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Abstract
Ultrashort intense optical pulses in the mid-infrared (mid-IR) region are very important for broad applications ranging
from super-resolution spectroscopy to attosecond X-ray pulse generation and particle acceleration. However,
currently, it is still difficult to produce few-cycle mid-IR pulses of relativistic intensities using standard optical
techniques. Here, we propose and numerically demonstrate a novel scheme to produce these mid-IR pulses based on
laser-driven plasma optical modulation. In this scheme, a plasma wake is first excited by an intense drive laser pulse in
an underdense plasma, and a signal laser pulse initially at the same wavelength (1 micron) as that of the drive laser is
subsequently injected into the plasma wake. The signal pulse is converted to a relativistic multi-millijoule near-single-
cycle mid-IR pulse with a central wavelength of ~5 microns via frequency-downshifting, where the energy conversion
efficiency is as high as approximately 30% when the drive and signal laser pulses are both at a few tens of millijoules at
the beginning. Our scheme can be realized with terawatt-class kHz laser systems, which may bring new opportunities
in high-field physics and ultrafast science.

Introduction
Since the laser was invented in 19601, it has become a

powerful and important tool for various applications in
fundamental science, industry, medicine, and so on. In
particular, the invention of the chirped pulse amplification
technique2 by Strickland and Mourou in 1985 dramati-
cally boosted the intensity of laser pulses, usually at near-
infrared (near-IR) wavelengths, to an unprecedented level.
This revolutionary invention brought laser-matter inter-
actions into the relativistic regime for the first time. It has
produced the highest accelerating field and highest pres-
sure on earth, which are comparable to those of energetic
events in the universe, providing unprecedented oppor-
tunities for various scientific studies3–8. Because of their
ultrashort durations (down to a near-single optical
cycle9,10), these laser pulses also allow one to explore and

control ultrafast processes in the microcosm11 and open
the door towards attosecond science12 and nonlinear
optics of a vacuum9,10. At present, however, relativistic
ultrashort laser pulses are usually obtained in the near-IR
range. There is increasing interest in extending these laser
pulses to other wavebands, such as the mid-IR range.
Ultrashort intense mid-IR pulses are particularly useful
for ultrafast and high-field physics, chemistry, biology,
and materials science, such as ultrahigh harmonic gen-
eration13, attosecond pulse radiation14, infrared spectro-
scopy15,16, high-resolution imaging of ultrafast molecular
dynamics17, and filamentation18. When these mid-IR
pulses are further enhanced to relativistic intensities,
there will be many new opportunities for applications in
particle acceleration19–21, high-field physics22–24, and the
generation of brighter hard X-rays and shorter attosecond
pulses13,14,25, all of which would greatly benefit from the
long carrier wavelength, high peak intensity, few-cycle
duration, and multi-millijoule (mJ) pulse energy. There-
fore, diverse methods have been proposed for creating
intense few-cycle mid-IR pulses by using nonlinear
crystals26–30. However, they are currently limited to
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non-relativistic intensities. In particular, the generation of
high-energy intense mid-IR pulses with a near-single cycle
is highly challenging.
In recent years, plasma-based optical techniques have

received broad interest. Since plasma-based optical ele-
ments can sustain much higher laser intensities than
conventional crystal-based elements, they are extensively
proposed for the generation and manipulation of high-
intensity laser pulses. Novel concepts such as plasma
mirrors31, plasma gratings32, plasma optical modulators33,
plasma undulators34, and plasma optical polarizers35 have
been proposed and/or demonstrated. In particular, the
generation of intense mid-IR pulses via the self-
modulation of ultrahigh-power relativistic laser pulses in
plasmas has been verified numerically or experimentally
by several groups36–39. However, they normally relied on
Joule-class 100-terawatt (TW)-level laser facilities, which
are still expensive and run at only a few-Hz repetition
rate. Moreover, the resulting mid-IR pulse has a typical
ultrabroad continuous spectrum, and the energy conver-
sion efficiency is limited to a few percent or even less.
These severely restrict their availability for wide practical
applications. Therefore, it is of great importance to gen-
erate intense few-cycle mid-IR pulses with controllable
spectra and at high efficiencies using compact high-
repetition-rate laser systems, which could provide more
stability and wider accessibility for a broad community.
To address this intriguing quest, we propose a scheme

for the efficient generation of relativistic multi-mJ near-
single-cycle mid-IR pulses based on a novel type of plasma
optical modulator. It utilizes two co-propagating laser
pulses in an underdense plasma, where one pulse drives a
plasma wake as the frequency modulator and the other is
incident with a certain time delay as the signal pulse to be
frequency-downshifted. When the drive laser pulse is
intense enough, the plasma wake is highly nonlinear and
appears as a few bubbles behind the drive laser40–42. These
moving plasma bubbles serve as ideal optical structures
suitable for frequency modulation. As long as the signal
pulse is properly loaded at the front of the second bubble,
it can be converted to a mid-IR pulse at an obviously
longer central wavelength of ~5 μm with a surprisingly
high energy conversion efficiency of ~30%. More impor-
tantly, the generated mid-IR pulse can reach a relativistic
intensity with an ultrashort duration of a near-single cycle.

Results
Concept for mid-IR pulse generation
Figure 1 shows a schematic of the relativistic few-cycle

mid-IR pulse generation from a laser-driven plasma wake.
First, an intense drive pulse propagates in an underdense
plasma and creates a nonlinear plasma wake, which is
composed of a few plasma bubbles moving at a phase
velocity close to the group velocity of the laser pulse.

Subsequently, a signal laser pulse initially with the same
wavelength of the drive laser is incident into the plasma
wake. The signal pulse is appropriately delayed to ensure
that it loads at the front of the second plasma bubble. As
the signal laser co-propagates with the plasma bubble, it
undergoes a frequency downshift to a central wavelength
extended to the mid-IR spectral range. Moreover, the
frequency-downshifted pulse can propagate steadily in the
plasma channel over many Rayleigh lengths (over 1.6 mm
in our cases) along a stable pointing direction during the
frequency-downshift process. Thus, this scheme is stable
for the frequency downconversion of the input laser pulse
in the plasma wake. More importantly, the drive pulse and
the signal pulse in this scheme require only a few tens of
mJ of energy and a few TW of peak power (see Methods
section), which can be readily delivered by the existing
compact multi-TW kHz-level laser systems43–46.

Plasma optical modulation mechanism
The mechanism of mid-IR pulse generation via plasma-

based optical frequency modulation can be described as
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Fig. 1 Concept of a plasma optical modulator for mid-IR pulse
generation. This concept involves two laser pulses in an underdense
plasma (see Methods section for the details of the initial parameters),
where a drive laser pulse first excites a nonlinear plasma wake while a
co-propagating signal pulse is injected into the second bubble of the
wake. After a sufficient modulation time, the signal pulse is
dramatically frequency-downshifted and converted into a mid-IR
pulse, as seen in (a schematic diagram) and (b 3D simulation result),
where ξ= x− ct is the variable in the light frame
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follows. A plasma wave created by an intense laser pulse
in an underdense plasma via a nonlinear wake-field
excitation gives the change in the electron density ne(ξ, τ)
and the plasma frequency ωp(ξ, τ) in time and space47–49.
This leads to the change in the local phase velocity of light
as vp ξ; τð Þ � cþ cω2

p ξ; τð Þ=2ω2 according to the disper-
sion relation ω2 ξ; τð Þ ¼ c2k2 ξ; τð Þ þ ω2

p ξ; τð Þ for the local
instantaneous laser frequency ω(ξ, τ), where ξ= x− ct, τ
= t, and c is the speed of light in a vacuum. When the
laser pulse resides in the density up-ramp region of
the plasma wave, the local phase velocity increases along
the laser propagation direction since dvp/dξ ∝ ∂[ne(ξ, τ)]/
∂ξ > 0, where ∂[ne(ξ, τ)]/∂ξ is the gradient of the electron
density perturbation, which gives rise to the change in
frequency or wavelength of the laser pulse.
Theoretically, the local variation in the wavelength

within a short period of time dτ can be estimated by50

dλ ¼ Δvpdτ, where Δvp � λ∂vp=∂ξ is the phase velocity
difference between two adjacent light wave crests (or

troughs) and ∂vp
∂ξ � c

2nc
λ
λ0

� �2
∂ne ξ;τð Þ

∂ξ ; thus, one has

dλ
dτ

� cλ
2nc

λ

λ0

� �2 ∂ne ξ; τð Þ
∂ξ

ð1Þ

where nc ¼ meω2
0=4πe

2 is the critical plasma density,
ω0= 2πc/λ0 is the initial laser frequency, and e and me are
the electron charge and mass, respectively. This equation

can be written in the form of λ�3dλ � c
2ncλ

2
0

∂ne ξ;τð Þ
∂ξ dτ. The

integral of this equation gives 1
λ20
� 1

λ2
� c

ncλ
2
0

R T
0

∂ne ξ;τð Þ
∂ξ dτ,

where T is the interaction time. As a consequence, the
wavelength of the laser pulse modulated by the plasma
wave can be estimated as

λ � λ0 1� c
nc

Z T

0

∂ne
∂ξ

dτ

� ��1=2

ð2Þ

When c
nc

R T
0

∂ne
∂ξ dτ � 1, it gives λ � λ0ð1þ c

2nc

R T
0

∂ne
∂ξ dτÞ.

Equation (2) suggests that the signal laser pulse will be
frequency redshifted when it resides in a region of
increasing density, thus potentially producing a mid-IR
pulse in the wake. This suggestion is demonstrated by our
simulations, as detailed below.
It is noted that the difference in the phase velocity of a

probe light wave in regions of different plasma density has
already been maturely used in experiments to measure the
electron density perturbation of a plasma wake in the so-
called pump-probe interferometry51–53, which is a promis-
ing tool for the on-line monitoring and control of plasma-
based accelerators. This suggests that our scheme can be
realized experimentally with the existing optical
technology.

Relativistic few-cycle mid-IR generation
We demonstrate this concept using fully three-

dimensional (3D) relativistic particle-in-cell (PIC) simu-
lations (see Methods section). Figure 2a–c illustrates the
evolution of the drive pulse, the signal pulse and the
plasma wake in the plasma-based optical modulation. The
relativistic drive laser first creates a nonlinear wake as it
propagates in the plasma; then, the signal laser enters the
wake and resides in the density up-ramp of the second
bubble with ∂[ne(ξ, τ)]/∂ξ > 0 (Fig. 2a). Due to the pon-
deromotive force of the signal laser pulse, the electron
sheath density at the front of the second bubble further
increases and results in a sharp density gradient, as shown
in Fig. 2b. As a result, the signal pulse experiences a
strong wavelength elongation or frequency-downshifting
to a spectral peak at ~1.7 μm (Fig. 2d). After a sufficient
modulation time, the infrared pulse is further frequency-
downshifted to a spectral peak at λc ≈ 4.2 μm. The pro-
duced infrared photons (with a low frequency ωir= 2πc/
λir < ω0) quickly slip backwards to the center of the
second bubble because of their relatively slower group

velocity vg ¼ cð1� ω2
p=ω

2
irÞ1=2. As soon as the resulting

mid-IR pulse arrives at the bubble center, it is trapped
there, and its spectrum undergoes little change, as shown
in Fig. 2c. Therefore, this plasma optical modulator is
ideal for creating and maintaining intense long-
wavelength infrared photons. In this example, the result-
ing pulse with a 4.2 μm central wavelength has a two-cycle
full width at half maximum (FWHM) short pulse duration

and a normalized amplitude air ¼ λirEz;ire
2πmec2

� 1:3, which is

well above the relativistic intensity threshold. The final
signal pulse at the 4.2 μm central wavelength in the
spectral range of 3–6 μm retains approximately 30% of the
initial signal pulse energy after the frequency downshift,
which is surprisingly high. More interestingly, its energy
loss mainly contributes to the enhancement of the plasma
wake when it resides in a density up-ramp region in the
second bubble, which in return promotes the frequency-
downshifting. Compared to the strong frequency-
downshift of the signal pulse, only a small part of the
rear edge of the driver laser pulse undergoes a moderate
photon frequency-downshift with a conversion efficiency
of ~1% in a spectral range above 3 μm (see Fig. S1 in the
Supplementary Information for the spectral evolution of
the driver pulse). This occurs because only a small part of
the drive laser pulse is located in the density up-ramp
region at the front of the first bubble, and here, the density
gradient is very gentle. Furthermore, the whole plasma
wake excitation is caused mostly by the drive laser, which
depletes its substantial energy.

We investigated the effects of the plasma length and
density on mid-IR pulse generation. Figure 3a presents the
dependence of the number of optical cycles, energy
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signal pulse, corresponding to the positions in (a black dashed line), (b black solid line) and (c blue solid line). The inset shows the temporal
waveform of the output mid-IR pulse at the central wavelength λc ≈ 4.2 μm. The laser field for the signal pulse has been multiplied by a factor of 2, 2,
and 5 (red lines) in a–c, respectively, and the spectral intensity, by a factor of 2 (blue line) in d
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conversion efficiency and central wavelength of the pro-
duced infrared pulse on the plasma channel length
L ¼ ΔLþ L0, where ΔL is the length change relative to
L0= 1597 μm. Other plasma and laser parameters are the
same as those in Fig. 2 unless otherwise stated. It is shown
that the infrared wavelength increases nearly linearly with
the plasma length as λir ∝ L when L is relatively short.
With a further increase in L, however, the central wave-
length becomes saturated at λc ~ 4.5 μm. This saturation
occurs because the plasma density defines the size of the
plasma bubble λb � 2π

ffiffiffiffiffi
a0

p
=kp

� �
, which puts an upper

limit on the wavelength of the trapped infrared photons.
In addition, an overlong plasma will lead to a significant
attenuation and energy depletion of the pulse.
In Fig. 3b, we consider the effect of the plasma density on

the infrared pulse generation, where the product of the
plasma length and density is fixed with n0L ¼ 5:59 μm � nc
to prevent excessive laser absorption in the plasma and to
sustain an appropriately long interaction distance for pho-
ton frequency downconversion. In this case, the wavelength
change may scale as dλ ∝ ∂[ne(ξ, τ)]/∂ξ according to Eq. (1).
Since a sharper density gradient is excited in a denser
plasma, it gives rise to faster frequency-downshifting with a
significant wavelength elongation. This is verified by our
simulations; for example, when using a higher plasma
density n0= 4.5 × 10−3nc, the infrared central wavelength is
increased to λc ~ 5 μm, with a duration of a near-single
optical cycle. However, it is worth noting that the plasma
density should not be too high; otherwise, the plasma
bubble shrinks dramatically as λb ∝

ffiffiffiffiffiffiffiffiffiffiffiffi
a0=ne

p
such that it

does not have sufficient volume to accommodate the pro-
duced long-wavelength photons. A high-density plasma will
also lead to a significant pulse attenuation due to strong
absorption. In addition, the generated low-frequency
infrared photons are subject to the plasma cutoff

frequency constraint; hence, they may not be able to pro-
pagate in a high-density plasma.
We have also investigated the robustness of this scheme in

terms of the carrier-envelope phase (CEP), intensity and spot
size of the input signal pulse. Figure 4a shows the evolution
of the CEP of the infrared pulse as a function of the CEP of
the initial signal laser. As an ultrashort laser pulse propagates
in a plasma of density perturbation, such as in a plasma wave
with time-dependent density ne(τ) and
ωp τð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πe2neðτÞ=me

p
, a shift in the pulse CEP will

occur50. This shift is attributed to the plasma dispersion or,
more precisely, the difference between the phase velocity
(controlling the carrier phase) vp � c½1þ ω2

p τð Þ=2ω2�> c
and the group velocity (controlling the envelope)
vg � c½1� ω2

p τð Þ=2ω2�< c. The shift in the carrier phase of
the pulse defined at the peak point of the laser electric
field after a propagation time T can be estimated by
Δφ � R T

0 ðvp � vgÞω=cdτ. Therefore, the shift in the
carrier phase of the mid-IR pulse (φir) relative to that of
the signal pulse (φs) in the plasma wave is given by
φir � φs �

R T
0 ðvp � vgÞωirðτÞ=c� ðvp � vgÞω0=c
	 


dτ,
where ωir(τ) is the central instantaneous frequency of
the infrared (modulated) pulse. Since
φs � φ0 �

R T
0 ðvp � vgÞω0=cdτ, one has the resulting

change in the carrier phase between the output infrared
pulse and the initial signal pulse:

Δφ ¼ φir � φ0 �
Z T

0
ðvp � vgÞωirðτÞ=cdτ ð3Þ

where φ0 is the initial carrier phase of the signal pulse.
Further, by inserting ω2

0 ¼ 4πe2nc=me, vp and vg into
Eq. (3), one can obtain Δφ � R T

0
neðτÞ
nc

ω2
0

ωirðτÞ dτ. For a given
driver laser and a fixed delay between the driver laser and
the signal laser, both ne(τ) and ωir(τ) are determined,
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which are independent of the initial carrier phase φ0 of the
signal pulse. As a result, Δφ is independent of φ0. This
outcome agrees with our simulation results given in
Fig. 4a, where Δφir � 0:5π under the given conditions,
which is independent of φ0. Here, we employ the same
laser and plasma parameters shown in Fig. 2, except for
the different initial phases of the signal laser pulse, which
vary from 0 to π radians. Based on the CEP-stabilized
laser pulses delivered by the kHz laser systems43–46, this
scenario has the potential to produce multi-mJ few-cycle
mid-IR pulses not only at relativistic intensities but also
with stable CEPs and high repetition rates using our
scheme, which are extremely beneficial for a wide range of
applications.
The effect of the signal laser intensity on the infrared

pulse generation is presented in Fig. 4b. It is worth noting
that a non-relativistic signal laser pulse as0= 0.85 can also
produce a relativistic mid-IR pulse air ≈ 1.1 (with λir/λ0 ~
4.1 and Ez,ir/Ez0 ~ 0.33), where ~34% of the signal laser
energy is transferred into the output infrared pulse. With
the increase in the signal laser intensity, the wavelength of
the output pulse increases since the density gradient at
the front of the second bubble becomes sharper. With the
increase in the radiated infrared wavelength, the pulse
normalized amplitude is significantly enhanced since air ∝
λirEz,ir. This enhancement is an advantage of long-
wavelength infrared pulses, the result of which is that
the final output mid-IR pulse can easily have a higher
normalized amplitude than that of the initial signal pulse
despite the fact that the pulse is damped considerably.
However, the initial signal laser intensity cannot be
increased to an arbitrarily high value; otherwise, it will
cause strong nonlinear coupling between the laser and
plasma, thereby resulting in a large fraction of laser energy
absorption and pulse attenuation. For example, when
as0= 2.5, only ~26% (15 mJ) of the signal laser energy is
converted into the infrared pulse, which is approximately
10% of the total energy of the signal pulse plus the drive
pulse. Therefore, the incident signal pulse intensity should
not be too high (i.e., as0 t 2:5) for high-efficiency mid-IR
pulse generation.
Figure 5 illustrates the effect of the spot size of the

signal laser pulse on the spectrum of the mid-IR pulses,
where the spot radius (w0) is varied in the range from 5 to
9 μm, while all other parameters are the same as those
presented in Fig. 2. It is shown that the spectral range of
the produced mid-IR pulses is similar under different spot
radii of the signal pulse, with a central wavelength of
approximately 4 μm. This similarity means that the
wavelength of the mid-IR pulse depends weakly on the
laser transverse dimensions when the initial spot radius of
the signal pulse is larger than the central wavelength of
the resulting mid-IR pulses. The spectral intensity of the
output mid-IR pulses increases with the spot size mainly

due to the increase in the initial signal pulse energy, which
also gives rise to an enhancement of the plasma wake
excitation and thus causes a slight change in the fre-
quency spectrum. It is noted that the spot size of the
signal pulse should not be too large; otherwise, the part of
the laser pulse outside the plasma bubble undergoes little
frequency-downshifting and is depleted in the plasmas,
which leads to a decrease in the energy conversion
efficiency.

Discussion
To further demonstrate the robustness and feasibility of

the proposed concept, we consider the same pulse dura-
tion of 10 fs (FWHM) for both the drive and signal pulses,
and the corresponding pulse energy and peak power are
respectively 55 mJ and 5.5 TW for the drive laser pulse
and 13.7 mJ and 1.37 TW for the signal laser pulse. These
laser pulses are readily achieved in experiments by using a
dielectric mirror to split the main laser beam into a driver
beam and the other signal beam with a certain time delay,
which can be delivered by a multi-TW few-cycle laser
system at a kHz repetition rate at existing laser facilities44.
The time delay between the driver and signal beams can
be precisely adjusted by using an optical delay stage. Here,
we consider two pulses separated with three different
delay times td= 17T0, 18T0 and 19T0, while all other
parameters are the same as those in Fig. 2. It is interesting
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to see that there is no significant impact on the frequency-
downshifting mechanism, and the resulting infrared pul-
ses all reach a comparable level with spectral peaks at a
wavelength of ~4 μm, as illustrated in Fig. 6. In the case of
td= 17T0, one can see that there is also a distinct high-
frequency part in the final modulated pulse. This exists
because the front of the signal pulse has already been
entered into the density down-ramp region with ∂[ne(ξ,
τ)]/∂ξ < 0 at the end of the first bubble. With the increase
in the delay time, the peak of the initial signal pulse will be
away from the front toward the center of the second
bubble, encountering a gentler density gradient. There-
fore, it leads to a more moderate photon frequency
downconversion. Once the initial signal laser directly
resides in the bubble center (near the electron-free
region), it is unlikely that its frequency will be modu-
lated by much. Thus, the delay time should not be too
long.
It is noted that the generated mid-IR pulses can be

further collimated and focused by an off-axis parabolic
mirror and separated by a germanium filter where the
near-IR pulses are reflected. This may offer a way to
deliver and/or measure the output mid-IR pulses for
many applications. As a whole, these findings indicate
that our scheme is robust and practical in producing

relativistic few-cycle mid-IR pulses and makes it feasible
to apply it to high-repetition-rate compact laser systems.
In addition, we also carried out some additional 3D PIC

simulations to study the effects of the laser polarization
direction and the plasma density up- and down-ramps on
the mid-IR pulse generation. The details are illustrated
in the Supplementary Information. We find that the
photon frequency downconversion of the signal laser in a
plasma optical modulator is insensitive to the laser
polarization direction and plasma density ramps within a
certain range (see Figs. S2, S3).
In conclusion, we have reported and numerically

demonstrated a scheme to generate relativistic multi-mJ
near-single-cycle mid-IR pulses based on plasma-based
optical modulators using TW-class laser pulses. The
resulting mid-IR pulses can be flexibly tuned by changing
the initial laser and/or plasma parameters, and the energy
conversion efficiency from the signal pulse to the mid-IR
pulse can be as high as 30%. The advent of these intense
mid-IR pulses has significant implications for light-matter
interactions, moving them into a unique regime of long
wavelength, few-cycle duration and relativistic intensity.
As TW-class laser pulses can be delivered at a kHz
repetition rate, they provide the ability to operate at a high
repetition rate and thus enhance their availability and
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stability. This situation offers a unique opportunity for a
variety of ultrafast and high field applications.

Methods
PIC simulations
The full 3D simulations were carried out with the

electromagnetic relativistic PIC code EPOCH54, allowing
the self-consistent simulation of laser-plasma interactions.
The size of the simulation box is 50 μm(x) × 36 μm(y) ×
36 μm(z) with grid cells of 1750 × 216 × 216 and four
macro-particles per cell. The drive laser pulse is linearly
polarized along the y-direction and has a spatial-temporal

profile of ad ¼ ad0exp � r2

w2
0

� �
sin2ðπt=τd0Þey with a dura-

tion τd0= 10T0, spot size w0= 8 μm, and normalized

amplitude ad0 ¼ eλ0Ey
2πmec2

¼ 2. These correspond to a peak

intensity of 5.5 × 1018W/cm2, peak power of 5.5 TW and
pulse energy of 91.9 mJ at the laser wavelength λ0= cT0=
1 μm. The signal laser pulse is linearly polarized along

the z-direction and has a similar profile of as ¼
as0exp � r2

w2
0

� �
sin2ðπt=τs0Þez with as0 ¼ eλ0Ez

2πmec2
¼ 1, τs0=

4T0, and the same initial spot size and wavelength as those
of the drive laser. These correspond to a signal pulse
energy of 9.2 mJ and a peak power of 1.37 TW. The signal
pulse is delayed by 21T0 from the drive pulse in this
example. One notes that these laser pulses are readily
available on the existing TW-class kHz-level laser sys-
tems43–46. To guide the propagation of the above focused
laser pulses over many Rayleigh lengths, a plasma channel
is adopted. The initial density profile of the plasma
channel is given by ne ¼ n0 þ Δn0 with a length of L0=
1597 μm, where n0= 3.5 × 10−3nc is the background

density, Δn0 ¼ λ20
π2w4

0
r2nc is the channel depth, and r is the

radial distance from the channel axis. This type of plasma
channel can be generated in several ways and has been
widely used in laser-plasma experiments55,56.
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