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Abstract 
 
Size effects exhibited by mechanical metamaterials when loaded may be positive such that 
reducing overall size towards that of the length scale of the underlying structure intrinsic to 
the material is accompanied by increasing stiffness or rigidity, a phenomenon that has been 
repeatedly observed and is also forecast by various more generalized continuum theories of 
deformation in loaded heterogeneous continua. However, such effects may in certain 
circumstances be contradictory in that decreasing size is accompanied by increasing 
compliance, the transition from the conventional, positive to this theoretically unanticipated 
negative behaviour having been explained recently in terms of the distribution of material 
within 2D continua subject to bending. Here we report on a novel phenomenon newly 
observed in periodic 3D lattice materials comprised of repeated cubic unit cells formed of 
exterior edge and interior diagonal connectors. Subtle redistribution of matrix material from 
edges to diagonals causes the size effect to change dramatically, inverting from positive to 
negative when loaded in the torsional mode while the corresponding effect for the flexural 
mode remains entirely positive under the same circumstances. This observation may lead to 
the prospect of optimising the design of 3D periodic metamaterials to provide a stiffer 
response in one loading mode and a more compliant response in another, a feature that could 
potentially be exploited in various innovative applications. 
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1. Introduction 
 
Mechanical metamaterials may exhibit size effects when loaded due to the influence of their 
internal structure on global deformation. These size effects are characterised by deformations 
that do not scale conventionally with overall size and thus contradict classical Cauchy 
elasticity theory which has to date provided the most universally accepted description of the 
deformation of homogeneous materials. More generalized continuum theories such as couple 
stress [1,2], micropolar [3,4] (or Cosserat [5]), micromorphic [4] and gradient elasticity [6,7] 
do account for size effects and incorporate an intrinsic length scale, purportedly reflecting the 
size of the underlying structure, as an additional constitutive parameter that must be identified 
empirically. Ordinarily, these more involved theories forecast a positive size effect in which 
material stiffness increases as the overall size reduces to that associated with the internal 
structure, behaviour that has indeed been observed in a variety of heterogeneous materials 
[8,9,10,11,12,13,14,15,16]. Nevertheless, contradictory behaviour in which compliance 
increases with decreasing size, a contrasting negative effect, has been observed in other 
materials, notably hard biological tissues [17,18]. Very recently, both conventionally 
anticipated [19] and more involved [20] size effects have been reported in additively 
manufactured mechanical metamaterials. Some of these contrasting and more involved 
effects have been analytically explained for various materials notably those comprised of 
more rigid periodic inclusions within a compliant matrix [21], layered composite laminates 
[22] and those formed of periodic 2D lattices [23, 24].  
 
Theoretical and numerical predictions of size effects in materials formed of planar lattices 
have been derived previously [25,26,27,28,29,30,31], this being motivated by the desire to 
understand the mechanical behaviour of crystalline materials at the microstructural level as 
well as fabricated structural materials such as honeycombs. The lattice connectors or 
elements are usually assumed to be slender and straight with a uniform cross section 
throughout, all of the same length and connected at their ends only. Furthermore, each 
connector is generally assumed to possess extensional stiffness along its major axis and 
flexural stiffness perpendicular to this axis. These assumptions facilitate the representation of 
the connectors as beam like finite elements. The behaviour of the lattice material can then be 
established by considering the response of a unit cell comprised of such elements when 
subjected to a variety of mechanical loadings using either a minimisation of total potential 
energy based approach [25] or a matrix displacement method [28]. Both have been shown to 
be equivalent [27]. Lattice materials comprised of square, equilateral triangular and 
hexagonal unit cells have all been considered and compared in this manner [30]. In each case 
the predicted behaviour is found to be consistent with that anticipated by Cosserat type 
generalized continuum theories of deformation. This has enabled the additional constitutive 
properties, notably the length scale, to be identified in terms of the prescribed connector 
dimensions and stiffness parameters as appropriate. However, such predictions have been 
almost universally restricted to the planar case and, in addition, to lattices with a low matrix 
volume fraction, a consequence of assuming that the connectors are slender. The motivation 
for our work was to investigate both low and medium density additively manufactured 
metamaterials based on a lattice or array of cubic unit cells to identify whether the 



consistency with the aforementioned deformation theories was maintained at higher 
dimensionality and matrix volume fraction. Such materials offer significant potential in 
lightweight structural applications since they are more isotropic than conventional extruded 
honeycombs and, unlike stochastic open cell foams, their behaviour is deterministic. 
Therefore, we initially conducted mechanical tests on 3D printed samples of a given volume 
fraction assembled from unit cells containing only exterior edge connectors of prescribed 
dimensions. Subsequently we performed extensive finite element analyses using continuum 
elements to represent similar materials of various volume fractions in which additional 
interior diagonal connectors were initially absent then subsequently present.  
 
2. Experimental Methods and Numerical Simulations 
 
2.1 Sample Manufacture and Mechanical Testing 
 
Lattice material samples (Figure 1) were printed using a Stratasys OBJET500 Connex3 3D 
printing machine. The capacity of the printer enables a maximum build size of 342 × 342 × 
200mm and thus a unit cell size of 5 × 5 × 5mm with an edge connector half breadth of 1mm 
was deliberately selected to facilitate manufacture of the largest size samples which 
comprised of four cells by four cells across their section. The overall length of these samples 
enabled three point bend testing to be conducted at a maximum length to depth aspect ratio of 
16:1. The axial dimension of all sizes of sample was extended by four unit cells so that the 
samples could be supported inboard of their ends when testing at the prescribed aspect ratio. 
Sample sets in which the major axis was orientated in the horizontal plane both parallel and 
perpendicular to the predominant printer head motion were manufactured to ascertain any 
influence of print direction on flexural stiffness. Samples with their major axis aligned in the 
vertical direction were not manufactured since the limited machine capacity did not allow 
this. All samples were printed using the printable photopolymer VeroBlack Plus (RGD875). 
This is a relatively rigid acrylic based polymer with the manufacturer quoting values of 
between 2000 and 3000 MPa and from 2200 to 3200 MPa for the Young’s and flexural 
moduli respectively. Overhanging sections of the lattice were supported during printing by a 
soluble rubber like material that was thoroughly washed away from the polymer matrix prior 
to testing. The torsion test samples utilised the same unit cell dimensions as the flexural test 
samples. Again, these samples all had a square cross section, the dimension of which was 
limited to between two and six unit cells (Figure 2) by the printer capacity which, along with 
the testing machine capacity, also dictated that all samples now be of the same fixed length, 
170 mm, rather than geometrically similar (Figure 2). 
 
Flexural testing of the samples was performed in a Bose Electroforce 3200 mechanical 
testing machine equipped with a 450N load cell (Figure 3). All samples were loaded at a 
central deflection rate of 0.08mms-1 while being supported within the machine at the 
prescribed aspect ratio. This deflection rate was applied to each sample for 10s after which 
the maximum deflection (0.8mm) was maintained for a period of 30s before unloading at the 
same rate. The force applied to each sample centre was monitored by the load cell throughout 
the deflection cycle (Figure 4). To identify any influence of manufacturing orientation on the 



measured mechanical response each sample was removed from the supports after unloading 
and rotated by 90° about its major axis before reloading. 
 
Torsion testing was performed using an Instron ElectroPuls E10000 machine incorporating a 
load cell with a 25Nm torque capacity (Figure 5). To enable rotation transfer from the 
machine to each sample bespoke couplings comprised of an array of pins that could be 
precisely inserted into each void located on the sample end sections were custom 
manufactured. The couplings were deliberately designed to facilitate the distribution of load 
transfer across the end sections while simultaneously minimizing the suppression of warping 
of these ends which other attachment methods may not have achieved. However, since each 
individual pin has a circular cross section this precluded the testing of the smallest viable 
sample size comprised of a single unit cell across its section. Each sample was twisted at a 
rate of 0.5°s-1 for 10s and then held at the maximum rotation (5°) for 30s before unloading at 
the same rate. The applied torque was measured continuously during the entire loading 
sequence (Figure 6). 
 
2.2 Finite Element Modelling 
 
Initial finite element models of the manufactured test samples were created by repeatedly 
regenerating a cubic unit cell in which a structured mesh of 8 noded hexahedral elements 
(ANSYS element type Solid185) was used to represent the cell edge connectors (Figure 7). A 
convergence study revealed that four elements through the connector half section were 
adequate enough to obtain results of sufficient accuracy at reasonable computational cost. 
The number of element divisions along the connector length was selected to ensure that 
individual elements retained a cubic shape. Appropriate planes of symmetry were exploited 
to ensure that overall model size did not become excessive. The Young’s modulus and 
Poisson’s ratio for the connector material were specified as 2GPa and 0.3 respectively. The 
models were constrained in a manner representative of the support conditions imposed in the 
experiments and a fixed displacement prescribed at the midspan plane of symmetry. Flexural 
stiffness was determined from the ratio of the resulting reaction force determined at midspan 
to the prescribed displacement. Subsequent finite element models in which the void volume 
fraction was varied maintained the same number of elements through connector thickness but 
the number of divisions along their length was adjusted to preserve the cubic shape of 
individual elements. The overall length to depth aspect ratio of these models was restricted to 
4:1 to maintain a reasonable model size. Consequently, these models were loaded in pure 
bending rather than three point bending, this being achieved by specifying displacements 
consistent with a state of prescribed rotation at the end cross sections. Finally, for the finite 
element models of the lattice material containing diagonal connectors each unit cell was 
meshed using tetrahedral elements because of the more involved geometry of the 
intersections between adjoining connectors which precluded the straightforward use of a 
structured mesh of hexahedral elements. 
 
3. Results and Discussion 
 



3.1 Mechanical Testing Results 
 
The 3D printed samples (Figure 1) of a material comprised of an assembly of cubic unit cells 
formed of only edge connectors were each loaded in three point bending (Figure 3). While 
the samples differ in size, ranging from one to four unit cells across their square section, they 
are nonetheless geometrically similar and therefore have the same length, L, to depth, d, 
aspect ratio (Figure 1). Although the connectors are printed from an acrylic polymer the 
samples exhibit an approximately linear relationship between the imposed central 
displacement and the corresponding measured load (Figure 4). Only slight hysteresis is 
observed on unloading (Figure 4) so possible viscoelastic effects associated with the polymer 
matrix have been ignored and hence sample stiffness determined from the gradient of the 
associated load displacement relationship. Specific flexural stiffness (stiffness per unit 
sample breadth, b) was found to vary linearly with sample size as measured by the reciprocal 
of the section dimension squared (Figure 8) with smaller samples exhibiting a greater 
stiffness than their larger counterparts. In a homogeneous material stiffness would be 
expected to be size independent due to the geometric scaling. The positive size effect 
exhibited by the printed material is consistent with Cosserat elasticity theory which predicts 
the variation in specific flexural stiffness, K/b with size to be [12,15,32]:- 
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for a slender beam when out of plane deformations are neglected. Here E is the flexural 
modulus and lb is the characteristic length in bending, an additional material specific 
constitutive parameter present within the Cosserat theory. The former can be identified from 
the intercept of the stiffness variation while the latter can be determined from its gradient. 
The characteristic length in bending, lb, thus provides a quantitative measure of the observed 
size effect. For the particular lattice material considered here the values of these parameters 
ascertained thus ranged from 354 MPa to 430 MPa and from 0.714 mm and 0.986 mm 
respectively depending on sample print direction and orientation when tested. Matrix 
anisotropy arising from fabrication thus appears to have some identifiable influence on 
behaviour. Nevertheless, this is less significant than the influence of size which is evidently 
associated with the heterogeneous nature of the printed metamaterial. 
 
The material samples of the same length, L, but differing section dimension, d, ranging from 
two to six unit cells (Figure 2) were tested in torsion (Figure 5). The recorded torque, T, was 
found to vary linearly with the imposed rotation, θ, and minimal hysteresis was seen on 
unloading thereby indicating as previously that the material response to loading is 
predominantly elastic (Figure 6). The torsional stiffness of each sample could thus be 
identified from the measured response. A solution for the rigidity of a square sectioned prism 
subjected to twisting [33] when appropriately simplified by assuming that the warping 
constant, IP, is the same as that of a prism with a solid square section (IP =2.25d4/16) [34], 



approximates the variation in torsional rigidity, J (=TL/θ), with cross section dimension, d, 
as:- 
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Thus when the normalised torsional rigidity, (TL/θd2), is plotted against the sample size as 
measured by the section dimension squared, d2, the variation in rigidity when extrapolated 
does not intersect the origin but exhibits an identifiable positive intercept instead indicating 
that a size effect is again present (Figure 9). In this case the shear modulus, G, can be 
determined from the slope of the variation while the characteristic length in torsion, lt, can be 
ascertained from the positive intercept. The parameter lt is analogous to lb but now provides a 
quantitative measure of any size effect exhibited in torsion rather than bending. For the 3D 
lattice material experimentally investigated here G and lt were thus identified as 38.9 MPa 
and 1.68mm respectively. Evidently, the shear modulus is an order of magnitude less than the 
flexural modulus as might be expected given that the lattice is devoid of internal diagonal 
connectors which if present would significantly enhance torsional stiffness. Nevertheless, the 
characteristic length in torsion is similar in magnitude to that seen in bending indicating that a 
distinct positive size effect is again exhibited in this alternative mode of loading. 
 
3.2 Numerical Results 
 
Complementary finite element models of the 3D printed samples were assembled using 
continuum element representations of each unit cell (Figure 7). Suitable loads and constraints 
were applied to replicate both loading modes. In the models the polymer matrix was 
represented by an isotropic linear elastic material with a Young’s modulus of 2GPa and a 
Poisson’s ratio of 0.3, the former value having been identified previously from flexural tests 
on entirely solid samples of the polymer printed with a uniform, continuous cross section. 
Since matrix isotropy was assumed the influence of sample orientation during manufacture 
and testing could not be investigated numerically. Nevertheless, all sizes of lattice sample 
investigated experimentally were also modelled and the variations in both flexural and 
torsional stiffness with size were thus determined. The flexural modulus and characteristic 
length in bending identified from the numerically predicted size effect were 351.2 MPa and 
0.86 mm respectively. The agreement between these predicted values and their 
experimentally determined counterparts therefore provides the assurance required in using 
finite element models exclusively to investigate the mechanical behaviour of additional 
periodic lattice materials based on a cubic or other suitable unit cell. 
 
After validating the initial finite element predictions against the experimental results 
additional models of lattice materials based on a cubic unit cell comprised of only edge 
connectors were then generated. Again, continuum elements were used to represent the 
connectors but for each sample size the connector cross section dimension was varied so that 
the effect of matrix volume fraction on stiffness and its variation with size could be 
established. The additional models were first loaded in pure bending by applying 



displacements consistent with constant end rotations, θ, thereby allowing the applied 
moments, M, to be determined from the computed reactions. By analogy with the torsion case 
(equation 2), in pure bending the flexural rigidity, D (=ML/θ), is given by:- 
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where I (=bd3/12) is the second moment of area of the section. Thus, for a square section 
(b=d) when the variation in the normalised flexural rigidity, (12ML/θd2), is plotted against 
sample size, again measured by d2, and then extrapolated to the vertical axis a size effect will 
once more be exhibited by a positive intercept from which lb2 may otherwise be found. As the 
cross section of the edge connectors reduces the volume fraction of the void contained within 
each cell increases as does the characteristic length in bending (Figure 10) implying that the 
size effect, as measured by lb

2, not only remains positive but also becomes more apparent 
with increasing void volume fraction. The additional models were subsequently loaded in 
torsion. Analogous behaviour was forecast with the characteristic length in torsion increasing 
as void volume fraction increased (Figure 11) indicating that reducing density is accompanied 
by a more marked size effect, as quantified by lt

2, in torsion as well. 
 
Further FE models were generated but with the cubic unit cell now being comprised of both 
exterior edge and internal diagonal connectors (Figure 12). To reduce the complexity of 
modelling the geometry of both the intersection between the three diagonal connectors at 
each cell centre and that of their intersections with the edge connectors at the cell vertices, the 
cross section of the former was prescribed as circular, with radius RI, while the cross section 
of the latter was altered from a square to a quadrant of radius RE (Figure 13). Thus, when the 
unit cells were assembled together to form the overall element mesh, all connectors had a 
circular rather than a square cross section. Consequently, the range of void volume fractions 
considered was now more limited and varied from around 60% to 98%. This range resulted 
from specifying three (0.125, 0.25 and 0.5mm) and five (0.125, 0.25, 0.5 0.75 and 1.0mm) 
different interior and exterior connector radii respectively giving 15 different combinations in 
total. Due to the more involved geometry tetrahedral rather than hexahedral continuum 
element were used to mesh the connectors. Again, the models representing samples of 
different size but each with a square cross section and a constant length were initially loaded 
in pure bending. For all combinations of connector radii considered a distinct size effect was 
again observed with the extrapolated flexural rigidity variation with size exhibiting a positive 
intercept (Figure 14). For each particular combination the characteristic length in bending 
was derived from the positive intercept identified from the predicted rigidity variation (Figure 
14). For each prescribed edge connector radius the size effect, again measured by the 
characteristic length in bending, increases as the void volume fraction is increased by 
progressively reducing the interior connector radius (Figure 15) and, furthermore, as the 
interior connector radius diminishes to zero the characteristic length appears to approach that 
forecast previously for the samples comprised of unit cells containing edge connectors only 
suggesting that this provides an upper bound on the possible size effect. Conversely, 



increasing internal connector radius evidently suppresses the size effect for a given edge 
connector radius. Nevertheless, the flexural size effect clearly remains positive for all 
combinations considered. 
 
When the models of the samples are twisted about their major axis by applying suitable 
torques an entirely different form of behaviour may be observed depending on the radii 
prescribed for the internal and external connectors. When the radius of the former is small 
and that of the latter is large a positive size effect is identifiable from the intercept (figure 16) 
as in bending. However, as the internal connector radius is increased while the edge 
connector radius is reduced the size effect, once more quantified by lt

2, rather than simply 
being suppressed may completely invert and actually become negative as evidenced by the 
discernible change in intercept (figure 16) implying that the smaller samples are now more 
compliant than their larger counterparts. This inversion occurs even when the redistribution 
of matrix material from edges to diagonals results in almost no change in volume fraction 
(figure 16). The causes of such size effect inversion have recently been explained for 2D 
layered [22] and latticed based materials [23,24] loaded in flexure. In the first case a layered 
material comprised of alternating stiff and compliant layers was shown to exhibit a 
conventional, positive size effect when the stiffer layers were located furthest from the 
neutral axis of bending and an opposite, negative effect when the more compliant layers were 
located thus. In the lattice materials changes to lattice topology that moved the average 
distribution of material away from the neutral axis resulted in a positive size effect while 
changes that moved it towards this axis produced a contrasting negative effect. Nevertheless, 
for the 3D lattice materials investigated here the effect of material distribution is arguably 
slightly more subtle, increasing internal diagonal connector diameter while simultaneously 
reducing edge connector diameter redistributes material towards the neutral axes of bending 
and twisting yet in the former case the size effect is only suppressed as already noted but 
completely inverts in the latter case. Furthermore, the  negative size effect in torsion becomes 
particularly apparent when the edge connectors are relatively slender and the internal 
connectors, albeit of of any given diameter, are nevertheless present (figure 17). It should be 
recognised that for consistency with bending the size effect in torsion has been quantified in 
terms of lt

2 using equation 2. For the two specific configurations of similar void volume 
fraction compared previously (figure 16) it is interesting to note that the value of lt

2, 
identified in the case where the edge connectors are more slender (lt

2 ≈ -0.75) is comparable 
in magnitude to that determined when the internal diagonal connectors are more slender (lt

2 ≈ 
1.2) implying that the associated size effects, while different in nature, are similar in scale. 
Although the identification of lt

2 values that are less than zero (figure 17) using equation 2 
provides a means of quantifying the size effect when negative it implies that valid, material 
specific values of lt cannot then be identified for any of these cases. This apparent invalidity 
occurs because generalised continuum theories of the Cosserat type customarily forecast a 
positive size effect (equation 2) so interpreting a negative size effect within the context of 
such theories indicates that there may be a limitation in their applicability particularly when 
the unit cell size is comparable to the overall size as has been investigated here. However, it 
is at these scales that size effects are most significant and forecasting them becomes more 



necessary since when the unit cell size is much smaller than the overall size these theories, 
though possibly more applicable, anticipate that any size effect will be much less evident. 
 
4. Conclusions 
 
As mentioned earlier, the observation of size effects in a heterogeneous medium is not new, 
although previous reports of such effects have usually indicated that reducing overall size to 
that of the length scale of the underlying material heterogeneity will be accompanied by an 
increase in material stiffness or rigidity, behaviour described here as a conventional or 
positive effect which concurs with that forecast by more generalised deformation theories 
such as Cosserat (micropolar) elasticity. While more recent research [22,23,24] has indicated 
that 2D materials may exhibit both conventional positive and contradictory negative size 
effects when loaded in bending, the results presented here indicate that the nature of these 
effects may be even more involved than existing theoretical forecasts would imply or any 
previous work has identified. The complete inversion of the size effect from positive to 
negative in braced open cell cubic lattices subject to twisting while the corresponding effect 
in bending remains positive is an entirely new result that cannot be adequately predicted by 
such theories. In reporting this result we aim to inspire further research and development in 
three complementary fields. Firstly, the inability of existing more generalised continuum 
theories to adequately predict it indicates that these theories either require enhancing or need 
to be superseded by new ones capable of providing a more satisfactory prediction. Clearly, 
this is an impending imperative for the theoretical continuum mechanics field. Secondly, 
further empirical investigation of alternative metamaterials such as closed cell foams with a 
periodic structure is required to determine whether the anomalous size effects reported here 
are also exhibited by such materials. This is suggested as part of the forthcoming agenda for 
both the experimental and computational mechanics fields. Finally, and of most practical 
significance, we seek to stimulate the premeditated design of bespoke metamaterials whose 
stiffness in different loading modes can be optimised by selecting the appropriate size scale 
for the periodic internal structure. Interestingly, this might involve maximising stiffness in 
one mode while minimising it in another. As noted very recently [35], behaviour of this kind 
has traditionally been regarded as more of a burden than an opportunity in design, yet it has 
significant potential in many practical application areas such as, for example, sandwich panel 
structures where it may be possible to optimize the configuration of a core material based on 
a periodic 3D lattice to simultaneously promote flexural stiffness and torsional compliance. 
Such structures might then be of real utility in applications such as self pitching aerodynamic 
control surfaces. 
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Figure 1: Metamaterial samples of various sizes for flexural testing 
 
  



 

 
 

Figure 2: Metamaterial samples of various sizes for torsion testing 
 
  



 

 
 

Figure 3: Metamaterial sample being loaded in three point bending 
 
  



 

 
 

Figure 4: Measured load deflection data for typical sample 
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Figure 5: Metamaterial sample being loaded in torsion 
 
  



 

 
 

Figure 6: Measured torque rotation data for typical sample 
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Figure 7: Structured finite element mesh used to represent single unit cell 
 
  



 

 
 

Figure 8: Variation in specific stiffness with sample size as quantified by (1/d2) 
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Figure 9: Variation in normalised rigidity with sample size as quantified by d2 
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Figure 10: Variation in characteristic length in bending, lb

2, with void volume fraction 
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Figure 11: Variation in characteristic length in torsion, lt

2, with void volume fraction 
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Figure 12: Unit cell with exterior edge and internal diagonal connectors 
 
  



 

 
 

Figure 13: Plane of symmetry of cell through its centre parallel to any face showing 
connector cross sections 

 
  



 

 
 

Figure 14: Numerically predicted variation in normalised flexural rigidity with sample size 
when loaded in pure bending 
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Figure 15: Variation in characteristic length in bending, lb

2, with void volume fraction for all 
connector radius combinations (dashed line represents a unit cell with no internal connectors) 
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Figure 16: Numerically predicted variation in normalised torsional rigidity with sample size 
when loaded in torsion for two metamaterials with diagonal connectors and the same volume 

fraction (≈81.6%) but different connector radii 
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Figure 17: Variation in characteristic length in torsion, lt
2, with void volume fraction for all 

connector radius combinations (dashed line represents a unit cell with no internal connectors) 
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Figure Captions 
 
Figure 1: Metamaterial samples of various sizes for flexural testing 
 
Figure 2: Metamaterial samples of various sizes for torsion testing 
 
Figure 3: Metamaterial sample being loaded in three point bending 
 
Figure 4: Measured load deflection data for typical sample 
 
Figure 5: Metamaterial sample being loaded in torsion 
 
Figure 6: Measured torque rotation data for typical sample 
 
Figure 7: Structured finite element mesh used to represent single unit cell 
 
Figure 8: Variation in specific stiffness with sample size as quantified by (1/d2) 
 
Figure 9: Variation in normalised rigidity with sample size as quantified by d2 
 
Figure 10: Variation in characteristic length in bending, lb

2, with void volume fraction 
 
Figure 11: Variation in characteristic length in torsion, lt

2, with void volume fraction 
 
Figure 12: Unit cell with exterior edge and internal diagonal connectors 
 
Figure 13: Plane of symmetry of cell through its centre parallel to any face showing 

connector cross sections 
 
Figure 14: Numerically predicted variation in normalised flexural rigidity with sample size 

when loaded in pure bending 
 
Figure 15: Variation in characteristic length in bending, lb

2, with void volume fraction for all 
connector radius combinations (dashed line represents a unit cell with no internal 
connectors) 

 
Figure 16: Numerically predicted variation in normalised torsional rigidity with sample size 

when loaded in torsion for two metamaterials with diagonal connectors and the 
same volume fraction (≈81.6%) but different connector radii 

 
Figure 17: Variation in characteristic length in torsion, lt

2, with void volume fraction for all 
connector radius combinations (dashed line represents a unit cell with no internal 
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