 124] that the coercivity, as magnetic hardness, can 

indicate the hardness in alloy steel (as shown in Figure 4.18), which is similar to the 

reported general trend that coercivity increases with hardness [49, 54, 125]. Tanner et 

al. [54] established a correlation between coercivity measurements and tensile strength 

in high tensile strength steels.  
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Figure 4.18:The coercivity, Hc as a function of the Vickers hardness for P9 and T22 

(power station steels), Suffixes N as normalised, T as normalised and tempered and ES 

as ex-service [41]. 

 

Similar results were obtained by Martinez et al. [126] who revealed an almost linear 

relationship between the coercivity and both the martensite volume fraction and the 

mechanical properties for a set of samples with different volume fraction of martensite 

(martensite from 3% to 100%), Figure 4.19. 

 

Figure 4.19: Coercivity as a function of the martensite fraction (a) and tensile strength 

(b) in samples with 3% to 100% martensite [126]. 
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Rumiche et al. [127] established an electromagnetic sensor consisting of a primary 

excitation coil that magnetises the steel samples, a secondary coil wound on the test 

sample senses changes of magnetic flux, and an array of three Hall sensors to read the 

magnetic field (Figure 4.20). The value of the coercivity, saturation and retentivity 

were determined on cylindrical rods of four different structural steels, AISI 1010, 1018, 

1045, and AISI 1045 - high manganese/stress proof. It was observed that the induced 

magnetic saturation and coercivity measured with the EM sensor can be reliably 

correlated to percent of ferrite, grain size, and hardness of the steel. The data reported 

concluded that the carbon content of the steels affected the magnetic behaviour and the 

increase in the amount of iron carbide (cementite) reduced their magnetisation 

potential.  

 

 

Figure 4.20: Schematic of the electromagnetic sensor and measuring system [127]. 
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4.2.3.1.2 Magnetic Barkhausen Noise (MBN) 

The degree and amount of Barkhausen noise that is produced during magnetisation of 

a sample is linked to the type and density of pinning points, therefore, MBN 

theoretically can be a good indication to measure different microstructural 

characteristics of a material. However, use of Barkhausen noise in this way is in reality 

difficult due to the stochastic nature of domain wall movement and the inclusion of 

competing types of pinning points within a sample. MBN technique needs a magnetic 

yoke (excitation coil), Hall sensor, pick up coil and signal amplification equipment (as 

shown in Figure 4.21) [42, 128]. 

 

 

 

Figure 4.21: Schematic and image of the experimental set up for MBN measurement 

[128]. 

 

 

Sorsa et al. used a magnetic yoke to excite the magnetic field and established a MBN 

measurement system for evaluating fatigue damage based on the MBN amplitude in 

low-carbon structural steel [129].  
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Wilson et al. [72, 130] used a lab-based closed magnetic circuit measurement system 

and a field deployable device to work on microstructural changes in power station pipes 

in different states of degradation. That work showed the MBN peak position is 

indicative of the hardness of the samples. It is apparent from Figure 4.22 that although 

the MBN profile peaks do not exactly correspond to the coercive force, they do follow 

the trend in HC which in turn is indicative of material hardness [72]. 

 

 

Figure 4.22 : BH loops (a) and corresponding MBN profiles for P9 and T22 (alloy steel 

seamless pipes/tube for high temperature service), (b), the MBN profile peaks do not exactly 

correspond to the coercive force but they do follow the trend in HC , suffixes  TEMP as 

tempered, TFS as taken from service and NORM as normalised [72]. 

 

MBN measurement techniques have been used to investigate variations in grain size, 

where the intensity of MBN signal is related to the number of grain boundaries, smaller 

grained samples have more grain boundaries (pinning sites) and give a larger MBN 

signal response. 
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Sample composition and phase change also have effects on MBN measurement, it has 

been reported that the presence of impurity segregation, precipitates and different 

phases cause variations in Barkhausen noise [131]. 

 

Magnetic properties of ferrite–martensite dual-phase steels were evaluated using 

Barkhausen noise and correlated with their microstructural changes. Different 

percentages of martensite (from 17% to 89%) and ferrite grain size numbers (from 9.47 

to 11.12 in ASTM number) have been correlated to the MBN signal. From Figure 4.23 

(a) it is apparent that as the martensite fractions in the DP steels increase, number of 

pinning sites and corresponding unpinning events increase which led to an increase in 

the MBN signals. In addition, the MBN signals increase with decreasing the grain size 

(i.e. increasing ASTM grain size number), Figure 4.23 (b), which is related to the 

higher grain boundary density in smaller ferrite grain [132].  

 

 

Figure 4.23:MBN signal as a function of martensite phase percentage (same grain size) 

(a), the ASTM ferrite grain size number with the fixed martensite percentage 

(i.e.17%)(b) in dual phase steel samples [132] . 
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Martinez et.al [126] used different proportions of ferrite and martensite produced in 

the laboratory to investigate the sensitivity of parameters derived from the application 

of magnetic hysteresis loops and Barkhausen noise. Due to the large effect of a 

decarburised surface layer on the overall MBN signal, the technique could not be 

validated for as heat treated samples or on-line measurements. However, in absence of 

decarburisation, the MBN signal can be related with both the tensile strength and the 

martensite content in dual phase steel, shown in Figure 4.24.  

 

Figure 4.24: Amplitude of the MBN as a function of the tensile test (left) and martensite 

fraction (right) in DP steel samples [126]. 

 

MBN method is most effective when there is no lift off between the MBN pick up coil 

and the sample, therefore a reasonable amount of surface preparation is required. Any 

oxide or rust should be removed before MBN measurement. This technique can be 

operated as non-contact measurement, however careful calibration for lift off is 

required as even small variations in lift-off can have significant effects on the 

magnetisation amplitude and consequently on MBN signal [131]. 

A major drawback of MBN technique is that it needs high magnetic fields that causes 

significant magnetisation of the specimen therefore without demagnetisation the results 
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are not easily repeatable [131].  The technique is also often carried out at high 

frequency, making it most sensitive to surface / near surface microstructures.  

Therefore surface feature (such as geometry, oxide, decarburisation) have a dominant 

effect.  Currently it is not possible to model or predict MBN quantitatively for a given 

microstructure. 

 

4.2.3.1.3 Permeability based Techniques 

Zhu et al. proposed a H-shaped electromagnetic sensor (EM) based on eddy current 

methods composed of five coils, one generation coil, and four coils as sensing pick-

coils and showed that typical decarburisation layers of a rail sample can be 

distinguished as the sensor exploits the increase in relative permeability in the surface 

layers of the steel due to decarburisation [133, 134]. 

 

Work completed by Dickinson et al. [21] described a design and operation to analyse 

phase transformations in hot strip steel using EM instrument. Figure 4.25 shows 

changes in the measured impedance versus temperature. As can be observed for the 

low carbon steel sample, the curve displays a steep rise at the Curie temperature TC, 

which is the point where the material becomes ferromagnetic, therefore, here the sensor 

is detecting the paramagnetic to ferromagnetic transformation. The curve for the 

medium carbon and high carbon steel, containing more carbon (0.44 and 0.68 wt. %, 

respectively), are expected to transform to a mixed ferrite and pearlite microstructure. 

Therefore, the curves display a steep rise (as the same as the low carbon sample) but a 

second transformation at the eutectoid temperature occurs. The work concluded that 
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differences in the measured impedance can be used to discriminate between steels of 

varying carbon composition. 

 

 

Figure 4.25: Changes in the measured impedance at 12.5 kHz versus temperature for 

the low carbon, medium carbon and high carbon steel [21]. 

 

Thompson et al. [49] looked at the permeability of ferritic steel as function of carbon 

content and showed the initial permeability and maximum relative permeability 

decrease with increased carbon content. Similar results were obtained by Zhou et al. 

[22] for relative permeability, Figure 4.26. 
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Figure 4.26: Plot of relative permeability measurements for pure iron, 0.17C, 0.38C, 

0.53C and 0.8C steel samples against ferrite fraction [22]. 

Haldane et al [14] used a multi-frequency electromagnetic sensor to measure the 

impedance and inductance of samples containing varying fractions of ferromagnetic 

phase over a range of frequencies (100 Hz to 1 MHz). It was observed that the 

impedance values are approximately linearly related to ferrite fraction for random 

microstructures up to about 40% ferrite. The study also revealed a relationship between 

the zero crossing frequency (i.e., the frequency at which the inductance is zero) and 

ferrite percentage, Figure 4.27. 
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Figure 4.27: Inductance values versus frequency for the HIPped samples (listed by 

nominal ferrite percentage [14]. 

 

 

Permeability measurements have been used to investigate changes in mechanical 

properties of steels. A study completed by Tanner et al. on pearlitic steels suggested an 

hyperbolic variation of the initial permeability value with tensile strength, Figure 4.28 

[54]. This is believed to be due to the boundaries between cementite lamellae and 

ferrite within the pearlite grains acting as strong pinning sites and these appear to be 

about an order of magnitude greater than the sites associated with ferrite-ferrite 

boundaries [36]. 
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Figure 4.28: Variation of ultimate tensile stress (UTS) with initial permeability in pearlitic steels [54]. 

Hao et al. showed the ability of a multi frequency EM sensor to measure the ferrite 

fraction from 0% to 100% in austenite-ferrite steel microstructures. It was indicated 

that the real inductance value at low frequency (10Hz) increases with ferrite 

percentage. This is because at low frequency (plateau region) real inductance is related 

to the relative permeability of the sample, shown in Figure 4.29 [63]. 

 

Figure 4.29: Real inductance versus frequency at ferrite fraction of 5%-100% in ferrite 

+ austenite steels[63]. 
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Ghanei et al. showed the potential of using an eddy current method to measure the 

percentage of martensite in heat-treated DP steels. Furthermore, the technique was used 

for the prediction of mechanical properties of DP steel [135]. The work reported for 

constant thickness samples and a frequency of 250Hz, which was chosen by regression 

analysis to be the optimum frequency for impedance output correlation to strength, 

Figure 4.30. 

 

Figure 4.30:Relation between the tensile properties of different DP steel with normalized 

impedance [135]. 
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4.2.3.2 Commercial EM sensors 

EM sensor systems have been developed or commercialised in order to use in industry 

for characterisation of steel. Commercial EM sensors have been used for phase 

transformation, evaluating/monitoring microstructure, mechanical properties (tensile 

strength, hardness etc). The following section introduces different commercial 

techniques used for non-destructive characterisation of steel and the main features will 

be explained. 

 

4.2.3.2.1 EMspecTM System 

EM sensor systems have been developed to operate in the run out table after hot rolling 

of strip steel, with three systems having been installed in Tata Steel’s IJmuiden hot 

strip mill (EMspecTM). The sensor works at low magnetic field and has been designed 

to sit in-between the rollers of the hot strip mill’s run out table and monitor phase 

transformation as the hot steel passes over the run out table during the cooling process. 

The distance between the sensor and the sample being tested is approximately 40 mm 

(lift off) and the sensor measures phase angle changes. It has successfully demonstrated 

that EMspecTM is able to quantitatively measure phase transformation in an accurate 

and consistent manner as long as it is well calibrated, Figure 4.31. 
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Figure 4.31: Electromagnetic sensor for monitoring the phase transformation. The inductance 

sensor head consists of ferrite yoke, excitation coil and pick up coils (a) It is assembled in a 

water- filled steel house with a ceramic window (b)[136]. 

 

 

4.2.3.2.2 IMPOC measurement  

Impulse Magnetic Process Online Controller (IMPOC) is based on a magnetisation and 

read back principle using two identical sensors, arranged on the upper and underside 

of the strip sample as illustrated in Figure 4.32. The amount of residual magnetisation 

in the sample is used in a mathematical model to determine the material properties of 

the specimen. The running strip is magnetised periodically by the two magnetising 

coils up to saturation point and the gradient of residual magnetic field strength on both 

sides of the steel strip is measured by highly sensitive magnetic field probes. 

 The mechanical properties of the steel strip (i.e. yield strength and tensile strength) 

can then be assigned to this gradient via empirical correlations. The IMPOC system is 

capable of measuring steel strip passing at a high speed of 900 m/s although the effect 

of lift off between the sensor head and the surface of the material being measured needs 

to be considered. This is taken into account by having a sensor on both sides of the 
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strip and balancing the sensor outputs [137]. IMPOC systems are now used in pickling 

lines, continuous annealing lines (near the accumulator / strip exit point operating at 

ambient, not high, temperature) and hot dip galvanising lines. IMPOC measurements 

are sensitive to change in the grain size, recrystallisation state and different cooling 

conditions in the hot strip mill. IMPOC measurement has been done to investigate the 

skin pass effect on DP steel but it showed an inconsistent relationship between 

magnetic measurement and skin pass level [138]. 

 

 

Figure 4.32: Schematic diagram of IMPOC operating principle [137]. 

 

 

4.2.3.2.3 HACOM system 

Harmonic Analysis Coil Online Measuring (HACOM) system has been developed to 

measure changes in microstructural parameters. It is a type of magnetic hysteresis loop 

measurement. HACOM uses sinusoidal magnetisation of the sample at a low flux 
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density far from saturation employed at four frequencies between 20 Hz and 5 kHz. 

The magnetisation of the sample runs through hysteresis loops and the magnetic 

hysteresis induces field changes into receiving coils. An FFT (Fast Fourier Transform) 

is performed to gain the harmonic spectrum. HACOM provides non-destructive 

determination of direction-dependent mechanical material properties such as tensile 

strength, yield strength, strain hardening and anisotropy. For instance, HACOM has 

been employed to analyse cold rolling in three different steels including; IF steel, 

micro-alloyed (MA) and dual phase steel (DP). Figure 4.33 shows a plot of the real and 

imaginary signal components from the HACOM system and it can be observed from 

the plots that for IF and DP steels the HACOM signal decreases monotonically with 

increasing percentage elongation [137]. 

 

 

 

Figure 4.33: Plots of the real (a) and imaginary (b) signal components from the 

HACOM system measurement for IF steel, micro-alloyed (MA) and dual phase steel 

(DP) [137].   

A major disadvantage of HACOM measurement system is that it is extremely sensitive 

to external electromagnetic noise, lift off and the residual stress state of the material. 
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Therefore two sensor heads were used to eliminate the effect of lift off by reading the 

mean value of the two sensors. It seems due to the amount of disruption required to 

place the equipment within the line, the interpretation of signals from HACOM for 

industrial application for on-line measurement is very challenging. 

 

4.2.3.2.4  (3MA) 

Micro-Magnetic Multi-parameter Microstructure and Stress Analyser (3MA) system 

consists of a power supply for magnetisation, and an analog part with different potential 

modules to measure various micro-magnetic parameters such as; Barkhausen noise, 

permeability and magnetic field strength. The 3MA technique has been used to 

determine surface and subsurface hardness, tensile, yield strength, residual stress etc. 

Figure 4.34 shows a comparison between the non-destructively predicted yield strength 

and tensile strength values by 3MA technique and the destructively determined values 

for high strength steel[139] . 

 

 

Figure 4.34: Non-destructively predicted tensile and yield strengths as a function of the 

destructively determined results in high strength steel [139]. 
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Major concern about this technique is that the best results could be achieved if 

individual calibration functions were used for each steel producer, each steel grade and 

each plate thickness and also a clean surface is required before operating the sensor.
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4.2.3.3 Magnetic Technique Modelling 

The development of dedicated simulation tools, which treat the underlying 

electromagnetic problem, can offer quantitative answers to some issues regarding 

experimental process which may serve as a valuable support towards the improvement 

of sensor and enhancement the technique measurement. For instance, the determined 

values by the IMPOC-system (Impulse Magnetic Process Online Controller) can be 

influenced by material thickness, strip speed and other measurement conditions. 

Although these sensitive parameters can partly be compensated using different 

calibration procedures, which is time consuming and labour-intensive. The 

construction of an accurate, physics-based model of the technique (i.e. 

sample/instrument) will accelerate the calibration of the IMPOC and the interpretation 

of the data. The real IMPOC instrument magnetisation coils have a 3D geometry but a 

2D model of the IMPOC system gave sufficient results for demonstrating the general 

trends, allowing to investigate the effect of the speed (coil movement) and average 

gradient of remanent magnetic field strength. The 2D model is very beneficial in terms 

of reduction of the computational burden compared with 3D.  

Figure 4.35 depicts two different snapshots of the field profile inside the plate at two 

different characteristic times, before the excitation peak (Figure 4.35 a) and during the 

relaxation time (Figure 4.35 b) [140]. 
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Figure 4.35: The field profile inside the sample at two characteristic times, before the 

excitation peak (a) and during the relaxation time (b) [140]. 

 

A measuring system for detecting phase transitions during heat treatment based on 

impedance measurements was developed and put to operation in a hot strip mill as 

shown in Figure 4.36. Parameters including; signal amplitudes, phases and some of the 

disturbing influences can be studied by simulation work. The modelling for the 

generalised multi-frequency response of the system was mainly based on the 3D finite 

element method (FEM) using a commercial simulation package, Maxwell 3D. 

 

 

Figure 4.36: A typical model of an H-shaped sensor placed between two rollers, with the 

hot strip on the top [138].  
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Zhou et al [64] studied the effect of phase fraction (in ferrite - austenite and ferrite – 

pearlite steels) and the influence of the second phase distribution on the low field 

relative permeability were modelled using a 3D finite element (FE) microstructure – 

EM model using COMSOL Multiphysics. The modelled results showed that the effect 

of low ferrite volume fractions (e.g. 30% ferrite fraction) on the relative permeability 

values for microstructures with ferrite-pearlite is more significant than for ferrite -

austenite microstructures. This is due to the fact that and at room temperature pearlite 

is ferromagnetic whereas austenite is paramagnetic, when the ferrite fraction is low 

(ferrite grains are isolated) the magnetic flux can more readily pass through pearlitic 

regions between the preferred ferrite regions. 

 

Figure 4.37: FE modelled results of magnetic flux distribution for microstructures in ferrite-

austenite phase balance with 30% ferrite (a) and for microstructures in ferrite –pearlite with 

30% ferrite (b) Stream lines illustrate magnetic flux density [64] 
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That work was carried to consider the effect of grain size on the low field relative 

permeability for single and dual phase microstructures [55]. It can be seen from Figure 

4.38, there is an increase in the relative permeability value as the ferrite grain size 

increases from 14 to 52 μm for an extra low carbon steel sample and 13 to 64 µm for a 

0.17wt%C steel sample. 

 

 

Figure 4.38: FEM modelled and experimental determined low field relative permeability 

plot with grain size (a), inverse square root of the grain (b)[55]. 

 

A model has been developed by Shen et al. [141] for the EMspecTM sensor system 

using the measured zero crossing frequency ( i.e., the frequency at which the 

inductance is zero) to obtain the permeability at any (known) temperature, which can 

then be used to determine the microstructure (phase fraction), mimicking the real-time 

monitoring of phase transformation of steel product, as shown in Figure 4.39. 
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Figure 4.39: Modelled zero crossing frequency (ZCF) with permeability for 0.2 wt% 

carbon steel against temperature [141]. 

 

4.3 Summary  

In this chapter, the main techniques for steel characterisation have been introduced. A 

variety of techniques can be used to characterise microstructure. The conventional 

methods to obtain phase and grain size information are destructive, and time 

consuming, as they require a small piece of material to be removed. 

Whilst the UT technique can operate at a significant standoff but the technique requires 

high degree of surface preparation and laser safety requirements for LUS. The X-rays 

technique provides information on a range of scales from atomic to through thickness 

but significant health and safety protocols have to be in place for the system to be used 

and correlations to mechanical properties have not yet been made. Electromagnetic 

(EM) methods have a high potential for material characterisation.  
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Different application of MBN measurements were presented for characterisation of 

steel. The MBN signal can be correlated to the mechanical property of a sample. MBN 

technique is strongly influenced by the surface of the specimen since MBN is often 

carried out at high frequencies, for low frequency systems it can measure up to depths 

of 1.5 mm depending on the material. A relatively high field is required to obtain the 

MBN signal. 

 

Hysteresis loops are sensitive to microstructural features such as phase, grain size, 

dislocations, precipitates, stress and etc. The clear disadvantage of such technique 

includes; high power requirements to magnetise sample limiting practical application 

and the prior magnetic history can affect results if the initial magnetisation curve is 

being assessed.  

 

Multi frequency EM sensors have been used at low field strength and operating at 

different frequencies. They can be designed for different sizes and geometries and it is 

possible to operated with lift off (although this needs to be calibrated). A variety of 

electromagnetic (EM) sensors have been developed or commercialised for 

evaluating/monitoring microstructure and/or mechanical properties. EM sensors have 

been shown to be able to monitor the transformation from austenite to ferrite, below 

the Curie temperature, and to distinguish between samples with mixed microstructures 

(ferrite + austenite; ferrite + pearlite; ferrite + martensite) across the whole range of 

ferrite percentage 

EM sensors can be used to characterise austenite and ferrite fraction in hot strip mills 

(EMspecTM) system and for statistical correlations to mechanical properties, IMPOC 

and HACOM systems in cold strip mills.  
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EM sensors have been employed for characterising a limited number of heat treated 

and commercial DP600, DP800 and DP1000 samples and demonstrated that a clear, 

qualitative relationship between sensor signal and tensile strength/martensite fraction 

can be obtained. The work has been done for a constant thickness and the effect of 

sample thickness was not assessed.  

Magnetic techniques can be simulated (2D/ 3D) in order to facilitate the design and 

answer to some issues regarding experimental process. 
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5 Materials and experimental 

procedure  

5.1  Materials 

5.1.1  Heat treated DP600 steel 

Laboratory heat-treated dual phase (DP) steels were used to investigate the correlation 

between ferrite/martensite fraction and EM sensor signal for samples with constant 

thickness. Samples of heat treated dual phase (DP600) steels with a carbon content of 

about 0.17 wt.% were supplied by Tata Steel Europe in various heat treated conditions, 

prepared by an intercritical annealing heat treatment to generate different ferrite-

martensite phase fractions (full compositions of the heat treated DP steel has not been 

included for commercial reasons as it is a production grade but it fits the DP600 grade 

specification.  

The samples were austenitised and held at intercritical temperatures ranging between 

AC1 and AC3 from 650°C to 800°C in 50°C steps then water quenched for the austenite 

to form martensite. Table 5.1 shows the form of the dual phase steel samples and their 

thermal history/heat treatment conditions. 
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Table 5-1: Laboratory heat-treated dual steel samples and heat treatment conditions. 

Sample Heat treatment conditions 

DP600-650 

 

DP600 strip steel (1.4 mm thickness) intercritical annealed at 650 °C 

for 1 hour followed by water quench. 

DP600-675 

 

DP600 strip steel (1.4 mm thickness) intercritical annealed at 675°C 

for 1 hour followed by water quench. 

DP600-700 

 

DP600 strip steel (1.4 mm thickness) intercritical annealed at 700 °C 

for 1 hour followed by water quench. 

DP600-725 

 

DP600 strip steel (1.4 mm thickness) intercritical annealed at 725 °C 

for 1 hour followed by water quench. 

DP600-750 

 

DP600 strip steel (1.4 mm thickness) intercritical annealed at 750 °C 

for 1 hour followed by water quench. 

DP600-800 

 

DP600 strip steel (1.4 mm thickness) intercritical annealed at 800 °C 

for 1 hour followed by water quench. 
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5.1.2  Commercial DP steel 

In order to study the effect of phase balance (i.e. ferrite/martensite fraction) on EM 

sensor measurements for varying thickness strip samples, different commercial grade 

dual phase steels with a variety of thicknesses were used (supplied by Tata Steel Europe 

from the Port Talbot and IJmuiden strip mills).  

The steels contained 0.075 -0.23 wt% C and 1.1– 2.9 wt% Mn, the amount of these 

elements generally increasing with increasing strength (i.e. higher for DP1000 than 

DP800 than DP600). Additions of Ti and Nb are also used to achieve strength levels 

of DP800 and above. The DP800 and DP1000 grades have higher carbon content 

than DP600 grades. The DP600GL, DP800GL and DP1000GL have, nominally, the 

same composition as the DP600, DP800 and DP1000 grades respectively and were 

supplied with a galvanised layer approximately 50μm thick. The chemical 

composition for the commercial DP samples are given in Table 5.2 (full 

compositions of the commercial DP steels have not been included for commercial 

reasons but fit within the DP600, DP800 and DP1000 specifications). The grade of 

DP steels and their dimension details are given in Table 5.3. 

 

Table 5-2: Chemical composition for the commercial DP samples, all in wt%. 

DP Grade C Si Mn P S Al Nb+Ti 

DP600 0.07- 0.12 0.06-0.5 1.8-2.1 0.02-0.08 0.005-0.015 0.040-1 0.02-01 

DP800 0.12-0.18 0.24-0.8 1.8-2.06 0.008-0.07 0.004-0.015 0.04 -2 0.05-0.15 

DP1000 0.15-0.23 0.04-0.1 2-2.1 0.01-0.04 0.001-0.1 0.04-1 0.05-0.15 
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Table 5-3: Hot rolled and cold rolled DP steels and their dimensions 

Sample Type 

Thickness Dimensions 

    (mm) (mm) 

DP600 CR Cold Rolled 1 1000 x 570 

DP600 CRGL Cold Rolled 1 1000 x 570 

DP600 CR Cold Rolled 1.4 1000 x 570 

DP600 CR Cold Rolled 1.5 1216 x 1000 

DP600 HR Hot Rolled 4 210 x 300 

DP800 CR Cold Rolled 0.95 1250 x 1000 

DP800 CR Cold Rolled 1.6 1000 x 570 

DP800 CRGL Cold Rolled 1.6 210 x 335 

DP800 CR-A Cold Rolled 2 1000 x 570 

DP800 CR-B Cold Rolled 2 1178 x 1000 

DP1000 CR Cold Rolled 1 1225 x 1000 

DP1000 CRGL Cold Rolled 1.2 210 x 335 

DP1000 CR Cold Rolled 1.6 1260 x 1000 

*HR=Hot-rolled, CR=Cold-rolled, GL=Galvanized 
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5.2 Sample Preparation, Experimental Equipment and 

Methods 

5.2.1 Metallography, Sample Mounting, Grinding, Polishing 

and Etching 

Samples of approximately 300mm×80mm were cut in the appropriate direction (rolling 

direction and transverse direction). The sections were mounted in conductive Bakelite, 

followed by grinding with grit papers with increasing levels of refinement and fine 

polishing of the surface to a 0.05µm finish. The DP steel samples were etched using 

Nital 2% etchant. 

 

5.2.2 Microscopy 

Sample microstructures were viewed using a Nikon ECLIPSE LV150N optical 

microscope. Images were recorded using Axiovision 4 software, which was on a 

dedicated PC linked to a camera on the microscope. 

5.2.3 Phase Quantification 

Ferrite/martensite phase balance for each sample was evaluated by using Image J 

analysis software. In order to find out the phase balance (e.g. ferrite/martensite 

fraction), optical images of the microstructure were converted to black and white 

through image J software. Typically, 10 images for each grade were selected, 

quantified and the average fraction of each phase was calculated Figure 5.1.   
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Figure 5.1: The optical micrograph of a DP 600 sample 4mm (left) and processed 

black/white image (binarised) microstructure by using Image J software (right). 

 

5.3  Grain size measurement  

In order to measure the ferrite grain size, the mean linear intercept method was used 

on the optical micrographs taken at a magnification of 1000× in different directions 

across the desired area (a minimum of 5 lines per micrograph). The number of grain 

boundaries along each test line was counted. Three images were used for each sample 

to obtain the average grain size [142]. 

 

5.4 Hardness measurement  

Hardness was measured as per ASTM E92-17 standard, on the polished samples by a 

TUKON 1102 Vickers micro hardness machine with a 500g load. The hardness value 

for each sample was obtained by taking the average of ten measurements spaced with 

20µm 
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a distance of more than three hardness diameters to avoid overlapping stress field on 

the results [143].  

5.5 Tensile strength  

Flat tensile specimens of 80mm gauge length and 20mm gauge width were prepared 

as per ASTM E8M standard; tensile tests were conducted using a Static Instron 100kN 

testing machine at a strain rate of 0.002s-1 and stress-strain plots were obtained for each 

sample. Four repeated tensile tests were carried out for each DP steel [144]. 

5.6 Electrical resistivity measurement  

 Electrical resistivity measurements were carried out on the strip samples (4.95×50mm 

with varying thicknesses of 1mm to 4mm) and rod samples (4.95mm diameter and 50 

mm length) using a conventional four point DC method with a CROPICO 

MICROHMMETER type DO5000 with a resolution of 100 nano-ohm. Each resistivity 

value was determined by taking the average of eight measurements. 

5.7 Magnetic field measurement  

In order to determine the magnetic field value both experimental and modelling studies 

have been carried out. A gauss meter GM08 was used to measure the strength of the 

magnetic field generated by the EM sensor. The magnetic field through the 

sample/sensor was determined by FE COMSOL modelling (e.g. point evaluation, 

surface evaluation etc.) using a cylindrical sensor and U-shaped sensor model, these 

models are described in Section 6.2.2.4 Chapter 6. 
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5.8 EM Sensors measurements  

Two types of EM sensor were used; a U-shaped EM sensor, which is ideal for strip or 

plate samples, and a cylindrical EM sensor (air cored/ferrite cored) for rod or strip 

samples. U-shaped EM sensors are placed onto the surface of a test sample whereas 

samples are placed within the cylindrical sensor body and are typically rod shaped, but 

strip samples can also be tested (and modelled). 

The U type EM sensor design is formed of a U shaped ferrite core (sourced from 

Magdev Ltd.) The sensor consists of one generating coil with 100 turns of 0.20 mm 

insulated copper wire and two sensing coils with 86 turns of 0.16mm insulated copper 

wire which were wound on a ferritic U-shaped core with a bridge of 100mm, leg 

lengths and thickness of 56mm and 25mm respectively (Figure 5.2).  

 

 

 

Figure 5.2 : U shaped sensor with bridge=100mm, legs= 56mm and thickness of 

25mm. The sensor consists of one generating coil with 100 turns and two sensing 

coils with 86 turns each 
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The EM sensor's sensing coil and exciting coils are driven using an Impedance 

Analyser Solartron (SL 1260 A) with an AC voltage of 3V at frequencies from 10 Hz 

to 10 kHz. 

The excitation coil induces an alternating current magnetic field into the sample. The 

flux sensing coils pick up changes in the magnetic field caused by the test sample [21].  

The cylindrical sensors in this project have exciting and sensing coils wound around 

cylindrical formers of different sizes, as shown in Figure 5.3. 

 

 

 

Figure 5.3: Different types of cylindrical sensors (Air-cored and ferrite cored cylindrical 

EM sensor). 

 

Samples for cylindrical EM sensor testing (strip shape with 4.95mm width and 50mm 

length and cylindrical shape with 4.95mm diameter and 50mm length) were cut by 

Electric Discharge Machining (EDM) from as received samples. 

As discussed in Section 3.6 Chapter 3, an EM sensor measures inductance, which at 

low frequency can be related to the relative permeability of the sample. The EM sensor 
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responds to materials of different permeability showing different amplitudes of 

inductance. It is worth stating that the EM sensor signal (i.e. inductance) is strongly 

influenced by the thickness / diameter of the specimen. This is discussed in detail in 

Chapter 7. 

The EM sensor signal is also affected by proximity to the edges of the sample (edge 

effect) and any gap between the sensor and the sample (lift off).  

The magnitude of the U shape EM sensor responses decreases as lift off increases and 

decreases when it gets closer to the edge of the sample. The minimum size for edge 

effects to be ignored was determined for the sensor using a large strip taking 

measurements progressively closer to the edge. The initial tests were done to determine 

the edge effect distance, which is different for different sensor geometries.  It was found 

that the signal values stabilise at a distance of 100 ± 2mm from the edge of the sample 

for the parallel orientation and 25 ± 1mm for the perpendicular orientation of the sensor 

(Figure 5.4). 

 

 

  

 



124 

 

 

 

Figure 5.4: Schematic diagram of U-shape sensor orientation to find out the edge effect, 

signal values stabilise at a distance of 100mm from the edge of the sample for the 

parallel orientation(right graph) and 25mm from the edge of the sample for the 

perpendicular orientation ( left graph) in  DP1000CR with 1.6mm thickness. 

 

A minimum sample size was determined where the edge effects (parallel and 

perpendicular) and sensor’s dimension were considered. Therefore, for this work a size 

of 300mm x 80mm was determined for strip samples to use for EM sensor 

measurement.  

It is worth mentioning that to increase the consistency of the EM measurement and 

results, the EM sensor should be operated at the same condition for all measurement 

tests, as other factors were found to affect the sensor results. For instance, Figure 5.5 

indicates that there is an effect of surface curvature (convex/concave shape) on the 
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value of inductance. For the U-shaped sensor, the magnetic field concentration between 

the two legs is higher than the outer side (Figure 5.6), therefore for a convex shape, the 

legs touch the sample and induce more field into the sample, whilst for a concave 

shape, the outer edges contact, or are closer, to the sample. For the EM sensor 

measurements reported the samples used had no observable curvature. 

 

 

Figure 5.5: The effect of convex and concave surface on EM signal for the U-shaped 

sensor. 

 

Figure 5.6: Magnetic field distribution in FE modeling of U-shaped sensor, the 

magnetic field concentration between the two legs is higher than outside the sensor feet.  
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The EM measurements were carried out for the heat treated DP600 samples and the 

commercial DP steel samples using the U shaped electromagnetic sensor on strip 

samples. 

EM sensor measurements were made with the sensor oriented parallel and 

perpendicular to the rolling direction of the strip samples. Each sample was examined 

with five repeat tests with zero lift-off (the distance between the sensor and the sample). 

The average real inductance values and standard deviation were recorded. The U-

shaped sensor induces electromagnetic fields into the test sample with the depth of the 

sample being effectively measured by the sensor (the ‘skin depth’) being affected by 

the permeability and resistivity of the sample, frequency of applied field and the sensor 

design.  
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5.9 BH loop measurement  

Values derived from the major BH loop, such as permeability, coercivity and hysteresis 

loss can be used to measure the magnetic hardness of the material [41, 78]. In addition, 

minor loop deviations from the major loop or from the initial magnetisation curve can 

provide deeper insight into the magnetisation, which in turn, is indicative of the 

material properties [145]. 

 In order to measure the magnetic properties of the DP steels, a lab-based closed 

magnetic circuit measurement system, developed at the University of Manchester was 

employed, as shown in Figure 5.7 [72]. This technique involves the measurement of 

magnetic flux density (B) in reaction to an applied field (H). A current with low 

frequency time varying signal was applied to the excitation coils wrapped around the 

silicon steel core. The strip samples were fitted into the slot in the core to maximise 

coupling between the core and the sample. The axial applied field (H) and the flux 

density of the induced field (B) were measured.  

The flux density of the induced field (B) was recorded through a 40-turn encircling coil 

of 0.20mm insulated copper wire and the axial applied field (H) was measured using a 

Hall sensor with sensitivity of 0.16 mV/mA.mT, developed by the University of 

Manchester [72]. For each DP steel grade tested, five rectangular samples were 

prepared with the length of 49.34 ± 0.6 mm and width 4.99 ± 0.7mm (the sample 

thickness was the same as the supplied strip sheet).  

It is worth stating that the sample cross section should be determined for the B-H 

measurement. Therefore, for the measured magnetic parameters (e.g. coercivity) the 

effect of thickness has been included to ensure the material property is reported. This 



128 

 

is different to the EM sensor measurement where the inductance value is affected by 

thickness. 

 

 

 

(a) 

 

 

 

 

 

 

(b) 

 

Figure 5.7: (a) BH measurement system, developed at the University of Manchester, to 

measure BH hysteresis loops and magnetic properties (b) A schematic arrangement of 

the coil to calculate magnetic flux density (B) coil wrapped around a strip sample and 

coil in plastic former for rod sample 
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5.9.1  Major loops B-H hysteresis  

For the major loops, a 1Hz sinusoidal excitation is used and 9 cycles were recorded 

and averaged. The B-H curves exhibit the micromagnetic properties of steels including 

permeability, remanence, coercivity and saturation magnetisation, which are affected 

by different microstructural parameters (discussed in Section 2.7 Chapter 2).  

 

5.9.2 Minor loops BH hysteresis  

Minor loop hysteresis means any excursion for which either the range of magnetisation 

or the range of magnetic field is not symmetric about zero [146, 147].  

For the minor loops, a 1 Hz sinusoidal excitation was used to generate the minor loops. 

The incremental permeability (µΔ) is obtained from the minor loops by calculating the 

ratio of the variation in flux density (ΔB) and the corresponding change in the applied 

field (ΔH), scaled with respect to the permeability of free space (µ0); presented in 

Equation 5.1; 

 

µΔ = 
𝟏

𝝁𝟎
 .

𝜟𝑩

𝜟𝑯
  

 

Three types of minor loop configurations were used to derive incremental permeability 

values; the minor loop deviations from the initial magnetisation curve (µIc); the minor 

loop deviations from the main B-H loop (µBH) and the minor loop deviations from 

amplitude sweep µi), as shown in Figure 5.8. 

Equation 5-1 
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(a) (b) (c) 

Figure 5.8: Derivation of incremental permeability curves from minor loops; (a) minor loop 

deviations from initial magnetisation curve (µIc); minor loop deviations from B-H loop (µBH) 

and minor loop amplitude sweep (µi). 

 

 

Three different minor loops configurations were employed to see the consistency in 

the permeability behaviour between different measurements techniques, which can 

indicate the underlying domain processes are similar in the three methods [41, 147, 

148]. 

In the minor loop deviations, firstly the sample was demagnetised by the application 

of a full scale 1 Hz sinusoidal excitation. In this case the applied field was gradually 

reduced in amplitude to zero. The applied field was then increased to a pre-determined 

H value and several minor loop cycles recorded.   
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5.10 FE modelling 

5.10.1  EM sensor FE modelling  

In order to determine the low magnetic field permeability of the DP samples from the 

cylindrical and U-shaped EM sensors and investigate the effect of the low magnetic 

field strength on the permeability value, FE modelling work was carried out. In this 

work ‘low field’ refers to the applied magnetic field H being less than about 50±4 (A/m) 

for the cylindrical sensor and for the U-shaped sensor about 250-450 (A/m) which 

reflects the fact that a relatively low magnetic field is induced by the EM sensors used 

in this work (discussed in Section 6.2.2.4 Chapter 6).  

A two-dimensional (2D) axial symmetry FE and a three-dimensional (3D) sensor 

output model developed using COMSOL Multi-physics in the AC/DC mode for the 

cylindrical samples and the strip samples were used respectively [149].  In this work 

established models (developed and verified within parallel projects within the research 

group at WMG and therefore described elsewhere [55, 64, 141, 150]) were used with 

modifications for the sensor and sample geometries tested within this project.   

The COMSOL modelling approach is based on solving the Maxwell equations and in 

the model boundary conditions of the magnetic field, the perfect magnetic conductor 

and the magnetic insulation were used [51, 134, 151]. The geometry and details of the 

sensor/sample were set to be the same as the experimental set up.  

The effect of sensor design was achieved by analysing the simulation results of each 

completed model where the most desirable configuration is the one that shows the 

highest signal and allows easy identification of the different samples.  
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5.10.2  Modelling of Magnetic Microstructure 

A previously developed FE model using COMSOL Multi Physics software [22] was 

carried out for determining the low field relative permeability of a two phase 

microstructure (ferrite + martensite) based on the actual microstructure (phase balance 

and distribution). In this model low field relative permeability of the individual phases 

(ferrite and martensite) was used for the commercial DP steels.  
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6 Microstructures and magnetic 

properties of DP steels 

In this chapter, properties of DP steels in term of microstructure, mechanical properties 

and magnetic properties will be investigated. 

In the first part, the microstructure, phase balance (ferrite-martensite) and hardness 

value for the laboratory heat-treated dual phase (DP) steels will be studied, followed 

by measuring the magnetic properties. A discussion regarding a link between the 

magnetic properties and mechanical properties will be given for the heat treated DP 

steels. 

In the second part, microstructural parameters, including the ferrite-martensite phase 

balance and the ferrite grain size in the commercial DP steels (hot rolled and cold 

rolled) are presented, followed by the mechanical properties (hardness and tensile 

strength). 

The next part of the chapter will concentrate on discussing the magnetic properties 

using lab based approaches to determine permeability of the commercial DP steels 

(discussed in Section 5.9.2 Chapter 5), followed by the effective microstructural 

parameters including the effect of ferrite fraction and ferrite grain size on the 

incremental permeability of the commercial DP steels will be explained.  

Later, the FE modelling for the two EM sensors (U-shaped and cylindrical shape) to 

determine the applied field and the relevant ‘low field’ relative permeability of samples 
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from the EM sensor signal will be presented, followed by an FE model for determining 

the low field relative permeability of a two phase microstructure.  

A comparison between these methods for determining low field relative permeability 

will be presented and, finally, the effect of magnetic field strength on the incremental 

permeability of the commercial DP steels will be discussed. 
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6.1 Heat treated DP samples  

6.1.1 Microstructure and mechanical properties  

The optical microstructure images of DP600-650, DP600-675, DP600-700, DP600-

725, DP600-750 and DP600-800 samples using magnification of 500x are shown in 

Figure 6.1 to Figure 6.6.  As can be seen the microstructures of the heat treated dual 

phase steels consist of a ferrite matrix (lighter) containing a second phase in the form 

of islands (darker). It can be seen that the second phase (martensite, bainite and 

tempered martensite) is randomly distributed in the ferrite matrix. 

 

Figure 6.1: Optical microstructure of heat treated DP600-650 at x500 magnification 

 

 

20µm 
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Figure 6.2: Optical microstructure of heat treated DP600-675 at x500 magnification 

 

Figure 6.3: Optical microstructure of heat treated DP600-700 at x500 magnification 

 

20µm 

20µm 
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Figure 6.4: Optical microstructure of heat treated DP600-725 at x500 magnification 

 

Figure 6.5: Optical microstructure of heat treated DP600-750 at x500 magnification 

20µm 

20µm 
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Figure 6.6: Optical microstructure of heat treated DP600-800 at x500 magnification 

 

 

The phase balance of DP600-650, DP600-675, DP600-700, DP600-725, DP600-750 

and DP600-800 samples are given in Figure 6.7. Different heat treatment conditions 

give a different range of ferrite from around 35% to 70% ferrite.  

 

20µm 
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Figure 6.7: Plot of ferrite fraction for different grade of heat treated DP600 samples  

 

Figure 6.8 shows the relationship between the phase fraction and hardness. The 

decrease in hardness with increasing volume fraction of ferrite for DP steels is well 

known and widely documented [2, 152, 153]. This is in agreement with the results 

where a clear decrease in the hardness with an increase in ferrite fraction is observed 

for the heat-treated DP grades which is related to the lower martensite/bainite fraction. 

Ferrite is a single phase and thus does not have many obstacles to dislocations, other 

than grain boundaries, and is thus a soft microstructure. The hardness in untempered 

martensite comes due to the role of carbon atoms trapped in octahedral interstitial sites 

with the displacement of iron atoms and volume expansion. Martensite’s 

microstructure consists of a highly strained, meta-stabilized body centered tetragonal 

(BCT) form of ferrite supersaturated with carbon. There are a lot of shear deformations 

in martensite because of this strain. This results in martensite having significant 

amounts of dislocations, which prevent additional dislocations forming and in turn 



140 

 

increase the hardness [1].  Autotempering can occur in low carbon martensite 

structures, due to the relatively high Ms temperature, which reduces the amount of 

carbon trapped in solid solution, which reduces hardness, but also results in the 

formation of fine carbide precipitates which mitigates this loss in hardness. 

Bainite consists of laths which would have an inhomogeneous distribution of 

dislocations across its lath thickness (upper bainite and lower bainte). The density of 

dislocations in bainite/tempered martensite compared to martensite is less hence 

strength is lower than martensite.  The carbides present in bainite (inter-lath for upper 

bainite and inter-lath and intra-lath for lower bainite) provide strengthening, although 

their larger size than for autotempered martensite means their strengthening 

contribution is less. 

 

 

Figure 6.8: Hardness value versus ferrite fraction for heat-treated DP steels 
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The trend between hardness and ferrite fraction follows a linear relationship for the 

heat treated DP samples. The trend stems mostly from the composite effect due to the 

presence of hard particles in a soft matrix. The correlation coefficient for the best fit 

equation is R2= 0.9403. 

 

6.1.2 Magnetic property of heat treated DP steel 

Major hysteresis loops were used in order to measure magnetic properties of the heat 

treated DP steel samples. The setup for such measurement has previously been 

presented in Section 5.9.1, Chapter 5. Figure 6.9 shows the major loops and the initial 

magnetisation curves for the heat treated DP steel samples. As it can be seen from 

Figure 6.9 the different samples shows different B-H curves.  
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Figure 6.9: Major loops and initial magnetisation curves for the heat treated DP steel 

samples (a) in full scale and (b) for H between -4 kA/m and 4kA/m. 

 

Figure 6.10 shows the measured coecivity against ferrite fraction. As can be seen the 

sample with lowest volume fraction of ferrite shows the highest value of coercivity. 
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Figure 6.10: Coercivity as a function of ferrite fraction for heat treated DP steel 

samples. 

As can be clearly seen, there is an approximately linear decrease in coercivity with 

ferrite fraction. Figure 6.11 presents the relationship between coercivity and hardness 

for the heat treated DP steels. 

 

Figure 6.11: Coercivity as a function of Hardness for heat treated DP steel samples 
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It is known that magnetic hysteresis is a phenomenon caused primarily by interactions 

between the magnetization process and lattice imperfections. Berkowitz et al. [154] 

reported the theoretical consideration about magnetisation and indicated that the 

coercivity Hc is proportional to the square root of the density of lattice defects. Later 

Vicena [53] showed among the defects controlling the magnetisation processes, that 

the dislocations play a leading role. Therefore, coercivity decreases with decreasing 

dislocation density.  

The high coercivity value for samples with higher martensite (bainite/tempered 

martensite) can be ascribed to the density of dislocations (and other domain pinning 

points such as carbides and lath boundaries) within the microstructure. The martensite 

phase consists of laths in which the dislocation density is very high (i.e. the dislocation 

density in martensite is 1017/m2 and for tempered martensite is around 1014/m2 [155, 

156]). Therefore, the high density of dislocations gives rise to stress fields around the 

dislocation lines, by which magnetic domains are pinned. In this regard, the high 

coercivity in martensite is believed to be due to the stress field due to dislocations in 

martensite laths.  
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6.2 Commercial DP steels  

6.2.1 Microstructure and mechanical property  

The microstructure of the commercial DP600, DP800 and DP1000 are shown in Figure 

6.12 to Figure 6.24. As can be seen, the microstructure of commercial DP steels 

consists of a ferrite matrix containing a second phase in the form of islands (martensite, 

bainite and/or tempered martensite) [157].  

 

 

Figure 6.12:SEM image of the DP600CR 1mm GL 
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Figure 6.13:SEM image of the DP600CR 1mm  

 

 

Figure 6.14:SEM image of the DP600CR 1.4mm  
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Figure 6.15:SEM image of the DP600CR 1.5mm  

 

 

Figure 6.16:SEM image of the DP600HR 4mm  
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Figure 6.17:SEM image of the DP800CR 0.95mm 

 

 

Figure 6.18:SEM image of the DP800CR 1.6mm 
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Figure 6.19:SEM image of the DP800CR 1.6mmGL  

 

 

Figure 6.20:SEM image of the DP800CR 2mm A 
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Figure 6.21:SEM image of the DP800CR 2mm B 

 

 

Figure 6.22:SEM image of the DP1000CR 1mm  
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Figure 6.23:SEM image of the DP1000CR 1.2mmGL 

  

 

Figure 6.24:SEM image of the DP1000CR 1.6mm  
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The ferrite fraction for the DP 600 samples is around 74-79%, for DP 800 is 49-65% 

and for DP 1000 is less than 42%. The DP600HR 4mm sample is a hot rolled DP steel 

(experienced less refinement than for cold rolled and annealed samples) so its 

microstructure consists of larger ferrite grain size (10μm) compared to the other DP600 

steels (ferrite grain size of 6 to 7µm). It is worth mentioning that the DP800 strips came 

from different mills and hence experienced different processing conditions, which can 

give different grain sizes. Table 6.1 provides a summary of the ferrite fraction, Vickers 

hardness measurement and ferrite grain size for the commercial DP steel samples. 

 

Table 6-1: Summary of the ferrite fraction, hardness and grain size of commercial DP 

steels. 

Sample Ferrite fraction 

Ferrite grain 

size (μm) 

Hardness 

(Hv) 

UTS (MPa) 

DP600CR 1mm 73±2 7±3 194±2 684±19  

DP600CR 1mm GL 76±2 6±2 190±3 657±25  

DP600CR 1.4mm 72±3 7±3 205±5 656±11  

DP600CR 1.5mm 74±2 7±2 189±3 669±17  

DP600HR 4mm 79±3 10±4 185±4 646±30  

DP800CR 0.95mm 58±3 6±3 234±5 762±41  

DP800CR 1.6mmGL 51±2 5±2 240±4 824±36  

DP600CR 1.6mm 59±3 3±1 245±4 803±14  

DP800CR 2mmA 49±3 5±1 245±2 827±15  

DP800CR 2mmB 65±2 3±2 255±5 863±38  

DP1000CR 1mm 39±3 3±1 322±6 1074±10  

DP1000CR 1.2mmGL 42±2 3±1 318±5 1026±15  

DP1000CR 1.6mm 42±2 4±2 317±7 1023±20  

HR=Hot-rolled, CR=Cold-rolled, Gl=Galvanized 
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Figure 6.25 shows the relationship between the phase fraction and hardness in the 

commercial DP steels. There is a clear decrease in the hardness value with an increase 

in ferrite fraction which is related to the lower martensite (tempered martensite/ bainite) 

fraction as discussed earlier. In addition, from Figure 6.25 it can be seen that there is a 

lot more scatter for the DP800 grades than the other steels which will be explained in 

the following section.  

 

 

 

 

Figure 6.25: Hardness measurement of the commercial DP steels as a function of ferrite 

fraction 

The decrease in tensile strength with increasing volume fraction of ferrite for DP steels 

is well known and widely documented [2, 152, 153] and consistent with the observed 
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6.26. There is a clear decrease in the tensile strength with an increase in ferrite fraction 

for DP grades, which is related to the lower martensite (or bainite) fraction. 

 

 

Figure 6.26: Ultimate tensile strength as a function of ferrite fraction for the 

commercial DP600, DP800 and DP1000 steel samples; the DP800 samples show 

more scatter in their relationship, where the higher than expected tensile strength 

is due to samples with a smaller grain size (3µm compared to 5µm). 

 

The trend between tensile strength and ferrite fraction follows an approximately linear 

relationship for the DP samples. The trend stems mostly from the composite effect due 

to the presence of hard particles in a soft matrix. The trend obeys the law of mixtures, 

which is in agreement with the literature [4, 158, 159]. The correlation coefficient for 

the best fit equation is only R2 = 0.8581. Therefore, ferrite fraction alone is not a good 

indicator of grade type or tensile strength. In addition, from Figure 6.26 it can be 

observed that there is a lot more scatter for the DP800 grades than the other steels.  
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To determine the cause of the scatter, a closer examination of their microstructures was 

carried out and, in particular, the ferrite grain size was investigated.  It was found that 

the scatter can be related to the difference in grain size between the samples, with the 

samples above the best fit line having a finer grain size than those below the best fit 

line. The approximately linear relationship between strength and ferrite fraction holds 

well if the ferrite grain size does not alter between samples, however if ferrite grain 

size varies then this also needs to be taken into account 

The relationship for the observed dependence of the tensile strength on the volume 

fraction of ferrite and the ferrite grain size will take into account both the phase balance 

(rule of mixtures, Equation 6-1) and Hall-Petch relationship (Equation 6-2) for the 

ferrite: 

 

σU =  σUm Vm + σU f  Vf     Equation 6-1 

 

where, σU  is tensile strength of dual phase steel, Vf fraction of ferrite, and Vm fraction 

of martensite , σUm and σUf  are tensile strength of martensite and ferrite respectively. 

 

 

𝝈 =  𝝈𝟎 + 𝒌𝒅f 
(-1/2 )     Equation 6-2 

 

 

where 𝜎0 and K are material constants and d is ferrite grain size. 
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It should be noted that for DP1000 material any effect of ferrite grain size variation 

will be less significant on strength as the ferrite fraction is low (approximately 40% 

ferrite). 

 

 

6.2.2 Magnetic property of commercial DP steels 

6.2.2.1 Major B-H Loop for commercial DP steel 

The setup for such measurement has previously been presented (Section 5.9.1, Chapter 

5) and was used to generate major loops for the commercial DP steels. Figure 6.27 

shows the major loops and the initial magnetisation curves for the commercial DP 

steels. As it can be seen from Figure 6.27 the different commercial DP steel samples 

produce different B-H curves. 

As shown in Figure 6.27 and Figure 6.28 the DP 1000 samples (which have a higher 

volume fraction of martensite) show the largest coercivity values. The coercivity value 

is the field strength required to bring the sample to zero magnetic induction which 

reflects the magnetic hardness of the material [62].  As the microstructure of DP 1000 

is predominantly martensitic with a high dislocation density as well as a larger number 

of lath boundaries and carbides, therefore, higher fields are required for 

demagnetisation and it exhibits the greatest coercivity value among these grades of DP 

steels, which in turn is indicative of material hardness. The coercivity values of DP 800 

and DP600 show a reduction in comparison to the DP1000 due to their having more 

volume fraction of ferrite rather than martensite (or bainite) fraction. 
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Figure 6.27: Major loops and initial magnetisation curves for the commercial DP steel 

samples (a) in full scale and (b) for H between -4 kA/m and 4kA/m. 
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In martensite there can be a large density of dislocations as well as having a fine lath 

structure with carbides, which can decrease the mean free path for domain wall motion, 

hence the coercivity value of these samples shows an increasing order of DP600 < 

DP800 < DP1000. Moreover, from Figure 6.28 it can be seen that there is a lot more 

scatter for the DP800 grades than the other steels. This is related to the fact that the 

ferrite grain size affects the magnetic properties in low carbon steel as the grain 

boundaries act as effective pinning points to magnetic domain movement [49, 50, 160]. 

Therefore, smaller ferrite grain size means more grain boundaries hence more pinning 

points resulting in higher coercivity.  

 

 

 

Figure 6.28: Coercivity values as a function of ferrite fraction for the commercial DP 

steel samples.  
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An excellent relationship between coercivity and mechanical properties (hardness and 

tensile strength) for the commercial DP steels are presented in Figure 6.29 and 6.30. 

As can be clearly seen, the coercivity values show a strong correlation with the tensile 

strength and hardness for the DP grades (an approximately linear decrease in coercivity 

with higher tensile strength and hardness). The correlation coefficient for the best fit 

equations are R2
Hv = 0.9258 and R2

UTS= 0.9333 for the hardness and the tensile strength 

respectively, suggesting, coercivity as a potential magnetic parameter for quantitatively 

assessing mechanical properties and discriminating phases. The commercial IMPOC 

and HACOM systems for steel assessment produce signals that are more closely related 

to the coercivity as they use a high magnetic field and there are empirical relationships 

between signals from these systems and strength for DP (and other grade) steels, as 

discussed in Chapter 4.  These systems are used on-line during steel processing (cold 

strip mills / galvanising lines) and apply a large magnetic field making them less 

suitable for easy deployment in a lab setting for assessment of strip samples. 
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Figure 6.29: Coercivity values as a function of hardness for the commercial DP steel 

samples. 

  

 

Figure 6.30: Coercivity values as a function of tensile strength for the commercial DP 

steel samples. 
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6.2.2.2 Minor B-H loops 

6.2.2.2.1 Incremental permeability from initial magnetisation 

Figure 6.31 (a) shows the evolution of the minor loop as deviations from the initial 

magnetisation curve for the commercial DP 600 1.4mm sample. In this plot the origin 

of the first minor loop corresponds to the demagnetised state where H and B are equal 

to zero. 

The magnetisation of the sample in this condition, and for this applied magnetic field, 

can be described by the Raleigh Law [129]. Therefore, in this region, magnetisation is 

a combination of reversible and irreversible components, resulting in a loop enclosing 

a relatively large area, as shown in Figure 6.31 (b). As the applied field increases, the 

initial magnetisation curve approaches saturation, domain walls are swept away by 

field pressure and the dominant magnetisation can be described as the progressive 

alignment of the field against anisotropy and the rotation of the domains happen from 

their magnetic easy axes towards the direction of the applied field [161] therefore, 

resulting in a closed up loop, with a much smaller variation in B for a given applied 

field, as shown in Figure 6.31(e) .  
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(a) 

 

Figure 6.31: Presents the initial magnetisation curve (a) and a series of minor loops 

deviations from initial magnetisation curve for the commercial DP600 1.4mm sample 
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Figure 6.32 shows the incremental permeability as a function of applied field for three 

commercial DP samples. It is apparent from Figure 6.32 that the maximum incremental 

permeability value corresponds to a value of H where the domain walls have the 

greatest degree of freedom to move. There is a sharp decrease in permeability (µIc) with 

increasing magnetic field (H), along with near convergence in permeability values for 

the commercial DP600, DP800 and DP1000 samples. The convergence can be 

observed for these samples where saturation is approached and contributions from 

domain wall pinning sites are reduced, giving way to reversible domain rotation effects 

[41]. Moreover, it is apparent from Figure 6.32 that the DP600 sample exhibits much 

more variation in µIC whereas DP1000 sample shows a much smaller variation for 

increasing H. This is believed to be due to the greater area fraction of martensite and 

associated high dislocation density which results in heavy domain wall pinning in the 

DP1000 sample. 
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Figure 6.32: Incremental permeability values for minor loop deviations from the 

initial magnetisation curve as a function of field for the commercial DP600 CR 

1.4mm, DP 800 CR 1.6mm and DP1000 CR 1.6mm. 

 

The incremental permeability measurements at H=0 (deviations from the initial 

magnetisation curve) for the commercial DP steel samples are given in Table 6.2. 
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Table 6-2: The incremental permeability measurements deviations from the initial 

magnetisation curve for the commercial DP steel samples 

Sample µIC 

DP600CR 1mm 142±3 

DP600CR 1mmGl 141±3 

DP600CR 1.4mm 137±3 

DP600CR 1.5mm 136±3 

DP600HR 4mm 177±4 

DP800CR 0.95mm 126±3 

DP800CR 1.6mm 112±3 

DP800CR 1.6mmGl 115±3 

DP800CR 2mmA 112±3 

DP800CR 2mmB 109±2 

DP1000CR 1mm 94±3 

DP1000CR1.2mmGl 95±2 

DP1000CR 1.6mm 92±3 
 

 

 

Figure 6.33 shows a strong effect of ferrite fraction on the permeability, as has been 

seen previously [22]. Moreover, Figure 6.33 reveals that the correlation coefficient for 

the best fit line is low (R2 =0.8581) as the effect of grain size on permeability is not 

taken into account. It can be seen that the two DP800 samples with the smaller ferrite 

grain size (3μm) show lower permeability values than the other DP800 samples (grain 

size of 5-6 µm) and the DP 600 4mm with a larger ferrite grain size (10μm), shows 

higher permeability values than the other DP600 samples (ferrite grain size of 6-7 µm) 

indicating that ferrite grain size has a significant effect on the magnetic property 

(permeability) in these steels as well as ferrite fraction [19, 55]. This is due to the ferrite 

grain size affecting the magnetic properties in low carbon steel as the grain boundaries 

act as effective pinning points to magnetic domain movement [49, 50, 160]. Therefore, 
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not only ferrite fraction but also the ferrite grain size influences the permeability in the 

commercial DP steels.  

 

 

 

Figure 6.33: Incremental permeability values deviations from the initial magnetisation 

curve as a function of ferrite fraction for the commercial DP steel samples. 
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6.2.2.2.2 Incremental permeability from main BH loops 

In domain processes during a minor loop, the amplitude field plays a predominant role 

as it predetermines the domain structure [41]. Predetermined amplitude field required 

for minor loop processing which is basically lower than saturation field value. For 

instance, the magnetic field required to be applied into the sample to achieve saturation 

for the DP600 CR 1.6mm is around 26 kA/m and in this work 50% of this field (i.e.13 

kA/m) was used to process minor loop.  

 

 

Figure 6.34: Full BH hysteresis loop for the DP800 CR 1.6mm  

 

 

Figure 6.35 (a) represents the minor loop deviations from the main B-H loop for the 

commercial DP800CR 1.6mm. In Figure 6.35 (b), the incremental permeability as a 

function of applied field can be observed. It is worth stating that each peak corresponds 

to one half of the major B-H loop (descending and ascending field sweeps), Figure 

6.35(c-h). The maximum incremental permeability value at the peak of the curve for 
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the upper half of the major loop (µBHU) and the lower half of the major loop (µBHL) 

correspond to a H value where B = 0 and it occurs close to the coercivity where domain 

walls have the greatest degree of freedom to move [148]. 

 

 

(a) 

 

(b) 
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Figure 6.35: (a) Major loop and minor loops for the commercial DP800CR 1.6mm sample 

with the amplitudes ranging from -13(kA/m) to +13 (kA/m), (b) Incremental permeability 

values derived from the BH loop, the maximum incremental permeability from the upper 

half of the major loop( µBHU) and the maximum incremental permeability from the lower 

half of the major loop (µBHL) correspond to the coercive force,(c-h) a series of minor loops 

deviations from the lower half of major loop. 

 

Figure 6.36 illustrates a comparison between the incremental permeability of the 

DP600CR1.4mm, DP800CR1.6 and the DP1000CR1.6mm samples. As can be seen, 

each sample shows two peaks. For the DP600CR 1.4mm sample these peaks are closer 

together than the peaks in the DP800CR1.6mm and the DP1000CR 1.6mm samples. 

The peak for the DP600CR1.4mm samples is narrower and shifted to a lower H value, 

which is expected due to the higher volume fraction of ferrite since easier reverse 

domain formation and domain wall motion takes place at a lower applied field [49, 62]. 
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Figure 6.36: Incremental permeability values derived from the major loop with the 

amplitudes ranging from -13kA/m to +13(kA/m) for the commercial DP600CR 1.4mm, 

DP800CR 1.6mm and DP1000CR 1.6mm samples 

The maximum incremental permeability measurements deviations from the major loop 

for the commercial DP steel samples are given in Table 6.3.  
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Table 6-3: The incremental permeability measurements deviations from the major loop 

for the commercial DP steel samples 

 

Sample µBH 

DP600CR 1mm 136±3 

DP600CR 1mmGl 135 ±4 

DP600CR 1.4mm 133±3 

DP600CR 1.5mm 140±3 

DP600HR 4mm 176±4 

DP800CR 0.95mm 120±3 

DP800CR 1.6mm 100±4 

DP800CR 1.6mmGl 105±2 

DP800CR 2mmA 107±2 

DP800CR 2mmB 101±3 

DP1000CR 1mm 84±2 

DP1000CR1.2mmGl 85±3 

DP1000CR 1.6mm 86±2 

 

It can be seen that the incremental permeability values (deviations from the major B-

H loop) are close to the values of the incremental permeability (deviations from the 

initial magnetisation curve) where the incremental permeability of these samples 

shows an increasing order of DP 1000 < DP800 < DP600. From Figure 6.37, the effect 

of the ferrite grain size and ferrite fraction on the value of incremental permeability 

can be observed. The results indicate a notable difference in the permeability value 

between the DP600HR 4mm sample and the rest of the DP600 samples which is related 

to the average ferrite grain size of these samples (the average ferrite grain size of 10µm 

for the DP600HR 4mm  and 6-7µm for the rest of the DP600 samples). The effect of 

ferrite grain size also can be observed in the DP800 CR 1.6mm and DP800CR2mm B 

samples. 
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Figure 6.37: Incremental permeability values deviations from the major B-H loop as a 

function of ferrite fraction for the commercial DP steel samples. 

 

Figure 6.38 shows a comparison between the incremental permeability curves for the 

initial magnetisation and the major B-H loop for the commercial DP600 1.4mm 

sample. It is apparent that the incremental permeability curves for initial magnetisation 

and major B-H loop have different values when H=0. This is believed to be due to the 

random domain distribution of the demagnetised sample in the major BH loop where 

the demagnetisation process occurs with residual magnetisation, compared with the 

initial magnetisation curve with greater variation in B for a given H field and higher 

permeability value. 

It is clear that although the incremental permeability curves for initial magnetisation 

and major B-H loop have different values at H=0, they converge at the coercive field 

(HC). 
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Figure 6.38: Comparison between incremental permeability curves for initial 

magnetisation and major B-H loop for the commercial DP600 1.4mm, although the 

incremental permeability curves for initial magnetisation and major B-H loop have 

different values at H=0 (higher permeability value for initial magnetisation) they 

converge at the coercive field (HC) 
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6.2.2.2.3 Incremental permeability from amplitude sweep 

Figure 6.39 presents a series of minor loops with the different amplitudes ranging from 

approximately 138 A/m to 2 kA/m for the DP600CR 1.4mm sample. The shape of the 

minor loops varies with the amplitude where at a small amplitude it is a lenticular shape 

which changes into a sigmoid shape at a higher amplitude as shown in Figure 6.39(b), 

Figure 6.39(c) and Figure 6.39(d). The gradient of the loop is physically interpreted as 

the incremental permeability. 

 

 

Figure 6.39: A series of minor loops with the amplitudes ranging from 140 A/m to 

2(kA/m)  for the DP600CR 1.4mm.sample 

-1.6

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

1.6

-2 -1 0 1 2

B
 (

T
)

H  (kA/m)



175 

 

 

The resultant incremental permeability curves for minor loop deviations from the 

minor loop amplitude are presented in Figure 6.40. As it is apparent from the plot, with 

an increase in the minor loop amplitude, the permeability (μi) also increases to reach a 

peak and then drops. At low minor loop amplitudes, the reversible magnetisation 

component dominates; as the minor loop amplitude increases, the irreversible 

component is introduced and the gradient of the minor loop increases, as a greater ΔB 

is generated for a given change in H. Incremental permeability deviations from the 

minor loop amplitude will be fully explained in Section 6.2.3 in this chapter.   

 

 

Figure 6.40: Incremental permeability values derived from minor loop amplitude 

sweeps as a function of applied field for the commercial DP600CR1.4mm sample, 

initial permeability is extrapolated if the minor loop amplitude could be made to equal 

zero 



176 

 

Equation 6.3 indicates that the incremental permeability can be employed to 

extrapolate to a value for initial permeability (μi) if the minor loop amplitude could be 

made to equal zero. 

µi = 𝒍𝒊𝒎
𝜟𝑯→𝟎

(
𝜟𝑩

𝜟𝑯
×

𝟏

µ𝟎
)                               Equation 6-3 

The initial permeability (μi) values derived from minor loop amplitude sweeps for the 

commercial DP steel samples are given in Table 6.4. The results indicate that the values 

of the initial permeability are slightly higher than the incremental permeability 

deviations from the initial magnetisation curve and from the major B-H loop. Figure 

6.41 shows the measured initial permeability as a function of ferrite faction for the 

commercial DP steels. The effect of ferrite fraction and ferrite grain size on the 

permeability can be observed.  

Table 6-4: Initial permeability measurements derived from minor loop amplitude 

sweep for the commercial DP steel samples 

Sample µi 

DP600CR 1mm 152±4 

DP600CR 1mmGl 150±3 

DP600CR 1.4mm 147±4 

DP600CR 1.5mm 149±3 

DP600HR 4mm 180±3 

DP800CR 0.95mm 127±3 

DP800CR 1.6mm 109±2 

DP800CR 1.6mmGl 114±3 

DP800CR 2mmA 115±2 

DP800CR 2mmB 111±3 

DP1000CR 1mm 90±3 

DP1000CR1.2mmGl 92±3 

DP1000CR 1.6mm 92±4 
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Figure 6.41:Initial permeability values derived from minor loop amplitude sweeps as 

a function of ferrite fraction for the commercial DP steel samples 

 

It is worth mentioning that when there is more than one type of microstructural feature 

present, their effects on permeability cannot be separated. Besides the effect of phase 

fraction and ferrite grain size, others parameters such as precipitates, chemical 

composition differences and inclusions are less significant (in DP steels) and can be 

placed as second order influences after phase fraction and ferrite grain size for DP steel 

samples. 

The most frequent size range of inclusion (Figure 6.42) for DP samples is between 3 

to 12 µm and the number density is low (typically less than 25±3 μm2 / mm2). By 

comparing the typically inclusion content in DP steels with Figure 6.43, it can be 

judged that inclusions in DP steels will not have a significant effect for magnetic 
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permeability.  In addition all the DP steels have been produced using consistent steel 

processing (chemistry and inclusion control) meaning that there is unlikely to be 

significant differences in inclusion content between the DP steels. 

 

Figure 6.42: SEM micrograph of the DP600 1.4mm showing distribution of inclusions.  A 

low number density of inclusions was observed with this micrograph being selected to 

show inclusion rather than being representative of the general microstructure.  

 

 

Figure 6.43: Coercive force as a function of particle size in iron [74] 
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6.2.2.3 Summary  

Three types of minor loop configurations including; minor loop deviations from the 

initial magnetisation curve, major BH loop and minor loop amplitude sweeps have 

been used to investigate the permeability of commercial DP steel samples.  

Figure 6.44 shows a comparison between the measured incremental permeability 

values. It can be seen that, although the permeability values are not precisely the same 

for the three sets of measurements, similar trends for the samples can be observed. In 

addition, in all three measurements, the effect of phase fraction and ferrite grain size 

on permeability can be observed.  

 

 

Figure 6.44: Comparison of incremental permeability values; derived from initial 

magnetisation curve (µIC), incremental permeability values derived from BH loop (µBH) 

and incremental permeability values derived from minor loop amplitude sweep (µi) for 

the commercial DP steels 
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The BH technique, i.e. major loop and minor loops, both involve the measurement of 

magnetic flux density B in response to an applied field H, however, the interaction 

between magnetic domains and material microstructure can be different.  

In general, the minor loop response to a small applied field is predominantly reversible; 

corresponding to bowing of domain walls and domain rotation at higher major loop 

offsets [23, 72]. In contrast, the major BH loop response consists of a combination of 

reversible and irreversible components [23]; irreversible magnetisation from domain 

walls overcoming pinning features such as grain boundaries  and dislocations and in 

term of reversible, magnetisation from domain wall motion and rotation of magnetic 

domains [72].  
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6.2.2.4 Modelling of the EM sensor output using FE method 

A least square fitting method was used for the EM sensor to determine the relative 

permeability values of the samples by fitting the modelled real inductance with the 

experimental measured one through Comsol. The cylindrical sensor is discussed first 

with initial fitting used to calibrate the cylindrical sensor for rod samples with known 

permeability, then the 2D model was converted into a 3D FE cylindrical sensor model 

for strip samples to allow the determination of the permeability of the DP steels. 

Finally, the U-shaped sensor was modelled to investigate the effect of microstructure 

on EM signals and to determine the relative permeability of any strip sheet thicknesses 

using the easily deployable sensor. 

6.2.2.4.1 Cylindrical air - cored sensor  

A cylindrical air – cored sensor was selected initially in order to determine the relative 

permeability of samples using a sensor that is easily modelled and would show the 

effect of changes in the DP steel microstructure on the EM sensor signal. Since the low 

field relative permeability values of DP grade samples are expected to be relatively 

close to each other (i.e. from 115 - 216) based on literature reports [22], Compared with 

0.17 wt% C and 0.87 wt% C with permeability of 288 and 56 respectively, [49] a large 

series of FE models for different potential cylindrical air-cored sensor geometries were 

run (for a given sample size) to ensure that sufficient signal differentiation could be 

obtained.  The initial model geometry was based on previous work, reported in ref [22, 

162], where the sensor model was fitted and verified for pure iron and fully pearlite 

samples. Initially a two-dimensional (2D) axial symmetry FE cylindrical sensor model 

developed using COMSOL software was used for the calibration rod samples.  

As can be seen from Figure 6.45, different configurations such as; position of excitation 

coil, sensing coil, number of turns and the thickness of wire, affect the signal [163]. 
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Figure 6.45: Plots of model results for the different cylindrical configurations such as 

length and position of exciting coil, sensing coil (L= length of the exciting and sensing 

coil, S = separation between exciting and sensing coil), the thickness of wire (t) in 

order to find the most desirable configuration for the air-cored cylindrical sensor. The 

simulations are for a constant sample size (rod of diameter 4.95mm and length 50mm, 

with different relative permeability values (µr of 100 to 200) and resistivity values 

(210nΩm). 
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It is worth stating that a sample size of 50 mm by 4.95mm, same as the sample size 

used for the B-H machine, was used in order to compare the results. Consequently, a 

length of 50mm was chosen for the cylindrical sensor. In term of the diameter for the 

cylindrical sensor, since the maximum thickness of the commercial DP steels used in 

this work was 4mm and considering a 4.95 mm width for strip samples then a minimum 

internal diameter of 6.4 mm was required. The best configuration from the sensor 

geometries trialled, and considering practical limitations in terms of the number of 

turns that could be wound onto a cylindrical former, was reached with the following 

characteristics; two identical coils arranged with their axis aligned, one as excitation 

coil and the other as sensing coil, the cylindrical air cored sensor with outer diameter 

of 8.4mm, length of 50mm, copper wire of 0.17mm in diameter, the equal number of 

88 turns (15mm length) for the excitation coil and for the sensing coil, the distance 

between sensing coil and excitation coil 4.2 mm (Figure 6.46). 

 

 

Figure 6.46:The preferred geometry of the coil for the cylindrical sensor from the 

models (a), and constructed cylindrical air cored sensor (b)  
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Once the cylindrical sensor was built, Figure 6.44, a two-dimensional (2D) axial 

symmetry FE sensor model was developed in COMSOL taking full account of the final 

sensor geometry and the sample in order to determine the relative permeability [49, 

164]. The magnetic field produced by a multi-frequency EM sensor acts on a 

ferromagnetic target in two modes; first it tends to magnetize the sample, which 

increases the coil’s inductance. Second, the alternating current magnetic field also 

induces eddy currents in the sample, which tend to oppose the driving current and 

reduce the coil’s inductance [14]. At a low frequency, the eddy currents in the sample 

are very weak; the contribution to the inductance change is mainly from the 

magnetisation of the sample and therefore the real inductance measured is related to 

the sample permeability. As the frequency is increased, the effect of the eddy currents 

becomes more dominant. Therefore, the real inductance versus frequency plot for the 

EM sensor has a plateau in inductance value at low frequency (1Hz -10Hz) in the 

region where the signal is independent of the electrical resistivity but dependent on the 

relative permeability of the sample. Therefore, the low field relative permeability value 

is determined from the experimental EM sensor measurement in that region.  

An extremely fine physics controlled mesh was applied to the entire sensor geometry 

with refined mesh to the sample geometry to make sure the FE model of the cylindrical 

air-cored sensor is no longer mesh dependent. The exterior boundaries were set as 

magnetic insulation and the interior boundaries were set as continuity. The 2D 

cylindrical sensor complete mesh consists of 28699 domain elements and 983 

boundary elements, as shown in Figure 6.47. 
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Figure 6.47: Meshing view of the 2D symmetrical FE model for the cylindrical sensor 

and sample. 

 

The average magnetic field generated by the cylindrical EM sensor for a 0.17 wt.%C 

steel rod (ferrite + pearlite microstructure), predicted by the model and measured using 

a Gauss meter is 50 ±4 A/m. The magnetic field required to be applied into the sample 

to achieve saturation for a pure iron and a 0.17 wt.%C steel is > 10 kA/m [165] and > 

25 kA/m (Figure 6.48) respectively. 
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Figure 6.48: BH curve for a 0.17wt % C steel where the magnetic field applied into the 

sample to achieve saturation is > 25 kA/m  

 

Therefore, the applied magnetic field to the sample in the cylindrical sensor is a very 

low field which corresponds to the Rayleigh region (i.e. very low field) where the 

permeability in this region can be described as the initial permeability [119]. The 

relative permeability values, determined by fitting the experimental EM sensor results 

with the FE model, for a 99.99% pure iron, 0.17 wt% C steel and 0.8 wt% C, are 350, 

300 and 60 respectively. The results agree well (within 7.5%) with Thompson et al. 

[49] who reported the initial relative permeability of 0.17 wt% C and 0.87 wt% C for 

carbon steel as being 285 and 56 and  L. Zhou et al. [22] who used a similar cylindrical 

sensor and reported the values as being 290 and 58.6. 

 

The two-dimensional (2D) axial symmetry FE model was extended into a three 

dimension (3D) FE model in the AC/DC module for the DP strip samples, shown in 
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Figure 6.49. The modelling results were compared to the measured results for 

inductance to fit the resistivity and permeability in a least squared sense for the 

cylindrical- air cored sensor. Initially it was accomplished for samples with known 

permeability and resistivity values to account for minor differences between the model 

and experimental set up. The resistivity values of the samples were taken from the 

experimental measurements (presented in Section 5.6). The experimental measurement 

and modelling results are in good agreement, shown in Figure 6.50. 

 

Figure 6.49: Meshing view of the 3D FE model for the cylindrical sensor and the strip 

sample, the fine mesh close to the sample surface can be seen  
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Figure 6.50: Comparison of the experimental measurement with modelling results for the 

DP1000CR 1.6mm, the experimental measurement and modelling results are in good 

agreement. 

 

Table 6.5 lists the fitted relative permeability values for the commercial DP steels using 

the cylindrical air cored sensor. As it was earlier discussed, the applied magnetic field 

for the cylindrical EM sensor used in this work corresponds to Rayleigh region (the 

field is about 50±4 A/m) therefore, the low field relative permeability is determined 

using the cylindrical sensor. 
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Table 6-5: Electrical resistivity and fitted low field relative permeability values for 

commercial DP steels using the cylindrical sensor. 

Sample 

Electrical resistivity 

(10-7 Ω.m) 

Fitted relative  

permeability 

DP600CR 1mm 2.435 ± 0.007 120±2 

DP600CR 1mmGl 2.455 ± 0.008 121±2 

DP600CR 1.4mm 2.438 ± 0.008 120±3 

DP600CR 1.5mm 2.524 ± 0.005 118±2 

DP600HR 4mm 1.998 ± 0.006 155±5 

DP800CR 0.95mm 2.695 ± 0.005 112±2 

DP800CR 1.6mm 2.727 ± .009 104±3 

DP800CR 1.6mmGl 2.684 ± 0.016 106±3 

DP800CR 2mmA 2.701 ± 0.005 105±3 

DP800CR 2mmB 2.725 ± 0.008 102±3 

DP1000CR 1mm 2.739 ± 0.007 98±2 

DP1000CR1.2mmGl 2.818 ± 0.016 95±2 

DP1000CR 1.6mm 2.786 ± 0.009 96±3 
 

 

By comparing the magnetic permeability values presented in Table 6-5 and Figure 

6.51, it can be seen that the DP600 samples, with lower martensite/bainite fraction 

distributed within ferrite, have a higher magnetic permeability value. There is a notable 

difference in the inferred permeability values between the DP600HR 4mm and the rest 

of the DP600 samples which is related to the average ferrite grain size of these samples 

(the average ferrite grain size of 10µm for the DP600HR 4mm and 6-7µm for the rest 

of the DP600 samples). The DP 1000 samples with larger amounts of 

martensite/bainite produce a lower magnetic permeability value. In addition, there is a 
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lot of scatter for the permeability value with ferrite fraction (the correlation coefficient 

for the best fit equation is very low, R2 = 0.6355). 

 

 

Figure 6.51: Low field relative permeability values (using the cylindrical sensor-sample 

FE model) against the ferrite fraction. 
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6.2.2.4.2 U-shaped EM sensor 

The modelling work for the U-shaped sensor was carried out using COMSOL Multi-

physics software using the three dimension FEM (3D) mode in the AC/DC model [149] 

to study the relationships between sensor signals (real inductance) and relative 

permeability of the strip steel sample using a sensor that is easily deployable for use 

on industrial strip samples. The model is similar to that reported in ref [150].  

The U-shaped sensor consists of one excitation coil with 100 turns and two sensing 

coils with 86 turns with a bridge of 100mm, leg lengths and thickness of 56mm and 

25mm respectively. The geometry and details of the sensor/sample were set to be the 

same as the experimental set up. 

It is worth mentioning that the process of optimisation to select a suitable EM sensor 

was carried out using smaller U-shaped sensors (with a bridge of 10mm and 30mm) to 

measure the inductance. Full details of the process will be presented in Section 7.1 

Chapter 7. 

 

The FEM (3D) model of the U-shaped sensor consists of a U-shaped block representing 

the ferrite core of the sensor, an excitation coil and two sensing coils, as shown in 

Figure 6.52. A block of the steel sample with zero lift-off is placed under the sensor 

feet. The physics of magnetic fields was used in the model and the multi-turn coil 

feature was assigned to the excitation and sensing coils. Frequency domain (10Hz – 65 

kHz), coil geometry of 100 turns for the excitation coil and 86 turns for the sensing 

coils were assigned to the study.  

The mesh elements for the model is about 1.3 million where extra fine physics 

controlled mesh was applied to the entire sensor geometry with refined mesh to the 

sample geometry and sensing coil domains.  
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Figure 6.52: Meshing view of the 3D FEM model for the cylindrical sensor and the strip 

sample.  

 

 Initial calibration of the model was carried out by fitting the sensor model to sensor 

measurements for samples (e.g. 0.17 wt% C plate used as a calibration sample) of known 

relative permeability and resistivity to account for minor differences between the 

model and experimental system. The model was then used to determine the relative 

permeability (using the low frequency signal which is unaffected by eddy currents and 

hence resistivity) from the measured sensor signal for the samples of interest. 

 

It is worth mentioning that the applied magnetic field for the U-shaped EM sensor used 

in this work corresponds to Rayleigh region (the field is 250±11 A/m, determined from 

the sensor sample model (Figure 6.53) and Gauss meter readings. Table 6.6 lists the 

fitted low field relative permeability values of the commercial DP steels using the U-

shaped sensor. 
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Figure 6.53: U-shaped EM sensor on the strip sample (a) and U-shaped 3D FE model to 

estimate the low field permeability of specimens where the colour scale represents the 

magnetic flux intensity (b).  

 

 

 

 

Table 6-6: Electrical resistivity and fitted relative permeability values for commercial 

DP steels using U-shaped sensor 

Sample 

Electrical resistivity 

(10-7 Ω.m) 

Fitted low field 

relative permeability 

(U-Shaped sensor) 

DP600CR 1mm 2.435 ± 0.007 150±3 

DP600CR 1mmGl 2.455 ± 0.008 154±2 

DP600CR 1.4mm 2.438 ± 0.008 146±3 

DP600CR 1.5mm 2.524 ± 0.005 147±2 

DP600HR 4mm 1.998 ± 0.006 177±3 

DP800CR 0.95mm 2.695 ± 0.005 130±2 

DP800CR 1.6mm 2.727 ± .009 120±3 

DP800CR 1.6mmGl 2.684 ± 0.016 125±3 

DP800CR 2mmA 2.701 ± 0.005 122±3 

DP800CR 2mmB 2.725 ± 0.008 118±4 

DP1000CR 1mm 2.739 ± 0.007 108±2 

DP1000CR1.2mmGl 2.818 ± 0.016 110±2 

DP1000CR 1.6mm 2.786 ± 0.009 110±3 
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By comparing the inferred permeability values using the U-shaped sensor and the 

inferred permeability values using the cylindrical sensor, it can be observed that the U-

shaped sensor determined a higher value of permeability for the commercial DP steel 

samples although similar trends for the samples can be observed, as shown in Figure 

6.54. This discrepancy will be considered in Section 6.2.3 Chapter 6 and Section 7.2.1 

Chapter 7. 

 

 

Figure 6.54: Determined low field permeability values (using the U-shaped sensor-

sample FE model) against the ferrite fraction. 
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6.2.2.4.3 FE Modelling of Magnetic Microstructure  

The optical microstructures from the DP steels were used in order to predict their 

relative permeability using a previously developed magnetic permeability – 

microstructure model for different phase balances that takes into account phase 

distribution. The description of the FE model using COMSOL Multi Physics software 

can be found in [63, 164]. In the model the microstructure of dual phase steel was 

assumed to be ferrite and martensite and the relative permeability values of ferrite and 

martensite were assigned as 320 and 56 respectively [49, 164]. Optical micrographs 

taken from the samples were converted to black-white binary images to represent the 

ferrite and martensite (note that any bainite present will be classified as martensite in 

the black and white images). The black-white images were imported into COMSOL 

using the built-in “image import function”. 

The sample was put into a uniform horizontal magnetic field with a magnetic potential 

of 1 (top) and 0 (bottom). In order to eliminate the demagnetising field and generate a 

uniform magnetisation the left and right boundaries of the sample were set as electric 

insulation [164]. The relative permeability can be calculated by dividing the magnetic 

flux flowing through the sample by the average magnetic field (Have) inside the sample.  

As can be clearly seen from Figure 6.55, in the sample with the higher volume fraction 

of ferrite, the magnetic flux can more readily pass through the microstructure region, 

whereas the martensitic is less favourable [61]. Therefore, FE modelling of magnetic 

microstructure can predict the permeability of any dual phase steel based on the phase 

fraction and distribution within the microstructure.  
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Figure 6.55: Optical micrographs of DP steel samples with different volume fraction of 

ferrite/martensite, which were converted to black-white binary images, the black-white 

images were imported into COMSOL. The sample containing the higher ferrite fraction 

shows the higher flux density, it can also be seen that the flux density is higher in the 

ferrite regions than in the martensite regions. 

 

 

 

FE modelling of magnetic microstructure was used to predict the low field permeability 

of the commercial DP steels and the results are given in Table 6.7. 
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Table 6-7 : The permeability values derived from the magnetic microstructure FE 

model for the commercial DP steel samples 

Sample Magnetic Microstructure FE Model 

DP600CR 1mm 206±8 

DP600CR 1mmGl 210±9 

DP600CR 1.4mm 203±8 

DP600CR 1.5mm 211±3 

DP600HR 4mm 229±13 

DP800CR 0.95mm 159±3 

DP800CR 1.6mm 146±15 

DP800CR 1.6mmGl 127±8 

DP800CR 2mmA 128±3 

DP800CR 2mmB 174±8 

DP1000CR 1mm 112±8 

DP1000CR1.2mmGl 117±4 

DP1000CR 1.6mm 116±5 
 

 

The model shows an approximately linear relationship between the ferrite fraction and 

permeability indicating a significant effect of ferrite fraction on the permeability of the 

commercial DP steels however, as the ferrite grain size varies then this also needs to 

be taken into account. For instance, there is remarkable consistency in permeability 

value with ferrite fraction and ferrite grain size between the measurements by different 

techniques in this study but the DP800 CR 1.6mm and DP800 CR2 mm B with the 

smaller ferrite grain size (3µm) have shown high permeability values compared to the 

incremental permeability values, discussed in the previous sections. On the other hand, 

the permeability value of the DP600HR4mm sample is not a lot higher compared to 

the other DP600 steels (discussed earlier value measurements), therefore, it can be 

attributed to grain size. 
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Moreover, Figure 6.56 reveals that the correlation coefficient for the best fit line is high 

(R2 =0.9754) as the effect of grain size on permeability is not taken into account.  A 

new microstructure model taking account phase balance and grain size has recently 

been developed [55] and could be used to consider grain size in the DP steels in the 

future but was outside the scope/timescale of this project. 

 

 

Figure 6.56: Relative permeability obtained from FE modelling of magnetic 

microstructure as a function of ferrite fraction for the commercial DP steel samples. 

 

 

6.2.3 Effect of magnetic field on permeability  
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magnetisation curve (μIC), deviations from the major B-H curve (μBH) and minor loop 

amplitude sweep (μi). 

There has been a lot of reports on empirical relationships between major and/or minor 

loop measurements and mechanical properties such as tensile strength and hardness 

[49, 50, 54] or use of major/minor loop assessment as inspection of cold rolling [118, 

119], changes of magnetic minor hysteresis loops during creep [120], but there have 

been few reports on detailed correlation between the measured magnetic properties 

from major/minor hysteresis loops and microstructural parameters or interaction of 

microstructural features with domain processes for given applied fields. Liu et al. 

introduced a non-destructive way of selecting microstructural features of interest by 

minor loop measurements at a selected range of applied fields and explained the 

fundamental mechanism in terms of relevant domain processes [41].  

It is very interesting to study the relationship between microstructural parameters, such 

as phase fraction or average grain size, and corresponding major/minor loop behaviour 

in DP steel. The BH system used in this work is able to apply a magnetic field (H) of 

any selected range of amplitude, within a specified power limit, and measure the 

applied field (H) and the induced magnetic field (B). Therefore, the relationship 

between minor loop features and microstructural changes in commercial DP steel 

samples can be investigated. Figure 6.57 gives a plot of the incremental permeability 

and magnetic induction as a function of field for the DP600CR 1.4mm sample.  
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 (a) (b) 

  (c) (d) 

  (e) (f) 
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Figure 6.57: Incremental permeability as a function of applied field and the minor loops 

corresponding to different magnetic flux densities. 

It can be clearly observed from Figure 6.57 that the magnetic field amplitude and 

magnetic flux density constantly increase and the maximum variation in induction (ΔB) 

is obtained at a field of 1400A/m. It is worth stating that the applied field constantly 

increases by around 200A/m in each step of measurement. Moreover, the incremental 

permeability increases with the field amplitude until reaching a maximum incremental 

permeability value of 522 at a field of 1400A/m and then drops. 

This measurement was carried out for the all DP steel samples and Figure 6.58 shows 

the resultant incremental permeability as a function of applied field for the commercial 

DP steel samples. 

 

 

Figure 6.58: Incremental permeability as a function of applied field for the commercial DP 

steel samples 
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It can be observed from Figure 6.58, the curves follow a similar profile pattern, where 

the incremental permeability values for all the samples increase with the applied field 

amplitude until reaching a maximum value at a certain applied field amplitude (i.e. 

very close to the coercivity values) and then drop at higher applied field amplitude and 

converge to a similar permeability value. The initial gradient and the peak position for 

the samples are different and would allow them to be distinguished from each other.  

The DP 600 samples show narrow peaks with high gradient, shifting the peaks to the 

right with lower gradients for DP 800 samples and further shifting to the right with 

broad profiles for the DP 1000 samples can be observed. 

The principal assumptions of the hysteresis mechanism models of Kersten [166], 

Becker and Doring [167], and Kondorsky [168] is that the domain walls are rigid and 

planar in the demagnetised state since they do not experience any net force tending to 

move them therefore there is no reason for bending. It is worth clarifying that when the 

domain walls bend while being held on two pinning sites this results in a reversible 

change in magnetisation process. It continues until domain walls either encounter 

another nearby pinning features or it has expanded sufficiently to enable de-pinning 

and break away from the present pinning sites and moves discontinuously [166-168].  

Three factors determine the amount of domain wall bending. Two of these factors are 

intrinsic and dependent on the properties of the material. The first one is the strength 

of the pinning sites and the second parameter is the domain wall surface energy [146, 

147]. Differences between the surface energy and the pinning energy may result such 

that the domain walls will undergo more/less bending before breaking away from the 

sites. The third factor is extrinsic and depends on the magnetic field H [32, 146, 147].  

Sufficient driving force provided by the applied field is required to give a domain wall 

potential to move and overcome the pinning sites. The energy is influenced by the 
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number density of domains, which is in turn affected by a number of microstructural 

features such as phase fraction, grain size, dislocation density and precipitates. If we 

assume fpin is the minimum applied field H required to enable a domain wall to just 

overcome the pinning site of a microstructural feature [41] then it is apparent that one 

can characterise the microstructural feature distribution by correlating it with fpin 

distribution [41]. The mean free path to domain wall motion is determined by the 

spacing between the effective pinning features and hence incremental permeability for 

a given applied field, Ha.  

The predominant domain processes for small field (fpin > Ha) is 180° domain walls 

oscillating between the microstructural features that are effectively pinning [41, 146, 

147]. It is expected that for a given amplitude increment ΔHa the number of depinned 

sites proportionally increases [41]. The microstructural features will be passed through 

by the domain walls with (fpin < Ha). The broad and lower peak of the DP1000 samples 

indicate a broad distribution of fpin , which in turn is associated with an expectedly 

broad spatial distribution of pinning features including martensitic lath boundaries 

(made of dislocation networks). The peak for the DP800 samples narrows and shifts to 

a lower H value. It is believed that this is due to the lower density of dislocations. 

Further shifting to the left for the DP600 samples can be attributed to a significant 

increase in the mean free path due to the higher ferrite fraction in DP600 which 

decreases fpin hence lowering the H value giving a higher permeability. 

The incremental permeability curves for all samples after reaching the maximum value, 

drop and converge to a lower value of permeability at high applied field amplitudes. 

Therefore, the convergence is the point at which saturation is approached and 

contributions from domain wall pinning sites are reduced, giving way to reversible 

domain rotation effects [146]. 
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6.2.3.1 Effect of microstructural features on incremental permeability 

It has been shown that the magnetic permeability is affected by microstructural features 

such as phase fraction, grain size, distribution of phase, precipitates etc. [55, 57, 164, 

169, 170]. Among these microstructural features, phase fraction and grain size are 

particularly important factors in influencing the magnetic permeability values of DP 

steels [169].  

The incremental permeability values measured through minor loop amplitude sweeps, 

make it possible to study the microstructural features of interest by examination of 

minor loop measurements at a selected range of applied fields. In addition, it would be 

interesting to see the effect of grain size on permeability and compare this parameter 

with phase fraction (i.e. ferrite fraction) as both affect magnetic permeability in DP 

steel.  

Figure 6.59 shows the incremental permeability of the DP600 steel samples as a 

function of applied field. The main purpose of this comparison is to investigate the 

effect of grain size for the samples with almost similar range of ferrite fraction (72-

79%). There is a notable difference in grain size between the DP600 4mm sample 

(average ferrite grain size of 10 µm) and the rest of the DP 600 samples (average ferrite 

grain size of 6-7 µm). From Figure 6.59 it is apparent that the DP600 4mm shows 

higher permeability value than the other steels and that this appears to be more related 

to the ferrite grain size rather than ferrite fraction: the DP600 CR 1 and DP600 CR1.5 

mm samples have a range in amount of ferrite (72 - 76% ferrite) but show similar 

incremental permeability values whilst the DP600 4mm sample has only a little more 

ferrite (79% ferrite) but shows a significantly higher incremental permeability peak. 
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It is known that the ferrite grain size affects the magnetic properties in low carbon steel 

as the grain boundaries act as effective pinning points to magnetic domain movement 

[49, 50, 160]. 

On the other hand, dislocation density in martensite/bainite (e.g. martensitic lath 

boundaries) can be regarded as point pinning features in DP steel. Martensite lath 

boundaries are typically low angle and would have less strong pinning sites than ferrite 

with high angle boundaries. Therefore, increasing ferrite grain size means less effective 

boundaries, which corresponds to less strong pinning sites.  

Therefore, for this range of ferrite fraction (72-79%) and range of ferrite grain size (6-

10 µm), the effect of ferrite grain boundaries on permeability is more significant than 

the effect of ferrite/martensite fraction. 
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Figure 6.59: Incremental permeability as a function of applied field for the commercial DP 

600 steel samples, the average grain size for theDP600 4mm is relatively larger (10 μm) in 

comparison with the rest of DP600 samples in this study (6-7 μm) 

 

Figure 6.60 illustrates the incremental permeability of the commercial DP800 samples 

as a function of applied field. A similar scenario happens for these samples where the 

permeability values of samples at very low amplitude field (100A/m) are very close. 

The samples with relatively larger ferrite grain size (5-6 µm), reach the maximum 

incremental permeability at a lower applied field with higher gradient and the samples 

with smaller ferrite grain size (3 µm) reach a lower peak (compared with larger grain 

size samples) at higher field and show broader peak (lower gradient). Therefore, based 

on applied field, grain size and ferrite fraction show different behaviour patterns. 
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Figure 6.60: Incremental permeability as a function of applied field for the commercial 

DP 800 steel samples, the average ferrite grain size for the DP800 1.6mm and 

DP800CR2mmB is relatively smaller (3 μm) in comparison with the other DP800 

samples in this study (5-6 μm) 
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7 EM sensor for Characterisation of 

DP Steel 

It is desirable to be able to use magnetic properties to monitor the mechanical properties 

non-destructively. In steel, microstructural parameters affect the mechanical properties 

[1]. For DP steel, the mechanical properties are strongly influenced by ferrite fraction 

and grain size [1, 5, 152, 171-174]. Previous research has also shown the relationship 

between microstructural features and magnetic properties [19, 49, 50, 57, 62, 66, 170, 

175, 176]. 

Coercivity measurement, discussed in Section 6.2.2.1 Chapter 6, can be used as a 

magnetic method to evaluate mechanical properties but coercivity values are not 

routinely obtained using an open loop (and hence deployable) system that can be used 

in the laboratory with varying thickness sheet or plate samples, and could be used with 

other complex shapes with appropriate modeling. 

 

This chapter proposes using an electromagnetic (EM) sensor, suitable for use on strip 

samples, as a tool for non-destructive steel characterisation. 

Firstly, the effect of ferrite fraction for the laboratory heat-treated DP600 samples, with 

the same thickness (1.4mm), on EM sensor signal (i.e. mutual real inductance) will be 

studied. 
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The second part of Chapter focuses on using the EM sensor for samples with a different 

range of thicknesses in commercial DP steel. Initially the effect of ferrite fraction on 

the EM sensor signal (real inductance) will be covered, followed by the effect of the 

thickness of the sample on the real inductance measurement. Modeling results and 

measurement results will be compared in the development of a calibration curve. At 

the end of this section, it will be shown that the low field permeability can be 

determined from the low frequency mutual inductance measured using a U-shaped 

sensor for any sheet thickness using a calibration curve. The relationship between low 

field permeability and tensile strength results allowing the tensile strength to be 

predicted from the EM sensor. 

7.1 EM sensor response to uniform thickness 

7.1.1 U-shaped EM sensor optimisation 

The heat-treated DP600 samples were used to investigate the correlation between 

ferrite/martensite fraction and EM sensor signal for the samples with constant 

thickness.  

It has been reported that the EM sensor signal of low frequency (10Hz) inductance 

increases almost linearly with ferrite fraction in the range of 35-73% for constant 

thickness (1.4mm) samples, which all have a similar grain size [22, 177].  

A process of optimisation to select a suitable EM sensor to distinguish DP samples was 

carried out experimentally using three different U-shaped sensors including; a U-

shaped sensor (Length=10mm and N=30 turns), U-shaped sensor (Length=30mm and 

N=50 turns) and U-shaped sensor (Length=100mm and N=100 turns), to measure the 
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real inductance in the heat-treated DP samples. More details about three U-shaped 

sensors are given in Table 7.1.  

 

 

Table 7-1: Comparison of three different size of U-shaped sensor used to measure 

inductance for the heat-treated DP samples 

U-shaped Length (mm) Height (mm) 

Excitation 

coil (turns) 

Sensing coil 

(turns) 

Best fit 

equation (R2) 

U-10 10 10 30 15 0.5728 

U-30 30 15 50 20 0.9166 

U-100 100 56 100 86 0.9699 
 

 

This was carried out at an early stage of the overall project before the U-shaped sensor 

FE model and knowledge of the variation of permeability with applied field was 

available.  Further sensor optimisation was carried out with this knowledge at the latter 

stages of the project and this is described in section 7.2.1.  

Figure 7.1 to 7.3 illustrate the measured real inductance of samples at a frequency of 

10Hz against the ferrite fraction used three different U-shaped sensors. The results, an 

approximately linear increase in real inductance with ferrite fraction, is in agreement 

with that reported previously [22]. 
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Figure 7.1:Real inductance changes with frequency measured by a U-shaped sensor 

(Length=10mm and N=30 turns) for the heat treated DP samples 

 

 

Figure 7.2:Real inductance changes with frequency measured by a U-shaped sensor 

(Length=30mm and N=50 turns) for the heat treated DP samples 
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Figure 7.3: The real inductance measurements at a frequency of 10Hz versus ferrite 

fraction for heat treated DP samples. Using the U shaped sensor with the bridge of 

100mm, leg lengths and thickness of 56mm and 25mm respectively 

 

Repeatability of testing showed that these samples could be distinguished from each 

other. In addition, Figures 7.1 - 7.3 indicate that the sensor/sample configuration of the 

three sensors has an effect on the absolute values of inductance and ease of 

distinguishing between the samples, but that the relationship between real inductance 

(permeability) and ferrite fraction is similar using the three EM sensors. 

 

The correlation coefficient for the best equation for that measurement showed a value 

of R2 = 0.5728 and R2 = 0.9166 for U-shaped (U-10) and U-shaped (U-30) respectively, 

shown in Figure 7.1 and Figure 7.2, compared to the U-shaped sensor (U-100), shown 

in Figure 7.3, with a correlation coefficient of R2 = 0.9699, suggesting, in order to 

differentiate between the samples, the larger applied field associated with the larger 

sensor generated in sample/sensor (discussed in Section 6.2.3),  gives better 
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differentiation therefore, the U-shaped (100mm) was selected in this study and used 

for the rest of the work. 

It can be clearly seen from Figure 7.3 and Figure 7.4 that the sensor output can 

distinguish the different samples at a low frequency of around 10 Hz (i.e. plateau 

region). The real inductance values at low frequency are dominated by the relative 

permeability of the samples, which increases with increased ferrite percentage in the 

sample.  

 

 

Figure 7.4: Real inductance changes with frequency for the heat treated DP samples 

measured by U-shaped sensor (Length=100mm, exciting=100 turns, sensing 

coil=86turns for each coil) 

 

 

Figure 7.5 reveals that the EM sensor has the potential to assess the mechanical 

property (hardness) in DP steel sheet of constant thickness with little variance in grain 
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size. The EM sensor measurement also can be used to provide information on 

microstructural features in DP steel, in this case ferrite fraction as shown in Figures 7.2 

and 7.3. 

 

 

 

Figure 7.5: Hardness value as a function of sensor signal ( real inductance) for the 

heat treated DP samples 
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7.2  EM sensor response to different thickness 

(Commercial DP steel) 

The EM sensor measurements were carried out using the U-shaped EM sensor (U-100) 

described in Section 5.8 in Chapter 5. The EM sensor output, in terms of inductance 

versus frequency is shown in Figure 7.6 for the commercial DP steel samples.  

 

Figure 7.6: Real inductance versus frequency plot for the U-shaped EM sensor for the 

commercial DP steels with different thicknesses showing the plateau in inductance value 

at low frequency (1-10Hz). 
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It has been shown in Section 7.1 that the EM sensor signal of low frequency (10Hz) 

inductance increases almost linearly with ferrite fraction in the range of 35-70% for 

constant thickness (1.4mm) samples, which all have a similar grain size (Figure 7.2 

and Figure 7.3). On the other hand, from Figure 7.7, it can be observed that for the 

commercial DP steel with different thicknesses, the inductance is strongly affected by 

the thickness of the sample. 

 

 

 
Figure 7.7:The real inductance measurements (using the U-shaped EM sensor at a 

frequency of 10Hz) for a commercial DP600 material (with 79% ferrite, average grain size 

10±4µm) machined to thicknesses of 1mm to 4mm 

 

The thickness of material affecting the sensor signal can be estimated by the skin depth 

(Δs) equation; 

Δs =√
𝝆

𝝅𝒇𝝁𝟎𝝁𝒓
    Equation 7-1 
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where ρ is the resistivity of the conductor, 𝑓 is the frequency, µ is absolute magnetic 

permeability (µ= µ0.µr). By using resistivity, ρ =2.1x10-7 Ω.m (measured value for the 

DP600 steel) and permeability for DP steel of between 100 to 177, the value of skin 

depth for the operation frequency of 10 Hz was estimated to be approximately 6 mm, 

which is larger than the sample thicknesses. Therefore, a thicker sample shows a higher 

mutual inductance sensor response as effectively more material is being measured. 

A calibration curve to consider thickness, for different DP samples, was constructed 

using the 3D finite element model developed in COMSOL Multiphysics (Section 

6.2.2.4 Chapter 6) as shown in Figure 7.8. Whilst the model does require a limited 

number of samples for validation once established it can also be used to consider 

sample geometry (to account for edge effects if limited size samples are available or 

cross width near edge properties need to be examined) as well as thickness changes for 

different grades if required. 
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Figure 7.8: Calibration curves relating low frequency (10Hz) real inductance with 

permeability for different thickness samples, achieved from the U-shaped sensor-

sample FE model 

Figure 7.9 illustrates the calibration curves to obtain the low field permeability from 

the EM sensor mutual inductance value (discussed in Section 6.2.2.4.2) and measured 

sample thickness. The results from the model show good agreement with the 

experimental results. 
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Figure 7.9: Calibration curves relating low frequency (10Hz) real inductance with 

permeability for different thickness samples. The dashed lines represent modelling 

results (for 1mm to 4mm strip thickness) and experimental data for commercial DP 

samples of different thicknesses are indicated by different points. 

 

 

 

The permeability (determined from the U-shaped sensor-sample FE model) is plotted 

against tensile strength in Figure 7.10. The relationship between the relative 

permeability values and the hardness values of the commercial DP steel samples is 

given in Figure 7.11. 

The results indicate that there is a general correlation between permeability and tensile 

strength/hardness for the commercial DP steels, i.e. a DP steel with higher volume 



221 

 

fraction of ferrite (and/or larger grain size) showing a higher permeability and lower 

tensile strength/hardness. The permeability value increases with an increase in ferrite 

fraction due to the lower fraction of magnetically harder martensite, effect of decreased 

dislocation density and lath / carbide interfaces (from martensite formation), easier 

reverse domain formation and domain wall motion taking place at a lower applied field 

in ferrite [49, 62]. The correlation in Figure 7.10 and Figure 7.11 are not linear but 

there is less scatter around a line of best fit, particularly for the DP800 grades, than in 

Figure 7.12 where permeability is only correlated with ferrite fraction. 

 

 
 

Figure 7.10: Determined low field permeability values from the U- shaped sensor-sample FE 

model for the commercial DP600, 800 and 1000 steels plotted against tensile strength. 
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7.11: Determined low field permeability values from the U- shaped sensor-sample FE model 

for the commercial DP600, 800 and 1000 steels plotted against hardness 
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Figure 7.12: Variation of permeability (determined from the U-shaped sensor-sample FE 

model) with ferrite fraction for the DP steel, the marked samples showing lower than expected 

permeability due to the smaller gain size  

In addition, information about the ferrite fraction in the steel can be obtained from the 

permeability if the grain size remains similar (for example for steels produced with a 

similar hot rolling process). 

Figure 7.10 and Figure 7.11 reveal that the correlation coefficients for the best fit 

equation are very high, (R2= 0.9693) and (R2= 0.9565) for the tensile strength and 

hardness respectively, which show that the relative permeability is a good measure to 

predict tensile strength and hardness for DP steel samples. In particular, these two plots 

show that there is clear differentiation between the DP600 and DP800 samples. 

However, it is noted that differentiation for the samples with lower values of 

permeability (i.e. DP800 and DP1000) is less clear. 

 

In order to evaluate the accuracy of the system (i.e. the EM sensor and the calibration 

curve), the tensile strength of five unknown DP steels with different thicknesses (i.e. 
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blind test) were quantitatively predicted. Figure 7.13 presents the measured value of 

tensile strength against the value predicted from the EM sensor system measurement. 

The accuracy in prediction of tensile strength was 90%, where the tensile strength for 

DP600 has been predicted almost 100% by the EM sensor system whilst the prediction 

is less accurate for DP800 and DP1000, although all blind test samples were correctly 

identified to grade type based on strength. This inaccuracy is believed to be due to the 

fact that there is limited difference in permeability values between DP800 and DP1000 

grade for the magnetic field generated using this sensor making the measurement more 

susceptible to error, therefore a higher field would be beneficial since DP800 and 

DP1000 samples, consisting of higher fraction of martensite, require a higher field to 

be magnetised. It can also be related to the low field permeability state discussed in 

Section 6.2.3. 

A case study to further increase the accuracy of the system, particularly for the 

commercial DP steels, in term of sensor design and FE model will be covered in the 

next section. 
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Figure 7.13: Measured value of tensile strength against the value determined from the EM 

sensor system measurement  

It is also worth stating that permeability values are strongly affected by microstructural 

features and in this case phase fraction and ferrite grain size are the more significant 

parameters. It is possible that other microstructure combinations (for example grain 

size and precipitates, or cold work) could give a similar permeability value. Assuming 

that similar electrical conductivity values are also seen then the EM sensor would not 

be able to distinguish between the two steel microstructures.  If different electrical 

conductivity values occur then analysis of the full EM sensor signal (i.e. inductance 

versus frequency) would indicate differences.  However, in general during industrial 

applications the general type of steel is known allowing qualitative rules (such as 

knowing the main strengthening microstructural features) to be used to distinguish 

between samples.  The ultimate aim for EM sensing technologies would be to 
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interrogate the full magnetic behaviour (varying magnetic field strength as well as EM 

sensor frequency) of a sample and to have the known pinning strengths of the domain 

pinning microstructural features to allow these different features to be identified.  This 

is not yet possible. 
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7.2.1 Case study to increase accuracy of EM sensor  

In Section 7.2 the potential of EM sensor to determine tensile strength in varying 

thickness commercial dual phase steels was studied. It has been shown that the low 

field permeability can be determined from the low frequency mutual inductance 

measured using a U-shaped EM sensor and a calibration curve to account for the effect 

of thickness and the strength can be predicted from the low field permeability. 

In addition, in Section 6.2.3 Chapter 6, the influence of magnetic field on permeability 

was discussed and it was observed that the incremental permeability values increased 

with the applied field but with different gradients. In other words, the incremental 

permeability values increase with a higher gradient for the samples with higher 

permeability, and with lower gradient for the samples with lower permeability. 

Therefore, the incremental permeability curves against magnetic field show divergence 

at a certain field (i.e. very close to the coercivity values) and then drop at higher field 

and converge.   

The initial optimisation process for the U-shaped EM sensor used in the work was 

carried out based on an experimental approach and the available ferrite cores available, 

as discussed in Section 7.1.1 resulting in the selection of a sensor consisting of one 

generating coil with 100 turns of 0.20mm insulated copper wire and two sensing coils 

with 86 turns of 0.16mm insulated copper). This sensor generates a maximum field of 

250±12 A/m (measured by Gauss meter and FE model-point evaluation). This field 

corresponds to the range where the ‘low field permeability’ is being determined, which 

has been used to relate to the tensile strength. From Figure 7.11 and Figure 7.12 there 

is a clear differentiation between the DP600 and DP800 steels but differentiation for 
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the samples with lower values of permeability (i.e. DP800 and DP1000) is less clear 

which may cause error in characterisation. Therefore, in order to increase the 

sensitivity, consideration is needed to ensure that the generated applied magnetic field 

by the sensor is selected to give increased differentiation between the steels of interest.  

It is apparent from Figure 7.15 that operating the U-shaped sensor at a higher field (i.e. 

moving to the right side from the current operating condition) where the curves start to 

diverge, but before the peak in permeability, will give better differentiation between 

the samples.  

 

 

Figure 7.14: Incremental permeability as function of applied field for three commercial 

DP steel samples and the region where the U-shaped EM sensor (U-100) works to 

measure low frequency inductance. 

Therefore, some modifications are required in order to improve the EM sensor to 

generate a higher field (higher than 250A/m). From Equation 3.11 and Equation 3.12 

(Section 3.2 Chapter 3); 
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H = 
𝑛 𝐼

𝑙
 

L=
𝜇 𝑛2𝐴

𝑙
 

It is clear that the sensor parameters, including the number of turns in the inductor 

coils, length of the conductor that makes up the coils, cross sectional area and the 

electric current, can be changed to obtained higher inductance value. 

FE U-shaped sensor modelling suggested for the current U-shaped sensor a field of 

450-480 A/m can be obtained by increasing the number of turns in the excitation coil 

from 100 to 300 turns and increasing the diameter of the wire to 0.24mm.  This was 

achieved for the same ferrite core size as used in the previous work with better control 

of the sensor build process. 

Experimental measurement was carried with the modified U-shaped sensor (300 turns 

shown in Figure 7.15), along with modelling work to determine the low field 

permeability.  

 

Figure 7.15: Modified EM sensor 300 turns  in the sensor holder 
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Figure 7.16 presents the tensile strength against the inferred low field permeability 

values using the U-shaped sensor with 100 turns and the U-shaped sensor with 300 

turns. It can be seen that the low field permeability increased, as expected. Therefore, 

the plot of permeability against tensile strength shifts to the right side (higher 

permeability values) and there is a decrease in the plot’s gradient (as there is more 

differentiation between the steel grades in terms of permeability), which in turn makes 

the tensile strength determination more accurate. A new calibration curve was 

determined for this sensor using the sensor model and the sensor was used to measure 

the ‘blind’ DP samples. Figure 7.17 illustrates the improved accuracy of the modified 

sensor (average accuracy of 94%) for the tensile strength determination of blind test 

samples compared to the previous sensor (accuracy of 90%). 

 

Figure 7.16: Plot of tensile strength against the inferred permeability values using the 

U-shaped sensor 100 (blue) and the U-shaped sensor 300 (red). 
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Figure 7.17: Measured values of tensile strength against the values determined from the 

modified U shaped EM sensor. 

 

 

 

100%

95%

90%

95%

90%

600

700

800

900

1000

1100

1200

1300

1400

600 700 800 900 1000 1100 1200 1300

M
ea

su
re

d
 T

en
si

le
 S

tr
en

g
th

(M
P

a
)

Estimated  Tensile Strength (MPa)

DP600 1.4mm

DP800 1mm

DP1000 1mm

DP1000 1.2mm

DP1000 1.5mm



232 

 

7.3 Summary  

 

Results of previous studies and contributions from this research work have shown the 

potential of using EM sensors for characterisation of DP steels of any sheet thickness.  

The EM signal can be directly correlated to the mechanical properties for samples of 

constant thickness. However, the sensor signal cannot be correlated to strength directly 

if different thickness samples are assessed unless a calibration curve to account for 

thickness is generated. The calibration curve can be determined using an FE model for 

the EM sensor and sample and validated using a limited number of reference samples.  

Using the calibration curve the EM sensor signal, of low frequency (10 Hz) inductance, 

for any sheet thickness can be used to determine the material low magnetic field 

permeability value, which can then be used to determine the tensile strength of the 

material via the determined correlation between permeability and strength curve. 

The EM sensor technique can scan and examine a relatively large area of the tested 

sample (i.e. both area and depth – when using low frequency measurements) compared 

with other methods such as hardness measurement. The EM equipment is also more 

readily available for in-situ measurements, particularly for thin sheet material where 

support is required for hardness measurements. 
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8 Conclusions  

The main aim of this research work was to propose and develop an electromagnetic 

(EM) sensor system that can be used to assess the microstructure (and hence 

mechanical properties) of commercially produced DP steels (in particular phase 

balance and grain size) with a range of thicknesses in a steel works test house 

environment, specifically, it focuses on employing an EM sensor system in the 

prediction of ultimate tensile strength for DP commercial steels in any sheet thickness. 

The sensitivity of the magnetic properties, EM signals and tensile properties to changes 

in phase balance and ferrite grain size in DP steels has been assessed.  The role of 

magnetic field strength on the magnetic properties for the DP steels and hence 

optimisation of the EM sensor has been considered. The other factors which can affect 

the signal measured by the EM sensor were also taken in account including sample 

thickness and lift off.  

 

The main conclusions from the research are as follows: 

 

In the area of the relationship between EM signal, permeability, microstructure and 

phase balance: 

 Multi-frequency electromagnetic (EM) sensors are sensitive to both changes in 

relative magnetic permeability and resistivity of steel. Low frequency inductance, 
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can be related directly to the relative permeability, which can be related to 

microstructure. Moreover, the low frequency inductance is also influenced by the 

thickness of the material being tested.  

 

 The low frequency (10Hz) inductance value measured using an EM sensor 

increases almost linearly with ferrite fraction in the range of 35-72% for constant 

thickness DP steel samples with a constant ferrite grain size. 

 

 

 There is a decrease in the low frequency (10 Hz) inductance measured using an EM 

sensor with the hardness value for the heat treated DP steels with a range of ferrite 

fraction (35-72%), constant ferrite grain size and constant thickness. 

 

 The effect of the martensite-ferrite phase balance on the EM sensor signal output 

(i.e. inductance), and hence low field relative permeability was studied for the DP 

steels. The results showed that the inductance value, and hence the low field 

relative permeability, increased with an increase in ferrite content (35-70%), due 

to the high permeability of ferrite compared with martensite (or bainite). 

 

  In order to determine the magnetic field value generated by the EM sensor and 

experienced by the steel sample, both experimental and FE modelling studies have 

been carried out. The measured magnetic field in the cylindrical sensor (50±4A/m) 
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and the U-shaped sensor (250 - 450 A/m) corresponds to the low field permeability. 

This value is very similar to the initial permeability value obtained from B-H 

hysteresis loop measurements. 

 

 A FE cylindrical sensor and FE U-shaped sensor model developed using COMSOL 

software model used to determine the low field permeability in the rod/strip 

samples (size of 50x4.95mm) and strip samples (size of 300x80 mm) respectively. 

The determined value of permeability by the U-shaped sensor showed a higher 

value than that determined by the cylindrical sensor, which is due to the fact that 

the U-shaped sensor generated a higher field, hence shows higher permeability.   

 

 

 

In the area of the determination of permeability value and effective parameters on 

magnetic properties; 

 Three types of minor loop configurations were used to derive incremental 

permeability values in the commercial DP steel samples including; minor loop 

deviations from the initial magnetisation curve, major hysteresis loop and minor 

loop amplitude sweep. It was found that although the permeability values are not 

precisely the same for the three sets of measurements similar trends for the samples 

can be observed which can indicate the underlying domain process are similar.  
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 Ferrite grain size and phase balance (ferrite-martensite fraction) affect the magnetic 

permeability in DP steel, this was seen for the different permeability measurements 

made (incremental permeability, major and minor loop permeabilities determined 

from the BH curve and low field permeability determined from EM sensor 

measurements). Since both tensile strength and magnetic permeability are 

influenced by ferrite fraction and grain size, a strong correlation between tensile 

strength and permeability was established. 

 

 It was observed that the effect of ferrite grain size on permeability and strength for 

samples with 40% ferrite is less significant and for samples with more than 70% 

ferrite, is more dominant.  This is related to the effective change in number of 

domain pinning sites with the change in ferrite grain size in the different phase 

balance samples. 

 

 The study on incremental permeability showed that the effect of ferrite grain 

boundaries on permeability is more significant than the effect of ferrite fraction in 

commercial DP steels (for a range of ferrite fraction (72 to 79%) and ferrite grain 

size (from 6 to 10µm). this is believed to be due to the martensite lath boundaries 

are typically low angle and would have less strong pinning sites than ferrite with 

high angle boundaries. Therefore, increasing ferrite grain size means less effective 

boundaries which is corresponding to less strong pinning sites. 
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 It was observed that the incremental permeability against the applied magnetic field 

curves follow a similar profile pattern, where the incremental permeability values 

for all the samples increase with the applied field amplitude until reaching a 

maximum value at a certain applied field amplitude (i.e. very close to the coercivity 

values) and then drop at higher applied field amplitude and converge to a similar 

permeability value. The initial gradient and the peak position for the samples are 

different and would allow them to be distinguished from each other. 

 

 

In the area of the relationship between permeability, tensile strength (hardness) and 

EM sensor application for DP steel; 

 Coercivity measurements showed a strong correlation with the tensile strength and 

hardness for the DP grades (an approximately linear decrease in coercivity with 

higher tensile strength and hardness). The correlation coefficient for the best fit 

equations are R2
Hv =0.9258 and R2

UTS = 0.9333 for the hardness and the tensile 

strength respectively, which show that the coercivity is a good measure to predict 

tensile strength for DP steel samples. Since coercivity measurement in the lab 

generally requires measurement coils wound around the sample this magnetic 

measurement property was not considered to be appropriate for the deployable 

system for large strip samples. 

 

 The correlation coefficient of permeability against tensile strength for the best fit 

equation in the commercial DP steels was very high (R2 = 0.9696), which showed 
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that the relative permeability is a good measure to predict tensile strength for DP 

steel samples. 

 

 

 It has been shown that the low field permeability can be determined from the low 

frequency mutual inductance measured using the U-shaped sensor for any sheet 

thickness using a calibration curve to account for the effect of thickness. As there 

is a relationship between permeability and tensile strength this allows the tensile 

strength to be predicted from the EM sensor low frequency mutual inductance. 

 

 A calibration curve to consider thickness and sample geometry for different DP 

samples, was constructed using the 3D finite element model developed in 

COMSOL Multiphysics. Whilst the model does require a limited number of 

samples for validation once established it can be used to determine the low field 

permeability of any strip sheet thicknesses using the EM sensor. 

 

 The accuracy of the EM sensor system (i.e. the EM sensor and the calibration 

curve), was evaluated for predicting the tensile strength of five unknown DP steels 

with different thicknesses (blind test samples). The samples were quantitatively 

predicted with an accuracy of 90%. 
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 A case study to increase the accuracy of the EM sensor system was carried out. The 

U-shaped sensor was modified to increase the magnetic field as it had been shown 

that within the low magnetic field range a small increase in applied field not only 

increased the permeability values for the DP steel, but also increases the difference 

in values between the samples. The modified EM sensor system quantitatively 

predicted the tensile strength with an accuracy of 94% in commercial DP steels 

 

 

In conclusion, it can be said that the aims and objectives of this research project have 

been successfully met; and development of the EM sensor technique can be employed 

as a reliable method for non-destructive characterisation of DP steels. An on-going 

activity, detailed in the future work, is to provide a calibrate robust sensor to Tata Steel 

Jamshedpur for use in the test house laboratory to characterise DP steels. 
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9 Future work 

Results of previous studies and contributions from this research project can be used to 

extend the work presented in this thesis further. Therefore, in term of EM sensor more 

work could be done in the following areas; 

 

 

 A robust EM sensor based on the design presented in the final section of this thesis 

has been commissioned by Tata Steel Jamshedpur for use in their test house lab 

facility.  The sensor and associated calibration curve, along with validation testing 

including with DP steels produced in Jamshedpur will be carried out.  This 

provides a route to uptake of the system developed in this project for wider use. 

 

 Extension of the technique for HSLA steels, IF steels, complex phase (CP) and 

TRIP grades can be considered. Complex steels and TRIP steels have more 

complex microstructures containing ferrite, bainite, martensite and/or retained 

austenite where the relationships to permeability and to tensile strength (and also 

any permeability – tensile strength relationship) are not as well documented. FE 

modelling of the U-shaped sensor to predict the relative permeability and to extend 

the calibration curve (thickness - inductance - permeability) to potentially the 
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lower expected values for these steels would be needed.  Predictions of the tensile 

strength for CP and TRIP grades could then be carried out. As the permeability 

values of (tempered) martensite and bainite are very close interpreting and 

predicting the signals will be challenging. A range of samples needs to be studied 

to enable the development of a calibrated sensor that can provide quantitative 

measurements for the full range of CP and TRIP grades. 

 

 Future work can be carried out to study the effect of second phase distribution and 

morphology on the EM sensor signal in DP steel and hence permeability in dual 

phase steel.  The link between this and tensile strength also needs to be explored 

to see if non-uniform properties (e.g. variation in strength in the transverse and 

longitudinal orientations of the strip) can be determined. 

 

 The effect of chemical composition and precipitates on permeability of DP steel 

can be investigated. 

 

 

In term of modelling and permeability measurement; 

 

 The FE modelling of magnetic microstructure in this work showed an 

approximately linear relationship between the ferrite fraction and permeability for 

DP steels with similar ferrite grain size indicating a significant effect of ferrite 

fraction on the relative permeability. The FE model has been updated to take into 
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account the role of ferrite grain size to predict relative permeability in low carbon 

(0.17 wt%C) ferrite and pearlite microstructures [55] and this could be extended 

to determine its accuracy for predictions in DP steels across a wider range of phase 

fractions.  The experimental work indicates that ferrite grain size variations are 

less significant on permeability values when the second phase percentage is greater 

than about 70% and modelling work would be able to determine the extent of 

sensitivity. 

 

 

In term of magnetic hysteresis loop; 

 Low field permeability is governed by the mean free path to domain wall motion 

because at low field the predominant domain process is domain walls moving 

between pinning sites. At higher field, domain processes can be more complicated, 

particularly in DP steels. It would be interesting to study domain process in 

different phases (ferrite / martensite / bainite etc.) and then determine the combined 

effects according to the phase fraction. 
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