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Abstract

Important progress in computational fluid dynamics has been made recently by apply-
ing the data assimilation (DA) techniques. In this thesis, we apply the four-dimensional
variational approach to rebuild the small scales of the velocity fields of fully developed
three-dimensional turbulence, given a time sequence of measurement data on a coarse
mesh of grid points. In this problem, we deal with new challenges since the flow is
governed by the processes of nonlinear vortex stretching and forward energy cascade,
which are absent in two-dimensional flows that have been investigated so far. Two dif-
ferent models are presented to examine their effects on the reconstruction quality: the
Navier-Stokes equations as the model and when the large eddy simulations are applied
as the model (Smagorinsky model). The investigations examine different statistics of
the reconstructed fields. The results show that the agreement improves over time within
the optimization horizon, where the rebuilt fields tend to the DNS target. Reasonable
agreements are accomplished between the optimal initial fields and the target data.
To assess the quality of the reconstruction of non-local structures, minimum volume
enclosing ellipsoids are introduced, which enables us to perform quantitative compar-
isons for the geometry of non-local structures. The rebuilding of non-local structures
with strong vorticity, strain rate and subgrid-scale energy dissipation gives satisfactory
results. A small misalignment between the MVEE’s axes can be obtained; structures
in the rebuilt fields are reproduced with sizes smaller by a small percentage to what
exists in the target field; the locations of the MVEE are different on average by around
20% of the axes lengths. Both Navier-Stokes equations and filtered Navier-Stokes equa-
tion (as models for the data) show satisfactory reconstruction. The imperfect model
(Smagorinsky model) demonstrate the capability for recovering the target fields quicker
in most of the presented examinations.
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Chapter 1

Introduction

Turbulence is the fluid motion state distinguished by chaotic and seemingly random
three-dimensional vorticity. Usually, the effect of turbulence predominates all other
phenomena of the flow, where it affects the increased energy dissipation, heat transfer,
drag, and mixing. Real turbulence occurs only when having three-dimensional (3D)
vorticity, and one of the fundamental reasons for this is that only in such flow, is the
vorticity stretching through the flow field itself achievable.

An overview of the chapter

As an outline for this chapter, in section 1.1, a brief review is presented of homogeneous
turbulence which is the main flow field investigated in the thesis. In section 1.2, the data
assimilation (DA) concepts are presented as well as the related methods and the most
important terms being used. Section 1.3 presents the literature review which shows the
most significant applications of DA in fluid mechanics related to our approach. Lastly,
the outline of the dissertation is presented in 1.4.

§ 1.1 Homogeneous turbulence and large eddy simulation

Homogeneous turbulence is a type of turbulence in which the average characteristics
are position-independent, i.e. a type of turbulence that is invariant with the transition.

The turbulent motion that happens in engineering or in nature is always inhomoge-
neous. The statistics in such turbulence are different with the location, and the fluc-
tuating velocity changes with the location as well. Interaction consequently happens
between the fluctuating and mean components of the motion. However, it is helpful
to study the homogeneous turbulent flow that avoids such interaction, which provides
the understanding of a simple flow that helps to understand inhomogeneous turbulent
flows.
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According to [69], the equations that determine the turbulent velocity include the
continuity equation. For an incompressible fluid, it is given as:

∇.u = 0, (1.1)

where u represents the velocity field in turbulent flows at a position in the fluid identified
by x, and ∇ is the gradient operator with respect to the coordinate system x. The
Navier Stokes (NS) equations describe the viscous fluid motion which are given as:

∂u

∂t
+ u.∇u = −1

ρ
∇P + ν∇2u+ f , (1.2)

where the pressure is denoted by P , the density is denoted by ρ, f is the force term,
and ν is the kinematic velocity.

The NS equations in Fourier space are often used when investigating the homogeneous
turbulence. The Fourier mode of u(x, t) is written as û(k, t), and the evolution equation
for û(k, t) is:

( d
dt

+ νk2
)
ûj(k, t) = −iklPjk(k)

∑
k′

ûk(k
′, t)ûl(k − k′, t), (1.3)

where Pjk(k) represents the projection tensor and the left hand side includes û only at
k, while the right hand side includes û at k′ and k′′, in which k = k′ + k′′ ( [73]).

The nonlinear term on the right-hand-side of Eq. 1.3 leads to energy exchange between
different Fourier modes, a process known as the energy cascade. In turbulence, the
energy cascade transfers energy from the larger to smaller scales of the motion. The
famous poem presented by the meteorologist and mathematician L. F. Richardson has
summarized this concept, as quoted in [5]:

Big whorls have little whorls,

Which feed on their velocity;

And little whorls have lesser whorls,

And so on to viscosity.

Energy cascade leads to spectral energy distribution. The energy spectrum tensor
Eij(k) is defined as

Eij(k) =
〈
ûi(k)û∗j (k) + ûj(k)û∗i (k)

〉
/2,

where the angle brackets refer to a statistical average, and û∗ is the complex conjugate
of û. However, it is more common to use the energy spectrum E(k) which is related to
the mean turbulent kinetic energy by the following equation
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∫ ∞
0

E(k)dk = 〈|u|2〉/2,

where k ≡ |k| is the magnitude of the wave-number k. Therefore, E(k) represents the
contribution to turbulence kinetic energy from Fourier modes with wave-numbers from
k to k + dk. According to the Kolmogorov phenomenology, the energy spectrum E(k)
is given as:

E(k) = KKol〈ε〉2/3k−5/3, (1.4)

where the Kolmogorov constant is denoted by KKol and the energy dissipation rate is
referred to by ε.

The method of filtering and large eddy simulation (LES) is employed in this thesis.
Therefore, a brief introduction is presented for the concepts used in this method.

In LES, the larger-scale turbulent motion is directly represented, while the impacts of
the smaller-scale are modelled. In terms of the computational cost, LES is placed be-
tween the Direct Numerical Simulation (DNS) (DNS is a simulation method in which
NS equations are solved by resolving all the scales with the absence of the turbu-
lent models [73]), and Reynolds Stress Equation Model (RSM) (where the Reynolds
stress tensor components are directly calculated and the hypothesis of eddy viscosity is
avoided [50]). Since the representation of large scale unsteady motions is explicit, LES
can be assumed to be more reliable and precise than RSM.

It is well known that DNS is not applicable for the high Reynolds number (Re) flows
because of the computational expense (Re is a dimensionless number which is defined
as the ratio of the inertial force to the viscous force, and therefore identifies the relative
significance of these two forces. It is given in the formula, Re = ul/ν, where u is a
characteristic velocity scale and l is the characteristic length). The computation in
DNS is mostly exhausted on the motion of the smallest scales, while the anisotropy
and energy are included mostly in the motion of the larger scales. In LES, the large
scale motions are calculated directly, and models are applied to express the impacts of
the smaller scales. Therefore, unlike DNS, LES avoids the castly computation spent on
the motions of small scales.

The author in [73] has explained the conceptual steps related to the LES method.
Firstly, the velocity fields u(x, t) can be broken down by filtering into two parts, a
residual component which is denoted by u′(x, t) and a resolved component which is
refered to by ū(x, t). Physically speaking, ū is the motion of larger eddies. We define
the operation of the filtering as:

ū(x, t) =

∫
G∆(r)u(x− r, t)dr,
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where G∆ is the filter with ∆ being the width of the filter, and a filtered value is
denoted by an overline. As an example, the Gaussian filter ( [41] and [76]) is given by:

G∆(r) =

(
6

π∆2

)1/2

exp

(
− 6

∆2
|r|2
)
.

Secondly, the equations for filtered velocity field ū(x, t) can be found by applying the
filter to the governing equations. Therefore, the continuity equation becomes:

∂ūi
∂xi

= 0. (1.5)

We obtained the following when we filter the NS equations:

∂ūi
∂t

+ uj
∂ui
∂xj

= 2ν
∂S̄ij
∂xj

− 1

ρ

∂P̄

∂xi
+ f̄i, (1.6)

where S̄ij is the filtered strain rate tensor and f̄i is the filtered force term. The equations
can be re-written to include the subgrid-scale stress tensor τij that appears due to the
motions of the residual component. Together with the anisotropic SGS stress tensor
τ rij and modified filtered pressure p̄, they are defined as the following:

τij = (uiuj − ūiūj), (1.7)

τ rij = τij −
1

3
τRkkδij , (1.8)

p̄ =
1

ρ
P̄ +

1

3
τRkk. (1.9)

Hence, we obtain the filtered momentum equation as:

∂ūi
∂t

+ ūj
∂ūi
∂xj

= 2ν
∂S̄ij
∂xj

−
∂τ rij
∂xj
− ∂p̄

∂xi
+ f̄i (1.10)

or
∂tūi + ūj∂j ūi = ∂j(2νS̄ij − τ rij)− ∂ip̄+ f̄i (1.11)

Therefore, models for τ rij are needed to close the equations and hence solve the modified
filtered pressure p̄(x, t) and the filtered velocity field ū(x, t). The Smagorinsky model
is one of those models, which is named after Joseph Smagorinsky, the American mete-
orologist who presented his model in 1963. The Smagorinsky model is the most simple
SGS model, which has been confirmed to work reasonably well [73]. In this model, the
anisotropic residual-stress τ rij is given by
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τ rij = −2νrS̄ij . (1.12)

The subgrid-scale eddy viscosity νr represents the effects of the residual motions. It is
modeled as [73], [76]:

νr = (Cs∆)2
(
2S̄lkS̄lk

)1/2
. (1.13)

Here, we have the Smagorinsky coefficient Cs and the filter width ∆. Finally, we can
write the filtered NS equations as

∂tūi + ūj∂j ūi = 2∂j
((
ν + (Cs∆)2(2S̄lkS̄lk)

1/2
)
S̄ij
)
− ∂ip̄+ f̄i, i = 1, 2, 3. (1.14)

The model has some drawbacks, as summarized in [40]. Cs = 0.16 is used in the
simulations in this thesis.

§ 1.2 The basic concepts and methods of data assimilation

The method to use data from observations or experiments to enhance the predictions
of the computational model is called Data Assimilation (DA). It has been used, e.g.,
to define the optimal state estimation, and to define the initial conditions (ICs) of the
prediction model. Errors in real world measurements could appear due to the lack of
accuracy of the measurement tools and the inappropriate choice of the measurement
location. DA is a systematic method to deal with these issues.

DA is particularly useful in complex chaotic systems. The basis of this complexity is
that slight variation in the ICs may lead to substantial variations in the accuracy of the
forecast. DA has the information from an adequate prior prediction and the current
measurements and uses them to find improved predictions.

The fundamental approaches available to DA, according to [8], are:

• Intermittent (non-sequential) assimilation, in which the observations at a later
time may be applied to improve prediction at a previous time. The observations
are treated in small batches.

• Continuous (sequential) assimilation, which takes into account observation per-
formed from the previous to the current time. This method also considers ob-
servation batches taken for longer times, and the improvement to the enhanced
prediction happens continuously in time.

The combination of the measurement/target data and the “a priori” estimate/prediction
led to the assimilation of the observations. This process gives an updated prediction,
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which is known as the analysis or the a posteriori estimate. In order to reduce the error
for the a posteriori estimate, suitable weights for the combination have to be chosen.
The analysis can be expressed by Xa and it is what we are seeking. The problem of
finding the best analysis is called the analysis problem.

Several concepts are important in the mathematical formalization of the analysis prob-
lem, which are defined as below:

• The true state is denoted by Xt and it is the true description of the reality at the
analysis time.

• The background state, i.e. the a priori estimate, is denoted by Xb. It represents
the prediction of the true state before applying DA.

• The analysis problem is to discover an analysis increment δX ≡ Xa − Xb such
that Xt and Xa are close to each other.

• Observations may be considered as a function of Xt. These observations are
gathered into vector y, possibly perturbed by errors. The observation operator is
denoted by H.

• Departures are the differences given by y−H(X). This is also called the analysis
residual y − H(Xa) when the calculation is conducted with the analysis; and
innovation, when it is calculated with the background, i.e., y −H(Xb).

In the atmospherical sciences, the numerical weather prediction (NWP) models are
used to characterize the atmospheric dynamical behaviour. NWP is an initial value
problem [68]. Therefore, there is a need for the ICs to resemble the current state of the
weather. As a result, there has been a long history of using DA in NWP, as presented,
for instance, in [19] and [43]. Richardson is represented as the founder of this research,
as mentioned in [75]. The early calculation in [12] relied on hand interpolations, as
mentioned in [43] and [72]. [30] as well as [21] and [2] made big efforts to develop
automatic objective analysis. [3] and [21] utilised the prior data to complement, to
some extent, imperfect information. A series of papers in DA in oceanography and
meteorology are presented in [38]. [29] sums up the state of the DA in the 1990’s.
Recent reviews can be found in [8] and [68]. We briefly introduce two of the most
important methods.

1.2.1 Optimal Interpolation Methods

The optimal interpolation method illustrates the basic ideas of the Kalman filters and
the variational methods. A brief review can be seen in Zupanski and Kalnay [88] along
with the respected publication of Kalnay [43]. Sasaki [77] and [78] made an earlier
attempt connecting optimal interpolation (OI) with the variational technique.
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We want to obtain the best state estimation by merging data including the background
and the observation, which may contain errors. In OI, the estimation for the analysis
Xa is determined by an interpolation equation as follows:

Xa = K(y −H[Xb]) +Xb. (1.15)

in which the observation operator H is assumed to be linear, and K is known as the
weight matrix (the Kalman gain) for the analysis which can be found by using the
covariance matrix of the analysis error.

The vector errors for the background Xb are given by εb = Xb −Xt, which represents
the difference between the background and the true state, and < εb > represents its
average. Therefore, the background error covariance B is

B =
〈

(εb− < εb >)(εb− < εb >)T
〉
.

Also, R refers to the observation error covariance, i.e.:

R =
〈

(εo− < εo >)(εo− < εo >)T
〉
,

where the observation errors εo = y −H(Xt) and < εo > refers to its average.

According to Eq. 1.15, the analysis error covariance matrix

A =
〈

(εa− < εa >)(εa− < εa >)T
〉

is given by

A = KRK−1 + (I −KH)B(I −KH)T , (1.16)

where the analysis errors is εa and < εa > represents its average. By taking the trace
of the Eq. 1.16, we obtain

Tr(A) = Tr(B)+Tr(KHBHTKT )−Tr(BHTKT )−Tr(KHB)+Tr(KRKT ). (1.17)

K is chosen to minimize Tr(A). The differentiation dK of Eq. 1.17, with respect to K,
can be expressed as follows:

dK [Tr(A)] = dK

[
Tr(KHBHTKT )− Tr(BHTKT )− Tr(KHB) + Tr(KRKT )

]
,

=
(
KHBTHT +KHBHT − 2BHT +KR+KRT

)
,

= 2
(
KHBHT −BHT

)
+ 2KR,

= 2K(HBHT +R)− 2BHT . (1.18)
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Letting dK = 0, we find

K = BHT (HBHT +R)−1, (1.19)

which is the optimal least-squares gain. With K given by Eq. 1.19, A turns into

A = B(I −KH), (1.20)

and Eq. 1.15 is called the optimal interpolation. It can be shown that the optimal
interpolation can be obtained as a solution of the variational optimization problem,
with cost function J(X) given by

J(X) = (y −H(X))TR−1(y −H(X)) + (X −Xb)
TB−1(X −Xb). (1.21)

The variational optimization method is briefly reviewed next.

1.2.2 Variational optimization

The work of Euler and Lagrange is considered the beginning of variational methods,
according to [68]. In the 1750s, Leonhard Euler and Joseph-Louis Lagrange developed
the Euler-Lagrange equation. It gives a way to find the solution that extremizes a
specified cost functional. It is widely applied to optimisation problems and trajectories
calculation. The calculus of variation has had a broad attractiveness because of its
capability to deduce the governing equation for an entire system without the details
of the system ingredients. The general theory is interpreted by the works of [6], [18]
and [49]. The Lagrange multipliers method is the basis of the theory. Generally,
constrained optimization problems comprise minimizing or maximizing a multivariable
function f(x) whose input has any number of dimensions, subject to the constraint
g(x) = 0.

By applying the first-order conditions of minimization, we calculate the first derivatives
of the Lagrangian function L which is given by:

L(x, λ) = f(x) + λg(x). (1.22)

Hence, we have

∇xL(x, λ) =
∂f

∂x
+ λ

∂g

∂x
, (1.23)

and

∇λL(x, λ) = g(x). (1.24)
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Here the Lagrange multiplier is denoted by λ which measures the sensitivity of f(x) at
a fixed point to the differences in the constraint. The minimum is found at the critical
points where ∇xL = ∇λL = 0.

The three-dimensional variational assimilation

The first researchers on the adjoint DA were Lewis and Derber [54], Courtier [20], and
Le Dimet and Tala-grand [51]. The fully nonlinear case was extended from adjoint
sensitivity analysis by [11] and [10], while [67] presented in detail the procedure used
to enforce integral invariants conservation.

The works of Sasaki are considered as examples of a standard implementation of vari-
ational techniques, see [81], [79] and [80], and could be seen as a three-dimensional
variational assimilation (3DVAR). [66] applied it to impose the total energy conser-
vation, total mass and total enstrophy in the 1D and 2D equations of shallow water.
The idea of 3DVAR is to seek analysis as an approximate solution to a minimisation
problem (Eq. 1.21) and to avoid computation of the gain K in Eq. 1.19. [58] showed
that OI and 3DVAR are equivalent as long as the assumption of the cost function J is
given as follows:

J =
[
y −H(X)

]T
R−1

[
y −H(X)

]
+ [X −Xb]

TB−1[X −Xb]. (1.25)

The first term gives the distance of prediction X to observations y and the second term
represents the distance from prediction to Xb. Therefore, the algorithm of 3DVAR
considers the three space dimensions, where the observations are distributed at one
time.

The four-dimensional variational assimilation

In [24], it has been shown that the basis for the four-dimensional variational assim-
ilation (4DVAR) method is optimal control, as the problem is merely a constrained
optimization. The assimilations of the data are done temporally and spatially within
the model by the minimization of the variation between the data and the prediction of
the model. 4DVAR has been given the name because the data assimilated are the time
sequences of spatial data of three-dimensions. The aim of the 4DVAR is to find the
estimate of the true state of the system (analysis), consistent with both observations
distribution in time and the system dynamics.

The 4DVAR is a straightforward generalization of 3DVAR for data distributed in time.
It uses similar equations, provided H is generalized to include a forecast model that
can be used to compare X and y at the appropriate time. Its formula can be defined
by the following cost function:
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J(X) = (X −Xb)
TB−1(X −Xb) +

N∑
i=0

(Hi(Xi)− yi)TR−1
i (Hi(Xi)− yi), (1.26)

where Hi, Xi and yi refer to the observation operator at the time i, model state at the
time i and the observation at the time i, respectively.

The problem of the 4DVAR can be defined as minimising Eq. 1.26, subject to the
constraint in which the model state sequence Xi has to be a solution of the numerical
model:

Xi = M0→i(X),

in which M0→i(X) represents the model prediction from the initial time to the ith
time step. Therefore, 4DVAR is a non-linearly constrained optimising problem that is
usually hard to solve.

The prediction Xi is the integration of a numerical forecast model starting with X
as the IC. Letting X0 = X such that M0 is the identity, then by denoting Mi the
prediction step from i− 1 to i, we have Xi = MiXi−1 and by recurrence

Xi = MiMi−1...M1X.

The minimisation of J requires an optimisation algorithm which requires, at each it-
eration, calculating both J and ∇J . The gradient can be calculated by running the
adjoint model backward, where the adjoint can be found as the transpose of the tangent
linear model. Therefore, to calculate the cost function, it is needed to run the nonlinear
model to calculate all Xi. While to calculate the gradient of J , we need one more run
of the adjoint model (backward in time)

1.2.3 Kalman filter

Kalman filter (KF) is an optimal estimation algorithm that is named after Rudolf
Kalman (1930-2016), who led the development of its theory. It predicts the parameters
of interest such as direction, speed, and location while accounting for noise in their
measurement. KF is commonly applied to situations such as control system; navigation;
guidance; signal processing; and computer vision system. An early application of the
KF was in the 1960s, when it was applied in the Apollo programme.

KF is utilised to find optimal estimates of variables of interest when it is complicated to
measure them directly, but indirect measurements are available. It can also be applied
to obtain the best estimate of the state of a system by the combination of measurements
from a variety of sensors exposed to noise.
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The KF is an adaption of the optimal interpolation method in section 1.2.1 in the
framework of sequential DA, where every background is supplied via a prediction that
begins from the former analysis. The background is adjusted to assimilate the real-time
observations to form a prediction. The KF combines the prediction and measurement
to computes an unbiased estimate with minimum variance.

We assume a linear model (M) and a linear observation operator, allowing for model
error (i.e. imperfect model). The model may be written as

Xt(i+ 1) = M(i)Xt(i) + η(i),

where η represents the error in the model, which is a random variable with zero mean
and the covariance Qa(i) =< η(i)η(i)T >. The notation i refers to the time step.

At each time step, the analysis of the previous time will be considered the background
to base the forecast on. An estimation of the uncertainty of the analysis at this time
is given by an uncertainty forecasting model. The same procedure moves forward in
time until all observations are assimilated. Hence, for each time, it needs to calculate
the analysis and analysis uncertainties and forecast them both in order to get the prior
and the uncertainties for the next time. The gain matrix at time i is calculated as:

K(i) = Pf (i)HT (i)
(
H(i)Pf (i)HT (i) +R(i)

)−1
,

where Pf represents the error covariance matrix of the background. The analysis at
the time we are at is given by

Xa(i) = Xb(i) +K(i)
(
y(i)−H(i)Xb(i)

)
.

The error covariance of analysis is given by

Pa(i) =
(
I −K(i)H(i)

)
Pf (i).

Then, we obtain the next prior and the next prior uncertainty. They are given by the
following equations:

State forecast:

Xb(i+ 1) = M(i)Xa(i). (1.27)

Error covariance forecast:

Pf (i+ 1) = M(i)Pa(i)M
T (i) +Qa(i), (1.28)

where Qa(i) is the error covariance matrices of the computer model.
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Extended Kalman Filter

It is possible to generalize the KF algorithm to nonlinear operators, leading to the
extended Kalman filter (EKF). If H is nonlinear, let H be its tangent linear operator
in the neighbourhood of Xb. Likewise, if M is nonlinear, M denotes the tangent linear
prediction model in the neighbourhood of Xa. Using M and H in the formulas for
KF, one obtains the extended KF.

Ensemble Kalman filter

The propagation of the error covariance matrix in KF and EKF schemes is very ex-
pensive to compute. Besides, if the nonlinearities of the model are significant, one may
need to apply more general stochastic forecast schemes. Examples include an ensemble
prediction scheme, identified as the Ensemble Kalman Filter (EnKF).

We consider here the perturbed observation ensemble Kalman filter. In this version
of the EnKF, the error covariance forecast Pf is approximated by an ensemble of
model runs. The solution of Eq. 1.28 is thus avoided, leading to potentially significant
saving. In practice, the prediction step of EnKF evolve each analyses member using
the nonlinear model

X
(j)
b (i) = M

(
X(j)
a (i)

)
+ η(i), for j = 1, N, (1.29)

where η ∼ N (0, Qa), and it generates ensemble of size N given Xb, and Qa. We have

an ensemble of states X
(j)
a , and (j) indicates the ensemble member. Therefore, we run

the nonlinear model to obtain an ensemble of forecasts X
(j)
b , then form the ensemble

mean

〈
Xb(i)

〉
=

1

N

∑
X

(j)
b (i). (1.30)

Therefore, the sample covariance of the forecasts is:

Pf =
1

N − 1

∑(
X

(j)
b (i)−

〈
Xb

〉)(
X

(j)
b (i)−

〈
Xb

〉)T
, (1.31)

where we subtract the mean from each of the ensemble members such that the covari-
ance matrix is given in Eq. 1.31.

Next, the analysis step updates each ensemble member using the perturbed observations
as follows:

X(j)
a (i) = X

(j)
b (i) +K

(
y(i) + εy −HX(j)

b (i)
)
, (1.32)
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where K = PfH
T (HPfH

T + R)−1, and εy ∼ N (0, R). Perturbing the observation
is necessary to ensure correct error statistics. Therefore, for each ensemble member,
we have a different perturbation to the observation to ensure that the analysis error
covariance depends on the forecast covariance according to

Pa(i) =
(
I −K(i)H(i)

)
Pf (i).

The analysis error covariance matrix can be calculated as the mean of this updated
ensemble

Xa(i) =
1

N − 1

∑
Xj
b (i)

Pa =
1

N − 1

∑
(Xj

a(i)−Xa)(X
j
a(i)−Xa)

T . (1.33)

More discussion can be found in [26].

1.2.4 Comparison between 4DVAR and EnKF

This thesis studies only one of the DA techniques, the 4DVAR. However, it is worth
shedding light on the similarities and differences between, and advantages of, the
4DVAR techniques and Kalman filter. In terms of real-time assimilation, 4DVAR over
a short period is a workable approach.

Many similarities as well as significant differences between two approaches have been
previously mentioned in [27], [38], [39] and [44]:

• 4DVAR can assimilate asynchronous observations.

• The performance of 4DVAR converges to the full rank extended Kalman filter
when applied over a long enough window.

• 4DVAR may runs for assimilation in a realistic NWP frame due to the fact that
the computational procedure is cheaper than EnKF and KF.

• 4DVAR is superior than EnKF or KF inside the optimisation time interval as it
utilises all the observations at the same time. This makes it a smoother, rather
than a sequential estimator.

• 4DVAR is operated for a finite-time period, particularly if the dynamical model
was nonlinear, while in principle EnKF may run continually.

• 4DVAR itself does not give a background error covariance estimation. A specific
process for that purpose is needed, that requires a cost as much as operating the
equivalent extended Kalman filter.
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Some principal advantages of EnKF are shown below:

• It is relatively simple to implement and it is model independent.

• EnKF filters out fast processes such as convection in an automatic manner,
through the nonlinear saturation.

• EnKF gives optimal initial ensemble disturbances as they represent the analysis
error covariance matrix.

The 4DVAR technique needs the maintenance and development for the adjoint model,
which can be considered as one of its disadvantages. The low-dimensionality of the
ensemble of EnKF is considered an essential disadvantage due to the sampling errors
in the estimations of the background error covariance matrices.

§ 1.3 The applications of DA in fluid mechanics

As mentioned in the previous section, research into numerical weather prediction is an
example where there has been a long history of using DA, as presented, for instance,
in [19] and [43]. Therefore, numerous sophisticated DA methods have been devel-
oped. 4DVAR methods and EnKF are considered, among others, the most common
approaches; for more details see [43], [42] and [26].

Both 4DVAR and EnKF have been used in fluid dynamics recently, as reviewed in [34].
The paper presents a review of studies in which investigations are made into procedures
for combining measurement and numerical simulation like the 4DVAR and Kalman
filters. The 4DVAR might partially find a solution to the problem where the ICs
and boundary conditions (BCs) are the control parameters. Creating a numerical
representation of the characteristics of unstable flow is also resolved by Kalman filters
by modifying mathematical models to stabilise the original dynamical system’s unstable
modes with feedback signals.

The variational method has been applied by [31] to construct the initial condition and
the inflow condition. The procedure is concerned with the correct modelling and the
reproduction of spatio-temporal dynamics for an experimentally examined flow. Two-
dimensional (2D) mixing layers and wake flows behind a cylinder were investigated. The
research concluded that the 4DVAR DA used was validated by the experiments within a
controlled framework and demonstrated the reliability and feasibility of the procedure.
The data used in the research was from a real world application and therefore the
method has the potential to be used in computations of complex external flows thus
reducing the computational high costs in the near-wall region.

2D wake flows have also been considered by [63], where the authors presented a com-
parison between various DA methods. Three different schemes are investigated within
the NS equations framework: 4DVAR; ensemble Kalman smoother (EnKS) which may
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be considered as the extension of EnKF; and four-dimensional ensemble-based variation
(4DEnVAR) which merges the application of a Monte Carlo ensemble with the 4DVAR
technique, without the need for adjoint operators. The outcomes of these techniques
show that they can be successfully applied for the rebuilding of ICs and BCs for 2D
unstable flows around a cylinder in the presence of coherent gusts at Re = 100. In
these configurations, the 4DVAR is accomplished with the lowest error between obser-
vations and estimation for a fixed computational cost, based on the given observation
and prior statistics. The 4DVAR produced a significant reduction in error. Whilst the
EnKS and 4DEnVAR were not as successful, the reconstruction of the target trajectory
could be satisfactory and give a comparable computational cost as 4DVAR. However,
the EnKS and 4DEnVar schemes depend on ensembles the sizes of which are broadly
smaller than the control vector dimension. Also, the adjoint procedure has an advan-
tage, namely the adjoint variables give the first-order sensitivity with respect to the
control variables. Both 4DEnVAR and EnKS procedures are also applied iteratively,
and it is demonstrated that the outcomes are better than those obtained with only
one-loop of the algorithm while the same total number of direct runs are required. The
EnKS can be more sensitive to observation and past statistics than the 4DEnVAR and
4DVAR. However, in the situation when the appropriate previous statistic is given,
an advantage of the EnKS is that it supplies posterior information in addition to the
assimilated state. The 4DEnVAR procedure, by contrast, can be applied in a deter-
ministic framework, showing itself to be less sensitive to both the ensemble statistics
and its size than the EnKS.

The EnKF procedure has used in [45], [46], and [57] to enhance the prediction of
Reynolds-Averaged Navier-Stokes (RANS) models.

In [45], the EnKF process is used. A pseudo experiment is conducted and the pseudo
experimental values are created from the computed flow of the flat plate boundary layer.
It considers the Spalart-Allmaras model and the EnKF is used to estimate the values of
the model parameters, in which the parameters are combined with the state variables to
accomplish such estimation. These parameters are considered the uncertainty factors
in the simulation. The Spalart-Allmaras (SA) model is a one equation model with an
equation for the kinematic eddy turbulent viscosity [82]. Six parameters are used to
represent the turbulent effects, which are traditionally given as follows: Cb1 = 0.1355;
σ = 2/3; Cb2 = 0.622; Cω2 = 0.3; Cω3 = 2; Cv1 = 7.1. The fast aerodynamic routine
(FaSTAR) developed by the Japan Aerospace Exploration Agency is applied, and the
EnKF is performed in FaSTAR. The results for the model show that the original values
given by the SA model are precise in the statistical perspective, thus demonstrating
the EnKF effectiveness to define the parameters’ values in a model statistically or
objectively.

The researchers in [46] consider complex aeronautics. The ensemble transform Kalman
Filter (ETKF) is one of the extended Kalman Filter methods. The ETKF is used in this
study as a method which overall reduces cost in ensemble based DA techniques. The
ETKF is applied to 2D transonic flows around the RAE 2822 airfoil, and 3D transonic
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flows around the ONERA M6 wing. To show how effective this approach would be,
three factors with uncertainty, namely, the angle of attack; Mach number; and the
turbulent viscosity, were estimated in the two test cases. The ETKF showed itself to
be a more effective method than the SA and Shear Stress Transport (SST) models.
(The SST is a two-equation eddy viscosity turbulence model using the k− ε and k− ω
turbulence models [61]). The ETKF approach with the three factors of uncertainty,
provided more satisfactory corrected values than either the SA or the SST.

In [57] the authors defined a new data-driven adaptive computational model, for im-
perfect measurement data. By using the compressible RANS k − ω model and a data
driven algorithm, they proposed the D-DARK model. The D-DARK model is tested in
three validation cases: flow around an airfoil; the backward-facing step; and pipe flow.
In the simulation experiment, it was observed that the D-DARK model adapted the
k − ω model coefficients to improve the accuracy of CFD.

The application of the EnKF method in the detached eddy simulation (DES) and LES
is introduced in [60], where a given sequential estimator is integrated into the separated
solvers for the incompressible flow. An augmented solver is supplied by this method
that integrates observations in the CFD model. Two procedures of model reduction
are considered, to decrease the model computational expenses that show 10%-15%
improvement with respect to the traditional numerical simulation. Simplified formulas
representing the accuracy of the numerical procedure are improved. The estimator was
used to compute a number of flow fields. The first one is a 2D flow around a cylinder
when Re = 100, while the second case considers a 3D simulation flow around a circular
cylinder. The outcomes demonstrated that the augmented solver affects positively the
forecast of the tested physical quantities. Finally, it shows that these DA methods
have the possibility in the numerical simulation to use the augmented forecast for the
optimisation as a robust device for the free variables.

The authors of [28] introduce the mathematical framework of the 4DVAR DA method
for the recapture of the mean velocity fields that are solved from the RANS equations.
Procedures that seek a reconstruction of the state from limited data are needed because
measurements in fluid mechanics may cover partial information of the total state of the
flow. The DA framework is discussed with the 2D flow around an infinite cylinder
at Re = 150 as a test case. After examining a number of measures on the flow,
the DA process is used to build the whole mean flow field. Spatial interpolation,
extrapolation, the reconstruction of the mean velocity ingredients from measurements
of the magnitude only, and noise filtering were tested independently. The mean velocity
field exhibits satisfying results for all cases, to the extent that it is more accurate
than simpler approaches which rely on high order interpolation which ignores physical
limitations on the mean flow.

In [22], [1] and [74], reduced order models based on Galerkin truncation are combined
with the variational techniques.

The work of [22] is about the capability of a variational DA method to extract a proper
orthogonal decomposition (POD) based Galerkin low-order dynamical systems (LODS)
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from the particle image velocimetry (PIV) measurements. A variational framework is
used to estimate the variables that characterise the flow, such as velocity components
or density or pressure, to improve the first initial estimation gained by polynomial iden-
tification. It uses a least squares estimation of the control variable with respect to the
full measurements sequence usable in a set time range. The control variable can be set
to the IC or to any parameter for the evolution law. The investigation chooses a wake
flow as an experiment case. The outcome shows that the POD assimilation method
considerably outperforms the least-squares fitting techniques. The POD assimilation
procedure does not give the coefficients that characterise the LODS. However, those
coefficients may be successfully recaptured by polynomial identification on the assim-
ilated outcomes. Therefore, the method seems to be a valuable tool to rectify noisy
experimental data.

In order to reduce the deficiency of polynomial identification of the dynamics from
experimental data, [1] developed a scheme of variational DA with the initial state of the
POD modes and the model coefficients as the controls. The assimilation is conducted
on the basis of POD modes computed from a sequence of snapshots of the velocity
fields. The authors evaluate two variational DA methods, which involve different control
variables. One of them presents a weak dynamical model expressed only up to an
additional time-dependent noise function which represents a time-dependent control
variable on the dynamics. This uncertainty function is considered as part of the cost
function which is designed to improve the IC to a priori value, up to Gaussian noise. The
other model deals with a strong dynamical constraint in which the control variables are
the coefficients of the dynamical system. It aims to look for the control that minimises
a cost function encoding the errors between the unknown coefficients subject to the
constraint set by the dynamics and the measurement errors. The rebuilt dynamical
model demonstrated it can largely recapture the dynamics of a large number of modes
for short experimental and numerical sequences.

In [74], the authors suggest a variational technique to optimize non-linear eddy viscosity
(EV) for POD models. The EV is presented as an unknown function of the resolved
energy. The optimization is achieved by using the 4DVAR method, POD models with
the optimal EV are built for three shear flows. Firstly, an investigation is used to assess
the two dimensional POD model for the transient behaviour in the 2D cylinder wake.
Secondly, the 20 modes POD model of the 2D mixing layer at Reynolds number 500
with velocity ratio three is studied. Finally, the 100 modes POD model of the wake of
a 3D Ahmed body at Reynolds number 300000 is built. The formulation leads to some
important physical understanding regarding the EV ansatz. The 20 modes mixing layer
model shows a negative EV when the fluctuations are low. Also, an accurate energy
distribution can be obtained by the 100 modes wake models.

The 4DVAR methods have been applied in state estimation in the flow control context
by the research in [7], which handles the exact state reconstruction problems and the
estimation of the approximate state from wall measurement in a wall-bounded incom-
pressible unstable flow. It presents a strategy for defining a turbulent channel flow at
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time t, based only on the wall skin friction and pressure measurements obtainable in a
neighbourhood of time t, regardless of the ICs at some time t0 < t.

The extended Kalman filter procedure is studied in [14], based on a linearized model. It
discusses estimating the turbulent channel flow at Reτ = 100 from noisy measurements
on the wall. It shows that, through defining a suitable second-order statistic in a fully
nonlinear DNS of the system, then combining the information of the statistic in the
linear feedback gains computation, an effective estimator may be constructed depending
on the availability of measurements at the wall.

The EnKF method is used in [15]. The authors discuss the estimation of turbulent
channel flow based on wall information only, which is considered the key issue in model-
based flow control. Only low-Reynolds number flows are considered. Its outcome reveals
the law of the wall, in which statistics are given as a function of the distance from the
wall.

The variational methods are applied to extrapolate the data from experiments in [35].
The research aims to direct attention to the capability of such procedures in integrating
with correlation based PIV techniques, to enhance the consistency of the simulation of
flow fields.

The EnKF technique is investigated by [16] with the joint use of a Kinect depth sensor
and a stochastic DA method to recapture free surface flow fields from a sequence of
images. The Kinect sensor captures observations of surfaces with wavelengths and
amplitudes small enough for applications such as monitoring flow or characterising
medium to large scale flows.

Variational DA is applied to obtain the optimal placement of sensors in [64]. The tech-
nique is used to the reconstruction of unstable 2D flows past a rotationally oscillating
cylinder at Re = 100, with a view to maximise the DA method’s efficiency. It is aimed
at the a priori design of a sensor mesh and depends on a first order adjoint technique.
The goal is to identify the flow areas in which the sensitivities are the biggest regarding
the change in control variables such as the ICs, BCs, or model parameters. Two steps
are taken in the investigation. First, preliminary experiments for the DA method are
made to identify the possible solutions of inverse problems in the unstable wake flow
fields. The outcomes show that despite the fact that the DA method is able to fit the
obtainable measurements, there is a difficulty for recovering the IC and the cylinder ro-
tational speed in the non-lock-on system. Second, the observation optimization process
is applied for the optimal placement of velocity sensors downstream of the cylinder,
which makes it possible to improve the DA’s functionalities. In addition, it is used to
find the most essential sensors at a selected mesh. Optimal sensor placement leads to
a fall in computational cost compared to a regular observation mesh and improved the
quality of the reconstruction.

The 4DVAR has also been used to examine the decaying isotropic turbulent flow, by
using the eddy-damped quasi-normal Morkovian (EDQNM) model in [62].
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§ 1.4 The objective and the outline of the dissertation

The mentioned research has shown the usefulness of DA in the simulations of turbu-
lence and in improving its physical understanding. As illustrated in NWP research,
DA has an unparalleled capability in the enhancement of the instantaneous predic-
tion or modelling of turbulent flows, as well as improving the statistics. However, few
investigations have explored this feature in the three-dimensional turbulent flow simu-
lation. [87] has studied the capability of DA in recovering small scales in the field of the
three-dimensional isotropic turbulence instantaneously, as has [48]. The data presented
as the Fourier modes in this research, which replace the predictions of the NS equations
at each time step, directly. It has shown that the velocity field for the instantaneously
small scale can be asymptotically produced precisely when the Fourier modes with the
wave-number up to the threshold at 0.2η−1

K are given, where ηK is the length scale of
Kolmogorov.

However, the methods of variation or EnKF have not been considered; many questions
remain to be answered. The thesis attempts to answer some of these questions. The
fully developed Kolmogorov flow in a three-dimensional periodic box is considered in
this thesis. The assumption that a time sequence for the velocity data is provided
on a set of grid points has been made. The 4DVAR is used for reconstructing the
initial velocity field such that this velocity at later times agrees with the velocity of
the given data. The velocity field time sequences obtained from the initial velocity
field are compared with the known velocity field. The goal is to understand how well
the small scale velocity fields are rebuilt instantaneously with 4DVAR. The three-
dimensional turbulent Kolmogorov flow in a periodic box is one of the simplest flows
where the nonlinear inter-scale interactions have the controlling role in the dynamical
process. Consequently, despite the similarity between the mathematical problems of
two-dimensions and three-dimensions, considerable new challenges are presented by the
latter.

The application of the 4DVAR technique is one of the central contributions of this
thesis. To assess the reconstruction procedures, it is essential to quantify the variation
instantaneously between the target and the rebuilt fields. Important information can
be discovered from the statistics of point-wise correlation. Nevertheless, such statistics
are not the most suitable for capturing the geometry for the non-local structures that
fill the small scales of turbulence (the filaments of the vortex as an example). The
lack of understanding becomes an obstacle when the distribution for the non-local
structures becomes one of our most meaningful subjects. The morphology of the non-
local structures has long been described qualitatively by visualizations. Many efforts
have been made recently to improve techniques for the description quantitatively.

The curvatures of the structure surface as its signature are calculated in [4]. [86] il-
lustrates the geometry in a channel flow in terms of curvelets and angular spectra.
In [52], indices named shapefinders, determined in terms of Minkowski functionals,
are applied for the classification of the structures. These techniques provide a huge
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amount of detail about the descriptions of the structures, quantitatively. Nevertheless,
they mainly focus on the intrinsic geometry. The data of the locations, orientations
and the structure sizes are absent, but they are important if we discuss the geometri-
cal comparisons between two different fields. Hence, for the geometrical description of
a nonlocal structure, we utilise minimum volume enclosing ellipsoids (MVEEs). The
estimation of statistics, analysis of the cluster and image processing are some examples
for the wide uses of MVEEs ( [84] and [9]). The application of MVEEs in research
into turbulent flows has not been investigated. The outcomes show that MVEEs are a
helpful tool for non-local geometrical analysis in turbulent flows.

The non-local structure studies allow us to capture the geometry of these structures in
the small scales of turbulence. In what follows, the analyses of the non-local structures
of these quantities are presented: vorticity magnitude; strain rate tensor magnitude;
subgrid-scale dissipation, which gives a full characterization of the small scales in the
flow fields.

The structures of u can be represented by the velocity gradient Aij ≡ ∂jui. The strain
rate tensor describes the rate of shearing and stretching as [23], [71] and [73]. It is
given by the following formula:

Sij =
1

2

(
Aij +Aji

)
.

Vorticity plays an essential function in self-sustaining the turbulent energy cascade
process. Vorticity is visualized intuitively as a three-dimensional filamentary body
with spatially concentrated combinations of strong vorticity called vortex filaments
( [13] and [47]). The vorticity field is denoted as ω, and defined as follows:

∇× u ≡ ω ⇔ ωi ≡ εijkAkj .

The subgrid-scale (SGS) dissipation of turbulent kinetic energy is described in [36], [37]
and [83], which is proportional to the product between the SGS stress tensor τij and
strain rate Sij . Specifically, the SGS kinetic energy dissipation is given as

Π = −τijSij .

The SGS energy dissipation describes the kinetic energy rate which is transferred from
resolved to the SGS motions. Therefore, it is considered important for the characteri-
zations of τij .

The reconstruction of the velocity fields using 4DVAR depends on the assumption we
make about the dynamics of the system. In Chapter 2 of the thesis, we investigate the
reconstruction using the NS equations as the model. The main focus is to reconstruct
the instantaneous distributions for the small scales. The target data fields are used
to compare the quality of the optimal initial fields. The vorticity field, the strain rate
tensor field, and the subgrid-scale energy dissipation fields are investigated. Several
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geometrical statistics are studied, including the PDFs of the alignment between the
filtered vorticity and the eigenvectors of the filtered strain rate tensor; the PDFs of
velocity increments; in addition to other well-known statistics. These statistics illus-
trate how different scales interact with each other, which is the key feature of turbulent
flows. They enable us to examine the quality of the reconstruction and how far we can
recapture the statistics at the target data fields. Also, the investigation of the DNS
of the Gaussian random field with the same energy spectrum from the optimal initial
field is presented. The investigation tests the ability of the reconstructed fields as an
initial condition to recover the statistics in the DNS target fields. Finally, MVEEs is
used to assess the non-local structures reconstruction quantitatively.

Obviously, it is interesting to investigate the ability to perform the reconstruction
using simplified models, because, for example, it might be much more efficient to do
so. Therefore, in Chapter 3, we present the results of such a study with the filtered
NS equations as the model for the data. The optimality system is derived. Similar
analyses are performed and compared with those in Chapter 2.

The main conclusion and the outlook are summarized in Chapter 4. The Appendix
includes the derivations of the optimality system for the 4DVAR with the NS equations
as a model as well as the adjoint equations for the filtered NS equations with standard
Smagorinsky model.



Chapter 2

Turbulent fields reconstruction
using 4D variational data
assimilation with the
Navier-Stokes equations as the
model

§ 2.1 Introduction

We look into a turbulent system where incomplete velocity measurement data over a
time period are available. Assuming that the dynamical evolution of the system is gov-
erned by the Navier-Stokes equation, we use the 4D variational DA, to reconstruct the
initial state of the system, that the evolution of the system matches the measurement
data. We formulate the problem as an optimization problem, where the initial field is
taken as the control variable. The goal is to find the optimal control variable to mini-
mize the differences between the measurement and the velocity field evolved from the
reconstructed initial field, subject to the constraint imposed by the NS equation. The
reconstructed field is compared with DNS data. We look into the difference between
the instantaneous variations of the reconstructed and the DNS field. The instantaneous
high vorticity structures, the filtered strain rate tensor, and the subgrid-scale energy
dissipation for the optimal initial condition fields are compared with the DNS field.

The motivation for the study is two-fold. By building turbulence, we can learn its
internal mechanisms, which is not fully understood. Also, the re-constructed turbulent
field can be used as initial and inlet boundary conditions for numerical simulations,

22
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which have crucial effects on the quality of the simulations.

In this chapter, the Navier-Stokes equations as the model is presented to examine the
effects on the reconstruction quality. The formulation of the optimization problem is
given in section 2.2 and the iteration procedure is presented in section 2.3. To assess the
quality of the reconstruction, section 2.4 presents different investigations that examine
different statistics of the reconstructed fields. Also, the assessment of the reconstruction
quality of the non-local structures is presented in different investigations. Furthermore,
we consider in subsection 2.4.9 a quantitative description of the structures using the
minimum volume enclosing ellipsoid which enables us to define the location, dimensions,
and orientation of the structure bounded by the MVEE.

§ 2.2 Formulation

We assume the following is known in the problem:

• A set of data v(x, t) in known, for t ∈ [0, T ] and x ∈ Ω, where T is the optimiza-
tion horizon.

• v is a part of the solution of the NS equations for unknown IC u(x, 0) = ϕ(x).

u is a solution of the NS equations.

The method we used here is 4D variational DA ( i. e. flow optimization), in which we
find ϕ(x) to minimize the cost function given by

J =
1

2

∫ T

0
dt

∫
xεΩ

dx|u− v|2, (2.1)

subject to constraints:

N(u) = ∂tu+ u · ∇u+∇p− ν∇2u− f = 0,∇ · u = 0,u(x, 0) = ϕ(x). (2.2)

The assimilation procedure is formulated as a constrained optimization problem. A
control variable then has to be chosen which will be optimized in order to identify the
minimum of a cost function which measures how far the control variable deviates from
measurements. The control parameter ϕ(x) here represents the initial condition. We
monitor the difference between the simulated and the measured velocity data by the
cost function.

The optimization problem is solved with the adjoint method. The Lagrangian function
is given as

L = J −
∫ T

0

∫
B
ξ ·N(u)dtdx−

∫ T

0

∫
B
µ∇ · udtdx−

∫
B
λ · [u(x, 0)−ϕ(x)]dx, (2.3)
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where ξ(x, t), µ(x), and λ(x) are the adjoint variables corresponding to the constraints.
B represents the [0, 2π]3 periodic box.

The state equations are given by

∂L

∂ξ
= 0,

∂L

∂µ
= 0,

∂L

∂λ
= 0. (2.4)

The adjoint equations are given by

∂L

∂u
= 0,

∂L

∂p
= 0. (2.5)

Therefore, the state equations are

∂tu+ u · ∇u+∇p− ν∇2u− f = 0,

∇ · u = 0, (2.6)

u(x, t = 0) = ϕ(x).

The adjoint equations are

∂tξ + u · ∇ξ −∇u · ξ +∇µ+ ν∇2ξ = F ,

∇ · ξ = 0, (2.7)

ξ(x, t = T ) = 0,

where F (x, t) = −[u(x, t) − v(x, t)] when x ∈ Ω and F = 0 otherwise. Taking into
account that ξ represents the velocity adjoint and µ is the pressure adjoint.

The gradient of the cost function is

DJ

Dϕ
= ξ(x, 0), (2.8)

which is given by the adjoint. It is needed to update the initial condition ϕ.

§ 2.3 Iterative Solution

The iteration procedure is started from an estimate ϕ = ϕ0, where ϕ0 is the initial
guess for ϕ, and a tolerance e. We then repeat the following for i = 0, 1, 2, ...:

• Integrate the state equation from t = 0 to t = T .
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• Calculate the cost function J i ≡ J(ui). Exit if J i < e, otherwise continue to the
next step.

• Integrate the adjoint equation from t = T to t = 0, hence find DJ
Dϕi .

• Use DJ
Dϕi to update ϕi, and then continue from step 1.

In the last step above, a nonlinear Conjugate-Gradient method with the Brents line
search algorithm is used to update ϕ.

§ 2.4 Simulation and discussions

The optimal ϕ is the reconstructed/rebuilt initial condition (OIC). An interesting ques-
tion is how well ϕ mimics real turbulence. Therefore, the statistics of ϕ are compared
with those in turbulent fields. In the comparisons, we refer to ϕ as the OIC field, while
we refer to the DNS field as the DNS target field.

Before starting the analysis of the results, we need a description of the simulations that
we use in the following sections in this chapter except where indicated.

Kinetic energy is injected into the flow field by using the force in NS equations which is
given as f = (0, facoskfx1, 0) where fa = 0.15 and kf = 1, see Eq. 2.6. A set of velocity
data v(x, t) is known, for t ∈ [0, T ].Where v̂(k, t) = 0 for |k| ≥ Kc, Kc = 4. This means
that only the low wave-number Fourier modes are utilised in the optimisation problem.
Here, Kc is an index of the spatial resolution of the target data. Therefore, the cost
function J can be presented in term of the Fourier mode as

J =
1

2

∫ T

0
dt

∫
k≤Kc

dk(û(k, t)− v̂(k, t)).(û∗(k, t)− v̂∗(k, t)), (2.9)

where k = |k|, and û(k, t) and v̂(k, t) denote the Fourier modes of u(x, t) and v(x, t),
respectively. Allowing F̂ (k, t) be the Fourier transform of F (x, t), we obtain F̂ (k, t) =
−[û(k, t)− v̂(k, t)] when k ≤ Kc and F̂ (k, t) = 0 otherwise.

We use a three-dimensional pseudo-spectral code for isotropic turbulence where the
boundary conditions are periodic in a domain [0, 2π]3. Optimum is found when J/J(u =
0) ≤ e, where tolerance e = 0.0002. The number of grid points N3 is 1283. We use
the kinematic viscosity ν = 0.006. The optimization horizon is up to T = 0.4τL, where
τL ≈ 4.35 is the large eddy turn-over time scale. The highest resolved wave-number is
kmax = N/2 = 64, and the grid size is δx = (2π)/N = π/64. The filter scale is 8δx.

2.4.1 The energy spectrum E(k)

We look into the energy spectrum in this subsection, the energy spectrum for the DNS
field and the OIC fields are shown as follows
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(d) For t = T .

Figure 2.1: The energy spectrum. Solid line with squares: DNS target. Dotted line with circles:
OIC. Dashed line: Kolmogorov (−5/3).

Figs 2.1 plots the energy spectrum of the DNS target and the OIC fields. As we can
see, the error between the fields, especially at the small scales and the high wave-
numbers where the dissipative region are located, is big at t = 0T . Then the agreement
between the fields improves from the initial time at T/3. The error between the target
data energy and the energy of the OIC field disappears when the time equals 2/3T .
We notice the same agreement of the fields, at the final time when t = T . Another
observation is the perfect agreement of the energy spectrum for both fields for k ≤ 4
during the whole time due to the fact that the large scales are matched with the target
data.



CHAPTER 2. 27

2.4.2 The energy spectrum Eδ(k)

In this subsection, we focus on the instantaneous difference between the OIC and the
DNS target fields. Eδ(k) is used to denote the energy spectrum for the difference
between the two velocity fields.
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Figure 2.2: Spectrum of v−u. Solid line with squares: E(k) for DNS target. Dotted line with
circles: Eδ(k).

The blue curves in Fig. 2.2 represent the energy spectra of v−u, while the red ones are
the energy spectra from the target field v. As we can notice, the energy spectra of the
instantaneous differences for k ≤ Kc (i.e. large scales) are small. This is a consequence
of minimizing the cost function such that the at these wave-numbers u mimic v quite
well. The value of Eδ(k) when the time increases to T/3 is lower than the value at
the initial time for the large scales, which means that differences between the velocities
are even less than before. Such a perfect match between the reconstruction fields and
the DNS target field continues at 2/3T , where the spectra of Eδ(k) remains extremely
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small with compare to the E(k) of the target field in the low wave-number region until
the end when t = T . Interestingly, we observe that the spectra of the instantaneous
differences for k > Kc are affected as well, where the agreement between both fields
enhances with time. This means that u tends to close to v for the high wave-numbers
and the reconstruction of the small scales is progresses over time. Therefore, the results
of this experiment consequently demonstrate the effects of the DA method because they
show that the reproduction of the scales at different sizes in the u field is feasible.

Fig. 2.3 calculates the ratio between the energy spectrum for the difference between
the OIC fields and the DNS target field, Eδ(k), and the energy spectrum of the DNS
target field E(k).

The ratio calculations cover several time steps in the optimization horizon to show the
development with time.
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Figure 2.3: The ratio of the spectra: Eδ(k)/E(k). Solid line with: Square for 0T . Downward-
pointing triangle for T/3. Diamond for T/2. Upward-pointing triangle for 2/3T . Circle for
T .

We can see that the OIC field tends to the corresponding target field as time increases.
These positive observations are shown in Fig. 2.3 which covers the whole time within
the optimization horizon. The order of the curves shows that as time increases, the
ratio reduces and reaches the minimum at the end. However, the ratios when k = 8
actually show that the agreements between Fourier modes are not very good because
Fourier modes are affected by the whole flow field. The ratio at k = 8 reaches about
45%. Later analysis will show improved agreement can be obtained for local flow field
parameters.
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2.4.3 The probability density functions of the alignment between the
vorticity and rate of the strain tensor

In this subsection, we present a number of results that involved with the local defor-
mation of the flow. Starting with the most significant geometric statistics, alignment
between the filtered strain rate field S̃ij and the filtered vorticity field ω̃.

The results for two of the three eigenvectors are presented. The missing one is the
extensional eigenvector; we focus on the intermediate and the compressible eigenvectors.

We have αS̃ , βS̃ and γS̃ as the strain-rate tensor eigenvalues. Each one of the three
eigenvectors is corresponding to one of the eigenvalues. The eigenvalues are defined
such that αS̃ ≥ βS̃ ≥ γS̃ , with the sum of all of them equal zero (αS̃ + βS̃ + γS̃ = 0
), which thus requires αS̃ ≥ 0, and γS̃ ≤ 0, and βS̃ is either negative or positive. The
names of the eigenvectors are given by their corresponding eigenvalues: the eigenvector
γS̃ is the contractive, the eigenvector βS̃ is the intermediate and the eigenvector αS̃ is
the extensive.

The majority of the studies about the alignment showed that the extensional eigenvector
has no preferred alignment with the vorticity vector although it corresponds to the
biggest eigenvalue.

The vorticity vector tend to be aligned with the intermediate eigendirection, as mention
in [17], [32], [33] and [70]. For that reason, we are interested in the intermediate
and compressible eigenvectors which correspond to the intermediate and the smallest
eigenvalue, respectively.

We present the following results to examine the possible differences between the optimal
fields and the DNS target field.

The results show that the development of the alignment between the target data field
and the optimal fields at different times within the optimization horizon happens grad-
ually at an early time, as we can see in Fig. 2.4. The agreement at the initial time
in Fig. 2.4a is not quite well, where the error between the curves for the intermediate
eigenvectors is big. The variations between the curves for the compressible eigenvectors
at the initial time also are quite big, as it starts with a lower value for the OIC fields
than DNS target field at 1.4, and ends with a higher probability at 0.5 while the value
of DNS target is much smaller. However, the green curves show that the differences
decrease when t = T/6, although we still see some significant variations between fields.
Fig. 2.4c shows that in the following time steps, the agreements between the fields
increase, as we notice at time T/3 and later until the end when t = T .

2.4.4 The probability density functions of the velocity increments

The intermittency in turbulence refers to irregular, large fluctuations in the motion
of the small-scales, which is reflected in the statistics of the gradients of the velocity,
velocity increments, and the rate of the dissipation. Because of the intermittency of the
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Figure 2.4: PDFs of the alignment between ω̃ and the eigenvectors of S̃ij . DNS target is solid
line with squares, circles; OIC is dotted line with upward-pointing triangle, diamond; OIC
is dashed line with asterisks, right-pointing triangle: intermediate eigen-direction and eigen-
direction with negative eigenvalue, respectively.

small-scale, observations from simulations and experiments show that the probability
density functions for the quantity of the small scale have exponential or stretched
exponential tails. Also, the exponents of the scaling laws of the velocity increment
moments significantly diverge from the prediction of the classical theory of Kolmogorov,
as mentioned in [55].

We follow the original work of Kolmogorov in 1941, where the turbulent flows were
investigated in the framework of Eulerian velocity increments δu(x|r, t) = u(x+r, t)−
u(x, t), as mentioned in [53] and [73].

In the isotropic and homogeneous turbulent flow, the statistics of δu(x|r, t) depend on
the scale of the separation only r = ||r||, and hence, δu(x|r, t) can be projected onto
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the directions perpendicular or parallel to r̂ = r/r.

This leads to longitudinal and transverse increments, as written in equations 2.10 and
2.11, respectively:

δur(x|r, t) = δu(x|r, t) · r̂. (2.10)

δvr(x|r, t) = δu(x|r, t) · t̂, (2.11)

where t̂ is a direction perpendicular to r̂.

We present in this section the PDFs of the longitudinal velocity increments and the
transverse velocity increments. We look into the difference between the OIC fields and
the DNS target field during the optimization horizon at different stages. Also, we add
the normal distribution to show how the PDFs deviates from the Gaussian field.
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(a) For t = 0T (DNS/OIC), T/3 (OIC).
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(b) For t = T/2 (DNS/OIC), 5T/6 (OIC).

Figure 2.5: PDFs of velocity increments. δur: Longitudinal. δvr: Transverse. Solid line is DNS
target: with squares ( δur) and diamond ( δvr). Dotted line is OIC: with circles ( δur) and
upward-pointing triangle ( δvr). Dashed line is OIC: with asterisks ( δur) and right-pointing
triangle ( δvr). The thin line is normal distribution.

From the PDFs results of the DNS field, we can see some essential observations re-
garding the behaviours of this kind of statistics in the real turbulence. Our aim is to
see similar features in the PDFs of the OIC fields, such as the negative skewness that
occurs in the longitudinal PDFs and also the transverse PDF being wider than the
longitudinal PDF.

The negative skewness seems to be absent at the beginning, However, when the time
equals T/3, the negative skewness seems more clear for the OIC fields.

Fig. 2.5b shows that when we arrive at the mid-time step, each PDF agrees with the
corresponding one of the other field. Also, some gaps still appear with PDFs behaviour.
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At t = 5T/6 of the whole duration, both PDFs of the OIC fields tend to be quite close
to the target field with minimum errors between them.

2.4.5 The subgrid-scale energy dissipations

In this section, we conduct an analysis of the statistics of the SGS energy dissipations
generated by the OIC field. Using a filtering approach, the energy flux from the large
scales to the small scales is represented by the SGS energy dissipation, which provides
useful insights into the local structures of the velocity field. The mean SGS energy
dissipations as a function of the filter scales represent a vital statistic to understand
the characteristics of the small scales of isotropic homogenous turbulence.

As we did in the previous section, we examine the SGS energy dissipation at different
times during the optimization horizon between the OIC fields and the target data fields.
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Figure 2.6: The mean subgrid-scale energy dissipations as a function of the filter scales ∆.

Regarding the mean SGS energy dissipation, we can see the blue curve at the initial
time in Fig. 2.6a is underestimated from its corresponding red curve. However, at
T/6 in the same figure, the energy dissipation shows a big jump compared with other
times to see that the peak value reaches at 0.07, where the OIC fields values are higher
than the target data field. When the time equals T/3, the energy dissipation slightly
reduces from the peak value, but it remains close to the DNS target field, and the
energy dissipation values for optimal fields still exceed the target field. At Fig. 2.6b,
we display reasonable agreement between the different fields as for the times of T/2,
2/3T and T , respectively, although the average between the two fields give variations
in their behaviours as the reconstructed initial fields are under-estimation when t = T .
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Therefore, we are able to reconstruct a reasonable mean of the SGS energy dissipation
which matches with the target field in a short time.

In the following probability density functions of the normalised SGS energy dissipation
at a given scale are given. Also, we examine the OIC fields by studying their PDFs at
different stages and find out whether they simulate the real turbulence by comparing
the DNS and the OIC fields. Note that σΠ stands for the root mean square value of Π.
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Figure 2.7: PDFs of the subgrid-scale energy dissipation.

Fig. 2.7a shows that, at the initial time, the PDFs have some differences in their features
where the left tails of the OIC PDFs are relatively weak. Although the agreement
enhances when the time is T/6 as the differences are smaller, the distribution of the
OIC field is still weaker, especially with the positive tail. At later times ( shown in Fig.
2.7b), the PDFs of the OIC fields seem quite close to their corresponding ones at the
DNS target field. Therefore, we are able to produce some features by the OIC fields for
∆ = 8δx, such as the positive skewness in the PDFs, which is indicating the forward
energy cascade, although, there are some quantitative differences.

2.4.6 The probability density functions of the shape factor S∗

To characterize the joint distributions for the three eigenvalues for the rate of the
filtered strain tensor, we present a non-dimensional parameter of the eigenvalues. We
have αS̃ , βS̃ and γS̃ as the strain-rate tensor eigenvalues, where αS̃ ≥ βS̃ ≥ γS̃ , with the
condition αS̃ + βS̃ + γS̃ = 0. The non-dimensional shape factor for the filtered strain
tensor Sij is given by
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S∗(S̃ij) =
−3
√

6αS̃βS̃γS̃(
α2
S̃

+ β2
S̃

+ γ2
S̃

)3/2 . (2.12)

The usefulness of S∗(S̃ij) comes from its ability to indicate the local motion types.
For instance, S∗(S̃ij) = 1 corresponds to axisymmetric extension ( i. e., αS̃ = βS̃ >

0, γS̃ < 0), S∗(S̃ij) = 0 corresponds planer straining ( i. e., βS̃ = 0), and S∗(S̃ij) =
−1 corresponds to axisymmetric contraction ( i. e., αS̃ > 0, βS̃ = γS̃ < 0). For

incompressible flow, state parameter of the strain S∗(S̃ij) is restricted between -1 and
1.

In the following, we study the probability density functions of S∗(S̃ij) calculated from
the reconstructed turbulent velocity fields and compare them with the probability den-
sity functions evaluated from the target velocity field. We compare these PDFs at
different steps during the optimization horizon, in order to understand when the re-
sults give reasonable agreement among both fields.
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Figure 2.8: PDFs of the shape factor S∗(S̃ij) for the filtered strain tensor S̃ij . Solid line is
DNS target: with squares for 0T , diamond for T/6 . Dotted line is OIC: with circles for 0T
and upward-pointing triangle for T/6.

From the PDF shown with the blue curve in the initial time at Fig. 2.8 , we see the
difference with the DNS target as its probability is much lower at the peak. However,
its behaviour enhances quickly as it reaches nearly the same peak with small gaps with
the target data, at the time T/6. At the later time steps, all the PDFs behaviours of
the OIC fields give quite similar behaviours of the DNS field PDFs.

Therefore, show that we are able to reconstruct PDFs of S∗ in a short time, such that
these PDFs are giving satisfactory agreement between both fields.

We have also ατ , βτ and γτ are the SGS stress tensor eigenvalues, where ατ ≥ βτ ≥ γτ .
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The names of the eigenvectors depend on their corresponding eigenvalues: the eigen-
vector γτ is the contractive, the eigenvector βτ is the intermediate and the eigenvector
ατ is the extensive. These statistics are mentioned in [36] [37], [59] and [83]. Note that
the isotropic part of τij , i. e. 1

3δijτkk has been subtracted from τij .

The non-dimensional shape parameter for the stress state S∗(τij) is given in the formula

S∗(τij) =
−3
√

6ατβτγτ(
α2
τ + β2

τ + γ2
τ

)3/2 . (2.13)

The probability density functions of the stress shape parameters are presented at Fig.
2.9.
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Figure 2.9: PDFs of the shape factor S∗(τij) for the subgrid-scale stress tensor τij . Solid line
is DNS target: with squares for 0T . Dotted line is OIC: with circles for 0T .

The PDFs of the OIC fields show very good agreements with the PDFs of the target
field and at the early time as it is shown in Fig. 2.9, as their probabilities peak at -1
for all results. The PDF of the OIC field is slightly different, but the difference is very
small.

2.4.7 DNS of the Gaussian random field with same energy spectrum
from the optimal initial field

In this section, we use the energy spectrum from the rebuilt field to generate Gaussian
random (GR) fields and use them as initial conditions to generate time sequences of
velocity fields. (These fields are called GR fields later). We study the new GR field
and follow their changes in time within the optimization horizon and compare them
with the DNS target field as well as the fields obtained from OIC. Our goal is to show
using OIC may speed up the recovery of the statistics in the DNS target fields. All the
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calculations have been made in a cubic periodic box with a length of 2π, 1283 resolution
and a filter of grid size equal 8δx unless stated otherwise.

The probability density functions of the alignment of vorticity with the strain rate
eigenvectors, the PDFs of cos(ω̃,λi), where i = α, β and γ, are displayed first.
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(b) For t = T/3.
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(c) For t = 2/3T .
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(d) For t = T .

Figure 2.10: PDFs of the alignment between ω̃ and the eigenvectors of S̃ij . GR: solid line
with squares, circles: intermediate eigen-direction and eigen-direction with negative eigenvalue,
respectively. DNS target: dotted line with upward-pointing triangle, diamond, respectively.

For the GR field, at the initial time, we notice that both PDFs for the red curves tend
to be flat, as is expected. The correct behaviour of the curves builds up over time.
When the time reaches two-thirds of the whole duration, the results in fully developed
DNS target fields have been recovered.

Comparing the GR with OIC fields, it takes longer to reproduce the DNS result for
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the former. Fig. 2.4 shows that it takes only about T/3 to recover the fully developed
DNS behaviour whereas here it takes about 2/3T .

The probability density functions of the velocity increments are now discussed in Fig.
2.11. We observe that the PDFs of the current results reflect the differences between
the GR fields and the non-Gaussian field. The initial time step clearly shows the nature
of the GR field, where there is no positive nor negative skewness with the PDFs. The
negative tails in the PDFs for δur and the flat tails in the PDFs for δvr develop over
time, as expected. Good agreement with target data appears at t = 5/6T .

On the other hand, same or better agreement is already obtained at t = T/2 for results
from OIC field ( see Fig. 2.5).
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Figure 2.11: PDFs of velocity increments. δur: Longitudinal. δvr: Transverse. Solid line is
from GR ICs: with squares ( δur) and Diamond ( δvr). Dotted line is DNS target: with circles
( δur) and Upward-pointing triangle ( δvr).
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The mean SGS energy dissipations as a function of the filter scales study are plotted
in Fig. 2.12. From the red curve of the GR field, we can see clearly that there is
no mean SGS energy dissipation at the initial time due to no energy cascade in the
Gaussian field. When the time increases, energy cascade quickly builds up. However,
it is interesting to observe that there is still significant underestimate even at t = T .
This is in clear contrast with the results from the OIC field shown in Fig. 2.6.
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Figure 2.12: The mean subgrid-scale energy dissipations as a function of the filter scales ∆.

The PDFs of the normalised SGS energy dissipation at a given scale are given in Fig.
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Figure 2.13: PDFs of the subgrid-scale energy dissipation.

2.13. At the initial time, the PDF of the GR field is a symmetrical distribution, which
is not surprising as it is the natural behaviour of the GR field. When the time reaches
one-third and half of T at Fig. 2.13b, the PDFs of the GR field features have been
clearly enhanced and the agreements are already satisfactory. Therefore, the PDF
recovers quicker than the mean.

We calculate next the probability density functions of the shape parameter for the
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Figure 2.14: PDFs of the shape factor S∗(S̃ij) for the filtered strain tensor S̃ij .

strain rate tensor in the GR field. We observe from Fig. 2.14a that PDFs of the GR
field tends to be flat. With t = T/3 ( Fig. 2.14b), we obtain satisfactory PDFs, as the
result are quite close to the DNS target field. Therefore, the PDFs of the GR field tend
to the DNS target field quite quickly. However, compared with Fig. 2.8, we see that it
is still slower than OIC results.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6

7

8

9

(a) Solid line is GR: with squares for 0T .
Dotted line is DNS target: with circles for
0T .

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6

7

8

9

10

(b) Solid line is GR: with squares for T/2.
Dotted line is DNS target: with circles for
T/2.

Figure 2.15: PDFs of the shape factor S∗(τij) for the subgrid-scale stress tensor τij
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Fig. 2.15 shows the behaviour of the probability density functions of the shape param-
eter for the SGS stress evaluated from the GR field. In this case, we are able to obtain
a good agreement between the two fields.

2.4.8 Contour plots of instantaneous distributions

In this section, we calculate the magnitude of the vorticity |ω̃| ≡
√
ω̃ω̃ and the magni-

tude of the strain rate tensor |S̃| ≡
√

2S̃ijS̃ij . This investigation qualitatively shows
the improvement in agreement between target fields and the OIC fields over time.
Quantitative analysis is left for the next section.

We first plot the contours for |ω̃|. The contour results are calculated when the resolution
equals 128, and the filter scale equals 8δx. Figs. 2.16 to 2.19 show the agreement
improvement for the |ω̃| between two fields. |ω̃| in the rebuilt field is, at the initial
time, weaker than the later times.
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Figure 2.16: Contour plots for |ω̃| at t = 0T .

The vorticity contours in the rebuilt field become clearer and stronger with time. Also,
the shapes or geometries for the rebuilt field tend closer to the DNS target field. In
other words, the differences reduce with time. At the final time, we can see a reasonable
qualitative agreement between two fields by looking into the geometry of the contours.
For example, Figs. 2.18 and 2.19 shows that high |ω̃| spots are observed on right in
both the DNS target field and the rebuilt field. Although the regions are not exactly
the same, they do show similar orientations and sizes.

Figs. 2.20 to 2.23 show the contour plots for the strain rate field |S̃| at different time
steps. Like the vorticity field, the initial time step shows that some similarity for the
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Figure 2.17: Contour plots for |ω̃| at t = T/3.
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Figure 2.18: Contour plots for |ω̃| at t = 2/3T .

contours plots are visible at this early time, although the strong strain spots in the
top middle and at the bottom middle are absent from the OIC field. The similarity
between the two fields increases over time. At the time T , we observe the best agreement
between the target field and the OIC fields, with almost identical structures in their
contour plots.

Figs. 2.20 to 2.23 show the contour plots for the strain rate field |S̃| at different time
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Figure 2.19: Contour plots for |ω̃| at t = T .
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Figure 2.20: Contour plots for |S̃| at t = 0T .

steps. Like the vorticity field, the initial time step shows that some similarity for the
contours plots are visible at this early time, although the strong strain spots in the
top middle and at the bottom middle are absent from the OIC field. The similarity
between the two fields increases over time. At the time T , we observe the best agreement
between the target field and the OIC fields, with almost identical structures in their
contour plots.
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Figure 2.21: Contour plots for |S̃| at t = T/3.
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Figure 2.22: Contour plots for |S̃| at t = 2/3T .

We noticed, as a general conclusion, both the rate of the strain field and the vorticity
at the rebuilt field become closer to the DNS field over time.

In the literature, there are many methods to identify the vortices in the velocity fields.
In the following, we present another method for vortex identification. It is known as
the Q criterion for vortex identification. The quantity Q is defined as:
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Figure 2.23: Contour plots for |S̃| at t = T .

Q =
1

2
(|| Ω̃ ||2 − || S̃ ||2), (2.14)

where Ω̃ij = 1
2( ∂ui∂xj

− ∂uj
∂xi

), is the filtered rate of rotation tensor, corresponding to the

motion of pure rotation, and S̃ij is the filtered strain rate tensor, which corresponds to
the pure irrotational motion. Therefore, Q is a measure of the excess rotational rate
relative to the rate of strain. One may define connected areas with non-negative Q as
vortices. Note that the norm || G || of tensor G is defined by || G ||= [tr(GGT )]1/2, i.
e. || S̃ ||= [tr(S̃S̃T )]1/2 and || Ω̃ ||= [tr(Ω̃Ω̃T )]1/2.

The vortex structure is shown in terms of the isosurfaces, in Figs 2.24 to 2.26, where on
the left are the isosurfaces from the target field while on the right are the isosurfaces
from the rebuilt fields. The surfaces are shown in green. The threshold value for Q in
our calculation here equals 3.5.

In a general analysis of this method, at the initial time in Fig. 2.24, the optimal fields
are able to build some structures. However, the number of these structures is smaller
than the target data and the agreement between them is not big enough.

Fig.2.25 shows the isosurfaces for Q at t = T/2. We can see the number of vortical
structures has rapidly risen for the optimal field. Besides, we can also observe, their
locations in the space are closer to those of the DNS target field. The best agreement
between the fields of the optimal and DNS target appears at the final time in Fig. 2.26,
where the structures of the optimal field have an almost identical number to the target
data and their appearance in the three-dimensional space demonstrates the perfect
agreement between the fields.
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DNS. Rebuilt.

Figure 2.24: Q criterion for t = 0T .

DNS. Rebuilt.

Figure 2.25: Q criterion for t = T/2.

Figs. 2.27,. . .,2.29 present the contour plots of Q on a 2D slice.

At the initial time, weak agreements are shown, where the structures of the contours
in the OIC fields show some similarity with the contours in the DNS target field. Fig.
2.28 shows that the geometries of the vortices present a bigger agreement between the
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Figure 2.26: Q criterion for t = T .
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Figure 2.27: Q Contour plots for t = 0T .

two fields at t = T/3 and t = T/2. However, the red spots are still absent. In the
final time t = T , the similarities between the contours in the two fields are quite big.
In particular, the biggest magnitudes are presented, indicating the good agreement are
achieved between the two corresponding fields.

Therefore, the agreement between the vortical structures identified with the Q criterion



48

20 40 60 80 100 120

20

40

60

80

100

120

10

2

6

14

22

30

DNS.

20 40 60 80 100 120

20

40

60

80

100

120

10

2

6

14

22

30

Rebuilt.

Figure 2.28: Q Contour plots for t = T/2.
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Figure 2.29: Q Contour plots for t = T .

is also very good. There is no difference from using |ω̃|. Therefore, we will use |ω̃| only
in what follows.
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2.4.9 Characterising structures with minimum volume enclosing
ellipsoids

The previous subsection demonstrates qualitatively the similarity between the struc-
tures in the target field and the OIC field. We consider in this subsection quantitative
description of the structures using the Minimum Volume Enclosing Ellipsoid (MVEE).

As we presented in the previous section, the contours show some simple descriptions
about the structures. However, it calls for investigations about more accurate descrip-
tions for quantities such as shapes, sizes and locations. The use of the MVEE method
presents more information about these parameters. The MVEE is the ellipsoid which
has the smallest volume between all the ellipsoids that contain a certain structure. We
use the centre and length for the three axes of the MVEE to determine the location and
dimensions of the structure and figure out the orientation of the structure from the ori-
entation of the three axes. Therefore, we use the information obtained from the MVEE
to define the location, dimensions and orientation of the structure which is bounded by
the MVEE. Such a comparison involves four steps to complete the calculations, which
are discussed as follows:

In the first step, a group Λ of the grid points are extracted, where the condition of
a certain threshold is met. Usually, Λ consists of a number of separate regions. The
structures we are going to consider refer to these kinds of regions, such that every single
structure corresponds to a separate region.

In the second step, we extract and distinguish a structure in Λ from others. This is done
by formulating it as a clustering problem, by using a density-based clustering algorithm
called DBSCAN. In the DBSCAN algorithm, we identify firstly the neighbours of a
point P , where a neighbour is determined as a point whose distance to P is smaller
than a given value εp. We consider the point which has less than np neighbours as
noise. The identification of the cluster is accomplished according to the rule in what
follows: the neighbours for a non-noise point P are considered to be in the same cluster
where point P belongs. The algorithm accomplishes the identification of the points in
a cluster by recursively using such a rule until all the points to be identified are noise.
The procedure is repeated for other non-noise points that have not been associated with
any structures. The details about the algorithm of DBSCAN are presented in [25]. The
result of applying the algorithm is that we find all the points in a structure and store the
points separately from the points of different structures. The distance normalisation is
done in such a way that the distance between any two sequential grid points is 1. As a
result, εp = D1/2, and we use np = D+ 1, where D is the embedding space dimension.

In the third step, we calculate the MVEE for each structure. An ellipsoid is defined by
a symmetric positive definite matrix E, which identifies the orientation of the ellipsoid
and its axes lengths, and a vector c which is specifying the centre of the ellipsoid.

The MVEE volume is proportional to the determinant of
√
E, det

√
E. We assume in

the structure P we have points pi(i = 1, . . . , N). The MVEE is defined by the optimal
E and the centre c that minimize det

√
E , subject to the constraints.
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(pTi − cT )E−1(pi − c) 6 1, ∀pi ∈ P. (2.15)

We apply the constraints to ensure that pi are in the ellipsoid. The Khachiyan algorithm
can be used to solve this problem [85]. The MATLAB implementation by Moshtagh is
used [65].

We find the correspondence between a structure in the DNS target field and its recon-
struction in the rebuilt field in the 4th step (and last). We apply the above three steps
to the DNS target field and the rebuilt fields. When the rebuilt field perfectly mimics
the DNS target field, we will gain two groups of MVEEs, with 1 − 1 correspondence
between the members. However, the differences between the DNS target and rebuilt
fields are large enough sometimes to stop the 1 − 1 correspondence; as a result, such
a simple technique fails in reality. In order to prevent that happening, we apply the
following procedure, where the identification of the rebuilt field structures is by the
location instead of their sizes.

According to the number of grid points of a certain structure, the size of the structure is
determined. The DNS target field structures are first arranged into a list in descending
order according to cluster sizes. Assuming that, we have a structure GT in the list, the
reconstructed structure whose distance to GT is the minimum specified. This is where
we define the distance between the two structures as the shortest distance from one to
the other. Suppose that Go is that structure. If Go is not unique, the chosen structure
will be the one that has the largest size. This Go is taken as the reconstruction of GT .
Go and GT are named the matching structures. We repeat the process above for each
structure in the DNS target field, starting from the largest one until we identify all the
matching structures. We compare the matching MVEEs in terms of their statistics,
including the alignment, relative displacement, and relative sizes.

Firstly, we give a quick demonstration of the agreement between the structures by
plotting the structures as clusters of the points inside the structures. These results are
shown in Fig. 2.30 and Fig. 2.31 below, where the blue squares represent the clusters
of the points in the OIC fields and the red circles represent the clusters of the points
in the DNS target fields.

The main purpose of this comparison is to provide some intuition about the structures.
Although only selected samples are shown, one may still see that the agreement between
the structures improves over time. Some structures are highly irregular. Such as the
1st structure in Fig 2.30. It is interesting to see that the reconstructed structure mimics
the irregular shape quite well.
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Figure 2.30: Structures as clusters of points for |S̃| at t = 0T .
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Figure 2.31: Structures as clusters of points for |S̃| at t = T .
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2.4.10 The minimum volume enclosing ellipsoid (MVEEs) for the
vorticity field

We present now results related to the MVEE for the vorticity. All the calculations have
been done with the filter scale equal, 8δx, and the structures are found with vorticity

magnitude given by
√
ω̃ω̃ ≥ 2.5

〈
ω̃ω̃
〉1/2

.

The alignment data are represented by the histograms in Figs 2.32,. . ., 2.52. We inves-
tigate these statistics at different times within the optimization horizon, starting from
the initial time and ending with the optimization horizon, including several time-steps
in-between. At each single time step, we calculate the alignment between the three
axes of the corresponding MVEEs in the rebuilt and the DNS target fields.

Three cases are considered. The first case is for alignment between all corresponding
MVEEs. The second is for the alignment between MVEEs for which the ratio of the
major axis to the middle axes is bigger than an allocated sphericity value. In other
words, the statistics of the alignment will be conditioned on rod-like MVEEs. In the
third case, we find the alignment when it is conditioned on pancake-like MVEEs. An
MVEE is considered pancake-like when the ratio of the middle axis to the minor axis
is bigger than the same sphericity value which has been used in the previous case. The
value is 2.

At each time step t = 0T, . . . , t = T , we have three sets of histograms including the
unconditional and conditional histograms which they represent: the alignments for the
major axes; the alignment results of the middle axes; and the results of the alignments
for the minor axes.
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Figure 2.32: Alignment between the major axes for strong |ω̃| structures at t = 0T .

The alignment is given by the histograms for the cosine of the angles between the axes.
Perfect alignment is obtained when the cosine equals 1.

At the initial time (Fig. 2.32), the probability of 0.6 shows acceptable agreement in
the alignment of the MVEEs for all clusters. In the same figure, the conditional cases
show different observations, as we notice that the rod-like MVEEs give the best result
for the major axes, as the probability value is 0.8. However, this is not the case with
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Figure 2.33: Alignment between the middle axes for strong |ω̃| structures at t = 0T .
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Figure 2.34: Alignment between the minor axes for strong |ω̃| structures at t = 0T .

the alignments of pancake-like MVEEs where the histogram gives a lower value of 0.45
at 1.

In Fig. 2.33, we see that the histogram for the middle axes MVEEs shows a probability
value at 0.22 for the perfect alignment. The other conditional probabilities are lower as
they give for rod-like MVEEs and pancake-like MVEEs at 0.15 and 0.2, respectively.

According to the results at Fig. 2.34, the minor axes present slightly better agreement
than the middle axes, but it is still much lower than the major axes. The histogram on
the left gives alignment a percentage at 0.34. The conditional alignment of pancake-like
MVEEs shows agreement with a probability value at 0.48 and rod-like MVEEs is the
much lower at 0.19.

Therefore, we started at the initial time with some agreements between the correspond-
ing clusters between the OIC and DNS target fields, especially with the major axes,
but we do not see a big agreement at such an early stage. However, the agreement
improves as the time increases, as we will show with Figs 2.35,. . ., 2.52.

Considering the unconditional alignment for the major axes, the value of the probability
of the major axes at cos(eTγ , e

D
γ ) = 1 improves over time and reach the peak at 0.88 at
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Figure 2.35: Alignment between the major axes for strong |ω̃| structures at t = T/6.
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Figure 2.36: Alignment between the middle axes for strong |ω̃| structures at t = T/6.
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Figure 2.37: Alignment between the minor axes for strong |ω̃| structures at t = T/6.

Fig. 2.50. It indicates that we are able to reproduce MVEEs in the OIC fields quite
closely to what is already in the DNS target data. The conditional histograms have
different indications, as rod-like MVEEs is also considered as the highest peak at 0.93.
However, pancake-like MVEEs gives a value at 0.55, which is not quite satisfactory,
where it drops from its peak at just the previous time step from the value at 0.97 when
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Figure 2.38: Alignment between the major axes for strong |ω̃| structures at t = T/3.
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Figure 2.39: Alignment between the middle axes for strong |ω̃| structures at t = T/3.
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Figure 2.40: Alignment between the minor axes for strong |ω̃| structures at t = T/3.

the time equals 5/6T .

The probabilities in Fig. 2.51 shows that there are acceptable alignments for the middle
axes at time T . For instance, the highest peak for the middle axes for all MVEEs is
approximately 0.54. Also, the conditional alignment for rod-like MVEEs is the highest
at 0.6. However, pancake-like MVEEs gives a somewhat smaller value.
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Figure 2.41: Alignment between the major axes for strong |ω̃| structures at t = T/2.
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Figure 2.42: Alignment between the middle axes for strong |ω̃| structures at t = T/2.
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Figure 2.43: Alignment between the minor axes for strong |ω̃| structures at t = T/2.

Fig. 2.52 shows that the probability for the minor axes reaches to 0.6, indicating a
good alignment. It is bigger than the middle axes value and reflects better agreement.
Rod-like MVEEs gives an acceptable value of 0.65 while pancake-like MVEEs reaches
a lower value of 0.48.

To summarize, the agreements between the axes are shown clearly by the histograms,
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Figure 2.44: Alignment between the major axes for strong |ω̃| structures at t = 2/3T .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

All MVEEs.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

Rod-like MVEEs.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

Pancake-like MVEEs.

Figure 2.45: Alignment between the middle axes for strong |ω̃| structures at t = 2/3T .
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Figure 2.46: Alignment between the minor axes for strong |ω̃| structures at t = 2/3T .

as there exist high probability values at 1 for all MVEEs, which means that the angles
between the corresponding axes are small. The major axes give the highest peaks with
the best agreement, and then the minor axes, and finally the middle axes come as the
third.

The conditional alignments for rod-like MVEEs and pancake-like MVEEs also indicate
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Figure 2.47: Alignment between the major axes for strong |ω̃| structures at t = 5/6T .
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Figure 2.48: Alignment between the middle axes for strong |ω̃| structures at t = 5/6T .
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Figure 2.49: Alignment between the minor axes for strong |ω̃| structures at t = 5/6T .

strong alignments between the corresponding axes. Rod-like MVEEs tend to show
better alignment than others.

Fig. 2.53 presents the median of the alignment distributions as functions of time. The
red curve represents the median for the major axes. We can see that the median value
starts at 0.95, at the initial time, and stay stable at the peak at 0.99 until the end. The
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Figure 2.50: Alignment between the major axes for strong |ω̃| structures at t = T .
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Figure 2.51: Alignment between the middle axes for strong |ω̃| structures at t = T .
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Figure 2.52: Alignment between the minor axes for strong |ω̃| structures at t = T .

big value of the median reflects that the angle between the axes in the OIC fields and
the DNS target field is very small, ( i. e. the axes of the OIC fields have the similar
orientation as the axes of the DNS target data). The major axes have the best results
among the three, with a higher median at most times.

The median of the middle axes at the same figure is represented by the blue curve. It



CHAPTER 2. 61

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.53: Medians of | cos(eT , eD)| for strong |ω̃| structures. Red with circles: major axes.
Blue with squares: middle axes. Green with diamond: minor axes.

starts with a value of 0.63. However, the value increases at the end to 0.92. It is the
lowest value between all axes. The green curve illustrates the median of the alignment
data of the minor axes. The median starts at 0.79 and stops at 0.95 at the time T .

Therefore, the medians also reflect the good agreement between the target and the OIC
fields.

Fig. 2.54 shows the median ratios of the sizes between the clusters in the optimal fields
to the corresponding clusters of the target data field. As we can see from the results
the curve starts with a small value at 0.15, increases to a value 0.9 which shows good
agreement in the size of the clusters. In the same figure, the green lines refer to the
median ratios for clusters of a given size. As we can see the green lines are either over
the median ratios or below it. Moreover, there are some significant values which exceed
1. However, the behaviours of the green curves are similar to what we have seen in the
black curve; both curves increase as the time passes.

In what follows, we compare the locations of the MVEEs in the target fields and the
OIC fields using the probability of the displacement of the centres of the MVEEs dc for
both OIC and DNS target fields relative to the lengths of the axes ` at the DNS target
field, which is represented by dc/`.

The results are given for three different time steps, which are 0T , T/2 and T . Each
includes results for Major axes, Middle axes, and Minor axes, which represent the dis-
placement of the centres of the MVEEs in the major, middle and minor axis directions
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Figure 2.54: Median ratio between the sizes of the clusters for strong |ω̃| structures. Black with
circles: Median ratios for all clusters. Green with circles: median ratios for clusters of a given
size.

relative to the axis lengths, respectively.
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Figure 2.55: dc/` for strong |ω̃| structures at t = 0T .

Fig. 2.55 shows that at the initial time there are wide spreads in dc/`, which implies that
the MVEEs can be significantly displaced. However, the peaks around dc/`=0 increase
over time, showing that the agreement in the locations of the MVEEs enhances over
time. There is no obvious difference between the axes. At t = T , the probability for
dc/` ≤ 0.2 is approximately 80%.
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(c) Minor axes.

Figure 2.56: dc/` for strong |ω̃| structures at t = T/2.
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(b) Middle axes.
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(c) Minor axes.

Figure 2.57: dc/` for strong |ω̃| structures at t = T .

2.4.11 The minimum volume enclosing ellipsoid (MVEEs) for the strain
rate field

In this section, we present clusters analysis for the magnitude of the strain rate field.
All the comparisons happen between the OIC and DNS target fields. The calculations
are made with the filter scale equal 8δx. We use the value 2.5 times of the mean as the
threshold value, i. e. structures with |S̃| ≥ 2.5

〈
|S̃|
〉

are extracted.

The histograms for alignment are shown in Fig. 2.58 to 2.69. Fig. 2.58 shows that, at
the initial time, the agreement is already visible in the major axes, as the probability
value equals 0.6. The other conditional cases also show acceptable agreements where
pancake-like MVEEs gives a high peak at 0.9. However, the conditional alignment for
rod-like MVEEs shows a lower peak at 0.5.

The results for the other two axes, however, do not show clear alignment between the
MVEEs from the two fields.

Fig. 2.61 to 2.63 Show that good alignment for the axes has already developed at
t = T/3. The alignment between the minor axes is the strongest, which means the
alignment in this direction is developed the earliest. The pancake-like MVEEs show
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Figure 2.58: Alignment between the major axes for |S̃| at t = 0T .
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Figure 2.59: Alignment between the middle axes for |S̃| at t = 0T .
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Figure 2.60: Alignment between the minor axes for |S̃| at t = 0T .

better alignment in all three axis directions.

The alignment continues to improve over time, as shown by the results at t = 2/3T (
Fig. 2.64 to 2.66).

AT t = T , the good agreement appears in Fig. 2.67, where the high probability for the
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Figure 2.61: Alignment between the major axes for |S̃| at t = T/3.
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Figure 2.62: Alignment between the middle axes for |S̃| at t = T/3.
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Figure 2.63: Alignment between the minor axes for |S̃| at t = T/3.

major exes with a value 0.88 is found. Also, rod-like MVEEs and pancake-like MVEEs
alignment reflect reasonable agreements with values of 0.98, and 0.79, respectively.

The probabilities for the middle axes also give acceptable alignments, since it gives a
value of 0.72. The conditional alignment show close values with a peak for rod-like
MVEEs valued at 0.74 and for pancake-like MVEEs at 0.78.
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Figure 2.64: Alignment between the major axes for |S̃| at t = 2/3T .
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Figure 2.65: Alignment between the middle axes for |S̃| at t = 2/3T .
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Figure 2.66: Alignment between the minor axes for |S̃| at t = 2/3T .

The peak probability for the minor axes in Fig. 2.69 reaches 0.8. The conditional
MVEEs alignments show a similar value for rod-like MVEEs and bigger for pancake-
like MVEEs, found at 0.94.

Fig. 2.70 shows the median of the distributions. The red curve represents the median
for the major axes. We can see that the median starts at 0.95, in the initial time. and
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Figure 2.67: Alignment between the major axes for |S̃| at t = T .
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Figure 2.68: Alignment between the middle axes for |S̃| at t = T .
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Figure 2.69: Alignment between the minor axes for |S̃| at t = T .

reaches almost 1 at t/T = 1.

Fig. 2.71 shows median ratios for the sizes between the clusters of the OIC fields and
the corresponding ones at the DNS target field.

The black and red curves and their symbols have the same meaning as we have presented
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Figure 2.70: Medians of | cos(eT , eD)| for |S̃|. Red with circles: major axes. Blue with squares:
middle axes. Green with diamond: minor axes.

before for |ω̃|. The curves show how the median ratios develop with time, as we see
from the black curve, starting at the time T/6, the median ratio is 0.35 and it grows to
the value 0.7 in the end time T . In the same figure, the red lines refer to the median
ratios for the clusters of a given size, which shows the variation of the ratios.

In what follows, we present the probability of the displacement of the centres of the
MVEEs dc/` for the structures in the strain rate field |S̃|. We follow a similar procedure
to the discussion of |ω̃|.

Fig. 2.72 shows the displacement probability at the initial time. As we see that the
major axes present a high peak in the smallest bin with a peak value of 0.5 which
means the agreement for the major axes starts at an early time. However, it is the case
for the other axes. We have weak agreements in middle and minor axes between the
corresponding clusters.

For the middle time at T/2, Fig. 2.73 shows that the agreement has enhanced, as the
peak probabilities for the middle and minor axes increase, although the major axes are
slightly reduced from before.

Fig. 2.74 presents the displacement between the axes when the time equals T . The
major axes increase again as they reach at 0.5 as a probability value. Also, the middle
axes reach the highest peak at 0.44, while the minor axes slightly drop from t = T/2,
but they improve from the initial time.

The histogram shows that there are about 60-70% chances for the relation displacement
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Figure 2.71: Median ratio between the sizes of the clusters for |S̃|. Black with circles: Median
ratios for all clusters. Red with circles: median ratios for clusters of a given size.
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Figure 2.72: dc/` for |S̃| at t = 0T .

to be less than 20%.

2.4.12 The minimum volume enclosing ellipsoid (MVEEs) for the
Subgrid-scale energy dissipation

In the following section, we present some results related to the clusters analysis for
the Subgrid-scale energy dissipation (SGS) quantities. For the calculation of the SGS
energy dissipation MVEEs, we use 10 times of the mean as the threshold value, to
extract the structures. We follow a similar procedure in presenting these results to
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Figure 2.73: dc/` for |S̃| at t = T/2.
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Figure 2.74: dc/` for |S̃| at t = T .

what we presented for |ω̃| and |S̃|.

Fig. 2.75 to 2.86 plot the histograms of the alignment cosine. Fig. 2.87 plots the
median of the corresponding histograms. The median ratios are given in Fig. 2.88 and
finally the histograms of dc/` are shown in Fig2.89 to 2.91. Fig. 2.87 plots the median
of the corresponding histograms.

These results show similar trends as these for |ω̃| and |S̃|. Reasonable agreement again
is observed at t/T = 1.

2.4.13 Comparisons between the three types of structures

We present in this section comparisons between the clusters for the three quantities (
i.e. vorticity magnitude, strain rate, and subgrid-scale energy dissipation).

As we have mentioned before, the corresponding clusters have good agreements for all
three quantities. However, we also see that the developments of the clusters for the
three quantities have shown different behaviours although all have tended to be closer
to the ones in the DNS target over time. The main point is that the agreements between
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Figure 2.75: Alignment between the major axes for SGS energy dissipation at t = 0T .
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Figure 2.76: Alignment between the middle axes for SGS energy dissipation at t = 0T .
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Figure 2.77: Alignment between the minor axes for SGS energy dissipation at t = 0T .

the clusters are improved after a short time from the initial time for the major, middle
and minor axes, reaching the highest probability values close to T . Also, the major
axes present the best agreement, then the minor axes, while the middle axes show the
lowest agreement.

Variations certainly exist between the three different quantities, as the vorticity magni-
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Figure 2.78: Alignment between the major axes for SGS energy dissipation at t = T/3.
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Figure 2.79: Alignment between the middle axes for SGS energy dissipation at t = T/3.
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Figure 2.80: Alignment between the minor axes for SGS energy dissipation at t = T/3.

tude and the strain rate magnitude are similar than the SGS energy dissipation. One of
the observations is that both the vorticity and strain rate starts at the initial time with
a reasonable agreement for the major axes, while the initial agreement for SGS energy
dissipation is much lower. However, this argument is different for the middle axes, for
which the strain rate field presents the lowest agreement compared with the vorticity
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Figure 2.81: Alignment between the major axes for SGS energy dissipation at t = 2/3T .
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Figure 2.82: Alignment between the middle axes for SGS energy dissipation at t = 2/3T .
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Figure 2.83: Alignment between the minor axes for SGS energy dissipation at t = 2/3T .

and SGS energy dissipation. Adding to that, the agreement between the minor axes
when the time reaches T is lower for the vorticity than the other two quantities. In
general, the vorticity shows the best agreement, then the strain rate field, and finally
the SGS energy dissipation.

The results for the size ratios show that the vorticity has the highest ratio at around
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Figure 2.84: Alignment between the major axes for SGS energy dissipation at t = T .
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Figure 2.85: Alignment between the middle axes for SGS energy dissipation at t = T .
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Figure 2.86: Alignment between the minor axes for SGS energy dissipation at t = T .

0.9 while the strain rate field was the lowest one which is just under 0.8.
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Figure 2.87: Medians of | cos(eT , eD)| for SGS energy dissipation. Red with circles: major axes.
Blue with squares: middle axes. Green with diamond: minor axes.
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Figure 2.89: dc/` for SGS energy dissipation at t = 0T .
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Figure 2.90: dc/` for SGS energy dissipation at t = T/2.
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Figure 2.91: dc/` for SGS energy dissipation at t = T .



Chapter 3

Reconstructing turbulent fields
using 4D variational data
assimilation: large eddy
simulations and the Smagorinsky
model

§ 3.1 Introduction

The model is presented in this chapter is to examine the effects on the reconstruction
quality when the large eddy simulations are applied as the model using the Smagorinsky
model. The presented assumption is that the dynamical evolution of the system is
governed by the filtered Navier-Stokes equation. The 4D variational DA is applied to
reconstruct the initial state of the system. The formulation of the system is given as
an optimization problem. The main purpose of this investigation is to reconstruct the
instantaneous distributions for the small scales using such a model.

The structure of this chapter can be displayed as follows. Section 3.2 presents a brief
introduction of the large eddy simulations. In section 3.3, the formulation of the op-
timization problem is presented including the description of the simulations based on
the filtered NS equations. The simulation and discussions part are given in section 3.4,
where the target data fields and the data of the reconstructed initial condition based
on the imperfect model are compared to test the quality of the data generated by such
model. The presented experiments are similar to what has been used in the previous
chapter when the NS equations as the model have used. Also, the discussions include
a comparison between the outcomes of both optimal fields.
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§ 3.2 An introduction to large eddy simulations

The numerical solutions for the NS equations of turbulent flows are called Direct Nu-
merical Simulation, as we mentioned before. However, the cost of the computation
is a rapidly increasing function of the Reynolds number of the flow [73]. When the
Reynolds number is very high, DNS calculations in the near future are not feasible. In
practical applications, a recently developed method is large eddy simulations. While
the large-scale motions are represented directly in the large eddy simulations, a model
is used to represent the smaller scale motions in the same flow; see [73].

§ 3.3 Formulation for the 4DVAR problem

The problem setup is similar to the one in Chapter 2. We assume:

• A set of data v(x, t) in known, for t ∈ [0, T ] and x ∈ Ω, where T is the optimiza-
tion horizon.

• v is a part of the solution of the NS equations for unknown IC. ū is a solution
of the filtered NS equations with the Smagorinsky model for the SGS stress, and
ū(x, 0) = ϕ(x).

The goal, is to find ϕ(x), such that the solution ū(x, t) matches v(x, t) for t ∈ [0, T ]
and x ∈ Ω. The solution method is similar to the one used in Chapter 2. The cost
function is defined in the same way:

J =
1

2

∫ T

0
dt

∫
xεΩ

dx|ū− v|2, (3.1)

J is minimized subject to constraints:

N(ū) = ∂tūi + ūj∂j ūi = 2∂j
((
ν + (CS∆)2(2S̄lkS̄lk)

1/2
)
S̄ij
)
− ∂ip̄+ f̄i, (i = 1, 2, 3.),

∇ · ū = 0, (3.2)

ū(x,0) = ϕ(x).

The Lagrangian function is given as

L = J−
∫ T

0

∫
B
ξ ·N(ū)dtdx−

∫ T

0

∫
B
µ∇ · ūdtdx

−
∫
B
λ · [ū(x, 0)−ϕ(x)]dx, (3.3)
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where ξ(x, t), µ(x), and λ(x) are adjoint variables corresponding to the constraints.
The state equations are given by

∂L

∂ξ
= 0,

∂L

∂µ
= 0,

∂L

∂λ
= 0. (3.4)

The adjoint equations are given by

∂L

∂ū
= 0,

∂L

∂p̄
= 0. (3.5)

Therefore, the state equations are

∂tūi + ūj∂j ūi − 2∂j
((
ν + (CS∆)2(2S̄lkS̄lk)

1/2
)
S̄ij
)

+ ∂ip̄− f̄i = 0, (i = 1, 2, 3.)

∇ · ū = 0, (3.6)

ū(x, 0) = ϕ(x).

The adjoint equations are

∂tξ + ū · ∇ξ −∇ū · ξ +∇µ+ ν∇2ξ + (Cs∆)2∇ ·
[2X

(
S̄ : S̄

)
+ 2S̄T

(
S̄ : X

)
|S̄|

]
= F ,

∇ · ξ = 0, (3.7)

ξ(x, t = T ) = 0.

where F (x, t) = −[ū(x, t) − v(x, t)] when x ∈ Ω and F = 0 otherwise. We note that
ξ represents the velocity adjoint, µ is the pressure adjoint. Also, Xki = 1

2

(
∂kξi + ∂iξk

)
.

The gradient of the cost function

DJ

Dϕ
= ξ(x, 0), (3.8)

is given by the adjoint. It is needed to update the initial condition ϕ.

§ 3.4 Simulation and discussions

The optimal solution for ϕ is the reconstructed/rebuilt initial condition (OICS) based
on the imperfect model (the filtered NS equations ). An interesting question is how
well ϕ mimics real turbulence. Therefore, the statistics of ϕ are compared with those
in turbulent fields. In the comparisons, we refer to ϕ as the OICS field, while we refer
to the DNS field as the DNS target field. The results will be compared with those in
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Chapter 2 as well. This comparison will reveal the deficit of using an imperfect model
to assimilate the data, if any.

Before starting the analysis of the results, we need a description of the simulations
based on the filtered NS equations that we use in this chapter.

• We use a three-dimensional pseudo-spectral code for isotropic turbulence where
the boundary conditions are periodic in a domain [0, 2π]3. The number of grid
points N3 is 643. The highest resolved wave-number is kmax = N/2 = 32, and
the grid size is δx = (2π)/N = π/32. The filter scale used in the analysis of the
data is 4δx.

• kinetic energy is injected into the flow field by using the term of the force in
filtered NS equations which is given as f̄ = (0, facoskfx1, 0) where fa = 0.15 and
kf = 1.

• A set of velocity data v(x, t) is known, for t ∈ [0, T ] and x ∈ Ω. The data assim-
ilation is accomplished in this model in the spectral space in a similar procedure
as mentioned in 2.4 when we have used the reconstruction using 4DVAR DA with
the NS equations as the model.

• Optimum is found when J/J(ū = 0) ≤ e, where tolerance e = 0.0002.

• We use the kinematic viscosity ν = 0.006.

• The optimization horizon is up to T = 0.5τL, where τL ≈ 4.35 is the large eddy
turn-over time scale.

The energy spectra of the DNS target and the OICS Fields are presented at Fig. 3.1.
The observation at Fig. 3.1a shows that the error between the two fields is bigger than
the late times and specifically, at high wave-numbers, i. e. small scales. Figs. 3.1b to
3.1d show that the agreement improves over time as expected. A perfect agreement is
observed for the energy spectrum for k ≤ 4 the whole time because, by our procedure,
the large scales are matched with the DNS target data. Comparisons with Fig. 2.1
shows that the behaviours are similar.

The energy spectra of the instantaneous differences v−ū is presented in the blue curves
with the E(k) of the target field in the red curves at Fig. 3.2. The behaviour of the
blue curve shows that the spectra start very small in the low wave-numbers region
for k ≤ Kc which indicates a good agreement between the imperfect model with the
target data at an early time. Furthermore, Figs. 3.2b to 3.2d reflect the agreement’s
improvement over time. Also, such an improvement of the agreement between both
fields can be observed for k > Kc, in which the value of the blue curve beyond Kc = 4
decreases overtime where the high wave-numbers are located. This indicates that the
reconstruction of the small scales has happened broadly, where the differences between
ū and v become smaller as the optimization horizon time increases. Thus, the successful
reconstruction of the different size scales has been achieved in this experiment.
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Figure 3.1: The energy spectrum. Solid line with squares: DNS target. Dotted line with circles:
OICS. Dashed line: Kolmogorov −5/3 spectrum.

In term of the comparisons between the two models, the OICS field seems to recover
the DNS target field quicker than the OIC field, since the spectra at t = 3/4T gives a
smaller difference than the ones in Fig. 2.2 when t = 2/3T .

We look also into the ratio Eδ(k)/E(k). We notice that the OICS fields tend to the
DNS target field as the time increases. These positive observations are shown in Figs.
3.3a and 3.3b. Fig. 3.3b shows that, at k = 8 and t = T , the ratio can be reduced to
about 20%, significantly smaller than that one shown in Fig. 2.3.

We now consider the alignment between the strain rate field ˜̄Sij and the vorticity field
˜̄ω. Fig. 3.4 plots the PDFs of the alignment between the vorticity and strain rate fields
for the OICS and DNS target fields. The PDFs at the initial time in Fig. 3.4a shows
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Figure 3.2: Spectrum of v− ū. Solid line with squares: E(k) for DNS target. Dotted line with
circles: Eδ(k).

a significant result of OICS fields, as both PDFs deviate from the corresponding PDFs
of the DNS target fields by only a small amount. The agreement improvement occurs
quickly after a short time, to reach the perfect agreement at T/2, shown in Fig. 3.4b.
The comparison between the OIC fields in Fig. 2.4 and OICS fields in Fig. 3.4 show
that the current model speeds up the agreement with DNS target field, and obtains
better reconstruction at t = 0.

The observation in Fig. 3.5a for the mean SGS energy dissipation as a function of
filter scale ∆ shows that the curve of the OICS field at the initial time underestimates
its corresponding DNS target curve. This difference, however, decreases when the
time equals T/4 in Fig. 3.5b. Good agreements are continued until time T . The
probability density functions of the normalised SGS energy dissipation at scale ∆ = 4δx
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Figure 3.3: The ratio of the spectra: Eδ(k)/E(k).
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Figure 3.4: PDFs of the alignment between ˜̄ω and the eigenvectors of ˜̄Sij . DNS target: solid line
with squares, circles: intermediate eigen-direction and eigen-direction with negative eigenvalue,
respectively. OICS: dotted line with upward-pointing triangle, diamond, respectively.

are presented in Fig. 3.6. Fig.3.6a shows the agreement between the OICS and DNS
target fields at the initial time. The agreement improves when the time increases. Thus,
the feature of the PDFs of the SGS energy dissipation is reproduced by the OICS fields,
with positive skewness that indicates the forward energy cascade.
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Figure 3.5: The mean subgrid-scale energy dissipations as a function of the filter scales ∆.
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Figure 3.6: PDFs of the subgrid-scale energy dissipation.

The probability density functions of the shape parameter for the strain rate tensor are
calculated in what follows. Fig. 3.7 shows that the PDF of S∗ at the initial time for
the OICS underestimates than the corresponding PDF of the target data. However,
the PDF recovers quickly when the time equals T/8, such that we have quite a good
agreement already. At later time steps, all the PDFs of the OICS fields give similar
features as the PDFs of the DNS field. Fig. 3.7, compared with Fig. 2.8, shows a
quicker recovering for the OICS field and a better reconstruction at t = 0.

We calculate the probability density functions of the shape factor S∗(τ̄ij) for the
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Figure 3.7: The probability density functions of the shape factor S∗( ˜̄Sij) for the filtered strain

tensor ˜̄Sij . Solid line is DNS target: with squares for 0T , circles for T/8. Dotted line is OICS:
with upward-pointing triangle for 0T and diamond for T/8.

subgrid-scale stress tensor τ̄ij in Fig. 3.8. The PDFs reflect a perfect agreement
between the OICS and DNS target data fields at the initial time, where both fields
give a similar probability peak at the value −1. The perfect agreement stays the same
during the whole time horizon T . Comparing with OIC fields, the PDF in Fig. 2.9
needs slightly more time to give such a perfect agreement.

3.4.1 Contour plots of instantaneous distributions

The contour plots are presented for the magnitude of the vorticity | ˜̄ω| and the magnitude

of the strain rate tensor | ˜̄S| in this section, which illustrates the qualitative agreements
between the OICS fields and the DNS target field.

For vorticity magnitude, the contour plots are calculated when the resolution equals 64,
and the filter scale equals 4δx. As is represented in the two-dimensional contours, the
red areas represent the vortical structures with strong vorticity. The result is presented
for three different time steps: the initial time step, the middle time and the final time
step.

Fig. 3.9 shows that initially, the agreement between the OICS field and the DNS target
field is weak, where the structures of strong vorticity magnitudes are absent from OICS
fields. Fig. 3.10 shows the contour levels in the OICS fields are increased compared
to what we have at the initial time. These observations are continued when we do
the comparisons at the middle time in Fig. 3.11, as the contour structures for both
fields are quite similar to each other, such that it indicates the existence of a good
agreement. We can see similar observations in Fig. 3.12 and 3.13, where t = 3/4T and
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Figure 3.8: PDFs of the shape factor S∗(τ̄ij) for the subgrid-scale stress tensor τ̄ij . Solid line
is DNS target: with squares for 0T . Dotted line is OICS: with circles for 0T .
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Figure 3.9: Contour plots for | ˜̄ω| at t = 0T .

t = T respectively.

For the OIC fields in Fig. 2.16 to Fig. 2.19, the vorticity contours in OIC and DNS
target fields are similar as here. Therefore, there is no obvious difference with the
agreement between the OICS and DNS target field.

The contour plots for the magnitude of the strain rate field are shown in Figs 3.14,. . .,
3.16. Starting from the initial time step shown in Fig. 3.14, the similarity is not big
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Figure 3.10: Contour plots for | ˜̄ω| at t = T/4.
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Figure 3.11: Contour plots for | ˜̄ω| at t = T/2.

enough between the contours for the two fields, where the strong spots are absent at
the OICS fields. The improvement of the contour plots of the OICS fields is quite clear
in Fig. 3.15, as we can see that the agreement between the OICS and the DNS target
data fields is nearly perfect. The perfect agreement remains stable until the end time
T , as we see in Fig. 3.16 when the contour plots in the OICS fields reconstruct similar
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Figure 3.12: Contour plots for | ˜̄ω| at t = 3/4T .
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Figure 3.13: Contour plots for | ˜̄ω| at t = T .

patterns to what we have in the DNS target field.

As a general conclusion for this part, the strain rate field in the OICS fields recovers in
an early time at the t = T/2 to be close to the DNS target field. Compared with the
result in Chapter 2, it seems that good or even better reconstructions can be obtained
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Figure 3.14: Contour plots for | ˜̄S| at t = 0T .
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Figure 3.15: Contour plots for | ˜̄S| at t = T/2.

using the imperfect model.
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Figure 3.16: Contour plots for | ˜̄S| at t = T .

3.4.2 The minimum volume enclosing ellipsoid (MVEEs)

We present now results related to the MVEE for the enstrophy in the OICS fields.
The structures are defined as the regions with vorticity magnitude given by

√
˜̄ω ˜̄ω ≥

1.5
〈
˜̄ω ˜̄ω
〉1/2

.
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Figure 3.17: Alignment between the major axes for strong | ˜̄ω| structures at t = 0T .

Fig. 3.17 shows that the agreement at the initial time between the major axes is
already acceptable with a value of 0.58 for the peak probability, for all MVEEs. In the
conditional cases, good agreement is also found, where the values of peak probabilities
are approximately 0.7, for rod-like MVEEs, while pancake-like MVEEs is lower than
that at 0.47.
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For the middle axes in Fig. 3.18, the probability at | cos(eDβ , e
T
β )| = 1 is much lower than

the major axes as it reaches 0.12, indicating weak agreement between the axes. Also,
we see the conditional histograms give small values in rod-like MVEEs and pancake-like
MVEEs.
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Figure 3.18: Alignment between the middle axes for strong | ˜̄ω| structures at t = 0T .
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Figure 3.19: Alignment between the minor axes for strong | ˜̄ω| structures at t = 0T .

For the minor axes in Fig. 3.19, we notice that the probability values | cos(eDγ , e
T
γ )| = 1

are slightly bigger than the middle axes. Rod-like MVEEs and pancake-like MVEEs
show also small peak probability values.

For t = T/2 shown in Figs. 3.20 to 3.22, the peak probability values show signifi-
cant improvements over the values that we have at the initial time for the three axes.
Strongest alignment is observed for the major axes.

Figs 3.23 to 3.25 show the results for the major, middle and minor axes at the end of the
optimization horizon, when t = T . For the major axes in Fig. 3.23, the peak probability
value slightly decreases to 0.7. However, it still higher than the initial time. The peak
probability values of rod-like MVEEs and pancake-like MVEEs also decline from their
maximum values at T/2. For the middle axes, despite the peak probability value (Fig.
3.24) drops from its previous value to approximately 0.4, it still is bigger than the one
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Figure 3.20: Alignment between the major axes for strong | ˜̄ω| structures at t = T/2.
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Figure 3.21: Alignment between the middle axes for strong | ˜̄ω| structures at t = T/2.
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Figure 3.22: Alignment between the minor axes for strong | ˜̄ω| structures at t = T/2.

at 0T . Both rod-like MVEEs and pancake-like MVEEs improve on their corresponding
histograms at the initial time, although the peak probabilities also decrease from the
maximum values in the mid-time. Fig. 3.25 shows similar observations for the minor
axes to what we have already observed in the middle and the major axes at the end at
T .
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Figure 3.23: Alignment between the major axes for strong | ˜̄ω| structures at t = T .
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Figure 3.24: Alignment between the middle axes for strong | ˜̄ω| structures at t = T .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

All MVEEs.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

Rod-like MVEEs.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

Pancake-like MVEEs.

Figure 3.25: Alignment between the minor axes for strong | ˜̄ω| structures at t = T .

Therefore, the histograms show reasonable agreement between the corresponding axes,
especially when the time reaches the mid-time. The agreement decreases for some
reasons at the end time at T . It might have been due to statistical fluctuations. The
major axes show the best agreement between the corresponding clusters in the OICS
and DNS target fields, then the minor axes and the middle axes. This observation is
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similar to that in the OIC fields.

We present the medians of the histograms for | ˜̄ω|, in Fig. 3.26. From the three curves,
we notice that the major axes reflect good alignment, as its curve starts at a high peak
at 0.96 and it remains at ≈ 1. However, it is not the case with the middle and the
minor axes, as they start at 0.58 and 0.64, respectively. They tend to increase to show
some enhancements and reach the maximum value of 0.97 at t = 3/4T . However, unlike
the major axes, they decrease at the final time at T to arrive at the value 0.9. As a
summary, reasonable agreement is observed which means that the axes of the MVEEs
in the OICS fields have close orientations to the DNS target ones. The comparison with
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Figure 3.26: Medians of | cos(eT , eD)| for strong | ˜̄ω| structures. Red with circles: major axes.
Blue with squares: middle axes. Green with diamond: minor axes.

Fig. 2.53 shows slightly different behaviours, where the medians in the OICS fields give
more stable trends for the middle and minor axes and slightly higher peaks.

In Fig. 3.27, we present the median ratios of the sizes between the clusters in the OICS
fields and the corresponding clusters in the DNS target data field.

We notice that the black curve reflects a good agreement between the corresponding
clusters. The agreement at the initial time is the smallest as it gives a value of 0.6. It
increases to reach a maximum of 0.9 when t = 3/4T . Nevertheless, it slightly drops to
stop at 0.85. The green symbols in the same figure present the median ratios of the
clusters of a given size. These symbols show different behaviours, as we can see that
some of them exceed the value 1. The trends of the symbols agree with what we have
for the black curve.
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Figure 3.27: Median ratio between the sizes of the clusters for strong | ˜̄ω| structures. Black with
circles: Median ratios for all clusters. Green with circles: median ratios for clusters of a given
size.

Therefore, the clusters in the OICS fields are produced with close similarity to the ones
in DNS target field. The agreement improves over time quicker and the ratios show
higher peak values than the ones in OIC fields, ( Fig. 2.54).

In the following histograms, we show the probability of the displacement of the centres
of the MVEEs for both OICS and DNS target fields relative to the lengths of the axes
in the DNS target field, which is represented by dc/` for the vorticity magnitude.
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(b) Middle axes.
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(c) Minor axes.

Figure 3.28: dc/` for strong | ˜̄ω| structures at t = 0T .

As we can see in the initial time from Fig. 3.28, the peak probabilities of the three
histograms are small. These lower values are the indication of the weak agreement
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between the corresponding axes, where the major, middle and minor axes show values
at 0.38, 0.32 and 0.26, respectively. In Fig. 3.29, we document the improvement of the
histograms, as we notice the smaller bins show the highest values so far for the three
axes. Figs. 3.30 displays the probabilities at the end time when t = T . We notice that
the major and middle axes give the lower values than the middle time with a small
amount, at 0.41 and 0.45, respectively. However, the minor axes still improve at this
time to reach a peak probability value of 0.96.
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(b) Middle axes.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

(c) Minor axes.

Figure 3.29: dc/` for strong | ˜̄ω| structures at t = T/2.
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(b) Middle axes.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P

ro
ba

bi
lit

y

(c) Minor axes.

Figure 3.30: dc/` for strong | ˜̄ω| structures at t = T .

The results of the MVEEs are now presented for the magnitude of the strain rate field.

The rate of the filtered strain magnitude is written as | ˜̄S| =
√

2 ˜̄Sij
˜̄Sij ; we extract the

structures with | ˜̄S| ≥ 1.7
〈
| ˜̄S|
〉
.

Fig. 3.31 shows that the agreement between the major axes is moderate initially when
the peak probability is found to be 0.59, for all MVEEs. In the conditional cases, better
agreements are shown, with peak probabilities equal 0.71 for rod-like MVEEs, and 0.7
for pancake-like MVEEs.

For the middle axes in Fig. 3.32, the histogram present a lower peak value than
the major axes as it reaches 0.34, which reflects the weak agreement between these



CHAPTER 3. 97

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

All MVEEs.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

Rod-like MVEEs.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

Pancake-like MVEEs.

Figure 3.31: Alignment between the major axes for | ˜̄S| at t = 0T .

axes. Also, the conditional MVEEs alignments show smaller probability values in rod-
like MVEEs and pancake-like MVEEs than the conditional ones in the major axes.
Although the minor axes in Fig. 3.33 present a bigger peak probability value than
the major and middle, it still reflects a moderate agreement at 0.68. We notice that
the peak probability value with rod-like MVEEs is bigger than pancake-like MVEEs
probability value.
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Figure 3.32: Alignment between the middle axes for | ˜̄S| at t = 0T .

At the time T/2, shown with Figs. 3.34 to 3.36, the agreement is considered the best
through the time T , as the peak probability values increase to their maxima. The same
observations are presented in the conditional MVEEs alignments. Figs 3.37 to 3.39
describe the observations for the major, middle and minor axes at t = T , respectively.
The major axes in Fig. 3.37, show that the peak probability value slightly reduces to
be at 0.74. Nevertheless, it is still bigger than the one at the initial time. The peak
probability value for rod-like MVEEs increases to a peak at 0.89, unlike pancake-like
MVEEs which drops from the perfect agreement at the mid-time.

The peak probability value for the middle axes in Fig. 3.38 decreases from its previous
value as it reaches 0.66. However, it remains bigger than the one at 0T . The peak value
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Figure 3.33: Alignment between the minor axes for | ˜̄S| at t = 0T .
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Figure 3.34: Alignment between the major axes for | ˜̄S| at t = T/2.
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Figure 3.35: Alignment between the middle axes for | ˜̄S| at t = T/2.

on rod-like MVEEs improves to reach 0.79, unlike pancake-like MVEEs which decreases
from the one at T/2. The minor axes in Fig. 3.39 present the highest peak value of 0.91
among all the results even for the major and middle axes. Same observations happen
for the conditional alignments with the perfect agreement in pancake-like MVEEs while
it gives a value of 0.89 for rod-loke MVEEs. Therefore, in general, the results show
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Figure 3.36: Alignment between the minor axes for | ˜̄S| at t = T/2.
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Figure 3.37: Alignment between the major axes for | ˜̄S| at t = T .
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Figure 3.38: Alignment between the middle axes for | ˜̄S| at t = T .

stable improvement for the agreement between the corresponding axes over time for

| ˜̄S|. Also, the minor axes give the best agreement, the major axes come in the second
while the middle axes show the weakest agreement.

The median of the MVEEs alignments between the axes of the major, middle and
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Figure 3.39: Alignment between the minor axes for | ˜̄S| at t = T .

minor is presented in Fig. 3.40. We notice the growth of the agreement between the
corresponding axes over time. The investigations occur at the times 0T , T/4, T/2,
3/4T and T . We notice the very good agreement represented by the medians, where
they roughly stay at ≈ 1, after a short time. The main variations between the axes
appear at the initial time, where median for the major axes starts big of 0.9, and it
increases to 0.97. Furthermore, it reaches the maximum value at the time 3/4T . The
median for the middle axes starts at the lowest of 0.84 to reach 0.97.

Therefore these results reflect a quite good agreement between the two fields. The
major axes and the minor axes are the best while the middle axes are the weakest. By
looking into Fig. 2.70, we see that the trends and the stabilities are better for the axes

produced here by the OICS fields for the three medians in the ˜̄S.

We introduce also the median ratios of the sizes of the clusters in the OICS fields and
the DNS target field in Fig. 3.41. The development of the black curve, which shows the
ratios between the sizes of the clusters, is clear. Although in the initial time it gives a
small value of 0.3, it reaches a maximum value at t = 3/4T . It drops at the end when
t = T to 0.82. The median ratios of the clusters of a given size are presented by the
green symbols. We notice that there are some values which are bigger than 1.

Therefore we can produce clusters in the strain rate field in the OICS fields having close
sizes to the corresponding clusters in the DNS target field. Again, Fig. 2.71 shows that
the improvement of the size ratios is weaker in the OIC field than the OICS fields.

In what follows, we present the probability of the displacement of the centres of the

MVEEs relative to the lengths of the axes from the DNS target field dc/` for | ˜̄S|. In
Fig. 3.42, we show the probability of relative displacement at 0T , as we see that the
major axes present the lowest probability value in the smallest bin, with a value of
0.25, indicating that the agreement for the major axes starts weak. The middle axes
are slightly better than the major axes, with a peak value of 0.29. However, this is not
the case with minor axes as they give a high probability value of 0.7. Overall, at the
initial time, we document a weak agreement between the OICS and the DNS target
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Figure 3.40: Medians of | cos(eT , eD)| for | ˜̄S|. Red with circles: major axes. Blue with squares:
middle axes. Green with diamond: minor axes.

fields.

At time T/2, Fig. 3.43 shows that the agreement improves for the axes, as the peak
probability values for the axes rose from their probability values at the initial time.
Fig. 3.44 shows that all the axes give lower values for the relative displacement when
the time equals T compared to what we present at the middle time. However, for the
major and middle axes, probabilities give higher values than those at the initial time,
while the minor axes drop from the peak to reach 0.64.

The comparison with the histograms in OIC fields in Fig. 2.72 to 2.74 show that in
some cases the agreement is better, but the differences are very small between the two
models.

We calculate now the SGS energy dissipation MVEEs. We use 3 times of the mean as
the threshold value to extract the structures.

The SGS energy dissipation displays the most significant results compared with the
previous two quantities, where we notice the gradual growth of the agreement between
the corresponding axes over the time to give the highest peaks at t = T . We can
summarize how these values are developed over time as follows.

For the major axes in Figs. 3.45, 3.48 and 3.51, we see the peak probability values
are 0.57, 0.7 and 0.93, respectively. The conditional MVEEs results also show the
same trend, and give peak values, at t = T , 0.99 and 0.87 for rod-like MVEEs and
pancake-like MVEEs, respectively.
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(b) Middle axes.
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(c) Minor axes.

Figure 3.42: dc/` for | ˜̄S| at t = 0T .

For the middle axes in Figs. 3.46, 3.49 and 3.52, we see the peak probability values
are 0.22, 0.27 and 0.86, respectively. The same observations exist for the conditional
MVEE alignments. For the minor axes, shown in Figs. 3.47, 3.50 and 3.53, we see the
peak probability values show of 0.4, 0.49 and 0.83, respectively. Also, we notice similar
trends in the conditional MVEEs alignments.

Finally, the major axes show the best agreement between the two fields, and the middle
axes are considered as the second best, while the minor axes reflect weaker agreement.
These observations are slightly better than the ones in the OIC fields, shown in Figs.
2.75 to 2.86.
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(b) Middle axes.
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(c) Minor axes.

Figure 3.43: dc/` for | ˜̄S| at t = T/2.
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(c) Minor axes.

Figure 3.44: dc/` for | ˜̄S| at t = T .
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Figure 3.45: Alignment between the major axes for SGS energy dissipation at t = 0T .

Fig. 3.54 shows the medians of the MVEE alignments. The red curve, which represents
the trend of the major axes shows the highest starting point of 0.95 at the initial time
to reach a value of 0.96 at t = T . However, some decline occurs at t = T/4. The middle
axes show the lowest values for the median between all the axes, in general, as the blue
curve starts at 0.52 to register a significant increase to reach the maximum value at



104

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

All MVEEs.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

Rod-like MVEEs.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

Pancake-like MVEEs.

Figure 3.46: Alignment between the middle axes for SGS energy dissipation at t = 0T .
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Figure 3.47: Alignment between the minor axes for SGS energy dissipation at t = 0T .
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Figure 3.48: Alignment between the major axes for SGS energy dissipation at t = T/2.

0.94. The curve of the minor axes presents some different behaviour comparing to the
other axes, as it gives value at 0.69 in the starting point, to reach 0.99. at the end time
t = T . Therefore, the major and minor medians represent the strongest results as they
show reasonable agreements, while the middle axes are the third.

The comparison between Fig. 2.87 and Fig. 3.54 show there is no clear winner between
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Figure 3.49: Alignment between the middle axes for SGS energy dissipation at t = T/2.
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Figure 3.50: Alignment between the minor axes for SGS energy dissipation at t = T/2.
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Figure 3.51: Alignment between the major axes for SGS energy dissipation at t = T .

them, where both the OIC and OICS fields are showing high values at the end for this
specific statistic for the SGS energy dissipation.

As we presented before about the investigation of the median ratios of the sizes, we do
the same with the quantity of the SGS energy dissipation in Fig. 3.55.
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Figure 3.52: Alignment between the middle axes for SGS energy dissipation at t = T .
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Figure 3.53: Alignment between the minor axes for SGS energy dissipation at t = T .

Despite the lower starting value at around 0.25 for the black curve, a rapid increase
happens to reach 0.94. Therefore, the agreement improves as the time increase between
the corresponding clusters for the OICS fields and the DNS target field. Besides, we
observe the same trends for the median ratios of the clusters of a given size which are
presented by the thinner curves. In general, we are able to reproduce close sizes of the
structures of the SGS energy dissipation in the fields of OICS.

The comparison between Fig. 2.88 produced by the OIC fields and Fig 3.55 for the
imperfect model shows that the latter field is the winner due to giving higher ratios
over time.

The next three histograms in Figs 3.56,. . . , 3.58 express the relative displacement of
the MVEEs for the subgrid-scale energy dissipation. The idea here is similar to all the
previous sections that deal with these statistics.

At the initial time, we notice that the peak values of the relative displacement probabil-
ities are small, at 0.24, 0.37 and 0.22 for the major, middle and minor axes, respectively.
Therefore, the agreement for the OICS fields is not very good with the DNS target field,
as shown in Fig. 3.56.
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Figure 3.54: Medians of | cos(eT , eD)| for SGS energy dissipation. Red with circles: major axes.
Blue with squares: middle axes. Green with diamond: minor axes.

Clearly, the peak values for all three axes have increased in Fig. 3.57, with an acceptable
agreement. At t = T , Fig. 3.58 shows that the major axes reach a value of 0.64 and
the peak probability for the middle and minor axes equal 0.69. Thus, the histogram
results at the final time indicate a good agreement between the corresponding axes.

The comparisons between the displacement histograms for the SGS energy dissipation
in the OIC fields in Fig. 2.89 to 2.91 and those in the imperfect model show that the
latter gives better agreement between the corresponding axes for this specific result.

As a general observation for the three quantities, the agreement between the clusters
for the OICS and the DNS target fields improves over time.

The histograms, in general, show that the MVEEs alignments for the SGS energy

dissipation give highest peaks. The MVEEs for | ˜̄S| is considered the second in terms of
the quantity of alignment. The agreement for | ˜̄ω| is the weakest. The medians of the
histograms are consistent with the previous arguments. Also, most of them show very
good alignment, approximately 1, (Figs. 3.26, 3.40 and 3.54).

Generally, all of the quantities give the best agreement at the middle time T/2, and
the weaker agreement is observed in the middle axes. Comparing the results with those
in Chapter 2, little difference is observed. Therefore, for these statistics, the quality of
DA is not changed.
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Figure 3.56: dc/` for SGS energy dissipation at t = 0T .

3.4.3 Summary

To summarize, in this chapter we examine the reconstruction of 3D turbulent velocity
fields using filtered NS equations with the standard Smagorinsky model as the closure
for the SGS stress. The results show that, interestingly, for filter scale ∆ = 4δx, the
quality of reconstruction is usually better than using the full NS equations. The obser-
vation suggests that the smallest scales might not be important for the reconstruction,
at least for T at the order of half of the large eddy turn-over time scale and filter scales
around 4δx.
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Figure 3.57: dc/` for SGS energy dissipation at t = T/2.
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Figure 3.58: dc/` for SGS energy dissipation at t = T .



Chapter 4

Conclusions

The reconstruction of the small scales of a sequence of 3D homogeneous turbulent
velocity fields has been achieved by applying the four-dimensional variational method
(4DVAR). The velocity on a coarse grid from a time sequence of DNS velocity fields
is applied as the target. The length of the time sequence is of the order of 1/2 of
the scale of large eddy turn-over time. The main focus is to rebuild the instantaneous
distributions for the small scales, and show the accuracy assessment of the data at
a grid size corresponding to half of the grid of measurement. In Fourier modes, the
number of modes contained in this grid is eight times that of the grid of measurement.
In the optimal initial fields, the field of filtered vorticity, the filtered strain rate tensor,
and the subgrid-scale energy dissipation Π are studied. Furthermore, some of the
geometrical statistics are examined, including the PDFs of the alignment between the
filtered vorticity and the eigenvectors of the filtered strain rate tensor; the PDFs of
velocity increments, both longitudinal and transverse; in addition to other well-known
statistics. These statistics describe how eddies interact with each other which is the
key feature of turbulent flows.

The DNS of the Gaussian random field with the same energy spectrum from the op-
timal initial field is investigated as well. This aims to examine the efficiency of the
reconstructed fields as an initial condition to recapture the statistics in the DNS target
fields. The statistics of this field are compared with those in the DNS target field, and
its improvement with time is compared to the DNS initialized with the optimal field.

Finally, the investigations of the non-local structures that allow focusing on the extrac-
tion, description, and classification of turbulent structures are essential because they
enable us to capture the geometry of these structures in the small scales of turbulent
fields. Therefore, the assessments for the non-local structures reconstruction are pre-
sented quantitatively, using MVEE to compare the reconstructed fields and the DNS
target fields.

The investigation for the quality of reconstruction has been made, firstly by applying the
technique with the NS equations as the model. Then, we filter the NS equations and use

110
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large eddy simulations as a model for the data with the standard Smagorinsky model as
the SGS model. Large eddy simulations are used to avoid the vast computational cost in
DNS which are essential in order to consider flows with higher Reynolds numbers. Both
models have quite similar optimality systems. Nevertheless, the filtered NS equations
have an extra term due to the SGS stress tensor which consequently gives a different
adjoint equation.

We summarize the results as follows, where rough numbers are given to illustrate the
efficacy of the method.

1 The results (both non-local structures and geometrical statistics) have shown that
the agreement is improved over time, where the rebuilt field tends towards the
DNS target. The best agreement is achieved in the cases when the time t = 2/3T
for the NS model and t = 3/4T for the imperfect model.

2 The DNS of the Gaussian random field with the same energy spectrum from the
optimal initial field needs a longer time to recover the DNS target field. The time
needed is longer by approximately 10%-15%.

3 The reconstruction of the non-local structures with strong |ω|, |S| and Π is sat-
isfactory. The angle between the MVEEs axes is small, around 20-25 degrees.
The reconstructed fields are able to produce close structures with smaller sizes
by about 20%-25% to that which exists in the DNS target fields. The locations
of the MVEEs are missed by 18%-22% of the axes lengths.

4 The results of both models are encouraging because they confirm the efficiency
of the 4DVAR in the reconstruction procedures. The imperfect model applying
the traditional Smagorinsky model shows the ability to recover the statistics of
the DNS target fields quicker than the application of the DA methods based on
the NS model.

This study shows that MVEEs have the ability to present useful information about non-
local structures for computational fluid dynamics with DA. Also, it demonstrates that
only a small portion of the data of the total modes is needed to reconstruct the data
of high wave-number modes in the DNS field. The method is expected to have more
applications in turbulence research. Several questions to be answered are as follows:

1 It is well-known that Smagorinsky models inherit plenty of uncertainties associ-
ated with turbulence closure. However, the dynamical Smagorinsky model is used
more widely and stable than the classical one, which makes the LES model most
applicable. Therefore, using the dynamical Smagorinsky model can be one of the
plans for the future as a LES model.

2 Increasing the optimisation horizon can improve reconstruction qualities. Our
recent work in [56] has shown that effect, where it has been observed that the
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agreement between different fields improves with a larger optimisation horizon
over time (when T increased to 0.5τL, and τL). However, it is necessary to
further extend T beyond one eddy turn over time scale in order to find the limit
of the improvement.

3 The vorticity field represents the rotation of the velocity field (i.e. both fields
characterise the whole velocity flow fields in turbulence). Because of the sensitive
nature of the turbulent flow, vorticity involvement in the problem formulation
may enhance the quality of the reconstruction. Therefore, investigating the effect
of the vorticity in the cost function to reduce the difference to the minimum
between the measurement and the velocity field evolved from the reconstructed
initial field can also be one of our future plans.



Appendix A

Derivation of the optimality
system for the 4DVAR with the
Navier-Stokes equations as the
model

The method we used here is 4D variational data assimilation where flow optmization
is used to find ϕ(x) to minimize the cost function which consists of the velocity and
vorticity and given by the formula:

J =
1

2

∫ T

0
dt

∫
Ω
dx(|u− v|22 + β2

2 |ω − ωv|22), (A.1)

where β2 is a constant, ω ≡ ∇× u, and ωv ≡ ∇× v, subject to constraints:

N(u) = ∂tu+ u · ∇u+∇p− ν∇2u− f = 0,∇ · u = 0,u(x, 0) = ϕ(x). (A.2)

The optimization problem is solved with the adjoint method. The Lagrangian function
is given as

L = J −
∫ T

0

∫
B
ξ ·N(u)dtdx−

∫ T

0

∫
B
µ∇ ·udtdx−

∫
B
λ · [u(x, 0)−ϕ(x)]dx, (A.3)

where ξ(x, t), µ(x), and λ(x) are the adjoint variables corresponding to the constraints.
B represents the [0, 2π]3 periodic box.

The state equations are given by

∂L

∂ξ
= 0,

∂L

∂µ
= 0,

∂L

∂λ
= 0. (A.4)
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The adjoint equations are given by

∂L

∂u
= 0,

∂L

∂p
= 0. (A.5)

Therefore, the state equations are

∂tu+ u · ∇u+∇p− ν∇2u− f = 0,∇ · u = 0,u(x, t = 0) = ϕ(x). (A.6)

Here, we will tackle the algebra to find ∂L
∂u , where ∂L

∂u is the Gateaux derivative, which
is defined by

〈∂L
∂u

, ũ
〉

= lim
ε→0

L(u+ εũ)− L(u)

ε
, (A.7)

where ũ is an arbitrary variation. ∂L
∂u is the function such that the above equation is

true for arbitrary ũ. To calculate the limit in Eq.A.7, we consider different parts of
Eq. A.3 separately. Starting with the integral of β2

2 |ω − ωv|22, its contribution can be
obtained by the following steps:

β2
2 lim
ε→0

1

ε

∫ T

0
dt

∫
xεΩ

dx

[
|∇ × (u+ ũε)− ωv|2 − |∇ × u− ωv|2

]
,

=β2
2 lim
ε→0

1

ε

∫ T

0
dt

∫
xεΩ

dx

[
|(∇× u− ωv) + ε∇× ũ|2 − |∇ × u− ωv|2

]
,

=β2
22

∫ T

0
dt

∫
xεΩ

dx

[
(∇× u− ωv) · (∇× ũ)

]
. (A.8)

Let A = 2β2
2(∇× u− ωv). Using ∂j(Aiũk) = Ai∂j ũk + ũk∂jAi, we have

Aiεijk∂j ũk = εijk∂j(Aiũk)− εijkũk∂jAi,
= εijk∂j(Aiũk) + ũkεkji∂jAi,

= εijk∂j(Aiũk) + ũk(∇×A)k. (A.9)

Therefore, Eq. A.8 becomes

∫ T

0
dt

∫
xεΩ

dxũ · (∇×A) = 2β2
2

∫ T

0
dt

∫
xεΩ

dxũ ·
[
∇× (∇× u− ωv)

]
=− 2β2

2

∫ T

0
dt

∫
xεΩ

dxũ ·
[
∇2u+∇× ωv

]
. (A.10)
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Note that the contribution from the first term on the right-hand side of Eq. A.9 is

−
∫ T

0
dt

∫
xεΩ

dx∇ ·
[
A× ũ

]
,

=−
∫ T

0
dt

∫
xεΓ

dΓ
[
A× ũ

]
· n,

=− 2

∫ T

0
dt

∫
xεΓ

dΓ
[
(∇× u− ωv)× ũ

]
· n, (A.11)

where Γ is the boundary. This term is zero due to the periodic BC.

The contribution of |u− v|22 in the cost function is formed as follows:

lim
ε→0

1

ε

[
1

2

∫ T

0
dt

∫
xεΩ

dx|(u+ ũε)− v|2 − 1

2

∫ T

0
dt

∫
xεΩ

dx|u− v|2
]
,

=lim
ε→0

1

ε

[
1

2

∫ T

0
dt

∫
xεΩ

dx(u)2 +
1

2

∫ T

0
dt

∫
xεΩ

dx2ε(u · ũ)

−1

2

∫ T

0
dt

∫
xεΩ

dx2(u · v)− 1

2

∫ T

0
dt

∫
xεΩ

dx2ε(u · v)

+
1

2

∫ T

0
dt

∫
xεΩ

dx(v)2 − 1

2

∫ T

0
dt

∫
xεΩ

dx(u)2

+
1

2

∫ T

0
dt

∫
xεΩ

dx2(u · v)− 1

2

∫ T

0
dt

∫
xεΩ

dx(v)2

]
,

=
1

2

∫ T

0
dt

∫
xεΩ

dxũ · (u)− 1

2

∫ T

0
dt

∫
xεΩ

dxũ · (v)

=
1

2

∫ T

0
dt

∫
xεΩ

dxũ · (u− v). (A.12)

From the third term of Lagrangian function in Eq. A.3, we have

lim
ε→0

1

ε

[
−
∫ T

0
dt

∫
B
dx

[
µ∇ · (u+ ũε)− µ∇ · u

]]

=−
∫ T

0
dt

∫
B
dxµ∇ · ũ. (A.13)

By using the product rule, Eq. A.13 becomes



116

∫ T

0
dt

∫
B
dxũ · ∇µ−

∫ T

0
dt

∫
B
dx∇ · (µũ),

=

∫ T

0
dt

∫
B
dxũ · ∇µ−

∫ T

0
dt

∫
Γ
dΓ µũ · n (A.14)

For the 2nd term of Lagrangian function in Eq. A.3, we obtain

− lim
ε→0

1

ε

∫ T

0
dt

∫
B
dx

[
ξ ·
[
∂(u+ ũε)

∂t
+ (u+ ũε) · ∇(u+ ũε)

+∇p− ν ∂
2(u+ ũε)

∂xj∂xj
− f

]
−
[
∂u

∂t
+ u · ∇u+∇p− ν ∂2u

∂xj∂xj
− f

]]
,

=lim
ε→0

1

ε

∫ T

0
dt

∫
B
dx

[
− ξ · ε∂ũ

∂t
− ξ · [ũε · (∇u)] + ξ · εν ∂2ũ

∂xj∂xj
− ξ · [εu · (∇ũ)]

]
,

=

∫ T

0
dt

∫
B
dx

[
− ξ · ∂ũ

∂t
− ξ · [ũ · (∇u)] + ξ · ν ∂2ũ

∂xj∂xj
− ξ · [u · (∇ũ)]

]
. (A.15)

Also for the 2nd term of Eq. A.3, we find

− lim
ε→0

1

ε

∫ T

0
dt

∫
B
dx

[
ξ · [∇(p+ p̃ε)−∇p]

]
=−

∫ T

0
dt

∫
B
dxξ · ∇p̃,

=

∫ T

0
dt

∫
B
dx∇ · ξp̃−

∫ T

0
dt

∫
B
dx∇ · (ξp̃),

=

∫ T

0
dt

∫
B
dx ∇ · ξp̃−

∫ T

0
dt

∫
Γ
dΓ ξp̃ · n (A.16)

For the simplification of Eq. A.15, we have

First term =

∫ T

0
dt

∫
B
dxũ · ∂tξ −

∫ T

0
dt

∫
B
dx∂t(ũ · ξ), (A.17)

Second term = −
∫ T

0
dt

∫
B
dxũ · [(∇u) · ξ], (A.18)

Third term =

∫ T

0
dt

∫
B
dxνũ · ∇2ξ +

∫ T

0
dt

∫
B
dxν

[
∂j(∂j ũkξk)− ∂j(ũk∂jξk)

]
,

(A.19)

Fourth term =

∫ T

0
dt

∫
B
dxũ · (u · ∇ξ)−

∫ T

0
dt

∫
B
dx∇ ·

[
u (ũ · ξ)

]
. (A.20)
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Eqs. A.17, A.19 and A.20 can be simplified as

First term =

∫ T

0
dt

∫
B
dx ũ · ∂tξ −

∫
B
dx ũ · ξ

∣∣∣∣
t=T

+

∫
B
dx ũ · ξ

∣∣∣∣
t=0

, (A.21)

Third term =

∫ T

0
dt

∫
B
dx νũ · ∇2ξ +

∫ T

0
dt

∫
Γ
dΓ ν

∂ũ

∂n
· ξ −

∫ T

0
dt

∫
Γ
dΓ ν

∂ξ

∂n
· ũ,

(A.22)

Fourth term =

∫ T

0
dt

∫
B
dxũ · (u · ∇ξ)−

∫ T

0
dt

∫
Γ
dΓ u · n(ũ · ξ). (A.23)

For the last term in Eq. A.3, we have

−lim
ε→0

1

ε

∫
B
dx

[
λ · [(u+ ũε)−ϕ]− λ · (u−ϕ])

]
= −

∫
B
λ · ũ(x, 0)dx. (A.24)

By invoking Eqs. A.10, A.11, A.12, A.14, A.18, A.21, A.22, A.23 and A.24, and ∂L
∂u = 0,

we gain the following:

0 =

∫ T

0
dt

∫
B
dx

[
ũ · ∇µ− 2β2

2ũ ·
[
∇2u+∇× ωv

]
+ ũ · ∂tξ − ũ · [(∇u) · ξ]

+ νũ · ∇2ξ + ũ · (u · ∇ξ)

]
+

∫ T

0
dt

∫
xεΓ

dΓ

[
− µũ · n− 2β2

2

[
(∇× u− ωv)× ũ

]
· n

− u · n(ũ · ξ) + ν
∂ũ

∂n
· ξ − ν ∂ξ

∂n
· ũ
]

+

[
−
∫
B
dxũ · ξ

∣∣∣∣
t=T

+

∫
B
dxũ · ξ

∣∣∣∣
t=0

]
−
∫
B
λ · ũ(x, 0)dx, (A.25)

i. e.,

0 =

∫ T

0
dt

∫
B
dx

[
ũ ·
[
∇µ− 2β2

2 [∇2u+∇× ωv] + ∂tξ −∇u · ξ + ν∇2ξ + u · ∇ξ
]

+

∫ T

0
dt

∫
xεΓ

dΓ

[
− µũ · n− u · n(ũ · ξ) + ν

∂ũ

∂n
· ξ − 2β2

2

[
(∇× u− ωv)× ũ · n

]
− ν ∂ξ

∂n
· ũ
]

+

[
−
∫
B
dx ũ · ξ

∣∣∣∣
t=T

+

∫
B
dx ũ · ξ

∣∣∣∣
t=0

]
−
∫
B
λ · ũ(x, 0)dx. (A.26)

Since the variation ũ is arbitrary we obtain from A.26
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∂tξ + u · ∇ξ −∇u · ξ +∇µ+ ν∇2ξ − 2β2
2(∇2u+∇× ωv) = F , ξ(x, t = T ) = 0.

(A.27)

where F (x, t) = −[u(x, t) − v(x, t)] when x ∈ Ω and F = 0 otherwise. And simulta-
neously ξ(x, 0) = λ.

As we can notice, Eqs. A.27 has an extra term which related to the vorticity field at
the cost function. Numerical tests show that ignoring this term does not change the
results significantly. Therefore, in Chapter 2, we have set β2 = 0.

Since variation p̃ in the state is arbitrary, using ∂L
∂p = 0 and Eq. A.16, we have

0 = ∇ · ξ. (A.28)

Thus, the adjoint equations for Chapter 2 is given as 2.7. The boundary integrals are
identically zero because of the periodic BC.

By the same Eq. A.3, we also find

−lim
ε→0

1

ε

∫
B
dx

[
L(ϕ+ ϕ̃ε)− L(ϕ)

]
= −

∫
B
ϕ̃ · λ dx. (A.29)

Therefore, by the definition of ∂L
∂ϕ , we have

〈∂L
∂ϕ

, ϕ̃
〉

=

∫
B
ϕ̃ · λ dx.

Therefore,

λ =
∂L

∂ϕ
. (A.30)

By the substitution of ξ(x, 0) = λ, in Eq. A.30, we obtain the gradient of the cost
function.

∂L

∂ϕ
= ξ(x, 0),

i. e.

DJ

Dϕ
= ξ(x, 0). (A.31)



Appendix B

The adjoint equation for the
filtered NS equations with the
standard Smagorinsky model

The optimality system is quite similar to what we presented in Appendix A. However,
the filtered NS equations have an extra term due to the SGS stress tensor. Therefore,
the adjoint equation for the filtered NSE with standard Smagorinsky model is different,
and given below.

The filtered Navier-Stocks equations are given in the form:

(FNS)i = ∂tūi + ūm∂mūi + ∂ip̄− ∂mτ rim − ν∇2ūi = 0, (B.1)

where ūi is the filtered velocity. The SGS stress contribution to the adjoint equation is
given by an additional term

Tk =
∂

∂uk

∫ T

0

∫
B
ξi
(
− ∂mτ rim

)
d3xdt. (B.2)

Here ∂
∂uk

has been used to denote the functional derivative ∂
∂uk(x′,t′) . In Appendix A,

the derivative is calculated using its relation with the Gateaux derivative. However,
formally, ∂

∂uk
can also be calculated following the same rules for standard differentiation,

with the additional relation:

∂um(x, t)

∂uk(x′, t′)
= δmkδ(x− x′)δ(t− t′). (B.3)

In this section, we use Eq. B.3 to calculate the derivative in Eq. B.2. This contribution,
with the non-dynamical Smagorinsky model for the SGS stresses, will be our focus,
where
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τ rim = −νtS̄im = −(Cs∆)2|S̄|S̄im = −(Cs∆)2(2S̄pqS̄qp)
1/2S̄im. (B.4)

Therefore,

Tk =
∂

∂uk

∫ T

0

∫
B
ξi ∂m[−(Cs∆)2|S̄|S̄im] d3xdt. (B.5)

=
∂

∂uk

∫ T

0

∫
B

(Cs∆)2|S̄|S̄im(∂mξi) d3xdt, (B.6)

using the periodic BCs. The derivative of the integral, therefore, leads us to the
Smagorinsky model contribution in the adjoint of the FNS equation. We have

Tk =

∫ T

0

∫
B

(Cs∆)2 ∂

∂uk

[
|S̄|S̄im

]
(∂mξi) d3xdt+

∫ T

0

∫
B

[∂(Cs∆)2

∂uk

]
|S̄|S̄im(∂mξi) d3xdt.

(B.7)

We split the integration above into separate parts to make the derivations easy to
understand. Thus, for the first term of Eq. B.7 we have

∂

∂uk

[
|S̄|S̄im

]
= |S̄| ∂

∂uk
S̄im + S̄im

∂

∂uk
(2S̄pqS̄qp)

1/2

= |S̄|∂S̄im
∂uk

+
1

2
S̄im|S̄|−1(2× 2)S̄pq

∂S̄pq
∂uk

= |S̄|∂S̄im
∂uk

+ 2|S̄|−1S̄imS̄pq
∂S̄pq
∂uk

. (B.8)

By substituting Eq. B.8 into the first integral ( called Ak) of Eq. B.7,

Ak =

∫ T

0

∫
B

(Cs∆)2
[
|S̄|∂S̄im

∂uk
+ 2|S̄|−1S̄imS̄pq

∂S̄pq
∂uk

]
(∂mξi) d3xdt. (B.9)

To simplify Eq. B.9, we have

Ak =

∫ T

0

∫
B

(Cs∆)2|S̄|∂S̄im
∂uk

∂mξi d3xdt +∫ T

0

∫
B

2(Cs∆)2|S̄|−1S̄imS̄pq
∂S̄pq
∂uk

∂mξi d3xdt. (B.10)

Therefore, the first integration in Eq. B.10 can be simplified as
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ak =
1

2

∫ T

0

∫
B

(Cs∆)2|S̄|(∂mξi)
[ ∂

∂xi

(∂um
∂uk

)
+

∂

∂xm

( ∂ui
∂uk

)]
d3xdt,

=− 1

2

∫ T

0

∫
B
∂i

[
(Cs∆)2|S̄|(∂mξi)

]
δmkδ(x− x′)δ(t− t′)d3xdt−

1

2

∫ T

0

∫
B
∂m

[
(Cs∆)2|S̄|(∂mξi)

]
δikδ(x− x′)δ(t− t′)d3xdt, (B.11)

where integration by parts has been used. Therefore, Eq. B.11 becomes

ak = −1

2
∂i

[
(Cs∆)2|S̄|(∂kξi)

]
− 1

2
∂m

[
(Cs∆)2|S̄|(∂mξk)

]
= −∂i

[
(Cs∆)2|S̄|Xki

]
, (B.12)

where Xki = 1
2

(
∂kξi + ∂iξk

)
.

Also, the second integration in Eq. B.10, denoted by bk, is simplified as

bk =

∫ T

0

∫
B

(Cs∆)2|S̄|−1S̄imS̄pq(∂mξi)
[ ∂

∂xp

(∂uq
∂uk

)
+

∂

∂xq

(∂up
∂uk

)]
d3xdt,

=−
∫ T

0

∫
B
∂p

[
(Cs∆)2|S̄|−1S̄imS̄pq(∂mξi)

]
δqkδ(x− x′)δ(t− t′)d3xdt −∫ T

0

∫
B
∂q

[
(Cs∆)2|S̄|−1S̄imS̄pq(∂mξi)

]
δpkδ(x− x′)δ(t− t′)d3xdt. (B.13)

Thus, Eq. B.13 becomes

bk =− ∂p
[
(Cs∆)2|S̄|−1S̄imXimS̄pk

]
− ∂q

[
(Cs∆)2|S̄|−1S̄imXimS̄qk

]
,

=− 2(Cs∆)2∂p

[
S̄kp|S̄|−1S̄imXim

]
. (B.14)

Thus, by invoking Eqs. B.12 and B.14 and knowing that the last part of the integration
of Eq. B.7 equals to zero, we have:

Tk =− (Cs∆)2∂i

[
|S̄|Xki

]
− (Cs∆)2∂i

[2S̄kiS̄pm
|S̄|

Xpm

]
,

=− (Cs∆)2∂i

[2S̄pmS̄pmXik + 2S̄kiS̄pmXpm

|S̄|

]
. (B.15)
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Therefore, the adjoint equation is :

∂tξ + ū · ∇ξ −∇ū · ξ +∇µ+ν∇2ξ + (Cs∆)2∇ ·
[2X

(
S̄ : S̄

)
+ 2S̄T

(
S̄ : X

)
|S̄|

]
= F ,

∇ · ξ = 0, (B.16)

ξ(x, t = T ) = 0.

The rest of the derivations can be seen in the previous section.
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