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Abstract  34 

Southern Hemisphere glacial chronologies can provide valuable insights into interactions 35 

between glaciation and past climate changes, but are not well constrained on most sub-36 

Antarctic islands. We present the first cosmogenic 36Cl exposure ages of deglaciated bedrock 37 

surfaces and moraine deposits from sub-Antarctic Marion Island in the southern Indian Ocean. 38 

Results show that the ice reached a local Last Glacial Maximum before 34 ka and retreated, 39 

with no re-advances, but possibly minor stand stills, until ~17 ka. This early deglaciation left 40 

island surfaces below 850 m a.s.l. ice-free after ~19 ka, and any subsequent advances during 41 

the Antarctic Cold Reversal or Holocene cooling periods would have been restricted to the 42 

interior. This glacial chronology is similar to that of some other sub-Antarctic Islands (e.g. the 43 

Kerguelen archipelago, Auckland and Campbell islands, and possibly South Georgia) and a 44 

number of other Southern Hemisphere glaciers (e.g. in Patagonia and New Zealand) and adds 45 

to evidence that suggest the Southern Hemisphere was in a glacial maxima earlier than the 46 

global LGM. We suggest a combination of declining temperatures, a northward migration of 47 

oceanic fronts and the Southern Hemisphere westerly winds (causing precipitation changes), 48 

as well as the physiography of Marion Island, created optimal conditions for glacier growth 49 

during Marine Isotope Stage (MIS) 3 instead of MIS 2. Our findings redefine the glacial history 50 

of Marion Island, and have implications for future investigations on post-glacial landscape 51 

development and ecological succession.  52 
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1. Introduction 56 

Glacial oscillations of the Quaternary provide valuable opportunities to study past interactions 57 

between ice sheets and climate, offering insights into processes driving modern day climate 58 

change (Schaefer et al., 2015). Since it is increasingly apparent that the Northern- and 59 

Southern Hemispheres did not respond synchronously to past changes in climate (Clark et al., 60 

2009; Doughty et al., 2015; Schaefer et al., 2015; De Vleeschouwer et al., 2017; Pedro et al., 61 

2018), recent efforts have focussed on constraining the extent and timing of Southern 62 

Hemisphere glaciation, focusing on the last glacial cycle (Hodgson et al., 2014a; Bentley et 63 

al., 2014; Darvill et al., 2016). Application of radiocarbon, luminescence (OSL and IRSL) and 64 

terrestrial cosmogenic nuclide dating methods has refined Holocene and Late Pleistocene 65 

glacial chronologies for New Zealand (e.g. Putnam et al., 2013; Eaves et al., 2016; 66 

Shulmeister et al., 2019), Patagonia (e.g. Darvill et al., 2016; García et al., 2018), Tasmania 67 

(Mackintosh et al., 2006) and Antarctica (e.g. Bentley et al., 2014; Ó Cofaigh et al., 2014). On 68 

the sub-Antarctic islands, minimum ages for ice sheet retreat have been inferred by dating the 69 

onset of organic sedimentation in lakes and peat bogs with radiocarbon (e.g. Hodgson et al., 70 

2014), or the timing of lake sediment burial with OSL and IRSL (e.g. Rainsley et al., 2019; 71 

Shulmeister et al., 2019). However, with the exception of Kerguelen (Jomelli et al., 2017; 2018) 72 

and South Georgia (Bentley et al., 2007; White et al., 2018), no chronologies have used 73 

cosmogenic isotope methods. 74 

Sub-Antarctic Marion Island is one of the volcanic Prince Edward Islands located in the 75 

southern Indian Ocean (46°54’S, 37°45’E). Several studies have attempted to reconstruct the 76 

island’s glacial history (e.g. Hall, 1980, 1981, 1982, 1983, 2004; McDougall et al., 2001; Hall 77 

et al., 2011; Hodgson et al., 2014). A scientific expedition in 1965-68 first discovered that 78 

glacial striations were restricted to the Pleistocene ‘grey’ lavas which led to the idea that a 79 

glacial stage must have preceded the succession of the less eroded Holocene ‘black’ lavas 80 

(Verwoerd, 1971). Many other glacial erosional and depositional features have subsequently 81 

been documented, supporting this initial interpretation (Hall, 1978, 1982; Nel, 2001; Hedding, 82 



2008; Hall et al., 2011). Other geomorphological, palynological and ecological proxies have 83 

also been used to infer the island’s glacial history. These include correlating stratigraphical till 84 

and geological sequences (Hall, 1978), relative-age dating of glacial and post-glacial 85 

(periglacial) geomorphic features (Sumner et al., 2002; Nel et al., 2003; Boelhouwers et al., 86 

2008), reconstructing palaeo-temperature from snow line altitudes (Hall, 1980) and vegetation 87 

assemblages from pollen records (Scott and Hall, 1983; Scott, 1985). A link between (rapid) 88 

deglaciation and periods of volcanism has also been proposed (Hall, 1982; Kent and Grinbnitz, 89 

1983; McDougall et al., 2001) but a reassessment of the faulting, volcanic rock, and palaeo-90 

glacier distribution by Hall et al. (2011) suggests that this proposal is erroneous.  91 

The most up-to-date understanding of Marion Island’s late Quaternary glacial geomorphology 92 

is summarised by McDougall et al. (2001), Boelhouwers et al. (2008), Hall et al. (2011) and 93 

Hodgson et al. (2014a). In the absence of deglaciation ages, the initial hypotheses regarding 94 

the chronology and configuration of Marion Island’s last glaciation proposed by Hall (1978; 95 

1980) persist. These are that: (1) the island’s local Last Glacial Maximum (lLGM) between 96 

~11000-35000 years (~11-35 ka) ago coincided with the global Last Glacial Maximum (gLGM), 97 

in Marine oxygen Isotope Stage 2 (MIS 2) (McDougall et al., 2001). This lLGM period was 98 

defined by McDougall et al. (2001) using the time scales of Shackleton & Opdyke (1973), 99 

Bowen et al. (1986), Johnson (1982) as well as Fullerton & Richmond (1986), in order to revise 100 

the glacial reconstructions produced by Hall (1978; 1981; 1982). All glacial features within the 101 

Pleistocene grey lavas have been assigned to this last glacial stage, and Hall (1980) 102 

associates some moraines with a “cold peak” advance inferred at ~19.5 ka ago in 103 

southernmost South America (Mercer, 1976). In the absence of any alternative proposals, this 104 

timeline has been used by the broader scientific community to link maximum glaciation on 105 

Marion Island to the gLGM (e.g. Myburgh et al., 2007; Boelhouwers et al., 2008; Hall et al., 106 

2011; Chau et al., 2019). (2) Deglaciation was rapid. It is stated by Boelhouwers et al. (2008) 107 

that retreat commenced at ~17-18 ka ago (Hall, 1978) and was near completion prior to 108 

Holocene volcanism (Hall, 1982; McDougall et al., 2001; Hall et al., 2011). (3) Significant 109 



glacial re-advances occurred during Holocene cool periods (Hall, 1978; Hall, 1980; McDougall 110 

et al., 2001; Boelhouwers et al., 2008). (4) It has also been proposed that during the lLGM, a 111 

few high-lying areas remained ice-free (Hall, 1980; Hall et al., 2011; Mortimer et al., 2011). It 112 

is assumed that these provided glacial refugia which allowed for the survival of the endemic 113 

biological communities from where they expanded across the island following deglaciation 114 

(see Schalke and Van Zinderen Bakker, 1971; Myburgh et al., 2007; Van Der Putten et al., 115 

2010; Mortimer et al., 2012; Chau et al., 2019). 116 

This paper constrains the timing and extent of the most recent glaciation on sub-Antarctic 117 

Marion Island through the application of cosmogenic 36Cl surface exposure dating. Fourteen 118 

rock surfaces from eight sites within the island’s Pleistocene grey lavas were sampled along 119 

an altitudinal transect. Four of these were from moraine boulders, eight from glacially moulded 120 

bedrock and two from a previously proposed lLGM ice-free ‘nunatak’. We present the first 121 

direct ages of glacial erosional and depositional features from Marion Island, and construct a 122 

revised glacial chronology for the island’s Last Glacial Maximum and deglaciation. Finally, the 123 

significance of this revised glacial chronology is discussed in context of current knowledge on 124 

the Island’s landscape history and ecology, and with reference to regional climatic forcings.  125 

2. Study Area & Methods 126 

2.1. The setting of Marion Island 127 

Located ±2300 km south-east of South Africa, Marion Island is the larger of the Prince Edward 128 

Islands; two oceanic shield volcanoes situated on a −200 m submarine plateau (Le Roex et 129 

al., 2012) (Figure 1). The islands are a product of an inter-plate hotspot divergence zone 370 130 

km southeast of the Mid-Indian Ocean Plate, and comprise basalts and trachybasalts from the 131 

Atlantic suite (Verwoerd, 1971). The various lavas share a similar chemical composition (Le 132 

Roex et al., 2012). The oldest dated lava flows on Marion Island are the Pleistocene grey lavas 133 

with K-Ar ages of ~450 ka, whereas the younger black lava flows are estimated at less than 134 

10 ka, and predominantly comprise a’a flows with some pahoehoe (McDougall et al., 2001). 135 

Although the island is accepted to be no more than 1 million years old, the surface Pleistocene 136 



grey lavas of the east coast above 410 m a.s.l. are considered equal to or younger than 50 ka 137 

(McDougall et al., 2001). Approximately 130 scoria cones scattered across the island volcano 138 

are thought to have originated throughout the Holocene (Verwoerd, 1971), though their ages 139 

have not been determined. The island has a subaerial extent of 293 km2 (Meiklejohn and 140 

Smith, 2008), a volcanic summit just over 1240 m a.s.l. (Hedding, 2008), which is still 141 

considered active with eruptions recorded in 1980 and 2004 (Verwoerd et al., 1981; Meiklejohn 142 

and Hedding, 2005).  143 

 144 

Figure 1: (A) The location of Marion Island. (B) The latitudinal range of oceanic fronts determined from 145 
point observations between 1978-1986 (dashed line indicates middle of front) (Lutjeharms & Ansorge, 146 
2008): Subtropical Convergence (SC), Sub-Antarctic Front (SAF) and Antarctic Polar Front (APF); the 147 
theoretical position of the core of the South westerly wind track in the modern day (bottom, green arrow), 148 
in MIS 2 (top, brown) and in MIS 3 (middle, blue), adapted from Toggweiler & Russell (2008), Toggweiler 149 
(2009), Sime et al. (2013) and Shulmeister et al. (2019); (C) A simplified schematic of surface geology, 150 
adapted from Boelhouwers et al. (2008). The locations of sample sites are shown in Figure 2. Map 151 
projection: (A & B) Mercator and (C) Transverse Mercator. [size = 1.5 or 2 columns, 140 x 76 mm; 152 
colour=online only]. 153 

The island’s climate is typically hyper-maritime with high but decreasing mean annual 154 

precipitation (see Hedding and Greve, 2018), currently at ~2000 mm per annum, low mean 155 

annual air temperature (~6˚C) and small seasonal and diurnal ranges (only ~4°C between 156 

winter and summer means, and <3°C daily difference) (Smith and Steenkamp, 1990). Smith 157 

and Steenkamp (1990) investigated the relationship between radiation (sunshine hours), 158 

precipitation, air- and sea surface temperatures. They only found a correlation between air 159 

and sea surface temperatures (linear correlation coefficient=0.54, P<0.001), emphasising the 160 



role of Southern Oceanic fronts on island temperatures, and further suggested that 161 

atmospheric circulation (passing of cyclonic fronts driven by the Southern Westerlies) 162 

modulate sunshine hours (through cloud cover), precipitation and (also) air temperature. In 163 

addition, the Subtropical Convergence, Sub-Antarctic Polar Front and the Antarctic Polar Front 164 

influence Marion Island’s climate (Figure 1). Long-term observations (1978-1986) indicate 165 

strong latitudinal variation in the positions of these fronts (Lutjeharms & Ansorge, 2008). 166 

2.2. Site selection 167 

Sample selection for glacial geomorphological reconstructions, and especially cosmogenic 168 

dating (Dunai, 2010), requires accurate landform identification and interpretation (see Bentley 169 

et al., 2007; Hedding et al., 2018). Various glacial features are recorded within the grey lavas 170 

across the island (Hall, 1978, 1982; Nel, 2001; Hedding, 2008). On the north-east coast, sites 171 

for cosmogenic nuclide dating were selected from well-documented erosional and depositional 172 

features that lie along an altitudinal transect between Piew Crags and Long Ridge (Figures 2 173 

and 3). These features are geomorphologically associated to the same glacial outlet or a 174 

palaeo-glacier that occupied this sector of the island (Nel, 2001; Boelhouwers et al., 2008; 175 

Hall et al., 2011). The sites include the moraine deposits on Skua Ridge, the striations on the 176 

Tafelberg complex and the glacially moulded bedrock inland from Esigangeni (formerly No 177 

Name Peak) (Hall, 1980; Nel, 2001; Boelhouwers et al., 2008; Hedding, 2008) (Figures 2, 3 178 

and 4; and Table 1). The outcrop at Katedraalkrans was also sampled, as it has been proposed 179 

as an ice-free ‘nunatak’ through the lLGM (Hall et al., 2011).  180 



 181 

Figure 2: The location of sample sites within the Pleistocene grey lavas on Marion Island’s north-east 182 
coast (see Figure 1 for island location and Table 1 for site names). The 36Cl exposure ages are given 183 
in ka: normal font show individual sample ages and bold font show site ages (see Table 3). Ages are 184 
presented along a cross section (X-X’) of the altitudinal transect (see Figure 5). Map projection: 185 
Transverse Mercator. [size = 2 columns, 189 x 116mm; colour=online only]. 186 

 187 

Site surveys and sampling were conducted during the SANAP Marion Island relief expeditions, 188 

in April/May 2017 and 2018. Geomorphological surveys were conducted at each site to verify 189 

previous interpretations of their glacial history. An average of one day was dedicated to 190 

sampling at each site. Sites were named alphanumerically by association with the closest 191 

landmark or glacial feature (i.e. Skua Ridge = SR; Tafelberg = TB), site number (i.e. 1, 2, 3 192 

etc.) and sample duplicate (A-C) (Table 1). A minimum of two samples were taken per site 193 

and samples with the same site number are assumed to be closely related in age, except at 194 

Esigangeni (>900 m a.s.l.), where a difference of 9 m in altitude and 33 m horizontal distance 195 

produced a large enough error range to identify NN1A and NN1C as two different sites (Table 196 

3).  197 



 198 

Figure 3: (A) The topographical distribution of sampling sites on the north-east coast of Marion Island 199 
taken from Skua Ridge towards the interior. (B) The location of Skua Ridge and Tafelberg, taken from 200 
inland towards the coast. Double-headed arrows indicate North. [size: 1,5-column; 140x104mm; 201 
colour=online only] 202 

 203 

Figure 4: Examples of samples taken from (A) moraine boulders on Skua Ridge, (B) striated bedrock 204 
on Tafelberg, (C) roche moutonnées behind Esigangeni and (D) on Katedraalkrans. Double arrows 205 
indicate North. [size: 1,5-column; 140x91mm; colour=online only] 206 

 207 



Table 1: Sample locations, attributes and calculated topographic shielding factors, sorted according to 208 
sample site and ascending elevation.  209 

Sample Lat. (D.D°) Long. (D.D°) 
Elev.  
(m) 

Bulk dens. 
(g/cm3) 

Thickness 
(cm) 

Shielding 
Factor 

Type 

Skua Ridge - moraine      

SR1B -46.86252 37.85077 84 2.62 1.8 0.997 boulder 
SR1C -46.86265 37.85078 84 2.12 1.5 0.997 boulder 
SR2A -46.86855 37.83791 96 2.79 2.2 0.999 boulder 
SR2B -46.86839 37.83853 100 2.27 2 0.994 boulder 
Tafelberg - glacial pavement      

TB1A -46.88512 37.81554 255 2.19 2.8 0.999 bedrock 
TB1C -46.88521 37.81482 256 3.14 2.5 0.976 bedrock 
TB2A -46.88732 37.80287 339 2.67 2 0.973 bedrock 
TB2C -46.88730 37.80224 341 2.13 2.2 0.999 bedrock 
TB4B -46.89027 37.79510 429 3.12 2.8 0.990 bedrock 
TB4C -46.89027 37.79510 429 2.6 2.8 0.989 bedrock 
Katedraalkrans – ‘nunatak’     

KD1A -46.89783 37.77465 759 2.64 2.12 0.999 bedrock 
KD1C -46.89857 37.77263 784 2.6 2.51 0.989 bedrock 
Esigangeni – roche moutonnées     

NN1A -46.90374 37.74988 925 2.45 2.8 0.997 bedrock 
NN1C -46.90368 37.74908 934 2.6 2.5 0.994 bedrock 

 210 

2.3. Sampling 211 

Rock samples of approximately 30x20x2 cm were extracted using a battery-operated angle 212 

grinder with diamond tipped blade, mallet and chisel. All samples were taken from surfaces 213 

with <20° dip, avoiding as far as possible erosional features such as pitting, and local shielding 214 

of bedrock by till material and erratics. Sampling locations were recorded with a handheld GPS 215 

while a digital surface model (DSM) was used to determine site elevation and calculate 216 

topographic shielding with ArcGIS according to Li (2018) (Table 1). The DSM has with a 1 x 1 217 

m cell size resolution and vertical accuracy of 0.7 m was developed photogrammetrically using 218 

stereo Pléiades imagery. While GPS elevation values corresponded to within 10-20 m of the 219 

DSM, elevation values from the DSM were used to calculate topographic shielding. Other 220 

attribute data were collected following Dunai (2010) (Table 1). 221 

2.4. Site description  222 

Skua Ridge is a stable, well-vegetated, deflation moraine with undulating kettle topography 223 

which extends approximately 2 km inland from the coastal cliffs (Figures 2 and 3). Two 224 

moraine sequences have been identified on the ridge (Hall, 1978; 1980) from which two 225 

boulders were sampled at each: one on the coastal edge (SR1) and another farther inland 226 

(SR2) (Figure 4A). Both sites are located on a relatively low gradient (6-11°) and are 227 



considered to have had a low risk of sediment erosion or boulder exhumation. Boulders are 228 

highly weathered and often show dilatation fracturing, but samples were taken from boulders 229 

that were intact, showed limited signs of weathering and were embedded into the slope. 230 

Exposure ages (history) of moraine boulders are also known to be influenced by their transport 231 

history. Unaccounted inheritance or erosion could either over- or under-estimated the true 232 

exposure age of a boulder (Putkonen and Swanson, 2003; Applegate et al., 2012).  For the 233 

material on Skua Ridge, rock surface erosion (through weathering) instead of inheritance is 234 

expected to have a greater influence on the precision of exposure ages.  235 

The Tafelberg complex consists of a series of plateaus which have been glacially moulded, 236 

abraded and plucked (Figures 3 and 4B). Striated pavements and erratics are also present 237 

and the general direction of striations bears towards the coast. Three sites were sampled at 238 

Tafelberg; one at the lower (TB1), one in the middle (TB2) and one at the upper (TB4) reaches 239 

of the complex. Each site is separated by ±90 m in elevation. All samples were taken from 240 

striated surfaces of small abrasion-pluck features, except TB1A which is from a glacial 241 

pavement.  242 

Several prominent grey lava roche moutonnées are found just inland from the scoria cone 243 

Esigangeni. The roche moutonnées have a height of ~2 m on the stoss-side and ~5 m on the 244 

plucked face and are surrounded by scoria (Figure 4C). Two adjacent roche moutonnées at 245 

the same altitude but separated by a distance of ± 30 m were sampled (NN1A & NN1C).  246 

Katedraalkrans is a bowl-shaped grey lava outcrop with an abundance of fractured bedrock 247 

material that has been reworked by cryogenic processes to form stone-banked lobes (Nel, 248 

2001). Though striations on bedrock have been recorded for this outcrop (Hall, 1978), they 249 

could not be found by either the current, nor earlier studies (Nel, 2001; Hedding, 2008). No 250 

other glacial evidence has been reported for this outcrop and for this reason Katedraalkrans 251 

is thought to have been a LGM ice-free nunatak. K-Ar ages for this outcrop were indeterminant 252 

(McDougall et al., 2001) and the origin of the fractured material has been ascribed to joint 253 



unloading rather than glacial unloading. Two intact bedrock surfaces were sampled along the 254 

rim of the ‘bowl’ (KD1A & KD1C) (Figure 4D). 255 

2.5. Analysis of in situ cosmogenic 36Cl 256 

Whole rock samples were crushed and sieved to retrieve a subset of 250-710 μm for in situ 257 

36Cl analysis at the Scottish Universities Environmental Research Centre (SUERC). An initial 258 

~50 g aliquot of the sample subset was etched overnight in 2 M HNO3 and 40% HF to remove 259 

meteoric Cl and contaminants, losing ~60% of the sample during the process. Afterwards a 260 

~5 g etched split was taken for major element analysis by ICP-OES  and an additional ~12 g 261 

for accelerator mass spectrometry target preparation. The samples and two blanks were 262 

dissolved in HF with 35Cl enriched spike (~ 99%). Samples were then prepared according to 263 

the methods of Marrero (2012). Chlorine was extracted and purified to produce an AgCl target 264 

for AMS analysis. Targets were pressed into a copper cathode for 37Cl/35Cl and 36Cl/35Cl ratio 265 

determination with the 5 MV accelerator mass spectrometer at SUERC. Sample geochemistry 266 

and measured ratios are presented in Tables 2 and 3. The measurement of trace elements at 267 

SUERC does not occur routinely because in past experiments inclusion of trace element data 268 

did not significant alter calculated ages. For the purpose of determining the effect of including 269 

trace elemental concentrations we recalculated the oldest and the youngest age obtained in 270 

this study using minimum and maximum concentrations for trace elements (Gale et al., 2013) 271 

and indicative U and Th values (Larsen & Gottfried, 1960). The variation in calculated ages 272 

are entirely within the calculated age uncertainties.  273 

Exposure ages were calculated with CRONUScalc v2.0 (Marrero et al., 2016a) using the 274 

default 36Cl production rates, ‘SA’ scaling (Lifton et al., 2014) and a high-energy neutron 275 

attenuation length of 160 g cm-2 (Marrero et al., 2016b). The respective input and output files 276 

of the calculated 36Cl exposure ages, via the CRONUScalc website calculator 277 

(http://cronus.cosmogenicnuclides.rocks/2.0/html/cl/), are available online (Rudolph et al., 278 

2019). The are no quantitative data on snow cover or erosion rates for Marion Island but these 279 

are considered negligible for the exposure age calculations.   280 

http://cronus.cosmogenicnuclides.rocks/2.0/html/cl/


Table 2: Chemical composition of etched whole rock, including the concentrations of the 36Cl target elements Ca, K, Ti and Fe.  281 

Sample 
SiO2 

wt % 
TiO2 

wt % 
Al2O3 

wt % 
Fe2O3 

wt % 
MnO 
wt % 

MgO 
wt % 

CaO 
wt % 

K2O 
wt % 

Total 
wt % 

SR1B 64.85±1.59 4.35±0.02 9.77±0.33 10.21±0.08 0.13±0.01 1.13±0.01 7.23±0.08 1.313±0.06 98.98 
SR1C 59.57±1.88 4.15±0.03 14.4±0.52 8.79±0.09 0.12±0.01 2.74±0.02 7.76±0.1 1.462±0.1 98.99 

SR2A 64.66±1.84 2.93±0.02 16.08±0.56 6.17±0.05 0.1±0.01 1.54±0.01 5.57±0.08 1.964±0.11 99.01 
SR2B 66.1±1.81 2.8±0.02 15.4±0.54 5.91±0.05 0.1±0.01 1.47±0.01 5.34±0.07 1.881±0.1 99.00 

TB1A 53.18±1.89 6.63±0.04 10.51±0.56 16.37±0.08 0.21±0.01 3.93±0.03 6.89±0.07 1.283±0.11 99.00 
TB1C 53.5±1.85 6.62±0.05 10.76±0.51 16.08±0.07 0.21±0.01 3.75±0.03 6.76±0.09 1.323±0.1 99.00 

TB2A 62.41±1.92 4.37±0.03 11.78±0.53 9.81±0.1 0.15±0.01 2.91±0.03 6.12±0.11 1.454±0.1 99.00 
TB2C 59.821.85 4.71±0.03 13.41±0.48 9.2±0.11 0.16±0.01 3.17±0.03 6.98±0.1 1.56±0.09 99.01 

TB4B 59.31±1.91 4.46±0.02 9.4±0.53 11.07±0.09 0.17±0.01 5.11±0.04 8.49±0.12 0.989±0.1 99.00 
TB4C 56.3±2.02 4.67±0.04 9.89±0.59 12.14±0.11 0.18±0.01 5.65±0.04 9.22±0.12 0.953±0.11 99.00 

KD1A 57.16±1.98 5.19±0.04 11.47±0.59 11.3±0.12 0.15±0.01 4.17±0.03 8.43±0.07 1.135±0.11 99.01 
KD1C 56.21±1.9 5.23±0.02 12.07±0.57 11.4±0.08 0.16±0.01 4.18±0.03 8.5±0.08 1.256±0.11 99.01 

NN1A 51.46±1.92 7.52±0.03 10.81±0.53 16.14±0.11 0.22±0.01 4.03±0.04 7.65±0.1 1.167±0.1 99.00 
NN1C 60.37±1.96 4.48±0.04 12.09±0.58 10.96±0.08 0.17±0.01 3.15±0.03 6.31±0.12 1.467±0.11 99.00 

 282 



3. Results 283 

The calculated cosmogenic 36Cl exposure ages are provided in Table 3 and in Figures 2 and 284 

5. The exposure ages of the boulders at Skua Ridge are consistent within 1 sigma for both 285 

SR1 and SR2. In agreement with an expected depositional sequence, the coastal moraine 286 

(SR1) produced older exposure ages than the inland sequence (SR2). The effect of erosion 287 

remains unaccounted for and these ages may be an underestimation of the true exposure 288 

age. Nevertheless, the ages of these moraine boulders conservatively suggest that the last 289 

glacial ice advance reached its maximum position prior to ~34.5 ka. No geomorphological 290 

evidence exists for subsequent ice advance over Skua Ridge. This could be due to 1) that 291 

these features simply do not exist, because as the glacier retreated (after depositing Skua 292 

Ridge) it continued to retreat until finally disappearing; or 2) glacial advances did occur (since 293 

the deposition of Skua Ridge) but evidence of these re-advances have been destroyed by 294 

subsequent post-glacial volcanism. In either case, for this sector of the island, Skua Ridge is 295 

accepted to represent the geomorphic remnants of the last ice advance to reach the current 296 

coastline. The exposure ages of the glacially moulded bedrock samples (TB1, TB2, TB4, 297 

NN1A and NN1C) indicate gradual glacial recession between ~32.7 and ~17.0 ka; with 298 

possible breaks in retreat between ~32.8-26.5 ka and 20.5-17.0 ka (Figure 5). Aside from 299 

these potential pauses, a regression analysis of exposure ages along this transect (n=12, 300 

excluding KD1), shows a significant correlation between exposure ages and altitude (r2=0.87; 301 

P<0.001; y=-0.0184x + 34.787). From this linear regression, the lLGM ice front in this sector 302 

of the island was below present sea level before 34.5 ka ago and at ~850 m a.s.l. during the 303 

gLGM (~19 ka).  304 

Katedraalkrans (KD1), the proposed ‘nunatak’, has an exposure age of ~33.8 ka which is ~10 305 

ka earlier than a neighbouring, lower-lying sample (TB4; >330 m lower in altitude) and 306 

bracketed by the ages of the coastal moraines (SR1 & SR2). This indicates that the 307 

Katedraalkrans outcrop was exposed synchronous to the coastal areas at Skua Ridge, and 308 

much earlier than its immediate surrounds. 309 



  310 



Table 3: Chlorine isotopic data with calculated 36Cl exposure ages and uncertainties reported at 1σ confidence. Analytical uncertainties (in brackets) include 311 
uncertainty in the blank and counting statistics. Systematic uncertainties include uncertainty in the 36Cl production rate. Site ages are calculated from sample 312 
ages with overlap at 1σ. See text for more details. 313 
 314 

Samplea 
Elev. 
(m) 

Mass 
(g) 

Spike mass 
(mg)  

36Cl/Cl (x10-15)b 
Bulk Rock Cl,c 

(ppm)  
36Cl d  

(105 atoms/g) 
Surface Exposure 

Age (ka) 
Site Age 

(ka) 

Skua Ridge - moraine       
SR1B 84 12.185 1.862 72.95 ± 2.79 6.80 ± 1.77 1.91 ± 0.081 34.3 ± 2.2 (1.5) 

34.5 ± 2.2 
SR1C 84 12.065 1.844 79.28 ± 2.45 5.03 ± 1.69 2.06 ± 0.072 34.6 ± 2.1 (1.2) 
SR2A 96 12.413 1.848 71.99 ± 2.05 23.44 ± 2.54 2.04 ± 0.070 32.0 ± 2.0 (1.1) 

32.6 ± 2.2 
SR2B 100 12.308 1.857 72.11 ± 2.15 30.30 ± 2.89 2.15 ± 0.077 33.1 ± 2.3 (1.2) 

Tafelberg - glacial pavement       
TB1A 255 12.324 1.822 76.59 ± 2.51 14.97 ± 2.12 2.05 ± 0.076 31.3 ± 1.9 (1.2) 

32.7 ± 2.0 
TB1C 256 12.095 1.822 85.73 ± 2.57 15.17 ± 2.16 2.35 ± 0.081 34.0 ± 2.0 (1.2) 
TB2A 339 12.392 1.833 74.19 ± 2.07 66.06 ± 4.59 2.63 ± 0.097 27.2 ± 2.4 (1.0) 

26.5 ± 2.3 
TB2C 341 12.568 1.875 73.89 ± 2.15 67.77 ± 4.68 2.66 ± 0.100 25.8 ± 2.1 (1.0) 
TB4B 429 12.099 1.885 76.32 ± 2.35 50.71 ± 3.92 2.61 ± 0.099 24.0 ± 2.0 (0.9) 

24.5 ± 2.0 
TB4C 429 12.376 1.853 80.77 ± 2.46 43.41 ± 3.51 2.58 ± 0.096 24.9 ± 1.9 (0.9) 

Katedraalkrans – ‘nunatak’      
KD1A 759 12.104 1.896 126.08 ± 3.73 6.53 ± 1.8 3.48 ± 0.113 33.1 ± 1.9 (1.1) 

33.8 ± 1.9 
KD1C 784 12.456 1.88 129.78 ± 3.7 7.05 ± 1.77 3.47 ± 0.110 34.4 ± 1.9 (1.1) 

Esigangeni – roche moutonnées       
NN1A 925 12.019 1.831 96.17 ± 2.92 24.69 ± 2.63 2.83 ± 0.099 20.5 ± 1.3 (0.7) 20.5 ± 1.3 
NN1C 934 12.04 1.823 90.74 ± 2.7 2.86 ± 1.57 2.32 ± 0.076 17.0 ± 1.0 (0.6) 17.0 ± 1.0 

a AMS targets were prepared and measured at SUERC. 315 
b Normalised to standard Z93-0005 produced at Prime Lab (Purdue University) with a nominal 36Cl/Cl ratio of 1.2E-12. 316 
c Stable Cl concentrations were calculated by AMS isotope dilution (Di Nicola et al., 2009). All samples were spiked with non-natural Cl with a 35Cl/37Cl ratio of 21.52 ± 0.02 317 
atoms/atom. 318 
d Procedural blank 36Cl/Cl = 3.46 ± 0.48 x10-15. Blank corrections for 36Cl concentrations ranged from between 1.5 and 5%. 319 
 320 



321 

Figure 5: A cross section (X-X’) showing sample locations and exposure ages along an altitudinal 322 

transect from Skua Ridge across Tafelberg to the interior (see Figure 2). Exposure ages and systematic 323 

uncertainties (see Table 3) are shown for individual samples (red ┼) and per site (inverted text). The 324 

gLGM period (Clark et al., 2009) is provided for reference. See text for details. [size=1.5 columns; 325 

190x124mm; colour=online only] 326 

4. Discussion 327 

4.1. An early lLGM and deglaciation on Marion Island 328 

The cosmogenic 36Cl exposure ages of glacial landforms presented here require a revision of 329 

the glacial chronology of Marion Island. The evidence for an lLGM before 34 ka, pre-dates 330 

previous studies that have attributed the formation of glacial landforms on Marion Island to the 331 

gLGM (Hall, 1978, 1980, 1982; Nel, 2001; Hall, 2004; Boelhouwers et al., 2008; Hedding, 332 

2008; Hall et al., 2011), MIS 2 (McDougall et al. 2001), or a ‘cold peak’ at 19.5 ka (Hall, 1980).  333 

Instead, our results indicate a maximum ice extent sometime before 34.5 ka, with ice receding 334 

until at least 17.0 ka, with no chronological or geomorphological evidence for substantial re-335 

advances during this period. This left the island largely ice-free, except for an ice cap above 336 

900 m a.s.l. whose remnants can still be seen today (Sumner et al., 2004). Since the island’s 337 



lLGM likely occurred in a currently off-shore position (Hodgson et al., 2014a), the exact timing 338 

and full spatial extent of the lLGM will remain unresolved until high resolution bathymetry data 339 

are acquired.  340 

Previous hypotheses of a rapid deglaciation (post-LGM; Hall, 1982) are also refuted since the 341 

exposure ages along the altitudinal sequence show slow deglaciation from the coastal moraine 342 

(~34.5 ka) to the highest bedrock (~17.0 ka). This represents a ~17 ka retreat over ~9 km 343 

horizontal distance. However, there could have been periods of minor ice stand stills, occurring 344 

within the retreat rate decreases between 32.7-26.5 and 20.5-17.0 ka ago, the latter possibly 345 

a signal of the gLGM peak (~19 ka ago). Given that there is no evidence for cosmogenic 346 

inheritance, the ages of the bedrock surfaces indicate continuous deglaciation and suggest 347 

that any post-gLGM advances (e.g. during the Antarctic Cold Reversal or Little Ice Age) would 348 

have been restricted to the interior. It has been proposed that these late Glacial and Holocene 349 

glacial advances might have resulted in the small lateral moraines in Watertunnel Valley (~120 350 

m a.s.l), and a terminal moraine associated with the cirque basin at Snok (~470 m a.s.l.) 351 

(Boelhouwers et al., 2008) (see Figure 1). The current data set does not provide evidence for 352 

Holocene glaciation, therefore, the age of these features as well as the “[fresh] striations on 353 

basalts” in the interior (Hall et al., 2011), requires further investigation. 354 

The proposal that Katedraalkrans was an ice-free nunatak, and biological refuge, through the 355 

last glacial (Hall et al., 2011, Van Der Putten et al., 2010; Mortimer et al., 2011; 2012; Chau et 356 

al., 2019) also needs to be revised. Whilst Katedraalkrans was ice-free during the gLGM, and 357 

exposed much earlier than its immediate surrounds (~10 ka earlier), it was most likely 358 

glaciated before 33.8 ka, synchronous with the lLGM beyond Skua Ridge prior to 34.5 ka. This 359 

means that additional biological refugia must have been present elsewhere on Marion Island 360 

during the lLGM to allow the persistence of the island’s endemic species. Our results suggest 361 

that low lying areas between the main outlet glaciers and a more extensive coastal zone (now 362 

inundated by rising post glacial sea levels) are the most likely candidates. 363 



For Marion Island, the documented rates of periglacial processes (Sumner et al., 2002; Nel et 364 

al., 2003; Boelhouwers et al., 2008), soil development (Haussmann et al., 2010), peat growth 365 

(Van Der Putten et al., 2010), and ecological succession and colonization (Mortimer et al., 366 

2012; Chau et al., 2019) as well as the age and sequence of ‘Holocene’ volcanism (McDougall 367 

et al., 2001; Verwoerd 1971) should also be reviewed. Our current understanding of these 368 

processes are largely based on the premise that the island was under full glacial conditions 369 

during the gLGM and had undergone rapid deglaciation prior to the Holocene. The rates of 370 

these aforementioned processes may, therefore, be over-estimated given the earlier lLGM 371 

and slower deglaciation. 372 

4.2. Comparison to other Southern Hemisphere glacial chronologies 373 

The early lLGM at Marion Island adds to evidence of extensive MIS 3 glacial maxima in the 374 

sub-Antarctic and elsewhere in the Southern Hemisphere (Figure 6). Many of these MIS 3 375 

maxima were more extensive than the later MIS 2 ice limits. There are similarities with other 376 

sub-Antarctic islands, such as Kerguelen where the maximum ice extent (dated on land) was 377 

reached before ~41 ka (Jomelli et al., 2018), and possibly South Georgia where the maximum 378 

has not yet been dated (Graham et al., 2017). An early maximum has also been proposed for 379 

Auckland and Campbell islands between 62-72 ka based on a flow line model (Rainsley et al., 380 

2019). Today, glaciers persist on Kerguelen and South Georgia (Graham et al., 2017; Jomelli 381 

et al., 2018) but have completely disappeared from Auckland and Campbell Islands before 382 

~15 ka ago (Rainsley et al., 2019). The retreat sequence on Marion Island is in broad 383 

agreement with the patterns suggested for these sub-Antarctic islands, though any MIS 2 ice 384 

advances would have been restricted to the inland ice cap. 385 

Selected mountain glaciers in New Zealand (e.g. Tongariro Massif and Cobb Valley) and 386 

Tasmania (e.g. on Mt. Field) also show a similar recessional pattern to the sub-Antarctic 387 

Islands (Figure 6). Millennia of slow retreat or glacial stand still followed a MIS 3 maxima 388 



(which varied between 34-57 ka ago) and subsequent, less extensive, advances occurred 389 

during the gLGM (Mackintosh et al., 2006; Eaves et al., 2016; 2019).  390 



 391 



Figure 6: A comparison of glacial chronologies between selected islands and mountain valleys in the Southern Hemisphere. Regional reviews provide 392 
standardised summaries of previous published chronologies. The chronostratigraphic units are from Railsback et al., 2015 (MIS), Clark et al., 2009 (gLGM) and 393 
Putnam et al., 2010 (ACR). Glaciation events were determined by geomorphological dating (radiocarbon, cosmogenic nuclides, OSL, IRSL) or modelling and 394 
are indicated by colour (see figure key). Summit peaks/headwall elevation and current surface extent are given. The comparative extent of MIS glacial events 395 
are indicated as provided by authors. Other details are discussed in text. [size: 2-coloumn, landscape; 260x155mm; colour=online only]. 396 



Regional summaries of Patagonia and New Zealand show broadly synchronous glacial 397 

chronologies which also indicate MIS 3 or earlier glacial maxima (Darvill et al., 2016; 398 

Shulmeister et al., 2019) (Figure 6). However, contrary to the sub-Antarctic islands these ice 399 

sheets also advanced in MIS 2 and, in New Zealand, during the gLGM to positions equal to 400 

(e.g. North Island and northern South Island) or more extensive (e.g. central South Island) 401 

than the MIS3 ice limits (Shulmeister et al., 2019). However, not all glaciers followed the same 402 

pattern (e.g. Cobb Valley; Eaves et al., 2019).  403 

4.3. Causes of an earlier (MIS 3) lLGM 404 

Drivers of Southern Hemisphere climate change have been described by Schaefer et al. 405 

(2015), Darvill et al. (2016), Rainsley et al. (2019) and Shulmeister et al. (2019). These  include 406 

astronomical forcings (summer insolation minima, seasonality) (e.g. Vandergoes et al., 2005; 407 

De Vleeschouwer et al., 2017), the Southern Ocean (sea ice extent, ocean circulation, bipolar 408 

‘seesaw’ and stratification, sea surface temperatures, CO2 sequestration) (e.g. Crosta et al., 409 

2004; Benz et al., 2016; Pedro et al., 2018) and the atmosphere (air temperatures, frontal 410 

systems, Southern Westerly Winds) (e.g. Toggweiler, 2009; Ó Cofaigh et al., 2014; Sime et 411 

al., 2016). Identifying the contribution of these drivers to the MIS 3 glacial advances is not 412 

straightforward (Shulmeister et al., 2019). For example, in New Zealand, a minimum summer 413 

insolation at ~31.5 ka is used to account for the ~32 ka glaciation (Vandergoes et al., 2005), 414 

but it does not provide a suitable explanation for earlier MIS 3 advances (e.g. ~38-45 ka; 415 

Shulmeister et al., 2019). Even though insolation minima can influence glacial advances in 416 

some regions, they are not considered an important driver of glacial maxima in the Southern 417 

Hemisphere between 18-45 ka (Doughty et al., 2015). Instead, a combination of drivers, 418 

including the position of ocean fronts and the Southern Hemisphere westerly winds were 419 

involved (Putnam et al., 2013; Darvill et al., 2016; Rainsley et al., 2019; Shulmeister et al., 420 

2019).  421 



The Southern Hemisphere westerlies migrate latitudinally in response to changes in 422 

atmospheric temperature gradients: being farther north during colder conditions, and 423 

southwards under warming conditions (Toggweiler, 2009). In addition, the migration of the 424 

westerly wind belt is also associated with changes in Southern Ocean circulation and sea 425 

surface temperatures (Toggweiler & Russell, 2008) and, in the absence of topography and 426 

rain shadow effects, with rainfall (Garreaud et al., 2009). Considering these factors, the 427 

continued downward temperature trend seen in Antarctic ice core records during MIS 3 428 

(EPICA, 2006) is consistent with an expansion of Southern Ocean sea ice and the northward 429 

migration of ocean fronts and the Southern Hemisphere westerly winds (Crosta et al., 2004; 430 

Putnam et al., 2013; Darvill et al., 2016; Shulmeister et al., 2019). Under these conditions, a 431 

northward shift of the southern westerly wind belt would progressively bring more precipitation 432 

to the Southern Hemisphere islands and continental landmasses with decreasing latitude. 433 

Shulmeister et al. (2019) uses this hypothesis to account for the differences in timing of glacial 434 

maxima at different latitudes in New Zealand: at 44.4°S by 32 ka ago (MIS 3) and 42.6°S by 435 

25 ka ago (MIS 2). This hypothesis may also explain why mid-latitude (sub-Antarctic) islands, 436 

like Marion, experienced a more extensive glaciation during MIS 3, and limited or no advances 437 

during MIS 2. In this scenario, an increase in precipitation (as snow) coincided with the passing 438 

of the westerly wind track over Marion Island during the MIS 3 glacial advance, whereas 439 

continued northward migration of the westerly winds starved the glaciers of moisture during 440 

MIS2 (see Figure 1). This is consistent with the overall decrease in precipitation simulated for 441 

the Indian sector of the Southern Ocean under gLGM maximum sea ice conditions (Sime et 442 

al., 2013, 2016).  By the end of MIS 2 / gLGM (~18 ka ago), rising temperatures would have 443 

forced the westerlies to migrate back southwards (Toggweiler, 2009). This time, however, 444 

warmer temperatures would more likely have brought rain instead of snow to Marion Island, 445 

and therefore did not halt the deglaciation.  446 

Local topography can also explain some of the differences in Southern Hemisphere glacier 447 

behavior. Larger and higher altitude islands (e.g. South Georgia, Kerguelen) and mountain 448 



ranges (e.g. Andes and Southern Alps) have larger (interconnected) glacial basins, compared 449 

with smaller islands (e.g. Marion and Auckland islands) and isolated valleys (e.g. Cobb Valley 450 

and Mt. Field). The larger / higher altitude islands could therefore sustain glaciers and ice caps 451 

through the changes in moisture supply brought about by migrations of the westerly wind belt 452 

through MIS 3 and 2 (Figure 6), and then re-advance during the gLGM and ACR (e.g. 453 

Kerguelen or New Zealand’s central South Island). 454 

The results from this study emphasise the role of the Southern Hemisphere westerly winds 455 

and local topography in determining the timing and extent of Southern Hemisphere glacial 456 

maxima (e.g. Shulmeister et al., 2019) in MIS 3 rather than MIS2.  457 

5. Conclusions 458 

This paper presents the first cosmogenic 36Cl surface exposure ages of fourteen rock surfaces 459 

from eight sites along an altitudinal transect on the north-eastern coast of Marion Island. The 460 

results refute some long-standing assumptions about the timing of the Island’s most recent 461 

glacial maximum. First, based on exposure ages of glacial deposits within the low altitude 462 

Pleistocene grey lavas, Marion Island’s lLGM occurred prior to ~34 ka and did not coincide 463 

with the gLGM. Second, instead of a rapid pre-Holocene deglaciation, glacial retreat on Marion 464 

Island was slow, possibly with minor stand stills, and continued without re-advancing until ~17 465 

ka when much of the island was ice free. Third, Holocene ice advances appear to have been 466 

confined to the island’s interior above 900 m a.s.l. with ice cover at ~19 ka ago probably 467 

extending no lower than 850 m a.s.l. These results require a re-evaluation of the location and 468 

timing of the ice-free areas which acted as biological refugia during the last glaciation, and a 469 

reconsideration of the rates of periglacial processes, soil and peat formation, and ecological 470 

succession. Further investigation is needed to confirm when the ice reached its maximum 471 

extent (offshore) in MIS 3, and to establish whether there is evidence of glacial response(s) in 472 

the interior of Marion Island such as the Snok and Watertunnel sites during Late Pleistocene 473 

or Holocene cooling events (e.g. MIS 2, Antarctic Cold Reversal or Little Ice Age). Fourth, the 474 

new retreat sequence for Marion Island is similar to that seen on the Kerguelen archipelago 475 



(Jomelli et al., 2018), and some mountain valleys in New Zealand (Eaves et al., 2016; 2019) 476 

and Australia (Mackintosh et al., 2006). This supports the hypothesis that the position of the 477 

Southern Hemisphere westerly winds and differences in topography were key drivers of MIS3 478 

glacial maxima.  479 

Future work on Marion Island will focus on cosmogenic nuclide dating of glacial features on 480 

the southern and western coasts and in the interior above 900 m a.s.l. This will contribute to 481 

wider syntheses of Southern Hemisphere glacial chronologies (e.g. Hodgson et al., 2014a), 482 

and more comprehensive reconstructions of climate-glacier interactions. 483 
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