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Abstract

We propose a method to estimate static discrete games with weak assumptions on the
information available to players. We do not fully specify the information structure of the
game, but allow instead for all information structures consistent with players knowing
their own payoffs and the distribution of opponents’ payoffs. To make this approach
tractable we adopt a weaker solution concept: Bayes Correlated Equilibrium (BCE),
developed by Bergemann and Morris (2016). We characterize the sharp identified set
under the assumption of BCE and no assumptions on equilibrium selection, and find
that in simple games with modest variation in observable covariates identified sets are
narrow enough to be informative. In an application, we estimate a model of entry in
the Italian supermarket industry and quantify the effect of large malls on local grocery
stores. Parameter estimates and counterfactual predictions differ from those obtained
under the restrictive assumption of complete information.
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1 Introduction

Empirical models of static discrete games are important tools in industrial organization,
as they allow us to recover the determinants of firms’ behavior while accounting for the
strategic nature of firms’ choices. Models in this class have been applied in contexts such as
entry, product or location choice, advertising, and technology adoption.1 Game-theoretic
models’ equilibrium predictions, and thus the map between the data and parameters of
interest, depend crucially on the assumptions on the information that players have on each
other’s payoffs. However, the nature of firms’ information about their competitors is often
ambiguous in applications. Moreover, restrictive assumptions, when not satisfied in the
application at hand, may result in inconsistent estimates of the payoff structure of the
game.

We propose a new method to estimate the distribution of players’ payoffs relying only
on assumptions on the minimal information players have. In particular, we assume that
players know at least (i) their own payoffs, (ii) the distribution of opponents’ payoffs, and
(iii) parameters and observable covariates. We admit any information structure that satisfies
these assumptions. In this sense our model is incomplete, in the spirit of Manski (2003,
2009), Tamer (2003), and Haile and Tamer (2003). More precisely, we allow our model
to produce any prediction that results from a Bayes Nash Equilibrium (BNE) under an
admissible information structure, without assumptions on equilibrium selection. Our object
of interest is the set of parameters that are identified given this incomplete model.

Our method nests the two main approaches used in the existing literature: complete
information, adopted by the pioneering work in this area (Bjorn and Vuong, 1985; Jovanovic,
1989; Bresnahan and Reiss, 1991a; Berry, 1992); and private information (Seim, 2006; de
Paula and Tang, 2012). Likewise, it nests the class of information structures considered by
Grieco (2014). Moreover, our model is flexible in other dimensions: we allow the information
structure of the game to vary across markets and to be asymmetric, i.e. agents may be
informed about opponents’ payoffs with varying levels of accuracy.

To make this approach tractable, we rely on the connection between equilibrium behav-
ior and information, and adopt Bayes Correlated Equilibrium (BCE) as solution concept.
BCE, introduced by Bergemann and Morris (2013, 2016), has the property of describing
BNE predictions for a range of information structures. We show that, under the assumption
of BCE, for every vector of parameters in the identified set there exists an admissible infor-
mation structure and a BNE that deliver predictions compatible with the data. Exploiting
the convexity of the set of equilibria, we also provide a tractable characterization of the

1See for instance Bresnahan and Reiss (1991b), Berry (1992), Jia (2008), Ciliberto and Tamer (2009) for models of
entry, Mazzeo (2002) and Seim (2006) for models of product choice, Sweeting (2009) for advertising, Ackerberg and
Gowrisankaran (2006) for technology adoption.
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sharp identified set of parameters without explicitly modeling equilibrium selection. These
results motivate the use of BCE to estimate the distribution of players’ payoffs while being
robust with respect to the information structure, thus avoiding misspecification bias due to
strong assumptions on information.

We investigate the identification power of BCE in simple entry games with linear payoffs
and find that the identified sets are informative about the model’s primitives. In fact,
point identification is obtained under the assumption of full-support variation in excluded
covariates, as in Tamer (2003). More generally, however, we obtain partial identification of
the payoff parameters and of the joint distribution of payoff types. We perform inference by
constructing a confidence set for parameters in the identified set using techniques developed
in Chernozhukov, Hong and Tamer (2007).

We apply our method to the investigation of the effect of large malls on the grocery retail
industry in Italy. The disagreement on the impact of the presence of these big outlets echoes
the US debate on “Wal-Mart effects.” Advocates of stricter regulation of large retailers claim
that the superstores in malls drive out existing supermarkets and leave consumers without
the option of shopping at local stores. Economic theory2 and some of the existing evidence
from other countries suggest however that local stores might benefit from the agglomeration
economies created by the mall, or be differentiated enough not to suffer the competition of
grocery-anchored shopping centers.

We estimate a static entry game using our robust method, and find mixed evidence on
the effect of large malls on supermarkets. For all players in the industry the competition
from a rival supermarket group seems to have a larger effect on profits than the competition
from malls has. This is consistent with a substantial degree of differentiation between malls
and local supermarkets, and thus a limited effect of malls on the availability of grocery
stores. Our findings are in line with previous studies that have found a limited impact of
supercenters on entry by small grocery retailers in the US (Ellickson and Grieco, 2013).

We compare these estimates with those obtained using a model of complete information.
Results differ in important ways: in particular, we do not reject high values (in absolute
value) of competitive effects, which are rejected under strong assumptions on information.
This is because the assumption of complete information imposes that players fully antici-
pate competitors’ decisions. As a consequence, the more restrictive complete information
model may lead to underestimate how much players’ profits are affected by the presence of
competitors in a market.

In a counterfactual, we evaluate the effect on market structure of removing large malls
from markets that currently have no other supermarket. Under weak assumptions on in-

2Zhu, Singh and Dukes (2011) show that when the existing retailers offer non-overlapping product lines, they may
benefit from the presence of large stores that can produce demand externalities.
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formation, we find that the absence of the mall may or may not foster the emergence of a
market structure with at least two competing industry players. The model with complete
information predicts instead that removing large malls results in a substantial increase in
the average maximal probability3 of observing at least two entrants. In this application,
a model with restrictive assumptions on information leads us to strong conclusions, which
are dispelled once more robust methods are adopted.

This article contributes to the literature on identification and estimation of static dis-
crete games, recently surveyed by de Paula (2013). We follow Tamer (2003), Berry and
Tamer (2006), who do not restrict equilibrium selection and allow for set identification of
parameters. In particular, we rely on ideas in Beresteanu, Molchanov and Molinari (2011),
who provide a useful characterization of the sharp identified set for models with convex
predictions.4

Grieco (2014) is the first to estimate a game-theoretic model that relaxes the stan-
dard assumptions of either complete or perfectly private information. His model defines
a parametric class of information structures where players receive both public and private
signals; the relative precision of these signals is pinned down by the data. We adopt a
complementary approach as we consider a model that is strictly more general, but we do
not perform inference on the information structure.5 Our emphasis on identification and
estimation under weak assumptions on information is similar to the spirit of Dickstein and
Morales (2016), who examine firms’ export decisions, and develop a method to estimate
payoff parameters without fully specifying firms’ information on their expected revenues.

We build on the work of Bergemann and Morris (2013, 2016). They define the equilib-
rium concept used in this article and describe its property of offering robust predictions for
games with incomplete information.6 Their characterization, developed in the context of
theoretical work, inspires our use of a similarly robust framework in empirical applications.
More recently, Bergemann, Brooks and Morris (2019) show how to perform counterfac-
tual analysis under a fixed latent information structure. We use their method to perform
some of the counterfactuals in Section 7, showing that it can help to reduce the width of
counterfactual prediction intervals in an applied context.

3Since our model is partially identified and has multiple equilibria, it does not yield a unique counterfactual
prediction. We follow Ciliberto and Tamer (2009) in reporting the average across markets and the maximum over
equilibrium selections of the probability of observing a market structure outcome.

4Galichon and Henry (2011) provide an alternative characterization of the sharp identified set in game-theoretic
models.

5The literature on discrete games faces a comparable trade-off between recovering a structural component and
flexibility with respect to equilibrium selection. Whereas some studies establish necessary conditions to identify
the equilibrium selection mechanism (Bajari, Hong and Ryan, 2010), other leave it unspecified (Tamer, 2003). Our
approach with respect to the information structure is comparable to the latter studies.

6Bergemann and Morris (2013) also discuss identification. While we highlight the relationship between BCE
identified sets and BNE identified sets in a discrete game setup, they discuss properties of the BCE identified set
for a particular parametrization of a game with a continuum of players, symmetric quadratic payoff functions, and
normally distributed uncertainty.
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Aradillas-Lopez and Tamer (2008) study identification for a less restrictive solution con-
cept, rationalizability. Our approach is neither more general nor more restrictive than theirs,
as they relax the assumption of equilibrium play, but work with restrictive assumptions on
information. Yang (2009) performs estimation of discrete games of complete information
under Nash equilibrium, using the non-sharp restrictions imposed by Correlated Equilib-
rium under complete information to simplify computation. The assumption of Correlated
Equilibrium under complete information is nested in our approach. Beyond discrete games,
which we consider in this article, Bergemann, Brooks and Morris (2017) characterize BCEs
of first-price auctions, and Syrgkanis, Tamer and Ziani (2018) use BCE to perform inference
in this class of models.

Our study of the effect of the presence of large malls on local supermarkets is related
to several articles that use structural models of market structure to examine the effect
of entry of large store formats - especially Wal-Mart in the US - on other retailers, such
as Jia (2008), Beresteanu, Ellickson and Misra (2010) and Arcidiacono et al. (2016). In a
companion article, Magnolfi and Roncoroni (2016), we study the role of political connections
in shaping market structure in the Italian supermarket industry.

The structure of the article is as follows. In the following section, we define a general
class of a discrete games. In Section 3 we discuss identification in this class of models,
and motivate the use of BCE in empirical games. In Section 4 we compare our robust
approach to models with more restrictive assumptions on information. In Section 5 we lay
out sufficient conditions for identification in a more restrictive class of discrete games, and
show evidence on the informativeness of our robust identified set. In Section 6 we develop
the empirical application. We present counterfactuals in Section 7. Section 8 concludes.

2 Model

We first outline the general class of discrete games that we consider in this article, and
then develop our leading example: a two-player entry game.

2.1 A General Empirical Discrete Game

We consider a class of static games, indexed by realizations of covariates x ∈ X. Let
N = {1, ..., n} be the finite set of players; each player i ∈ N chooses an action yi from
the finite set Yi. Both the actions’ space Y = ×i∈NYi and N are the same across different
games. We outline the other primitives of the game in the next subsections, describing
separately the payoff structure and the information structure that players face. The game
is common knowledge among players.
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2.1.1 Payoff Structure

Each player i is characterized by a payoff type εi ∈ Ei ⊆ R. Payoff types ε = (ε1, . . . , εn)
are distributed according to the cdf F (·; θε),7 parametrized by the finite dimensional vector
θε ∈ Θε: we also refer to this cdf as players’ prior. Payoffs to player i, denoted by πi, depend
on her payoff type and on action profiles. Observable covariates x and finite dimensional
payoff parameters θπ ∈ Θπ also affect payoffs. To sum up, the function πi describes player
i’s payoff for every pair (x, θπ):

πi(·;x, θπ) : Y × Ei → R.

A realization of x and a vector of parameters θ = (θπ, θε) ∈ Θ pin down a payoff structure.
Throughout the article we assume that ε is independent of x and discuss how to identify
parameters θ from data on actions and market observable characteristics x. Although our
description of payoff structures embeds some parametric restrictions to preserve the link
with the applied literature, most of these assumptions are not necessary for the general
discussion of robust identification in Section 3.8

Example 1. Consider a game of oligopoly entry such as the one proposed by Bresnahan
and Reiss (1991a). Players are firms that can either “Enter” or “Not enter” a market;
these actions correspond to yi = 1 and yi = 0, respectively. Economists observe the set of
potential entrants making entry decisions in a cross-section of markets, each characterized
by a realization of covariates x. Firms earn a profit of zero by not entering; when entering,
firm i’s profits are πi(y, εi;x, θπ) = Πi (y−i;x, θπ) + εi. The additive εi represents factors
that affect firms’ (variable) profits or fixed costs and are unobservable to an outside analyst.

2.1.2 Information Structure

Every player i knows the realization of her payoff type εi, as well as parameters θ
and covariates x. In addition, players receive a private random signal τxi , which may
be informative about the full vector of payoff types ε. For a game with covariates x an
information structure Sx specifies the set of signals a player may receive and the probability
of receiving them. Formally:

Sx =
(
T x,

{
P xτ |ε ∈ PTx : ε ∈ E

})
,

7In this model payoff types may be correlated across players; see also Xu (2014) and Wan and Xu (2015) for models
with correlated payoff types.

8See Lewbel and Tang (2015) for an example of non-parametric identification and estimation of the payoff structure
in models of games with incomplete information, and Tang (2010) for a model that relaxes the independence between
ε and x.
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where T x is the subset of a complete, separable metric space and represents the support
of the vector of signals τx = (τx1 , . . . , τxn ). The dimensionality of T x is unrestricted: signal
structures can be very complex objects. The probability kernel

{
P xτ |ε ∈ PTx : ε ∈ E

}
is

a subset of PTx , the set of all distributions over the space formed by T x and its Borel
σ−algebra. The kernel contains the probability distributions of signals τx conditional on
every realization of ε and allows for correlation of signals across players.

The sets of signals and the distribution of signal vectors, which need not be symmet-
ric across players, depend on x as the information structure may change with observable
characteristics of the payoff structure. We denote as S the array that includes information
structures corresponding to each realization of x, that is S = (Sx)x∈X , and define S as the
set of all possible information structures S:

S =
{
S : ∀x ∈ X, T x complete, separable metric space, P xτ |ε ∈ PTx

}
.

Example 2. (Example 1 continued) In Bresnahan and Reiss (1991a) firm i not only observes
its own payoff type εi, but also observes ε−i = (ε1, . . . , εi−1, εi+1, . . . , εn), the payoff types
of every other potential entrant. The information structure is hence complete information,
denoted by S: the signal space coincides with the type space, or T xi = E for every x ∈ X, and
players observe perfectly informative signals: P xτi|ε([τi = ε]) = 1 for all ε ∈ E , x ∈ X, i ∈ N .

2.1.3 Equilibrium

The parameter vector θ and the information structure S summarize the elements of the
game that are unknown to the econometrician; a pair (θ, S) pins down a game Γx (θ, S)
for every x. To specify the data generating process, linking primitives of the game to
outcomes, we need an equilibrium notion. We describe strategies for player i as functions
σi : Ei × T xi → PYi , which map payoff types and signals into distributions over actions, and
adopt as a solution concept for this game the standard notion of Bayes Nash Equilibrium.

Definition 1. (Bayes Nash Equilibrium) A strategy profile σ = (σ1, . . . , σn) is a Bayes
Nash Equilibrium (BNE) of the game Γx(θ, S) if for every i ∈ N, εi ∈ Ei and τi ∈ T xi we
have that, whenever for some yi ∈ Yi the corresponding σi (yi | εi, ti) > 0, then :

Eσ−i [πi (yi, y−i, εi;x, θπ) | εi, τi] ≥ Eσ−i
[
πi
(
y′i, y−i, εi;x, θπ

)
| εi, τi

]
, ∀ y′i ∈ Yi,

where the expectation of y−i is taken with respect to the distribution of equilibrium play
σ−i (y−i | εj , τj) = Πj 6=iσj (yj | εj , τj) .

The information structure of the game has important implications for Bayes Nash equi-
librium. When players receive informative signals on their opponents’ payoff types, their
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beliefs and hence their equilibrium behavior reflect this information. The more informative
the signals that player i receives about ε−i, the more we expect player i’s equilibrium be-
havior to vary with the realizations of ε−i. Conversely, players who receive uninformative
signals only base their equilibrium behavior on their prior beliefs. We denote as BNEx(θ, S)
the set of all BNE strategy profiles for the game Γx(θ, S).

In addition to BNE, we also introduce the notion of Bayes Correlated Equilibrium
(BCE), due to Bergemann and Morris (2013, 2016).

Definition 2. (BCE) A Bayes Correlated Equilibrium ν ∈ PY,E,T for the game Γx (θ, S) is
a probability measure ν over actions profiles, payoff types, and signals that is:

1. Consistent with the prior : for all ε ∈ E , τ ∈ T ,

∑
y∈Y

∫
[t≤τ ]

∫
[e≤ε]

ν (y, e, t) dtde =
∫

[t≤τ ]

∫
[e≤ε]

Pτ |ε(t)dF (e; θε) dt;

2. Incentive Compatible: for all i, εi, τi, yi such that ν (yi | εi, τi) > 0,

Eν [πi (yi, y−i, εi;x, θπ) | yi, εi, τi] ≥ Eν
[
πi
(
y′i, y−i, εi;x, θπ

)
| yi, εi, τi

]
, ∀y′i ∈ Yi,

where the expectation operator Eν [· | yi, εi, τi] is taken with respect to the conditional
equilibrium distribution ν (y−i, ε−i, τ−i | yi, εi, τi) .

BCE is a generalization of Correlated Equilibrium (Aumann 1974, 1987) to an incom-
plete information environment, under the assumptions that players have a common prior
on the distribution of payoff types and on the signal structure. Equilibrium is defined as a
probability measure ν over outcomes, signals and payoff types.9 This is in contrast to BNE,
which represents equilibrium behavior through strategy functions. Whereas the product
structure of BNE implies that correlation in players’ actions must correspond to underlying
correlation in payoffs or in signals, BCE may feature additional correlation in behavior.

The consistency property of BCE requires the equilibrium distribution ν (via its marginal
over payoff types) to reflect common knowledge of the underlying distribution of ε. The
incentive compatibility property may be illustrated with the usual mediator metaphor: play-
ers receive personalized (i.e. payoff type- and signal-dependent) recommendations from an
omniscient mediator, and in equilibrium it is optimal to follow these recommendations.

Example 3. (Example 1 continued) In the oligopoly entry game of complete information, if
a BNE strategy σ prescribes that firm i enters a market it must be that entry is optimal given

9Throughout the article we also use the symbol ν for conditional distributions derived from the joint measure.
For instance, in the incentive compatibility condition of Definition 2, to keep notation light, we use the symbol ν to
represent νy−i,ε−i,τ−i|yi,εi,τi

.

8



the firm’s knowledge of ε and equilibrium expectations, or Eσ [Πi (y−i;x, θπ) | ε] ≥ −εi.
BCEs are instead distributions over the set of actions and types (Y × E) whose marginal
over actions coincides with the common prior over payoff types, and such that whenever
entry is recommended with a positive probability, or ν (yi = 1 | ε) > 0, then it must be
Eν [Πi (y−i, εi;x, θπ) | yi = 1, ε] ≥ −εi for all i, ε. In this case the entry decision must be
optimal conditional on the mediator’s recommendation of entering the market.

2.1.4 Alternative Sets of Information Structures

We conclude the description of the model with a remark on its generality. The set of
information structures S embeds the assumption that players know at least their own payoff
type and everything that is known to the econometrician. We adopt this restriction because
it is plausible in the application we consider and strikes a balance between maintaining weak
assumptions and providing identification power in practice.

Dropping the restriction that players know their own payoffs and that covariates are
common knowledge results in a larger, more general set of admissible information struc-
tures.10 Conversely we may assume that players have at least signals with a certain degree
of informativeness about other players’ payoff types: this would result in a smaller set of
information structures than the one we consider. Our identification results in Section 3 can
be adapted to both of these approaches; we leave a more formal discussion of these results
to Appendix G in the Supplemental Materials online.

2.2 Illustration: the Two-player Entry Game

We introduce here a model that is both our leading example and is closely related to
our application in Section 6: a two-player entry game. This game specializes the market
entry model of Example 1 to the case of two firms, so that N = {1, 2}. Outcomes are either
a duopoly when (1, 1) is realized, or monopolies when either (1, 0) or (0, 1) are realized, or
a market with no entrants with (0, 0). In line with previous literature (e.g. Bresnahan and
Reiss 1991a; Berry, 1992; Tamer, 2003) we specify payoffs as linear functions of covariates:

πi(y, εi;x, θπ) = yi
(
xTi βi + ∆−iy−i + εi

)
,

so that the payoff parameter vector is θπ = (βi,∆i)i=1,2. The parameter ∆i, called compet-
itive effect, quantifies how entry by firm i affects firm −i’s payoffs. Payoffs are:

10For instance, Aradillas-Lopez (2010) describes semi-parametric inference procedures for models in which the part
of players’ payoffs that is unobserved to the econometrician is private information, and players may be imperfectly
informed about the part of opponents’ payoffs that is observable to the econometrician.
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Player 1 / Player 2: 0 1

0 (0, 0)
(
0, xT2 β2 + ε2

)
1

(
xT1 β1 + ε1, 0

) (
xT1 β1 + ∆2 + ε1,
xT2 β2 + ∆1 + ε2

)

A parametric assumption on the joint distribution of payoff types (e.g. iid Uniform)
completes the definition of the payoff structure. In what follows we also use a simplified
version of this payoff structure: the one-parameter entry game. In this two-player entry
game there are no covariates, competitive effects are equal across firms, so that ∆1 = ∆2 =
∆, and payoff types are iid Uniform over the interval [−1, 1].

2.2.1 Information Structures and Bayes Nash Equilibrium

In addition to the complete information structure S̄ of Example 2, many other salient
information structures fit our framework: we describe some of these in the context of the
two-player entry game. For instance, in the environment of minimal information, denoted
by S, payoff types are fully private information. This is because in this information structure
signals are uninformative: T xi = Ei for all x ∈ X, i ∈ N and P xτi|ε([τi = εi]) = 1 for all
ε = (εi, ε−i) ∈ E , x ∈ X, i ∈ N .

Both the environments of minimal information and complete information are symmetric
across players. An alternative information structure still contained in the set of information
structures S is privileged information SP , in which only one player knows the type of her
opponent.11 In this case signal spaces for all players are T xi = E ; for the informed player
i, signals τxi are distributed according to P xτi|ε([τi = ε]) = 1 for all ε ∈ E , x ∈ X, whereas
for the uninformed player j signals τxj are distributed according to P xτj |ε = P xτj for some
distribution P xτj .

Our model also accommodates the class of flexible information structures proposed in
Grieco (2014). To recast his model in terms of our definitions of information and payoff
structures, decompose payoff types in two additive parts, or εi = η1

i + η2
i so that private

signals are τi =
(
η1
−i, η

1
i

)
. The vector

(
η1
−i, η

1
i

)
is then the publicly observed component of

the payoff type whereas η2
i is a privately known component, independent across players.12

Definition 1 specifies the condition for a strategy profile to be a BNE for a game with
information structure S. As we vary the information structure, equilibria may vary consid-
erably. We illustrate this point in Figure 1, which depicts equilibrium outcomes in the space
of payoff types for the one-parameter entry game with ∆ = −1/2. In Panel (A) we represent
equilibrium outcomes for a game of complete information such as the one in Bresnahan and

11This information structure resembles the one in the proprietary information model of common value auctions
(Engelbrecht-Wiggans, Milgrom and Weber, 1983).

12See Appendix E in Supplementary Materials online for more discussion of this example.
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Reiss (1991a) and Tamer (2003). For every realization of ε, common knowledge for players,
there are one or two equilibrium outcomes. In Panel (B), equilibrium behavior takes the
form of threshold strategies: each player does yi = 1 iff εi ≥ 1/5. In Panel (C) the privileged
information structures results in equilibria where player 1 knows ε and can condition her
action on the realizations of both ε1 and ε2. Player 2 only knows ε2 and follows a threshold
strategy. There is a continuum of such equilibria with thresholds ε∗2 ∈ [1/8, 1/4] .

[Figure 1 about here.]

2.2.2 Bayes Correlated Equilibrium

We further illustrate the properties of BCE for the one-parameter entry game with
∆ = −1/2 and minimal information S = S. In this case BCE distributions are in the set
P{0,1}2×[−1,1]2 since in the minimal information structure signals are uninformative.

For each e ∈ [−1, 1]2, BCE distributions in this game must satisfy

∑
y∈{0,1}2

∫
[e≤ε]

ν (y, e) de =
(
e1 + 1

2

)(
e2 + 1

2

)

for consistency with the prior over payoff types. Moreover, in any BCE ν if player i
receives the recommendation to enter with positive probability upon observing εi, then
ν (y−i = 1 | yi = 1, εi) ≤ 2εi. Conversely player i will stay out if ν (y−i = 1 | yi = 0, εi) ≥ 2εi.
Many BCEs satisfy these constraints; consider for instance the distribution ν ′:

ε1/ε2: ≤ 1/5 > 1/5

≤ 1/5 ν′ (0, 0, ε) = 9
25 ν′ (0, 1, ε) = 6

25

> 1/5 ν′ (1, 0, ε) = 6
25 ν′ (1, 1, ε) = 4

25

Checking consistency is immediate, as this BCE distribution prescribes pure strategies
for every vector of payoff types ε. Incentive compatibility is also satisfied since

ν ′ (y−i = 1 | yi = 1, εi) = ν ′ (y−i = 1 | yi = 0, εi) = 2/5.

As another example, consider ν ′′:

ε1/ε2: ≤ 1/8 > 1/8

≤ 0 ν′′ (0, 0, ε) = 9
32 ν′′ (0, 1, ε) = 7

32

> 0, ≤ 1/2 ν′′ (1, 0, ε) = 9
64 ν′′ (0, 1, ε) = 7

64

> 1/2 ν′′ (1, 0, ε) = 9
64 ν′′ (1, 1, ε) = 7

64
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The behavior induced by ν ′ and ν ′′ is identical to the behavior described in Panel (B)
and Panel (C) of Figure 1, respectively, which represent outcomes of BNE play in the games
of incomplete information and privileged information. The correspondence between BCE
behavior for the game with S and BNEs for different, possibly more informative, information
structures anticipates a result we present in the next section: the set of outcomes of BNE
play for any information structure can be represented as the set of outcomes of BCE play
in the minimal information game. Our identification strategy builds on this result.

3 Identification

3.1 BNE Predictions and Identified Set

After describing a general class of games in the previous section, we investigate identifi-
cation of payoffs when the econometrician observes cross-sectional data on outcomes y and
covariates x. This setup is summarized in Assumption 1 below.

Assumption 1. (Observables) The econometrician observes the distribution Px,y of the
random vector (x, y). This joint distribution induces a set of conditional probability measures

{
Py|x ∈ PY : x ∈ X

}
where PY is the set of probability distributions over the finite set Y.

For a game in the class described in Section 2 equilibrium strategies σ ∈ BNEx(θ, S)
result in predictions on observable behavior:

Definition 3. (BNE Prediction) A BNE prediction for an equilibrium σ of the game
Γx(θ, S) is a distribution over outcomes qσ such that

qσ (y) =
∫
E

∫
T

(∏
i∈N

σi (εi, τi) (yi)
)

dPτ |εdF, ∀y ∈ Y.

Since the set BNEx(θ, S) may not be a singleton, i.e. the game Γx(θ, S) may have multiple
equilibria, and we want to be agnostic about equilibrium selection, implications of equi-
librium are summarized by sets of predictions. When data are generated by an arbitrary
equilibrium selection mechanism, defined as a probability distribution over the set of equi-
libria BNEx(θ, S), the set of predictions is convexified as in Beresteanu, Molchanov and
Molinari (2011).13 The prediction correspondence QBNE

θ,S : X ⇒ PY describes the set of

13Although the assumption that equilibrium selection rules are representable as probability distribution is not fully
general (Epstein, Kaido and Seo, 2016), it is standard in the applied literature.
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distributions over actions that correspond to BNE predictions in the game Γx (θ, S), and is
defined as

QBNE
θ,S (x) = co [{q ∈ PY : ∃ σ ∈ BNEx(θ, S) such that q = qσ}] ,

where the operator co[·] takes the convex hull of a set.

Example 4. Consider the one-parameter entry game with ∆ = −1/2 and complete in-
formation S = S of Figure 1, Panel (A). There are three BNE strategies for this game,
corresponding to the two pure and one mixed-strategy Nash equilibria, and the correspond-
ing set of predictions (allowing for an arbitrary equilibrium selection) is:

QBNE
∆=−1/2,S = co

[{(1
4 ,

3
8 ,

5
16 ,

1
16

)
,

(1
4 ,

5
16 ,

3
8 ,

1
16

)
,

(1
4 ,

11
32 ,

11
32 ,

1
16

)}]
,

where vectors qσ list the probabilities of outcomes (0, 0) , (0, 1), (1, 0) and (1, 1).

3.1.1 Data Generating Process and Identified Set

We assume that at least one equilibrium in BNEx(θ0, S0) exists for every x ∈ X, and
the data are generated by BNE play in games Γx (θ0, S0) characterized by a true payoff
and information structure (θ0, S0). We also allow for Γx (θ0, S0) to have multiple equilibria,
and assume that data are generated by an arbitrary equilibrium selection distribution. The
properties of the data generating process are summarized by Assumption 2.

Assumption 2. (Data generating process) For all x ∈ X, the set BNEx(θ0, S0) is assumed
to be non-empty and the outcomes y are generated by BNE play of the game Γx (θ0, S0) , so
that Py|x ∈ QBNE

θ0,S0
(x) .

Given this link between game-theoretic model and observables, we want to recover θ0

but we do not know (nor attempt to recover) the true information structure S0. Under
Assumptions 1 and 2, the sharp identified set of parameters with weak assumptions on
information is defined as:

ΘBNE
I (S) =

{
θ ∈ Θ : ∃ S ∈ S such that Py|x ∈ QBNEθ,S (x) , Px − a.s.

}
. (3.1)

The set ΘBNE
I (S) captures all the information on parameters that can be obtained with the

only restriction that the true information structure S0 belongs to the set S. All parameters
θ ∈ ΘBNE

I (S) are observationally equivalent, as for each of them there exists an information
structure S ∈ S that generates a correspondence QBNE

θ,S rationalizing the observables.
We highlight the generality of this construction along two dimensions. First, for a given

realization of x, we allow for general spaces of signals T x that may contain rich structures of

13



non-payoff-relevant signals and allow for arbitrary correlation in players’ actions. Second,
the restriction S ∈ S allows the information structure Sx to vary in an unrestricted way
across different realizations of x. However, S also embeds the important restriction that
players observe at least their payoff type.

3.1.2 Assumptions on Information and Identification

Our strategy, centered on the identification of ΘBNE
I (S), is in contrast with the prevalent

approach in the literature on estimation of games, based instead on performing identification
after restricting the information structure for the data generating process. This is done by
choosing an information structure S′ ∈ S such that the set of equilibrium predictions QBNE

θ,S′

is analytically tractable, and by focusing on the set:

ΘBNE
I

(
S′
)

=
{
θ ∈ Θ : Py|x ∈ QBNE

θ,S′ (x) , Px − a.s.
}
.

As examples of this approach, seminal articles such as Bresnahan and Reiss (1991a), Berry
(1992) and Tamer (2003) assume complete information, or S′ = S. Conversely, other authors
such as Sweeting (2009), Bajari et al. (2010), and de Paula and Tang (2012) restrict S′ to
be the minimal information structure S, whereby signals τx are uninformative.

Example 5. (Example 4 continued) Suppose we observe data generated by the one-
parameter entry game with ∆0 = −1/2 and S0 = S. If we perform identification of the
competitive effect ∆ under the true restriction S′ = S, the probability Py(1, 1) = 1/16
(which corresponds to the frequency of duopolies in the data) identifies

ΘBNE
I

(
S
)

=
{

∆ : Pr {εi > −∆}2 = Py(1, 1)
}

= {−1/2} .

Restrictions on information can have important consequences. Ideally, the restriction
imposed on the information structure S′ is true, that is S′ = S0 as in Example 5. Then

ΘBNE
I

(
S′
)

= ΘBNE
I (S0) 6= ∅.

In typical applications there is, however, little evidence on the nature of S0. If the restriction
maintained on information is not true, or S0 6= S′, the model is misspecified and one of the
following three scenarios occurs. First, misspecification may have benign consequences and
the true parameter θ0 may still belong to the identified set ΘBNE

I (S′). A second case is
when misspecification of the information structure results in a nonempty identified set that
however does not contain the true parameter, or θ0 /∈ ΘBNE

I (S′) . Finally, misspecification
may result in the is falsification of the model, that is ΘBNE

I (S′) = ∅. In the latter two of these
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three scenarios, misspecification of the information structure may generate inconsistent
estimates.

3.2 BCE and Robust Identification

Adoption of Bayes Correlated Equilibrium as solution concept solves the problem of
characterizing the identified set ΘBNE

I (S). For this purpose we focus on BCE distributions
of games with the minimal information structure S. Under this information structure
BCE distributions for the game Γx (θ, S) are probability measures ν ∈ PY,E over actions
profiles and types that are consistent with the prior and incentive compatible in the sense
of Definition 2. To each BCE distribution corresponds a prediction on observed behavior,
which can be obtained as the marginal with respect to players’ actions.

Definition 4. (BCE Prediction) The BCE ν induces a BCE prediction in the form of a
distribution over outcomes

qν (y) =
∫
E
ν (y, ε) dε.

The observable implications of BCE behavior in a structure characterized by (θ, S) are
described by the prediction correspondence

QBCEθ (x) = {q ∈ PY : ∃ ν ∈ BCEx(θ) such that q = qν} .

Before proceeding with the identification results, we highlight here the assumptions on equi-
librium selection embedded in our approach. Assumption 2 and our definition of QBNEθ,S (x)
restricts the data to be generated by BNE play and an arbitrary equilibrium selection dis-
tribution over BNEx(θ0, S0). This assumption, allowing for all distributions (i.e. convex
combinations) over equilibria, results in the convexification of the set QBNEθ,S (x). For the
set of BCE predictions QBCE

θ (x) convexification is not needed: because the set BCEx(θ)
is convex, any convex combination of BCE predictions is also a BCE prediction. Hence,
QBCE
θ (x) captures not only the equilibrium predictions generated by a unique BCE, but

also the predictions corresponding to any equilibrium selection.

3.2.1 Robust Prediction

Bergemann and Morris (2013) establish the robust prediction property of BCE. In our
setup, this property translates into the equivalence, for any given θ, between the BCE
predictions QBCE

θ and the union of BNE equilibrium predictions QBNE
θ,S over all S ∈ S.

Lemma 1. For all θ ∈ Θ and x ∈ X,

1. If q ∈ QBCE
θ (x) , then q ∈ QBNE

θ,S (x) for some S ∈ S.
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2. Conversely, for all S ∈ S, QBNE
θ,S (x) ⊆ QBCE

θ (x) .

Part 1 of the lemma states that, given a BCE, we can generate corresponding BNE
predictions. This is done by constructing an information structure where signals correspond
to BCE mediator recommendations. Conversely, in a BNE players receive signals on their
opponents’ payoffs and an equilibrium is selected. Adopting the mediator metaphor of
BCE, for every payoff type and signal realization, the mediator suggests play according to
the BNE strategies selected by the equilibrium selection rule. Hence, we can construct a
BCE where each player i receives the suggestion to play action yi if and only if realized
payoff types and the selection rule are such that (yi, y−i) is a BNE.

Example 6. (Example 4 continued) Figure 2 depicts the set of BCE outcomes for the case
with ∆0 = −1/2. Panel (A) shows that BCE imposes restrictions on equilibrium behavior
that are weaker than those imposed by BNE for a specific information structure: the sets
of BNE predictions are all contained in the set of BCE predictions, as stated in Lemma 1.
Panel (B) illustrates instead that BCE predictions are still a relatively small subset of all
possible outcomes (represented by the simplex).

[Figure 2 about here.]

3.2.2 Robust Identification

We are most interested in the implications of adopting BCE for identification. Under
the assumption of BCE, the identified set of parameters in this class of games is:

ΘBCE
I =

{
θ ∈ Θ : Py|x ∈ QBCE

θ (x) Px − a.s.
}
. (3.2)

Building on the robust prediction property of BCE, we establish the following proposition:

Proposition 1. (Robust identification) Let Assumptions 1 and 2 hold. Then

ΘBCE
I = ΘBNE

I (S) .

This implies that the identified set under BCE contains the true parameter value, θ0 ∈ ΘBCE
I .

Proof. See Appendix B.

Proposition 1 translates the robust prediction insight, due to Bergemann and Morris
(2013, 2016) and summarized in Lemma 1, into a robust identification result and is the
foundation for the use of BCE for identification. Adopting BCE enables us to characterize
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the set of parameters consistent with equilibrium behavior and a common prior, with weak
assumptions on information. We do not use BCE as an alternative equilibrium assumption
on the data generating process: our Assumption 2 maintains that data are generated by
BNE play. Instead, in light of Proposition 1, the BCE identified set ΘBCE

I is useful to relax
assumptions on information and recover the set ΘBNE

I (S).
There is an important difference between the Lemma 1 and Proposition 1. In a robust

prediction perspective, the set of BCE predictions contains predictions corresponding to
all BNEs for games with information structures S ∈ S. However, the robust identification
perspective of Proposition 1 does not imply that for all S ∈ S there exists some θ ∈ ΘBCE

I

that is compatible with the data and with S. Instead, the set ΘBCE
I contains only those

parameters for which there exists an information structure and a corresponding BNE that
generate predictions matching the data. If no such parameter values exist for an information
structure S′ ∈ S, then S′ is falsified.

3.3 Illustration: Assumptions on Information and BCE Identification

We consider again identification in the one-parameter entry game, where the econometri-
cian observes data generated by the payoff structure ∆0 = −1/2, and wants to identify the
competitive effect ∆ ∈ [−1, 0] . As anticipated in section 3.1.2, restrictive assumptions on
information have substantial impact on identification. For illustrative purposes, we consider
the non-sharp identified set:14

Θ̃BNE
I

(
S ′
)

=
{

∆ ∈ Θ | ∃ S ∈ S ′, ∃ q ∈ QBNE
θ,S such that q([y = (1, 1)]) = Py(1, 1)

}
,

obtained by using only the observable probability of the outcome (1, 1) . Table 1 summarizes
the identified set Θ̃BNE

I (S ′) under several combinations of S ′ and S0.

[Table 1 about here.]

Table 1 shows that overstating the amount of information available to players leads to
an identified parameter that is lower, in absolute value, than the true parameter value.15

This is because the probability that both players enter, as predicted by the model, depends
on ∆ and on players’ degree of certainty that their competitor also enters. In the model
with complete information players know that the equilibrium outcome is (1, 1) whenever
a duopoly is realized. Hence this model predicts, for a given parameter value, the lowest

14We use in this example the non-sharp identified set based on one moment of Py – as opposed to the sharp
identified set ΘBNE

I (S′) – to build intuition on the direction of the misspecification bias: for this very parsimonious
parametrization, the full set of moments always falsifies misspecified models.

15This type of attenuation bias has already been recognized in the literature by Bergemann and Morris (2013), and
in the context of dynamic games by Aguirregabiria and Magesan (2019).
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Py(1, 1) across all information structures. On the other hand, a model with some level of
incomplete information predicts a higher frequency of duopolies, as players are more likely
to enter because of their uncertainty on the presence of a competitor.16

For models with richer spaces of actions and parameters it is harder to sign the direction
of the bias resulting from misspecification of the information structure. Nevertheless, the
example conveys the idea that misspecification of the information structure may result in
significant bias: estimation of ΘBCE

I = ΘBNE
I (S) avoids this risk. Corresponding to the

robust identification intuition in our Proposition 1, the identified set of parameters under
BCE behavior ΘBCE

I always contains ∆0 = −1/2. However in this example BCE identified
sets are large relative to the space of parameters. This highlights a potential trade off
when using weak assumptions on information: robust identified sets ΘBCE

I avoid bias from
misspecified assumptions on information, but may be wide. We return to the issue of the
informativeness of ΘBCE

I - and of what variation in the data may help to shrink the identified
set - in Section 5, after having introduced in Section 4 computational and inferential tools
that make our approach applicable.

4 Computation and Inference

4.1 Support Function Characterization of the Identified Set

We argued in Proposition 1 that ΘBCE
I coincides with the set of all parameters compat-

ible with the observables and with the class of information structures S. To estimate and
compute ΘBCE

I we need however a more practical characterization, as it is not obvious how
to compute the set as defined in equation (3.2).

We already noticed that, for every x ∈ X, the set of BCE predictions QBCE
θ (x) is convex:

this property follows from the definition of BCE. Hence, we can represent QBCE
θ (x) through

its support function as in Beresteanu, Molchanov and Molinari (2011).17 Let B denote the
closed unit ball centered at zero in R|Y | and let h

(
·;QBCE

θ (x)
)

: B → R denote the support
function of the set QBCE

θ (x) :

h
(
b;QBCE

θ (x)
)

= sup
q∈QBCE

θ
(x)
bT q.

16Attenuation bias is induced from misspecified complete information models even if we use for identification
moments other than Py(1, 1). For instance, if data are generated by a model with some incomplete information and
we use a complete information model to estimate payoffs, the identified value of ∆ is attenuated also when using
Py(0, 1) or Py(1, 0) for identification.

17Because BCE yields a set of predictions that is already convex, we do not need to use Aumann expectations as
in Beresteanu, Molchanov and Molinari (2011). Appendix F in Supplementary Materials describes how our charac-
terization of the identified set maps into their framework.
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The support function provides a representation of the set of predictions:

q ∈ QBCE
θ (x)⇐⇒ bT q ≤ h

(
b;QBCE

θ (x)
)
∀ b ∈ B.

We have then a new characterization of the identified set:

ΘBCE
I =

{
θ ∈ Θ : bTPy|x ≤ h

(
b;QBCE

θ (x)
)
∀ b ∈ B, Px − a.s.

}
=

{
θ ∈ Θ : max

b∈B
min

q∈QBCE
θ

(x)

[
bTPy|x − bT q

]
= 0, Px − a.s.

}
. (4.1)

The computation of this object can be further simplified: because the inner program is a
linear constrained minimization, we can consider its dual maximization program. This step
makes it is possible to check whether θ belongs to the identified set ΘBCE

I by solving a single
constrained maximization problem. Appendix A provides discusses further computational
details.

4.2 Inference

Suppose that we observe an iid sample of players’ choices and covariates {yj , xj}nj=1 . To
apply existing inferential methods, we also assume that the set of covariates X is discrete.18

We adopt an extremum estimation approach to perform inference. We redefine the identified
set characterized in (4.1) as the set of minimizers of a non-negative criterion function G,19

or
ΘBCE
I = {θ ∈ Θ : G (θ) = 0} ,

where
G (θ) =

∫
X

sup
b∈B

[
bTPy|x − h

(
b;QBCE

θ (x)
)]

dPx.

18Although several recent methods for inference in partially identified models such as Andrews and Shi (2013) do
not require discrete covariates, they prove to be too computationally intensive for the estimation of our model. Other
recent methods, such as Andrews and Soares (2010), Bugni (2010), Armstrong and Chan (2016), Kaido, Molinari and
Stoye (2019) are instead designed for models that generate a finite number of (conditional) moment inequalities, and
hence do not apply to our setup. For a recent overview of methods in this area, see Canay and Shaikh (2017).

19Since the set of predictions QBCE
θ (x) is a subset of the (|Y | − 1)-dimensional simplex, in our application it is

sufficient to adopt the equivalent criterion function:

G̃ (θ) =
∫
X

sup
b̃∈B|Y |−1

[
b̃T P̃y|x − h

(
b̃; Q̃BCE

θ (x)
)]

dPx,

where B|Y |−1 is the (|Y |−1)-dimensional closed ball, P̃y|x is defined as the first |Y |−1 elements of Py|x and Q̃BCE
θ (x)

is the set of the first |Y | − 1 elements of BCE predictions. With an argument analogous to Theorem B.1 in the online
appendix of Beresteanu, Molchanov and Molinari (2011) it is immediate to establish that

{
θ ∈ Θ : G̃ (θ) = 0

}
=

{θ ∈ Θ : G (θ) = 0} .
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The sample analogue of the population criterion function is:

Gn (θ) = 1
n

n∑
j=1

sup
b∈B

[
bT P̂y|xj − h

(
b;QBCE

θ (x̄j)
)]
,

where P̂y|xj is the empirical frequency of strategy profile y in observations with covariates
x = xj . The population criterion function inherits a smoothness property from the continu-
ity of the payoff function and the upper hemi-continuity of the equilibrium correspondence,
so that we can obtain a consistent estimator of the identified set as in Chernozhukov, Hong
and Tamer (2007):

Proposition 2. (Consistent estimator) Assume that:

1. The function θπ → πi (y, εi;x, θπ) is continuous for all i, x, y and εi, the quantity

|πi (yi, y−i, εi;x, θπ)− πi
(
y′i, y−i, εi;x, θπ

)
|

is bounded above, and the function θε → F (·; θε) is continuous for all ε;

2. The parameter space Θ is compact;

3. The following uniform convergence condition holds: supθ∈Θ
√
n|Gn (θ) − G (θ) | =

Op (1) ;

4. For all θ ∈ ΘI we have nGn = Op (1).

Then, the set Θ̂I = {θ ∈ Θ : nGn (θ) ≤ an} is a consistent estimator of ΘBCE
I for an →∞

and an
n →∞.

Proof. See Appendix B.

Conditions 1. and 2. of the proposition are necessary to establish that the population
criterion function G is lower semicontinuous over a compact domain. Condition 3. is
similar to the uniform convergence conditions usually maintained in consistency proofs for
estimators in point identified models (e.g. Newey and McFadden, 1994), and ensures that
Gn gets uniformly (i.e. over the whole Θ) closer to its population equivalent G as n gets
larger. Additionally, since by definition of identified set G (θ) = 0 if and only if θ ∈ ΘBCE

I ,

condition 4. serves to guarantee that Gn is close to zero for θ ∈ ΘI at a faster rate than
specified in condition 3.

The previous proposition shows that our setup satisfies condition C.1 in Chernozhukov,
Hong and Tamer (2007), and we proceed to apply their methods. As in Ciliberto and
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Tamer (2009) we perform inference by constructing confidence regions Cn for the identified
parameters θ ∈ ΘBCE

I . The regions Cn have the coverage property:

lim inf
n→∞

P {θ ∈ Cn} ≥ 1− α, ∀θ ∈ ΘBCE
I .

Appendix C in Supplementary Materials describes the details of how we compute Cn.

5 Identifying Power of BCE

We address in this section the issue of the informativeness of ΘBCE
I , the identified set

under BCE behavior. When relaxing identifying restrictions there is, in principle, a trade-
off between robustness and informativeness of identified sets. This is true not only for
assumptions on information, the focus of this article, but more generally. For instance, the
assumption that play is according to BNE or BCE could be weakened to non-equilibrium
concepts such as k-level rationality (Aradillas-Lopez and Tamer, 2008). We consider in this
example the two-parameter entry game, a variant of the two-player entry game described
in Section 2.2. In this game there are no covariates, but competitive effects ∆i are firm-
specific, and payoff types are iid standard Normal, or εi ∼ N (0, 1) . In Figure 3 we explore
how assumptions on equilibrium and information affect the identification of competition
effects in this game. Each panel represents identified sets under different assumptions on
players’ behavior for data generated by Nash equilibrium play under complete information.
Our method is a compromise between the goals of robustness and informativeness. On
the one hand, the identified set ΘBCE

I in red (Panels C, D) is much larger than the set
obtained under the (correct) assumption of Nash Equilibrium with complete information
(in yellow, Panel D). On the other hand, identified sets obtained under weaker assumptions
on behavior, such as level-1 and level-2 rationality (Panels A, B) are hardly informative.20

[Figure 3 about here.]

5.1 The Role of Covariates: Point and Set Identification

The previous example shows that the assumption of Bayes Correlated Equilibrium re-
sults in tighter identification than non-equilibrium restrictions do. The figure also shows
that ΘBCE

I may be much larger than ΘBNE
I

(
S
)

when S0, the information structure in

20For this model, identified sets for competition effects are unbounded under level-1 rationality even if we allow
for the presence of observable covariates x in payoffs. We also note that the identified set under rationalizability
(corresponding to level-2 rationality for this model) is not a superset of ΘBCE

I : although this equilibrium assumption
relaxes the assumption of equilibrium play, it is only defined for a complete information environment.
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the data generating process, coincides with S. In turn, this may raise concerns on the
informativeness of ΘBCE

I .
To shrink the identified set ΘBCE

I we introduce a key source of identifying power: vari-
ation in exogenous x. In particular, full-support variation of covariates player-specific co-
variates yields point identification of payoff parameters θπ under the assumption of BCE,
as it does under more restrictive informational assumptions. The full-support assumption
ensures the existence of values of covariates for which players have a dominant strategy
for almost all payoff types: identification of payoffs can then proceed as in single-agent
discrete choice models. This identification strategy was first proposed by Tamer (2003) for
games of complete information under the assumption of pure Nash Equilibrium play, but it
still applies without restrictions on information and equilibrium selection.21 In fact, BCE
guarantees that players have equilibrium beliefs and do not play dominated actions: this is
sufficient for point identification of θπ.22 A formal statement of this intuition in a simple
setting (two-player entry games with linear index payoffs) is in Proposition 3, part 1. in
Appendix B.

5.1.1 Identification with Finite Support: the Price of Robustness

Although we do not expect the large support assumptions to always hold in applications,
the identification at infinity argument points to a source of variation that helps identifica-
tion also in the case of covariates with finite support. To illustrate the identifying power of
BCE in the latter case, we compute identified sets for a two-player entry game with linear
index payoffs. We present in Table 2 projections of ΘBCE

I for three different data generating
processes, characterized by information structures S0 = S̄, S0 = S, and S0 = SP respec-
tively,23 and for two examples of uniformly distributed covariates with finite support, X ′

and X ′′ . The set of covariates X ′ = X
′
1×X

′
2×X

′
C is characterized by X ′i = X

′
C = {−1, 0, 1};

the set X ′′ = X
′′
1 ×X

′′
2 ×X

′′
C is instead characterized by player-specific X ′′i = {−3, 0, 3} for

i = 1, 2 and X ′′C = X
′
C .

[Table 2 about here.]
21Several other articles establish point identification of players’ utility functions under at infinity variation in game-

theoretic models, for different sets of assumptions on information, equilibrium selection and parametric restrictions
on primitives. See for instance Bajari, Hong and Ryan (2010), Grieco (2014) and Kline (2015). Notice that the
identification strategy proposed in Kline (2016) , which does not rely on large support assumptions but requires the
existence of unique potential outcomes for some realizations of the unobservables, in general does not apply to our
model.

22Kline (2015) establishes sufficiency of level-2 rationality for point identification of payoffs in complete information
games. Though we argue that BCE is sufficient for point identification of payoffs in incomplete information games,
weaker equilibrium notions may suffice.

23We also select an equilibrium for those DGPs characterized by games with multiple equilibria. In particular,
for S0 = S we select with equal probability one of the two pure-strategy equilibria, and for S0 = SP we select the
equilibrium that maximizes the probability of entry by player 2. Different equilibria in the DGP result in distinct
identified sets, but do not change qualitatively the informativeness of our identified sets.
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Results indicate that discrete sets of covariates have identifying power in this model. The
size of the identified set, as measured by projections for each parameter, shrinks considerably
as we increase variation in covariates. In particular, the projection of the identified sets along
∆1 and ∆2 shrinks by a factor of about 5 to 7 (depending on the assumptions on the data
generating process) when the support of covariates gets larger from X

′ to X ′′ .

5.2 Identification of Correlation among Payoff Types

Whereas full-support variation of covariates generates point identification of payoff pa-
rameters θπ, we do not have a corresponding point identification result for the payoff type
parameters θε. Identification of θε is challenging because in BCE correlation in actions may
arise from information (i.e. correlated signals). For instance, if signals may induce highly
correlated play despite low correlation in payoff types, it is hard to identify the bounds
for the correlation in payoff types. There are however limits to the extent to which this
can occur: players know their payoff type, and BCE play has to be consistent with incen-
tive compatibility and with a common prior. BCE distributions that systematically induce
duopolies that are not profitable (based on players’ incorrect beliefs that the opponent
would stay out) are unlikely to satisfy incentive compatibility.

In this subsection we further investigate the identifying power of BCE with respect to
θε. The general characterization of the sharp identified set ΘBCE

I in Section 4 uses an
infinite number of moment inequalities to (set) identify θε so that the mapping between
data and parameters is not transparent. To get concrete intuition on how the parameter
θε is identified, we assume that θπ is point identified and we construct non-sharp bounds
using a few moment inequalities and a simple implication of equilibrium behavior. Any
BCE distribution gives zero probability to dominated actions: any positive weight on a
dominated action for player i would violate her incentive compatibility constraint.

For each value of θε and x this observation implies thus a lower bound LBy (θε;x) on
the probability of observing any outcome y ∈ Y , constructed as the integral of the cdf of
ε over the region of E where y is a dominant outcome (i.e. yi is dominant for every player
i). Similarly we construct an upper bound UBy (θε;x) for the probability of each outcome
y by integrating over all areas of E where y is a non dominated outcome, that is for all
players i no other y′i 6= yi is dominant. We can then construct bounds for θε. For each
outcome y ∈ Y we define a set BD (y, x) which includes values of θε such that Py|x falls
within the bounds LBy (θε;x) and UBy (θε;x). Finally, the sets BD (y) = ∩x∈XBD (y, x)
summarize the identification power of the bounds constructed using outcome y. Variation
in x naturally shrinks the sets BD (y).24

24The construction of the bounds outlined above is described more formally in Proposition 3, Part 2 in Appendix
B for a two-player entry game with point identified payoff parameters θπ .
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In Figure 4 we show the bounds on outcome probabilities LB and UB, and the sets
BD of parameters θε compatible with these bounds for a two-player entry game with point
identified payoffs. For this figure we assume that payoff types are jointly Normal so that
we can focus on the identification of the parameter θε = ρ that represents the correlation of
players’ payoff types. Panel (A) depicts bounds on outcome probabilities when all covariates
are zero. Although the bounds are wide, encompassing a range of realizations of Py|x, they
are non-trivial. As the correlation in ρ increases, players are more likely to choose the same
action: bounds on the probabilities of outcomes (0, 0) and (1, 1) increase with ρ, whereas
bounds on outcomes (0, 1) and (1, 0) decrease with ρ.

[Figure 4 about here.]

Panel (B) depicts sets ∩y∈YBD (y, x) of parameters ρ that generate bounds compatible
with the data for a given value of x. To understand what variation in covariates is most
helpful in identifying ρ we plot these sets as vertical segments for different values of x. In
this example, where the upper bound of BD is sharp,25 values of covariates that generate
the largest dispersion in payoffs across players are the most informative about the lower
bound of BD. This is because if the observed level of correlation in actions is high even if
the deterministic part of players’ payoffs is very different, then the value of correlation in
payoff types cannot be too low. Symmetrically, values of covariates that generate identical
payoffs are most informative about the upper bound on the correlation parameter ρ.

Panel (C) shows bounds on parameters implied by the inequalities LB and UB for
different values of correlation ρ0 in the data generating process. The upper bound on ρ in
∩y∈YBD (y) is sharp (it coincides with ρ0), but only the moment P(1,1) generates a non-
trivial lower bound for most values of ρ0. This is not surprising: if we observe a certain
frequency of duopolies, it must be the case that correlation in payoff types is not too low.
Panel (D) exemplifies how the bounds on parameters implied by the inequalities shrink as
the amount of variation in x increases. As x takes values on a wider support, the moments
P(0,1) and P(1,0) start being informative on the lower bound for ρ, and the set of values
compatible with the inequalities becomes reasonably small.

We remark that the set ∩yBD (y) need not be a subset of the projection of ΘBCE
I onto

the direction of ρ: to obtain ∩yBD (y) we have assumed a point identified θπ and we only
use part of the information contained in the model, whereas ΘBCE

I considers joint sharp
identification of the full vector of parameters. However, the figure provides reassurance that

25This is a because in the DGP we chose (complete information, S0 = S) the probability of observing firms doing
the same action (hence, selecting either (0, 0) or (1, 1)) is the lowest across all possible S0: every other information
structure implies a higher probability of observing (1, 1) or (0, 0) for any given ρ. In turn, this means that there is
no level of correlation in unobservables ρ > ρ0 that is compatible with the data, since for such ρ the value of LBy for
y ∈ {(0, 0) , (1, 1)} would exceed the corresponding Py|x.
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the structure of the model - together with moments of the joint distribution of outcomes
- have significant identifying power with respect to the parameter θε that summarizes the
distribution of payoff types.

6 Application: the Impact of Large Malls on Local Super-
markets

The emergence of large grocery-anchored malls in Italy, a relatively recent phenomenon,
has sparked a debate on their impact on local retailers. If malls’ “anchor” grocery stores
represent a strong competitor to local supermarkets, as their critics argue,26 the presence
of shopping centers might lead to a market structure with either few local supermarkets
or monopolies. This may hurt consumers, who benefit from the availability of local stores.
Others contend that format differentiation results in little competition between local super-
markets and anchors. Additionally, the economic activity linked to large malls may generate
spillovers that strengthen local demand. According to this view, restrictive regulation on
entry by malls would ultimately be harmful to consumers.

In this section we quantify the effects of the presence of malls on local supermarkets. To
this aim, we estimate a game-theoretic model in which industry players decide strategically
whether to operate stores in local grocery markets and the presence of large malls may affect
supermarkets’ expected profits. We model the cross-section of equilibrium market-structure
outcomes as a simultaneous game, following a large literature (Bresnahan and Reiss, 1991b;
Berry, 1992; Mazzeo, 2002; Seim, 2006; Ciliberto and Tamer, 2009).27

The empirical methods developed in the previous sections of this article are well suited
for this application. The institutional features of the industry offer limited guidance on
the information available to players, and firms base their entry decisions on both private
and public information. In particular, local authorities may impose costs on entrants that
vary across stores and are mostly private information to firms.28 Moreover, industry players
are likely to be heterogeneous in their ability to collect and process private information.29

We also estimate the game under the assumption of complete information and minimal
information, and discuss the consequences of using standard methods that impose these

26A recent survey of retailers finds that shop owners rank the emergence of large malls as the second fac-
tor that most affected their business in the previous five years. See http://www.confesercenti.it/blog/
imprese-dei-centri-storici-sondaggio-confesercenti-swg-fisco-ha-inciso-negativamente-per-8-su-10/.

27Although dynamic methods are appealing for applications where inter-temporal incentives are of first-order im-
portance, most empirical models of dynamic games require strong assumptions on the nature of information and of
unobserved heterogeneity that we want to avoid.

28For example, firms may be required to build roads or parking lots when developing a new grocery store. These
requirements are typically the result of private negotiations with local authorities.

29In Magnolfi and Roncoroni (2016) we explore in more depth one of the possible sources of this heterogeneity:
firms’ political connections.
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more restrictive assumptions.
Results from our method are consistent with a substantial degree of differentiation be-

tween the grocery stores in malls and local supermarkets. In particular, although we do
not reject high values (in absolute value) of competitive effects among supermarket chains,
we reject high values (in absolute value) for the effect of malls on supermarkets. Adopting
weak assumptions on information is key for this finding: models with minimal and com-
plete information generate confidence sets for parameters that are not nested into those
produced by the more general model. We obtain lower bounds for competitive effects that
are closer to zero in the case of the complete information model, and point estimates of
positive competitive effects for the minimal information model.

As a consequence, in the counterfactual analysis of Section 7 we find that a market
structure with at least two competing industry players may not be more likely in the absence
of the mall. In contrast, the models with complete and minimal information predict an
increase of the probability of observing two or more local stores upon removing the mall
from small markets.

6.1 Data and Institutional Details

We have data on store presence and characteristics for all supermarkets in Northern and
Central Italy at the end of 2013 from the market research firm IRI. We complement these
with hand-collected information on malls and mall size, obtained from public online direc-
tories. We focus on Northern and Central Italy because the structure of grocery markets in
the South differs markedly, with traditional stores and open-air markets still playing an im-
portant role and relatively few instances of large malls. We obtain data on population and
demographics from the 2011 official census, and data on (tax) income at the municipality
level for 2013 from the Ministry of Economy and Finance.

To define the relevant markets for our study we need to specify both which store formats
are direct competitors and the geographical extent of grocery markets. The Italian antitrust
authority distinguishes between stores with floor space up to 1,500 m2 (16,146 ft2) and
stores above this threshold, pointing out that these two categories differ fundamentally in
location, product-line, and applicable regulation (see AGCM - Italian antitrust authority,
2013; Viviano et al., 2012). Larger stores have seen the fastest growth in this industry in
the last 15 years, suggesting that firms and consumers prefer these modern formats. Since
larger stores seem the most relevant to welfare outcomes and the most likely to compete
with the grocery anchors in malls, we consider stores with a floor space of at least 1,500 m2

(16,146 ft2)30 as the relevant market for our study.
30For comparison, median store size for US supermarkets was 46,500 ft2 in 2013 according to Food Marketing

Institute, an industry association.
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No existing administrative unit provides a natural way of defining local grocery markets
in Italy. Because commuting patterns capture consumers’ daily movements better than
administrative units do, we delimit markets starting from the geographical commuting areas
defined by ISTAT, the national statistical agency, and split commuting areas that are too
large.31 The geographic extension of these markets is consistent with industry sources and
previous studies.32 We also drop from our sample large cities with more than three hundred
thousand inhabitants in a municipality, as the density of highly urbanized areas makes it
hard to separate distinct markets. This leaves us with 484 local grocery markets. We report
summary statistics for these markets in Panel (A) of Table 3, considering separately markets
with large malls and markets with no large malls. The latter are systematically smaller,
have a slightly lower per capita income, and have on average one supermarket.

[Table 3 about here.]

Firms operating in the Italian supermarket industry are heterogeneous. Coop Italia and
Conad, networks of consumers’ and retailers’ cooperatives affiliated with the national um-
brella organization Legacoop, have the largest market share. Despite their organizational
form, they are managed efficiently and we assume that, in their entry behavior, they follow
the same logic as their profit maximizing competitors. Several independent firms, all based
in the North of the country, own and operate networks of large stores. Based on IRI data,
five such firms (Esselunga, Bennet, PAM, Finiper and Selex) have a market share greater
than 2.5% in 2013. Two large French retail multinationals, Auchan and Carrefour, have
also entered the Italian market mostly in the early 2000s. Given the similarities among
supermarket groups with comparable organizational structures, we conduct our analysis
referring to the three types of market players mentioned above: cooperative groups, inde-
pendent Italian supermarket groups, and French multinationals.

We define large malls as shopping centers including at least 50 independent shops, in-
cluding a grocery anchor. Although these anchor supermarkets are not regarded by industry
experts as very successful in their own right, they receive rent subsidies from mall opera-
tors, as they are believed to attract consumers that shop at other stores in the mall. Malls’
catchment area is substantially larger than that of supermarkets, attracting shoppers who
drive up to 30 minutes from a region that only partially coincides with the local grocery
market. Most large malls are developed by local investors or specialized national firms.

31We split the commuting area along municipality borders if it contains more than two towns that have at least
fifteen thousand inhabitants, and are in a radius of 20 minutes of driving distance.

32Evidence collected by various European Antitrust Authorities indicates that most consumers travel little to do
their grocery shopping. For example, UK’s Competition Commission considers all large stores in a radius of 10-15
minutes by car to belong to the same market. Evidence from marketing research points to the fact that supermarkets
make most of their revenues from customers living in a 2 km (1.24 mi.) radius. Pavan, Pozzi and Rovigatti (2017)
use the same Italian commuting areas we use as a basis for market definition in their study of gasoline markets.
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The Italian supermarket industry is subject to extensive regulation, and entry in local
markets may be delayed significantly by zoning and other laws.33 We assume that all players
that found profitable to enter a market were able, by year 2013, to do so. Regulation for
large malls and zoning laws vary across regions; the large areas required for the development
of malls are hard to find in densely populated areas, and lengthy negotiations with local
authorities are often necessary.

To gain insight on the impact of large malls on grocery markets, we estimate descriptive
linear regressions and ordered probit models.34 The dependent variable in these specifi-
cations is either the number of supermarkets in a market or the number of supermarket
industry players operating in a market. The coefficient estimates we obtain, reported in
Panel (B) of Table 3, point to a small and negative covariation between market structure
outcomes and the presence of large malls in a grocery market. These regressions however
do not shed light on the heterogeneity in the impact of large malls on the decisions of dif-
ferent industry groups. In addition, the counterfactual market structure that would emerge
if malls were not present in some markets also depends on the competitive effect that su-
permarket industry groups have on each other’s entry decisions: credible counterfactuals
require estimates of these parameters.

6.2 Game-theoretic Model

To capture strategic interaction among players in the supermarket industry we estimate
a static model of entry that is within the class described in Section 2, and similar to
our illustration of Section 2.2. Each player chooses whether to be present in each local
market. This decision takes into account the exogenous characteristics of the market, the
endogenous presence of other players, and firm-market specific characteristics unobserved
to the econometrician. Payoffs from entry for player i in market m are:

πi(·;xm, θπ) = xTimβi +
∑
j 6=i

yj,m∆j + εi,m,

whereas payoffs from staying out of the market are normalized to zero.35

Market level covariates xim include a measure of market size (product of population
and logarithm of income), an indicator for the presence of large malls in the market, and
a player-specific home-region indicator. The coefficient measuring the effect of market size

33Schivardi and Viviano (2010) exploit geographical variation in how the 1998 retail liberalization reform is imple-
mented, to show that this regulation has an important impact on the industry.

34The ordered probit model is equivalent to the specification of Bresnahan and Reiss (1991b). It may be interpreted
as a game-theoretic model with homogeneous players, complete information, and iid Normal payoff types.

35This specification of entry profits may be interpreted as a reduced form, justified on the grounds of parsimony and
difficulties in modeling post-entry competition. A structural interpretation of this linear profit function is discussed
in Berry (1989).
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on profits is constant across players. The coefficients that measure the effect of malls
on supermarket players, the home-region indicator and competitive effects ∆i are instead
heterogeneous across players. The vector of unobservable payoff types (εi,m)i∈I is jointly
distributed according to a distribution F (ε; ρ) . We assume that for every i, εi,m has a
Logistic distribution with zero mean and unit variance. The correlation of payoff types is
modeled by a Normal copula, with correlation ρ between any pair (εi,m, εj,m).

In principle supermarket groups may choose to enter a market with several stores, or
to vary store format. To reduce the complexity of the model, we assume instead that
player’s actions yi are binary. Moreover, we consider a game with three players, lumping
together cooperatives, independent Italian groups and French groups.36 Hence player i
(for example, independent Italian groups) can take a binary action yim ∈ {0, 1} in market
m, so that yim = 1 corresponds to entry by at least one Italian group with at least one
supermarket in marketm. These substantial simplifications respond to the need to limit the
complexity of the model while maintaining the flexibility necessary to consider interesting
counterfactuals.37

We also assume that the presence of large malls is exogenous to outcomes in the su-
permarket industry.38 This is a strong assumption, but not unrealistic in our data. Malls
have a much larger catchment area than supermarkets, as they can attract consumers from
a region that only partly overlaps with the local grocery market. Moreover, restrictive reg-
ulation and the limited availability of large areas for development may push developers to
locate malls far from their ideal location, in regions that are only viable because consumers
travel relatively far for non-grocery shopping.

We estimate the model under weak assumptions on the information structure: according
to Proposition 1, this is equivalent to estimating the set ΘBCE

I . This approach not only
nests all the information structures adopted thus far in the empirical games literature,
but also allows for asymmetries in players’ information that are relevant for this empirical
setting and not compatible with existing models. To compare our method with standard
techniques, we also obtain estimates under two more restrictive assumptions: complete
information (Ciliberto and Tamer, 2009), and minimal information (Su, 2014).39

36As in Ciliberto and Tamer (2009), this assumption is appropriate as long as these players behave similarly in the
markets in our sample. In the industry we examine the similarities among cooperatives, French and Italian groups in
terms of size, ownership and organizational structure support the assumption of similar strategic.

37Previous studies of market structure in retail industries have explored other aspects that are absent from our
analysis, which provides instead greater flexibility with respect to the information structure. For instance, economies
of density (Holmes, 2011) and chain-effects (Jia, 2008) have been found to be important in the US discount retail
industry, but are unlikely to be as important in the Italian supermarket industry, which operates over a much smaller
area where no pair of markets is more than a few hundred miles apart.

38Similar assumptions of exogenous entry by for the large player are maintained in Grieco (2014) and Ackerberg
and Gowrisankaran (2006).

39In both of these case the additional restrictions imposed on estimation go beyond assumptions on information.
To be in line with Ciliberto and Tamer (2009) we also restrict equilibrium selection assuming that data are generated
by pure-strategy Nash equilibrium. To follow Su (2014) we restrict in an important way the payoff structure (by
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Proposition 3 guides our intuition on what variation in the observables identifies the
parameters. Although our model includes a firm specific covariate, the home-region indica-
tor variable, this variable does not have full-support thus our parameters are set identified.
Bounds on the β parameters are identified by covariation of observable characteristics and
entry patterns. Identification of ∆j stems from the difference between the probability of
entry for firms −j in markets where xj makes firm j unlikely to enter, and the corresponding
probability in markets where xj makes firm j very likely to entry. The model offers some
identification power with respect to the parameter ρ, which captures correlation between
unobservable payoff types. As discussed in Section 5.2, high correlation between entry deci-
sions across firms in markets that have different profitability across firms (based on data and
other parameters) is particularly informative about the lower bound on ρ. Similarly, low
correlation between entry decisions across firms in markets that have uniform profitability
across firms helps establish an upper bound on ρ.

6.3 Estimation Results

Column (I) in Table 4 presents projections of the estimated 95% confidence set for pa-
rameters in the identified set under the assumptions of BCE. We report, for each parameter
of the model, the lowest and highest value it takes in the confidence set. Below the pro-
jection of the confidence set we also report parameter values that correspond to θ̂0, the
minimizer of the criterion function Gn. Coefficient magnitudes are not immediately inter-
pretable in this class of models, but the counterfactuals in the next section give a sense of
their quantitative impact on outcomes.

[Table 4 about here.]

The evidence on the effect of the presence of large malls on the presence of supermarket
groups is mixed. We do not find the effect of malls to be significantly different from zero
for any of the players, although the confidence sets for the effect of large malls lie mostly
on the negative real line. The game-theoretic model provides evidence that competitors’
presence in a local market makes entry less profitable: the confidence set includes parameter
vectors with large negative competitive effects. Projected confidence sets for the correlation
parameter ρ are firmly positive, pointing to a substantial correlation among unobserved
determinants of supermarkets’ profits.

In column (II) of Table 4 we report the projections of the 95% confidence intervals for
parameters in the identified set under the assumptions of pure-strategy Nash equilibrium
and complete information. For the constant, market size parameters, and home-region

assuming that payoff types are iid) and equilibrium selection (by assuming that a unique BNE is played in the data
generating process).
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parameters the confidence sets corresponding to the weak assumptions on information and
complete information models are largely similar. Assuming complete information makes
a difference, however, for the estimates of the effect of large malls and of competitive
effects. Although the sign of the effect of malls is not identified under weak assumptions on
information, with complete information this effect is negative for two out of three players
in the industry.

The importance of assumptions on information is most highlighted when we consider
the estimates of the competitive effects. Under complete information the competitive ef-
fects are mostly milder than those obtained with weak assumptions on information. This
finding is in line with our discussion in Section 3.3: by assuming complete information we
impose that those players who decide to operate in a market have correct expectations on
competitors’ presence. Instead, under BCE equilibrium expectations incorporate uncer-
tainty about competitors’ actions. Hence, more negative values for the competitive effects
parameters cannot be rejected. The interval for the correlation parameter ρ is smaller for
the model with complete information on payoff shocks, and includes only very high values.
This is intuitive: weaker assumptions on information offer ways of rationalizing correlation
in players’ actions that are alternative to correlation in payoff shocks, thus leading not to
reject lower values of ρ.

In column (III) of Table 4 we report parameter estimates obtained under the assumption
of minimal information.40 This method finds negative and precisely estimated effects of
malls, and very weak or positive competitive effects. This latter finding seems inconsistent
with economic intuition, suggesting that the strong restriction of minimal information -
together with the assumption of iid payoff types that is necessary estimation with standard
methods - does not fit the data well.41 For this reason, we mostly focus on the models with
weak assumptions on information and with complete information in the next section.

The fact that the set we estimate under restrictive assumption on information is not
nested in the set estimated under the weaker BCE assumption deserves further discussion.
Our robust identification result establishes that the complete information identified set is
a subset of the BCE identified set. However, when going from an identification argument
to finite-sample estimates, sampling variation could cause the sets to be non-nested. Ad-
ditionally, misspecification driven by more restrictive assumption could lead the complete
information model to be falsified by the data, and hence have an empty identified set. In
this case, there would be no reason to expect estimates obtained under that assumption to

40We compute these estimates using the method of Su (2014); in Appendix D we discuss the details of this estimation
procedure, and compare it with alternative methods such as Bajari et al. (2010).

41This finding is similar to Grieco (2014), who in a different empirical context finds the minimal (private) information
model rejected by the data.
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lie inside the robust estimated set.42 43

7 Counterfactuals

We consider the counterfactual scenario in which regulation prevents the construction of
large shopping malls in small markets. This counterfactual quantifies how market structure
is affected by the presence of large malls. We examine in particular the eight small markets
in our dataset that have a large shopping center but no supermarkets in the current market
configuration, and compute predicted outcomes of the entry game between supermarkets
once the large shopping center is removed. In a setting where estimation yields a confidence
set containing many parameter vectors, and where the model has multiple equilibria, there
are several possible ways of defining and computing the counterfactuals of interest. We give
a formal definition of the counterfactual objects in the next subsection.

7.1 Model Predictions and Counterfactual Objects

To quantify counterfactual changes in market structure we focus on two classes of out-
comes: the probabilities of observing certain market structures and the expected number
of players operating in a market. We define these outcomes as real-valued functions of
equilibrium distributions ν, parameters θ and covariates x. In particular, the probability of
specific market structure outcomes Ŷ ⊂ Y is

WŶ (ν, θ, x) =
∑
y∈Y

∫
1
{
y ∈ Ŷ

}
ν (y, ε)dε,

and the expected number of players is

WN (ν, θ, x) =
∑
y∈Y

∫  |N |∑
n=1

n · 1 {number of entrants in y = n}

 ν (y, ε) dε.

More generally, functions W such as those defined above may be adapted to consider more
counterfactual outcomes of interest, such as expected firm value or different measures of
consumer welfare (which would require a demand system).

Several approaches are possible to summarize counterfactual predictions across the ad-
42A similar result is observed in Haile and Tamer (2003) and in Dickstein and Morales (2018).
43This discussion suggests a possible procedure for rejecting assumptions on information, although the implemen-

tation is not straightforward in our inferential setup, and we do not pursue formal testing in this article. For testing
procedures in game-theoretic models, see also Takahashi and Navarro (2012), who develop testing procedures to dis-
tinguish between information structures, and Kashaev (2015) who proposes a test for Nash equilibrium in complete
information games.
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missible equilibrium distributions and parameter values in the set

{(ν, θ) : ν ∈ BCEx (θ) , θ ∈ Cn} .

The first, and most conservative, approach to reporting counterfactual outcomes looks at
the predicted intervals whose upper (lower) bounds involve maximization (minimization)
over both equilibria and parameter values in the confidence set. Such intervals are:

IxW =
[

min
{(ν,θ): ν∈BCEx(θ), θ∈Cn}

W (ν, θ, x) , max
{(ν,θ): ν∈BCEx(θ), θ∈Cn}

W (ν, θ, x)
]
.

Furthermore, when the functionW describes outcomes that are desirable from the point
of view of regulators, and that the counterfactual policy seeks to foster, it is interesting to
focus on upper bound probabilities

W (θ, x) = max
ν∈BCEx(θ)

W (ν, θ, x) .

This is because regulators may naturally be seeking to encourage such outcomes, thus
helping firms to select equilibria that maximize their probabilities. Focusing on upper
bounds is also in line with important articles in the literature (Ciliberto and Tamer, 2009).
Hence, we also compute changes in upper bounds of the probability of market outcomes
of interest, and then average these upper bounds across markets to summarize the overall
direction of change.

Our counterfactual exercise - evaluating the effect of large malls in small grocery markets
- involves a change in x: we denote xpre as the market-level covariates in our data, and xpost

as the covariates in the counterfactual scenario that removes large malls. For each parameter
value in the confidence set θ ∈ Cn we obtain the difference in average upper bounds as:

∆W (θ) =

 1
|X̂|

∑
m∈X̂

W
(
θ, xpostm

)
− 1
|X̂|

∑
x

W (θ, xprem )

 ,
where X̂ denotes the set of markets affected by the counterfactual, and then report its
bounds across parameter values in the confidence set:

IW =
[

min
{θ∈Cn}

∆W (θ) , max
{θ∈Cn}

∆W (θ)
]
.

Finally, we may want to separate the uncertainty in prediction due to the multiplicity
of parameters in the confidence set from the uncertainty arising from the equilibrium mul-

33



tiplicity.44 To do so, we fix the parameter value θ̂0 that minimizes the empirical criterion
function Gn, and compute intervals:

IxW

(
θ̂0
)

=
[

min
{ν∈BCEx(θ̂0)}

W
(
ν, θ̂0, x

)
, max
{ν∈BCEx(θ̂0)}

W
(
ν, θ̂0, x

)]
.

This last exercise is subject to an important caveat. In our set-identified model there is no
rigorous sense in which θ̂0 is more likely to be the true parameter value θ0 than any other
parameter in our confidence set Cn. Hence this exercise is intended more as an illustration
of the properties of the model than an empirical evaluation of the counterfactual.

7.2 Variable and Fixed Latent Information Structure

When performing estimation under weak assumptions on information we are assuming
that the data are generated by BNE in the game Γxpre (θ0, S0) for some unspecified S0 ∈ S
(see our Assumption 2). Then, we compute counterfactual objects such as W

(
θ, xpost

)
by

considering all outcomes that correspond to BCE distributions ν ∈ BCExpost (θ). In doing
so, we are implicitly allowing the counterfactual outcomes to be generated by BNEs of the
game Γxpost (θ, S) , where the information structure can be any S ∈ S (see also Lemma
1). Hence, the counterfactual objects outlined in the previous subsection let the latent
information structure in the counterfactual be different from S0, the original (unknown)
information structure in the data generating process. We refer thus to this approach as
the variable latent information structure approach. Although appropriate in some contexts,
the assumptions implicit in this approach may not fit well other empirical settings. For
instance in our application it is plausible that removing malls does not affect the information
structure of the game between supermarket chains.

This important point is originally made in Bergemann, Brooks and Morris (2019), who
also suggest an alternative procedure to compute counterfactuals for a fixed latent informa-
tion structure. In an example where the counterfactual involves changing covariates from
xpre to xpost their approach suggests that, if Γxpre (θ0, S0) generated the data, the analyst
should compute counterfactual outcomes compatible with BNEs of the game Γxpost (θ0, S0) ,
keeping S0 fixed. To implement this procedure, they examine BCEs of the double game
where players choose actions y of the factual game and actions y′ of the counterfactual
game in a way that is compatible with common knowledge of the primitives and incentives.

44An alternative exercise would be to abstract from equilibrium multiplicity altogether, and use in the counterfactual
the equilibrium distributions that best fit the data, as in Grieco (2014). However, in our setting the set of equilibria
for the game with covariates xpre need not be the same as the set of equilibria for the game with covariates xpost, so
that it may not be possible to fix the equilibrium selection to simulate counterfactual outcomes. Instead, we compute
counterfactuals imposing restrictions on how information may change across factual and counterfactual games - see
Subsection 7.2.
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We adapt their framework by defining the set of BCEs of the double game ˜BCE
xpre,xpost (θ)

which contains augmented equilibrium distributions ν̃ ∈ ∆ (Y × Y × E) . These equilibrium
distributions, just like BCE distributions as defined in Section 3, have to be consistent
with the prior and incentive compatible. The latter condition has to hold for both fac-
tual and counterfactual actions. Moreover, BCE distributions of the double game ν̃ have
to be consistent with the observed outcomes of the factual game.45 We can then modify
outcome functions W as W̃

(
ν̃, θ, xpre, xpost

)
, so that counterfactuals depend on augmented

equilibrium distributions ν̃.
For any generic value (x, x′) of factual and counterfactual covariates

(
xpre, xpost

)
intervals

for counterfactual objects under fixed latent information are thus:

Ĩx,x
′

W̃
=

 min{
(ν̃,θ): ν̃∈ ˜BCE

x,x′ (θ), θ∈Cn
} W̃ (

ν̃, θ, x, x′
)
, max{

(ν̃,θ): ν̃∈ ˜BCE
x,x′ (θ), θ∈Cn

} W̃ (
ν̃, θ, x, x′

) ,
upper bound probabilities are

W̃
(
θ, x, x′

)
= max

ν̃∈ ˜BCE
x,x′ (θ)

W̃
(
ν̃, θ, x, x′

)
,

and counterfactual intervals for the parameter θ̂0 are

Ix,x
′

W̃

(
θ̂0
)

=

 min{
ν̃∈ ˜BCE

x,x′(θ̂0)
} W̃ (

ν̃, θ̂0, x, x
′
)
, max{

ν̃∈ ˜BCE
x,x′(θ̂0)

} W̃ (
ν̃, θ̂0, x, x

′
) .

7.3 Counterfactual Results

We report in Figure 5 the average across markets of intervals IxW for counterfactual prob-
abilities of market structure outcomes. Panel (A) represents probabilities of the outcome
“no entrants,” and Panel (B) represents the outcome “at least two entrants.” Intervals for
xpost (without mall) are solid lines, whereas intervals for xpre (with mall) are dashed lines.
The two intervals in green at the top of the two panels represent intervals for the model
with weak assumptions on information, whereas the two intervals in red at the bottom refer
to the complete information model.

[Figure 5 about here.]

45See Appendix D for a more formal treatment of this approach and for computational details.
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In the model with weak assumptions on information, the effect of removing malls from
the markets we study is ambiguous: the average upper bound probability of observing no
entrants goes up, but also the average upper bound probability of observing at least two
entrants increases.46 The data and the model, which generate a large identified set and allow
for a rich set of counterfactual predictions, do not yield intervals IxW that give a definitive
answer to our question of interest. In contrast, the complete information model generates
a much sharper conclusion: the intervals IxW obtained under the assumption of complete
information show that removing a large mall from a small market generates an overall
decrease in the probability of observing no entrants, and an increase of the probability of
observing at least two entrants.

We do not report intervals for fixed latent information in Figure 5, as these are similar to
those constructed with variable latent information. In Figure 6 instead we turn to intervals
IxW for a different outcome of interest: the expected number of entrants. Here, we compare
directly counterfactual results obtained under variable and fixed latent information. The
intervals IxW obtained under variable latent information (on the left) confirm the overall
message of Figure 5: the model with weak assumptions on information suggests that re-
moving malls from eight small markets would generate uncertain effects. The lower bound
on the expected number of entrants decreases in all markets when removing the mall, but
the upper bound increases in most of the markets we consider.

The fixed latent information approach (Bergemann, Brooks and Morris, 2019), instead,
gives a more consistent picture: lower bounds on the expected number of entrants decrease
when removing the mall, and upper bounds also decrease for a majority of the markets we
consider, as well as on average. This leaves open the possibility that the opposite of what is
suggested by the complete information model in Figure 5 may happen: removing the mall
from a small market may generate a market structure with fewer entrants.

[Figure 6 about here.]

The figure also highlights the potential of the fixed latent information methods for sharp-
ening counterfactual conclusions from models with weak assumptions on information. Be-
cause of the reduction in the uncertainty of counterfactual predictions, in this case the fixed
latent information approach gives a sharper policy evaluation, which potentially contradicts
the one obtained under a stronger assumption on information (complete information).

We turn in Table 5 to the analysis of the changes in upper bound probabilities IW . We
also report this counterfactual object for the complete information model, for the minimal
information model and for the reduced form models used in Table 3.47

46This result is not an artifact of averaging across markets, and holds true for most individual markets.
47The corresponding object for the complete information model is obtained using an analogous procedure in which

upper bounds on probabilities are generated by Nash equilibrium.
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[Table 5 about here.]

In line with the confidence sets (where the sign of the effect of malls is not identified) and
with the evidence on IxW in Figure 5, counterfactual predictions on the effect of removing
malls as summarized by IW are mostly inconclusive for the model with weak assumptions
on information. This is true both when using a fixed latent information structure and
when using a variable latent information structure in counterfactuals (column II).48 We
notice however that intervals for outcomes such as entry of at least two player, or entry of
individual supermarket groups, mostly lie in the negatives: this means that the upper bound
probabilities of these events may decrease upon removing malls. This finding is consistent
with our discussion of the results on number of entrants in Figure 6: it is possible that a
policy that removes malls would have adverse effects on market structure.

Models with more restrictive assumptions on information yield a different conclusion.
The model with complete information in column (III) predicts a decrease of the probability
of no entry for most parameter values, and an increase in the probabilities of having at least
two players operating in a market, or of observing entry by specific players. The predictions
of the game-theoretic model with minimal information (column IV) and of the reduced form
model (column V) are similar to the predictions of the complete information model. The
models in columns (IV) and (V) are point identified, so that they yield point predictions
of IW . These are quite precisely estimated and in most cases close to the midpoints of the
intervals produced by the complete information model.

The similarity between complete information predictions in column (III) and reduced
form predictions in column (V) is not surprising: the ordered probit model we use to make
counterfactual predictions on the probability of no entrants or at least two entrants is
analogous to a Bresnahan and Reiss (1991b) specification with homogeneous payoffs and
complete information. In this specification, payoff types are perfectly correlated across
players, closely mimicking the high correlation estimated in the context of the complete
information model. Whereas reduced form models can be very useful to describe correlations
in the data, using them to extrapolate in counterfactual predictions entails strong (and
often not obvious) assumptions. Predictions from the BCE model rely on strictly weaker
assumptions.

7.4 The Empirical Content of BCE: Informativeness of Counterfactuals

A recurring theme in our counterfactual results is that the model with weak assumptions
on information yields wide prediction intervals. Although this may seem undesirable, it is

48Counterfactual intervals obtained under fixed latent information need to be subsets of the intervals obtained under
fixed latent information. However, the same inclusion relationship does need not be true of the change in upper bound
probabilities that we report in this table.
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also useful, as it enables the analyst to distinguish between those results that are robust and
those that are driven by assumptions. Moreover, the uncertainty in the model’s counterfac-
tual predictions deserves further investigation: in principle, intervals may be wide because
of the the size of the confidence set of parameters, or because of the equilibrium multiplic-
ity. The former source of uncertainty may be addressed by better variation in the data
(see also our discussion in Section 5) or by adopting less conservative inferential methods.
The latter source instead, equilibrium multiplicity, is a fundamental feature of the model
and is linked to our weak assumptions on information. The multiplicity of BCEs reflects in
fact the many information structures that may have generated the data. Anchoring coun-
terfactual predictions to the unobserved information structures that generated the data, as
in the fixed latent information procedure, may help reduce the uncertainty in prediction
stemming from multiple equilibria. Hence, in this subsection we investigate to what extent
the uncertainty in prediction is due to equilibrium multiplicity: this ultimately clarifies the
empirical content of BCE and its power to predict counterfactual outcomes in models of
discrete games.

We first compare intervals IxW with IxW

(
θ̂0
)
, the predictions that are obtained fixing

the parameter value at θ̂0, the parameter that minimizes the criterion function Gn. Fixing
a parameter value in the identified set allows us to abstract from the uncertainty stemming

from partial identification. Table 6 reports ratios |I
x
W (θ̂0)|
|IxW |

and
|Ix,x

′

W̃
(θ̂0)|

|Ix,x
′

W̃
|

that represent the

relative width of counterfactual prediction intervals computed at θ̂0 with respect to general
intervals (incorporating uncertainty due to Cn) for the variable and fixed latent information
approaches, respectively. The table shows that, although the ratio varies across markets and
values of x, there is still considerable uncertainty in prediction in our model even when we
fix payoff parameters at θ̂0: counterfactual prediction intervals shrink by about 30 percent
on average for the variable latent information approach, and by 40 percent on average
for the fixed latent information approach. Despite the potential of sharper inference and
better data to reduce the width of prediction intervals, multiple equilibria and uncertainty
in prediction seem to be an unavoidable cost associated with our approach.

[Table 6 about here.]

The fixed latent information approach, however, mitigates this cost. In fact, we already
found that fixing the latent information structure in the counterfactual delivers meaningful
improvements in sharpness in the exercise of Figure 6. At the same time, fixed latent
information does not contribute to sharpening the analysis of the change in counterfactual
upper bound probabilities in Table 5. To better understand the role of fixing the latent
information structure in our application, we compare directly counterfactual prediction
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intervals IxW
(
θ̂0
)

and Ix,x
′

W̃

(
θ̂0
)

obtained by fixing the parameters at θ̂0. We report in

Table 7 the ratio
|Ix,x

′

W̃
(θ̂0)|

|IxW (θ̂0)| which represents how much the fixed latent information approach
shrinks counterfactual intervals relative to the variable latent information approach.

[Table 7 about here.]

Overall, the fixed latent information method delivers an average reduction of 20 percent
in the width of counterfactual intervals. For some outcomes the effect is even larger: for
instance, when looking at counterfactual probabilities of entry of Italian groups, intervals
are shrunk (on average) by 35 percent. At best, counterfactual prediction intervals shrink
up to more than 60 percent. The fixed latent information approach of Bergemann, Brooks
and Morris (2019) is thus a very useful tool to deliver sharper counterfactual predictions in
this class of models.

Three main conclusions emerge from our counterfactual exercises. The first concerns
the answer to our empirical question in this application: what is the effect of large malls
on supermarkets? The question has no clear theoretical answer, and findings in previous
literature are not conclusive (Grieco, 2014). Our data - read through the lens of a flexible
model - do not dispel this uncertainty. However, if we maintain the assumption that the
information structure stays constant in a counterfactual scenario where we remove malls
from small markets, the model offers sharper conclusions in some dimensions. In particular,
the range of the expected number of players in a market decreases if we remove the mall in
most of the markets we consider. This suggests that the presence of malls in small markets
may have positive spillovers for the supermarket industry. There is hence no clear cut case
to adopt any policy that limits the presence of malls.

The second takeaway is that assumptions on information (maintained both in estima-
tion and in counterfactual prediction) are a key primitive in empirical discrete games. The
method developed in this article allows us to considerably weaken assumptions on infor-
mation, thus transparently showing what counterfactual conclusions are robust and which
ones are driven by strong assumptions. In our application, models with either complete
information or perfectly private information suggest that removing malls has considerable
scope to improve market outcomes in the supermarket industry. This conclusion however
does not stand when we remove strong restrictions on information, and is - at least in part
- overturned when counterfactual predictions are generated with a fixed latent information
structure. Finally, we found that the robustness provided by our approach comes at the
cost of uncertainty in counterfactual prediction. This uncertainty, although partly due to
the lack of variation in the data of our application, is mostly an unavoidable by-product of
the weak assumptions on information that we maintain.
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8 Conclusion

We present in this article a method to estimate empirical discrete games, focusing on
entry examples, under weak assumptions on the structure of the information available to
players about each other’s payoffs. Assumptions on information matter, because the equilib-
rium predictions implied by different information structures translate in parameter estimates
that may be biased if the information structure is misspecified. We are able to avoid strong
assumptions on information by adopting a broad equilibrium concept, Bayes Correlated
Equilibrium (BCE), defined by Bergemann and Morris (2013, 2016). We argue that BCE
is weak enough to make our method robust to assumptions on information, but informative
enough to yield useful confidence sets for parameters. In an application, in which we study
the effect of large malls on competition among supermarket groups in local grocery mar-
kets, we show that restrictive assumptions on information may drive counterfactual policy
evaluations, whereas our method allows us to avoid restrictive assumptions.

There are several avenues for future research left open by this article. First, we do not
pursue in this article inference on information structures. Although trying to recover an
information structure from data on binary outcomes may be too optimistic, richer data
like those generated by play in games with continuous actions may allow us to identify
the information structure of the game that generates the observable outcomes. Second,
estimation of games under the BCE solution concept may be interesting beyond providing
robustness to assumptions on information - the angle we explored in this article. Results in
the theory of learning in games (see e.g. Hart and Mas-Colell, 2013) show a deep connection
between regret-minimizing dynamics and correlated equilibrium. In turn, this suggests that
BCE may capture well outcomes of long-run interaction in incomplete information games,
thus providing a connection between dynamic play and a static solution concept. We plan
to explore this in future work.
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Appendix A - Computation of G and Gn

To find the identified set and perform inference we need to compute the functions G and
Gn. In this appendix we describe the steps necessary to compute these functions defined in
Section 4.2. At the core of both G and Gn there is the maxmin program

max
b∈B

min
q∈QBCE

θ
(x)

[
bTPy|x − bT q

]
, (P0)

which must be computed for every value of x.
Step 1 - Discretization: To make (P0) feasible we approximate the infinite dimensional

object ν by discretizing the set E = ×iEi. Let Er ⊂ E be the discretized set, with |Er| = r.
We construct Er as the product space of Eri ⊂ Ei, where every set Eri contains ri = r

|N | equally
spaced quantiles of Fεi .49 We also define f r (·; θε) as the probability mass function over Er,
where the mass of each ε ∈ Er is generated by Fεi and a Normal copula with correlation
parameter ρ = θε. The program (P0) is then approximated by the feasible program

max
b∈R|Y |

min
q∈R|Y |, ν∈R|Y |×r

bT
(
Py|x − q

)
(P1)

s.t. bT b− 1 ≤ 0

∀y ∈ Y q (y)−
∑
ε ν (y, ε) = 0

∀ε ∈ Er
∑
y ν (y, ε)− f r (ε; θε) = 0∑

y,ε ν (y, ε)− 1 = 0

∀i, yi, y′i, εi
∑
y−i

∑
ε−i ν (y, εi, ε−i) (πi (y′i, y−i, εi;x, θ)− πi (y, εi;x, θ)) ≤ 0.

Although in (P0) the minimum is taken over q ∈ QBCEθ (x) only, here we minimize over
both a vector of predictions q ∈ PY and a distribution ν ∈ PY×Er whose marginal on Y

corresponds to q. The restriction that q must be a BCE prediction is now incorporated
by imposing that ν must satisfy the constraints that characterize BCE distributions, as
specified in Definition 2.

Step 2 - Vectorization: The discretized ν is a matrix with dimensions |Y | × r; we define
v = vec (ν) , the vectorized ν that stacks the columns of ν in a vector with dν = |Y | · r rows.

We then transform (P1) by defining new variables p̃ = Py|x−q and z =
[
z1
z2

]
=
[
p̃

v

]
. As

the set of predictions is a subset of the (|Y |−1)-dimensional simplex, we modify the objective
49We have experimented with other discretization techniques (e.g. Halton sets, random draws) and have found

negligible impact on our results as long as Er includes at least some relatively extreme (both positive and negative)
payoff types. Including such values of payoff types is important because for them the incentive compatibility constraint
of BCE is more likely to be binding.
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of the program to
[
b̃

0

]T (
Py|x − q

)
, where b̃ is a vector in the (|Y | − 1)−dimensional closed

ball. As argued in footnote 19, this modified objective yields a value of zero if and only if
the original program has a value of zero. The transformed program is

max
b̃∈R|Y |−1

min
z1∈R|Y |,z2∈Rdν+

[
b̃

0dν+1

]T
z, (P2)

s.t. b̃T b̃ ≤ 1

Aeqz = a

Aineqz ≤ 0dineq ,

where Aeq and Aineq are matrices that stack, respectively, linear equality constraints and
linear inequalities. These matrices have deq = |Y |+r+1 and dineq =

∑
i∈N (|Yi| · |Yi−1| ·ri)

rows, respectively. The object a is a vector of constants, and we use 0d, 1d and Id to denote,
respectively, the d−vector of zeros and ones, and the d × d identity matrix. To construct
the matrix Aeq, notice that the equality constraints in (P1) can be written as

I|Y |p̃+A1
eqv = Py|x

A2
eqv = f r (θε)

1Tdvv = 1,

where A1
eq is a matrix of r copies of a I|Y |, or A1

eq = 1Tr ⊗ I|Y |, and A2
eq is a block-diagonal

matrix with r rows and 1T|Y | on the diagonal, or A2
eq = Ir ⊗ 1T|Y |. The deq × dz matrix Aeq

is then

Aeq =

 I|Y | A1
eq

0(r·|Y |) A2
eq

0T|Y | 1Tdv


with dz = |Y | · (r + 1); a is a deq−vector defined as

a =

 Py|x
f r (θε)

1

 .
The incentive compatibility inequality constraints in (P1) are also linear, so that the matrix
Aineq can be constructed in a similar way.

Step 3 - Duality and Maximization Program: Although (P2) is in the form of a maxmin
problem, it can be transformed into a maximization problem by considering the dual of the
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inner minimization:

max
b̃∈R|Y |−1,λeq∈Rdeq ,λineq∈R

dineq
+

−
[

a

0dineq

]T [
λeq
λineq

]
(P3)

s.t. b̃T b̃ ≤ 1(
AT
)

1:|Y |

[
λeq
λineq

]
= −

[
b̃

0

]
(
AT
)
|Y |+1:dz

[
λeq
λineq

]
≥ 0dν ,

where A =
[

Aeq
Aineq

]
, the vectors λeq and λineq are the dual variables associated to the

constraints of (P2) ,
(
AT
)

1:|Y |
and

(
AT
)
|Y |+1:dz

denote the first |Y | and the last r · |Y | rows

of the matrix AT . By strong duality and existence of BCE, the program (P3) has the same
value than (P2) and we compute it using the solver KNITRO in the modeling environment
AMPL.

Computational Burden: - Due to the tractable nature of the the program (P3), the
computational burden of mapping BCE identified sets and confidence intervals is manage-
able. For example, computation of G (θ) for the two-player game of Table 2 with r = 502

takes less than 30 seconds of CPU time on a 3.4Ghz processor. Computation times for the
function Gn (θ) in our application, with r = 103, are similar. The total time necessary to
map the identified set or confidence sets depends - for a fixed dimension of the problem -
on the extent to which parallelization is implemented. 50

Computing time also depends on the dimension of the game (i.e. number of players and
number of strategies) and on the discretization adopted. The dimension of the program
(P3) - which needs to be solved for every value of x - is determined by the number of
variables

|
(
b̃T , λTeq, λ

T
ineq

)
| = |Y | − 1 + deq + dineq

= 2|Y |+ r

(
1 +

∑
i∈N

(|Yi| · |Yi − 1|)
)
,

and the number of equality constraints |Y |, and inequality constraints r · |Y |. The exact
relation between computing time and the scalars r, |Y | and |N | depends on the specific
computing environment, but (as it is common in empirical models of discrete games) the

50Although parallel computation of G (θ) for different values of θ is not natively supported by AMPL, it can be
efficiently implemented using the script Parampl, available at www.parampl.com. We thank Arthur Olszak for kind
and patient support with Parampl.
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computational burden grows fast with the dimensionality of the game. Further details on
how to compute ΘI and Cn are in Appendix C in the Supplementary Materials online.

Appendix B - Proofs

Lemma 1 is a preliminary result needed to prove Proposition 1. In the lemma we restate
and adapt to our context the robust prediction property of BCE, established as Theorem 1
in Bergemann and Morris (2016).

Lemma 1. For all θ ∈ Θ and x ∈ X,

1. If q ∈ QBCE
θ (x) , then q ∈ QBNE

θ,S (x) for some S ∈ S.

2. Conversely, for all S ∈ S, QBNE
θ,S (x) ⊆ QBCE

θ (x) .

Proof. Fix θ ∈ Θ and x ∈ X throughout.
1. Consider q ∈ QBCE

θ (x) . Then there exists ν ∈ BCEx(θ) such that q = qν . We need
to show that there exists an information structure S and a strategy profile σ such that
qσ = qν and qσ ∈ QBNE

θ,S (x) . To this aim, let T x = Y and define a probability kernel{
P xτ |ε : ε ∈ E

}
51 such that:

∫
E

(
Pτ |ε ([τ = y])

)
dF = ν (y,E) , ∀E ∈ B (E) :

∫
E

dF > 0, y ∈ Y.

Also, for all εi, τi, let σi (ε, τi) (yi) = 1 if yi = τi, and σi (εi, τi) (yi) = 0 if yi 6= τi. Hence, the
incentive compatibility conditions of BCE guarantee that σ is a BNE of the game Γx (θ, S).

2. Suppose that q =
∑K
k=1 αkqk ∈ QBNE

θ (x) for K < ∞,
∑K
k=1 αk = 1 and σk ∈

BNEx(θ, S) for all k = 1, ...,K. Then, for each σk we can obtain νk ∈ BCEx(θ) as:

νk (y,E) =
∫
E

∫
T

(∏
i∈N

σi (εi, τi) (yi)
)

dPτ |εdF,

for all y ∈ Y and E ∈ B (E). Hence,
∑
k αkνk = ν ∈ BCEx(θ), and the corresponding

qν = q ∈ QBCE
θ (x).

Proposition 1. Let Assumptions 1 and 2 hold. Then

ΘBCE
I = ΘBNE

I (S) .

This implies that the identified set under BCE contains the true parameter value, θ0 ∈ ΘBCE
I .

51For the existence of such a kernel, see Chang and Pollard (1997).
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Proof. Let θ ∈ ΘBNE
I (S ′) for some S ′ ⊆ S. Then ∃ S ∈ S ′ such that Py|x ∈ QBNE

θ,S (x) Px −
a.s. Since, by Lemma 1 again, we have QBNE

θ,S (x) ⊆ QBCE
θ (x), θ ∈ ΘBCE

I and ΘBNE
I (S ′) ⊆

ΘBCE
I . Consider instead θ ∈ ΘBCE

I ; by definition of ΘBCE
I , there must be a collection of

(νx)x∈X: such that pνx ∈ QBCE
θ (x). It follows that, by Lemma 1, pνx ∈ QBNE

θ,S (x) Px − a.s.
for some S ∈ S. Hence, ΘBCE

I ⊆ ΘBNE
I (S). Moreover, by Assumption 2, Py|x ∈ QBNE

θ0,S0
(x)

almost surely with respect to Px. Also, by Lemma 1, QBNE
θ0,S0

(x) ⊆ QBCE
θ0

(x). It follows, by
the definition of ΘBCE

I , that θ0 ∈ ΘBCE
I .

Proposition 2. Assume that:

1. The function θπ → πi (y, εi;x, θπ) is continuous for all i, x, y and εi, the quantity

|πi (yi, y−i, εi;x, θπ)− πi
(
y′i, y−i, εi;x, θπ

)
|

is bounded above, and the function θε → F (·; θε) is continuous for all ε;

2. The parameter space Θ is compact;

3. The following uniform convergence condition holds: supθ∈Θ
√
n|Gn (θ) − G (θ) | =

Op (1) ;

4. For all θ ∈ ΘI we have nGn = Op (1).

Then, the set Θ̂I = {θ ∈ Θ : nGn (θ) ≤ an} is a consistent estimator of ΘBCE
I for an →∞

and an
n →∞.

Proof. We want to show that our setup satisfies the condition C.1 in Chernozhukov, Hong
and Tamer (2007); the consistency of Θ̂I follows by their Theorem 3.1. To this aim, we
need to establish that the function G (θ) is lower semicontinuous.

We start by showing that θ ⇒ QBCE
θ (x) is upper hemi-continuous for all x ∈ X. This

correspondence is a compound correspondence between the BCE equilibrium correspon-
dence θ ⇒ BCEx(θ) and the marginal operator ν →

∫
E ν (y,dε). The latter is a continuous

function mapping into a compact set. For the the equilibrium correspondence: consider a
sequence θk → θ ∈ Θ, for

{
θk
}∞
k=1
∈ Θ, and a corresponding sequence {νk}∞k=1 such that

νk ∈ BCEx(θk) for all k, and νk converges to ν. To see that ν ∈ BCEx(θ̄), notice that
(i) consistency of ν follows for the continuity of the function θε → F (·; θε) and absolute
continuity of νm (y; ·), and (ii) incentive compatibility of ν results from the continuity of
θπ → πi(·;x, θπ) (this can be shown by contradiction, as in Milgrom and Weber, 1985).
Therefore the correspondence QBCE

θ is upper hemi-continuous.
Then, the function

h̃ : θ → h
(
b;QBCE

θ (x)
)

= sup
q∈QBCE

θ
(x)
bT q
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is upper semicontinuous (Lemma 17.30 in Aliprantis and Border, 1994), for all values of
x, b. It follows that the function θ → −h

(
b;QBCE

θ (x)
)
is lower semicontinuous, and so is

θ → supb∈B
(
bTPy|x − h

(
b;QBCE

θ (x)
))

, point-wise supremum of a family of lower semicon-
tinuous functions (Proposition 2.41 in Aliprantis and Border 1994). Hence, the function
G (θ) is lower semicontinuous: for a sequence θn → θ in Θ:

lim inf
n→∞

G (θn) = lim inf
n→∞

∫
sup
b∈B

[
bTPy|x − h

(
b;QBCE

θn (x)
)]

dPx

≥
∫

lim inf
n→∞

sup
b∈B

[
bTPy|x − h

(
b;QBCE

θn (x)
)]

dPx

≥
∫

sup
b∈B

[
bTPy|x − h

(
b;QBCE

θn (x)
)]

dPx = G (θ)

where the first inequality holds by Fatou’s Lemma, and the second inequality holds for the
lower semi continuity of θ → supb∈B

(
bTPy|x − h

(
b;QBCE

θ (x)
))

.

Proposition 3. Suppose the econometrician observes the distribution of the data
{
Py|x : x ∈ X

}
,

generated by BCE play of a game. Then, under Assumption 3,

1. Payoff parameters βC , βE and ∆ are point identified as in single-agent threshold cross-
ing models; and

2. The structure implies bounds on the payoff type parameter θε.

Proof. 1. Consider first the identification of βC , βE2 . We want to show that, for appropriate
values of x, we have:

Py2=1|x =
∫
{ε2:ε2≥−xTc βC−xT2 β

E
2 }

dF2 (·; θε) , (8.1)

where Fi (·; θε) is the marginal over εi of F (·; θε). The model implies the following link
between the observables and the structure, for all x ∈ X and νx ∈ BCEx(θ):

Py2=1|x = νx ([y1 = 1, y2 = 1]) + νx
([
y1 = 0, y2 = 1, ε : ε2 < −xTc βC − xT2 βE2

])
+

+ νx
([
y1 = 0, y2 = 1, ε : ε2 ≥ −xTc βC − xT2 βE2

])
Assume βE1k > 0 without loss of generality, and let x1k → −∞. Conditional on such values
of x, π1 (1, y2, ε1;x, θπ) < 0 for all values of y2 ε1 − a.s. By the equilibrium optimality
condition, νx (y1 = 1 | y2, ε1) = 0 whenever π1 (1, y2, ε1;x, θπ) < 0. It follows that:

lim
x1k→−∞

νx ([y1 = 1, y2 = 1]) ≤ lim
x1k→−∞

∫
E1
νx ([y1 = 1] |ε1) dF1 (·; θε) = 0.

50



Moreover, limx1k→−∞ ν
x
([
y1 = 0, y2 = 1, ε : ε2 < −xTc βC − xT2 βE2

])
= 0, as in the limit

ε2 < −xTc βC − xT2 βE2 implies y2 = 0. For a similar application of the (IC) property of BCE,

νx
([
y1 = 0, y2 = 1, ε : ε2 ≥ −xTc βC − xT2 βE2

])
=
∫
{ε2:ε2≥−xTc βC−xT2 β

E
2 }

dF2 (·; θε) .

The result in equation (8.1) follows; this equation describes a single-agent threshold crossing
model: under Assumption 3,

(
βC , βE2

)
and Fi are point identified (Manski, 1988).

Player 1’s parameter β1 is identified by asymmetric argument. To prove identification of ∆
parameters, consider instead x1k →∞; the same steps lead to:

lim
x1k→∞

Py2=1|x =
∫
{ε2:ε2≥−xTc βC−xT2 β

E
2 −∆1}

dF2 (·; θε) .

2. Let θπ = (β,∆) be identified. We can derive (non-sharp) bounds on the distribution
of observable outcomes, and thus on the joint distribution of payoff types F (ε; θε) . To
construct lower bounds on the probabilities of outcomes, we need to define regions where
such outcomes are the product of dominant strategies. For instance, let

E(1,1) (x, θ) =
{
ε1 ≥ −xTc βC − xT1 βE1 −∆2, ε2 ≥ −xTc βC − xT2 βE2 −∆1

}
.

For any x ∈ X, (IC) implies that for ε ∈ E(1,1) we have νx ([y = (1, 1)] | ε) = 1 for every
νx ∈ BCEx(θ). We can similarly define a region Ey (x, θ) for any action profile y.

For each y, we can also construct upper bounds by defining regions where for any i, no
yi is dominated. Hence, let

Ey (x, θ) =
{
ε : max

νx∈BCEx(θ)
νx (y | ε) > 0

}
;

for the outcome y = (1, 1) for instance,

E(1,1) (x, θ) =
{
ε1 ≥ −xTc βC − xT1 βE1 , ε2 ≥ −xTc βC − xT2 βE2

}
.

We can then construct the bounds:

LBy (θε;x) =
∫
Ey

dF (·; θε) ≤ Py|x ≤
∫
Ey(x,θ)

dF (·; θε) = UBy (θε;x) ,

and define the set

BD (y) =
{
θε : LBy (θε;x) ≤ Py|x ≤ UBy (θε;x) , a.e.− x

}
.

51



Variation in x shifts the regions E and E , thus providing useful restrictions on θε and
shrinking the set of parameters ∩y∈YBD (y) that are compatible with the bounds.
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Figure 1: Information and Equilibrium Predictions

Panel (A) Panel (B) Panel (C)

Complete Information Minimal Information Privileged Information
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Note: - We represent BNE outcomes in the space (ε1, ε2) for the one-parameter entry game with payoffs πi (y, ε) =
yi
(
− 1

2yj + εi
)

for i = 1, 2 and εi
iid∼ U [−1, 1] . (A) represents complete information pure-strategy Nash Equilibrium out-

comes, (B) represents minimal information outcomes, (C) represents privileged information outcomes.
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Figure 2: BCE Predictions

P
P

P
P

PP 11
11
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0101

BCE Predictions Complete Information Minimal Information Predictions Privileged Information 

Figure 2: Panel (A) Figure 2: Panel (B)

Note: - We compare BCE predictions QBCEθ with the BNE predictions QBNEθ,S obtained under different information structures

S for the one-parameter entry game with payoffs πi (y, ε) = yi
(
− 1

2yj + εi
)

for i = 1, 2 and εi
iid∼ U [−1, 1]. The axes

represent probabilities of outcomes Py . (A) shows the set QBCEθ containing the BNE predictions under different restrictions
on information. (B) shows the set of BCE predictions inside the unit simplex.
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Figure 3: Equilibrium Assumptions and Identification

Δ

Δ 1

2

(A): Identification Under R1 (B): Identification Under R2

(C): Identification Under BCE (D): Identification Under MXNE

Δ 2

Δ 1

Δ 1 Δ 1

Δ 2Δ 2

Note: - We represent the identified sets for ∆1,∆2 under different restrictions on behavior in a two-player game with
payoffs πi = yi (yj∆i + εi), εi ∼ N (0, 1). Data are generated by Nash Equilibrium play with complete information.
The black dot represents ∆1 = −1/2 and ∆2 = −1, true parameters in the DGP. (A) represents, in blue, the identified
set under the assumption of Level-1 rationality. In (B) we add, in green, the identified set under Level-2 rationality
and complete information. The sets in (A) and (B) are not bounded from below. (C) includes in red ΘBCEI ; in (D)
we add, in yellow, the set ΘBNE

I (S̄).
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Figure 4: Identification of Correlation among Payoff Types

Panel (A): LB,UB for X = {[0, 0, 0]} Panel (B): BD (y, x) for different values of x

Panel (C): BD (y) for X = {[0, 0, 0]} Panel (D): BD (y) for X = X
′′

0 0

Note: - We represent bounds on probabilities of outcomes LBy and UBy (Panel A) and bounds BD (y) on the parameter ρ
(Panels B-D) for the two-player game with payoffs πi (y, εi;x, θπ) = yi

(
xTc β

C + xTi β
E
i + ∆−iy−i + εi

)
for i = 1, 2. Payoff

types are distributed ε ∼ N (0,Σ) , Σ =
(

1 ρ
ρ 1

)
, and payoff parameters θπ are the same as those in Table 2. The vector

x takes values in {[0, 0, 0]} for Panels (A) and (C), and in X′′ in Panel (D). See Section 5.1.1 for the definition of X′′ . Values
of x are indicated on the horizontal axis in Panel (B).
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Figure 5: Probabilities of Market Structure Outcomes With and Without
Malls

Panel (A): Average Interval IxW for the Panel (B): Average Interval IxW for the
Probability of No Entrants Probability of At Least Two Entrants

Note: - We represent the average across markets of counterfactual intervals IxW for two different outcomes of interest:
the probability of observing no entry (Panel A), and the probability of observing at least two entrants (Panel B). The
two green lines at the top depict intervals obtained for the model with weak assumptions on information. The two red
lines at the bottom refer to the model with complete information. In each panel average intervals IxW are represented
as solid line segments for xpost and as dashed lines for xpre.
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Figure 6: Expected Number of Entrants

Intervals IxW and Ĩx,x
′

W̃
for the Expected Number of Entrants

Variable Latent Information Fixed Latent Information

Note: - We represent counterfactual intervals IxW (on the left) and Ĩx,x
′

W̃
(on the right) for the expected number

of entrants. Both intervals are computed for the model with weak assumptions on information. The interval IxW
is computed with variable latent information, while Ĩx,x

′

W̃
is computed with fixed latent information. Each figure

represents intervals IxW and Ĩx,x
′

W̃
as green solid line segments for xpost and as red dashed lines for xpre. Segments for

different markets and average values are stacked vertically.
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Table 1: Information and Identification

True Information Structure : S0 = S S0 = SP S0 = S

Projection of Θ̃BNE
I (S′):

S′ = S {−0.50} {−0.36} {−0.2}
S′ = SP [−0.82,−0.72] [−0.54,−0.47] [−0.29,−0.26]
S′ = S ∅ ∅ {−0.50}

Projection of ΘBCE
I : [-1,-0.47] [-1,-0.31] [-1,-0.33]

Note: - We report the identified sets for the one-parameter entry model with payoffs πi (y, εi; ∆) = yi (∆y−i + εi)
for i = 1, 2 and εi ∼ U [−1, 1]. The non-sharp identified sets Θ̃BNE

I ({S}) are obtained under restrictive assumptions
on information S (corresponding to rows) and true information structures S0 (corresponding to columns). The true
value of the parameter in the data generating process is ∆0 = −1/2. For S0 = SP , we generate the data with the
equilibrium corresponding to the threshold ε2 = 3/16. For further details on the computation of ΘBCE

I , see Section 4
and Appendix A.
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Table 2: Identification with Finite Support

Panel (A): X′ βC βi ∆1 ∆2 ρ

θ0 1 1 -1 -1 -

S0 = S̄ [.89, 1.04] [.89, 1.04] [-2.19, -.82] [-2.19, -.82] -
S0 = S [.83, 1.13] [.89, 1.21] [-1.65, -.79] [-1.65, -.80] -
S0 = SP [.79, 1.04] [.89, 1.13] [-2.04, -.72] [-2.04, -.85] -

Panel (B): X′′

θ0 1 1 -1 -1 -

S0 = S̄ [.95, 1.04] [.95, 1.07] [-1.06, -.88] [-1.06, -.88] -
S0 = S [.95, 1.04] [.95, 1.08] [-1.06, -.88] [-1.06, -.88] -
S0 = SP [.95, 1.04] [.95, 1.05] [-1.06, -.88] [-1.06, -.88] -

Panel (C): X′ and correlated payoff types

θ0 1 1 -1 -1 0.8
S0 = S̄ [0.75, 1.2] [0.82, 1.26] [-1.83, -0.7] [-1.83, -0.7] [0.12, 0.8]

Note: - We report projections of the identified sets for the two-player game with payoffs πi (y, εi;x, θπ) =
yi
(
xTc β

C + xTi β
E
i + ∆−iy−i + εi

)
for i = 1, 2. Payoff types εi ∼ N (0, 1) in (A) (B), and ε ∼ N (0,Σ) ,

Σ =
(

1 ρ
ρ 1

)
in (C). The first row in each panel reports the true parameters θ0; subsequent rows report pro-

jections of ΘBCE
I for different assumptions on S0, the information structure of the game that generates the data. (A)

and (C) report sets for data generated with x ∈ X′ , (B) reports sets with x ∈ X′′ . Computational details are in
Appendices A and C.
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Table 3: Descriptive Statistics and Regressions

Panel (A): Demographics of Local Grocery Markets
Variable Mean Std. Dev. Median Max Min

Large Mall in Market 0.130 0.337 0 1 0
421 Markets with no Large Malls:

Population 44,629.22 40,341.88 31,730 297,510 3,276
Surface, in km2 329.90 242.72 275.72 1,969.64 25.19

Tax Income Per Capita, in EUR 13,223.8 1,730.34 13,204.92 18,288.90 8,020.68
# of Supermarkets 1.46 1.95 1 16 0

# of Players in Market 0.85 0.93 1 3 0
63 Markets with Large Malls:

Population 117,614.10 56,195.42 103,925 249,852 35,768
Surface, in km2 447.84 377.92 359.95 2,243.54 95.33

Tax Income Per Capita, in EUR 14,411.47 1,650.48 14,475.88 18,627.36 10,333.89
# of Supermarkets 3.77 2.89 3 13 0

# of Players in Market 1.58 0.87 2 3 0

Panel (B): Regressions of Market Structure on Presence of Large Malls
Model Linear Regression Ordered probit Linear Regression Ordered probit

Variable # of Supermarkets # of Players in Market
(I) (II) (III) (IV)

Large Mall in Market -0.437 -0.222 -0.150 -0.242
(0.278) (0.165) (0.145) (0.175)

Market Size 3.764 2.658 1.213 1.766
(0.236) (0.158) (0.109) (0.143)

Constant 0.167 0.022
(0.378) (0.230)

N 484 484 484 484
R2 0.677 0.255 0.434 0.225

Note: - Panel (A) reports market-level descriptive statistics for the 484 markets included in our analysis. Panel (B)
reports coefficient estimates and standard errors (in parenthesis) from linear regressions (columns (I) and (III)) and
ordered probit models (columns (II) and (IV)). The dependent variable is the number of supermarkets of at least 1500
m2 in column (I) and (II), or the number of supermarket players in column (III) and (IV). Market size is the product
of population and log of tax income per capita. All regressions include fixed effects for 13 administrative regions.
Values of R2 refer to McFadden’s pseudo-R2 for the ordered probit regressions.
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Table 4: Confidence Sets

Parameter Weak Assumptions Complete Minimal
on Info - BCE Info - Nash Info - BNE

(I) (II) (III)

Constant
[-2.15 , -0.21 ] [-3.26, -1.51 ] [-3.51, -3.16]

-1.46 -2.08 -3.32

Market Size
[3.00, 7.64 ] [3.67, 6.23 ] [2.59, 3.94]

3.66 4.28 3.06
Home-region:

Cooperatives
[-0.91, 1.95 ] [-0.21, 1.16 ] [1.36, 1.81]

0.61 0.64 1.60

Italian Groups
[-0.39, 2.62 ] [-0.14, 1.66 ] [1.54, 1.99]

1.34 0.97 1.72

French Groups
[-1.46, 1.96 ] [-0.50, 1.15 ] [1.10, 1.58]

1.10 0.62 1.32
Presence of Large Malls:

Cooperatives
[-3.26, 1.79 ] [-2.37, 0.45 ] [-2.03, -1.19]

1.35 -1.19 -1.61

Italian Groups
[-3.77, 1.49 ] [-2.63, -0.53 ] [-1.46, -0.42]

0.87 -1.41 -1.04

French Groups
[-2.94, 1.02 ] [-4.39, -0.19 ] [-1.30, -0.46]

-1.04 -1.31 -0.80
Competitive Effects:

Cooperatives
[-5.30, -1.11 ] [-2.40, -0.73 ] [-0.55, 0.47]

-2.70 -1.76 0.02

Italian Groups
[-6.11, -1.69 ] [-2.45, -1.34 ] [-1.08, -0.29]

-2.46 -1.84 -0.66

French Groups
[-7.12, -1.55 ] [-3.46, -0.39 ] [1.73, 3.51]

-5.61 -1.49 2.88
ρ - Correlation Of [0.36, 0.96 ] [0.90, 0.99 ]

–Unobservable Profitability 0.69 0.96

Note: - We report estimates for the game-theoretic model of Section 6.2 under different assumptions on infor-
mation. Models in columns (I) and (II) are set identified: for each individual parameter we report projections
of Cn, the .95 confidence set for identified the identified set, as well as the value θ̂0 that minimizes the empirical
criterion function below. The model in section (III) is point identified, and we report for each parameter point
estimates and 95% confidence intervals. See Appendices A and C for computational details.
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Table 5: Counterfactual Change in Probability of Outcomes

Outcome
Weak Assumptions on Info - BCE Complete Info Minimal Info Reduced Form
Var. Info Fix. Latent Info

(I) (II) (III) (IV) (V)

No Entry [-0.24, 0.27] [-0.22, 0.29] [-0.56, 0.04 ]
[-0.34, -0.23] [-0.22, -0.01]

-0.29 -0.12

At least 2 Players [-0.42, 0.24] [-0.41, 0.21] [0.07, 0.40]
[0.20,0.27] [0.02, 0.28]

0.23 0.15

Entry by:

Cooperatives [-0.40, 0.19] [-0.39, 0.17] [0.04, 0.70]
[0.22, 0.33] [0.07, 0.37]

0.28 0.22

Italian Groups [-0.60, 0.15] [-0.59, 0.30] [-0.17, 0.70]
[0.14, 0.29] [-0.07, 0.28]

0.23 0.10

French Groups [-0.56, 0.12] [-0.55, 0.21] [-0.16, 0.51]
[0.05, 0.14] [-0.10, 0.12]

0.08 0.01

Note: - We report in this table counterfactual change in upper bound probabilities I
W

of market structure outcomes
for different models. Columns (I) to (III) correspond to sets I

W
for the model with weak assumptions on information,

under variable and fixed latent information, and for the complete information model, respectively. In column (IV) we
report the 95% confidence interval and point estimate for the change in probability of market structure outcome for the
model with minimal information. In column (V) we report 95% confidence intervals and point estimates for changes in
outcome probabilities obtained from simple parametric models. To compute these we use an ordered probit to predict
probabilities of no entry, Entry by at least 1 Player and Entry by at least 2 Players, and a probit specifications to
predict the binary outcomes Entry by Cooperatives, Entry by Italian Groups, Entry by French Groups. We include
as explanatory variables in each of these models the presence of large malls, as well as interactions and levels of region
dummies, market size, and square of market size.
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Table 6: Relative Size of IxW And IxW

(
θ̂0
)

Variable latent info ratio Fixed latent info ratio
No Entrants Two+ Entrants No Entrants Two+ Entrants
xpre xpost xpre xpost xpre xpost xpre xpost

Average 0.55 0.74 0.87 0.71 0.53 0.68 0.63 0.57
Mkt. 1 0.60 0.67 0.77 0.68 0.59 0.65 0.56 0.62
Mkt. 2 0.59 0.80 0.86 0.67 0.56 0.75 0.53 0.52
Mkt. 3 0.47 0.78 0.86 0.76 0.44 0.74 0.71 0.53
Mkt. 4 0.54 0.78 0.89 0.70 0.48 0.71 0.63 0.60
Mkt. 5 0.49 0.79 0.89 0.76 0.48 0.67 0.68 0.65
Mkt. 6 0.55 0.73 0.87 0.69 0.53 0.71 0.71 0.64
Mkt. 7 0.60 0.81 0.87 0.68 0.61 0.82 0.58 0.50
Mkt. 8 0.55 0.56 0.88 0.74 0.53 0.37 0.66 0.55

Note: - We report ratios of intervals |I
x
W (θ̂0)|
|Ix

W
| and

|Ix,x′

W̃
(θ̂0)|

|Ix,x′
W̃
|

for two outcomes of interest: observing no entrants,

and observing at least two entrants. The ratios are reported for factual (xpre) and counterfactual
(
xpost

)
values of

covariates. Intervals IxW
(
θ̂0
)
and Ix,x

′

W̃

(
θ̂0
)
are computed for the value θ̂0 which minimizes the empirical criterion

function.
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Table 7: Relative Size of Variable and Fixed Latent Information Intervals

Panel (A): Fixed to Variable latent info ratio
|Ix,x′

W̃
(θ̂0)|

|Ix
W (θ̂0)|

No Entrants Two+ Entrants Coop Entry Ita Entry
xpre xpost xpre xpost xpre xpost xpre xpost

Average 0.95 0.89 0.64 0.77 0.90 0.90 0.76 0.52
Mkt. 1 0.99 0.96 0.66 0.86 0.97 0.98 0.91 0.72
Mkt. 2 0.93 0.88 0.55 0.75 0.92 0.86 0.70 0.47
Mkt. 3 0.93 0.93 0.69 0.66 0.88 0.96 0.74 0.52
Mkt. 4 0.89 0.92 0.59 0.84 0.90 0.98 0.76 0.54
Mkt. 5 0.97 0.77 0.65 0.79 0.85 0.92 0.76 0.48
Mkt. 6 0.95 0.95 0.70 0.91 0.96 0.96 0.83 0.77
Mkt. 7 1.00 0.98 0.57 0.73 0.89 0.92 0.70 0.38
Mkt. 8 0.93 0.61 0.69 0.73 0.86 0.70 0.72 0.46

Panel (B): Variable latent info ratio for
Expected Number of entrants
xpre xpost

Average 0.70 0.81
Mkt. 1 0.78 0.91
Mkt. 2 0.60 0.82
Mkt. 3 0.71 0.70
Mkt. 4 0.60 0.85
Mkt. 5 0.77 0.83
Mkt. 6 0.70 0.88
Mkt. 7 0.62 0.86
Mkt. 8 0.79 0.69

Note: -We report ratios of intervals
|Ix,x′

W̃
(θ̂0)|

|Ix
W (θ̂0)| for each market and on average. All intervals are computed for the

value θ̂0 which minimizes the empirical criterion function. Panel (A) reports ratios for four market structure outcomes,
whereas Panel (B) reports ratios for the expected number of entrants.
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Supplementary Materials - For Online Publication

Appendix C - Further Computational Details: Estimation

Computation of Identified Sets ΘBCE
I

We describe in this appendix how compute ΘBCE
I to construct Figure 3 and Table 2 in

the main text. The identified set is defined in Section 3.4 as:

ΘBCE
I = {θ ∈ Θ : G (θ) = 0} ,

where G (θ) =
∫
X supb∈B

[
bTPy|x − h

(
b;QBCE

θ (x)
)]

dPx. Appendix A outlines how to com-
pute G (·), and the choice of discretization for E ; we denote with Ǧ (·) the computed G(·).

As a high-dimensional search over the whole set Θ is infeasible, we conduct a search over
a subset Θ̌. Moreover, since by construction Ǧ (·) > 0, we specify a threshold and report
the computed analog of the identified set:

Θ̌BCE
I =

{
θ ∈ Θ̌ : Ǧ (θ) ≤ cI

}
.

There is no general rule to construct an upper bound for this discretization error that is
valid for every game and data generating process. However, for the two-player binary game
with independent payoff types considered in Table 2, r−1 (where r is the dimension of the
discrete grid of εi that we use to compute Ǧ (·)) is an upper bound of the discretization error
if we restrict QBCE

θ (x) to QPSNE
θ (x) . Since r−1 is representative of the order of magnitude

of the discretization error, we use cI = r−1. Our findings on the informativeness of identified
sets are similar if we use higher values for cI .

To construct Θ̌, we proceed sequentially. We first specify Θ̌1 as a large Halton set of
points around θ0, then find:

Bds =
[(

min
θk

{
θ ∈ Θ̌1 : Ǧ (θ) ≤ cI

})
k=1,...,dΘ

,

(
max
θk

{
θ ∈ Θ̌1 : Ǧ (θ) ≤ cI

})
k=1,...,dΘ

]

and construct Θ̌2 as another Halton set within Bds × 1.2. This procedure is aimed at
constructing more precise boundaries for the identified set. Increasing the umber of points
in Θ̌1 and Θ̌2 increases the precision in the computation of the identified set, at the cost of
computing time. For Table 2, we use |Θ̌1| = 20, 000 and |Θ̌2| = 5, 000.
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Computation of Identified Sets ΘBNE
I

(
S
)

In Figure 3 in the main text we compute the sharp identified set under the assumption
of complete information and Nash equilibrium behavior, allowing for mixed strategies. The
sharp identified set for this case can be obtained by first defining the criterion function:

GMXNE (θ) = sup
b∈Dir

bTPy|x − sup
p∈QMXNE

θ
(x)
bT p


+

(.1)

where Dir denotes the core-determining class (Galichon and Henry, 2011) and QMXNE
θ (xj)

contains the Nash equilibrium predictions for a game with covariates x and parameters θ.
Since Dir is a discrete set, the computation of GMXNE is simple for games with a small
number of players and actions. Then, we have:

ΘBNE
I

(
S
)

=
{
θ ∈ Θ̌ : GMXNE (θ) = 0

}
.

Figure 3 also shows the the identified sets under different behavioral assumptions, R1
and R2. The computation of the corresponding identified sets is analogous to our description
of the construction of ΘBNE

I

(
S
)
. Under the assumptions of R1 and R2, respectively, we

obtain the functions GR1 and GR2 by substituting QR1
θ (x) and QR2

θ (x) for QMXNE
θ into the

function GMXNE . Notice that, as the set of predictions is relatively simple, the computation
of QMXNE

θ (as well as of QR1
θ (x) and of QR2

θ (x)) does not involve numerical simulation of
the values of ε.

Computation of Confidence Sets Cn for ΘBCE
I

We begin by discretizing the space of covariates in three steps. First, we compute
the median of market size and code a binary variable Dm = 1 {market sizem ≥Median}.
Second, we consider the set M̃ of all combinations of Dm and of the other four discrete
regressors in our model (home-region dummies for each player, and presence of large malls),
and classify each market m as one such combination m̃. Out of 25 such bins m̃, 20 contain a
positive number of markets m. Finally, for each m̃ we compute discretized values of market
size as

market sizem̃ = 1
|m̃|

∑
m∈m̃

market sizem.

We end up with a discretization of the market size variable with 20 distinct values. This
procedure preserves the correlations of entry patterns with the exogenous variables in the
data.

To construct a confidence set s Cn for parameters in the identified sets ΘBCE
I we follow
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the procedure outlined in Ciliberto and Tamer (2009). The procedure is based on the values
of the empirical criterion Gn, whose computation is described in Appendix A. We compute
the confidence set via the following steps:

1. We construct deterministic parameter grids using Halton sets around the parameter
values of Probit regressions, and select among these 40 starting points for a Simulated
Annealing routine, which runs for 10,000 iterations.

2. We collect all the parameters visited by Simulated Annealing, and consider the cor-
responding set Θ̌ as an approximation of Θ. We define as gn = minθ′∈Θ̌Gn (θ′) , and
can then obtain for all θ ∈ Θ̌:

G̃n (θ) = Gn (θ)− gn.

3. We extract T = 100 subsamples of size nt = n/4. Subsample size can be an important
tuning parameter in this class of models, as argued by Bugni (2014). We follow
Ciliberto and Tamer (2009) in the choice of this parameter. For each subsample s, we
compute the criterion function using the subsampled observations, so that:

Gsn (θ) = 1
nt

nt∑
j=1

sup
b∈B

[
bT P̂ sy|xj − h

(
b;QBCE

θ (xj)
)]
,

and then we find gsn = minθ∈ΘG
s
n (θ) running a Nelder-Mead algorithm.

4. We choose the cutoff value ĉ0 = ngn × 1.25, and define the set:

Θ̂I (ĉ0) =
{
θ ∈ Θ̌ : nG̃n (θ) ≤ ĉ0

}
.

5. For all θ ∈ Θ̂I (ĉ0) , we obtain then G̃sn (θ) = Gsn (θ) − gsn and the threshold ĉ1 (θ) as
95th percentile of the distribution across subsamples of the statistic:

L̃sn (θ) = nt (Gsn (θ)− gsn) .

We compute then
ĉ1 = sup

θ∈Θ̂I(ĉ0)
ĉ1 (θ) ,

and
Θ̂I (ĉ1) =

{
θ ∈ Θ̌ : nG̃n (θ) ≤ min (ĉ1, ĉ1 (θ))

}
.
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6. Iterating steps 4,5 we obtain ĉ2 and report the confidence set:

Cn =
{
θ ∈ Θ̌ : nG̃n (θ) ≤ min (ĉ2, ĉ2 (θ))

}
.

Further iterations of this procedure do not alter significantly our results.

We report results for confidence sets for parameters in the identified sets. For both ΘBCE
I

and ΘBNE
I

(
S
)
, constructing confidence sets for the identified set, as opposed to constructing

confidence sets for all points in the identified set, yields similar results (as in Ciliberto and
Tamer, 2009).

Computation of Confidence Sets for ΘBNE
I

(
S
)

The construction of the confidence set for parameters in ΘBNE
I

(
S
)
is analogous to the

procedure followed to compute the confidence set under the assumption of BCE behavior,
except that it is based on the empirical criterion function:

GPSNE
n (θ) = 1

n

n∑
j=1

sup
b∈Dir

bT P̂y|xj − sup
q∈QPSNE

θ
(xj)

bT q


+

,

where Dir contains vectors corresponding to core-determining class (Galichon and Henry,
2011) and QPSNE

θ (xj) contains the pure-strategy Nash equilibrium predictions for a game
with covariates xj and parameters θ. We limit Nash equilibria to pure-strategy to maintain
the parallel with Ciliberto and Tamer (2009), but the extension to mixed strategy is imme-
diate and can be done by considering the empirical analogue of (.1) . The confidence set for
parameters identified under the assumption of pure-strategy Nash equilibrium and complete
information is obtained going through the same steps 1.-6. described for the computation
of Cn, where Gn is substituted with GPSNEn .

Computation of Minimal Information Estimates

In the context of the model of our application in Section 6, we compute parameter esti-
mates for a minimal information model θ̂ (S). To apply standard methods in the literature
we maintain the following assumptions:

1. the information structure is S = S,

2. payoff types are iid type-1 EV,

3. the data are generated by an unique equilibrium σx for each x ∈ X.
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Assumptions 2 and 3 impose strong restrictions on the payoff structure and on equilibrium
selection that we do not maintain in either the general model of Section 2, or the application
of Section 6 of the paper.

Under these assumptions, suppose that behavior is defined by the BNE strategy profile
σx; for each player i, let σ̃xi be the equilibrium probability of entry derived from σxi . Define
moreover the deterministic part of expected payoffs as:

ΠE
i (x, θπ, σ) = EσΠi (y−i;x, θπ)

=
∑
y−i

Πi (y−i;x, θπ) σ̃x−i (y−i)

= xTimβi +
∑
j 6=i

∆j σ̃
x
j .

The definition of BNE implies that, for all yi such that σ̃xi (yi) > 0 we have that

σ̃xi =
∫
{εi|ΠEi (x,θπ ,σ)+εi>0}

1 {εi = ei} dF (ei) ,

= Φ
(
xim, σ̃

x
−i;β,∆

)
.

and using the EV distributional assumption, this becomes:

σ̃xi =
exp

{
xTimβi +

∑
j 6=i ∆j σ̃

x
j

}
1 + exp

{
xTimβi +

∑
j 6=i ∆j σ̃xj

} . (.2)

This expression motivates two estimation strategies: the first adopts a Maximum Likelihood
approach, and is described in Su (2014); the second adopts instead a two-step approach,
and is developed by Bajari et al. (2010). We use the former to produce the estimates used
in the paper.

Maximum Likelihood Estimation - Su (2014) - We can reinterpret equation (.2) as the
equilibrium map:

σx = Φ (σx;x, θπ) ,

and can thus form the likelihood function of the data:

L (σ;x, y) =
∑
i,m

{yim × log (σxmi ) + (1− yim)× log (1− σxmi )} ,
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and we adopt an MPEC approach by recovering:

θ̂π = arg max
θπ ,σ

L (σ;x, y)

s.t. σx = Φ (σx;x, θπ) ∀x.

Standard errors can be derived analytically or obtained via bootstrap. Notice that for this
method we need a discrete set of covariates X; we proceed to discretize the set as we do for
the estimation of confidence sets under weak assumption on information.

Two Step Estimation - Bajari et al. (2010) - Assume that there are firm-specific co-
variates: hence, for each player i, we have that Πi (y−i;xm, θπ) = Πi (y−i;xim, θπ) . Then,
we can first recover estimates of (marginals of) equilibrium strategies; in our context this is
equivalent to recovering how entry probabilities vary as a function of x. This can be done by
estimating for each player a function σ̂i (x) = Pr (yi = 1|x) , for instance by fitting a linear
model with OLS. In a second step, we plug the first-step estimates into equation (.2) and
obtain:

Pr {yi = 1} =
exp

{
xTimβi +

∑
j 6=i ∆j σ̂

x
j

}
1 + exp

{
xTimβi +

∑
j 6=i ∆j σ̂xj

} . (.3)

This equation can then be estimated as a Logit model. Standard errors need to be recovered
by bootstrap or with a two-step correction. As opposed to the Maximum Likelihood method,
this method does not require discretization of the covariates.

Comparison of Results - In Table 1 we report estimation results for both methods. The
estimates are qualitatively similar, although (bootstrap) standard errors are systematically
smaller for the Maximum Likelihood method, reflecting its greater efficiency.

[Table 1 about here.]

Appendix D - Further Computational Details: Counterfactuals

Computation of Counterfactuals for the model with Weak Assumptions on In-
formation: the Variable Latent Information Approach

All of the counterfactual objects described in Section 6.4.1 - IxW , IW and IxW
(
θ̂0
)
- can

be easily obtained from the computation of

W (θ, x) = max
ν∈BCEx(θ)

W (ν, θ, x) (PC0)

W (θ, x) = − max
ν∈BCEx(θ)

−W (ν, θ, x) ,
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for all values of θ ∈ Cn, where W is a function such as WŶ (ν, θ, x) or WN (ν, θ, x) which is
linear in ν. For simplicity, we focus on the computation of W (θ, x) since W (θ, x) can be
obtained with minimal changes.

With the same discretization applied in Appendix A, the program (PC0) can be ap-
proximated by the feasible program

max
ν∈R|Y |×r

W (ν, θ, x) (PC1)

s.t.
∑
y,ε ν (y, ε)− 1 = 0

∀ε ∈ Er
∑
y ν (y, ε)− f r (ε; θε) = 0

∀i, yi, y′i, εi
∑
y−i

∑
ε−i ν (y, εi, ε−i) (πi (y′i, y−i, εi;x, θ)− πi (y, εi;x, θ)) ≤ 0.

This is a linear programming problem which can be easily solved with commercial solvers; we
compute it using the solver KNITRO in the modeling environment AMPL. Experimenting
with alternative solvers (e.g. CPLEX) gave us similar results.

Computation of Counterfactuals for the model with Weak Assumptions on In-
formation: the Fixed Latent Information Approach

We first introduce more formally the notion of the BCE for the double game, encompass-
ing both the factual game with covariates x, and the counterfactual game with covariates
x′:

Definition. (BCE of the Double Game) A Bayes Correlated Equilibrium ν̃ ∈ PY,Y,E,T
for the double game Γx,x′ (θ, S) is a probability measure ν̃ over factual and counterfactual
actions profiles, payoff types, and signals that is:

1. Consistent with the prior : for all ε ∈ E , τ ∈ T ,

∑
y,y′∈Y

∫
[t≤τ ]

∫
[e≤ε]

ν̃
(
y, y′, e, t

)
dtde =

∫
[t≤τ ]

∫
[e≤ε]

Pτ |ε(t)dF (e; θε) dt;

2. Incentive Compatible: for all i, εi, τi, yi, y′i such that ν̃ (yi | εi, τi, y′i) > 0,

Eν̃ [πi (yi, y−i, εi;x, θπ) | yi, εi, τi] ≥ Eν̃ [πi (ỹi, y−i, εi;x, θπ) | yi, εi, τi] , ∀ỹi ∈ Yi,

and for all i, εi, τi, yi, y′i such that ν̃ (y′i | εi, τi, yi) > 0,

Eν̃
[
πi
(
y′i, y

′
−i, εi;x′, θπ

)
| y′i, εi, τi

]
≥ Eν̃

[
πi
(
ỹi, y

′
−i, εi;x′, θπ

)
| y′i, εi, τi

]
, ∀ỹi ∈ Yi,
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where the expectation operators Eν̃ [· | yi, εi, τi] are taken with respect to the condi-
tional equilibrium distributions ν̃ (y−i, ε−i, τ−i | yi, y′i, εi, τi) and ν̃

(
y′−i, ε−i, τ−i | yi, y′i, εi, τi

)
,

respectively in the two inequalities.

3. Consistent with factual outcomes: equilibrium behavior in the factual game must be
consistent with factual outcomes, so that

∑
y′

∫
τ

∫
ε
ν̃
(
y, y′, e, t

)
dtde = Py|x (y) , ∀y ∈ Y.

This definition mirrors closely the one in Bergemann, Brooks and Morris (2019). Let the set
˜BCEx,x′ (θ) be the set of all BCE of the double game. To compute counterfactual objects

Ĩx,x
′

W̃
, ĨW and Ĩx,x

′

W̃

(
θ̂0
)
and implement the fixed latent information approach we need to

compute
W̃
(
θ, x, x′

)
= max

ν̃∈ ˜BCEx,x′ (θ)
W̃
(
ν̃, θ, x, x′

)
, (PC2)

where the function W̃ adapts the corresponding W in a natural way, that is:

max
ν̃∈R|Y |×|Y |×r

W̃ (ν̃, θ, x, x′) (PC3)

s.t.
∑
y,y′,ε ν̃ (y, y′, ε)− 1 = 0

∀y ∈ Y Py|x (y)−
∑
ε,y′∈Y ν̃ (y, y′, ε) = 0

∀ε ∈ Er
∑
y,y′ ν̃ (y, y′, ε)− f r (ε; θε) = 0

∀i, yi, y′i, ỹi, εi
∑
y−i,y′−i

∑
ε−i ν̃ (y, y′, εi, ε−i) (πi (ỹi, y−i, εi;x, θ)− πi (y, εi;x, θ)) ≤ 0

∀i, yi, y′i, ỹi, εi
∑
y−i,y′−i

∑
ε−i ν̃ (y, y′, εi, ε−i)

(
πi
(
ỹi, y

′
−i, εi;x′, θ

)
− πi (y′, εi;x′, θ)

)
≤ 0.

To compute these counterfactuals, we need first to operationalize (PC2), which we do with
the usual discretization of E .

There is however another consideration when implementing this method. At the iden-
tification level, if θ ∈ ΘBCE

I there exists a latent information structure such that BCE
predictions can match Py|x. However, the inferential procedure that we employ implies only
that for θ ∈ Cn BCE predictions need to match Py|x approximately. In fact, θ ∈ Cn only
implies that θ is close to the minimizer of the empirical criterion function Gn built using a
finite sample {xi, yi}∞i=1.

Moreover, a feasible implementation of our empirical strategy involves several approx-
imations: we estimate the set Cn by relying on a discretized set of covariates X, and we
discretize the support of E in order to compute ν. Hence, finite-sample and computational
error may make the restriction margν̃ (y) = Py|x for some parameters θ ∈ Cn impossible to
satisfy exactly, thus rendering (PC3) an unfeasible linear program. To address this prob-
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lem, we compute P̃y|x (θ) , the distribution of the observables that best fits the data for a
given parameter θ. More formally, P̃y|x (θ) is equal to q that solves the program:

max
b∈B

min
q∈QBCE

θ
(x)

[
bTPy|x − bT q

]
.

Intuitively, P̃y|x (θ) is the distribution of the observables corresponding to the BCE that
best fits the data Py|x and the parameter value θ. In our experience, these P̃y|x (θ) are
reasonably close to the data for parameters θ in the confidence set. We can thus compute
the counterfactual quantity of interest W̃ (θ, x, x′) as the solution to the program:

max
ν̃∈R|Y |×|Y |×r

W̃ (ν̃, θ, x, x′) (PC4)

s.t.
∑
y,y′,ε ν̃ (y, y′, ε)− 1 = 0

∀ε ∈ Er
∑
y,y′ ν̃ (y, y′, ε)− f r (ε; θε) = 0

∀y ∈ Y |P̃y|x (y; θ)−
∑
ε,y′∈Y ν̃ (y, y′, ε) | ≤ ε

∀i, yi, y′i, ỹi, εi
∑
y−i,y′−i

∑
ε−i ν̃ (y, y′, εi, ε−i) (πi (ỹi, y−i, εi;x, θ)− πi (y, εi;x, θ)) ≤ 0

∀i, yi, y′i, ỹi, εi
∑
y−i,y′−i

∑
ε−i ν̃ (y, y′, εi, ε−i)

(
πi
(
ỹi, y

′
−i, εi;x′, θ

)
− πi (y′, εi;x′, θ)

)
≤ 0.

Notice that the constraint of consistency with the (pseudo-) factual outcomes is enforced
with some slack, to maintain feasibility in light of the multiple approximations involved in
the program. We set ε = 0.001 in our computation; experimenting with tighter and looser
tolerances did not alter the results substantially.

Computation of Counterfactuals for Models with more Restrictive Assumptions
on Information

Complete Information - Under the assumption of complete information and Nash equi-
librium in pure strategies, the lower and upper bound probabilities of market structure
outcomes have analytical expressions for our three-player entry game (Tamer, 2003; Cilib-
erto and Tamer, 2009). We obtain in this wayWS (θ, x) andWS (θ, x), and we can compute
from these the complete information intervals in the bottom part of Figure 5 and the results
in column (III) of Table 5.

Minimal Information - Market structure outcomes Ŷ can be expressed as functions of
a vector of strategy profiles σ as WS

Ŷ
(σ). For instance, the probability that there are no

entrants is
W

S
{(0,0,0)} (σ) = Πi∈I (1− σi) .

Hence, upper bound probabilities for market structure outcome under the minimal infor-
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mation model can be obtained as

W
S

Ŷ
(x) = arg max

σ
W

S

Ŷ
(σ)

s.t. σ = Φ
(
σ;x, θ̂Sπ

)
,

where θ̂Sπ is the parameter estimate obtained under the assumption of minimal information
(see above Computation of Minimal Information Estimates) and Φ represents the equilib-
rium mapping in equation (.2). The average changes in upper bounds probabilities for the
minimal information model reported in column (IV) of Table 5 are computed fromW

S

Ŷ
(x) .

Confidence intervals for the counterfactual prediction are based on 200 bootstrap samples,
and account for uncertainty in θ̂Sπ .

Appendix E - Relation with Grieco (2014)

We show in this appendix that the model presented in Grieco (2014) fits within the
class of models described in Section 2. Consider the following simplified version of Grieco’s
model for a game of two players i = 1, 2 with actions yi ∈ {0, 1} . Payoffs are:

πi(y, η) = yi
(
∆y−i + η1

i + η2
i

)
,

and payoff types η are distributed according to:
η1

1
η1

2
η2

1
η2

2

 ∼ N



0
0
0
0

 ,


σ2 σ2ρ 0 0
σ2ρ σ2 0 0
0 0 1− σ2 0
0 0 0 1− σ2



 . (.4)

The realizations of
(
η1

1, η
1
2
)
are publicly observable, so that player i observes

(
η1

1, η
1
2, η

2
i

)
.

Define now:
εi = η1

i + η2
i .

and notice that player i′s beliefs on ε−i conditional on the observables be summarized by
the conditional density:

ε−i |
(
η1
i , η

1
−i, η

2
i

)
∼ N

(
η1
−i, 1− σ2

)
. (.5)

We want to recast this model so that it fits the framework of Section 2, in which player i
observes its own scalar payoff type εi as well as a signal ti on the opponents’ payoff type.
We interpret η1

−i as the signal that player i gets on ε−i, and η1
i as what player i knows that
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−i knows about her payoff, so that
(
τ1
i , τ

2
i

)
=
(
η1
i , η

1
−i
)
. It follows that

(
τ1
i , τ

2
i

)
=
(
τ2
−i, τ

1
−i
)
,

so signals are public. The distribution of ε is:

Pε = N

((
0
0

)
,

(
1 σ2ρ

σ2ρ 1

))
.

The joint distribution of signals and redefined payoff shocks, derived from (.4) is thus:
ε1

ε2

τ1
1
τ2

1

 ∼ N



0
0
0
0

 ,


1 σ2ρ σ2ρ σ2

σ2ρ 1 σ2 σ2ρ

σ2ρ σ2 σ2 σ2ρ

σ2 σ2ρ σ2ρ σ2



 . (.6)

Notice that (.6) implies that the belief of player i about ε−i conditional on her information
set is:

ε−i | (τi, εi) ∼ N
(
τ1
i , 1− σ2

)
,

which is identical to the belief (.5).

Appendix F - BMM Representation of the Identified Set

Beresteanu, Molchanov and Molinari (2011), henceforth BMM, provide a computable
characterization of the identified set of partially identified models making use of random
set theory. In this appendix, we show how our characterization of the identified set maps
into their framework.

Let z = (x, y) and ε be respectively the vector of observable outcomes and covariates,
and the vector of payoff types. The random vectors are defined on a probability space
(Ω,F , P ) , and let G be the sigma algebra generated by the random vector x. We also adopt
the assumptions 3.1(i),(iii) and 3.2 in BMM, and substitute 3.1(ii) with the assumption of
BCE behavior. We restate these assumptions below for ease of reference:

Assumption 4. Assume that:

1. The discrete set of strategy profiles of the game, Y, is finite.

2. Payoffs πi (y, εi;x, θπ) have a known parametric form, and are continuous in x and
εj .

3. The observed outcome y of the game is the result of BCE behavior in the game of
minimal information S.
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4. The conditional distribution of outcomes Py|x is identified by the data, and ε has a
continuous distribution function.

Let us adapt our notation and denote the set of BCE equilibrium distributions ν
with BCEθ (x), for any given realization of x.. Considering x (ω) as a random vector,
BCEθ (x(ω)) = BCEθ (ω) is a random set. Let Sel(BCEθ) denote the set of all ν (ω), mea-
surable selections of BCEθ (ω). In order to characterize the identified set, we need to map
these equilibria into observable outcomes of the game for each ω ∈ Ω. A realization of ω
implies both a realization of (x (ω) , ε (ω)) , and also a BCE distribution ν (ω) , which in
turn determine the following probability distribution over outcomes:

q(ν (ω)) = ν (· | ε (ω)) ∈ PY ,

where ν (·|ε (ω)) is the conditional distribution implied by the joint distribution ν (ω) ∈ PY,E ,
and the realization ε (ω). Q̃θ is the set of all equilibrium predictions:

Q̃θ = {q (ν) : ν ∈ Sel (BCEθ)} .

Then the conditional Aumann expectation of this random set is:

E
(
Q̃θ | x

)
= {E (q (ν) | x) : ν ∈ Sel (BCEθ)} .

Notice however that:

E (q (ν) | x) = E [ν (· | ε (ω)) | x]

=
∫
E
ν (y | ε) dF

=
∫
E
ν (y,dε) ,

so that E
(
Q̃θ|x

)
= QBCEθ (x) . Hence, our characterization of the identified set is equivalent

to the one proposed in BMM.

Appendix G - A More General Model

The model in Section 2 of the paper embeds an important restriction on information:
our definition of the class of information structures S maintains the assumption that play-
ers know the realization of market-level covariates x and their own payoff type εi. This
restriction in turn is important for the definition of ΘBNE

I (S) and the equivalence result in
Proposition 1. In this appendix we discuss identification under more general assumptions.
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We assume that players first receive a private random signal τ̃xi that is part of their
baseline information structure S̃x defined as:

S̃x =
(
T̃ x,

{
P xτ̃ |ε : ε ∈ E

})
.

This definition of baseline information structure allows for both non-informative signals
and perfectly informative signals on ε. The model in section 2 specifies this baseline to be
perfectly informative about εi; we consider here cases where the baseline could be either
more or less informative.

In addition to the baseline signal, every player receives an extra private random signal
τxi , which may also be informative about the full vector of types τ̃ and the full vector of
ε. An information structure Sx specifies, for a game with covariates x, the set of extra
signals a player may receive and the probability of receiving them, given the realization of
the vector of payoff types and baseline signals. Formally:

Sx =
(
T x,

{
P xτ |τ̃ ,ε, : (τ̃ , ε) ∈ T̃ x × E

})
,

Whereas S̃ describes the baseline information, the information structure S denotes the
extra information players might receive. The game Γx(θ, S̃, S) is then analogous to the game
Γx(θ, S) defined in the main text, except that players observe both baseline signals according
to S̃ and extra signals according to S. We use S(S̃) to denote the class of admissible extra
information structures S when the baseline information structure is S̃.

We also redefine the BNE concept used in the paper:

Definition. (Bayes Nash Equilibrium) A strategy profile σ = ×i∈Nσi, σi : T̃ xi × T xi → PYi
is a Bayes Nash Equilibrium (BNE) of the game Γx(θ, S̃, S) if for every i ∈ N, τ̃i ∈ T̃ xi and
τi ∈ T xi we have that, for every yi ∈ Yi such that σi (yi | τ̃i, τi) > 0 :

Eσ [πi (yi, y−i, εi;x, θπ) |τ̃i, τi] ≥ Eσ
[
πi
(
y′i, y−i, εi;x, θπ

)
|τ̃i, τi

]
, ∀ y′i ∈ Yi.

Based on this modified notion of BNE, which defines equilibrium strategies as functions
of both baseline signals τ̃ and extra signals τ , it’s immediate to redefine the set of BNE
predictions QBNE

θ,S̃,S
(x) for the game Γx(θ, S̃, S) and the BNE identified set ΘBNE

I

(
S(S̃)

)
.

Our main result relies on the following Lemma, a re-statement of Lemma 1 in the article:

Lemma. For all θ ∈ Θ and x ∈ X,

1. If q ∈ QBCE
θ,S̃

(x) , then q ∈ QBNE
θ,S̃,S

(x) for some S ∈ S(S̃).

2. Conversely, for all S ∈ S(S̃), QBNE
θ,S̃,S

(x) ⊆ QBCE
θ,S̃

(x) .
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We may now extend our Proposition 1 to this environment:

Proposition. (Robust identification) Let Assumptions 1 and 2, aptly modified for the game
Γx(θ, S̃, S), hold. Then ΘBCE

I (S̃) = ΘBNE
I

(
S(S̃)

)
. This implies that the identified set under

BCE behavior contains the true parameter value, θ0 ∈ ΘBCE
I (S̃).

For S̃ = S, this Proposition coincides with our Proposition 1 in Section 3 of the article.
However, the explicit reference to the baseline information structure allows us to generalize
the result to environments where players do not observe their own εi, or observe not only
εi but also other components of the vector of payoff types ε.

It’s interesting to investigate how identified sets vary for different assumptions on S̃.
The set ΘBCE

I

(
S(S̃)

)
is certainly not invariant to S̃; intuitively, as information structures

get more informative, the set of BCE predictions gets smaller, and hence fewer parameters
are compatible with the observables, so that the identified set shrinks. This notion of “more
informative” can be made precise (as in Bergemann and Morris, 2016).

Having established that ΘBCE
I

(
S̃
)
is not invariant to S̃, we still maintain that using

S̃ = S is the best compromise given the goal of the paper. Baseline information structures
S̃ that are less informative than S are likely to result in limited identifying power, whereas
baselines that are more informative than S̃ are unlikely to be well justified in most empirical
applications.
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Table 1: Minimal Information Estimation - Two Methods

Parameter Minimal Info Minimal Info
ML - Su (2014) Two Step - Bajari et al. (2010)

Constant
-3.32 -2.89

[-3.51, -3.16] [-3.30, -2.49]

Market Size
3.06 2.62

[2.59, 3.94] [1.63, 3.62]

Home-region:

Cooperatives
1.60 1.95

[1.36, 1.81] [1.48, 2.42]

Italian Groups
1.72 1.60

[1.54, 1.99] [1.03, 2.18]

French Groups
1.32 1.66

[1.10, 1.58] [1.13, 2.19]

Presence of Large Malls:

Cooperatives
-1.61 -0.96

[-2.03, -1.19] [-1.93, 0.011]

Italian Groups
-1.04 -0.50

[-1.46, -0.42] [-1.54, 0.53]

French Groups
-0.80 -0.28

[-1.30, -0.46] [-1.15, 0.59]

Competitive Effects:

Cooperatives
0.02 -0.069

[-0.55, 0.47] [-1.22, 1.08]

Italian Groups
-0.66 -1.57

[-1.08, -0.29] [-2.62, -0.52]

French Groups
2.88 2.93

[1.73, 3.51] [0.69, 5.17]

Note: - We report estimates for the game-theoretic model in Section 6, obtained using the two methods for
the estimation of minimal information games described in this appendix. Bootstrap standard errors are in
parenthesis, and are calculated from 200 bootstrap samples.

A16


	Insert from: "TWERP 1247 - Roncoroni.pdf"
	EstimationDiscrGamesWeakInfo_MagnolfiRoncoroni_Nov2019
	SupplementalAppendix3


