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Fusarium proliferatum is a globally distributed fungal pathogen that affects a range of crop 

hosts and is one of the main producers of mycotoxins, such as fumonisins, in foods. Specific 

PCR primers are commonly used for detection and identification of this pathogen. The aim of 

this study was to validate previously published F. proliferatum-specific primers targeting the 

intergenic spacer (IGS) region and characterize intraspecific variation and homologous 

recombination events for isolates obtained from diseased garlic bulbs in Spain. Sixty-nine 

isolates were morphologically identified as F. proliferatum, and their identity was confirmed 

by sequencing of the translation elongation factor; however, specific IGS primers did not 
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result in an amplification product for nine of these isolates. Further analysis showed that this 

was due to polymorphism in the IGS region and six isolates were classified as IGS type I, 

while the remaining isolates were type II. Sequencing of the complete IGS region revealed 

numerous sequence polymorphisms amongst F. proliferatum isolates, and regions of 

recombination. Duplication and deletion events may have occurred via unequal crossing over 

during mitotic or meiotic recombination. These results suggest that the IGS region may be 

too variable as a reliable target for F. proliferatum-specific identification.

 

Keywords

genetic variability, IGS region, mating type, recombinant regions

1. Introduction

Garlic (Allium sativum) is a horticultural crop cultivated worldwide with a total production of 

around 28.16 Mt. Spain is the largest producer of garlic within the European Union, with 

274,712 t produced in 2017 (FAOSTAT, 2019); exports accounted for 151,731 t.

Garlic is affected by several postharvest fungal diseases, with the most important 

being dry bulb rot primarily caused by Fusarium proliferatum. The pathogen was first 

reported in Germany (Seefelder et al., 2002) and later described in other production areas. In 

Spain, F. proliferatum is the pathogenic fungus most frequently associated with garlic rot 

during storage. Moreover, F. proliferatum is an important mycotoxigenic species, producing 

a broad range of toxins, which may pose a risk for food safety. Disease mainly occurs after 

the drying process and can cause losses of up to 30% of bulbs (Tonti et al., 2012). Fusarium 

bulb rot symptoms initially consist of superficial dry brown necrotic spots that progress 
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toward the clove and, in severe cases, the presence of white mycelium and a water-soaked rot 

can be observed. Fusarium proliferatum belongs to the Liseola section within the Fusarium 

genus. Its teleomorph, Gibberella intermedia, belongs to the Fusarium fujikuroi species 

complex (FSSC), which comprises of at least 12 reproductively different biological species 

(mating populations). F. proliferatum is distinguished from the other species within the FFSC 

complex by the morphology of its microconidia, macroconidia, and absence of 

chlamydospores.

Biologically, F. proliferatum is a heterothallic species with two different mating types 

identified through MAT-1 and MAT-2 idiomorphs. Mating type used to be determined by 

sexual crossing with tester strains, and the subsequent observation of the formation of the 

fruiting bodies with ascospores. However, the cloning and sequencing of different mating 

type genes for several ascomycetes has led to PCR assays which allow the identification of 

MAT gene idiomorphs in different fungi including F. proliferatum (Kerényi et al., 2002).

The importance of the damage caused by F. proliferatum, its wide distribution, and 

the high number of crops affected has led to the development of specific primers for detection 

and identification of the pathogen in diverse materials including food, plant material, and 

soil. Variation within the internal transcribed spacer (ITS) and the intergenic spacer (IGS) 

regions of the ribosomal RNA gene (rDNA) have been used to develop species-specific 

primers for a range of fungal plant pathogens (Bridge et al., 2003) and these regions are 

present in multiple copies per genome and organized as tandem arrays. The IGS region is 

considered to be the most rapidly evolving area within the rDNA array and displays the 

highest variability (Mirete et al., 2013; Gil-Serna et al., 2016), and has therefore been used to 

identify and distinguish closely related Fusarium species (Sampietro et al., 2010).
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Specific primer pairs for PCR assays have been developed for the rapid identification 

of F. proliferatum based on calmodulin gene sequences for isolates from asparagus (Mulè et 

al., 2004a; 2004b) and on the IGS region of the rDNA gene for isolates from infected cereal 

crops (Jurado et al., 2006). This IGS primer pair has been used previously to identify F. 

proliferatum in a range of different crops and situations (Visentin et al., 2009; Sampietro et 

al., 2010; Scarpino et al., 2015).

This study initially aimed to validate published species-specific IGS primers (Jurado 

et al., 2006) for their ability to identify F. proliferatum isolates from garlic in Spain. 

Following unexpected non-amplification of some isolates, the intraspecific variation and 

recombination within the IGS region in F. proliferatum garlic isolates was subsequently 

examined and compared with closely related Fusarium species.

2. Materials and methods

2.1 F. proliferatum isolates and DNA extraction

Sixty-nine putative F. proliferatum isolates were collected from stored garlic bulbs with 

fusarium bulb rot symptoms, originating from different cooperatives in Spain from different 

years (Table 1). Cloves with symptoms were cut, surface-disinfected for 3 min in a 2% 

sodium hypochlorite solution, rinsed twice with sterile distilled water and cultured for 5 days 

at 25 °C on potato dextrose agar (PDA, Conda). After 5 days, isolations were made by 

transferring emerging fungal mycelia to a Petri plate containing PDA (Difco), and 

monosporic cultures were subsequently obtained. Isolates were maintained on PDA at 25 °C 

and morphological identification was performed following the taxonomic criteria of Leslie 

and Summerell (2006). Genomic DNA was extracted from all isolates using a 
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hexadecyltrimethylammonium bromide (CTAB) method according to Stępień et al. (2003) 

and DNA concentrations were adjusted to 10 ng/ml following quantification using a 

NanoDrop spectrophotometer.

2.2 PCR assays and sequencing

Identification of isolates as F. proliferatum based on morphology was confirmed by PCR 

amplification and sequencing of part of the elongation factor 1-α (EF-1α) gene using EF1-

T/EF2-T primers (O’Donnell et al., 1998). Next, the F. proliferatum species-specific primers 

Fp3-F/Pr4-R as described by Jurado et al. (2006) were tested for their ability to amplify DNA 

from all 69 F. proliferatum isolates. Where isolates did not produce the expected 230 bp 

amplicon, the PCR test was repeated and a further PCR amplification of the EF-1α gene was 

carried out. This control assay demonstrated that DNA from each isolate was readily 

amplifiable, thus confirming that the lack of amplification with Fp3-F/Pr4-R primers was 

most probably a result of primer mismatch and not due to other possible causes, such as DNA 

degradation or the presence of PCR inhibitors. To identify potential mismatch of Fp3-F/Pr4-

R primers, new primers were designed (IGSseqF/IGSseqR; Table 2) to examine a 700 bp 

region of the IGS covering the Fp3-F/Pr4-R binding sites for 20 of the 69 F. proliferatum 

isolates, including the 9 where no PCR products were obtained. Furthermore, two specific 

PCR assays using primer pairs IGSTIF/R and IGSTIIF/R (Table 2) were also carried out to 

identify two non-orthologous IGS types (types I and type II) as identified in F. proliferatum 

and F. globosum by Jurado et al. (2012). Finally, PCR amplification and sequencing of the 

complete IGS region was carried out for three F. proliferatum isolates displaying different 

IGS sequence types using universal primers iNL11 and CNS1 (Table 2) and nuclear 

ribosomal operons were sequenced with primers iNL11, iCNS1, NLa (5′-TCT 

AGGGTAGGCKRGTTTGTC-3′) and CNSa (5′-TCTCATRTACCCTCCGAGACC-3′). The 

presence of mating type genes in F. proliferatum isolates (MAT-1 and MAT-2) were also 
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identified by PCR using the primers GfMAT1-F/GfMAT1-R for MAT-1 allele, and 

GfMAT2-F/GfMAT2-R for MAT-2 allele as described by Kerenyi et al. (2002). All PCR 

amplifications were carried out in volumes of 25 µl containing 0.8 µM of each primer 

(Sigma-Aldrich), 0.2 mM of dNTP, 1× NH4 reaction buffer, 2 mM MgCl2, 0.75 U Taq DNA 

polymerase (BIOTAQ, Bioline), and 20 ng genomic DNA.

The new IGS primers IGSseqF/IGSseqR were designed using the Primer3 program 

(http://primer3.ut.ee/) following alignment (ClustalW method) and analysis of IGS sequences 

from different F. proliferatum isolates (AJ879946, HQ165887, GU737458, AY249383, 

DQ831905) and related species downloaded from the NCBI database, including F. sacchari 

(AJ8796944, KC869398), F. fujikuroi (AJ879945, HQ165889, AY249382), F. globosum 

(AY249384), and F. mangiferae (GU737449). PCR amplification conditions were as follows: 

5 min at 94 °C; 40 cycles of 30 s at 95 °C, 20 s at 58 °C, 35 s at 72 °C; and 3 min at 72 °C.

Primer sequences and references of the PCR conditions used in this study are as 

shown in Table 2. The PCR amplifications were performed with a TC-PRO thermal cycler 

(BOECO). Amplicons for all PCRs were visualized following gel electrophoresis with the 

presence of ethidium bromide under UV light. PCR amplicons were purified with the 

UltraClean 15 DNA Purification Kit (MOBIO Labs) and sequencing was conducted using the 

primers on an ABI 3730xl genetic analyser by Stab Vida Ltd (Portugal). Sequences were 

processed and edited using the 4peaks v. 1.8 program and compared in the GenBank database 

and Fusarium-ID.

2.3 Data analysis

Sequences were aligned and analysed using Geneious v. 4.8.3 software (Biomatters,). The 

SVARAP program was used to visualize conserved and more variable regions of the IGS 

sequence alignment.
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Complete IGS region aligned sequences were then subjected to recombination 

analysis using the Recombination Detection Program (RDP4 Beta 4.95, Simmonics). Several 

methods were implemented to identify recombination breakpoints in the alignment of the F. 

proliferatum FPG24, FPG64, and FPG82 isolates and in seven closely related Fusarium 

species: F. proliferatum (AJ879946), F. fujikuroi (AJ879945), F. sacchari (AJ879944), F. 

mangiferae (GU737449), F. circinatum (AY249403), F. fractiflexum (AY249386), and F. 

globosum (AY249384). The specific algorithms used were GENECOV, Bootscan/Rescan, 

Chimaera, MaxChi, SiScan, 3Seq, and RDP. Because different algorithms do not always 

identify the same recombination events, only events detected by at least three out of four 

algorithms were counted as valid (p ≤ .05). The minor parent was defined as the one 

contributing the smaller fraction of the recombinant, while the major parent was the one 

contributing the larger fraction of the recombinant.

3. Results

3.1 Validation of F. proliferatum-specific PCR primers

Sixty-nine Fusarium isolates from garlic were morphologically identified as F. proliferatum 

based on the presence of club-shaped catenate microconidia with a flattened base, aseptate, 

produced on mono- and polyphialides. Curved macroconidia usually had 3 to 5 septa. 

Sequences of the EF-1α (c.730 bp) for all 69 isolates showed 99% identity and 100% query 

coverage with F. proliferatum NRRL 31071 and NRRL 25082 on the NCBI database. 

However, the F. proliferatum-specific primers Fp3-F/Pr4-R (Jurado et al., 2006) did not 

amplify the expected PCR product (c.230 bp) for nine isolates (FPG05, FPG06, FPG07, 

FPG54, FPG56, FPG63, FPG73, FPG74, FPG82; Table 1). This was explained by the results 

of the analysis of the partial IGS region sequences (IGSseqF/IGSseqR) where a 
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polymorphism in the Fp3F primer annealing sequence and a deletion of 67 nucleotides bases 

within the primer annealing region of Fp4R were detected (Figure 1).

3.2 Identification of IGS type

Two non-orthologous IGS types, named type I and II, were identified within F. proliferatum 

garlic isolates using the two primer pairs IGSTI-F/R and IGSTII-F/R (Jurado et al., 2012). 

Six isolates were classified as type I (FPG4, FPG 41, FPG59, FPG64, FPG65, FPG75), while 

the remaining 63 isolates were classified as type II (Table 1). When comparing IGS type with 

the results using the F. proliferatum-specific primers Fp3-F/Pr4-R, the nine isolates which 

did not result in amplification were all type II isolates (Table 1; Figure 2).

There was a strong correlation between mating type (MAT) and successful 

amplification using the specific primers Fp3-F/Pr4-R (r = .71) and moderate correlation 

between mating type and IGS type (r = .44) was detected (p ≤ .001). Five of the six IGS type 

I isolates and all nine isolates that did not amplify using the F. proliferatum-specific primers 

Fp3-F/Pr4-R showed the MAT-1 idiomorph. All but two of the 54 IGS type II strains that 

amplified using Fp3-F/Pr4-R primers showed the MAT-2 idiomorph (Table 1; Figure 2).

3.3 Intraspecific comparison of the IGS organization

To assess the extent of IGS variation, partial IGS sequences of 20 F. proliferatum isolates 

obtained using IGSseqF/IGSseqR primers were initially examined. This revealed that there 

were variable regions corresponding to a 67 bp deletion at positions 550–600, and an 

insertion of 11 bp at position 450 (Figure 3). This was confirmed following sequencing of the 

complete IGS region (iNL11, iCNS1, NLa, and CNSa primers) for F. proliferatum isolates 

FPG24, FPG64 and FP82, which corresponded to different IGS groups based on 

amplification with Fp3F/Fp4R primers, IGS type and mating type (Figure 2). These complete 
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IGS sequences also showed that a region spanning position 859 to 1800 bp was characterized 

by an abundance of transition and transversion events, whereas the rest of the sequence 

(1800–2352 bp) was generally conserved with only one SNP detected (Figure 3).

Pairwise identity values were calculated for each alignment of the three isolates 

FPG24, FPG64, and FP82. The levels of identity between the FPG24 and FPG64, FPG24 and 

FPG82, and FPG24 and FPG64 strains were 96%, 93.4% and 92.8%, respectively (Table 3). 

FPG24-FPG64, FPG24-FPG82, and FPG64-FPG82 strains differed by single nucleotide 

polymorphisms (SNP) at 85, 69, and 90 sites, respectively. Sequence comparison of the three 

strains revealed the presence of an 11 bp insertion in the FPG24 sequence, as well as three 

deletions, 1, 67, and 11 bp in length (positions 368, 571–637, and 1121–1131, respectively) 

in the FPG82 isolate.

The short sequence AGGGTAGGTA was found repeated five times in the isolate 

FPG24 while it was repeated twice in FPG64 and FPG82. The similar motif AGGTAGG was 

repeated 19 times in isolate FPG24 while it was repeated 16 times in FPG64 and FPG82. In 

contrast, the motif GGCTGTGTG was repeated twice in both FPG24 and FPG64 while in 

isolate FPG82 it was detected only once.

The consensus GRTVYAGGGTAG sequence motif, as reported by Mbofung et al. 

(2007) and O’Donnell et al. (2009) in F. oxysporum, was also present 17 times in FPG24 and 

FPG64 isolates and 15 times in FPG82 isolate and dispersed over approximately 1.5 kb in the 

central portion of the IGS rDNA. A 106 bp consensus sequence (with 87.9% pairwise 

identity level) was repeated in the IGS region at the 742–848 and 1796–1902 positions.

3.4 Recombination analysis
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The RDP4 software was used to detect homologous recombination events. The alignment of 

the IGS region of the three F. proliferatum isolates FPG24, FPG64, and FP82 suggested two 

significant recombination regions (Table 4). Recombination breakpoints in FPG82 for all five 

recombination methods (RDP, Geneconv, Bootscan, MaxChi, and 3Seq) were detected. 

FPG64 and FPG24 were identified as the major and minor parents, respectively. Moreover, 

four of the methods identified isolate FPG24 as a recombinant, and isolates FPG82 and 

FPG64 as the major and minor parents, respectively.

To detect recombination events in closely related Fusarium species, an analysis of an 

alignment within seven species (F. proliferatum, F. fujikuroi, F. sacchari, F. mangiferae, F. 

circinatum, F. fractiflexum, and F. globosum) was performed. The program detected two 

recombination events; again, isolates FPG82 and FPG24 were identified as recombinants, but 

from different parents. In the case of the FPG82 recombinant, five methods implemented in 

RPD4 software identified the major and minor parents as F. globosum and FPG24, 

respectively. In the case of the FPG24 recombinant, four methods identified F. fujikuroi and 

another isolate of F. proliferatum as the major and minor parents, respectively.

4. Discussion

All Fusarium isolates from garlic were morphologically identified as F. proliferatum and 

their identification was confirmed through EF-1α sequencing. The failure of the species-

specific PCR using Fp3-F/Fp4-R primers (Jurado et al., 2006) for nine out of the 69 studied 

isolates was unexpected and found to be caused by primer mismatch due to polymorphism in 

the target IGS region. These results are consistent with a report by Visentin et al. (2009), who 

observed a similar lack of amplification for three of six F. proliferatum isolates from maize 

originating in north-western Italy.
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Dissanayake et al. (2009) reported that PCR analysis using specific primers for F. 

verticillioides (VERT-1/VERT-2) and F. proliferatum (PRO1/PRO2) were inconsistent with 

morphological and sequence analysis for Japanese isolates from Welsh onion, demonstrating 

that other species-specific primers can lead to the misidentification of F. verticillioides and F. 

proliferatum in onion. Both F. verticillioides and F. proliferatum isolates from maize in 

Hungary, identified by morphological characters, yielded species-specific PCR fragments, in 

contrast to four strains identified as F. subglutinans, of which only two gave specific 

fragments when PCR amplified using the SUB-1 and SUB-2 primers (Szécsi et al., 2011).

Our initial investigation of intraspecific variability within the F. proliferatum isolates 

from garlic identified two non-orthologous IGS types (type I and type II), as also reported by 

Jurado et al. (2012), for a range of isolates from different hosts and locations. However, in 

contrast to the findings of Jurado et al. where most of the isolates were IGS type I (70.5%), 

the majority of the Spanish garlic isolates in the present study were type II (91.3%).

In another previous study, the relationship between the presence of the two different 

MAT alleles and the EF-1α and FUM1 gene phylogenies was studied for F. proliferatum 

isolates (Gálvez et al., 2017). Clusters observed on both phylogenies were correlated with 

groups based on MAT alleles (r = .788 for EF-1α and r = .745 for FUM1). In the main group 

for both phylogenetic analyses, the majority of isolates displayed the MAT-2 allele while 

MAT-1 was the prevailing allele for the remaining groups. In the present study, there was a 

strong correlation between mating type and amplification with the F. proliferatum species-

specific primers while there was a moderate correlation between mating type allele and IGS 

type.

Further analysis of the IGS region for F. proliferatum isolates from garlic revealed 

that the most variable regions corresponded to a 67 bp deletion and an 11 bp insertion, with 
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the former corresponding with the hybridization site for the species-specific reverse primer 

Fp4-R. Pairwise identity values for alignments of three F. proliferatum isolates representing 

different IGS groups indicated that FPG24 and FPG64 were more similar (96% nucleotide 

identity) than FPG64 and FPG82 (92.8% nucleotide identity). These differences were based 

on 69–90 SNPs and 4 indels within the IGS rDNA region, which ranged from 1 to 67 bp in 

length. Similarly, Mbofung et al. (2007) reported numerous sequence polymorphisms 

consisting of insertions, deletions, and single nucleotide transitions and substitutions within 

the IGS region among formae speciales of F. oxysporum. This high intraspecific variability 

for IGS sequences has been detected as repeated sequence motifs in many fungi 

(Pramateftaki et al., 2000; Mishra et al., 2002). In the present study, several repeat elements 

were distributed across much of the IGS region of F. proliferatum. Three short repeats (7, 9, 

and 10 bp) were observed in different numbers within the isolates from garlic. This is in 

contrast to the results of Mirete et al. (2013), who studied the partial IGS sequences of 22 

strains of F. proliferatum isolated mainly from cereals in Spain and revealed that the number 

of short sequences was conserved. The consensus sequence motif GRTVYAGGGTAG was 

identified in the majority of IGS sequences in the F. proliferatum garlic strains in the present 

study and this sequence has also been duplicated across the IGS region within F. oxysporum, 

as reported by Mbofung et al. (2007) and O’Donnell et al. (2009). The high intraspecific 

variability detected in Fusarium spp. due to variable numbers of subrepeats within the IGS 

rDNA may lead to discordant phylogenies (Mbofung et al., 2007; Fourie et al., 2009; 

O’Donnell et al., 2015).

These examples of structural variants of the IGS region might have arisen as a result 

of unequal crossing over and thus might be considered intermediates in the process of 

concerted evolution (Dover, 1986; Hillis and Davis, 1988; Pramateftaki et al., 2000). The 

alignment of the entire IGS region of the three F. proliferatum strains in the present study 
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suggested different intraspecific and interspecific recombinants. Meiotic recombination may 

be associated with the situation where FPG82 was identified as a recombinant, and isolates 

FPG24 and FPG64 were identified as the parents; this is not only because sexual 

reproduction is reported to be relatively common in F. proliferatum (Leslie and Klein, 1996), 

but also because both MAT-1 (FPG64) and MAT-2 (FPG24) alleles and different IGS types 

are represented within F. proliferatum isolates from garlic and share the same geographic 

region. In the situation where FPG24 was identified a recombinant, and isolates FPG82 and 

FPG64 were identified as the parents, both contained the MAT-1 allele; hence, this could 

have occurred by unequal mitotic crossing over rather than meiotic recombination, which has 

been suggested as one of the major driving forces in the evolution of rDNA units (Eickbush 

and Eickbush, 2007). Mitotic crossing over can have an important impact on concerted 

evolution and can occur between sister chromatids and between repeats (intrachromatid 

recombination) (Ganley and Scott, 1998; James et al., 2001). The simple sequence motifs 

within the repeat arrays, in addition to the long repeat elements, may act as recognition sites 

for the initiation of recombination. Thus, we hypothesize that these duplication and deletion 

events may have occurred via unequal crossing over via mitotic recombination.

Moreover, the possibility of producing recombination events in this region with 

closely related Fusarium species was detected: FPG82 was a recombinant of F. globosum 

and FPG24 while FPG24 was a recombinant of F. fujikuroi and another isolate of F. 

proliferatum (GenBank database). In this case, F. proliferatum strains are interfertile with F. 

fujikuroi (Desjardins et al., 1997; Leslie et al., 2007) although naturally occurring hybrids 

between F. proliferatum and F. fujikuroi have been recovered from native prairie grass in 

Kansas (Leslie et al., 2004). The existence of F. proliferatum hybrids potentially limits the 

use of a single region to identify an unknown isolate of F. proliferatum. Although, initially, 

the use of specific PCR assays for F. proliferatum was reported to be effective, it is not clear 
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how reliable the assays are over the entire range of genetic diversity of F. proliferatum 

(Proctor et al., 2010). This work shows that the design of the more widely used F. 

proliferatum-specific primers based on the IGS region is not adequate due to the occurrence 

of a significant number of false negatives at least for strains from garlic. If identification of F. 

proliferatum through sequencing of a single gene or region can sometimes be insufficient to 

distinguish it from other species or hybrids, then it is likely that specific PCR assays based on 

a single primer pair from one gene will not always suffice. PCR assays that employ multiple 

primer pairs and amplify fragments from multiple loci should overcome limitations of assays 

based on a single primer pair (Proctor et al., 2010). O'Donnell et al. (2007) have developed 

rapid, multiple primer extension assays to identify F. proliferatum and other Fusarium 

species among pathogenic strains from humans. The assay exploited SNPs among Fusarium 

species in the RNA polymerase II gene and combined the SNPs with microsphere and laser 

technology. This provides an additional contribution to the arsenal of tools for identifying 

and detecting F. proliferatum as well as other Fusarium species.

In summary, commonly used species-specific primers failed to detect all F. 

proliferatum isolates collected from garlic in Spain due to extensive variability In the IGS 

region. However, it is not known if there are populations with this same IGS variation among 

F. proliferatum populations affecting other crops (e.g., maize or asparagus). A multiple 

primer assay may therefore be required for the accurate identification of F. proliferatum.
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Figure legends

Figure 1  Nucleotide polymorphisms detected in the intergenic spacer region of Fusarium 

proliferatum isolates, corresponding with the positions of primers Fp3F (a) and Fp4R (b).

Figure 2  Dendrogram of Fusarium proliferatum isolates based on the presence or absence 

(asterisk) of specific amplification with Fp3F / Fp4R primers, on the intergenic spacer (IGS) 

type (● Type I and ○ Type II), and on the mating type (◼ MAT-1 and ⬜ MAT-2).

Figure 3  Percentage mean variability of different positions along the intergenic spacer (IGS) 

region of 20 Fusarium proliferatum isolates, with the most variable regions indicated; a 

schematic representation of the sequence alignment showing the nucleotide polymorphisms 

and gaps (upper); and a comparison of the IGS sequence organization among three F. 

proliferatum isolates (lower).
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Table 1  Description of the Fusarium proliferatum isolates from infected garlic indicating 

their year of isolation, presence or absence of PCR amplification with the specific primers 

Fp3-F/F4e-R, intergenic spacer (IGS) type and MAT idiomorph

Isolate Isolation year Specific primers (Fp3-F/Pr4-R) IGS type MAT

FPG01 2009 + II 2

FPG02 2009 + II 2

FPG04 2011 + I 2

FPG05 2011 − II 1

FPG06 2011 − II 1

FPG07 2011 − II 1

FPG11 2012 + II 2

FPG13 2012 + II 2

FPG14 2012 + II 2

FPG16 2013 + II 2

FPG18 2013 + II 2

FPG20 2013 + II 1

FPG21 2013 + II 2

FPG22 2013 + II 2

FPG23 2013 + II 2

FPG24 2013 + II 2

FPG25 2013 + II 2

FPG26 2013 + II 2

FPG28 2013 + II 2

FPG29 2013 + II 2
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FPG30 2013 + II 2

FPG31 2013 + II 2

FPG32 2013 + II 2

FPG33 2013 + II 2

FPG34 2013 + II 1

FPG35 2014 + II 2

FPG36 2014 + II 2

FPG37 2014 + II 2

FPG38 2014 + II 2

FPG39 2014 + II 2

FPG40 2014 + II 2

FPG41 2014 + I 1

FPG42 2014 + II 2

FPG43 2014 + II 2

FPG44 2014 + II 2

FPG45 2014 + II 2

FPG46 2014 + II 2

FPG47 2014 + II 2

FPG48 2014 + II 2

FPG49 2014 + II 2

FPG51 2014 + II 2

FPG52 2014 + II 2

FPG54 2014 − II 1

FPG55 2014 + II 2
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FPG56 2014 − II 1

FPG58 2014 + II 2

FPG59 2014 + I 1

FPG60 2014 + II 2

FPG61 2014 + II 2

FPG62 2014 + II 2

FPG63 2014 − II 1

FPG64 2014 + I 1

FPG65 2014 + I 1

FPG66 2014 + II 2

FPG68 2014 + II 2

FPG69 2014 + II 2

FPG70 2014 + II 2

FPG71 2014 + II 2

FPG72 2014 + II 2

FPG73 2014 − II 1

FPG74 2014 − II 1

FPG75 2014 + I 1

FPG76 2014 + II 2

FPG77 2014 + II 2

FPG78 2014 + II 2

FPG79 2014 + II 2

FPG80 2014 + II 2

FPG81 2014 + II 2
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FPG82 2014 − II 1
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Table 2  Primer sequences, amplicon size and primer target site used for the specific 

identification of Fusarium proliferatum isolates and analysis of the intergenic spacer (IGS) 

region

Primer 

names Sequence (5′–3′)

Amplicon 

size (bp) Target site Reference

CGGCCACCAGAGGATGTGFp3-F/Pr4-

R
CGGCCACCAGAGGATGTG

230 Specific for 

F. 

proliferatum

Jurado et 

al. (2006)

ATGGGTAAGGAGGACAAGACEF1T/EF2T

GGAAGTACCAGTGATCATGTT

750 Elongation 

factor 1-α

O’Donnell 

et al. 

(1998)

GCCGTCCTTCGACTCGATTIGSseqF/R

GGACGAACGCCAGACCGGACT

700 Partial IGS 

region

This study

GGATAGCTCTAGGGTAGTTIGSTIF/R

CTAGACRGACACRCAGGAR

250 IGS type I Jurado et al. 

(2012)

CTGGTCGGGATGAGGGIGSTIIF/R

CTGGACGGACACRCAG

300 IGS type II Jurado et al. 

(2012)

AGGCTTCGGCTTAGCGTCTTAGiNL11/ 

CNS1
TTTCGCAGTGAGGTCGGCAG

2220 Complete 

IGS region

O’Donnell 

et al. 

(2009)

GACCAACTCAAACCTCGTGGCGGfMAT1-

F/R TCATCAAAGGGCAAGCGATACCC

320 MAT-1 allele Kerényi et 

al. (2002)

ACCGTAAGGAGCGTCACCATTGfMAT2-

F/R GGGGTACTGTCGGCGATGTT

212 MAT-2 allele Kerényi et 

al. (2002)
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Table 3  Statistics from the alignments of complete sequences of the intergenic spacer (IGS) 

region of isolates of Fusarium proliferatum, showing the pairwise identity, number of single 

nucleotide polymorphisms (SNPs) and size of indels in the nucletotide sequences

Isolates

Length 

(bp)

Identical 

sites

Pairwise identity 

(%) SNPs

Indel sizes 

(bp)

FPG24–

FPG64

2352 2259 96.0 85 11

FPG24–

FPG82

2352 2197 93.4 69 1, 11, 67, 11

FPG64–

FPG82

2341 2172 92.8 90 1, 67, 11
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Table 4  Recombination breakpoints and origin of major and minor related sequences in the 

alignment of the complete sequences of the intergenic spacer (IGS) regions of Fusarium 

proliferatum isolates

Recombinant 

region Parental isolatea
Recombinant 

isolate Begin End Major Minor Detection method

FPG82 1071 1534 FPG64 FPG24 RDP, Geneconv, 

BootScan, MaxChi, 

3Seq

Intraspecific

FPG24 2062 834 FPG82 FPG64 Geneconv, 

BootScan, MaxChi, 

3Seq

FPG82 891 1425 F. 

globosum

FPG24 RDP, Geneconv, 

BootScan, MaxChi, 

3Seq

Interspecific

FPG24 503 1372 F. 

fujikuroi

F. proliferatum 

NRRL 22944

Geneconv, 

BootScan, MaxChi, 

3Seq

aMajor sequence, sequence most closely related to the sequence surrounding the smaller, 

transferred fragment. Minor Sequence, sequence closely related to the transferred fragment in 

the recombinant.
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