Description
The function mcov computes estimates of the lag 1 moving cross-covariance matrix of non-stationary (and stationary) time series. Notice that the following library is needed to be installed before using the mcov function: library(roll)

Usage
mcov($x, w, 1$)
Arguments
x a T-by-m data matrix, where the rows are "T" time points, and the columns are " m " variables
${ }^{\text {w }}$ window width (i.e. window size) at which the mcov is calculated
${ }^{1}$ the lag at which the mcov is calculated

Value
a symmetric m-by-m matrix, which is the lag 1 moving cross-covariance matrix of the data matrix x

Note
 that exhibit strong non-stationarity. For stationary data, a window of size "w=T-1" is used

Author (s)
Fayed Alshammr
References
Alshammri, F. and Pan, J. (2019). Moving dynamic principal component analysis for non-stationary multivariate time series. Manuscript submitted for publication
Examples
$=6 ; T=1500$
\# Generate x_t
$X=$ mat.or.vec (m, T)
$1=$ arima. $\operatorname{sim}($ list (order $=c(1,1,1)$, $a r=0.75$, ma= $=0.9), n=T+1, s d=1$)
for(i in 1:2) X[i,]=a1[i+1:T]
$a=$ arima. $\operatorname{sim}(1$ ist (order $=c(1,1,1), a r=0.6$, ma $=-1.4), \mathrm{n}=\mathrm{T}+1, \mathrm{sd}=1)$
or $(\mathrm{i}$ in $3: 4) \times[\mathrm{i}]=,\mathrm{a} 2[(\mathrm{i}-1):(T+i-2)]$
$3=$ arima. sim(1ist (order $=c(1,1,1)$, $a r=-0.7, m a=-2.3$), $n=T+1, s d=1$)
for (i in $5: 6$) $\times[\mathrm{i}]=,a 3[(\mathrm{i}-3):(\mathrm{T}+\mathrm{i}-4)]$
$x=t(X)$
$x=t s(X)$
\#\#calculate the lag 1 moving cross-covariance of x , with $\mathrm{w}=100$ and $\mathrm{l}=2$.
myresult $=m \operatorname{cov}(X, 100,2)$
myresult

