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Five dichotomies in the psychophysics of ensemble perception 

 

Joshua A. Solomon ( J.A.Solomon@city.ac.uk ) 

 

Centre for Applied Vision Research, City, University of London EC1V 0HB  

 

Abstract 

1. Whereas psychophysicists may formulate hypotheses about appearance, they can 

only measure performance. Bias and imprecision in psychophysical data need not 

necessarily reflect bias and imprecision in perception. 

2. Sensory systems may exaggerate the differences between each item and its 

neighbors in an ensemble. Alternatively, sensory systems may homogenize the 

ensemble; thereby removing any apparent differences between neighboring items. 

3. Ensemble perception may be involuntary when observers attempt to report the 

identities of individual items. Conversely, when asked to make a (voluntary) decision 

about the ensemble as a whole, observers may find it very difficult to compute 

statistics that are based on more than a very small number of individual items. 

4. Modeling decisions about prothetic continua like size and contrast can be tricky, 

because sensory signals may be distorted before and/or after voluntarily computing 

ensemble statistics. With metathetic continua, like spatial orientation, distortion is less 

problematic; physically vertical things necessarily appear close to vertical and 

physically horizontal things necessarily appear close to horizontal.  

5. Decision processes are corrupted by noise that, like distortion, may be added to 

sensory signals prior to and/or after voluntarily computing ensemble statistics. 
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The ginkgo leaves fell like fine rain from the boughs and dotted the lawn 

with yellow….I said I would like to distinguish the sensation of each 

single ginkgo leaf from the sensation of all the others, but I was 

wondering if it would be possible. 

 –Italo Calvino, If on a winter’s night a traveler, 1979 

 

There are two types of people: Those that see dichotomies everywhere, and I’m one 

of them. It is my hope that some of what follows may serve as a tutorial to students of 

ensemble perception. Readers of this listicle should be forewarned: most of the 

examples provided below were produced in my own laboratory. Whitney and 

Yamanashi-Leib (2018) offer a more balanced review.  

 

Appearance v Performance 

 The epigraph suggests that individual sensations may depend on whether they 

form part of an ensemble. The author of this passage is a character in Calvino’s book. 

His suggestion is almost certainly correct, but I want to underscore the fact that 

psychophysicists are fundamentally incapable of directly measuring sensation. 
Physiologists can directly measure neural output, but all a psychophysicist can do is 

measure visual performance. The ensemble may bias our perception of any individual 

ginkgo leaf, but bias and imprecision in psychophysical data need not necessarily 

reflect bias and imprecision in perception. 

 As an example, consider Brady and Alvarez’s (2011) investigation of the 

effect of ensemble membership on reproduction error. On each trial of their 

experiment, human observers re-sized a circle (with a computer mouse) to match one 

member of a previously seen ensemble of circles. Errors tended to be in the direction 

of the ensemble mean, but Brady and Alvarez did not unnecessarily infer any 

homogenization of perceived sizes within the ensemble. Although each individual 

circle’s size may have appeared closer to that of the ensemble mean, Brady and 
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Alvarez concluded that reproductions were consistent with a type of rational decision-

making, under uncertainty, given the limited capacity of visual working memory. 

 One of the most pernicious pitfalls in attempting to infer appearance from 

behavior is the subject-expectancy effect (e.g. Rosenthal & Rubin, 1978), in which 

experimenter expectations are transmitted to the participants in such a way as to alter 

the outcome of the experiment in a desired direction. There is, perhaps, no way to 

preclude non-perceptual biases from contaminating psychophysical estimates of 

appearance, but certain measures can be taken to minimize their likelihood and/or 

severity.  

 One strategy is to use a psychophysical paradigm in which observers’ 

response categories are de-coupled from experimenter expectations. For example, 

Morgan, Melmoth, & Solomon (2013) expected that vertically aligned spots would 

appear to have a clockwise tilt, when they were displayed within a square frame 

having a counter-clockwise tilt. Rather than asking observers to report the apparent 

tilt of the spots, they asked observers to inspect two sets of spots and report which set 

was closest to vertical. Sometimes both sets were clockwise, sometimes both sets 

were counter-clockwise, and sometimes one set was clockwise of vertical while the 

other set was counter-clockwise. Variants of this “comparison-of-comparisons” 

strategy have become increasingly popular (e.g. Maloney & Yang, 2003; Jogan & 

Stocker, 2004; Morgan, Grant, Melmoth, & Solomon, 2015; Morgan, Schreiber, & 

Solomon, 2016; Yarrow, Martin, Di Costa, Solomon, & Arnold, 2016; Ismail, 

Solomon, Hansard, & Mareschal, 2016). 

 Also popular are “double-blind” strategies, where steps are taken to remove 

the bias-inducing stimuli from the observer’s awareness. For example, it is possible to 

observe a tilt aftereffect after adapting to gratings with unresolvably high spatial 
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frequency (He & MacLeod, 2001). The tilt aftereffect also survives removal of the 

adapting stimulus from awareness by crowding (defined below; He, Cavanagh, & 

Intrilligator, 1996) and critical-flash suppression (Bahrami, Carmel, Walsh, Rees, & 

Lavie, 2008).  

 One final strategy is to make performance depend upon appearance. 

Inferences regarding the latter can be made from objective measurements of the 

former. For example, Morgan and Solomon (2019) asked observers to select the odd-

man-out in a variety of visual search tasks, where performance is determined by the 

target’s relative salience, i.e. how different it appears from the distractors. Adaptation 

was used to manipulate target salience, and aftereffect strength was inferred from the 

degree to which performance was facilitated or impaired by adaptation.  

 

Repulsion v Assimilation 

Although it may be relatively trendy to consider how ensemble membership affects 

the appearance of its individual members, studies relating an item’s appearance to its 

general spatial and temporal context are nothing new. The motion aftereffect, for 

example, was described by Addams in 1834, who reported that the nearby rocks 

appeared to move upwards, after adapting to the downward motion of the Falls of 

Foyers. In 1855 (p. 8) Chevreul described the exaggeration of simultaneous 

luminance contrast between neighboring stripes with different graylevels. The general 

term for these sensory phenomena is “repulsion,” and it occurs in every feature 

domain I have examined. 

 Figure 1 (top panel) shows an example of the visual system exaggerating the 

simultaneous orientation contrast between neighboring Gabor patterns. The truly 

vertical central elements on either side of the fixation cross should appear to be tilted 
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in opposite directions when you stare directly between them. This can be described as 

an exaggeration of the difference between the orientation of each central element and 

the orientation of its flanking distractors. This exaggeration is usually pretty large for 

briefly presented stimuli (i.e., short flashes; Wenderoth & van der Zwan, 1989), but it 

also depends on the retinal eccentricity of the central Gabor patterns.  

 

 

Fig. 1.  Demonstrating repulsion and assimilation. The visual system exaggerates the 

orientation contrast between the (45°) tilted flankers and the vertical elements in the top 

panel. Small orientation differences, on the other hand, are effectively squelched. Thus, 

vertical flankers in the bottom panel can cause the small (4°) tilt to go unnoticed. 

 

 

 Exaggerations of simultaneous contrast are routinely ascribed to lateral 

inhibition somewhere within the visual system. The cartoon at the top of Figure 2 

represents 15 receptive fields somewhere in visual cortex, with lateral inhibition 

spreading around the cell whose receptive field is red. If lateral inhibition is 

responsible for the exaggeration of simultaneous contrast, then we have 

psychophysical data suggesting that lateral inhibition spreads very far indeed. 

Consider the red symbols in the lower half of Figure 2. They represent trials in which 
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flankers were tilted either 22° degrees clockwise or 22° degrees counter-clockwise of 

horizontal. When these flankers were present, they produced a negative or “repulsive” 

bias of roughly 10° when observers attempted to report the orientations of near-

horizontal targets. This was true even when the distance between flanker and target 

was almost half the latter’s eccentricity. 

 

  

Fig. 2.  Repulsion and assimilation: theory and experiment. Top panel contains a cartoon of 

15 “classical” receptive fields somewhere in visual cortex. Axes are one dimension of visual 

space (e.g. horizontal position x) and orientation preference θ. Horizontal stimuli positioned 

so as to maximally stimulate the central (red) cell indirectly and strongly inhibit nearby (light 

blue) cells and weakly inhibit the somewhat further (dark blue) cells, via lateral connections. 

Reciprocality in those connections means that the latter cells can also inhibit the central one. 

Thus, the amalgamation of these 15 receptive fields can be considered the “extra-classical” 

receptive field of the central cell. The lower panel shows average biases (symbols; ± 1 

standard error) and model fits (solid and dashed curves) to Experiment 3 from Mareschal, 

Morgan, & Solomon (2010), in which observers judged the orientation (with respect to a 

horizontal reference) of a flanked Gabor pattern at 4 and 10 degrees of retinal eccentricity. All 

flankers were identically rotated either –22°, –5°, +5°, or +22° with respect to the horizontal. 

 

 The blue symbols, on the other hand, represent trials in which the flankers 

were tilted just 5° off horizontal. When those flankers were close to the target, they 

seemed to produce a positive bias. This assimilation means that the visual system 

effectively makes it hard to notice subtle changes in orientation (and any other feature 

dimension you care to name), particularly when you don’t look directly at the 
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stimulus. Orientation assimilation is demonstrated in Figure 1B. You might need to 

look slightly to the left or right of the black cross, but you should be able to find a 

fixation for which you can still see all three Gabors without being able to see the 

differences in their orientations. 

 

Involuntary Averaging v Voluntary Averaging 

Whatever is responsible for small-angle assimilation, it too extends over a vast swathe 

of visual cortex. The only reason small-angle assimilation disappears when flankers 

and target are widely separated is because lateral inhibition is stronger. To get around 

the problem of lateral inhibition, some researchers have adopted tasks that should be 

immune to it. That is, they use visual tasks that do not require making fine 

discriminations between similar orientations or luminances or whatever. One task 

they particularly like is letter identification.  

 The idea behind Figure 3 is that the visual system is compelled to combine 

information from discrete stimuli, and consequently cannot disentangle the identity of 

one individual element from the overall statistics of information coming from that 

region of the visual field. In general, the name given to this phenomenon is 

“crowding,” and experiments with letter identification suggest a compulsory 

combination of visual information from individual letters separated by anything up to 

half their average eccentricity (Bouma, 1970). 
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Fig. 3.  Crowding. When fixating the dot on the top left, the N to the right is easily identified. 

When fixating the dot just below, the N seems to meld into a jumbled texture. Adapted from 

Cavanagh (2001). 

 

 Parkes, Angelucci, Lund, Solomon, & Morgan (2001) described crowding as 

“textural processing when we don’t want it to happen.” In other words, crowding is a 

form of involuntary ensemble representation. It is evident only when the visual task 

requires a decision about individual visual objects. I would like to distinguish such 

tasks from those that require a decision about the ensemble as a whole. In such cases, 

the computation of ensemble statistics may very well be voluntary. 

 When investigating ensemble representations, most of my work has been on 

voluntary averaging. For example, Solomon and Morgan (2018) recently assessed 

how well observers could estimate the average number of dots in a dot patch. The 

metric we used was efficiency. The paradigm was two (temporal)-alternative forced-

choice: observers were asked whether the dot patches in the first ensemble had greater 

or fewer dots on average than patches in a second ensemble. Obviously, if both 

ensembles had the same number of patches, then the question would be identical to 

asking which stimulus had more dots. However, in some blocks of trials, the first 

ensemble had eight patches while the second had just four patches. We also had 

blocks of four followed by eight. A Binomial distribution was sampled to determine 

the number of dots in each patch. To compute efficiency, you need to calculate the 
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ideal performance with various fractions of the available information. For example, if 

human performance were similar to what an ideal observer could do with half the 

available information, then human efficiency would be 50%. 

 Figure 4A shows a flow-diagram of the Inefficient Observer model for 

voluntary averaging. There were N dot clusters, observer JAS selected M of these at 

random, measured their numerosities, and reported the mean of those M 

measurements. M is known as the effective sample size and the ratio of M:N is known 

as either the sampling efficiency or the calculation efficiency or simply “the 

efficiency.” For JAS M was about 3. 

 

Fig. 4.  The Inefficient Observer model applied to voluntary averaging of (A) numerosities, 

(B) sizes, and (C) orientations. Psychophysical transformations (from physical dimensions 

into visual signals) are shown in the insets of panels B and C. Note these transformations 

(expansive, compressive, or quasi-linear) may occur prior to or after statistical 

summarization. Panel (D) shows the Noisy Inefficient Observer model with both (pre-

summarization) early and (post-summarization) late sources of noise.  
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Prothetic v Metathetic Continua 

The inefficient observer model can be traced back to one (Dakin, 2001) of the two 

papers that massively popularized the study of ensemble statistics. Dakin studied 

voluntary averaging of orientation and Ariely (2001) studied voluntary averaging of 

size. Subsequently, I studied both, but orientation is easier, because it is a metathetic 

continuum. 

 The distinction was made by Stevens (1957). Simply put, prothetic continua 

are those like size and contrast, where one value is either greater than, equal to, or less 

than another. Metathetic continua like orientation and direction don’t work like that.1 

Prothetic continua like size can be tricky to work with, because apparent size may not 

scale linearly with physical size. Indeed, without sufficiently specific instructions (cf. 

Raidvee, Toom, Averin, & Allik, in press) it isn’t necessarily clear whether average 

size reflects average diameter, average area, or something in between. 

 Moreover, the transformation between physical size and apparent size could 

theoretically occur before and/or after voluntarily computing whatever statistic we 

wanted to study. The inset in Figure 4B shows three psychophysical (transducer) 

functions. The blue one is linear, the violet one is expansive, and the yellow one is 

compressive. 

 Solomon & Tyler (2018) studied voluntary averaging in the contrast domain. 

When asked to adjust the contrast of a static, black-and-white texture to match the 

average contrast of another black-and-white texture that was flickering between high 

and low contrast, all observers gave the static texture greater average contrast than the 

                                                 
1 Regarding this dichotomy, here is the exact quote: “Continua having to do with how much belong to 

what we have called Class I, or prothetic; continua having to do with what kind and where (position) 

belong to Class II, or metathetic” (italics as in Stevens, 1957, p. 154). 
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flickering texture. This result is consistent with an accelerating or expansive 

transformation of physical contrast, prior to voluntary averaging. 

 With metathetic continua, like orientation, transformations like this don’t 

really matter, because we can be pretty confident that physically vertical things appear 

close to vertical and physically horizontal things appear close to horizontal. Thus the 

psychophysical function for orientation may stray a little from the blue line of 

veridicality in Figure 4C, but it can’t stray too far. 

 

Early v Late Noise 

Perhaps the most direct way to test how well an observer can voluntarily compute an 

average is to ask the observer to reproduce that average. Solomon & Tyler (2015) 

showed observers an ensemble comprised of eight low-frequency Gabor patterns in a 

ring around fixation (see Figure 5A). Their orientations were drawn from a Wrapped 

Normal distribution. The mean of that distribution was totally random, but its standard 

deviation was either zero or 16°. The ensemble was visible for 0.42 s. A high-

frequency, “probe” Gabor was presented at fixation after the ensemble had 

disappeared. Observers rotated the probe until its orientation matched their memory of 

the ensemble’s average orientation.  
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Fig. 5.  Voluntary averaging of orientation. (A) Stimulus from Solomon & Tyler (2015). 

Observers adjusted the central probe to match their memory of the surrounding ensemble’s 

average orientation. (B) Histogram of a representative observer’s adjustment errors when the 

SD of low-frequency Gabor orientations was zero. (C, D) Threshold v Noise (in this case, the 

SD of adjustment errors v the SD of the distribution of ensemble orientations) plots, fit with 

the Noisy, Inefficient Observer model assuming zero late noise (i.e. σL = 0; C) and zero early 

noise (i.e. σE = 0; D). Smooth curves are maximum-likelihood fits to thresholds (dots) from 

JAS. Dashed lines illustrate the ideal observer. 

 

 Although the Inefficient Observer model (Figure 4A) is useful in some cases; 

in general, it is not a good model of human performance, because humans cannot 

measure feature values like orientation with infinite precision. If they could, then 

response errors would have dropped to zero when all eight of the low-frequency 

Gabors were parallel. Errors do not drop to zero, as can be seen in Figure 5B. Thus 

the Inefficient Observer model needs modification. Perhaps the most straightforward 

way to modify the model is to assume that each measurement made by the observer 

gets perturbed by an independent, identically distributed sample of noise, as 

illustrated in Figure 5C. 
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 This Noisy, Inefficient Observer model for voluntary averaging (and other 

summary statistics) has two free parameters: the effective set-size M, and the standard 

deviation of noise σE:  

   .    (1) 

Within this simple formula, the standard deviation of response errors increases as a 

function of the standard deviation of orientations in the ensemble. A fit to one 

observer’s data is shown in Figure 5C’s threshold-v-noise plot. The axes are 

logarithmic, so data from the condition with parallel Gabors appears at the leftmost 

edge of the plot. When the model is best-fit to these two data points, its noise has a 

standard deviation of 10.4 degrees. The effective set size is 1.5.  

 Non-integer values such of effective set size can be interpreted in two ways. 

One possibility is that they reflect a mixture of effective set sizes. For example, on 

some trials I might have ignored or forgotten all but one randomly selected element, 

whereas on other trials I computed the average of two or more. In this case, M would 

reflect the root-mean-square of this number. Alternatively, non-integer values of M 

might reflect an unequal weighting of two or more of the texture elements.2  

 The smooth curve in Figure 5D illustrates a slightly different Noisy, 

Inefficient Observer: 

   error S.D.2 = s L

2 +
stimulus S.D.2

M
.    (1) 

In this case, it’s as though the entire ensemble gets tilted by a random amount, rather 

than each individual element. The standard deviation of that random amount σL is 

                                                 
2 The Inefficient Observer model can be considered an extreme form of unequal weighting, in which   

N – M elements get zero weight. Whereas any form of unequal weighting is sub-ideal and thus 

inefficient, equal weighting does not imply 100% efficiency. An observer whose responses on each 

trial are based on a single, randomly selected element will have an efficiency of 1/M, but – on average 

– weight will have been distributed equally over all elements in the sample. 



 14 

called “late noise” in this formulation.3 The first thing to notice is that the two 

versions of the model make exactly the same predictions. The second thing to notice 

is that the best-fitting value of M does not depend on whether individual samples of 

equivalent noise are correlated. Thus, if all you care about is the effective set size, you 

can use either formula, it doesn’t matter. 

 I attempted to ascertain whether the noise that limited the precision of 

orientation statistics was early or late (Solomon, 2010). This would have been 

impossible if I had merely asked obserers to judge the average orientation of 

ensembles having a fixed size. Consequently, I varied the size of the ensemble, taking 

care not to change the precision with which the orientation of each individual element 

could be assessed, and I also varied the task: in some trials, observers were asked to 

assess the variance of orientations in the ensemble, rather than the mean. The results 

contained compelling evidence for both early and late noise. When members of an 

ensemble are all roughly identical, any effect of sample size N on the precision of 

voluntary averaging must be attributed to early noise. On the other hand, late noise is 

implicated when the effect of the sample’s size increases with the sample’s variance.    

 

In conclusion, I would like to underscore two features/caveats with regard to the 

efficiency metric. First, it is a purely descriptive measure of performance in relation to 

the available information. Given any sample size N, efficiency is the ratio of M to N, 

where M is the sample size that the ideal observer would need in order to estimate a 

                                                 
3 Note that segregating the cause of imprecision into an early and late stage is somewhat arbitrary. If, 

instead of late noise, we allow the random perturbation added to the orientation of any two 

elements to have correlation 𝜌, then we can reparameterize Equations 1 and 2 such that: 

  .   (3) 

Note that when 𝜌=0, Equation 3 reduces to Equation 1 with σ = σE; when 𝜌=1, Equation 3 reduces 
to Equation 2 with σ = σL. 
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statistic with the same precision as a human observer.  Since the ideal observer is, by 

definition, at least as good as any other observer, human decisions are necessarily 

based on M or more elements. Second, and most important, estimates of efficiency tell 

us nothing about ensemble perception per se. With strategic decision-making 

strategies, reasonably high efficiencies can be achieved from independent 

representations of individual stimuli. Authors discussing various strategies include: 

Myczek & Simons (2008), Solomon (2010), Dayan & Solomon (2010), Gorea, 

Belkoura, & Solomon (2014), and Li, Herce Castañon, Solomon, Vandormael, & 

Summerfield (2017). 
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