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Abstract

Background: Copy number variation is an important class of genomic variation that has been reported in 75% of the
human genome. However, it is underreported in African populations. Copy number variants (CNVs) could have important
impacts on disease susceptibility and environmental adaptation. To describe CNVs and their possible impacts in Africans, we
sequenced genomes of 232 individuals from three major African ethno-linguistic groups: (1) Niger Congo A from Guinea
and Côte d’Ivoire, (2) Niger Congo B from Uganda and the Democratic Republic of Congo and (3) Nilo-Saharans from
Uganda. We used GenomeSTRiP and cn.MOPS to identify copy number variant regions (CNVRs).

Results:We detected 7608 CNVRs, of which 2172 were only deletions, 2384 were only insertions and 3052 had both. We
detected 224 previously un-described CNVRs. The majority of novel CNVRs were present at low frequency and were not shared
between populations. We tested for evidence of selection associated with CNVs and also for population structure. Signatures of
selection identified previously, using SNPs from the same populations, were overrepresented in CNVRs. When CNVs were
tagged with SNP haplotypes to identify SNPs that could predict the presence of CNVs, we identified haplotypes tagging 3096
CNVRs, 372 CNVRs had SNPs with evidence of selection (iHS > 3) and 222 CNVRs had both. This was more than expected (p<
0.0001) and included loci where CNVs have previously been associated with HIV, Rhesus D and preeclampsia. When integrated
with 1000 Genomes CNV data, we replicated their observation of population stratification by continent but no clustering by
populations within Africa, despite inclusion of Nilo-Saharans and Niger-Congo populations within our dataset.

Conclusions: Novel CNVRs in the current study increase representation of African diversity in the database of genomic variants.
Over-representation of CNVRs in SNP signatures of selection and an excess of SNPs that both tag CNVs and are subject to
selection show that CNVs may be the actual targets of selection at some loci. However, unlike SNPs, CNVs alone do not resolve
African ethno-linguistic groups. Tag haplotypes for CNVs identified may be useful in predicting African CNVs in future studies
where only SNP data is available.
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Background
Copy number variants are defined as duplications or deletions
of genomic segments greater than 1 kb in length [1]. While
most genomic studies focus on single nucleotide variants
(SNV), reports of larger genomic variants such as copy num-
ber variants (CNVs) are more limited [2]. However, given their
size, CNVs cover more bases than SNV [2] and may have
greater influence on gene expression and structure [3, 4].
These variations can also be associated with disease or adapta-
tions to changing environments [5–7]. In addition, CNVs can
be the functional variant underlying quantitative trait loci
(QTL) found by genome wide association studies (GWAS).
African populations have the highest genomic diversity glo-

bally [8]. The four major ethno-linguistic groups in Africa are
the Afro-Asiatic, Nilo-Saharan, Khoisan and Niger Congo, the
latter of which consists of two major subdivisions; Niger-
Congo-A and Niger-Congo-B [9]. These populations occupy
diverse environments, have different cultures and ancestry and
show stratification at genomic level [9]. Such genomic differ-
ences between groups may be associated with differences in
susceptibility to infectious diseases such as malaria, tubercu-
losis and HIV [10] or environmental adaptations such as in-
creases in copies of amylase genes associated with increased
carbohydrate consumption [5, 11]. Studies of genomic vari-
ation such as CNVs in Africans may therefore help explain
adaptation, population stratification and disease susceptibility.
African populations are under-represented in genomic

studies [12], but are likely to harbour a large number of
unique CNVs given their higher genomic diversity than
European, American and Asian populations [8]. Here, we
analyse whole genome sequence (WGS) data for CNVs in
populations from Nilo-Saharan, Niger Congo A and Niger
Congo B ethno-linguistic groups. Niger Congo A and Niger
Congo B are the two largest linguistic groups in Africa. Niger
Congo B is comprised of the Bantu languages and is a sub-
group of Niger Congo A and therefore these two groups are
a single lineage. We included the Nilo-Saharan Lugbara as
an out group to make it possible to contrast diversity within
the Niger-Congo populations with diversity between major
linguistic groups.

The populations surveyed and their respective countries
were: Ugandan Nilo-Saharans of Lugbara ethnicity (UNL,
n= 50); Niger-Congo-B speaking populations from Uganda
(UBB, n= 33) and the Democratic Republic of Congo (DRC,
n = 50); and Niger-Congo A speaking populations from Côte
d’Ivoire (CIV, n = 50) and Guinea (GAS, n= 49). We aimed
to discover novel CNV region (CNVR) variants, investigate
population differences associated with CNVs and identify
SNP haplotypes which tag CNVs and may predict such
CNVs in future genome wide association studies (GWAS).
The CNVs identified may also be important in understand-
ing African CNV diversity and allowing inference of CNVs
from population specific SNP-chip data.

Results
Participant characteristics
The countries of origin and ethnicities of participants
are shown in Table 1 and a full list of the 232 samples is
shown in Additional file 1. We used about 50 samples
per population except for 33 from the Ugandan UBB
population (Table 1). 50 samples provide a 95% chance
of discovering CNVRs that have a frequency greater than
7%, while 232 samples give a 95% chance of detecting
CNV with greater than 2% frequency.

Identification of CNVs
To examine the distribution and extent of CNVs in human
African populations, we selected 232 individuals from four
countries (Table 1), representing Ugandan Nilo-Saharan
population of Lugbara ethnicity (UNL); Niger-Congo B-
speaking populations from Uganda (UBB) and Democratic
Republic of Congo (DRC); Niger Congo A speakers from
Côte d’Ivoire (CIV) and Guinea (GAS). Mean depth of se-
quence coverage was 10X and we used autosomal data only.
We used two programs adapted for population scale data for
CNV discovery: cn.MOPS and GenomeSTRiP, which have
been benchmarked previously (see Materials and Methods).
cn.MOPS calls CNVs based on read depth alone, whereas
GenomeSTRiP combines read pairs, split reads, and read
depth to generate CNV calls [14].

Table 1 Ethnicity and origin of individuals analysed for CNV

Pop Country District Ethno-linguistic group (ethnologue code, n)

UNL Uganda Maracha Lugbara (IGG, 50)

UBB Uganda Iganga Basoga (XOG, 33)

DRC Democratic Republic of Congo Bandundu Kingongo (NOQ, 30)
Kimbala (MDP, 20)

GAS Guinea Forecariah Boffa, Dubreka Soussou (SUS, 49)

CIV Côte d’Ivoire Bonon
Sinfra

Baoule (BCI, 11)
Gouro (GOA 21)
Moore (MOS, 12)
Senoufo (SEF, 4)
Malinke (LOI, 1)
Koyaka (KGA, 1)

Ethnologue codes are derived from the ethnic languages of the world resource [13]
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Comparison of cn.MOPS and GenomeSTRiP
Figure 1 summarizes the analysis workflow and Table 2
shows descriptive statistics for the CNVs predicted by the
two methods. Additional file 2 and Figs S1 A & B give fur-
ther details on comparison of CNV called by both methods.
GenomeSTRiP detected 16,149 CNVRs compared to 9213
detected by cn.MOPS. The CNVR were filtered by removing
37 samples that appeared to be outliers on a multiple dimen-
sional scaling plot (MDS) (Additional file 2: Fig S2). These
outlier samples all had exceptionally high numbers of
CNVRs, mean of outliers = 2718 compared with mean of
retained = 548, p= 6.4e-09 and also had higher inbreeding
co-efficient (F) [15], F = 0.13 for outliers compared with F =
0.04 for non-outliers, p= 7.8e-05.
After removing the outliers, predicted CNVR retained

for further analysis were 11,725 from GenomeSTRiP and
2115 from cn.MOPS. We defined as high confidence
CNVRs those called by both GenomeSTRiP and
cn.MOPS. This identified 7608 GenomeSTRiP CNVR that
overlapped or were within cn.MOPS loci (Additional file 3).
No CNVRs were predicted in a single sample only.

Characteristics of CNVRs identified by GenomeSTRiP and
cn.MOPS
The CNVRs discovered by GenomeSTRiP (median
length 5.2 kb) were much shorter than those discovered
by cn.MOPS (median length 32 kb) (Table 2) and were
more similar in length to those in the database of gen-
omic variants (DGV; release date 2016-05-15) (median
length 3.3 kb for CNVR > 1 kb) [16, 17].

GenomeSTRiP called more CNVRs (7608) than
cn.MOPS (1691) and there were multiple GenomeSTRiP
CNVRs within each cn.MOPS CNVR. The total lengths of
CNVRs were 108Mb and 1145Mb in GenomeSTRiP and
cn.MOPS, respectively. We found that 81Mb (75%) of the
GenomeSTRiP CNVRs were within cn.MOPS CNVRs, al-
most twice as much as the 43Mb (40%) that was expected
from random placement of the GenomeSTRiP CNVRs by
simulation. Given that the GenomeSTRiP CNVRs con-
formed most closely in size to those described in DGV we
used the GenomeSTRiP CNVRs for subsequent analysis.
Amongst the 7608 CNVRs, there were 2172 CNVRs with
only deletions, 2384 with only insertions and 3052 with
both insertions and deletions. Counts of each class of
CNV for each population are shown in Additional file 4.
24% of CNVRs were common to all three major lin-

guistic groups represented in the data, 55% were unique
to single linguistic groups and 21% were shared between
pairs of major populations (Fig. 2a). Frequencies of
shared CNVs were most correlated between Niger-
Congo A and Niger-Congo (r2 = 0.38), and least corre-
lated between Niger-Congo and Nilo-Saharan (r2 = 0.17).
Individuals of Nilo-Saharan origin had the lowest pro-
portion of private CNVRs (20%) whilst the Niger-Congo
A and Niger-Congo B populations shared more with
each other than with the Nilo-Saharans, consistent with
their closer linguistic relationship.

Genomic distribution of CNVR
The density of CNVRs varied by about two-fold (1.43–
2.41 CNVRs Mb− 1) between the five populations

Fig. 1 Selection of high confidence CNV and analysis strategy. GenomeSTRiP CNVR overlapping cn.MOPS CNVR were selected and singletons
assessed for removal. The resulting consensus dataset was annotated to identify novel CNVs, show population structure deduced from CNV calls
and tag SNP analysis
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(Additional file 2: Fig S3). The density of CNVRs also
varied between chromosomes in both our data and 1000
Genomes data (Fig. 3) with the mean densities per
chromosome correlated between both datasets (r2 =
0.71) (Fig. 4). The density of CNVs also varied across
chromosomes (Additional file 2: Fig S3). The CNVRs
per Mb ranged from a minimum of 5 in chromosome 18
to a maximum of 15 in chromosome 21. This trend was
similar in counts of CNV calls per Mb with chromosome
18 displaying a minimum of 12 calls and 150 CNVs per
Mb predicted on chromosome 21. We tested the 1000
genomes data for CNVR density by chromosome to con-
firm that variation in CNVR density is common in other
datasets. The same phenomenon was observed with
chromosomes 19 and 22 having high (~ 24 CNVRs
Mb− 1) numbers of CNVRs per Mb compared with other
chromosomes (~ 14 CNVRs Mb− 1) (Fig. 3).

Functional annotation of CNVR
CNVRs were annotated with the classes of genomic
features which they intersected. The most common
annotations were coding and open chromatin regions
(Additional file 2: Fig S4).

Novel CNV loci
We found 7384 of the 7608 final CNVRs analysis set
overlapped known CNVRs in the human DGV and 224
(2.9%) had not been previously reported, and were de-
fined as novel CNVRs. Unique CNVR boundaries in the

DGV cover 75% of the genome and much of the rest
could be repeat regions where reads cannot be mapped
with certainty and therefore CNVRs cannot be detected.
CNVs in novel CNVRs were 10 times less frequently ob-
served compared with CNV in known CNVR (mean fre-
quency of novel CNVs was 0.74% compared with 7.4%
for known CNVs). The novel CNVs were annotated
using BEDTools intersect [18] against the list of Ensembl
genes and regulatory regions (Additional file 5 and Fig
S3B). We sought to clarify the frequency, likely
functional roles and sharing of CNVRs between
populations. Novel CNVRs were distributed
throughout the genome at low frequencies (Fig. 5a).
They intersected 293 unique genes or regulatory re-
gions, with no specific function enriched and were
not generally shared between the populations
(Fig. 2b). When novel CNVRs intersecting protein
coding genes were annotated in PANTHER [19]
using gene ontology (GO) terms, 27% (30/109) of
the novel CNVRs overlapped genes encoding
binding function (GO: 0005488) and 20% (22/109)
overlapped genes involved in catalytic activity (GO:
0003824). The novel CNVRs also overlap SNPs as-
sociated with traits in the genome wide association
study catalogue (Additional file 2: Fig S5 and Add-
itional file 6). Using BEDTools intersect; we found
that both the known and novel CNVR overlapped
Mendelian inheritance disease associated genes
(Additional file 7).

Table 2 CNV statistics using GenomeSTRiP and cn.MOPS algorithms

Parameter GenomeSTRiP cn.MOPS GenomeSTRiP that overlap cn.MOPS

Raw CNV regions (CNVR) 16,149 9213

CNVR after QC 11,275 2115 7608

Total CNV scored 127,699 37,679 106,922

Deletion CNV 65,588 26,008 61,025

Gain CNV 62,111 11,671 45,897

Mean CNV count per CNVR 11.3 17.8 14.0

Mean CNVR per individual 654 193 548

Count of overlapping CNVRs a 7608 1691 7608

Mean Length of CNVR (kb) 9.5 541.7 10.7

SD length of CNVR (kb) 13.2 1287.6 14.1

Median Length of CNVR (kb) 5.3 32.4 6

Total Length of CNVR (Mb) 108.1 1145.8 81.2

Observed Length CNV present in both methods (Mb) (Simulated ± SD)b 81.2 (43.4 ± 1.0)

Descriptive statistics of CNVR found using GenomeSTRiP and cn.MOPS. Note that: GenomeSTRiP has about 5.3 times the number of CNVs compared with cn.MOPS
(11,275 cf. 2115); GenomeSTRiP CNVRs were shorter (median length 5.3 kb) than cn.MOPS (median length 32.4 kb); Total length of cn.MOPS CNVRs was about 10.6
times greater (1146 Mb cf. 108 Mb) than GenomeSTRiP CNVRs. CNVR = CNV region; a genomic location with chromosome, start and end base pair positions that
has overlapping CNVs; CNVRs after QC = The CNVRs left after some CNVRs were dropped because they were only found in samples that were outliers in principal
component analysis (PCA) plots of raw data. CNV count per CNVR = Number of samples with a CNV at each CNV region = Total CNVs count/ Total CNVRs; Mean
CNVRs per sample = Count of CNV divided by number of samples; Mean, Standard deviation, Median, Total length, Observed length: Calculated per CNV not CNVR
aCount of any overlap (minimum 1 bp) between GenomeSTRiP and cn.MOPS CNVR
bThe expected length of CNVs that would be found by both methods was obtained by 100 simulations using all the observed lengths of CNVs allocated to
random places in the genome
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Identification of haplotypes tagging CNVR
SNP haplotypes that tag CNVRs in our populations were
identified to assist the interpretation of SNP based
GWAS studies. We assumed that if a haplotype is asso-
ciated with a CNV then the number of alleles (0, 1, 2) of
that haplotype will be correlated with the observed num-
ber of copies reported in samples in the dataset. There-
fore, copy number is plotted against haplotype count for
each sample and the value of r2 is calculated for the
regression line and also the p value that the slope is zero.
Haplotype blocks were defined using linkage disequilib-
rium (r2 > 0.8), which has been shown to tag shorter
haplotypes in African American genomes compared to
West Eurasians [20]. Alleles of 6942 haplotypes were
associated with 3096 (41%) CNVRs as shown in Add-
itional file 8. The mean count of CNVs at tagged CNVRs
was 27.1 (CNV frequency = 12%) compared with 15.9
(7%) at untagged loci. The proportion of CNVRs that
were tagged increased with frequency; less than 36% of
CNVRs with CNV frequencies less than 10% were
tagged but 64% of CNVRs with frequencies > 10% were
tagged (Additional file 2: Fig S6). There was no differ-
ence between populations in the proportion tagged.
Shorter (< 10 kb) CNVRs were less likely to be tagged
(40% tagged) than longer (> 10 kb) CNVRs (49% tagged),
reflecting the larger number of haplotypes found in
longer CNVRs; there were a mean of 19 haplotypes in
CNVRs < 10 kb and 37 haplotypes in CNVRs > 10 kb.
Haplotypes that tag the CNVR detected in each of the
five populations tested are shown in Additional file 8.
The numbers of haplotype tagged CNVRs in each popu-
lation were; 1286 (38.1%) in the CIV, 1540 (36.6%) in
the DRC, 1261 (36.9%) in the GAS, 1169 (40.3%) in the
UBB and 3200 (39.0%) in the UNL.

CNVRs are overrepresented at loci under selection
In order to identify CNVs with potentially func-
tional effects we tested for association between
CNVRs and loci that have been identified as under
selection, with integrated haplotype score (iHS > 3.0)
in the UNL population in a separate study of the
same data [21]. There were 12,278 SNPs with evi-
dence of selection (−log10 iHS p > 3.0), of these
1805 were within CNVRs, more than twice as many
as would be expected by chance (χ = 1822, p <
10− 10) (Table 3), indicating a positive bias of selec-
tion on human CNVRs as shown in a previous
study [22].
556 of the 1805 SNP with significant iHS scores were

within 548 genes (+/− 5 kb flanks), including 146 protein
coding genes (Additional file 9). The genes were classi-
fied by Ensembl Gene Type and the observed numbers
of each gene type were compared with expected num-
bers from Ensembl (Table 4).

Fig. 2 Venn diagram showing counts of CNVR shared between
populations. a All CNVR from Niger Congo A (NCA), Niger Congo B
(NCB) and Nilo-Saharan (NS) ethnic groups. CNVR overlapping 5 kb
genomic regions were plotted for each population. A majority of the
CNVR are shared between populations, but Nilo-Saharans appear to
have the least CNVR, with most of them shared with the Niger
Congo A and Niger Congo B. b Sharing of novel CNV regions
between populations. Most novel CNVR are unique to individual
populations studied whereas others are shared. To enable
comparison, the genome was divided into 5 kb regions and regions
with novel CNVR in each of these regions for each population were
compared for overlaps
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Immunoglobulin heavy chain variable and constant re-
gion genes were particularly overrepresented with 16
and 57 times as many genes in these classes as would be
expected by chance. However, since these genes are
found in tight clusters, the counts in CNVRs are not in-
dependent and this observation needs interpreting with
some caution. Protein coding genes were under-
represented with 75% of the expected number.
The mean frequency of CNVs in the CNVRs with

SNPs under selection (19%) was twice that of
CNVRs without SNPs under selection (8.5%) (χ2 =
11,673; p < 10− 10, Table 5). CNVs may have been
driven to higher frequency by selection in these
populations.
There were 2693 CNVRs with SNPs that tag hap-

lotypes in the UNL population and 372 CNVRs
with SNPs with evidence of selection. Given that
there was a total of 7608 CNVRs, 132 CNVRs
would be expected to have both tag SNPs and SNPs
with evidence of selection. However, 222 CNVRs

were observed with both tag SNPs and SNPs with
evidence of selection, more than 50% as many as
expected (p = 2.8− 15) (Additional file 9 and Add-
itional file 10). There was also a 32% excess of indi-
vidual SNPs that both tagged CNVRs and had
evidence of selection (16 expected; 22 observed) but
this was not significant (p = 0.09).

Population structure and differentiation
Principal Component Analysis (PCA) of combined
1000 Genomes and TrypanoGEN populations
showed population structure at the continental level
(East Asians, South Asians, Caucasians, Americans,
Africans) Fig. 6a. However, there was no evidence
of structure within most continental populations
including Africans (Fig. 6a, b, c). Considering bi-
allelic deletions only, the populations in our study
here coincided with the 1000 Genomes African
populations (Fig. 6b), but bi-allelic duplications
revealed no population structure within Africa.

Fig. 3 CNV density comparison between TrypanoGEN and the 1000 Genomes project. Counts of Loci per Mb and Counts of CNV per Mb for
each chromosome in TrypanoGEN and 1000 Genomes project data. a Counts of CNVR per Mb in TrypanoGEN b CNV loci counts per Mb in
TrypanoGEN c Counts of CNVR per Mb in 1000 Genomes d CNV loci counts per Mb in TrypanoGEN Both sets show similar patterns of CNV per
chromosome, with 1000 Genomes data having tighter interquartile ranges
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FST analyses of CNVs showed little difference (FST <
0.05) between populations (Table 6). The Nilo-
Saharan Lugbara from Uganda (UNL) were the most
distinctive, FST between UNL and Niger-Congo pop-
ulations were approximately double those amongst
Niger-Congo populations.
Although the mean FST across all CNVRs could not

distinguish between populations 486 CNVRs show high
FST (> 3 standard deviations from the mean FST)
between populations. High FST loci (> 3sd) intersected
selected loci (iHS > 3) within our data. CNVR regions
with the highest FST difference between populations are
annotated in Additional file 11. They overlap genes
which have been associated with such disease; such
as UGT2B17 (UDP Glucuronosyltransferase Family
2 Member B17) associated with the bone mineral
density quantitative trait locus and IRGM (Immun-
ity-related GTPase family M protein) associated
with inflammatory bowel disease 19.

Discussion
CNVR description and novel CNVRs
We identified 7608 consensus CNVs, using Genome-
STRiP and cnMOPS in five African populations. We
only retained CNVRs that were called in more than one
sample and were identified both by cn.MOPS and Geno-
meSTRiP. The cn.MOPS CNVRs were much larger, with
a mean of 4.5 GenomeSTRiP CNVRs overlapping each
cn.MOPS CNVR (Table 2). Given the better match of
GenomeSTRiP CNVR size to the DGV CNVR size we
interpreted this as evidence that cn.MOPS did not
correctly identify CNVR breakpoints and had merged
multiple independent CNVRs. cn.MOPS only uses read
depth while GenomeSTRiP combines read pairs, split
reads, and read depth to generate CNV calls [14]. It is
known that the identification of breakpoints is more dif-
ficult with read depth dependent methods [24], but the
large size difference suggests that cn.MOPS may have
been missing breakpoints altogether and concatenating

Fig. 4 Heat Map showing Pearson Correlation coefficient between the Count of CNV in 10 Mb windows in each population across the genomes
of TrypanoGEN and 1000 Genomes samples. The histogram in the legend indicates the number of correlations with each value of Pearson’s r,
there are large numbers of correlations between 0.5 and 0.6 and also between 0.9 and 1. Correlation coefficients are high (> 0.9) between
populations from the same dataset but lower (0.5–0.6) between populations from different data sets
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adjacent CNVRs. The differences in CNVs detected by
GenomeSTRiP and cn.MOPS are consistent with reports
observing that different algorithms for detecting CNVs
from whole genome sequencing data show major differ-
ences in the CNVs detected [25]. Therefore, to minimise
the risk of identifying CNVs at CNVRs that were an
artefact of a particular algorithm we used the conserva-
tive approach of only identifying CNVs at CNVRs de-
tected by both algorithms.
224 of the 7608 CNVR were defined as novel since

they have not been previously submitted to the DGV.
All the novel loci had low frequencies of < 10% (Fig. 5a).
The locations of CNVR breakpoints are rarely identified
very precisely making it difficult to distinguish homolo-
gous CNVR from merely overlapping ones [24]. We have
taken a conservative approach to defining novel CNVRs
by including only those that do not overlap known ones.
Given that DGV CNVRs span 75% of the genome and
that the remainder includes centromeres and telomeres
and repeat regions the low proportion of CNVs in novel
regions is not surprising. None of the novel CNVs in
our data were common and less than 2% were shared
between populations.

Genomic distribution of CNVR
There was a threefold variation in CNV and CNVR
frequency per Mb between chromosomes in our dataset
and a nearly twofold variation in the 1000 Genomes
data, even after correction for chromosome length
(Fig. 3). The density of CNVRs per Mb for each chromo-
some was correlated in the 1000 Genomes and our data-
sets (r2 = 0.71), suggesting that CNVR density may be an
intrinsic property of chromosomes. The shorter chromo-
somes tended to have the higher densities of CNVRs in
both our data and the 1000 Genomes data and a probe
based study of CNVR distribution also found relatively
high CNVR density on shorter chromosomes (15,16 and
22) [26]. Although the different studies found different
chromosomes with maximum CNVR density, in all cases
the highest densities were on the shorter chromosomes,
and it is possible that these are more sensitive to struc-
tural variation or that shorter chromosomes have higher
variance on these parameters. A cross species compari-
son would be required to test this hypothesis.

Fig. 5 Genomic distribution of CNVR and their frequency in our
samples. a Known and novel CNVR are distributed throughout the
genome, with novel CNVR having lower frequencies compared to
known CNVR. The centre of the circle has the least frequency of <
1% whereas the outermost bounds represent higher frequencies of
up to 100%. Novel CNVR shown in red are lower frequency
compared to known CNVR shown in black. A few known CNVRs
show high frequencies. b Comparison of frequencies in the various
populations. No major differences in CNVR frequencies were found
between populations. All populations are represented in the plot
with different colours. The centre of the plot has the least frequency
of 0% whereas the outermost bounds represent higher CNVR
frequencies. Frequencies are similar across populations. The
frequencies of CNVRs with CNV frequencies < 20% are set to 0% to
enhance visibility. Cyan shows the CNV frequency of those common
to GAS and all populations, UBB are in black, DRC are in green, CIV
are in dark blue and UGN are in red

Table 3 Counts of SNPs inside and outside CNVRs with
significant (−log10 p > 3) and non-significant p values

UNL CNV + 5 kb flanks -LOG10 p > 3 -LOG10 p < 3

SNP in CNVR 1805 493,241

SNP not in CNVR 10,473 8,114,213

CNVRs were defined as the boundaries identified by GenomeSTRiP plus 5 kb
upstream and downstream flanks to maintain consistency with the Tag
SNP analysis
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Tagging haplotypes to CNV
CNVs may be the functional variant underlying some QTLs
discovered by genome wide association studies using SNP
chips. In order to identify SNPs that could predict the pres-
ence of CNVs at a locus, we discovered haplotypes with
alleles that were associated with CNVs at a locus. The haplo-
types we predicted are not only associated with the presence
or absence of the CNV locus but also the likely copy
number. Previous studies have shown correlations between
SNPs or haplotypes and CNVRs. High copy numbers of
CNVs at the HPR (Haptoglobin related protein) locus have
been tagged by haplotypes [27]. There is also strong correl-
ation between alleles of a SNP and CNVs in the CCL4 (Cyst-
eine-Cysteine Ligand 4) chemokine gene [28].
In the current study, SNP haplotypes tagged 41% of CNVRs.

The mean frequency of CNVs at tagged CNVRs (12%) was
nearly twice that of untagged loci (7%). This may reflect a
lower power to detect associations with rarer CNVs. Longer
CNVRs tended to contain more haplotypes and a higher
proportion of these were associated with copy number. The
relationship between SNP haplotypes and CNVs could be
confounded by the same CNV recurring on different haplo-
types or by clustering overlapping non-homologous CNV into
a single CNVR. The weak association between CNV genotype
and population structure in the PCA analysis was consistent
with both these hypotheses. Therefore, the number of CNVRs
associated with SNP haplotypes may be an indicator of the
proportion of stable, non-recurrent homologous, high
frequency CNVRs.

CNVs may be driving selection at some loci
The excess of CNVRs with both tagged haplotypes and
SNPs with signatures of selection (−log10 p iHS > 3) sug-
gests that the CNV may be the genomic feature that is
under selection at these loci. CNVs have been found to
be the structure under selection by other methods [29]
but this is the first time that we are aware that the com-
bination of SNP signatures of selection combined with
SNP haplotype tags have been used. This strategy makes
it possible to use the extended haplotype homozygosity
test to identify CNVRs under selection, which is more
powerful than the previous methods based on FST. How-
ever, it should be noted that although there was a highly
significant excess of CNVRs with SNPs that tagged
CNVs and SNPs that had evidence of selection, the 32%
excess of SNPs that were both Tag SNP and had
evidence of selection was not significant. Therefore, it is
possible that the tag SNP and the SNP with evidence of
selection may both be correlated with some third factor
other than CNV.
Among the loci that had CNVR overlapping selected

loci were Rhesus D (RhD), C1orf63 (Chromosome 1
Open Reading Frame 63), Human Leukocyte Antigen
(HLA), Killer-cell Immunoglobulin-like Receptor (KIR).
The complete deletion of the RhD gene is the common-
est cause of Rhesus negative status. Given the severe
consequences of the interaction between Rhesus nega-
tive (Rh-ve) mothers with Rhesus positive (Rh+ve) foetus
it has been assumed that the null allele might be main-
tained by some yet unknown selective advantage.
Genetic studies have found evidence for heterozygous
advantage at the RhD locus in an ecological regression
study [30] and an analysis of Rh blood group genes
shows that they have experienced positive selection [31].
However, an evolutionary genetics study of the RhD
genetics found no evidence for positive natural selection

Table 4 Classification of Genes in CNVR with evidence of selection

Type Observed Count Count in Ensembl Ratio Observed: Expected

pseudogene 259 14,975 1.5

protein_coding 184 21,817 0.7

lincRNA 89 7177 1.1

IG_V_gene 25 138 16.1

IG_V_pseudogene 22 187 10.5

antisense 20 5339 0.3

miRNA 19 3243 0.5

snRNA 11 2001 0.5

processed_transcript 9 799 1.0

IG_C_gene 9 14 57.2

misc_RNA 8 2127 0.3

SNP with evidence of selection were annotated with a gene name if they were within 5 kb of the gene start or end. Counts of gene types were based on Ensembl
annotation and the Count in Ensembl was the total number of each type recorded in Ensembl Biomart

Table 5 Counts of CNV at CNVR with and without SNP under
selection

Deletions Wild Type Insertions

CNVR with Selected SNP 2779 39,811 6534

CNVR without Selected SNP 83,003 1,566,194 63,553
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affecting the frequency of the RhD selection [32]. These
studies have mostly been conducted in European popu-
lations, our study has found evidence of both deletions
and insertions at this locus so it is not clear which allele
might be under selection.
Variants in the Human Leucocyte Antigen, class II,

DQ beta 1 (HLADQB1) has been associated with pre-
eclampsia in Iranian women [33]. Interestingly, the HLA
locus interacts with the locus for KIR which has been as-
sociated with preeclampsia in Ugandan Bantu women
[34]. KIR3DL1 is also associated with risk of HIV [35].
Given the association of HLADQB1 and KIR in pre-
eclampsia and infectious disease which may impact
infant birth and survival, they may be the actual targets
of positive selection, resulting in the signatures of
selection which have been seen in these loci. These ob-
servations generate useful hypothesis for testing. If QTL
are discovered in these regions, then CNV should be
high priority candidates for the functional variant.

Population structure
WGS CNVs resolve continental populations but not intra-
continental populations
We found that CNV distinguish major continental popu-
lations, when we included Asians, South Asians, Ameri-
cans, Europeans and Africans from the 1000 Genomes
in the same PCA plot. Similarly, the 1000 Genomes pro-
ject found CNV data resolve population clustering at

Fig. 6 PCA plot showing CNV population structure in our data
compared to 1000 Genomes. The PCA distinguishes major
continental populations from each other, but is not able to resolve
specific populations within the continental populations. Africans in
the 1000 Genomes (AFR) are closer to our data (TGN). Conventions
for major continental populations are described by the 1000
genomes project [8, 23]. b PCA plot showing population structure
for bi-allelic deletion CNV. Phase information is non-ambiguous for
bi-allelic deletions. The Africans in the 1000 Genomes overlay the
TrypanoGEN African samples, indicating similar CNV in the datasets.
c PCA plot showing population structure due to bi-allelic insertion
CNV. There was no specific pattern observed as fewer bi-allelic
insertions were available in the data

Table 6 FST for CNVs computed from numbers of deletions per
locus

UNL DRC GAS UBB CIV

UNL 0

DRC 0.004 0

GAS 0.008 0.004 0

UBB 0.004 0.003 0.004 0

CIV 0.008 0.004 0.001 0.004 0

FST were calculated in PLINK using only bi-allelic deletions since phase of
these is known
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continental scales [2]. Consequently, it appears that Afri-
can populations may not be resolved using CNVR data,
although the current study was limited to individuals of
Nilo-Saharan, Niger-Congo A and Niger-Congo B
origins and did not have access to the Afro-Asiatic or
Khoisan populations. To confirm that the inability to re-
solve populations within Africa was not an artefact of
the dataset, we combined our data with 1000 Genomes
Project data and found that samples clustered by contin-
ent of origin but not at any finer scale. In contrast to
these observations Nilo-Saharans, Niger Congo A and
Niger Congo B have been shown to cluster separately in
SNP based PCA [21]. CNV data therefore have low
resolution in distinguishing intra-continental popula-
tions despite genomic CNV accounting for at least
seven times more genomic base variation than SNP
[36]. Several factors may account for the poor reso-
lution of population structure analyses using CNV
data including: 1) overlapping but distinct CNVs be-
ing coded as from a single CNVRs; 2) samples with
different phase being coded the same, e.g. samples
with 3:1 chromosomal copies being coded as 2:2; 3)
recurrent CNVR at the same locus that do not cor-
relate with population history. The potential import-
ance of phase was illustrated by the better resolution
obtained in both the PCA and the FST analysis using
only CNVRs with complete deletions, which means
that phase is known. Recurrent CNV at specific
CNVR have been identified in different colonies of
the same mouse strain and have been associated
with disease in humans such as bronchopulmonary
dysplasia (BPD) among premature infants [37, 38]. In
a study of parent child trios up to 7% of variant loci
in the child could not be associated with variants in
the parents, which is indicative of novel or recurrent
variants or alternatively, problems in variant geno-
typing [39]. This rate of recurrent mutation could
quickly disrupt associations between variant geno-
types and populations.

Bias of selection in CNVR despite low FST
Consistent with the PCA analysis, global FST showed
that African CNV frequencies were similar across
populations. However, there were 3–5-fold more
CNVRs than expected by chance in regions where
previous studies have found evidence for selection
(p < 0.00001). The higher than expected number of
CNVRs in regions under selection suggests either
the CNVRs are under selection or that selection sig-
natures are more likely to arise in CNVRs regions.
Consistent with the hypothesis that selection drives
the enrichment of CNVRs in particular populations,
the alpha thalassaemia deletion reveals signatures of
selection [40] and is selected to high frequencies in

malaria endemic areas because it confers protection
against infection by the malaria-causing parasite
Plasmodium [41] and in our data the KIR locus had
both SNP signatures of selection and SNP haplotypes
tagging CNV. This suggests that CNVs are the poly-
morphism under selection in at-least some of these
regions.

Conclusion
We have presented a CNVR landscape of populations
representing the Niger-Congo A, Niger-Congo B and
Nilo-Saharan African ethnic groups. These include
known CNVRs that have been described in the DGV,
and novel ones (3%), that are not reported in the DGV,
reflecting the diverse nature of these African popula-
tions. Some of the CNVRs described may have medical
significance as they occur in Mendelian disease-causing
genes and overlap SNPs significantly associated with
various traits in the GWAS catalogue. We have used
haplotypes to tag CNVRs. Haplotypes tagging CNVRs
are useful in imputing CNVs from SNP genotyping data
in future studies, especially in African populations
known to have low linkage disequilibrium. We found
overrepresentation of CNVRs in regions showing signa-
tures of selection in SNP based studies, and an excess of
CNVRs with both haplotypes tagging CNVs and SNP
haplotypes with signatures of selection, suggesting a pos-
sible role of CNVR in selection and adaptation. Finally,
we show that CNV distinguish between continental
populations but do not stratify within the continent,
such as the Africans in the current study.

Materials and methods
Population description
The study was conducted in the context of the Trypano-
GEN project [42], which aims to determine host genetic
susceptibility to Human African Trypanosomiasis.
Samples were selected from the TrypanoGEN bio-bank
[42]. The populations included were from East, Central
and West Africa. East African populations were the
Ugandan Nilo-Saharan language speakers (Lugbara) (n =
50) from Northern Uganda and Ugandan Niger-Congo
B speakers (Basoga) (n = 33) whereas Central African
populations were Niger-Congo B speakers (n = 50) from
the Democratic Republic of the Congo. West African
populations were Niger-Congo A speakers (n = 49) from
Guinea and Cote D’Ivoire (n = 50). The samples in the
current study are a subset of those described in the Try-
panoGEN bio-bank [42]. Sample collection, ethical con-
siderations and approvals have been previously described
[42]. The summary of the population, linguistic group
and sampling foci are in Table 1.
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Sequencing and SNP calling
We used the Illumina Truseq polymerase chain reaction
(PCR) free kit to prepare WGS libraries. Sequencing was
done at the Centre for Genomic Research at the Univer-
sity of Liverpool using the Illumina Hiseq2500 system at
10X coverage. We used Burrow Wheeler Alignment
(BWA) to map sequenced reads onto the 1000 Genomes
project human_g1k_v37_decoy reference genome. The
Genome analysis tool kit (GATK v3.4) was used for SNP
calling following GATK best practice guidelines. Quality
control measures of SNPs included filtering by a) remov-
ing loci with > 10% missing SNP, b) removing individ-
uals with > 10% missing SNP loci and c) removing loci
with Hardy Weinberg P-value < 0.01.

CNV description and functional analysis
We use CNVR to refer to a locus at which one or more
samples may have a CNV; the overlapping CNVs at a
CNVR may each have different boundaries. To select
methods to identify CNVR we reviewed the literature
and found 4 major approaches to CNV discovery: 1)
Paired end methods (PE) estimate insert size between
the paired ends but is limited by the size of the fragment
sequenced; 2) Split Read methods (SR) are focused on
identifying exact break points in reads that do not map
but have a mate pair that maps perfectly, it works well
with deletions but can only identify small (< 50 bp) inser-
tions; 3) Read Depth (RD) methods count the number of
reads at each genomic location and 4) De Novo assem-
bly methods create new genome assemblies and compare
them with the reference and are best suited to high
coverage with long read data [14]. Read Depth methods
are most widely used for CNV discovery as they can esti-
mate numbers of copies whereas PE and SR methods detect
the presence of a variant but cannot quantify it. RD
methods can be further subdivided into those that use a
single sample, paired samples (e.g. parent child) or popula-
tion samples. Of the six methods benchmarked recently by
Trost and colleagues [43], only cn.MOPS and Genome-
STRiP use population scale data. Ideally, the performance
of these algorithms should be evaluated against ‘known’
CNVR. This reference of ‘known’ CNVR is made when
several algorithms are used to come up with consensus
CNVR. To evaluate performance of algorithms, the results
of each algorithm are compared to the consensus ‘known’
CNVR by calculating sensitivity (proportion of CNV in
benchmark which an algorithm identifies) and false discov-
ery rate (proportion of CNVs discovered by the algorithm
that are not in the benchmark). Due to limited African
CNV datasets, we referenced an evaluation of CNVR detec-
tion algorithms for sensitivity and false discovery rate
against CNVR in the HuRef CNV Benchmark [43]. From
these evaluations, two algorithms (GenomeSTRiP and
cn.MOPS) integrated data from multiple samples

concurrently to discover CNVR and showed reasonable
sensitivity and false discovery rates. GenomeSTRiP had sen-
sitivity of 0.68; and a false discovery rate of 0.49, whereas
cn.MOPS had sensitivity of 0.38; and a false discovery rate
of 0.33. We therefore used GenomeSTRiP [27] and
cn.MOPS [44] to detect CNVs in binary alignment map
(BAM) files of our data. GenomeSTRiP has previously been
used to detect CNVs in the 1000 Genomes project of hu-
man populations [27]. To validate detected CNVs we tested
for overlap with published CNVs in the public Database of
Genomic Variants (DGV; release date 2016-05-15) using
BEDTools [18]. For GenomeSTRiP we used parameters
recommended for 10X sequence data, whereas for
cn.MOPS, we tested various parameters (Additional file 12).
We annotated CNV overlaps with gene names from the
UCSC genome browser [45, 46] and Ensembl Biomart [47]
for Genome version hg19/GRCh37 using BEDTools [18].

Population clustering (PCA)
We sought evidence for population structure due to CNVs
using PCA in PLINK [48]. CNV data were first converted
into multi-allelic genotype format and represented as 1 1
(0 copies), 1 2 (1 copy), 2 2 (normal copy number 2), 2 3
(3 copies), 3 3 (4 copies) up to a maximum of 4 4 for six
copies of more. Since phase was not known we assumed
that alleles were as equally distributed between chromo-
somes as possible. To merge with 1000 genomes data,
common loci in both datasets were used. PLINK was used
for population clustering as described in the documenta-
tion. We used the PLINK cluster command, which relies
on identity by state values and Hamming distance to
perform complete linkage clustering. R was used to visual-
ise the resulting principal components.

Population differentiation: FST analysis
We investigated population differentiation by comparing
FST between CNVs in the different populations. We used
multi-allelic data format as described above for popula-
tion differentiation (FST) analysis. FST were calculated
using PLINK v 1.9 [48] using only bi-allelic deletions
since phase of these is known.

Tag haplotypes for CNV
We used the method described by Handsaker et al. [13],
implemented with a custom Java programme [49]. This
method assumes that if a haplotype is associated with a
CNV then the number of alleles (0,1,2) of that haplotype
will be correlated with the observed number of copies
reported for each sample. Therefore, copy number is
plotted against haplotype count and the value of r2 is
calculated for the regression line and the p value for the
null hypothesis that the slope of the regression line is
zero. We used a custom Java program; TagCNV avail-
able from Github [49] to find SNP haplotypes and test
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their association with CNVs. To build haplotypes
VCFtools was used to obtain the correlation (r2) between
alleles in 50 kb windows. Sets of alleles within 5 kb of
CNV boundaries and with r2 > 0.8 with at least one other
SNP in the region were assembled into haplotypes. The
counts of each allele were plotted against the fractional
copy number for the CNV for each sample and the cor-
relation (r2) between haplotype count and copy number
was obtained using R and the association was considered
significant if p < 0.05 for the null hypothesis that the
slope of the regression line is zero. A Bonferroni correc-
tion was applied for the number of haplotypes at the
CNVR that were tested for association. Haplotypes
which were only present in samples with identical copy
numbers were considered uninformative and excluded
from all calculations.
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