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An efficient computational strategy for robust maintenance 
scheduling: Application to corroded pipelines

E. Patelli & M. de Angelis
Institute for Risk and Uncertainty, Chadwick Building, University of Liverpool, UK

ABSTRACT: The ability to predict correctly the future remaining life time of components is of 
paramount importance to improve the safety and reliability of systems and networks via an effective 
maintenance policy. However, simplifications and assumptions are usually adopted to compensate lack 
of data, imprecision and vagueness, which cannot be justified completely and may, thus lead to biased 
results. To overcome these issues, an imprecise probabilities approach is proposed for reliability analysis 
and risk-based maintenance strategy. A novel efficient computational approach is proposed for identifying 
robust maintenance strategies. The optimal solution is obtained through only one reliability assessment 
based on Advanced Line Sampling and reusing the outcome of maintenance activities in a force Monte 
Carlo approach. The proposed methodology remove the huge computational cost of reliability-base opti-
mization making the analysis of industrial size problem feasible. The applicability of the approach is 
demonstrated by identifying the optimal maintenance policy of buried pipelines and it is shown how this 
approach can improve the current industrial practice.

data required to define parameter distributions. 
Sahraoui et al. (2013) proposed a Bayesian mod-
elling to take into account imperfect inspection 
results while Li et al. (2017) suggested using Baye-
sian network and Markov process approach to 
develop an optimal maintenance strategy for cor-
roded subsea pipelines.

However, the amount of data required to define 
unequivocally those distributions might not be 
available in practice, assumptions and simplifica-
tions are applied and often they cannot be justified 
completely. To solve this conflict, the use of impre-
cise probabilities (Beer and Ferson 2013, Beer and 
Patelli 2015) is proposed to realistically reflect the 
vagueness of the available information in the prob-
abilistic model. In fact, since these assumptions 
and simplifications can be quite decisive, an impre-
cise probabilities approach provides a promising 
pathway towards a robust maintenance strategy. 
This paper therefore proposes the use of a novel 
reliability metric redefined within the framework 
of imprecise probabilities.

Another challenging task is the identification of 
optimal inspection interval time in order to reduce 
the overall costs of pipelines including cost of 
inspection, repair and failure. For instance, areas 
needing repairs must be accurately pinpointed as 
to minimise excavations for verifications. Like-
wise, early observations of failure mechanisms, 
and determination of the likelihood of failure 
in association with the pipeline must be handy. 

1 INTRODUCTION

One of the most important degradation/deteriora-
tion mechanisms that affect the long-term reliabil-
ity and integrity of metallic pipelines is corrosion. 
Corrosion which leads to metal loss is the most 
prevailing time dependent threat to the integrity, 
safe operation and cause of failure for oil and gas 
pipelines (Caleyo et al. 2002). The corrosion proc-
ess is affected by large uncertainty making the 
assessment of pipelines a complex and challeng-
ing task (Bazán and Beck 2013, Qian et al. 2011). 
For instance, uncertainties are in relation to opera-
tional data variation, associated to the randomness 
of the environment, form imperfect measurements 
of pipeline geometry, in the material strength and 
from the ageing processes of the pipeline.

The remaining strength of a pipeline with cor-
rosion defects can be assessed using one or all of 
the international design codes viz: B31G (AMSE 
1991), B31Gmod (ASME 2012), Battelle (Leis and 
Stephens 1997a, Leis and Stephens 1997b), DNV-
101 (AS 2015) and Shell-92 (Klever et al. 1995). 
The associated methods use deterministic values 
for load and resistance variables, thereby assuming 
no uncertainty. In the light of the existing inherent 
uncertainties in the corrosion process, the obtained 
results are obviously quite coarse approximations, 
which may deviate from reality significantly. A key 
challenge in this regard is the probabilistic model-
ling, which relies on substantial information and 
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The identification of optimal maintenance sched-
uling requires in turn the evolution of the model 
reliability that can be computational expensive to 
evaluate (Gomes et al. 2013). Approximate meth-
ods, e.g. FORM may not be sufficiently accurate 
or applicable for large scale problems, and we have 
to resort to simulation based methods.

In this paper, a novel and efficient computa-
tional technique is proposed for the identification 
of a robust maintenance scheduling taking into 
account uncertainty and imprecision. More spe-
cifically, the proposed approach allows determin-
ing the optimal inspection interval and the repair 
strategy that would maintain adequate reliability 
level throughout the service life of the pipeline 
obtained through only one reliability assessment. 
In turn, the reliability analysis is performed using 
Advanced Line Sampling (de Angelis et al. 2015). 
This allows to estimate reliability bounds with 
only one simulation and, in addition, it efficiency 
is independent of the reliability level. Hence, the 
proposed approach is applicable to the analysis of 
industrial size problem. The proposed reliability 
strategies are implemented in the general purpose 
software OpenCossan (Patelli et al. 2018, Patelli 
2016, Patelli et al. 2012) and freely available.

2 MODELLING CORRODED PIPELINE

Metal losses due to corrosion affect the ultimate 
resistance, safety and serviceability of the struc-
ture and cause changes in its elastic and dynamic 
properties. These are major concerns in struc-
tural reliability assessment of existing structures 
and infrastructures, also in the prediction of the 
safe and serviceable life for both new and existing 
structures.

2.1 Failure criteria

The failure modes considered here are the loss of 
structural strength of pipelines through reduc-
tion of the remaining pressure strength, and pipe 
wall thickness caused by corrosion defects. The 
failure pressure are assessed using four interna-
tional design codes: Shell-92, B31G, DNV-101 and 
Modified B31G models, respectively. The sum-
mary of all the failure pressure models is shown 
in Tables  1 and 2. In Table  1 W is the pipe wall 
thickness; L is the longitudinal length of defect; D 
is the outside diameter of pipe and M is the Folias’ 
factor. In Table 2, Fp is the failure pressure and d 
represents the defect depth. σy and σu are the mate-
rial yield stress and the ultimate tensile strength, 
respectively.

The assumption and limitation of these models 
are reflected on the individual flow stresses which 

are the measure of the strength of steel in pres-
ence of a defect. Folias’ factors, M, is the geometry 
correction factor to account for the stress concen-
tration due to radial deflection of the pipe sur-
rounding a defect. Failure is assumed to occur as a 
result of the flow stress, defined by yield strength 
(in B31G and Modified B31G codes) or ultimate 
tensile strength (in DNV-101 and Shell-92) as their 
tensile properties. Further considerations and 

Table 1. Flow stess and Folias’ factor according differ-
ent international design codes.

Model
Flow  
stress Folias’ factor (M)
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Table 2. Failure pressure of pipelines according differ-
ent international design codes.
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assumptions on different shapes and areas of cor-
rosion defect can also be made which might lead to 
different definition of failure critaria.

The failure criteria is defined as the difference 
between the failure pressure, Fp, of  the pipeline 
and the maximum allowed operating pressure, 
(MAOP): 

g F MAOPp= −  (1)

where g is the so-called limit state function.
The easiest way to estimate the reliability of 

pipelines is based on safety factors (also known as 
level I analysis) calculated using the capacity equa-
tions or codes presented in Table 2. Such analysis 
do not model explicitly the uncertainties that might 
have occurred and increased over the years of the 
pipeline service. The effects of the uncertainty are 
considered in terms of safety margins and factors. 
Worst-case scenario is used for loads and capac-
ity of the structural system and in turn, this might 
leads to greater safety/reliability but also to huge 
costs associated with the overdesign or overmain-
tenance of pipelines.

Level II analysis based on partial safety fac-
tors includes the first and second moment of the 
parameter distributions. Partial safety factors take 
care of uncertainties for defect depth and failure 
pressure (burst) capacity. For instance, DNV-101 
code uses analytical expression to derive the values 
of standard deviation of relative corrosion defect 
σ rd , and the failure pressure.

In modern engineering systems and critical 
infrastructures to assure adequate level of safety 
and reliability an explicit quantification of the 
uncertainty must be performed. A full probabilis-
tic approach (level III analysis) requires the evalu-
ation of multidimensional integral shown in Eq. 2. 
The probability of failure, Pf, is defined as: 

P P g f df
g

= ≤( ) = ( )
( )≤
∫0

0θ

θθ θθ  (2)

where f θθ( )  represents the multivariate distribu-
tion function of the uncertainty vector θθ . In real-
istic application a large number uncertainties need 
to be considered. Hence, analytical and approxi-
mate methods like FORM and SORM result to 
be inadequate for solving Eq. (2) (Valdebenito 
et al. 2010). Monte Carlo simulation methods are 
then required to evaluate the integral of Eq. (2). 
However, when dealing with rare case events, plain 
Monte Carlo simulation might become infeasible 
due to the large number of the samples required to 
achieve a specific level of accuracy. To overcome 
this limitation, advanced Monte Carlo techniques 
such as Line Sampling (de Angelis, Patelli, & Beer 

2015) and Subset simulations (Au & Patelli 2016) 
can be adopted for analysing complex real world 
problems.

2.2 Maintenance strategy

In order to understand the status of pipelines, dif-
ferent inspection tools can be used characterised 
by different quality and sensitivity. The inspection 
activities may assess the damage incorrectly or 
may not even detect any damage at all based on the 
quality and assiciated inspection costs.

The most common tools for metal loss and 
crack inspection are based on the Magnetic Flux 
Leakage or Ultrasonic techniques (Version 2009). 
Pigging data is gathered through in-line inspection 
activities using Magnetic Flux Leakage intelligent 
pig, whereby the values of parameters in the model 
is as a result of the operations and inspection his-
tories of the pipeline. Geometry tools are avail-
able for detecting and sizing of deformations and 
mapping tools for localization of a pipeline and/or 
pipeline features (Version 2009).

In this paper the probability of detection (PoD) 
associated with the non-destructive inspection 
techniques is modelled as (Pandey 1998):

PoD qd= − −1 exp  (3)

where d represents the defect depth and q the qual-
ity of inspection.

Following an inspection, if  a defect is detected, 
it can be repaired or not. In fact, repairing a buried 
pipeline is an expensive process because it requires 
the excavation and the replacement of part of the 
pipeline. For this reason, the repair is perform 
immediately after an inspection only if  the pipe 
defects produce a failure pressure safety factor 
lower than a prescribed threshold otherwise the 
pipe is left unrepaired. In this case a useful remain 
life is estimated and a preventive maintanance can 
be scheduled. The threshold level of the safety fac-
tor is between 1.25 and 1.5 (Pandey 1998). These 
values are in agreement with the level of integrity 
established by actual pipeline hydro testing, and 
corresponds with the repair factor for a class 2 
pipeline in Canadian code (Association 2007).

3 MODELLING THE UNCERTAINTIES

A full probabilistic analysis requires the proper 
characterisation of the uncertainties. In other 
words, each variable is associated with a proper 
probabilistic distribution function. For instance, it 
is practice to describe the variability of measure-
ments as a Gaussian process characterised by its 
mean and standard deviation. A proper estimation 
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of the characteristic of the distribution (or even the 
shape of the distribution itself) requires the avail-
ability of data. When the amount of data is not 
enoughfor unambiguous characterisation of the 
uncertainties, expert judgement and often unjusti-
fied assumptions. This is the case in many practi-
cal situations where very limited data are available. 
To avoid the inclusion of subjective hypothesis, 
the imprecision and vagueness of the data can be 
treated combining probabilistic and set theoreti-
cal components in a unified construct allowing the 
identification of bounds on probabilities for the 
events of interest in order to give a different pro-
spective to the resultss (Beer and Patelli 2015).

For the treatment of imprecise knowledge, non-
consistent information and both epistemic and alea-
tory uncertainty multiple mathematical concepts 
can be used including intervals (Augustin 2004), 
probability boxes (Ferson et al. 2003), normalized 
fuzzy sets (also known as possibility distributions) 
(Verma et al. 2007), Dempster-Shafer structures 
(Dempster 1967, Shafer 1976), Bayesian frame-
works (Faber 2005) and Random Set theory. In par-
ticular, Random Set theory is a general framework 
suited to model uncertainty represented as cumula-
tive distribution functions (CDFs), without making 
any implicit or explicit assumption at all. Explana-
tory examples of such flexible frameworks are pro-
vided in (Patelli et al. 2015, Rocchetta et al. 2018).

In this paper, the concept of probabilistic boxes 
(P-boxex) is used (Ferson, Kreinovich, Ginzburg, 
Myers, & Sentz 2003). P-boxes can be seen as a 
generalization of the Dempster-Shafer structures 
where the sets are represented by distributions. 
Hence, P-boxes are sets of Cumulative Distribu-
tion Functions (CDFs) for which lower and upper 
bounds are assigned F FX X,  . The probability 
distribution associated to the random variable x 
can be either specified or not. The former are gen-
erally named distributional P-boxes, or paramet-
ric P-boxes, the latter are named distribution-free 
P-boxes, or non-parametric P-boxes. In literature 
the upper bound on probability is referred as plau-
sibility and the lower bound as belief.

Distributional p-boxes appear when there is 
indetermination in the representations of the 
parameters of a given CDF. These parameters 
are imprecisely specified as intervals. For instance, 
consider a quantity that is known to be Gaussian 
with mean within the interval [1,2] and standard 
deviation somewhere in [3,4]. All CDFs that are 
normal and have means and standard deviations 
inside these respective intervals will belong to this 
probability box. The upper and lower CDF bounds 
F  and F  of  the p-box enclose many non-normal 
distributions, but these would be excluded from the 
p-box by specifying the normal CDF as the paren-
tal distribution family.

The calculation of the bounds of the quantity of 
interest such as the probability of failure requires 
significant computational resources. This because 
it will be necessary to estimate the integral of Eq. 
(2) for all the possible probabilistic model consid-
ered and then identify the bounds of the response. 
Fortunately in many engineering applications the 
response of the model is monotonic with respect to 
the imprecision of the input parameters. In general, 
this allows to estimate the bounds of the probabil-
ity of failure with only 2 full probabilistic analysis 
(Rocchetta et al. 2018). Advanced Line Sampling 
(de Angelis et al. 2015) method can further reduce 
the computational cost allowing the estimation of 
the bonds of the probability of failure with only 
1 efficient probabilistic analysis (de Angelis et al. 
2014).

4 ROBUST MAINTENANCE STRATEGY

Inspection and monitoring of pipelines is neces-
sary in order to ensure their continued fitness for 
purpose, which entails protection from any time-
dependent degradation processes, such as corro-
sion. Also, pipeline failures have significant impact 
on the economic, environmental and social aspects 
of the society. Therefore, the proper assessment 
and maintenance of such structures are crucial; 
negligence will lead to serviceability loss, failure 
and might lead to catastrophic environmental and 
financial consequences. On the other hand, main-
tenance is an expensive activity and the availability 
of robust maintenance scheduling is of paramount 
importance. The premise for these decisions is 
supplied by reliability estimation inculcating the 
impact of inspection scheduling and reparation 
activities over the pipeline’s service life.

4.1 Optimization problem

In reliability-based optimization, the total expected 
costs in relation to maintenance and failure is the 
objective function that needs to be minimised, 
see e.g. (Beer et al. 2014). The time and number 
of the inspections represents the design variables 
of the optimization problem while the expected 
monetary costs associated with inspection, repair 
and failure form the objective function that can be 
formulated as: 

arg min , ,
, ,N q t

T I i
I i

E C N q t( )   (4)

where NI, q, ti and CT denote the number of inspec-
tions, the qualities of inspections, the i-th time of 
inspection and the expected total cost, respectively. 
The expected total costs are defined as: 
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E C N q t E C N q t
E C N q t
E C N q

T I i I I i

R I i

F I

, , , ,
, ,
,

( )  = ( ) 
+ ( ) 
+ ,,ti( ) 

 (5)

where CI, CR and CF are the costs of inspection, 
repairs and failure, respectively.

In addition, the optimisation problem must sat-
isfy some constraints. For instance, it might be nec-
essary to guarantee a minimum level of reliability, 
i.e.: 

R t P t t Tf m( ) = − ( ) ≥ ∀ ∈[ ]1 0β ,  (6)

where Pf(t) is the probability of failure at time t and 
Tm represents the so-called mission time. Hence, 
reliability based maintenance strategy requires the 
evaluation of the reliability over the time as sum-
marised in Section 2.1. Constrained optimisation 
techniques are then adopted to identify the mini-
mum of the objective function, Eq. (4), satisfying 
the constrain of Eq. (6).

4.2 Inspection costs

The expected inspection costs E(CI) are calculated 
as the product of the unit inspection cost, cI, that 
depends on the quality of inspection q, corrected by 
the discount rate, r, and the probability that inspec-
tion will take place at time ti: 1 - Pf(ti). In other 
words, the pipeline has not to be failed before the 
i-th inspection time scheduled at ti. This expected 
costs are expressed in mathematical form as: 

E C
c q

r
P tI

i

I
t f ii

[ ] = ( )
+( )

⋅ − ( )( )∑
1

1  (7)

4.3 Repair costs

The evaluation of the expected costs associated 
with repair, E CR[ ] , is quite challenging since 
depends on the probability of performing a repair 
after the i-th inspection, PR(ti ). This, in turn 
depends on the probability of detection (POD) (i.e. 
the probability to detect a defect). The expected 
repair costs are modelled as: 

E C c P t
rR R R i t

i

N

i

I

[ ] = ( )
+( )=

∑ 1
11

 (8)

where cR, is the unit cost of a repair. The probability 
of repair is calculated by computing the reliability 
analysis of the pipeline where the repair threshold 
represents the limit state function weighted by the 
probability to detect the crack, i.e. 

P t f PoD d t dR
g t

( ) = ( ) ⋅ ( )
≤ ( )≤
∫

1 25 1 5. , .

,
θθ

θθ θθ  (9)

4.4 Failure costs

The total capitalized expected costs, E [CF], due to 
failure are the costs associated with failure over 
the region of the corresponding demand functions. 
Hence, the calculation of the failure costs requires 
the estimation of the probability of failure of the 
pipeline over the time. Teh computational strategy 
proposed in the next Section allows to estimate 
these costs by performing a single reliability analysis 
and the reusing the results in the optimisation loop.

The cost of failure at a specific inspection time 
is calculated as the cost of the failure of i-th time 
ti (that is proportional to P tF i( )  minus the cost of 
failure at previous time ti −1 : ∝ ( )−P tF i 1 . This allows 
to take into account the fact that the system has 
survived till the time ti −1 . Taking into account all 
the inspection times and the discount costs, the 
expected failure cost becomes: 

E C c
P t P t

rF
i

N

F
f i f i

t

I

i
[ ] =

( ) − ( )( )
+( )=

−∑
1

1

1
 (10)

5 COMPUTATIONAL STRATEGY

5.1 Reliability analysis

The estimation of the probability of failure requires 
in general significant computation efforts. In par-
ticular for highly reliable pipelines, the number 
of model evaluations easily exceed the computa-
tional resources available. In addition, the presence 
of imprecision adds another level of complexity 
because the propagation of intervals and p-boxes 
requires the adoption of an additional optimiza-
tion loop making the required computational cost 
quite challenge. For this reason, the Advanced 
Line Sampling (de Angelis et al. 2015) method is 
adopted to estimate the bounds of the probability 
of failure. One of the key feature of this approach 
is the ability to estimate different probabilities of 
failure (associated to different levels of the per-
formance function) with only one analysis. For 
instance this can be used to estimate with only 
one reliability analysis the bounds of probability 
of failure due to imprecision in the inputs and the 
probability of repairs as well.

5.2 Robust maintenance

The robust maintenance is computed adopting a 
novel computational strategy that allows to reuse 
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the results of the reliability analysis in the optimi-
sation problem.

In order to explain the simulation approach, we 
first consider a simplified model without impreci-
sion and solved using plain Monte Carlo method. 
The idea is to first simulate the evolution of defects/
cracks in pipelines without considering inspec-
tions and repairs. This is performed by sampling 
the parameters of the model and then solving the 
equations in Tables 1–2 till the time of interest. At 
this point we have a number of possible cracks evo-
lution (or failure pressures) over the time. Then, we 
add the effect of maintenance and update the cor-
responding pipeline reliability as shown in Figure 1 
by calculating the weights associated to each pos-
sible event outcome. The procedure is repeated for 
all the simulated cracks evolution. The computed 
weights are then used to calculate the probabil-
ity of failure at time of interest. For instance, the 
probability of failure at time ti is estimated by the 
summation of the weights associated to the failure 
events divide by the total numberof simulations.

Finally an optimisation tools is used to identify 
the number and time of inspections that minimise 
Eq. (4). When a new inspection time is proposed, 
it is necessary to recompute the weights starting 
from the original simulation but thisstep does not 
require the re-analysis of the model (i.e. evaluat-
ing the evolution of the crack/defect till the time 
of interest).

6 EXAMPLE APPLICATION

The optimal maintenance scheduling of a pipeline 
with characteristics shown in Table 4 is performed.

6.1 Reliability analysis of pipelines

First, the probability of failure of the pipeline as 
a function of time has been computed using the 
DNV-101, Shell-92, B31G and B31Gmod codes 

without considering inspection and mainte-
nence. The uncertainties are modelled as shown 
in Table  5. Different level of imprecision on the 
parameter vaules has also been condidered.

Advanced Line Sampling (de Angelis et al. 2015) 
is adopted to estimate the reliability of the pipelines 
with 20 lines resulting in 120  model evaluations. 
Advance Line Sampling is able to deal with impre-
cision in the parameter values and it allows to com-
pute the bounds of the reliability. In addition, the 
number of model evaluations are independent of 
the reliability level. As expected, the probability of 
failure of the corroded pipeline increases with time 
as shown in Figure 2. The Figures shows lower and 
upper bounds of the probability of failure when 
10% of imprecision is considered on the input vari-
ables. Shell-92 and the DNV-101 are the most con-
servative models followed by Modified B31G and 
the least conservative is the B31G model. than 0.6) 
respectively. This is in accordance with results from 
literature obtained without considering impreci-
sion (see e.g. Caleyo et al. (2002)). The results of 
the analysis are also summarised in Table 3.

6.2 Robust maintenance

Maintenance is a very effective way to improve 
the safety of corroded pipelines. The aim of 
this section is to identify the optimal number of 
inspections that are able to minimise the overall 
costs. Maintenance is only performed is a defect 
is detected. The typical minimal detectable depth 
of a high resolution Magnetic Flux Leakage tool 
for uniform corrosion is 0.1 W with a POD of  0.9 
(Version 2009). Using these values and the pipeline 
wall thickness W mm= 9 52. , the quality of inspec-
tion can be estimated as q = 2 42.  (from Eq. 3). 
However, if  the length of the defect is l mm< 30  
we have a pitting defect. In this case the quality of 
inspection is reduced to q = 1 61. .

Figure 1. Effect of maintenance (repairs) on the weights 
associated with realisations of evolution on the time of 
the failure pressure.

Figure 2. Lower and upper bounds of the probabil-
ity of failure of a pipeline with 10% of imprecision on 
the variables using Shell-92, B31G, Modified B31G and 
DNV-101 failure pressure models.
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In this example, it is assumed that the inspec-
tion time are equally spaced from the initial time 
till the final time of 50 years (mission time). 
Figure 3  shows the pipeline failure probability at 
mission time against the number of inspections for 
different models and parameter imprecision. From 
the results presented in the Figure  3, it can be 
deduced that using B31G model and 3 inspections 
suffice reducing the probability of failure of the 
pipeline below 10-6. However, when the modified 
B31G model is used more than 6  inspections are 
required (using the upper bounds of the param-
eters). These results allows to identify the mini-
mum number of inspections required to guarantee 
a prescribed level of safety. The very small prob-
ability of failure have been calculated adopting the 
approach presented in Section 5.

Figures 4 and 5, show the total expected cost as 
a function of the number of inspection obtained 
using DNV-101  model. Obviously, the costs of 
inspection increases with the number of inspec-
tions performed during the lifetime of the pipe-
line. Costs of failure decreased with the number of 
inspections. For very small number of inspections 
the total costs are governed by the costs associ-
ated with failure while for large number of inspec-
tions, the total maintenance costs are due to the 
costs associated with repairs. The optimal number 
of inspection is always a trade-off  between costs 
of failure and costs of repairs. Using the DNF-

Table 3. Bounds of the relative corrosion defect for different safety levels with 10% imprecision on model parameters.

Safety  
level B31G DNV-101 Mod-B31G Shell-92

10-3 [0.4799, 0.9273] [0.5035, 0.7389] [0.4799, 0.7860] [0.4093, 0.6683]
10-4 [0.4093, 0.8566] [0.4564, 0.7154] [0.4328, 0.7389] [0.3622, 0.6212]
10-5 [0.3151, 0.8095] [0.4328, 0.6683] [0.3858, 0.7154] [0.3151, 0.5977]
10-6 [0.3151, 0.7625] [0.4093, 0.6447] [0.3151, 0.6683] [0.3151, 0.5741]
10-7 [0.3151, 0.7154] [0.3622, 0.6212] [0.3151, 0.6212] [0.3151, 0.5270]

Table 4. Pipeline characteristics.

Parameter

Transported substance Crude oil
Pipe outlay Below ground
Outside Diameter 609.6 mm
Material Class X52 SUTS 496 MPa,

SMYS 358 MPa,
MAOP 4.96 MPa.

Nominal wall thickness 9.52 mmFigure 3. Probability of failure (at mission time) for a 
pipeline as a function of the number of inspections.

Figure 4. Expected total maintenance cost as a function 
of the number of inspection using the DNF-99 model, 
with a mission time of 50 year and upper bounds of 
imprecise parameters.

Figure 5. Expected total maintenance cost as a function 
of the number of inspection using the DNF-99 model, 
with a mission time of 50 year and lower bounds of 
imprecise parameters.
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99  model the optimal number of inspections is 
between 4 an 6.

7 CONCLUSIONS

In this paper, an efficient numerical approach for 
robust optimal pipeline inspection time schedul-
ing has been proposed. This allows to determine 
the optimal inspection interval and the repair 
strategy that would maintain adequate reliabil-
ity throughout pipeline service life. The compu-
tational framework allows to take into account 
the uncertainties of  the model and imprecisions 
on the knowledge of  model parameters. The pro-
posed approach is efficient since allows to per-
form reliability based optimisation with only one 
reliability analysis.
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