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ABSTRACT: The Bayesian Network approach is a probabilistic method with an increasing use in the risk 
assessment of complex systems. It has proven to be a reliable and powerful tool with the flexibility to include 
different types of data (from experimental data to expert judgement). The incorporation of system reliability 
methods allows traditional Bayesian networks to work with random variables with discrete and continuous 
distributions. On the other hand, probabilistic uncertainty comes from the complexity of reality that scien-
tists try to reproduce by setting a controlled experiment, while imprecision is related to the quality of the 
specific instrument making the measurements. This imprecision or lack of data can be taken into account by 
the use of intervals and probability boxes as random variables in the network. The resolution of the system 
reliability problems to deal with these kinds of uncertainties has been carried out adopting Monte Carlo 
simulations. However, the latter method is computationally expensive preventing from producing a real-time 
analysis of the system represented by the network. In this work, the line sampling algorithm is used as an 
effective method to improve the efficiency of the reduction process from enhanced to traditional Bayesian 
networks. This allows to preserve all the advantages without increasing excessively the computational cost of 
the analysis. As an application example, a risk assessment of an oscillating water column is carried out using 
data obtained in the laboratory. The proposed method is run using the multipurpose software OpenCossan.

in 1988, originally for the artificial intelligence area 
(Pearl 1991). Currently, the BNs have many more 
applications ranging from system dependability 
(Castillo et al. 1997) and risk analysis (Hudson et 
al. 2002), to system maintenance (Kang and Golay 
1999). It is worth noticing that this method has 
attracted an increasing interest, reaching 800% 
according to (Weber et al. 2012), during the last 20 
years. The success of Bayesian networks rests on 
the graphical representation of the system, which 
renders them intuitive and easy to understand even 
by for non-experts. In addition, this method can be 
used to provide a diagnostic or predictive reason-
ing, a combination of both (Korb and Nicholson 
2004) and also they accept new evidence that can be 
used to update the network and to adapt the model 
to the new parameters. Moreover, information of 
different types (e.g. expert judgment, experimen-
tal data, historical records, feedback experience, 
theoretical models, etc.) can be merged in the same 
network, inside structures called probability tables 
(or conditional probability tables in the case of 
children nodes). These tables are filled with crisp 
probability values, providing a global dependability 
estimation (Jensen and Nielsen 2007).

On the other hand, the high acceptance of the 
traditional Bayesian networks for uncertainty  

1 INTRODUCTION

Nowadays, experimental research in engineer-
ing deals with systems with high complexity due 
to the number of components used in the proce-
dures. Occasionally, the limited capacity of the 
experimental arrangements to test different config-
urations and obtain a number of relevant measure-
ments, hinders the impact of the study. In addition, 
the effects of epistemic uncertainty derived from 
the procedure and, the uncontrollable conditions 
under which the study is carried out can provide 
results with limited applicability or lack of mean-
ing. There are different methods developed for 
modeling the dependability and evaluation of large 
engineering systems allowing to take into consid-
eration both qualitative and quantitative informa-
tion. Among the most used methods, the reliability 
block diagrams, fault trees and, event trees, can be 
identified as the techniques with reliable results 
providing a robust mathematical background 
(Hamada et al. 2008). However, several assump-
tions are made with these techniques.

The Bayesian Network (BN), is a probabilistic 
method to study and analyze the genuine depend-
encies or independences of variables that make up a 
system. This concept was proposed by Judea Pearl 
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reasoning is limited to the use of only crisp probabil-
ities (Spiegelhalter 1987). This type of probabilities 
leads to discretization methods or hard assumptions, 
impoverishing the quality of the analysis (Tolo et al. 
2016a). In order to work with continuous probabili-
ties that can take into account the uncertainty of the 
variables in the network and avoid discretization of 
the input information, Daniel Straub and Armen 
Der Kiureghian (Straub and Der Kiureghian 2010) 
proposed to enhance BNs with structural reliabil-
ity methods since these techniques support the use 
of continuous random variables. This approach 
embraces all the advantages of BNs and further-
more allows working with discrete, continuous, as 
well as small probability variables (ideal for low-
probability high-impact events). Some applications 
have been done with this method, focusing on the 
risk assessment of technological facilities consider-
ing climate change (Tolo et al. 2016a).

Although the enhanced Bayesian networks con-
sider a broader spectrum of variables, usually the 
information available rarely meets the requirements 
of the method. For example, often expert beliefs do 
not agree in an exact same probability value or the 
information is scarce, in which cases data have to 
be averaged or the analyst makes assumptions to 
perform the study. In engineering, it is common to 
perform measurements during an experiment, the 
results obtained will have attached an epistemic 
uncertainty that cannot be eliminated and under-
estimated. Consequently, the incorporation of 
imprecise probabilities becomes an imperative need 
that can improve the employability of BNs.

The proposed method attempts a naive imple-
mentation of Credal sets and p-boxes as a way to 
characterize imprecise probabilities in discrete and 
continuous variables, respectively. This approach 
is expected to overcome two main problems when 
dealing with uncertainty in Bayesian networks. 
The method is implemented on the multipurpose 
software OpenCossan, (Patelli et al. 2018). On one 
hand, the use of all the advantages of parametric 
and non-parametric p-boxes to work with con-
tinuous imprecise random variables and obtain the 
quantile bounds of the final distribution represent-
ing the system under analysis so they can be used 
after with the structural reliability methods. The 
network reduction process can be done with the 
advanced line sampling method, since it is capable 
of approximating the upper and lower bounds of 
the failure probability under the assumption of a 
monotone system. Once the network is reduced and 
the uncertainty of continuous variables propagated 
to the reduced network through the bounded prob-
ability of failure, the result will be a Credal net-
work with only discrete but bounded variables. The 
method used, allows to compute the exact bounds 
of the query probability in the absence of evidence. 
In the case of evidence introduced in the network 

the method will provide the intervals, such that the 
true bounds of the query probability are located.

2 THEORETICAL BACKGROUND

2.1 Bayesian network

A Bayesian network, as established before, is pre-
sented in the form of a directed acyclic graph (DAG) 
made of nodes and arrows (called links) connecting 
those nodes. Each node represents a random varia-
ble with information about observable quantities or 
hypothesis of the system, whilst the links show the 
dependency among the nodes. Nodes can be differ-
entiated as parent and child. A child node depends 
directly on another node, called the parent node and 
graphically they are connected by a link starting in 
the parent and ending in the child. Nodes with no 
parents are called roots. The dependence of nodes 
is ruled the d-separation concept. Two variables, 
namely, A and B, are d-separated if there is an inter-
mediate variable, C, different from A and B, such 
that in a serial or diverging connection C is instanti-
ated (with a specific probability value, i.e. evidence). 
In the case of a converging connection, if neither C 
nor any of its descendants are instantiated they are 
d-separated (Jensen and Nielsen 2007).

The arrangement of parents and children nodes 
connected by links allows performing diagnostic 
and predictive reasoning. The first approach can 
be done to know the causes of an event by query-
ing a parent node given the information in children 
nodes. The predictive reasoning follows the direc-
tion of the links and uses the causes (information 
in the parents) to predict the effects (children). 
The probability values denoting the dependency 
between a child node with its parents is stored in a 
conditional probability table. In this arrangement, 
the probability of each state of the child is pro-
vided given each of the states of the parents. The 
total dependability of the network is quantified by 
the joint probability distribution which is defined 
as the product of all the conditional and uncondi-
tional probabilities specified in the network. This is 
governed by the chain rule for Bayesian networks 
(Jensen and Nielsen 2007) and, it is given as follows,

P X P X pa Xi
i

n

i i( ) = ( )
=

∏
1

[ | ]  (1)

where Xi represents each of the random variables 
of the network and, pa(Xi) is the probability of the 
parents of Xi. As an example, the joint probability 
of the Bayesian network presented in Figure 1 is 
given by the expression,

P X X X X P X P X
P X X X P X X

1 2 3 4 1 2

3 1 2 4 1

, ,
( | , ) ( | )

( ) = ( ) ( )
×

 (2)



2613

The joint probability distribution function can 
be used to calculate the probability of any indi-
vidual variable (Hosseini and Barker 2016). For 
instance, to calculate the probability only of the 
node X3, the rest of the nodes are marginalized out 
from Eq.(2). So, P(X3) will be given as follows,

P X P X P X

P X X X P X X
X X X

3 1 2

3 1 2 4 1

1 2 4

( ) = ( ) ( )
×

∑
, ,

( | , ) ( | )
 (3)

Marginalization is a distributive process to cal-
culate the total probability of a variable of inter-
est by the summation of the products of all the 
possible combinations of local joint probabilities. 
This process allows to isolate the probability of the 
parameter of interest and to remove the rest of the 
variables from the joint probability distribution 
(Jensen and Nielsen 2007).

It is possible to remove variables that are not 
relevant to know the probability of the variable of 
interest, namely A. This process is called variable 
elimination. It consists of simply removing from 
the joint probability, variables that are outside the 
Markov blanket of A (i.e. variables that are parents 
or children of A, or sharing a children with A). 
The eliminated variables (those out of the Markov 
blanket), do not influence the probability measures 
of the variable of interest.

The type of information that can be adopted in 
this method involves real probability values (dis-
crete nodes) or Gaussian distribution functions. 
The latter works with crisp value probabilities 
(Tolo et al. 2016b). However, this characteristic 
turns into the main drawback of this technique 
when the data comes in the way of continuous dis-
tributions. Nevertheless, this disadvantage is over-
come with the use of structural reliability methods.

2.2 Enhanced Bayesian networks

Structural Reliability methods (SRMs) are used 
to work out the conditional probability tables of a 
BN containing both discrete and continuous ran-
dom variables (enhanced Bayesian network) result-
ing in the reduction of the network to a traditional 
BN. Suppose the nodes in the network on Figure 2 

a) correspond to independent random variables. 
Here X1 is an interval node (with f(X1) its cumu-
lative distribution function, CDF), X2 and X1, are 
discrete nodes (representing probability mass func-
tions, P(X2), P(X4), respectively) and X3 a continu-
ous node (representing a CDF f(X3)). According 
to (Straub and Der Kiureghian 2010) the enhance 
Bayesian network joint probability can be com-
puted by approximating the equation below,

P X f X f X P X
P X X X X dX dX

i X X
( ) = ( ) ( ) ( )

×
∫ 1 3 2

4 1 2 3 1 3

1 3,

( | , , )
 (4)

if  the Markov properties are considered, node X3 
and X1 are d-separated from X2 since X4 has not 
received any evidence yet. So, the joint probability 
of X4 given X2, from the equation above, can be 
written as,

P X X f X f X
P X X X X dX dX

X X
( | )

( | , , )
,4 2 1 3

4 1 2 3 1 3

1 3
= ( ) ( )

×
∫  (5)

It has to be noticed that each entry in the con-
ditional probability table of X4 is defined by the 
domain ΩX x

x
4 2
4
,  in the continuous space of X1 and 

X3 for a given value x2 of the variable X2. So the 
Eq. 5 can be further reduced as, 

P X X f X f X dX dX
X x
x( | )

,
4 2 1 3 1 3

4 2
4

= ( ) ( )∫ Ω
 (6)

The integral shown in Eq. 6 is equivalent to that 
of a reliability problem (Tolo et al. 2016b). Solving 
a structural reliability problem, i.e. approximat-
ing the system failure probability, a reduction of 
a network with continuous nodes to one with only 
discrete probability values is obtained.

There are certainly several approaches for the 
solution of problems like that shown in Eq. 6. These 
methods range from numerical approximations like 
Monte Carlo simulations, to the well-known and 
widely used first-order and second-order reliability 
methods (Hasofer and Lind 1974). Moreover, some 
advanced sampling techniques like Importance 
Sampling, Stratified Sampling or Advanced Line 

Figure 1. Example of a traditional Bayesian network.

Figure  2. a) Simple enhanced Bayesian network with 
discrete nodes (rectangular shaped), probability function 
nodes (circle shaped) and, interval discrete nodes (ellip-
tical shaped). b) Reduced Bayesian network with crisp 
probabilities.
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Sampling (Hasofer and Lind 1974), among others, 
have been used as an alternative to the computa-
tionally expensive numerical approximations.

2.3 Credal networks

Credal networks can be referred as an extension 
of Bayesian networks to manage intervals of dis-
crete probability values representing the lack of 
information and uncertainty about the variables 
involved. A Bayesian network constructed exclu-
sively with discrete nodes such that, only one prob-
ability value is associated with the state of the 
variable. Such a state can belong to the variable 
itself, in the case of roots, or can be conditioned 
on the parents of that node, in the case of chil-
dren. However, in a Credal network, probabili-
ties are presented in the form of intervals that are 
associated with probabilistic inequalities. In this 
manner, a Credal network will represent the differ-
ent variable states, each of them associated with 
one specific probability value inside the interval, 
of the same Bayesian network (Tolo et al. 2018). 
The graphical structure of such a network is the 
same as the Bayesian case, as well as the Markov 
blanket concept and d-separation of nodes. Nev-
ertheless, the probability of a variable x is indi-
cated in the form of the so-called credal set K(X), 
whilst the set of joint probability measurements 
P X pa Xi i( | ( ))  is named a joint credal set, given by 
K X pa Xi i( | ( ))  (Cozman 2000). So, two different 
interval probabilities of variables X and Y (where 
Y is the complement of X) can be characterized by 
their upper and lower bounds, [ ( ), ( )]p X p X  and 
[ 1 ( ), 1 ( )] [01],Y p X Y p X= − = − ε  respectively.

2.4 Probability boxes

Probability boxes (or p-boxes) allow making fewer 
assumptions about the values used in the study 
when correlations of the variables employed in the 
study are ignored due to the effect of aleatory and 
epistemic uncertainties. A p-box is specified for a 
random variable X by the interval bounds F F,   
on a cumulative distribution function F with values 
between 0 and 1, such that F X F X F X( ) ≤ ( ) ≤ ( )  
(Ferson et al. 2003). If  a probability measure p  
(since it is the lower bound of that measure) for 
the random variable X1 is given, the lower, F X1( ),  
and upper F X1( ),  bounds of the p-box can be 
computed as follows (Walley 1991), 

F X p X X F X p X Xi i1 1 1 11( ) = ≤( ) ( ) = − >, ( )  (7)

The p-box has a dual interpretation, i.e. F ,  rep-
resents the probability (CDF axis) upper bound and 
quantile (x-values axis) lower bound. The opposite 
happens with F .  Therefore, this concept is applica-
ble in cases of imprecise continuous probabilistic 

distributions and two types can be differentiated, 
parametric non-parametric p-boxes. A parametric 
p-box is defined when the shape of the probabil-
ity distribution is known, but there is no precise 
information about the parameters of that distribu-
tion. The non-parametric case is rarer but can exist 
especially when an experiment has been performed 
and a set of measurements was obtained. It occurs 
when parameters regarding the probabilistic distri-
bution, e.g. mean and variance, of a variable, are 
known but no information about the type of distri-
bution is available (Ferson et al. 2003).

2.5 Computational tool

The open source software OpenCossan exploits the 
Object-Oriented programming paradigm that Mat-
lab offers with the use of classes (entities contain-
ing the data and the functions or methods that the 
members of the same class have in common) and 
objects (instances of a class). This basis is employed 
in order to efficiently provide solutions to problems 
regarding uncertainty quantification, sensitivity 
and reliability analysis, robust design, among oth-
ers (Patelli 2015). The object-oriented methodol-
ogy allows reutilizing parts of code to create more 
complex objects in a systematic and condensed way. 
OpenCossan offers a wide flexibility to integrate 
new methods that enhance, improve or complement 
the current tools available in this software. This 
opens the gate for new developments that enrich the 
software robustness to provide solutions.

Within the framework of OpenCossan, three 
main toolboxes can be used for Bayesian networks. 
These are, BayesianNetwork, EnhancedBayesian-
Network and, CredalNetwork. The first one can 
be used in cases were variables only correspond 
to crisp probability values whilst the second one, 
also considers continuous probability distributions 
and bounded variables. The third toolbox is the 
one chosen for this study, since it allows working 
with continuous probabilities and interval vari-
ables representing imprecise probabilities. How-
ever, the graphical display process is done with 
the same method, makeGraph which is a class of 
EnhancedBayesianNetwork.

3 CASE STUDY: OSCILLATING WATER 
COLUMN

An Oscillating Water Column (OWC) is a type 
of the so-called wave energy converters that cap-
ture the energy that sea waves deposit once reach-
ing the named structure. The popularity of this 
type of energy converters has increased over the 
last few decades, since it is an alternative for the 
clean energy production (Falcão 2010). The struc-
ture of an OWC consists of a chamber, partially  
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submerged in the sea, generally with two orifices. 
One is typically at the top of the chamber inside 
which turbine is placed, and the other one is below 
the water line facing the coming sea waves, see Fig-
ure 3. An entombed mass of water column formed 
inside the chamber oscillates as a result of the wave 
inside in the structure. This, in turn, drives an air 
flow through the orifice coupled to a turbine, thus 
generating electricity (Cruz 2008).

Since the system is always surrounded by sea 
waves (especially when it is built away from the 
shoreline), it is susceptible to overtopping events 
that can cause serious damages to the structure, 
particularly in the operational mode. Horizontal 
sliding, overturning, scouring and collapsing of 
the structure may be possible during extreme sea 
conditions (Cruz 2008). It is preferred to study 
such overtopping possibilities to be more on the 
conservative side. Generally, a conventional-OWC 
device is constructed with adequate height such 
that the overtopping event is quite not possible. 
As the addition of harbor walls increases the wave 
amplification, the possibility of an overtopping 
event should be carefully addressed.

A very simple Bayesian network was built to test 
the inclusion of imprecise probability nodes in the 
computational toolbox based on the OpenCossan 
software. The network represents the components 
involved in an experimental work carried out by 
Daniel Raj and his team (Daniel Raj, D. et al, 2016) 
at the Indian Institute of Technology Madras in 
India, to study the influence of harbour walls of an 
OWC on its energy efficiency characteristics. The 
present network is used to provide an assessment 
of the risk of structure overtopping triggered by 
the waves generated in the laboratory.

3.1 Description of the experiment

The experimental arrangement was 72.5  m long, 
2 m wide, and with a deep wave flume of 2.5 m, 
please refer to Figure  3. The scaled OWC model 
was 0.540 m height, in a 1:20 ratio from a real pro-
totype. To generate random water waves (it is able 
to reproduce either shallow or deep water waves) 
the flume is equipped with a wave maker system 
to generate waves with steepness characteristics 
within the limits of the operational range of the 
system. The generated waves for this experiment 
covered a range of relative water depths, d/L, from 
0.074 to 0.23 and a wave steepness, H/L, from 
0.0074 to 0.065. Here, d denotes water depth, H 
corresponds to the wave height (in metres) regis-
tered from the first wave gauge 1 (situated at 8 m 
from the water generator), and L denotes wave-
length (in metres). The crest periods, Tp, adopted 
were from 1 to 2.5 s in 0.25 s intervals. For more 
information about this experiment please refer to 
(Daniel Raj et al. 2016a), (Daniel Raj et al. 2016b).

The experiment was carried out in two stages; 
the first stage involved the identification of effi-
cient resonating length of harbour wall, as seen in 
Figure  4, which enhances the energy conversion 
capacity of the system. Four testing criteria have 
been chosen in the first stage, so as to investigate 
the effect of projecting sidewalls length on the effi-
ciency of the OWC. Among them, one is without 
the sidewalls (conventional) and rest with the pro-
jecting sidewalls in three criteria such as c/b of  1, 
1.5 and 2. In the second stage, the effect of the har-
bour walls on each side of the OWC was studied 
by varying the angle of the harbour walls within 
the range of 4 8 7 8π π/ , /[ ]  at intervals of π/8 with 
respect to the front lip wall of OWC, as seen in Fig-
ure 5. This angle variation is called wall inclination 
from now on. The wall length, c, was maintained 
constant in this stage at its optimal configuration 
identified from the first stage of experiment.

3.2 The Bayesian network

The goal of the experiment was to analyse the 
influence of different configurations of harbour 
walls in order to modify the resonance frequency 
of the water wave coming towards the structure so 

Figure 3. Sectional view wave flume with OWC on the left-hand side.

Figure 4. Schematic layout from a top view of harbour 
walls with different lengths (Daniel Raj et al. 2016a).
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that the wave amplification was maximized. The 
maximization of wave amplification poses a poten-
tial risk of structure overtopping that can damage 
the rearward face of the experiment equipment or 
to bring unexpected consequences. The probability 
of having this event is quantified through the net-
work presented in Figure 6 that takes into account 
the epistemic uncertainty characterizing the meas-
urements of the amplified waves running up the 
structure. In addition to that, the wave properties, 
as well as the OWC configurations studied in the 
experiment, were considered as influencing factors 
for the occurrence of structure overtopping.

Since imprecise variables are employed in this 
simple study, the network for this problem is defined 
in the toolbox for Credal networks node by node, in 
the form of computational objects. Once all the var-
iables are defined, an object of the class CredalNet-
work is created to store the information regarding 
the nodes on the network, so further calculations 
can be performed. Then, the method makeGraph is 
invoked to display the network shown in Figure 6. 
The nodes are defined as follows.

Different harbour wall inclinations and lengths 
were tested to study their effects on wave amplifica-
tion. In order to select the case to be studied with 
the BN, the Experiment_case node was defined 
as an interval node containing the maximum and 
minimum length ratio, for the variation of harbour 
wall lengths experiment, or the maximum and min-
imum angle for the remaining case. The values in 
the intervals are defined in such way that they can 
cover all the possible values used in the experiment.

Wave properties were used in the Bayesian net-
work as follows, the Crest_period interval node 
contains the information of the mean level-up-
to-down-crossing time of the incident waves. The 
crest periods were changed from 1 to 2.5 s inter-
vals of 0.25 s. Meanwhile, the Wave_height node 
has the information of the wave height used in the 
experiments. The waves studied were 0.03, 0.06 and 
0.09 m high for each of the harbour wall configura-
tions. It has to be noted that the Wave_height will 
influence directly how high the amplified wave is.

According to some authors, as shown by All-
sop review (Allsop et al. 1985), wave amplification 
phenomenon (or wave run-up) in steep structures 
slopes follows approximately Rayleigh distribu-
tion. For this reason, the Wave_amplification is 
assumed to follow this probability distribution 
with a scale parameter based on the experimen-
tal results obtained from the wave amplification 
measurements. However, the parameters to define 
this variable in the experiment are uncertain due 
to the lack of probabilistic data (i.e. only one 
measurement was taken for a given value of wave 
crest period, wall inclination or length). So, the 
use of p-boxes becomes handy. The Wave_ampli-
fication p-boxes were defined in such manner that 
all the possible values tested experimentally were 
enclosed in the p-box of each case. These values 
are presented in the Table 1, for the given harbour 
wall length and inclination configurations as well 
as each of the different wave heights, respectively.

In this work, the Owen equation proposed, by 
Mase (Mase et al. 2013), for overtopping discharge 
ratio Q is used to describe the Overtopping node 
and the probability of exceedance, P(Z), of the 
maximum admissible wave overtopping is given as: 

Z Q AT g H emax p s

B
R

T g H
c

p s= − ( ) −
 (8)

where A and B are dimensionless empirical coef-
ficients depending on the slope ratio of the struc-
ture. In this case, A and B are given as 0.0079 and 
20.12 (Owen 1980), respectively. Hs is considered 
as the significant wave height of the amplified 
waves in meters, g the gravitational acceleration 
and, Rc the structure freeboard. If  the condition 

Figure  6. Enhanced Bayesian network for OWC 
experiment.

Figure 5. Schematic layout different harbour wall incli-
nations (top view) (Daniel Raj et al. 2016b).

Table 1. Wave amplification p-boxes defined with the 
Rayleigh-distribution scale parameter for harbour-wall 
length (alength) and inclination (ainclination) experiments.

Wave  
height  
(m) alength ainclination Distribution

0.03 [0.038, 0.077] [0.045, 0.08] Rayleigh
0.06 [0.082, 0.142] [0.11, 0.157] Rayleigh
0.09 [0.121, 0.213] [0.183, 0.237] Rayleigh
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P(Z ≤ 0) is exceeded the event is considered a fail-
ure of the system meaning a wave overtopping of 
the OWC for a given maximum overtopping rate 
Qmax. Once all the nodes are defined in the toolbox, 
the network is reduced using the Adaptive Line 
Sampling method. In the Figure 7 can be observed 
the reduced network used for this study. The over-
topping events are given in the continuous space of 
the Wave_amplification node for each given state 
of Experiment_case.

In this simple network there is only one p-box 
employed per simulation (regarding the Wave_ampli-
fication node), so the lower bound would correspond 
to the minimum amplification that a wave under 
those conditions can have. Thus, overtopping prob-
ability resulting from this calculation will be the mini-
mum probability that this variable can have, assuming 
monotonicity in the system. In order words, given the 
lower bound of Wave_amplification the lower bound 
of Overtopping will be found. The same reasoning is 
used for the case of the upper bounds.

The lower and upper bounds of the overtop-
ping probability are displayed in the Table 2, for 
the case of harbour wall length experiment, and 
in Table  3, for the case of harbour wall inclina-
tion experiment. In each Wave Height column in 
the tables are stored the overtopping probability 
bounds computed for each height, i.e., 0.03, 0.06 
and 0.09 m for each of the different crest periods 
(Tp). This was done in order to provide a combina-
torial study of the overtopping probability change 
for all the experimental set ups.

It can be observed that Tp does not influence sig-
nificantly the structure overtopping occurrence. In 
fact, changes in overtopping results obtained from 

the different crest periods may be due to the ran-
domness of the simulation functions used. A major 
influence comes mainly from the Wave_height and 
Experiment_case. It is logical that higher waves will 
increase the height of the amplified wave, in con-
sequence, the probability of an overtopping event 
will increase as well. Comparing the results from 
both experiment arrangements, it can be resolved 
that the wall inclination factor increases the most 
the probability of overtopping occurrence. The 
wave amplification factor of 0.237 correspond-
ing to a wall inclination of 3π/4 with 0.09 m wave 
height can be referred as the worse case scenario. 
This can be useful when the values are only scaled 
up to prototype dimensions. For instance, a struc-
ture overtopping assessment can be provided with-
out performing any experimental work, as long as 
the physical behavior of the variables preserves the 
same probabilistic distribution.

4 CONCLUSIONS

From the case study presented here, an approxima-
tion to the worst case scenario was found with the use 
of a very simple Bayesian network with the imple-
mentation of p-boxes and interval variables (credal 
sets). The original network containing continuous, 
interval and discrete variables was reduced using 
structural reliability methods (adaptive line sampling) 
to a simpler network containing only crisp probabili-
ties. Since the values used as input in the p-boxes and 
in the interval variables contain all the possible cases 
in the experiment, none of the those should over-
come the maximum probability given. So, epistemic 
uncertainty affecting this experiment can be quanti-
fied with this method. If specific data (different from 
that considered here) regarding any of the variables 
in the experiment, inside the bounds, are given, the 
overtopping probability results can be provided for 
that specific case and they will remain below or be 
equivalent than the maximum value achieved.

The implementation of imprecise data in Baye-
sian networks is a very necessary tool in engineer-

Figure  7. Credal network after reduction process for 
OWC experiment.

Table 2. Occurrence of structure overtopping for wall 
length case. The bounded values in Overtoppinga,b,c, 
correspond to the Wave_amplification p-boxes in each 
of the Wave_height cases, i.e. 0.03, 0.06 and 0.09 m, 
respectively.

Period (s) Overtoppinga Overtoppingb Overtoppingc

1 [0, 0.013] [0.016, 0.273] [0.165, 0.555]
1.25 [0, 0.011] [0.19, 0.279] [0.165, 0.563]
1.5 [0, 0.01] [0.021, 0.272] [0.164, 0.551]
1.75 [0, 0.012] [0.2, 0.269] [0.159, 0.557]
2 [0, 0.01] [0.02, 0.268] [0.156, 0.562]
2.25 [0, 0.013] [0.2, 0.275] [0.161, 0.555]
2.5 [0, 0.009] [0.2, 0.263] [0.164, 0.557]

Table 3. Occurrence of structure overtopping for wall 
inclination case. The bounded values in Overtoppinga,b,c, 
correspond to the Wave_amplification p-boxes in each 
of the Wave_height cases, i.e. 0.03, 0.06 and 0.09 m, 
respectively.

Period (s) Overtoppinga Overtoppingb Overtoppingc

1 [0, 0.017] [0.115, 0.34] [0.455, 0.623]
1.25 [0, 0.015] [0.109, 0.342] [0.451, 0.623]
1.5 [0, 0.015] [0.111, 0.337] [0.456, 0.631]
1.75 [0, 0.017] [0.114, 0.343] [0.453, 0.629]
2 [0, 0.015] [0.11, 0.341] [0.449, 0.621]
2.25 [0, 0.017] [0.111, 0.34] [0.455, 0.623]
2.5 [0, 0.017] [0.113, 0.341] [0.455, 0.621]
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ing. However, the methods currently available are 
computationally expensive. Most importantly, 
when systems with a large number of variables are 
studied, the algorithms may suffer combinatorial 
explosion. Adaptive line sampling will be further 
studied to deal with bounded failure probabilities. 
In addition to that, random set theory (combined 
with Subset Simulation to improve calculation 
speed) appears as a good option to the limitations 
of the current tool, since the latter method is spe-
cially useful for small probability cases and good 
performance in both low- and high-dimensional 
spaces as well as in nonlinear limit functions.
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