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We start with the premise that an inertial frame is defined as one that isn’t accelerating in the 
usual detectable sense. General Relativity states that inertial frames are ‘influenced and dragged 
by the distribution and flow of mass–energy in the universe’, noting the relativistic equivalence 
of mass and energy [1]. This dragging of inertial frames is simply called frame dragging and is 
shown conceptually in Figure 1. Frame dragging also influences the flow of time around a 
spinning body.  
 

 
 
Figure 1. Distortion of space-time in the vicinity.                   Figure 2. Time dilations for objects rotating around the Earth [1]. 
Of the Earth due to Frame Dragging [1]. 
 

In Figure 2 the pink object is rotating prograde and takes longer to get back to the starting point, 
with respect to a distant fixed star, than the blue object which is rotating retrograde, assuming 
they are both on the same orbit. If we examine this more closely and consider twins flying 
arbitrarily slowly on exactly the same equatorial orbit but in opposite directions, then their age 
difference on meeting up again at the starting point will be of the order of 10−16 s. This is an 
example of the well-known twins paradox.  A theory for frame-dragging was proposed by Lense 
and Thirring in 1918, in which inertial frames are dragged around a central rotating mass due to 
the effect of its gravity on the surrounding spacetime [2]. The rotation of the central mass twists 
the surrounding spacetime, and this perturbs the orbits of other masses nearby. This effect is 
known as Lense-Thirring precession, and henceforth as LT. The Earth’s gravitational field is 
capable of generating frame dragging and this is generally considered to be demonstrable in three 
gravitomagnetic manifestations: 

- by the precession of a gyroscope in orbit around the Earth, 
- by the precession of orbital planes, where a mass orbiting the Earth constitutes a 

gyroscope whose orbital axis will precess, 
- by the precession of the pericentre of the orbit of the test mass about the Earth. 

GP-B measured the first two [3], and the LAGEOS satellites measured the second one only [4]. 
LAGEOS measured the LT drag of their orbital planes to ~0.031 arcsecs/year [1], which is ~ 8.611 
* 10−6 °/year. This was subject to error due to uncertainty in the Earth’s mass distribution, and 
there is still some debate about the true size of the error in LAGEOS’s LT measurement but it 
mainly derived from the low eccentricity of the LAGEOS orbits and the difficulties in eliminating 
Earth multipoles. GP-B  measured LT to ~ 0.039 arcsecs/year [1], which is 10.833 * 10−6 °/year. 
GP-B used IM Pegasi HR 8703 as the guide star and operated on a circular polar orbit of 642 km 
altitude [1]. The spin axes of GP-B’s gyroscopes drifted so the geodetic de Sitter precession [5] 
(due simply to the presence of the mass of Earth rather than its presence and its rotation) was 
only measured to a precision of 1.5%, which had a relatively significant knock-on effect on the 
measurement of LT. The relationships between the directions of the LT and the de Sitter 
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precessions are orthogonal and are shown in Figure 3. The total relativistic precession on the 
body is therefore the vector sum of the LT and de Sitter precessions. Our main interest is the LT 
component. It is important to note that the relativistic frame dragging effect evidenced by LT 
precession is about ten million times smaller than, for example, the classical Newtonian effects 
operating on the plane of the LAGEOS orbits, requiring an ‘enormously accurate treatment of 
background effects’ [6]. We return to this later. 
 

     
 
Figure 3. GP-B and the orthogonal relationships between the Lense-Thirring         Figure 4. LAGEOS satellites and the effect on Lense-    
and the de Sitter geodetic precessions [1].                                                                           Thirring precession of the Earth’s uneven mass             
                                                                                                                                                            distribution [1]. 
                                              
The analysis behind LT, in terms of (weak) gravitomagnetic effects on an accelerating mass, can 
be considered analogously with an accelerating charge producing a magnetic field. Specifically, 
the analogy is between the equations that govern the forces on a spinning electric charge with 
magnetic moment 𝜇 which moves through a magnetic field, and the forces of a spinning mass 
moving through the gravitational field of a rotating mass [1], and this analogy is made through 
Maxwell’s equations which we return to later. Schwarschild [7] proposed an exact solution for 
space around a large non-rotating body and this solution is known as the Schwarschild metric 
and accounts for curved non-Euclidean space. This metric doesn’t account for the rotation of the 
massive body but the Kerr metric [7] does, and GP-B measured LT to within 15% of the value 
predicted by the Kerr metric for Einstein’s field equations. The full Kerr solution is complicated 
because of its highly nonlinear form but there is a useful simpler statement of it which assumes a 
slowly rotating body, and this is suitable as a background for LT analysis in the vicinity of the 
Earth. The complexity of the Kerr metric is largely due to the fact that spacetime is not a static 
background for physical processes and is dynamic and affected by any and all contributions to 
the energy-momentum tensor of the system of interest. This tensor is integral to Einstein’s 
equations which describe the ten components of the metric, and then the metric is finally used to 
formulate the equations of motion of the system of interest. Fortunately, in exploring LT in the 
vicinity of the Earth, we are dealing with weak fields and non-relativistic velocities, so the full 
form of general relativity is not necessary and a linearised version of the theory is sufficient [8].            
 
Spacetime is generally dynamic within the universe and there is no natural way of splitting it into 
space and time, but if we think of it as being stationary around the Earth then this simplifying 
stationarity can be used as a basis for thinking of it in terms of ‘3+1 slicing’. This means that the 
spacetime metric tensor 𝑔𝜇𝜈 then decomposes naturally into constituent parts, and because of 

the prevailing conditions of weak gravity and non-relativistic (low) velocities this decomposition 
can be used to form the basis of a useful analogy with electromagnetism as expressed by 
Maxwell’s equations, from which an expression for LT precession can eventually be obtained 
[8,9]. So, ‘the formal analogy between weak-field low-velocity general relativity and Maxwellian 
electrodynamics is a simple way to illuminate a whole class of interesting physical phenomena 
dubbed gravitomagnetism, Lense-Thirring precession is one such example’ [8]. 
 



 

 

We start with gravitational analogies for the electromagnetic scalar and vector potentials taken 
from the Kerr spacetime metric, stated in terms of the time-time and time-space components, 
where c is the speed of light, 
 

𝛷 =
1

2
(𝑔00 − 1)𝑐2 

 
𝐴𝑖 = 𝑔0𝑖𝑐2 

                                                                                                                                                                              (1)(2) 
 
Now, taking Maxwell’s equations in their usual form, 
 

𝛻. 𝐸̅ =
𝜌

𝜀0
 

 
∇. 𝐵̅ = 0 

 

∇ × 𝐸̅ = −
𝜕𝐵̅

𝜕𝑡
 

 

∇ × 𝐵̅ = 𝜇0𝐽 ̅ + 𝜇0𝜀0

𝜕𝐸̅

𝜕𝑡
 

                                                                                                                                                                           (3)-(6) 
 
We then look at the physical context for Maxwell’s equations. Equation (3) states that the quantity 
of electric field coming from a region of space is proportional to the total electric charge in that 
region of space. Equation (4) states that the magnetic field doesn’t come or go but travels in a 
continuous loop, so a single magnetic pole or monopole can’t exist in practice, according to 
Maxwell. Equation (5) says that the curl of the electric field is equal to the negative of the rate of 
change of the magnetic field. Changing the magnetic field alters the curl of the electric field, with 
the negative sign defining that they go in opposite directions. So, the curl of the electric field 
pushes electric charge round in a circle in the form of an electric current. Finally, equation (6) 
says that the curl of the magnetic field is proportional to the current density and a changing 
electric field. Defining terms precisely: 𝐸̅ is the electric field, 𝜌 is the electric charge density, 𝜀0 is 
the permittivity of free space, 𝐵̅ is the magnetic field, 𝜇0 is the permeability of free space, and 𝐽 ̅is 
the current density.  
 
We then bring in the gravitoelectric field 𝐸̅𝐺  and the gravitomagnetic field 𝐻̅ and it is well known 
that they are related to the potentials of equations (1) and (2) according to the simplifying 
Lorentz gauge [10], as follows,  
 

𝐸̅𝐺 = −∇Φ −
1

4𝑐

𝜕𝐴̅

𝜕𝑡
 

 
𝐻̅ = ∇ × 𝐴̅ 

                                                                                                                                                                              (7)(8) 
 
In the analogy given by [8], the electric field of Maxwell’s equations 𝐸̅ becomes the gravitoelectric 
field 𝐸̅𝐺  and the magnetic field of Maxwell’s equations 𝐵̅ becomes the gravitomagnetic field 𝐻̅. 
The electric charge density 𝜌 becomes the mass density 𝜌𝑚. The charge current density 𝐽 ̅becomes 
the mass current density defined by 𝐺𝜌𝑚𝑣̅, where G is Newton’s gravitational constant and 𝑣̅ is 
the velocity of the source mass. These substitutions are applied by means of the analogy in order 
to generate the gravitational analogue of Maxwell’s electromagnetic equations, 



 

 

 
∇. 𝐸̅𝐺 = −4𝜋𝐺𝜌𝑚 

 
∇. 𝐻̅ = 0 

 
∇ × 𝐸̅𝐺 = 0 

 

∇ × 𝐻̅ = 4 [−4𝜋𝐺
𝜌𝑚𝑣̅

𝑐
+

1

𝑐

𝜕𝐸̅𝐺

𝜕𝑡
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                                                                                                                                                                         (9)-(12) 
 
Despite some structural similarities between the equations which emerge from the gravitational 
analogy (9)-(12) and Maxwell’s equations themselves, equations (3)-(6), there are still some 
qualifiers and provisos to be made, [8] as follows: 

- gravity is attractive, but electromagnetism is both attractive and repulsive (this difference 
leads to the minus signs in the RHS ‘source terms’ in equations (9) and (12), 

- the gravitational tensor introduces the additional 4 in equation (12), 
- the space-space components from the gravitational metric tensor correspond to curved 

space rather than Euclidean space. As we are only interested here in the effects of the 
Earth’s rotation on an orbiting test mass then we can neglect the curvature of space and 

also those terms that are not gravitometric and of the order of (
𝑣

𝑐
)2. 

Assuming that equations (9)-(12) can, in principle, be used to find the gravitoelectric and 
gravitomagnetic fields, the force on an orbiting test mass can be found from, 
 

𝐹̅ = 𝑚𝐸̅𝐺 +
𝑚

𝑐
𝑣̅ × 𝐻̅ 

                                                                                                                                                                                (13) 
 
from which we get, 
 

𝑚
𝑑𝑣̅

𝑑𝑡
= −

𝛼

𝑟2
𝑛̅ +

𝑚

𝑐
𝑣̅ × 𝐻̅ 

                                                                                                                                                                                (14) 
 
and where 𝑟̅ = 𝑟𝑛̅  is the orbital radius vector of the test mass m and 𝛼 = 𝐺𝑀𝑚, where M is the 
mass of the Earth. We recall that 𝐻̅ is the gravitomagnetic field due to the Earth’s rotation and 
note that this can be found in principle from equations (9)-(12). 
 
In general the magnetic moment is given by, 
 

𝜇̅ =
1

2𝑐
∫[𝑟̅ × 𝑗]̅𝑑𝑉 

 
where 𝑗 ̅is the electric current density, and so the gravitational analogy leads to, 
 

𝜇̅𝐺 = −4𝐺
1

2𝑐
∫ 𝜌𝑚 [𝑟̅ × 𝑗]̅𝑑𝑉 = −2𝐺

𝑆̅

𝑐
 

                                                                                                                                                                                (15) 
 
where  𝑆̅ = ∫ 𝜌𝑚[𝑟̅ × 𝑗]̅𝑑𝑉, this being the rotating gravitating body’s proper angular momentum. 
The conventional magnetic moment 𝜇̅ creates a dipole magnetic field, given by, 
 



 

 

𝐵̅ =
3𝑛̅(𝑛̅ ∙ 𝜇̅) − 𝜇̅

𝑟3
 

 
So, inserting 𝜇̅𝐺  instead of 𝜇 leads to an alternative form which now represents the Earth’s 
gravitomagnetic field, 
 

𝐻̅ =
2𝐺

𝑐
[
𝑆̅ − 3𝑛̅(𝑛̅ ∙ 𝑆̅)

𝑟3
] 

                                                                                                                                                                                (16) 
 
The abstract angular momentum for the large rotating body 𝑆̅ can be replaced by the angular 

momentum specific to the Earth, defined as 𝐿′̅ in [8], so we can extract the Earth’s angular velocity 
as, 
 

Ω̅ =
2𝐺

𝑐2𝑟3
𝐿′̅ 

                                                                                                                                                                                (17) 
 
Therefore, the gravitomagnetic field which we derived in equation (16) can now be neatly 

restated in terms of the Earth’s angular velocity, where 𝑆̅ ≡ 𝐿′̅, noting that it is divided by the 
velocity of light in order to accommodate equation (17) correctly, 
 

𝐻̅

𝑐
= Ω̅ − 3𝑛̅(Ω̅ ∙ 𝑛̅) 

                                                                                                                                                                                (18) 
 
In order to proceed to LT we need to revert to explicit angular momentum of the Earth, through 
equation (17) and then to rearrange to get the gravitomagnetic field in terms of fundamental 
quantities and in the conventional form, as follows, 
 

𝐻̅ =
4𝐺

𝑐
[
𝐿′̅𝑟2 − 3𝑟̅(𝐿′̅ ∙ 𝑟̅)

2𝑟5
] 

                                                                                                                                                                                (19) 
 
One can find the same result for 𝐻̅ in [11] although the notation and the aggregation of constants 
is done differently there. Before we complete the analysis for the LT precessional term we state 
the general expression for the spin precession rate for LT from the Schiff formula statement of 
the LT metric [12], which is, 
 

Ω̅𝑇𝑜𝑡 = Ω̅𝑇ℎ + Ω̅𝐺𝑒𝑜 + Ω̅𝐿𝑇 
                                                                                                                                                                                (20) 
 
where Ω̅𝑇𝑜𝑡  is the total angular velocity measured, assuming an orbital test mass such as a satellite 
containing gyrospcopic measurement instruments. The right-hand side terms of equation (20) 
are the Thomas precession Ω̅𝑇ℎ, the geodetic de Sitter precession Ω̅𝐺𝑒𝑜, and the LT precession 
Ω̅𝐿𝑇. Concentrating on the LT precession, averaging over fast orbital motions [8] and persevering 
with their notation, we find [10] that LT is directly equal to, 
 

Ω̅𝐿𝑇 =
𝐻̅

2𝑐
 

                                                                                                                                                                                (21)  
 



 

 

and so for a closely orbiting body we initially obtain from equation (19) the following for the 
averaged gravitomagnetic field at the poles, 
 

𝐻̅𝑝𝑜𝑙𝑒𝑠 =
4𝐺

𝑐

𝐿̅′

𝑟3
 

                                                                                                                                                                                (22) 
 
and if we now move from a general closely orbiting body to a specific terrestrial location where 
there is a body elevated at h from the surface of the Earth (therefore at altitude R, where 𝑅 = 𝑟𝐸 +
ℎ, and 𝑟𝐸  is the radius of the Earth at the location), then the LT precession is given by,  
 
 

Ω𝐿𝑇 =
2𝐺

𝑐2𝑅3
[𝐿′(𝑧̅ ∙ 𝑟̅] 

                                                                                                                                                                                (23) 
 
The scalar angular momentum 𝐿′ is given by 𝐿′ = 𝐼⨁Ω⨁ and considering the Earth initially as a 

non-oblate sphere, then 𝐼⨁ =
2

5
𝑀𝑟𝐸

2.  But the actual radius of gyration of the Earth is 0.576 rE  

[14], so the factor of  
2

5
  becomes  0.5762 which is 0.3316. Therefore 𝐼⨁ = 0.3316 𝑀𝑟𝐸

2 

 
From which we obtain, 
 

Ω𝐿𝑇 =
0.6632 𝐺𝑀Ω⨁

𝑐2𝑅
𝑐𝑜𝑠𝜃 

 
                                                                                                                                                                                (24) 
 
where  𝑧̅ ∙ 𝑟̅ = 𝑐𝑜𝑠𝜃 and 𝑅 ≈ 𝑟𝐸  for h very small indeed (assuming that the bob is hanging a few 
cm above the ground). This result does not include the de Sitter precession and is purely the LT 
component. The angle 𝜃 is the colatitude which is the included angle between 𝑧̅ and 𝑟̅ (the spin 

axis of Earth and the local vertical axis at the location, respectively) so 𝜃 =
𝜋

2
− 𝜙, where 𝜙 is the 

latitude as measured from the equator.  
                                                                                                                                                                                 
Numerical data: 
 
G = 6.67408*10-11 m3 kg-1 s-2 

 
M = 5.972*1024  kg 
 
Ω⨁  = 7.2921150*10-5  rad/s 
 
c = 2.99792488*108  m/s 
 
R = 6356*103 m at the NP 
 
R = 6363.18*103 m at Glasgow 
 
𝜙 = 1.5707963 rad at the NP 
 
𝜙 = 0.9750 rad at Glasgow 
 
 



 

 

 
 
Numerical results - North Pole 
 
Pippard [13] gives the LT precession as being 220 mas/year at the NP and the precession rate is 
6*10-10 of Ω⨁. No reference is given for the numbers so they are probably his own calculations. 
Ruggiero & Tartaglia [10] state the LT precession at the NP as being 281 mas/year, again probably 
their own calculation.  
 
Using equation (24) and the above data we get Ω𝐿𝑇 = 219.5 mas/year at the NP and the precession 
rate is calculated to be 4.62733*10-10 of Ω⨁. 
 
The value calculated here for the polar LT is virtually equal to the value given by Pippard [13]. 
 
By changing both the latitude and the radius of the Earth to the values for the location of Glasgow 
the LT there is calculated to be Ω𝐿𝑇 = 181.5 mas/year.  
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