
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Manuscript version: Published Version 
The version presented in WRAP is the published version (Version of Record). 
 
Persistent WRAP URL: 
http://wrap.warwick.ac.uk/134073                            
 
How to cite: 
The repository item page linked to above, will contain details on accessing citation guidance 
from the publisher. 
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work of researchers of the 
University of Warwick available open access under the following conditions. 
 
This article is made available under the Creative Commons Attribution 4.0 International 
license (CC BY 4.0) and may be reused according to the conditions of the license.  For more 
details see: http://creativecommons.org/licenses/by/4.0/. 
 

 
 
Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/288396192?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/134073
http://creativecommons.org/licenses/by/4.0/
mailto:wrap@warwick.ac.uk


Postcondition-Preserving Fusion of Postorder Tree
Transformations

Eleanor Davies

University of Warwick

United Kingdom

Eleanor.Davies@warwick.ac.uk

Sara Kalvala

University of Warwick

United Kingdom

Sara.Kalvala@warwick.ac.uk

Abstract
Tree transformations are common in applications such as

program rewriting in compilers. Using a series of simple

transformations to build a more complex system can make

the resulting software easier to understand, maintain, and

reason about. Fusion strategies for combining such succes-

sive tree transformations promote this modularity, whilst

mitigating the performance impact from increased numbers

of tree traversals. However, it is important to ensure that

fused transformations still perform their intended tasks. Ex-

isting approaches to fusing tree transformations tend to take

an informal approach to soundness, or be too restrictive to

consider the kind of transformations needed in a compiler.

We use postconditions to define a more useful formal no-

tion of successful fusion, namely postcondition-preserving

fusion. We also present criteria that are sufficient to ensure

postcondition-preservation and facilitate modular reasoning

about the success of fusion.

CCS Concepts • Software and its engineering→Com-
pilers; • Theory of computation → Program reasoning.

Keywords tree transformations, program rewriting, modu-

lar reasoning
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1 Introduction
Consider a series of abstract syntax tree (AST) transforma-

tions in a compiler. An initial AST is created by parsing

source code. Then, this AST is passed through a series of
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transformations, the output of each transformation becom-

ing the input of the next. These transformations act to re-

move high-level language features or to optimise the under-

lying program. Finally, target code is generated from the

transformed AST.

Ideally such AST transformations would be highly mod-

ular, with each performing a small, singular rewrite. How-

ever, the greater the number of separate transformations, the

greater the number of AST traversals required. This can be

detrimental to performance, especially when ASTs are large

and each transformation only makes a slight change.

One approach to using transformations effectively is to

automatically fuse transformations, maintaining modularity

for the compiler developer, whilst reducing the number of

AST traversals required when the compiler is used. To this

end, Petrashko, Lhoták and Odersky [15] proposed and im-

plemented miniphase fusion for the Dotty Scala compiler.

Miniphases impose a structure on AST transforming com-

piler phases that allows them to be automatically fused. Anal-

ysis of miniphase fusion in Dotty demonstrated real benefits,

to both modularity and performance.

To accommodate the complex nature of compiling Scala,

there are no formal guarantees for the soundness ofminiphase

fusion. Instead, an informal set of guidelines as to when

miniphases can be successfully fused is provided, relying on

developer experience and detailed knowledge of the compiler.

These guidelines are augmented by postcondition checks dur-

ing testing, which ensure that fused miniphases still establish

the invariants for which they were separately intended.

Relying solely on developer intuition and testing leaves

room for problematic corner cases to slip through the net. In

most work on fusing tree traversals, soundness is formally

proved, yielding stronger correctness guarantees [9, 10, 16–

19]. However, there are two factors that prevent the solutions

proposed in such related work being directly useful in the

case of miniphase-style fusion.

Firstly, the traversals being considered tend to involve

limited transformations. In general, changes cannot be made

to the children of a node, only to the data stored at the node

itself. This is overly restrictive for compiler phases which

need to make drastic structural AST changes.

Secondly, successful fusion is usually defined as producing

a fused transformation that will always give the same result

https://doi.org/10.1145/3377555.3377884
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as running its individual constituent transformations succes-

sively. However, we can demonstrate, with an example, that

this precludes opportunities for fusion that would still be

beneficial, particularly for AST optimising transformations.

We want to exploit fusion as much as possible, whilst still

providing strong correctness guarantees. Therefore, we need

a different formalisation approach, that can handle the kind

of tree transformations required in a compiler, and that takes

a wider perspective on when fusion is successful.

Key points. In this paper, we argue that preservation of post-
conditions, as exploited in Dotty, is a broader andmore useful

notion of successful fusion than preserving all observable

behaviour of the tree transformations involved.

1. We illustrate, with an example, that requiring all be-

haviour to be preserved can prevent fusion that would

actually be beneficial (Section 2).

2. Therefore, we present a wider definition of successful

fusion, preserving postconditions that encapsulate the

intentions of the programmer (Section 3).

3. We then derive and verify criteria for postcondition-

preserving fusion, that allow modular reasoning at

the level of individual tree transformations and their

postconditions (Sections 3 and 4).

4. We also outline how these criteria can be checked, with

techniques ranging from theorem proving to property-

based testing (Section 5).

Additionally, Section 6 contains an overview of and compar-

ison with related work on fusing tree transformations.

2 An Example
Suppose that we have a simple language consisting of bi-

nary arithmetic expressions and an IF0 conditional construct.

Then we can define an appropriate AST structure.

Definition 2.1. For the purposes of this section, we define
a data type Tree as follows:

Tree := NAT Nat | BINOP Op Tree Tree | IF0 Tree Tree Tree

where Op := ADD | SUB | MUL, and Nat is a natural number type.

There are some rewrites that we could make to automati-

cally optimise our ASTs.

Definition 2.2. If the children of a BINOP node are leaves,

namely NAT nodes, we evaluate the expression and replace it

with the result, using some sensibly defined eval function.

binop_eval (BINOP op (NAT n1) (NAT n2))

:= NAT (eval op n1 n2)

binop_eval t := t

Definition 2.3. We simplify IF0 nodes, where the child rep-

resenting the condition is NAT 0, so the first branch is taken.

zero_condition (IF0 (NAT 0) t1 t2) := t1

zero_condition t := t

To apply these rewrites effectively, we need a general

function that traverses our ASTs and transforms them.

Figure 1. Applying two tree transformations in a single

postorder traversal.

Definition 2.4. We define transform to perform a postorder

Tree traversal, recursively applying a given rewrite function.

transform f (NAT n) := f (NAT n)

transform f (BINOP op t1 t2)

:= f (BINOP op (transform f t1) (transform f t2))

transform f (IF0 t1 t2 t3)

:= f (IF0 (transform f t1)

(transform f t2) (transform f t3))

Hence, we can automatically optimise ASTs for our exam-

ple language, by applying the tree transformations that we

have defined. Currently, to apply both optimisations, we use

transform to perform two separate Tree traversals:

transform zero_condition (transform binop_eval t).

Instead, we could combine the two transformations into a sin-

gle traversal. As illustrated in Figure 1, for a given node, we

first transform the node’s children, using both fused trans-

formations, before performing both rewrites on the node

itself with its newly transformed children.

Definition 2.5. We define fused to take two rewrite func-

tions and compose them such that, during a postorder Tree

traversal, both rewrites are applied to each node visited.

fused f1 f2 t := transform (f2 ◦ f1) t

Thus, we can apply both optimisations to an AST within

the same traversal, without having to manually combine the

two transformations. For example, let t0 :=

BINOP ADD (NAT 1)

(IF0 (BINOP MUL (NAT 1) (NAT 0)) (NAT 1) (NAT 0))

Then:

fused binop_eval zero_condition t0 = NAT 2

It would appear, at least for this particular Tree, that our

fused optimisation attempt is successful: binop_eval has re-

moved all BINOP nodes that could be immediately evaluated,

zero_condition has removed all IF0 nodeswith a NAT 0 condi-

tion, and the Tree has retained its inherent value or meaning.

In most related work, successful fusion must preserve the

final result of a series of transformations. That is, for all t:

fused f1 f2 t = transform f2 (transform f1 t).
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Figure 2. binop_eval and zero_condition applied separately in succession.

Figure 3. binop_eval and zero_condition applied fused together.

As illustrated in Figures 2 and 3, for our example Tree t0

this does not hold, since:

transform zero_condition (transform binop_eval t0)

= BINOP ADD (NAT 1) (NAT 1)

However, we find that fusing these two optimisations re-

mains beneficial. In fact, being interleaved in this way has

made our optimisations seemingly more effective. The fused

transformations each uncover opportunities for the other to

optimise further, whereas the result of applying them sepa-

rately can be further optimised by binop_eval. So, we seek a

more permissive view of when fusion is deemed successful.

3 Criteria for Successful Fusion
“The most important property of a program is whether it
accomplishes the intention of its user.” - C. A. R. Hoare [8]

3.1 What Do We Mean By “Successful” Fusion?
Tree transformations, such as AST transforming compiler

phases, are inevitably written to perform a given job. For in-

stance, our example transformations in the previous section

were intended to optimise away given syntactic patterns. It

is therefore vital that, if separately run tree transformations

accomplish their intended behaviours, then so does the result

of fusing them.

To preserve the intended behaviour of tree transforma-

tions, under fusion, it is sufficient to preserve all observable

behaviour. A common interpretation of successful fusion

is that the observable behaviour of fused transformations

should be identical to that of the same transformations run-

ning individually one after the other. However, the previous

example demonstrates that there are cases which this does

not capture. We are perhaps being overly conservative in try-

ing to preserve behaviour that was never necessarily wanted.

It is not always possible to accurately determine the in-

tentions of a developer from the code that they produce. In

Dotty miniphases [15] postconditions are implemented by

compiler developers, to encode the intended behaviour of a

tree transformation. Checks during testing then ensure that

they are preserved by fusion. Analogously, we will think of

“successful” fusion in terms of fusion that preserves relevant

postconditions, as defined informally below.

Definition 3.1. Let f1 and f2 be tree transformations, each

fulfilling a given postcondition, p1 and p2 respectively. We

say that f1 and f2 can be successfully fused, with respect to

p1 and p2, if fused f1 f2 also fulfils both p1 and p2. We refer

to this as postcondition-preserving fusion.

This definition parameterises the success of fusion over

specific postconditions. Thus, we ensure that the intended be-

haviour of our tree transformations will be preserved. More-

over, the postconditions specify exactly what the intended

behaviour is. If a given postcondition poses an obstacle to

fusing transformations, it may be that the developer can

refine their expectations and write a new, less ambitious,

postcondition.

Here we will consider purely functional tree transforma-

tions, that is functions that take a tree and return another
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tree, without any side-effects. Hence, we need only look at

the inputs and outputs of our transformations, when exam-

ining behaviours. This means that postconditions can be

specified as predicates on trees.

3.2 Criteria For Postcondition-Preserving Fusion
Now that we have our notion of success as postcondition-

preservation, we need to know when fusion will be success-

ful. It is possible, as in Dotty, to wait until tree transforma-

tions are fused and check that the postconditions are fulfilled.

However, this means testing or reasoning about the result-

ing complex fused transformation, which conflicts with our

original goal of modularity.

Instead, we propose reasoning about the individual tree

transformations before they are fused. Therefore, we need

criteria to tell us that, given some transformations and corre-

sponding postconditions, fusing them will be postcondition-

preserving. In this section we develop and justify such crite-

ria, with reference to our previous example.

First we define postconditions for our optimising transfor-

mations. In this case, we simply require that the rewritten

AST should contain no instances of the respective syntactic

pattern that we intended to optimise away.

Definition 3.2. For binop_eval we have the postcondition:

post_binop_eval (BINOP op (NAT n1) (NAT n2)) := False

post_binop_eval t := True

For zero_condition we have the postcondition:

post_zero_condition (IF0 (NAT 0) t1 t2) := False

post_zero_condition t := True

Suppose we apply fused binop_eval zero_condition to a

Tree, and require that postconditions post_binop_eval and

post_zero_condition hold afterwards.

Criterion 1. As we visit a node, on our postorder traversal,

we first rewrite it with binop_eval. If we have defined our

transformation and postcondition correctly, then we know

that post_binop_eval should hold after this rewrite. Next we

have to rewrite the node with zero_condition. To be sure

that post_binop_eval will still hold after this rewrite, we

need to know that zero_condition preserves it.

Criterion 2. When applying zero_condition individually,

any children of a node that it rewrites have just been rewrit-

ten by zero_condition themselves, so we can assume that

they already satisfy post_zero_condition. If we are apply-

ing fused binop_eval zero_condition instead, the node will

first be rewritten by binop_eval. Therefore, if binop_eval

makes any changes to the node’s children, they may no

longer satisfy post_zero_condition. So, we need to know

that binop_eval preserves post_zero_condition for all chil-

dren of the nodes that it rewrites.

3.3 Formalising and Verifying Our Criteria
Here we outline how we have formalised and verified our

criteria, generalising from our example. We have also mech-

anised work from this section and Section 4, using the Coq

proof assistant [22].
1

We parameterise our definition of trees over a data type X

representing node labels. So in the case of our example, X :=

NAT Nat | BINOP Op | IF0. To highlight the inductive nature

of the following definitions, we differentiate between a Leaf

and an inner Node, although this is not strictly necessary as

a Leaf is just a Node with an empty list of children.

Definition 3.3. We define a Tree as: a Leaf labelled from

some set of labels, or a Node with a label and a child list.

Tree := Leaf X | Node X (List Tree)

for some label type X.

As in our example, we separate our rewrite rules from the

process of traversing and transforming the tree. This allows

us to impose a standardised postorder traversal, and hence

automatically fuse our transformations.

Definition 3.4. We define a function transform that takes a

rewrite function f : Tree → Tree and applies it recursively

to a given Tree.

transform f (Leaf x) := f (Leaf x)

transform f (Node x cs)

:= f (Node x (map (transform f) cs))

Our definition of fusion is then identical to that in Defini-

tion 2.5, taking two rewrite functions and applying both to

each node visited, during a postorder Tree traversal.

Definition 3.5. For rewrite functions f1, f2 : Tree →

Tree and Tree t, we define fused as:

fused f1 f2 t := transform (f2 ◦ f1) t

where ◦ is standard function composition.

Now we can think about postconditions for our transfor-

mations. We define postconditions as predicates over Trees,

allowing us to express some Tree property that must hold

after a tree has been transformed. Particularly with AST

transformations in compilers, we would commonly want

such a property to hold for the entire Tree. Hence, we define

a function to check recursively that some predicate holds for

a node and all of its descendants.

Definition 3.6. For a predicate p : Tree → {True, False},

we define a function to check it recursively:

check p (Leaf x) := p (Leaf x)

check p (Node x cs) := p (Node x cs)

∧ ∀ c ∈ cs, check p c

We do not concern ourselves here with whether a postcon-

dition is appropriate for the tree transformation it describes.

If a transformation is not behaving as expected before fusion,

1https://github.com/EleanorRD/postcondition-preserving-fusion
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then its behaviour after fusion is largely irrelevant. Therefore

we will need to assume that a tree transformation satisfies

its defined postcondition. It is then the developer’s job to

convince themselves of this.

Given that all of our rewrite rules are applied recursively,

we can assume that all descendants of a node being rewritten

have already been rewritten and hence already fulfil the

postcondition. Therefore, we say that a rewrite function f

satisfies a postcondition p if rewriting any node, whose

children fulfil p, will result in a Tree that fulfils p.

Definition 3.7. For some rewrite function f and postcondi-

tion p, we define satisfies as:

satisfies f p := ∀ t, (∀ c ∈ children t, check p c)

⇒ check p (f t)

Having established that postconditions are appropriate

for their respective tree transformations, we define the nec-

essary relationships between a transformation and the post-

condition of the other transformation that it is being fused

with. This relationship is not symmetric, differing depending

on whether the transformation is the first or second of the

fused pair. As explored in our example, our fusion criteria

for postcondition-preservation are as follows.

Definition 3.8. For some rewrite function f and postcondi-

tion p, we have two criteria:

FC1 f p := ∀ t, check p t ⇒ check p (f t)

FC2 f p := ∀ t, (∀ c ∈ children t, check p c)

⇒ ∀ c′ ∈ children (f t), check p c′

These definitions can then be used to express criteria that

ensure that fusing two tree transformations will preserve

given corresponding postconditions. Suppose we are fusing

f1 and f2, in that order, with postcondition p1 and p2 respec-

tively. We require FC1 f2 p1 so that we know f2 preserves p1.

We also require FC2 f1 p2 so that we know that f1 preserves

p2 in any children of the node that it is rewriting.

Therefore, with our criteria, we can assemble our theorem

for postcondition-preserving fusion of tree transformations.

Theorem 3.9. Let f1 and f2 be tree rewrite functions, and
p1 and p2 be postcondition predicates. Then:
satisfies f1 p1∧ satisfies f2 p2∧ FC1 f2 p1∧ FC2 f1 p2

⇒ ∀ t, check p1 (fused f1 f2 t)

∧ check p2 (fused f1 f2 t)

In proving this theorem, and hence verifying our fusion

criteria, we can split it into two lemmas, each considering a

different postcondition.

Lemma 3.10. Let f1 and f2 be rewrite functions and p1 a
postcondition. Then:

satisfies f1 p1 ∧ FC1 f2 p1

⇒ ∀ t, check p1 (fused f1 f2 t)

Proof. We prove this lemma by induction, on the structure

of the Tree data type.

Let t = Leaf x. Then fused f1 f2 t becomes f2 (f1 t).

We know that f1 t fulfils check p1, due to satisfies f1 p1.

Hence, f2 (f1 t) also fulfils check p1, as FC1 requires that f2

preserves p1.

Now, let t = Node x cs. Then fused f1 f2 t becomes

f2 (f1 (Node x (map (fused f1 f2) cs))). Our induction

hypothesis is that check p1 (fused f1 f2 c), for all c in

cs. Therefore, f1 (Node x (map (fused f1 f2) cs)) fulfils

check p1, due to satisfies f1 p1. And so, as before, FC1 en-

sures that f2 (f1 (Node x (map (fused f1 f2) cs))) also

fulfils check p1. �

Lemma 3.11. Let f1 and f2 be rewrite functions and p2 a
postcondition. Then:

satisfies f2 p2 ∧ FC2 f1 p2

⇒ ∀ t, check p2 (fused f1 f2 t)

Proof. As for the previous lemma, we proceed by induction.

Let t = Leaf x. Then fused f1 f2 t becomes f2 (f1 t). Since

t has no children, FC2 dictates that any children of f1 tmust

fulfil check p2. Therefore, f2 (f1 t) fulfils check p2, due to

satisfies f2 p2.

Now, let t = Node x cs. Then fused f1 f2 t becomes

f2 (f1 (Node x (map (fused f1 f2) cs))). Our induction

hypothesis is that check p2 (fused f1 f2 c), for all c in

cs. So, any children of f1 (Node x (map (fused f1 f2) cs))

must fulfil check p2, due to FC2. Therefore, we know that

f2 (f1 (Node x (map (fused f1 f2) cs))) fulfils check p2,

since we know satisfies f2 p2. �

4 From Pairwise To Multiple Fusion
In order to fully reap the benefits of fusion, we want to be

able to fuse a list of multiple transformations. Hence, in this

section we extend our pairwise results to consider a list of

arbitrary-many tree transformations to fuse.

We define compose_list, which recursively composes a

list of tree rewrite functions, and which we can use in place

of compose in our definition fused_list.

Definition 4.1. For a list of rewrite functions and a Tree t,

we define:

compose_list [] t := t

compose_list (f :: fs) t := compose_list fs (f t)

Definition 4.2. For some list of rewrite functions fs and

Tree t, we define:

fused_list fs t := transform (compose_list fs) t

Now that we can fuse multiple transformations together,

we need to consider how our fusion criteria will scale. We

choose an arbitrary rewrite function f, from our list, with its

corresponding postcondition p. Using FC1 and FC2, we can

split our list into three parts before ++ [f] ++ after and

derive separate criteria for the transformations before and

after f in the fusion order.
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A transformation after fmust preserve p so as not to undo

the work that f has done. So all transformations after fmust

fulfil FC1 with respect to p. A transformation before f must

not introduce children that violate p to ensure that f can

fulfil p. So all transformations before f must fulfil FC2 with

respect to p. Hence we define below our extended criteria.

Definition 4.3. For some list of rewrite functions fs and

postcondition p, we have two fusion criteria:

after_FC1 p fs := ∀ f ∈ fs, FC1 f p

before_FC2 p fs := ∀ f ∈ fs, FC2 f p

Thus, for any given transformation in our list, if it satisfies

its corresponding postcondition, and both extended fusion

criteria are satisfied, then the result of applying our fused

list will fulfil that postcondition.

Theorem 4.4. Let gs ++ [f] ++ hs be a list of rewrite func-
tions and p a postcondition. Then:

satisfies f p ∧ before_FC2 p gs ∧ after_FC1 p hs

⇒ ∀ t, check p (fused_list (gs ++ [f] ++ hs) t)

The proof of this theorem proceeds by nested induction on

various parts of the list, and on the Tree data type structure.

We split this into a number of lemmas that we will prove

before returning to the proof of Theorem 4.4.

Lemma 4.5. Let t be a Tree, p a postcondition, and fs a list
of rewrite rules. Then:

check p t ∧ after_FC1 p fs

⇒ check p (compose_list fs t)

Proof. We prove this lemma by induction on fs. If fs is an

empty list then compose_list fs t is just t, and we are done.

Let fs = f :: fs′. Then compose_list fs t becomes

compose_list fs′ (f t). Our induction hypothesis is, for

any Tree t′, check p t′ ⇒ check p (compose_list fs′ t′).

Hence, we just need to prove check p (f t), which directly

follows from after_FC1 p (f :: fs′). �

Lemma 4.6. Let [f] ++ hs be a list of rewrite functions and
p a postcondition. Then:

satisfies f p ∧ after_FC1 p hs

⇒ ∀ t, check p (fused_list ([f] ++ hs) t)

Proof. We begin by induction on the list hs.

Let hs be an empty list. Then fused_list ([f] ++ hs) t

becomes transform f t. We proceed by induction on t. If t

= Leaf x, then transform f t is just f t, and check p (f t)

follows from satisfies f p, as t has no children.

Otherwise, we have t = Node x cs, and so transform f t

becomes f (Node x (map (transform f) cs)). Our induction

hypothesis is that, for all c in cs, check p (transform f c).

So, we have check p (f (Node x (map (transform f) cs))),

again from satisfies f p.

Now, let hs = hs′ ++ [h]. Our induction hypothesis is,

for any Tree t′, check p (fused_list ([f] ++ hs′) t′). We

proceed by induction on t.

Let t = Leaf x. Then fused_list ([f] ++ hs) t becomes

h (compose_list hs′ (f t)). Due to our hs induction hy-

pothesis, we know that check p (compose_list hs′ (f t))

holds. From after_FC1 p hs we have FC1 h p. Therefore, we

have check p (h (compose_list hs′ (f t))).

Now, let t = Node x cs. Then fused_list ([f] ++ hs) t

becomes h (compose_list hs′ (f (Node x (map (fused_list

([f] ++ hs)) cs)))). Our induction hypothesis for t is that

check p (fused_list ([f] ++ hs) c) holds, for all c in cs. So,

check p (f (Node x (map (fused_list ([f] ++ hs)) cs)))

follows from satisfies f p. Thus, from Lemma 4.5, we have

check p (compose_list hs′ (f (Node x (map (fused_list

([f] ++ hs)) cs)))). Finally, from after_FC1 p hs we have

FC1 h p, and so h preserves check p and we are done. �

Lemma 4.7. Let t be a Tree, p a postcondition, and fs a list
of rewrite rules. Then:

(∀ c ∈ children t, check p c) ∧ before_FC2 p fs

⇒ ∀ c′ ∈ children (compose_list fs t), check p c′

Proof. We prove this lemma by induction on fs. If fs is an

empty list then compose_list fs t is just t, and we are done.

Let fs = f :: fs′. Then compose_list fs t becomes

compose_list fs′ (f t). Our induction hypothesis is, for

any Tree t′, we have (∀ c ∈ children t′, check p c) ⇒ ∀

c′ ∈ children (compose_list fs′ t′), check p c′. Hence,

we just need to show ∀ c ∈ children (f t), check p c,

which follows directly from before_FC2 p (f :: fs′). �

Proof of Theorem 4.4. Let gs ++ [f] ++ hs be a list of rewrite

functions and p a postcondition. Suppose: satisfies f p and

before_FC2 p gs and after_FC1 p hs. We want to show that:

∀ t, check p (fused_list (gs ++ [f] ++ hs) t).

We begin by case analysis on the list gs. If gs is the empty

list, then we are just considering functions [f] ++ hs, which

is exactly the case covered by Lemma 4.6.

Instead, let gs = g :: gs′. We proceed by induction on t.

Let t = Leaf x. Then fused_list (gs ++ [f] ++ hs) t

becomes compose_list hs (f (compose_list gs′ (g t))).

Since t is a Leaf, and consequently has no children, we can

say that ∀ c ∈ children t, check p t. Therefore, we have

∀ c ∈ children (compose_list gs′ (g t)), check p t, due

to Lemma 4.7 and before_FC2 p gs. From satisfies f p,

we then have check p (f (compose_list gs′ (g t))). And,

check p (compose_list hs (f (compose_list gs′ (g t))))

follows from Lemma 4.5.

Let t = Node x cs. Then fused_list (gs ++ [f] ++ hs) t

becomes compose_list hs (f (compose_list gs′ (g t′))),

where t′ = Node x (map (fused_list (gs ++ [f] ++ hs)) cs).

Our induction hypothesis is that, for all c in cs, we know

check p (fused_list (gs ++ [f] ++ hs) c) holds. Thus, we

can follow the same reasoning as the Leaf case to complete

the proof. �
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5 Making Use Of Our Criteria
The main reason behind developing a set of formal criteria

for postcondition-preserving fusion is to allow modular rea-

soning. We can think about f1 and f2 individually, rather

than having to determine whether fused f1 f2 t will al-

ways fulfil the relevant postconditions. Namely, for pairwise

fusion, we are checking:

satisfies f1 p1, satisfies f2 p2, FC1 f2 p1 and FC2 f1 p2,

rather than:

∀t, check p1 (fused f1 f2 t) ∧ check p2 (fused f1 f2 t).

In this section, we explore a range of techniques that could

be used to check the criteria prior to fusion. Each of these

approaches has its benefits and may be suited to different

situations. Modularity is beneficial in each of these cases.

5.1 Using a Proof Assistant
Proof assistants, or interactive theorem provers, allow de-

velopers to implement software and formally prove that it

satisfies desired properties, such as our fusion criteria. Hav-

ing simple modular tree transformations to reason about will

make this process easier for the inexperienced user, as there

is generally a steep learning curve in using proof assistants.

Moreover, if the proofs are reasonably simple, there is more

chance that the small amounts of proof automation, present

in such tools, will be helpful.

The Coq proof assistant [22] is a popular choice for veri-

fying software. We have used Coq to mechanise and check

the formalisation and proofs in this paper. This not only

substantiates the work, but also leaves behind a framework

that could be used as a template to implement specific tree

transformations and prove that the fusion criteria hold.

Verified code implemented in Coq can be directly ex-

tracted into a number of languages, such as OCaml and

Haskell. Hence, the software does not need to be imple-

mented a second time for verification. There are also projects

like hs-to-coq [1, 20], which aims to automatically translate

Haskell code into Gallina, the Coq specification language.

Such tools help to bridge the gap between verification, via

theorem proving, and software implementation.

5.2 Automated Static Analysis
Another, more automated, possibility is to use some form

of static code analysis software. Static analysis examines

the behaviour of a program without executing it, and can

exploit tools like SMT solvers to check that given properties

hold. Such approaches tend to be less expressive than using

a proof assistant, but provide the benefit of automation.

With automated verification methods, modularity is valu-

able. Having smaller components and simpler properties to

check helps to avoid issues such as state-explosion. More-

over, many such methods search for a counterexample input,

if a proof cannot be found. A counterexample is most useful

if it can be directly linked with a specific section of code,

to effectively diagnose the problem. This is more likely to

happen if the verification effort is highly modular.

5.3 Runtime Checks
Contract syntax is often used to express properties to be

checked at runtime. This can exist in native form in a lan-

guage, such as JML, or as part of a library, such as Predef

in Scala. Keywords like require and ensuring are used to

express preconditions and postconditions at a given point in

code. Exceptions may be raised if these conditions are not

met. Contracts can be permanently in place during runtime

or toggled for use only during testing.

If we are implementing modular tree transformations, it is

necessary for the conditions that we are checking to also be

modular. It is not straightforward to express, using contracts,

a property referring to multiple tree transformations which

are defined in different parts of code. Therefore, our criteria

are useful here, in that each only relates to one tree transfor-

mation. Postconditions can then be expressed as part of the

contract syntax.

5.4 Property-Based Testing
Property-based testing frameworks are designed to test for

specific properties, using a large number of appropriate ran-

dom inputs. This can be used in a similar way to contract

syntax, during testing, however it removes the required prop-

erties from the code itself. It also allows the user to express

properties about multiple elements, rather than just one

point in the code.

The advantage of modularity here, is that the tests can

be very specific. If a given test fails, it is easy to localise

which criteria was not met, as well as which particular tree

transformation caused the problem.

5.5 Generalising Proofs For Removal Rewrites
It is also possible to prove that rewrite rules will always

fulfil the criteria, if they have some other property which is

even easier to check. Making generalisations like this can

further reduce the effort required in verification or testing.

For example, in this section we prove that a rewrite function

which just acts to remove a section of the tree will satisfy

our fusion criteria with respect to any postcondition.

We will call a rewrite function a removal if rewriting a

tree always returns either the tree itself or one of its children.

Hence, the transformation is simply removing part of the

tree, if it changes the tree at all. This is the case for the

example transformation zero_condition, that we defined in

Section 2, and for other simple AST optimisations such as

folding Boolean expressions.

Definition 5.1. A rewrite function f is a removal if, for
every Tree t, either f t = t or f t ∈ children t. We will

denote this property as: removal f.
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We can prove that all removal transformations will satisfy

both pairwise fusion criteria FC1 and FC2, for all possible

postconditions.

Lemma 5.2. Let f be a rewrite function and p a postcondition.
Then: removal f ⇒ FC1 f p.

Proof. Let t be a Tree and suppose that check p t holds. We

need to show that check p (f t) holds. We proceed by case

analysis on t.

Let t = Leaf x. Due to removal f, we know that f t is

either just t or a child of t. Since t is a Leaf and thus has no

children, it must be the case that f t = t. And we already

know that check p t holds.

Now, let t = Node x cs. If f t = t, then as before, we are

done. Otherwise, f t ∈ children t. Due to the recursive

nature of check, we already know that check p c holds for

any c ∈ children t. �

Lemma 5.3. Let f be a rewrite function and p a postcondition.
Then: removal f ⇒ FC2 f p.

Proof. Let t be a Tree and suppose that ∀ c ∈ children t,

check p c. We show ∀ c′ ∈ children (f t), check p c′,

proceeding by case analysis on t.

Let t = Leaf x. As in the previous lemma, since t has

no children, it must be the case that f t = t. And we have

already assumed that ∀ c ∈ children t, check p c.

Now, let t = Node x cs. Again, if f t = t, we are done.

Otherwise, f t ∈ children t and the recursive definition of

check grants us what we seek. �

Checking that removal f holds should be straightforward

and directly related to the implementation of any given

rewrite function. By generalising our proofs, in this way,

we can yield strong guarantees without having to write very

similar proofs for similar tree transformations.

6 Related Work
6.1 Fusing Compiler Phases
Our work is largely inspired by the miniphase approach im-

plemented in the Dotty compiler [14, 15]. Most commonly,

Scala is compiled to Java bytecode, by generating an abstract

syntax tree (AST) which is transformed multiple times be-

fore being used to generate appropriate bytecode. These AST

transformations rewrite high-level features using lower-level

concepts and optimise program code. Dotty provides a tem-

plate for implementing AST transformations, or miniphases,

which allows them to be automatically fused. This includes

imposing a postorder AST traversal.

Dotty illustrates that useful tree transformations can still

be implemented within a template like this. However, not all

miniphases are fused, with that section of the compiler con-

sisting of several distinct fused blocks. Petrashko et al. [15]

give a series of high-level criteria which determine whether

miniphases are fusible. One criterion involves preserving

invariants, which is ensured in practice by dynamic postcon-

dition checks for each miniphase during testing.

Thus, the concept of postcondition-preserving fusion is

central to considering successful fusion in Dotty. Petrashko

et al. argue that their fusion criteria are more easily appli-

cable to realistic tree transformations than strict soundness

criteria. Further to this, we have demonstrated that, even for

some very simple tree transformations, strict soundness is

overly restrictive, and that fusion can make certain transfor-

mations more effective.

Through implementing miniphases in Dotty, Petrashko

et al. establish the real-world benefits of such a fusion ap-

proach. Empirically, they show improvements in compiler

running time and overall memory usage. Miniphase fusion

results in a 35% reduction in the time taken by their tree

transformations. Anecdotally, they also detail advantages to

the open-source development approach, in making it easier

for multiple programmers to understand the codebase and

contribute towards independent compiler phases.

There are two features of miniphases that our work does

not currently consider, but could be extended to incorporate.

Firstly, transformations in miniphases can examine and alter

entities outside of the AST being transformed. Secondly, in

addition to postconditions, miniphases may have precon-

ditions in the form of a list of other miniphases that must

have already been run. These are both aspects that we could

consider incorporating in the future.

6.2 Deforestation and Stream Fusion
The miniphase framework itself builds on the idea of defor-

estation [2, 6, 23]. Particularly in functional programming,

developers build up complex functions by successively ap-

plying simpler functions, which often communicate through

intermediate data structures. Deforestation aims to avoid

explicitly generating these intermediate data structures by

automatically fusing the constituent functions.

As initially proposed by Wadler [23], deforestation deals

with fusing a very restrictive set of functions. For instance,

functions must be in treeless form so they cannot construct

any internal data structures themselves. Efforts to extend

deforestation to a wider range of functions often involve

identifying functions which cannot be fused and abstracting

them out of the process.

Shortcut deforestation [6] standardises the way that lists

are produced and consumed, using foldr/build pairs which

can be cancelled. This has evolved into stream fusion [3,

12] which applies to a wider range of intermediate data

structures and is used in the Glasgow Haskell Compiler.

Some approaches use category theory to reason about de-

forestation and fusion [7]. Takano and Meijer [21] extended

shortcut deforestation beyond lists, to other data structures.

Generalising the idea of foldr/build pairs to hylomorphisms,

existing results on the fusion of hylomorphisms [13] can be

applied to the case of deforestation. Nistal et al. implemented
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a similar categorical approach to fusion in Coq [5], which we

could have exploited in our Coq developments. However, for

practical applications where developers should interact with

the framework, it can be more approachable to maintain a

syntactic perspective.

Tree transformations can also bemodelled using tree trans-

ducers. For instance, Fast [4] is a language based on tree

transducers to examine programs involving functions over

trees. Moreover, Jürgensen and Vogler [11] showed that syn-

tactic composition of top-down tree transducers is equivalent

to shortcut fusion. The transformations in our work are in-

herently different as requiring a postorder traversal imposes

a bottom-up approach instead.

6.3 Fusing Tree Traversals
There is a significant amount of existing work that focuses

on fusing tree traversals, in which a tree is traversed mul-

tiple times to compute some final values. Generally, these

approaches allow traversals to alter the information stored

at a node but not the children of a node. This allows for

stronger correctness guarantees, but limits the kind of tree

transformations that can be specified.

Temporal locality can be exploited to improve the per-

formance of tree traversals. By successively running the

traversals which visit the same nodes, the node data will still

be in cache, making it easier to retrieve. Given a series of

points that traverse and interact with a tree, point blocking

[9] involves sorting these points into blocks, depending on

the nodes that they visit. Each block performs a single tree

traversal and, at each node, all points in the block that inter-

act with that node are applied. Point blocking relies heavily

on preprocessing to sort the points into appropriate blocks.

Traversal splicing [10] is a similar technique that sorts points

dynamically, as they are being applied, to enhance locality.

The work of Jo and Kulkarni [9, 10] on enhancing locality

focused mainly on independent tree traversals. Weijiang et

al. [24] developed a static dependence test to extend these

techniques to a wider range of traversals, that may inter-

act with each other. In analysing the node access path in

the traversal algorithms, the test determines whether point

blocking or traversal splicing could be applied safely and

when node visits can be reordered.

Rajbhandari et al. [17, 18] looked at automatically finding

the optimal fusion schedule for recursive traversals of k-d

trees. In particular, they considered the MADNESS system,

which is designed for numerical scientific simulations. They

examined the data dependencies of traversals based on their

consumer-producer relationships and showed that fusing

operators by interleaving them can improve performance by

improving locality, as the trees used are often larger than

cache.

TreeFuser [19] is a framework that looks to automatically

fuse more general tree traversals. It employs codemotion and

partial fusion to perform as much fusion as possible. Code

motion involves rearranging code such that fusion becomes

feasible, for instance by changing the traversal order. Partial

fusion considers traversals that cannot be fused completely,

but can be fused over parts of the tree, still improving per-

formance. TreeFuser produces a dependence graph that is

used to determine when these techniques are applicable.

Qiu and Wang [16] implemented a decidable fragment

of the Dryad logic for reasoning about trees. Dryaddec is

especially suited to analysing tree traversals which calculate

some measurement of the tree. One sample Dryaddec appli-

cation is to check whether the fusion of a certain set of tree

traversals is allowed, that is whether the fused traversals

will have identical behaviour.

6.4 AST Transformations and Future Work
The tree transformations that we have considered, as exam-

ples in this paper, perform simple AST rewrites generally

used in preprocessing compiler steps. More involved tree

transformations tend to occur in later compiler phases, for

example instruction selection bymaximal munch or dynamic

programming techniques. These would be interesting case

studies on which to further evaluate our results.

As our initial source of inspiration, Dotty [15] provides a

wealth of compiler phases, with which to assess the appli-

cability of our theoretical work to realistic transformations.

The AST transformations in Dotty are performed using a

postorder traversal and hence inherently suited to our defi-

nitions. Although as mentioned before, since the transfor-

mations are not purely functional, we would have to either

alter them or extend our formalisation.

7 Conclusion
Ordinarily the increased number of transformations pro-

moted by modularity would result in an increased number

of tree traversals and, hence, worse performance. Automat-

ically fusing tree transformations can avoid this trade-off

of modularity against performance. Fusion allows multiple

transformations to be performed in a single traversal, mit-

igating the performance impact. Such a strategy has been

successfully adopted for AST transformations as miniphases

in the Dotty Scala compiler, implemented by Petrashko et al.

[15].

A crucial consideration, when fusing tree transformations,

is correctness. Fused transformations must continue to be

useful, by performing their intended task. Most work on

fusing tree traversals or transformations deems fusion suc-

cessful if the fused transformations will produce an identical

outcome to the same separate transformations run consec-

utively. However, this precludes some fusion opportunities

that would still be beneficial. Moreover, many related tech-

niques focus on a highly restricted set of tree transformations,

in order to prove such soundness guarantees.
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Instead, we have argued for a broader notion of what

we mean by “successful”, namely postcondition-preserving

fusion. We use postconditions to encode the required be-

haviours of a tree transformation, allowing the developer

of the transformation to specify what particular behaviour

is important to them. We can then reason about whether

that behaviour is preserved, rather than trying to preserve

behaviour that is merely coincidental.

We have also derived and verified criteria that are suffi-

cient to guarantee that a given set of tree transformations

can be successfully fused, with respect to a given set of

postconditions. Instead of reasoning about the final fused

transformation, we are able to reason about the tree trans-

formations individually. This will allow modular verification

or testing which appropriately complements the modularity

of the implemented tree transformations.
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