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Abstract

Survival for children and young adults (CYA) diagnosed with cancer has
improved substantially over recent decades, with over 80% currently diagnosed
expected to survive at least 5-years. However, survivors are at increased risk of
the late effects of their treatment, with many reporting chronic health conditions
in later life. The purpose of this project was to investigate cure and long-term
health outcomes in CYA with cancer in Yorkshire using data from a population-
based cancer registry. The study included 5471 patients diagnosed with a
primary tumour in Yorkshire between 1990 and 2011 aged under 30.

Statistical cure models were utilised to describe survival trends. These models
simultaneously estimate the percentage ‘cured’ and the survival of those
‘uncured’. The percentage cured is a summary of long-term survival while the
median survival time of the uncured provides important information on those
who are not long-term survivors. Generally for most diagnostic groups there
was an improvement in survival over time which was mainly driven by an
increase in the proportion of patients cured rather than an increase in the
survival of the uncured.

Long-term morbidity was assessed via linkage to hospital admission data for
respiratory and cardiovascular disease and subsequent tumours obtained from
cancer registrations. Long-term CYA had increased risk of each of these
outcomes compared to the general population. Analysis incorporating the
cumulative burden of all subsequent neoplasms and all respiratory and
cardiovascular hospitalisations combined found that by age 40, an individual
experienced an average of 2 of these events, mainly driven by hospitalisations
for respiratory conditions.

Findings from this study provide an evidence base to aid risk-stratification for
the long-term follow-up care for this high risk population.
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Chapter 1 Introduction

1.1 Background

Cancer is major public health issue and accounts for a significant burden of
disease with an estimated 18.1 million new cases of cancer diagnosed
worldwide in 2018 [1]. Cancer affects people of all ages and is more common in
older ages; on average half of all cancer diagnoses each year in the UK are in
people aged 70 years and over [2]. Cancers in children and young adults (CYA)
(aged 0-24 years) are rare and account for approximately 1% of all cancers
diagnosed in the UK [2]. However, cancer is the one of the most common
causes of death within this age range; accounting for 10-20% of all deaths in
CYA[3].

Cancers diagnosed in CYA are a heterogeneous disease group and differ from
those diagnosed in older adults [4]. The most common childhood cancers (0-14
years) are leukaemia, central nervous system (CNS) tumours and lymphomas;
together these account for approximately two thirds of all childhood cancers [4,
5]. Carcinomas, which are the most common histological type in adults are very
rare in childhood [5, 6]. Cancers in teenagers and young adults (TYA) have a
distinct profile and can be grouped into three broad categories comprising of
‘late paediatric cancers’, ‘early onset adult cancers’ and certain diagnostic
groups which have a peak incidence in this age group [7-9]. Lymphomas are
the most common cancer in 15-24 years followed by carcinomas and germ cell
tumours which together account for over half of all diagnoses in this age group

[8].

Survival rates for children diagnosed with cancer have improved significantly
over recent decades; 5-year survival for all cancers combined increased from
30% for children diagnosed in the 1960s [6, 10] to 82% for children diagnosed
between 2006 and 2010 [11]. Predicted 5-year survival for those diagnosed in
2018 is estimated to be 85% [12]. These improvements in survival are due to
several factors including advancements in treatments over time, including
chemotherapy, surgical and radiotherapy techniques, participation in national



and international clinical trials, as well as centralisation of specialist centres and
the development of supportive care packages [6, 10, 13]. Survival rates for TYA
have also improved over time [14] and the latest overall 5-year survival rate for
TYA diagnosed in the UK between 2001 and 2006 for all cancers combined was
82% [15, 16]. There is however, considerable variation in survival by diagnostic
group. Childhood 5-year survival ranges from over 90% for children with
retinoblastoma and Hodgkin lymphoma to around 60% for neuroblastoma and
bone tumours [11, 17]. TYA 5-year survival ranges from over 80% for Hodgkin
lymphoma, thyroid carcinoma, testicular and ovarian germ cell tumours and
melanoma to around 60% for bone tumours and soft tissue sarcomas [15, 16].
For certain diagnostic groups such as leukaemia, bone and soft tissue
sarcomas, TYA generally have poorer outcomes than children diagnosed with
the same cancer [18-21].

1.2 Study rationale

The 5-year survival rate for patients diagnosed with cancer is frequently used as
an indicator to monitor outcomes for cancer patients [22, 23] and it is often
stated that patients who survive beyond this time period are said to be cured of
their original cancer. In cancer epidemiology, cure models offer a statistical
method to assess cure for long-term survivors [24-27]. Statistical cure is
possible for a particular cancer if the survival curve flattens out and levels off
after a sufficient length of time when the remaining patients have a similar death
rate to the general population. Rather than model the survival of all patients as
one, a cure model assumes there are two groups of patients, one who do not
experience the outcome of interest and are ‘cured’ and the other who
experience the outcome and their survival is estimated separately [24-27]. If
assessing trends in survival over time, cure models can identify if survival has
improved due to increasing the proportion of patients cured, improving the
survival time of the uncured patients or a combination of both [28]. Cure models
have been developed extensively in the statistical literature and applications to
data from population-based cancer registrations are mainly to the most common
adult cancer types, although two studies have specifically examined cure in
childhood leukaemia using population-based cancer registrations [29, 30].

High survival rates for CYA cancers come at a cost and high intensity
treatments make long-term cancer survivors (defined as those surviving beyond
5-years from diagnosis) at increased risk of premature mortality [31, 32], second
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malignant neoplasms [33-35], and other morbidities [36-38] compared to the
general population. These late health effects may not occur until several years
after the end of treatment [39]. It is estimated that 62%-75% of childhood cancer
survivors have at least one late side effects of treatment with many suffering
from multiple conditions [36-38, 40]. There is also growing evidence that TYA
are also at increased risk of these outcomes [41]. Data linkage of cancer
registrations to hospital admissions provides an objective outcome of morbidity
in which to study the late effects in long-term survivors of CYA cancers.

The purpose of this project was to examine population-based cure and long-
term health outcomes in CYA with cancer in Yorkshire using objective outcome
measures.

1.3 Thesis aims and objectives

This project had 3 key aims:

1. To assess the feasibility of applying cure models to CYA diaghosed
with cancer using data from a regional population-based specialist
cancer register

Different methods for fitting cure models were researched and the most
suitable statistical methods were applied to assess if cure, as defined by
these statistical models, was a reasonable assumption. Cure models
were investigated for a range of cancers which are most common in
children and teenagers and young adults. Cure models incorporating
clinical risk factors were investigated for children with leukaemia.

2. To evaluate long-term health outcomes for children and young adult
cancer survivors
Morbidity in long-term CYA cancer survivors was assessed using cancer
registrations linked to hospital admission data for three specific
outcomes:

a) A detailed description of respiratory morbidity based upon hospital
admissions was provided including risk of admissions related to
earlier treatment.

b) The risk of developing a secondary malignant neoplasm was
assessed using cancer registration data, this included early onset
tumours and the association with latency and subsequent mortality.

c) Hospital admissions for cardiovascular disease were described.
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These three outcomes were selected as they represent the most
common causes of late mortality and morbidity in long-term childhood
and young adult cancer survivors. For each outcome incidence rates in
the cancer survivor cohort were compared to rates in the general
population matched on age and sex.

3. To assess the cumulative burden of subsequent tumours,
cardiovascular and respiratory morbidity for children and young
adult cancer survivors
Combining the three outcomes included in Aim 2 above, the cumulative
burden of all three morbidities was described and the association
between treatment exposure and cumulative burden investigated using
novel statistical methodology to account for multiple and recurrent
events.

1.4 Thesis outline

Chapter 2 provides a detailed background and evaluates the evidence base for
this research, including a critical review of the current literature on CYA cancer
epidemiology, cure models and studies on late effects. Key gaps in the current
literature were identified. Chapter 3 introduces the data sources and describes
the statistical methods used throughout the rest of the thesis. Chapter 4
includes a detailed descriptive analysis of the study population. The main
results of the project relating to the three aims described above are presented in
Chapters 5-8, including a detailed discussion at the end of each chapter
summarising the results in the context of current research and identifying
strengths and limitations of each analysis. Chapter 5 focusses on cure models
(Aim 1), Chapter 6 on respiratory hospitalisations (Aim 2a), Chapter 7 on
subsequent malignant neoplasms (Aim 2b) and Chapter 8 on the cumulative
burden of subsequent tumours, cardiovascular and respiratory morbidity (Aim 3)
including a detailed description of hospitalisations for cardiovascular disease
(Aim 2c). Chapter 9 draws the final conclusions of this thesis together by
proving a summary of the main findings in relation to the aims above, discusses
the clinical implications, strengths and limitations of the work and identifies
areas for further research.



Chapter 2 Background and literature review

2.1 Introduction

The aim of this chapter is to provide background information on the
epidemiology of cancer in children and young people focusing on studies based
on population-based cancer registry data. Statistical methods used to analyse
survival data, including a description of cure models, are evaluated, followed by
a literature review and critical appraisal of the application of cure models to
children and young people with cancer. This chapter then goes on to critically
review the current literature on the long-term health outcomes of survivors of
cancer in childhood and young adulthood specifically focussing on three key
areas: subsequent malignant neoplasms, cardiovascular disease and
respiratory disease. Finally, an overall summary of the literature is provided and
the key gaps in the knowledge are identified.

2.2 Classification of cancers in children and young adults

Cancers diagnosed in children and young adults (CYA) are a heterogeneous
disease group and differ from those diagnosed in older adults, therefore age-
specific classification and coding systems are used within this age range [4].
Generally, cancers are coded and classified according to the International
Classification of Diseases in Oncology (ICD-0O), currently in its third edition
(ICD-0-3) [42]. ICD-0O-3 describes tumours based on a topographical code,
which describes the anatomical site of origin (or organ system) of the tumour
and a morphological code, which describes the cell type (or histology) of the
tumour and also the behaviour (malignant or benign). Cancers, particularly in
adults, are often described and reported by primary site of origin based on
topography alone, for example cancers of the breast, colon or lung. For
children, the range and type of cancers diagnosed are different from adult
cancers and classification for childhood tumours is based on morphology rather
than topography alone [43]. The International Classification of Childhood
Cancer, now in its third edition (ICCC-3) [43], is the current standard for
presentation of data on childhood cancer incidence and survival based on the
ICD-0-3. This classification system includes some non-malignant intracranial



and intraspinal tumours as these tumours present with similar clinical
symptoms, prognosis and late effects as malignant tumours in childhood and
therefore it is important to record the incidence of these tumours [43].

The ICCC-3 defines 12 main diagnostic group which are further split into 47
subgroups [43], the 12 main diagnostic groups are:

l. Leukaemias, myeloproliferative diseases and myelodysplastic
diseases

Il. Lymphomas and reticuloendothelial neoplasms

1. CNS and miscellaneous intracranial and intraspinal neoplasms

V. Neuroblastoma and other peripheral nervous cell tumours

V. Retinoblastoma

V1. Renal tumours

VII.  Hepatic tumours

VIIl.  Malignant bone tumours

IX. Soft tissue and other extraosseous sarcomas

X. Germ cell tumours, trophoblastic tumours and neoplasms of
gonads

XI. Other malignant epithelial neoplasms and malignant melanomas

XIl.  Other and unspecified malignant neoplasms

The profile of cancers in teenagers and young adults (TYA) (see Section 2.3 for
further discussion on age range) is distinct from those observed in children and
adults. Cancers in TYA can be described by three broad categories: ‘late
paediatric cancers’ such as Wilms tumours, rhabdomyosarcoma and
neuroblastoma, those that arise as ‘early onset adult cancers’ such as
melanoma and thyroid cancer and those which have a peak incidence in this
age group such as Hodgkin lymphoma and gonadal germ cell tumours [9].
Therefore separate classification systems have also been defined for TYAs [8,
44]. In the UK, the Birch classification system is commonly used which groups
diagnoses into one of 10 main groups with a further 32 subgroups within these
[8]. This classification is also predominantly based on morphology. The 10 main
diagnostic groups are:

1. Leukaemias

2 Lymphomas

3. CNS and other intracranial and intraspinal tumours

4. Osseous and chondromatous neoplasms, Ewings tumour and other
neoplasms of the bone



Soft tissue sarcomas

Germ cell and trophoblastic neoplasms

Melanoma and skin carcinoma

Carcinomas (except of skin)

Miscellaneous specified neoplasms not elsewhere classified (NEC)
10. Unspecified malignant neoplasms NEC

© 0 N o O

The main differences between ICCC-3 and the Birch system is the classification
of melanomas and carcinomas as separate groups in the Birch classification
system, as these are more frequent in TYA than younger ages, while non-CNS
embryonal tumours which are common in childhood and less frequentin TYA
are grouped together in the Birch classification system [8, 45].

2.2.1 Cancer registration

Population-based cancer registries (PBCR) are responsible for recording all
new cases of cancer in a defined population, usually defined by a geographic
region [46], with a defined set of variables recorded for each case [47]. PBCRs
play an important role in cancer control; monitoring trends in incidence,
mortality, survival and prevalence as well as supporting and planning service
and care for cancer patients [47]. The advantage of using data from a PBCR
rather than a single institution data set or a clinical trial is that PBCRs cover the
whole population of cancer patients and are not limited to a self-selected, often
atypical, subgroups of patients [47].

Cancer registration in the UK started in the 1920s with regional coverage in
some areas. Since 2013 registrations have been recorded centrally for the
whole of England via the National Cancer Registration and Analysis Service
(NCRAS) within Public Health England (PHE) [48]. Data are collected in
accordance with the Cancer Outcomes and Services Dataset (COSD) which
defines a general core dataset for all cancers in addition to extra key clinical
and pathological data items for specific tumour types [49].

2.2.2 Specialist cancer registries

A general cancer register refers to one that records all new cancer registrations
for all ages and all cancer types generally within a pre-defined geographic
region. Specialist registers refer to those that only cover a specified age range
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at diagnosis, such as paediatric registers for 0-14 year olds, or one disease
type, for example haematological tumours only [50]. Across Europe eight
countries (including the UK) have a national register for paediatric cancers and
another three countries have large regional paediatric registers [51]. Specialist
registers for children and young adults (CYA) are important due to differences in
coding and types of diagnoses in this age range compared to cancers in older
ages. In the UK national coverage of childhood cancers were recorded in the
National Registry of Childhood Tumours (NRCT) which included all diagnoses
of cancer in 0-14 year olds from 1962 onwards for England, Scotland and
Wales and from 1993 onwards included Northern Ireland [10]. Since 2013, in
line with changes to cancer registrations in England this registry was dissolved
and registrations are now recorded as part of the NCRAS within PHE for
England and the national general cancer registries of Scotland, Wales and
Northern Ireland [51]. In England in addition to the NRCT there are several
specialist childhood and young adult cancer registries including the Manchester
Children’s Tumour Registry [52], the Northern Region Young Persons Malignant
Disease Registry [53], the West Midlands Regional Children’s Tumour Registry
[54] and the Yorkshire Specialist Register of Cancer in Children and Young
People [55]. These regional registers collect more detailed information
regarding key clinical prognostic risk factors at diagnosis such as stage and
grade of tumours as well as detailed treatment information compared to data
collected nationally. National and regional registries regularly exchange data to
ensure completeness of ascertainment of cases.

2.2.3 Yorkshire Specialist Register of Cancer in Children and Young

People

The Yorkshire Specialist Register of Cancer in Children and Young People
(YSRCCYP) was used for the analysis presented in this thesis and is described
in further detail in Chapter 3. Briefly it includes all diagnoses of cancer in
children age 0-14 years from 1974 onwards and diagnoses in TYA aged 15-29
years from 1990 onwards for patients resident in the former Yorkshire Health
Authority. Data on patients resident in the South Yorkshire area are included
from 1998 onwards only.

Advantages of using data for a regional register include less geographic
variation in data quality; errors may be easier to check and update as the
register may only include a limited number of hospitals making it easier to check



and verify the patient’s hospital notes for data quality errors. The YSRCCYP
incudes more detailed information than is available in the NRCT, for example
information on stage and treatment which have limited availability nationally.
The limitations are smaller sample sizes especially for very rare childhood
cancers where only a few cases are diagnosed per year. If patients live in one
area but are treated in another then they may be counted more than once in
different regional registers which may result in them being counted more than
once in national figures. A change of address outside the region may also
increase the chances of loss to follow-up.

2.3 Age definitions

In terms of cancer epidemiology, childhood cancers refer to those diagnosed
before a person’s 15" birthday so includes cancers diagnosed between 0-14
years of age. This age range has been used extensively in published research
worldwide [56]. Adolescents generally refer to the age group 15-19 years [20,
57-59], however the definition of the age range for teenagers and young adults,
or adolescents and young adults (AYA) as frequently used in literature from the
USA and Canada, is less clearly defined and varies between studies. One
commonly used age range is 15-24 years including much of the published work
in the UK [8, 15, 16, 60] and in the EUROCARE- 4 study [19]. Others have used
the age range 13-24 years [14, 18, 61-63]. An upper age limit of 29 years is
often included in studies from the USA and Canada [44, 45, 64] and this is the
age range included in the YSRCCYP [65]. More recently it has been
recommended to use the age group 15-39 years [7, 9, 58, 66-68]. Often upper
age limits are chosen to reflect national clinical treatment practices [7]. Using
different age ranges has implications for comparison between studies as the
types of cancers diagnosed and incidence rates vary with age. There are 2.7
times more patients diagnosed aged 15-29 years old compared to 0-14 years
old and approximately half of the 15-29 year old patients diagnosed with cancer
are 25-29 years at diagnosis [64]. The male to female cancer incidence ratio
also varies by age group due to differences in cancer type by age and sex;
around two thirds of cancers diagnosed in 15-39 years are in women, compared
with a slight excess of childhood cancers in males [68, 69].

The YSRCCYP includes cancers diagnosed in patients aged 0-29 years at
diagnosis, therefore for the basis of my analysis and the rest of this background
literature review, children and young adults (CYA) will refer to those aged
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between 0-29 years at diagnosis, with a specific focus of teenagers and young
adults (TYA) to mean those aged 15-29 years unless otherwise stated.

TYA diagnosed with cancer represent a specific group of interest for several
reasons. The teenage years span an age of transition from childhood to
adulthood. It is an important time developmentally as individuals gain more
control and independence in many aspects of their lives including in terms of
education, relationships and sexuality [70]. A diagnosis of cancer and its
treatment may adversely affect this transition period, for example prolonged
absence from school while undergoing cancer treatment may affect not only
educational outcomes but also friendships with peers [70]. TYA cancer patients
fall between two groups in terms of cancer care, often too old to be treated in
paediatric wards but too young to be on adult wards [66, 71]. TYA patients may
want to be involved in the decision making process regarding treatment choices
[70] and may prefer to be treated alongside their peers rather than with younger
children or older adults [71]. Recent cancer policy has addressed this issue by
recommending specialist provision of care for this age group including age
appropriate services as well as clinical expertise [72]. This group is also an
understudied group in term of late effects compared to childhood cancer
survivors and further research is needed for this unique group [67, 73].

2.4 Children and young adult cancer epidemiology studies

There are several key epidemiological studies that are frequently referenced
throughout this thesis when reviewing the literature on CYA cancer, particularly
studies on long-term survivors. A brief overview of these studies including their
main strengths and limitations is given below.

Automated Childhood Cancer Information System

The Automated Childhood Cancer Information System (ACCIS) project was a
European project which included cancer registrations for children (0-14 years)
and adolescents (15-19 years) from 80 PBCRs in 35 countries. The projects
aims were to collect and report data on cancer incidence and survival in Europe
and initially included over 160,000 cases of cancers diagnosed from 1970 to
2001 [20] and was subsequently updated to include all diagnoses between
1991 and 2010 [74] including 180,000 cases in 19 European countries. This
was a large, population-based study therefore enabling incidence and survival
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trends of relatively rare cancers within 0-19 year olds to be assessed. The
limitations are that data are not available for older teenagers and young adults
and there is a lack of prognostic information such as stage, to assess variation
in survival.

EUROCARE

The EUROCARE project started in the late 1980s and aimed to provide analysis
on survival rates in cancer patients of all ages across Europe. The latest
EUROCARE-5 project included 22 million patients diagnosed from 117 PBCRs
in 31 countries diagnosed between 1978 and 2007 [75]. Specific subgroup
analysis of the EUROCARE database have included children or children and
adolescents [19, 21, 76]. Again the main strengths of this study are that it is
large and population-based and therefore able to assess survival trends by
diagnostic groups across Europe. Data are available for all ages and survival
estimates have been compared for children (0-14 years) and adolescents and
young adults (15-39 years) and older adults (40-69 years) [21]. The main
limitation of this study is a lack of data on stage at diagnosis and treatment.

Surveillance, Epidemiology and End Results program

In the USA, population-based data on the epidemiology of malignant diseases
in CYA are maintained by the Surveillance, Epidemiology and End Results
program (SEER) which is run by the National Cancer Institute [77]. This registry
includes a representative sample of 26% of the US population, and
comprehensive reports on incidence and survival for approximately 30,000
patients aged 0-19 years diagnosed from 1975-1995 [59] and approximately
60,000 patients 15-29 years diagnosed with cancer between 1975 and 2000
[64] have been published. Key strengths are again that studies based on SEER
data are large and population-based covering all ages; data on treatment and
stage are also available. However, it does only cover 26% of the US population.

Childhood Cancers Survivor Study

The Childhood Cancer Survivors Study (CCSS), is a multi-institution study in
the USA and Canada of over 14,000 5-year cancer survivors diagnosed
between 1970 and 1986, aged 0-20 years at diagnosis and a similarly aged
cohort of 3600 non-cancer siblings [78]. It has been recently expanded to
include additional diagnoses between 1987 and 1999 [79] so now includes
approximately 34,000 5-year survivors from 31 institutions. The CCSS is not
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population-based and only includes patients diagnosed with leukaemia, CNS
tumours, Hodgkin lymphoma, non-Hodgkin lymphoma, Wilms tumours,
neuroblastoma, soft tissue sarcomas and bone tumours so is not truly
representative of all childhood cancer survivors. Strengths are the large study
sample with comprehensive follow-up, detailed treatment information and a
large sibling comparison group. The main limitations are that outcomes are self-
reported by the survivors and only subsequent tumours are validated. There are
also limitations of using sibling controls as both the cancer survivor and sibling
control will be exposed to the same genetic and environmental risk factors.

British Childhood Cancer Survivor Study

The British Childhood Cancer Survivor Study (BCCSS) includes 17,000 5-year
cancer survivors diagnosed in Great Britain between 1940 and 1991 aged 0-14
years at diagnosis [80]. It has also recently been extended to include patients
diagnosed between 1992 and 2006 so now includes approximately 35,000
childhood cancer survivors [81]. The BCCSS was ascertained from the National
Registry of Childhood tumours therefore its main strengths are the large sample
size and that it is population-based. Limitations are that follow-up is via self-
report obtained from completion of questionnaires therefore may be prone to
recall and selection bias. Furthermore long-term outcomes are not validated.
There is limited treatment information available; only binary indicators of
receiving surgery, chemotherapy or radiotherapy are available and this
information is missing in around a third of the study population [32].

Teenage and Young Adult Cancer Survivor Study

The Teenage and Young Adult Cancer Survivor Study (TYACSS) includes
approximately 200,000 survivors of cancer diagnosed between the ages of 15-
39 years, between 1971 and 2006 in England and Wales [82, 83]. This study
was established based on national cancer registrations, with long-term
outcomes based upon linkage to Hospital Episode Statistics in England and
Patient Episode Database for Wales in Wales. Key strengths of this study are
the large population-based sample size allowing detailed examination of
outcomes by diagnostic groups specific to this age group and objective
outcomes. However, limited treatment information is available.

Other large survivor cohort studies exist in several European countries [84]
including the Nordic countries, the Netherlands and Switzerland which have
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been used to study late effects of childhood cancer survivors which will be
described later in this chapter (Sections 2.11-2.15)

2.5 Cancer incidence

2.5.1 Distribution of tumours

Cancers in CYA are a heterogeneous group and the distribution of diagnostic
groups varies with age across the age spectrum of CYAs. In children,
leukaemia, lymphoma and CNS tumours make up around two thirds of all
cancers diagnosed [11]. Embryonal tumours are made up of undifferentiated
cells similar to ones in a developing embryo and mainly occur in children
accounting for about 20% of childhood cancers [85]. For TYA, lymphomas,
carcinomas and germ cell tumours account for over half of all cancers [15].
Figure 2.1 shows the distribution of diagnostic groups by age for 0-19 year olds
[20]. Many of the embryonal tumours, such as retinoblastoma, neuroblastoma,
nephroblastoma and medulloblastoma, diagnosed in infancy (<1 year) and early
childhood (1-9 years) are very rare in older childhood and adolescents. For
infants sympathetic nervous system tumours (neuroblastoma) are the most
common tumour diagnosed while for children aged 1-4 years leukaemias are
most frequent and CNS tumours are the most common diagnosis in 5-9 year
olds. After age 10 years, lymphomas, carcinomas, germ cell tumours and bone
tumours become more frequent [5, 20]. Cancers in TYA have a distinct profile
[7-9]. Lymphomas are the most common diagnoses in both 15-19 year olds and
20-24 year olds [8, 20, 64]. Leukaemias and bone tumours are less common in
20-24 year olds compared to younger ages while germ cell tumours,
melanomas and carcinomas are more common [8]. In the USA melanoma
increases from the 5" most common cancer in 15-19 year old to the most
common cancer in 25-29 years [64].
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Figure 2.1: Distribution of the main diagnostic tumour groups by age at
diagnosis.

Source: [20]

2.5.2 Diagnostic subgroups

In children, acute lymphoblastic leukaemia (ALL) is the most common
diagnostic subgroup not only among all leukaemias but for all cancers
combined and accounts for around 79% of all leukaemias and 25% of all
childhood cancers [10]. Acute myeloid leukaemia (AML) accounts for 15% of
leukaemias and 5% of all childhood cancers [10]. In 15-24 year olds ALL
accounts for 46% of all leukaemias and 5% of all cancers diagnosed, while AML
accounts for 37% of all leukaemias and 4% of all cancers in this age group [8].

Hodgkin lymphomas account for 41% of lymphomas diagnosed in children and
are mainly diagnosed in older children, non-Hodgkin lymphoma (NHL) account
for about 57% of lymphomas, these are very rare in infancy and increase
steadily through childhood [10]. In TYA, Hodgkin lymphomas account for 72% of
all ymphomas and overall 19% of all cancers diagnosed in this age range while
NHL account for 28% of lymphomas [8].
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Astrocytomas are the most common CNS tumours in children and TYA
accounting for 43% and 51% of all CNS tumours in children and TYA
respectively [8, 10]. In children the next most common CNS tumours are
embryonal tumours (including medulloblastoma and primitive neuroectodermal
tumours (PNET)) accounting for 19% of CNS tumours [10]; these are less
frequent in TYA, accounting for 9% of all CNS tumours [8].

Neuroblastoma is the most common sympathetic nervous system tumour in
childhood and the most common embryonal tumour of childhood and accounts
for 6% of all childhood cancers [10]. The majority of renal tumours in children
are nephroblastoma, also known as Wilms tumours, accounting for 90% of all
renal tumours [10]. Neuroblastoma, retinoblastoma, Wilms tumours and
hepatoblastoma are very rare over the age of 15 and in the Birch classification
system for TYA cancers are not included as separate groups but are grouped
together in group 9 miscellaneous specified neoplasms [8].

The two most frequent subgroups of bone tumours are osteosarcomas,
accounting for 55% and 51% of childhood and TYA bone tumours respectively,
and Ewings sarcoma, accounting for 38% and 30% of childhood and TYA bone
tumours respectively [8, 10].

Rhabdomyosarcoma is the most common soft tissue sarcoma in childhood
accounting for 53% of all soft tissue sarcomas and 4% of all cancers in
childhood [10]. For TYA, rhabdomyosarcoma account for 22% and
fibrosarcomas account for 24% of all soft tissues sarcomas [8].

The distribution of germ cell tumour subgroups varies markedly by age and sex.
In children malignant gonadal germ cell tumours were the most common (42%)
followed by intracranial and intraspinal tumours (35%) and malignant
extracranial and extragonadal sites (22%) [10]. For 15-24 year olds germ cell
tumours make up 14% of all cancers diagnosed of which 93% are gonadal germ
cell tumours [8].

Similarly the distribution of carcinomas varies with age. For children carcinomas
represent 3% of all diagnoses and within this the most common subgroups were
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malignant melanoma (32%), skin carcinoma (17%) and thyroid carcinoma
(15%) [10]. For TYA, melanoma is classified as a separate diagnostic group in
the Birch classification representing 8% of all cancers, while thyroid carcinoma
account for 3% of all cancers diagnosed in TYA [8].

In addition to differences in the types of cancers diagnosed in children and TYA,
significant biological differences exist between TYA and younger and older
patients with the same histological tumour type. For example the biologic
characteristics of ALL change in post pubertal patients towards subtypes with
worse prognosis [66].

2.5.3 Incidence rates in children

In children for all cancers combined, age-specific incidence rates are highest in
the first five years of life, then reduce for those aged 5-9 years, before
increasing again for ages 10-14 years. This increase in age-specific incidence
then continues across the life-course [10].

Table 2.1 shows the age standardised incidence rates (ASR) per 1,000,000
persons per year, for childhood cancers diagnosed in England between 2001
and 2015, for the 12 main groups of the ICCC-3 [69]. Between 2001 and 2015,
for all cancers combined the ASR was 166.9 per million for boys and 145.6 per
million for girls. ASRs ranged from around 52 per million for leukaemias in boys
to 1 per million for the other and not otherwise specified. Incidence patterns
varied by sex with the highest sex ratio for lymphomas.
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Table 2.1: Age standardised incidence rates (ASR) for male and female
children, diagnosed 2001-2015 in England.

Diagnostic group (ICCC-3) Male Female M:F ratio
l. Leukaemia 51.7 44.3 1.17
ll. Lymphoma 20.9 9.9 211
[ll. CNS tumours 40.4 36.4 1.11
IV. Neuroblastoma 10.4 9.9 1.05
V. Retinoblastoma 4.4 4.8 0.92
VI. Renal tumours 8.7 10.3 0.84
VII. Hepatic tumours 2.2 2.0 1.10
VIIl. Bone tumours 6.4 5.6 1.14
IX. Soft tissue sarcoma 11.5 8.7 1.32
X. Germ cell tumours 4.7 6.3 0.75
XI. Carcinomas 4.4 6.2 0.71
XII. Other and not otherwise specified 1.3 1.2 1.08
All cancers combined 166.9 145.6 1.15

Source: [69]

ASR per 1,000,000 persons per year standardised to World Standard
Population

For all cancers combined the incidence rate across Europe increased by 1%
per year in children from 118 per million for children diagnosed during the 1970s
to 139 per million for children diagnosed in the 1990s, this increase was
observed in all age groups [20]. Increasing incidence trends were observed for
the majority of diagnostic groups; between 1978-82 and 1993-1997 the highest
increases in the average annual percentage change (AAPC) in incidence rates
were observed for soft tissue sarcoma (1.8%), CNS tumours (1.7%) and germ
cell tumours (1.6%) [86]. Between 1978 and 1997 for all cancers combined
incidence increased for both sexes but the AAPC was slightly higher in girls
(1.4%) than in boys (0.9%) [86]. Between 1991 and 2010 incidence continued to
increase by 0.5% per year in European children with increases observed for
leukaemias (0.7%), lymphomas (0.3%), CNS tumours (0.5%) and other tumours
(0.6%) with further temporal variation in rates also observed by age group and
geographical region [74]. In the UK the incidence rate for all cancers combined
increased by 15% from 1993 to 2016 [11].
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2.5.4 Incidence rates in TYA

The incidence rate for all cancers combined is significantly higher in 20-24 year
olds compared to 15-19 years, with ASR estimated at 157.7 per million for 15-
19 years and 248.1 per million for 24-24 years for those diagnosed in England
between 1979 and 2001 [62]. Table 2.2 shows the ASR per million for TYA
cancers (aged 13-24 years) diagnosed in England between 1979 and 2001, for
the 10 main groups of the Birch Classification [62]. Overall, for all cancers
combined the ASR was 188.7 per million, again this was higher in males (201.5)
than females (174.5). The ASRs by diagnostic group ranged from 45.3 per
million for lymphoma to 1.2 per million for unclassified tumours. The ASR for
germ cell tumours was over 7 times higher in males compared to females.
There was a male excess also for leukaemia, lymphoma, CNS tumours, bone
and soft tissue sarcomas, while rates were higher in females for melanoma and
carcinomas. National ASRs by Birch Classification group are not publically
available for more recently diagnosed cases, however, a 2018 report published
by Public Health England and the Teenage Cancer Trust reported crude
incidence rates for the 10 most common cancer subgroups separately for males
and females for those aged 13-24 years diagnosed 2013-2015 [87]. In males
testicular germ cell tumours were the most common subgroup and in females
Hodgkin lymphoma was the most common subgroup.
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Table 2.2: Age standardised incidence rates (ASR) for male and female TYA
(aged 13-24 years), diagnosed between 1979 and 2001 in England.

Diagnostic group (Birch) Male Female All M:F ratio
Leukaemia 25.2 17.1 21.2 1.47
Lymphoma 50.5 40.0 45.3 1.26
CNS tumours 28.2 25.9 27.1 1.09
Bone tumours 13.9 9.8 11.9 1.42
Soft tissue sarcoma 9.8 8.4 9.1 1.17
Germ cell tumours 43.3 6.0 24.8 7.22
Melanoma 10.1 19.4 14.7 0.52
Carcinoma 17.4 44.0 30.6 0.40
Miscellaneous NEC 2.1 2.6 2.3 0.81
Unclassified 1.0 1.4 1.2 0.71
Total 201.5 174.5 188.7 1.15

Source: [62]

ASR per 1,000,000 persons per year standardised to the European standard
population

The incidence for all cancers combined for adolescents (15-19 years) has also
been increasing since the 1970s although at a faster rate than in children with
estimates of the AAPC of 2% per year for 15-19 year olds in Europe between
1978 and 1997 [88], and 1% per year between 1991 and 2010 [74]. Variation in
temporal trends has been reported by diagnostic group with significant
increases observed for leukaemias, lymphomas, CNS tumours, germ cell
tumours and epithelial tumours, specifically thyroid, melanoma and skin
carcinoma [20, 57, 74].

In England between 1979 and 1997 incidence increased by 1.5% per year for
15-24 year olds [8] with significant increases observed for NHL, astrocytoma,
germ cell tumours, melanoma and thyroid carcinoma [8]. There was a larger
overall increase for females compared to males: between 1993 and 2016 the
ASR for all cancers combined increased by 22% for males compared to 45% for
females [15]. The latest incidence rates for all cancers combined for TYA (15-24
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years) diagnosed in the UK between 2014 and 2016 were 300 per million for
males and 341 per million for females and 320 per million for both sexes
combined [15].

Some caution should be taken interpreting these trends and comparing rates
from different sources and populations. Changes in trends over time can be
difficult to interpret due to changes in coding and classification and changes to
diagnostic procedures, resulting in improved classification of some tumours and
a decrease in less specific groups [10]. This is particularly important for large
European studies which may have variable coverage in some regions. Different
standard reference populations have been used to calculate the ASRs in
different studies so rates may not be directly comparable across studies.
Different classification systems and different age ranges used for TYA may limit
direct comparability between studies also. Generally, studies have shown that:
1) incidence trends are increasing over time for both children and TYA; 2) rates
are increasing at a faster rate in females compared to males and 3) the
increases are across a range of diagnostic groups. In children, incidence for all
cancers combined is greater for males compared to females, while for TYA
incidence rates are higher in females, however incidence by sex varies by
diagnostic group.

2.6 Cancer survival

The improvement in survival for children diagnosed with cancer since the 1960s
has been substantial. The 5-year survival estimates for all cancers combined for
children has increased from 30% for children diagnosed in the 1960s [6, 10] to
82% for children diagnosed between 2006 and 2010 [11]. Survival has
continued to increase in the 2010s, with predicted 5-year survival for those
diagnosed in 2018 estimated to be 85% [12]. There are many factors that have
influenced these rates including advancements to treatment protocols,
participation in national and international clinical trials, as well as centralisation
of specialist centres and the development of supportive care packages [6, 10,
13]. Survival rates for TYA have also improved over time [14] and the overall 5-
year survival estimate for TYA diagnosed in the UK between 2001 and 2006 for
all cancers combined was also 82% [15]. However in the USA, the rate of
increase in survival observed for adolescents and young adults has not been as
great as that for older and younger ages and reasons for the lack of progress
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for this age group has been attributable to the lack of participation in clinical

trials and lack of health insurance among this age group [66].

2.6.1 Childhood cancer survival

There is considerable variation in childhood cancer survival by diagnostic group
[11, 17]; Figure 2.2 shows the time trends in 10-years survival by diagnostic
group for children in Great Britain [11]. Improvements in survival were observed
for all diagnostic groups and for the most recent time period 10-year survival

rates vary from 99% for retinoblastoma to 57% for bone tumours [11].
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There is also significant variation in survival between diagnostic subgroups for
the main cancer types. For haematological cancers 5-year survival rates are
high ranging from 84% to 95% for ALL, NHL, Burkitt lymphoma and Hodgkin
lymphoma, but are lower for AML where 5-year survival was estimated at 63%
[19, 76]. 5-year survival for all CNS tumours is around 60%, however survival
rates are lower for those diagnosed with embryonal CNS tumours (5-year
survival 57%) compared to ependymoma (5-year survival 63%) [76]. Survival
rates are also good for nephroblastoma (5-year survival 89%) but lower for
other solid tumours, osteosarcoma (69-77%), neuroblastoma (71-72%),
rhabdomyosarcoma (68-69%) and Ewing sarcoma (67-68%) [19, 76].

In the EUROCARE-4 study, for all cancers combined the risk of death was 9%
higher in males compared to females [19], however in the more recent
EUROCARE-5 study there were no difference by sex in survival for all cancers
combined but there were sex differences for specific diagnostic groups, for
example survival from ALL was higher in girls than in boys [76]. Age at
diagnosis is another prognostic risk factor for survival, differences in survival by
age at diagnosis vary by diagnostic group. Infants (<1 year) had poorer survival
for ALL, AML, NHL and CNS tumours, whereas infants had the highest survival
for neuroblastoma compared to older ages. Children aged 10-14 years had the
poorest survival for astrocytoma, nephroblastoma and Ewing’s sarcoma [76].

Results from the ACCIS and EUROCARE studies have shown that there is
geographical variation in cancer survival for children with survival rates lowest in
Eastern Europe and the largest survival differences for cancers with the poorest
prognosis [20, 76]. There were also inequalities between countries in CNS
survival but this may be attributable to differences in registration and
classification of these tumours between countries [76].

2.6.2 TYA cancer survival

For TYA aged 15-24 in the UK, there was a significant improvement in survival
for all cancers combined and several cancer types, however, there is still
significant variation by cancer type [15, 16] (Figure 2.3). Cancer types with high
survival (5-year survival >80%) include Hodgkin lymphoma, ovarian germ cell
tumours, testicular germ cell tumours, non-gonadal germ cell tumours,
melanoma, thyroid cancer, breast carcinoma and cervical cancers [15, 16, 58].
Diagnostic types with moderate survival (5-year survival rates between 50-80%)
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include ALL, AML, NHL, CNS tumours, osteosarcoma, non-rhabdomyosarcoma
soft tissue sarcomas, ovarian carcinoma, and colorectal carcinoma. Two cancer
types, Ewings sarcoma and rhabdomyosarcoma, have poorer prognosis with
estimated 5-year survival less than 50% [15, 16, 19].
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Figure 2.3: 5-year relative survival for TYA diagnosed 1991-2005 in UK.

Source: [15]

A sex difference in TYA cancer survival has been shown for all cancers
combined both in the UK and in European studies with females having a
survival advantage over males [16, 19, 21]. In the UK between 2002 and 2006,
5-year survival for females was 84% compared to 81% for males [16]. Results
from EUROCARE-4 also showed that the risk of death was 18% higher in males
compared to females [19]. Sex differences in survival vary by diagnostic group.
In the UK, sex differences in survival diminished over time for several cancer
types and for patients diagnosed 2002-2006 only remained for melanoma, with
estimated 5-year survival of 96% for females and 84% for males, and non-
rhabdomyosarcoma soft tissue sarcomas, with estimated 5-year survival of 73%
for females and 62% for males [16]. Results from the EUROCARE-5 study
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showed that survival was higher in females compared to males for AML,
Hodgkin lymphoma, NHL, CNS tumours, soft tissue sarcomas, melanoma,
thyroid carcinoma, breast carcinoma, head and neck carcinoma, lung and
tracheal carcinoma while survival was higher for males for urinary tract
carcinomas and gonadal germ-cell tumours, although it should be noted that
this study included all patients aged 15-39 years old at diagnosis [21].

Within the TYA age range there are differences in survival by age. Birch et al
compared survival between 13-16 years, 17-20 years and 21-24 years and
found that the pattern of survival with age varied with diagnostic group: for
leukaemia and CNS tumours survival was better in the younger age group but
for germ cell tumours survival was highest for the older age group [14]. The
EUROCARE-5 study compared survival by 5-year age bands for the 15-39 year
age group and reported the 5-year survival for ALL was higher for 15-19 years
(62%) compared to 20-24 years (46%) and 25-29 years (48%), but for all other
haematological cancers the survival rates were similar in all age groups;
approximately 90% for Hodgkin lymphoma, 77% for NHL and 50% for AML [21].
Survival for soft tissue sarcomas was lower in the 15-19 year age group (63%)
compared to the 25-29 year age group (69%) [21].

There was also regional variations in cancer survival for TYA by country within
Europe and survival was generally highest in Northern Europe and lowest in
Eastern Europe [19, 88].

2.6.3 Childhood and TYA survival comparison

For certain diagnostic groups, TYA generally have poorer outcomes than
children diagnosed with the same cancer [18-21]. Adolescents, aged 15-19
years, had worse survival than children for ALL, AML, Hodgkin lymphoma, NHL,
astrocytoma, Ewing’s sarcoma, rhabdomyosarcoma and osteosarcoma,
however this age group had better survival than children for medulloblastoma
and germ-cell tumours [21]. Survival in TYA aged 15-24 years was lower than in
children for lymphoid leukaemia and osteosarcoma for patients diagnosed
across Europe from 2000-2002 [19].

Comparing survival in TYA aged 15-39 years to that in older adults aged 40-69
years, found that survival for most carcinomas was higher in TYA with the
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exception of colorectal, breast and prostate carcinomas; colorectal survival was
similar in both age groups, while survival for breast and prostate carcinomas
was significantly lower in TYA [21].

Similarly to the comparison of incidence rates between studies, some caution
should be taken when directly comparing different survival rates between
studies. There may be differences in inclusion and exclusion criteria, for
example different age ranges, different geographic regions which may register
cancers differently, particularly regarding those of non-malignant or border line
malignancy. For example, pilocytic astrocytoma which has a borderline
malignant code in ICD-O3 but in previous editions of ICD-O was classified as a
malignant tumour type. Studies also differ in statistical methodology such as the
use of relative survival, which accounts for the background mortality rate and is
important to include when assessing survival for cancer diagnosed in older
ages, but not always used when estimating survival for children as the
background mortality rate is low. For example Gatta et al in the Eurocare-4
study estimated both the observed and relative survival but only present
observed survival as deaths due to other causes are rare in this age group [19].
This issue will be discussed in detail later in Section 2.7.5.

To summarise, trends have shown significant improvement over time in survival
but there are still some specific diagnostic groups with poor prognosis. Age and
sex are important prognostic factors to consider when assessing survival.
Although overall survival rates are similar for children and TYA there are certain
diagnostic groups where survival for TYA is poorer than that of children.

2.7 Statistical methods in survival analysis

Survival analysis studies are based on time to event data, where the main
outcome is the time to an event of interest. Often this event is death but may be
any event of interest such as relapse or disease progression. Individuals are
followed up from a defined starting time, such as the date of cancer diagnosis,
and only some individuals may experience the event of interest by the end of
the follow-up period, therefore the survival times for all individuals may not be
know, this is known as censoring. Censoring may occur for several reasons
such as; the individual may not have experienced the event by the end of the
study period, the individual may be lost to follow-up at some point during the
study period or the individual may experience another outcome and therefore
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follow-up for the event of interest is not feasible, for example if the event of
interest is death from cancer but the individual dies from another cause they
would be censored at time of death [89]. Survival times are often skewed and
may have many events near the start of follow-up and fewer events later on
[89].

2.7.1 Survival and hazard functions

Three key mathematical functions in survival analysis are the survival function,
S(t); the hazard function, h(t); and the cumulative hazard function, H(t). These
three functions can be defined as transformations of each other as defined
below [90]. Let the random variable T be the survival time since the origin of the
study (t = 0). T can be any non-negative value. The survivor function or
probability, S(t), is the probability that an individual survives from the time origin
to a specified time ¢t

S(t)=Pr(T >t)

The hazard function, h(t), is the rate that an individual who is under observation
at time t has an event at that time. It is the instantaneous event rate for an
individual who has already survived to time t
Pr(t <T <t+6t|IT >t)

ot

RO = fim
The cumulative hazard function, H(t), is the integral of the hazard function and

is the accumulation of risk by time t

H(t) = J hwdu
0

There are important relationships between these functions

S(t) = exp{-H(0)}
S(t)=1-F(t)
H(t) = —In{S(t)}

Where F(t) is the cumulative distribution function of T.

2.7.2 Kaplan-Meier

The survival probability can be estimated from the observed survival times
using the Kaplan-Meier (KM) method [91]. Suppose that k patients have events
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in the period of follow-up at distinct times t; < t, < t; < - < t;. Events are
assumed to be independent, therefore the probabilities of surviving from one

interval to the next can be multiplied together to give the cumulative survival
probability. The probability of being alive at time t;, S(t;), is calculated from,

S(tj-1), the probability of being alive at time t;_,, n; the number of patients
alive just before t;, and d;, the number of events at ¢;
g

S() = S(t-1) <1 - n_,->
Where t, = 0and S(0) = 1. The value of S(t) is constant between times of
events and the estimated probability is a step function that changes value at the
time of each event. Each individual contributes information to the survival
probability for as long as they are event-free. The survival curve or Kaplan-
Meier curve is a plot of the KM survival probability against follow-up time and is
frequently used and useful nonparametric measure to describe the survival
function. It is plotted as a step function with joins at each time of death or event
of interest. The graph will reach 0 if the individual with the longest follow-up time
dies, otherwise it will plateau at the time of the last death and continue until the
censored survival time of the longest surviving individual [92]. Visual emphasis
may be placed on the right hand tail of the curve which may be unreliable and
unstable as the number of individuals at risk becomes smaller over time and
this estimate may be based on only a few cases or events [92, 93].

2.7.3 Cox model

The most commonly used regression model for analysis of survival data is the
Cox proportional hazards model [94] which takes the form

hi(t) = ho(t)exp(x;p)

Where the hazard function of the ith individual, h;(t), is conditional on
covariates x;, where g = B, ..., Bk is the vector of regression coefficients and
the baseline hazard function is h(t). Hazard ratios, estimated from the model,
describe the multiplicative effect of covariates on the event of interest. The main
assumption of the Cox model is that the estimated parameters are not
associated with time and are proportional over time, (also known as a
proportional hazards model). This means that the estimated hazard ratio is the
same regardless of the length of follow-up. The baseline hazard function is not
specified and the Cox model is known as a semi-parametric model, and
parametric assumptions are only made about the effects of the covariates on
the hazard function but not about the shape of the hazard function. The
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baseline hazard function is estimated non-parametrically and not assumed to
follow a particular statistical distribution. A major advantage of the Cox model is
that the baseline hazard does not need to be defined, it can take any shape,
constant, increasing, decreasing or a combination of these, but assumes that is
baseline hazard is the same for everyone [95]. A limitation of the Cox model, in
addition to the assumption of proportional hazards, is that since the baseline
hazard is not estimated we can only estimate the relative differences between
groups and not absolute differences in risk or survival [93].

2.7.4 Parametric survival models

Another approach to estimating the hazard function is to assume that the
survival times follow a specific mathematical distribution, known as a parametric
model [96]. Parametric models generally provide smooth estimates of the
hazard and survival functions for combinations of covariates [93]. Many different
functions can be used with the most commonly being the Exponential, Weibull,
log-normal, log-logistic, Gompertz and Gamma distributions, these models can
be easily implemented in statistical software packages for example the streg
command in Stata [95]. These distributions vary in complexity and the shape of
the estimated hazard. The exponential distribution corresponds to a constant
hazard rate over time. The Weibull distribution assumes either a strictly
increasing or decreasing rate over time. The log-normal distribution
corresponds to a combination of increasing and decreasing hazard rate over
time. The log-logistic model is similar to the log-normal model, however the log-
logistic model has simpler mathematical expressions of the hazard and survivor
functions (that do not include the cumulative distribution function). The
Gompertz model represents a hazards that either increase or decrease
exponentially with time. The Gamma distribution is a highly flexible hazard
function that allows for many possible shapes and includes the Weibull and
exponential distributions as special cases [95]. These models still assume the
proportionality of hazards, and hazard ratios are interpreted in the same way as
the Cox model [96], however it is easier to estimate predicted survival from a
parametric survival model compared to the Cox model and the parametric
model is slightly more efficient resulting in more precise estimates [96].

In parametric cure models (described in Section 2.8) the Weibull distribution is
commonly used due to the flexibility of the function and model fit [26, 28]. The
distributional functions for this model are described below as these will be
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refererred to later in this chapter. The Weibull hazard function takes the form
[92, 95]

H(t) = AtY

h(t) = Aytr—1

S(t) = exp(—At")
Where y is the shape parameter which is >0 and A is the scale parameter. If
y = 1 then h(t) = A, which is equivalent to the exponential distribution, if y < 1
then the hazard is monotonic decreasing and if if y > 1 the hazard is monotonic

increasing. Figure 2.4 shows the hazard and corresponding survival functions
for different values of the shape parameter y.

Weibull Hazard Function Weibull Survivor Function
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Figure 2.4: Weibull hazard and survival functions for various shape parameters

2.7.5 Relative and net survival

In population-based cancer studies relative and net survival are commonly used
methods to estimate survival. Net survival is defined as the survival which might
occur if all risks of dying from other causes were removed [97]. It is a theoretical
measure to obtain the proportion of patients dying from the direct or indirect
consequences of cancer. Two approaches to estimating net survival are used:
cause-specific survival and relative survival [22, 98]. Cause-specific survival
relies upon not only cause of death being recorded but also to be able to
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classify deaths into one of two groups: those directly related to cancer and
those unrelated to the cancer under study, this is not always possible and may
result in misclassification of deaths [22, 98]. Misclassification of cause of death
has a greater impact on survival for cancers with poorer prognosis than cancers
with good prognosis [98]. Relative survival is defined as the ratio of observed
survival in a group of cancer patients compared to that expected in the general
population with similar characteristics with respect to age, sex, calendar period
and possibly other factors such as deprivation or geographic region [99].
Relative survival is a standard method of estimating survival for population-
based cancer registry data and estimates the excess mortality associated with a
diagnosis of cancer regardless of whether the death is directly or indirectly
attributable to cancer [22]. Lifetables are used to calculate the expected
mortality rate in the general population as it is difficult to obtain a cohort of
cancer free-patients, with the assumption that the cancer deaths are a
negligible proportion of all deaths [99].

Relative survival as a function of time, R(t), can be defined as

S(t)

FO= 50

Where S*(t) is the expected survival and S(t) is the observed (all-cause)
survival for the cancer patients. The hazard analogue of relative survival is the
excess hazard rate

h(t) = h*(t) + A(b)

Where h(t) is the observed mortality rate amongst the cancer patients and h*(t)
is the background mortality rate in the general populations (matched for age,
sex and possibly other covariates) and A(t) is the excess mortality associated
with a diagnosis of cancer (or other disease of interest).

Different methods exist for measuring the expected survival including life table
approaches, with the three most common estimates being the Ederer | method,
the Ederer Il method and the Hakulinen method [100-102]. These methods
differ in the in the calculation of the expected survival, due to differences in the
length of follow-up the matched individuals are at risk for. There is little
difference in these estimates for five-year survival estimates, however the
Ederer Il method is preferred when considering longer-term survival [100, 102,
103].
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In childhood cancer studies relative survival is not often used as the mortality
rates in the background population from causes other than cancer are low, for
example in the EUROCARE studies on childhood cancer survival only overall
survival was reported [19, 76]. However, survival estimates based on the TYA
age range are frequently estimated within the relative survival framework (for
example studies in the UK [14, 16], Europe [21] and USA [64]). Figure 2.5
shows the mortality rate for England by age and sex for the years 2013-2015
separately for males and females [104]. It can be seen that apart from in the
first year of life where there is a slight increase, the mortality rate for both sexes
is low in those aged under 30 and starts to increase from about age 50
onwards.
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Figure 2.5: Mortality rate by age and sex, England, 2013-2015.

Source: [104]

For relative survival to give an estimate of net survival the mortality due to
cancer and due to other causes should be independent [101]. A further method
to estimate net survival was suggested by Pohar-Perme et al in 2012 [105]
where each observation is weighted by the inverse of the expected survival to
obtain an estimated of the net survival [105]. This estimator accounts for the
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‘informative censoring’ bias where some groups of patients are less likely to be
observed for the full duration of follow-up than others and is an unbiased
estimator or net survival in a relative survival framework. When comparing
survival across countries, for example in the EUROCARE studies, survival
estimates are often age-standardised to account for differences in survival by
age and to provide one singe measure to compare survival [101]. It has been
shown that when calculating age-standardised survival the Ederer Il and Pohar-
Perme estimates are similar and the bias is small [101, 106]. The Pohar-Perme
estimate of net survival is the preferred method to estimate net survival as
recommended by the United Kingdom and Ireland Association of Cancer
Registries [107].

2.7.6 Relative survival models

A Poisson modelling approach can be used to model relative survival, where
the follow-up timescale is split into a number of intervals and the excess
mortality rate within each follow-up interval is calculated [108]. The model
assumes the excess hazard rate is constant within each interval which may not
be appropriate depending on the length of the intervals. Yearly intervals are
commonly used but this may be inappropriate particularly in the first year of
follow-up where there is a large change in the hazard and the timescale may
need to be split into narrower time bands, for example monthly intervals.

2.7.7 Flexible parametric survival models

Flexible parametric models, also known as Royston-Parmer models, have been
proposed as an alternative to the Cox model and other parametric models for
the analysis of survival data [93, 109]. These models treat time continuously
rather than splitting the follow-up time (as in Poisson models). Restricted cubic
splines are used to estimate the shape of the baseline hazard and this
modelling approach is useful for the incorporation of time-dependent effects and
easily extended into the relative survival framework [93, 101]. These models are
parametric although by using splines to model the survival curve they are more
flexible that standard parametric survival models [110].

If we consider the Weibull model which is a proportional hazards model with the
limitation that the shape of the baseline hazard is either monotonic increasing or
decreasing [110], the survival function is
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S(t) = exp(—A4tY)

Transforming this to the log cumulative hazard scale, gives
In{H(t)} = In[-In{S(t)}] = In(1) + yIn(t)

Which is a linear function of log time on the log cumulative hazard scale. Adding
covariates gives
In{H(¢t[x;)} = In(A) +y In(t) + x;B

The baseline log cumulative hazard function is in(1) + y In(t), with covariates
additive on this scale. Flexible parametric models relax the assumption of
linearity of log time by using restricted cubic splines. Under the proportional
hazards assumption, the covariates can be interpreted as (log) hazard ratios
because proportional hazards also imply proportional cumulative hazards. The
cumulative hazard as a function of log time is generally a stable function [93,
110].

2.7.8 Restricted cubic splines

Splines are flexible mathematical functions defined by piecewise polynomials
with some constraints to ensure the overall curve is smooth [93]. The points at
which these polynomials are joined are called knot points. The fitted function is
forced to have continuous 0™, 15t and 2" derivatives. Cubic splines are often
used in practice. Restricted cubic splines restrict the fitted function to be linear
before the first knot and after the final knot. Restricted cubic splines with K
knots can be fit by creating k-1 derived variables. For knots k4, ..., kx a
restricted cubic spline can be written as

s(x) = yvo+ vizy + vozp + o+ Yg_1Zka
The derived variables z; are calculated as
Zl =X

5=G-k)i+ ¢ lc—k)i-(1-¢)x— kol j=2...K-1

Where
b = (kg — kj)/(kl( — k1)

The derived variables can be highly correlated and orthogonalization can lead
to more stable parameter estimates and quicker convergence [93]. Restricted
cubic splines give more realistic estimates in the tails of the distribution where
the data are often sparse compared to standard splines [93].
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2.7.9 Flexible parametric models incorporating splines

Flexible parametric models are fitted on the log cumulative hazards scale, a
proportional hazards models can be written as

In{H(t|x;)} = In{Ho(£)} + x;8

A restricted cubic spline function of In(t), with knots k,, can be written as
s{in(t) |y, ko}. This is then used for the baseline log cumulative hazard in a
proportional hazards model

n{H (t|x;)} = n; = s{in(®) |y, ko} + x:8

For example, with four knots
I{H(tlx)} =ni =vo+ V121 + VoZai + V3Zai + X

Which can be transformed to the survival and hazard scale
S(tlx;) = exp{—exp(n;)}

ds{In(t) ly, ko} ex

helv) = ———

p(:)

The hazard function is calculated from the derivatives of the restricted cubic
spline function. Covariate effects can be interpreted as log hazard ratios under
the assumption of proportional hazards [110].

The fitted model depends on the number and location of knot points. These
models can be implemented in Stata using the stpm2 command with the knot
points placed at the centiles of the distributions of uncensored log event times
[110]. Better fitting models are obtained using the log of follow-up time, given
the generally positively skewed distribution observed when analysing survival
time [93]. In Stata the default number of knots is 2 (3 degrees of freedom), with
knot points placed at the 33" and 67" centiles of the uncensored log survival
times [110]. Studies have shown that hazard ratios are generally insensitive to
the number and location of knots and the choice of knots is not crucial [93]. Too
many knots will overfit the baseline hazard and too few knots with underfit it,
usually between 1 and 5 will be sufficient but this may depend on the size of the
dataset [93]. The AIC and BIC can be used to compare models to select the
optimal number of knots to use, however the default knot positions generally
work well [93].
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Flexible parametric models are easily extended to include time-dependent
effects by including interactions with spline terms and the covariates of interest.
For each time-dependent effect there is an interaction between the covariate
and the spline variables. The number of spline variables for a particular time-
dependent effect will depend on the number of knot points. The model allows
for non-proportional cumulative hazards, and if the hazard ratio is a function of
time the best way to estimate this is to plot it as a function of time with 95%
confidence intervals [110].

2.7.10 Flexible parametric models in relative survival

framework

Flexible parametric models also easily extend into the relative survival
framework [93]. The all-cause hazard (mortality) rate, h(t), can be defined as
the sum of two components: the background mortality rate, h*(t), and the
excess mortality rate associated with the disease of interest defined by A(t).
The background mortality rate is assumed known and usually estimated from
national or regional life tables, often stratified by age, sex, calendar year and
other covariates as appropriate (e.g. deprivation). The flexible parametric model
defined above can be adapted to relative survival and models the cumulative
excess hazard on the log scale using restricted cubic splines [93]. An
advantage of using this type of model over a Poisson model for relative survival
is that the flexible parametric model uses the continuous timescale and does
not require splitting the follow-up time which may be computationally intensive
for large data sets. It is also easy to incorporate time-dependent effects into the
flexible parametric model [93, 110].

2.8 Cure models

Cure models offer an alternative approach to standard survival methods to
model long-term outcomes when some of the individuals will not experience the
event of interest and can be defined as being ‘cured’ of their cancer [25-27,
111]. Plots of survival curves can be used to identify if a particular group of
patients can be defined as being cured. When working in the relative survival
framework, for most cancers the relative survival will reach a plateau some
years after diagnosis indicating that the mortality among the group of patients
still alive is the same as in the general population [26]. Likewise when
assessing overall survival if the Kaplan-Meier curve flattens out and plateaus
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then a cure model may be appropriate [111]. Figure 2.6 shows a schematic
representation of statistical cure when the survival curves flattens out and
plateaus during the follow-up period, with the dashed line showing the
proportion of patients cured. In these situations a cure model may be
appropriate and useful to describe the survival.

Survival (%)

Proportion cured

Years from diagnosis

Figure 2.6: Schematic representation of statistical cure

Rather than assuming all patients follow a single survival distribution, cure
models assume patients can be split into one of two groups; those who are
‘cured’ and those who are not with a separate survival curve modelled for the
‘uncured. Cure models were first proposed by Boag in 1949 [112] and Berkson
and Gage in 1952 [113]. Both studies included the long-term outcomes of
cancer patients where a proportion of the patients were estimated to be cured of
their disease. Two main types of cure models have been extensively described
and developed: the mixture and the non-mixture model. Both of these models
have also been extended to the relative survival framework. More recently a
flexible parametric cure model has been proposed and also developed in the
relative survival framework. These three different types of models are described

below.

2.8.1 Mixture cure model
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A mixture cure model assumes there are two groups of patients; those who are
cured, and therefore have the same mortality rate as the general population,
and those who are not cured [25, 26].

Assume that a fraction = (between 0 and 1) of patients is cured and a fraction
(1 — m) is not. Standard mixture cure models are of the form

S(t)=n+(1—-mS,(t)

Where r is the proportion cured and S, (t) is the survival function for the
uncured individuals which can be estimated parametrically or non-
parametrically. The hazard function of this model is

(1 -m)f,(t)

h(t) = 50

Where f,, (t) is the probability density function associated with S, (t).

This model extends to the relative survival framework [26]
S@) = ST (O{r + (1 —m)S,(6)}

Where S*(t) is the expected survival function. On the hazard scale this
becomes

(1 -mf (1)
m+ (1 -m)S,(t)

h(t) = h*(t) +

Where h*(t) is the expected hazard (mortality) rate.

2.8.2 Non-mixture cure model

The non-mixture cure model was developed to model cancer recurrence and
defines an asymptote to estimate the cure proportion [25]. The overall survival
function is

S(t) = nF(t)

The hazard function is

h(t) = —In(m) £(t)

where 7 is the proportion cured and F(t) is a cumulative distribution function
generally chosen to be 1 — S(t), where S(t) is the survival function and f(t) is
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the probability density function for F(t). The survival function has an asymptote
at the cure fraction r, and the cumulative hazard has an asymptote at —In(m).

This model may also be expressed as
S(t) = exp(In(m) F (1))
S(t) = eXp(B(t) eXp(a1Z1 + a2Z2 + S apr))

Where B(t) = exp(a,) F(t). This corresponds to the integrated baseline hazard
function of the Cox regression model. If the parameters F(t) do not vary by
covariates, then the above is a proportional hazards model. This is an
advantage of the non-mixture cure model over the mixture model, as the non-
mixture model has the proportional hazards model as a special case [25, 26].

The non-mixture model can be re-written as a mixture model

nf® — g
S@)=n+(1—-mn) <—>

1-m

Therefore the survival distribution of the uncured can also be obtained from the
non-mixture model by a transformation of the model parameters [26].

2.8.3 Parametric distributions and link functions

Various parametric distributions can be used to model the survival functions in
both the mixture and non-mixture models. The Weibull, lognormal and gamma
distributions can all be implemented in Stata commands written to fit cure
models, strsmix and strsnmix [114]. The Weibull distribution is often used
as it provides a flexible function and fits well in many situations except when
there is a high cure fraction (>80%) or a high excess mortality rate in the first
few weeks of follow-up [24, 26]. The log-normal distribution may not fit well as it
has a long tail and an imposed rise and fall of the hazard function leading to the
estimated cure fraction being based on extrapolation past the end of the follow-
up period. The gamma distribution may be useful as it has the Weibull,
exponential, lognormal and standard gamma distributions as special cases,
however, there may be problems with convergence and this is likely to occur
when the Weibull distribution does not provide a good estimate of the cure
fraction [114].
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The survival function of the Weibull distribution is

S(t) = exp(—A4tY)

Both the scale, 4, and shape, y, parameters can vary by covariates or remain
constant. If these parameters do not vary by covariates then it is assumed that
the survival of the uncured is the same for all subgroups of patients which is
probably an unrealistic assumption. Therefore, in most cases it is best to allow
both the scale and shape parameter to vary by covariates [114].

The cure fraction, m, can also vary by covariates and the dependence of this
modelled by different link functions. Assume X is the covariate matrix

1. The identity link m; =p'X
2. The logistic link log(m;/(1—m;) = B'X
3. Thelog(-log) link  log(—log(m;)) = B'X

The identity link has the advantage that is it relatively easy to interpret as it is
measured in the units of the proportion cured, however, there may be boundary
problems for low or high cure proportions. The logistic link function expressed
the covariate effects as (log) odds ratios and has similar interpretation as in
logistic regression. The log(-log) link is useful for the non-mixture model as
covariate effects are expressed as (log) excess hazard ratios, if the parameters
within the distribution do not vary by covariates then proportional excess
hazards can be assumed [25, 26].

2.8.4 Flexible parametric cure model for relative survival

Flexible parametric survival models in the relative survival framework described
in Section 2.7.10 have been extended to incorporate cure as a special case and
allow estimation of the cure proportion and the survival of the uncured [115].
When cure is reached the excess hazard rate is zero and the cumulative hazard
excess hazard will be constant after this time. The cure proportion is estimated
by forcing the log cumulative excess hazard in the flexible parametric survival
model to be linear and have zero slope after the last knot. This is done by
calculating the spline variables “backwards”, treating the knots in reverse order

and then restricting the linear spline variable to be zero. The spline basis
functions, v;(x), are then defined as

Uj (X) = (kK—j+l - X)?._ - Aj (kmax - x)-3|- - (1 - Aj)(kmin - X)?._
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Forj=2,..K—1,and ; = (kx—j+1 — kmin)/ (kmax — kmim)- The relative
survival function for the flexible parametric survival model, with splines
calculated backward and with restriction for the linear spline variable is defined
as

R(t) = exp[—exp{yoo + vorv2(x) + - + yog—1Vk—1(x)}]

Which can be written as

R(t) = mexp{rozv2(x)++yox-1vk-1(0)}

Where © = exp(—exp(¥q0))- This is a special case of a non-mixture cure model:
the cure proportion is

m = exp(—exp(¥oo))

The distribution function is

E,(t) = {yoovo(x) + -+ yog—1vg—_1(x}
Covariates can be included

R(t;z) = exp [— exp(yoo + B z) exp {Voz”z(x) + o+ Yoo Vg1 (x)

D
+ s(x: Vi)Zi}]
2

The constant parameters y,, and S are used to model the cure proportion and
the time dependent parameters are used to model the distributional

function F,(t). All spline variables take the value 0 from the point of the last
knot, which means that the constant parameter, y,,, is the log cumulative
excess hazard at and beyond the last knot for the reference group and can
therefore be used to predict cure. The survival of the uncured can be predicted
in the same way as the survival of the uncured in the non-mixture cure model
[115].

Flexible parametric cure models are fairly robust to the number and location of
the knots points, but some caution need to be taken regarding the location of
the last knot [115]. It is important it is not placed too early and recommended to
be placed at the last observed death or later. It is also important to distribute the
knots along the whole follow-up time as the model needs to fit well at the end of
the follow-up even when most of the events may be near the beginning [115].
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Flexible parametric cure models give similar results to the mixture and non-
mixture cure model when cure is a reasonable assumption [28, 115]. A Weibull
non-mixture cure model may give biased results in situations when the Weibull
model is not flexible enough to capture the shape of the survival function, for
example when mortality is high is early follow-up time, however the flexible
parametric models offers an alternative approach that gives a better model fit
[28, 115]. Flexible parametric cure model have also been shown to fit well in
situations when mixture and non-mixture models fit poorly or do not converge
for example when survival is relatively high or relatively low [28].

2.8.5 Model assumptions and checking model fit

There are two key assumptions underlying cure models. The first is that cure is
a reasonable assumption. This can be assessed graphically from Kaplan-Meier
curves or plot of the relative survival over time. If the survival curves plateaus
after sufficient follow-up time then cure may be a reasonable assumption, if not
then a cure model should not be applied [28]. Breast cancer is an example
where the excess mortality does not plateau even many years after diagnosis
and cure is not a reasonable assumption [116, 117].

The second assumption is that the survival distribution of the uncured can be
described appropriately. The mixture, non-mixture and flexible parametric
models described above offer alternative ways to describe the survival of the
uncured. The Weibull distribution has been used in many examples and been
shown to fit reasonably well. Flexible parametric models use splines to model
the underlying survival and may be suitable in situations when the mixture or
non-mixture models do not fit the data well [115].

Other factors to consider when modelling cure include the size of the study and
the length of follow-up. The proportion cured is based on the point the survival
curve levels out which may be many years after diagnosis and the data at this
point may be sparser. The length of follow-up must be sufficiently long enough
to have observed cure, this will depend on the cancer type and may vary by
other covariates.

There are currently no diagnostic tools to directly assess model fit for cure
models. Akaike Information Criterion (AIC) has been used to select the best
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fitting model, however this compares model fit over the whole timescale and for
cure models the interest is in the model fit towards the end of follow-up where
data are more sparse, therefore this evaluation method should be interpreted
with caution [28, 115, 116]. Graphical assessment of the model fit is
recommended by comparing the predicted relative survival from the cure
models with empirical life table estimates, for example using the Ederer Il
method [28].

2.8.6 Additional benefits of cure models

Cure models offer additional information to standard survival estimates that may
be of interest to clinicians, epidemiologists and patients. While 5-year (or 10-
year) survival estimates are often produced these rates are not synonymous
with cure (in this case statistical cure where the mortality rate in a group of
cancer survivors is equivalent to that in the general population). The information
obtained from a cure model on the survival trends of the uncured, in addition to
the cure proportion, are informative particularly when assessing temporal trends
in survival. For example cure models can identify if survival is improving
because more patients are cured, or if the survival of patients who ultimately die
has increased or a combination of both. Figure 2.7 shows four different
situations in improved survival that may be identified via a cure model which are
measured in terms of the proportion of patients cured and the median survival
time of the uncured at two time periods To and T1: a) an improvement in both; b)
an improvement in the proportion of patients cured but a decrease in the
median survival time of the uncured; c) no change in the proportion of patients
cured but an increase in the median survival time of fatal cases and d) an
increase in the cured proportion but no change in the median survival time of
the uncured [118].
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Figure 2.7: Temporal changes in cure model estimates measured at two time
periods To and Tx.

Source: [118]

In a cure model covariates may have different associations with the proportion
cured and the survival of the uncured. Therefore this methodology provides a
single analytic method to study a patient’s survival and assess both the long-
term outcomes and short-term effects [25, 27].

2.8.7 Estimating time to cure

Standard estimates obtained from a cure model are the proportion of patients
cured and the median survival time of the uncured. Some authors have also
defined and estimated the time to cure using different methodology as
described below.

Time to cure can be defined as the time when an arbitrary but small proportion
of fatal cases are still alive [24]. A 1% threshold has been used to estimate the
average time to cure for childhood leukaemia patients [29] and glioblastoma
patients [119]. However, this arbitrary threshold is sensitive to both the sample
size and the length of follow-up.

An alternative approach to measure the time to cure can be estimated from the
number of years needed so that conditional relative survival in the following five-
years exceeds 95% [120]. Conditional relative survival is the cumulative survival
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in the following X-years given that the patient has already survived a certain
number of years. When the relative survival curve reaches a plateau, and
therefore statistical cure can be defined, the conditional relative survival
approaches 100%. Although the 95% threshold is an arbitrary cut point, it
reflects the time when the mortality rate in the group of cancer patients is very
similar to that of the general population. This method has been applied to data
from Italy [120] and has been further extended by Dal Maso et al [121] who
report the time when the 5-year conditional survival exceeds 95% and also
when 5-year conditional relative survival reaches 90% and when the 10-year
conditional survival exceeds 95%. These different estimates provide sensitivity
analysis around the estimate of the time to cure. These three estimates of the
time to cure showed consistency for some cancer sites but also variation for
other cancers [121], highlighting the difficulty identifying the time to cure and the
need to ensure sufficient follow-up of patients.

The minimum follow-up period required to allow the estimation of statistical cure
varies by cancer site. A study based on SEER data estimated the threshold
year, which is the minimum years of follow-up needed to estimate statistical
cure [122]. This varied from 2.6 years for pancreatic cancer to 25 years for
cancer of the salivary gland. These estimates were based on cancer-specific
survival rates and there are issues with the coding and classification of death
due to cancer. However, this study does highlight that the minimum follow-up
period required depends on the cancer under study and this is independent of
the proportion of patients cured. For thyroid and breast cancer even after 27
years follow-up cure could not be defined due to increased excess mortality
many years after diagnosis [122], other studies on breast cancer have also
found this [116, 117].

It is not recommended that the time to cure is estimated from the flexible
parametric cure model [123]. Although flexible parametric cure models are
robust to the number and placement of the knot points, in a cure model the
knots should be placed over the whole follow-up period and the last knot should
be positioned at the last observed death time or possibly later. This last knot
point is used to estimate the cure proportion. Flexible parametric cure models
with different knot points can be compared formally using model fit statistics
such as the AIC. By comparing models where the last knot point is placed at
different time points it may be possible to predict the estimated time to cure,
however this approach is not recommended as the comparison between models
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mainly relies upon differences at the beginning of follow-up where most of the
data are [123].

2.9 Application of cure models in CYA

To critically review the applications of cure models for children and young
people with cancer a literature review was carried out in Medline, Embase and
Web of Science to identify all published papers up to 2016.

Table 2.3 shows the terms used in the search strategy covering three topics:
cure models, cancer and children and young people and Figure 2.8 shows the
resulting papers identified from the search and included in the review. A total of
46 studies were identified where cure models had been applied to exclusively,
or included children or young adults with cancer, a summary table of the
included studies is included in Appendix A.

Table 2.3: Terms and phrases used in literature search

Cure models Cancer Children and young adults
Cure* adj2 model* Neoplasm/ Child*
statistical adj cure*  neoplasm* paediatric
proportion adjl cancer* pediatric
cure* fraction adjl cancer regist* adolescen*
cure* tumour* teenage*
tumor* young adult*
malignanc* CYA
oncology TYA

AYA
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Medline Embase Web of science
N =37 N =32 N =67

All sources combined
N =137

y

Remove duplicates
N=77

Removed by screening title and abstract
N =34

Included from title and abstract screening
N =43

Additional papers added
N=3

A

Full text paper retrieved and reviewed
N =46

Figure 2.8: Flow chart of literature search results

2.9.1 Sources of data

In total 31 studies were based on data from population-based cancer registries,
12 on clinical trial data and the remaining 3 studies were based on clinical
hospital data on patients undergoing surgery for specific cancers.

2.9.2 Types of cure model

Mixture cure models were used in 29 studies, 10 studies used a non-mixture
cure model, 2 studies used both, flexible parametric cure models were used in 4
studies and 1 study did not explicitly define the type of cure model used.

2.9.3 Age of study participants
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Thirteen studies were based on the childhood and teenager and young adult
(TYA) age range (i.e. <30 years at diagnosis) exclusively. The majority of these
were studies based upon clinical trials (11 studies); these studies were mainly in
children, however the age range was not always explicitly defined in the papers.
The remaining 2 studies were based on population-based cancer registry data,
both on leukaemia; one on 0-14 year olds in Great Britain on all leukaemias with
further analysis by subgroup [29] and the other study included ALL patients only
diagnosed in children (0-14 years) and TYA (15-24 years) in Europe using
EUROCARE data [30].

The other studies either included all ages (13 studies) or included patients
within a specified age range mainly including patients aged 15 and over (11
studies). Within these studies the cure proportion was often presented by age
group which included a younger age group, such as 0-44 years or 15-44 years,
however the age groupings were not consistent across studies (see Appendix
A).

2.9.4 Diagnostic groups

The studies span a range of types of cancer. Four studies estimated cure rates
for all cancers combined and the most frequently diagnosed 20 or more cancer
sites in adults [120, 121, 124, 125]. Considering studies based on individual
cancer types, colorectal cancer was the most frequently included cancer type (9
studies [24, 118, 126-132] ). Colorectal cancer is a good example of a cancer
where the application of the cure model is appropriate as the relative survival
curve plateaus after about 8-10 years follow-up and it is one of the most
common cancers diagnosed in adults, however it is not commonly diagnosed in
children and young people.

Haematological cancers were one of the most studied diagnostic groups,
included in 13 studies although some papers included more than one subtype;
ALL was included in 5 studies [25, 29, 30, 133, 134], AML in 4 [127, 135-137],
Hodgkin lymphoma in 4 [25, 138-140], chronic myeloid leukaemia in 1 [141] and
NHL in 1 [25]. It is important to consider these subgroups separately as the
survival patterns vary by subtype, however some of these applications were on
clinical trial data, therefore the results may not be generalizable to the wider
population. Seven studies based on cancer registry data [29, 30, 127, 135, 137-
139] are patrticularly relevant for children and young people with cancer and the
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key results of these papers are synthesised and critically evaluated in Section
2.9.9.

Three studies have used data from the RARECARE study, which is a project
looking at the incidence, survival and prevalence of rare cancers (defined as
incidence lower than 6 per 100,000) across Europe, also using data from
several cancer registries [142], including CNS glial and non-glial tumours [143],
embryonal tumours [144] and germ cell tumours [145]. Although these tumour
types are relevant for the childhood and young adult age range, the results from
these studies are limited as the authors only present the overall cure proportion
and do not provide a further breakdown by age group or report results on the
survival of the uncured.

2.9.5 Other risk factors included

Other variables included, either as covariables in the cure model or presented
as stratified analysis, were age, sex, diagnostic sub group, study (for studies
including more than one study), period of diagnosis, region of diagnosis,
metastases, biological markers, stage, mode of detection, treatment, socio-
economic status. Detailed information on clinical patient characteristics were
more common on clinical trial studies compared to population-based cancer
registry studies.

2.9.6 Study sample size

The study sample sizes varied markedly from approximately 100 in some
studies (mainly trial data) to over 6 million for studies based on EUROCARE
data. One study utilising data from a regional population-based cancer registry
in Austria showed it is possible to model cure in smaller populations (as
opposed to studies on large national datasets) [125], this was also observed in
the study by Bouliotis and Bessel who modelled cure for patients with Hodgkin
lymphoma based on a regional registry in Nottingham on 768 patients [138].
The main reasons for non-convergence of models was that long-term survival
did not plateau rather than lack of sample size and power.

2.9.7 Length of follow-up
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The length of follow-up varied from at least one year to up to 40 years. Studies
based on population-based cancer registry data generally had at least 5-years
follow-up for all patients (as this is a commonly used metric to measure survival
in these cohorts). The length of follow-up needed will depend on the cancer
type as it is essential to have enough follow-up time to observe a flattening out
of the survival curve, therefore studies based on shorter follow-up periods may
provide biased estimates of the proportion cured or may not converge. For
example, there are issues modelling cure for breast cancer patients as the
excess mortality risk continues many years after follow-up. Woods et al follow-
up breast cancer patients up for up 23 years after diagnosis, and found that
many of their cure models did not converge as the main assumption of cure was
not met [117].

2.9.8 Survival outcomes

Studies using cancer registry data were generally analysed within the relative
survival framework. Studies in clinical trials used event-free survival which was
defined from time of diagnosis or treatment to relapse, disease progression,
secondary tumour or death. Two studies have looked at cure models in
childhood leukaemia, one used relative survival [29] while the other did not use
relative survival for children but did for the analysis of 15-24 year olds [30].

2.9.9 Summary of key findings

Eight of the papers in this review were methodological papers and found in
statistical journals and the emphasis is on the application of the methods rather
than interpretation of the model results [25, 133, 134, 146-150]. Studies that
looked at all ages and included a separate age group for younger ages
generally found cure rates were higher in younger ages. Key studies that
included children and young people are described below.

Studies on childhood leukaemia show that the proportion of cured cases has
increased over time. In Great Britain for children diagnosed with leukaemia the
percentage cured increased from 25% for those diagnosed during 1971-1975 to
73% for those diagnosed during 1996-2000 [29]. The average time to cure was
also estimated to increase from 11.0 years to 15.9 years over the same period;
this increase was only observed for children with ALL, from 12 years to 19
years, whilst for acute non-lymphoblastic leukaemia the average time to cure



50

remained about 5 years. In Europe for children diagnosed with ALL, the
percentage cured was estimated by age group and was poorest in infants
(under 1 year) and highest for children aged 1-4 years, the percentage of
adolescents and young adults (15-24 years) cured was similar to that of infants
[30]. The percentage cured increased in all age groups with the greatest
improvement in infants (under 1 year) from 26% in 1982-84 to 58% in 2000-02.
The percentage cured for children aged 1-4 years increased from 70% to 90%
[30]. Both these studies included patients diagnosed up to 2002, and no
estimates of the percentage cured are available for more recently diagnosed
leukaemia patients. Both studies used a mixture cure model, however, neither
of them reported results on the survival of the uncured. Other than age and
period of diagnosis no other prognostic risk factors were included in the cure
models. A key strength of the Shah paper is the estimation of the time to cure
[29]. Both studies are based on large populations (the whole of England and
Europe) with sufficient follow-up to ensure reliability and precision of reported
results.

National studies on temporal trends in AML survival and cure have been
conducted in England, including patients aged 15-99 years diagnosed between
1971 and 2006 [137], and Sweden, for patients aged 19-80 years diagnosed
between 1973 and 2001 [135]. Estimates were reported for 15-24 years and 25-
39 years in the English study and for the 19-40 year age group for the Swedish
study. In England the percentage cured increased between 1975 and 2006 for
ages 15-69 with the greatest improvement in those aged 15-24 years from 8%
to 48%, while for 25-39 years it increased from 6% to 44%. The median survival
time of the uncured cases for 15-24 years increased from 5 months to 15
months between 1975 and 2006, and for 25-39 years it increased from 5
months to 11 months [137]. In Sweden for AML patients the largest increase in
the cure percentage was also observed in the youngest age group; increasing
from 4% in 1975 to 68% in 2000 for those aged 19-40 years. Over this same
time period the median survival time of the uncured increased until the
beginning of the 1990s, then decreased again and was estimated to be around
9 months for those diagnosed in 2000 [135].

Eloranta et al applied a cure model in a competing risk framework to account for
cancer and non-cancer causes of death with an application to AML using
national cancer registry data from Sweden [127]. Patients under 50 were
included as a separate age group and it was estimated that patients diagnosed
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at age 50 the percentage cured (40% for males and 44% for females) was
similar to the percentage of patients who were predicted to die from causes
other than AML (44% for males and 45% for females). The probability of dying
from AML was strongly associated with age, with worse prognosis for older
patients.

These three studies on AML were large national population-based studies but
two of them did not include children. There are some limitations to the available
data, for example no national data on stage was available in Sweden or
England, and results were only presented by age at diagnosis and time period.

The percentage cured for Hodgkin lymphoma, estimated from a regional cancer
registry in Nottingham, increased from 45% for patients diagnosed 1973-1982
to 77% for those diagnosed 1993-2002 [138]. Over the same time period the
median survival time of the uncured increased from 1.5 years to 4.0 years.
Although this study collected detailed information on the patients including
treatment, stage and death information, these variables were not included in the
cure models. A further study on young and middle aged Hodgkin lymphoma
patients in Sweden found selective improvement in survival in the 18-29 year
age group between 1992 and 1999; the percentage cured increased but the
median survival time of the uncured decreased. However between 2000 and
2009 both the percentage cured and the median survival time of the uncured
increased with the percentage cured approaching 1 for patients diagnosed in
2009 [139]. This study included detailed clinical information including treatment,
stage and relapse information which was incorporated in the cure modelling.
However, it was based on patients aged 18-59 years so did not include children
or adolescents.

The percentage cured was estimated for patients aged 16-39 years in a study of
glioblastoma multiforme using SEER data; the percentage of cases cured in 16-
39 year olds was 12% and the time to cure was estimated at 9.8 years [119].
Cure was not estimated for other age groups as population-based cure was
unlikely for these groups based on results from the Kaplan-Meier survival
curves. The cure model did not include any other prognostic factors and was
only estimated for patients diagnosed in one time period (2001-06).
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2.10Survivorship

The previous sections describe methods and studies relating to cancer survival.
However, increases in cancer survival rates over times have led to the
development of research into the long-term health and late effects of treatment
for cancer survivors known as cancer survivorship [151]. This is particularly
important for children and young people with cancer with many published
studies examining the long-term health of CYA cancer survivors (discussed in
Sections 2.11 to 2.15). Currently for many children and TYA diagnosed with
cancer the focus is on reducing treatment intensity while maintaining survival
rates to reduce treatment-related morbidity and mortality [152].

2.10.1 National Cancer Survivorship Initiative

The 2007 Cancer Reform Strategy highlighted the need for a greater focus on
cancer survivorship [153]. In the UK, the National Cancer Survivorship Initiative
(NCSI) was launched in 2010 to understand the needs of those living with
cancer and develop models of care that meet their needs, and to help support
cancer survivors to live as healthy and active a life as possible for as long as
possible [154]. In UK in 2008 there were an estimated 2 million people living
with a previous diagnosis of cancer and this was predicted to increase by 3%
per year as more people are diagnosed with cancer, treatment becomes more
effective and people live longer after cancer [155]. Survivors of childhood and
young adult cancers are a particular group with special needs. Health services
are needed to monitor and support this group who may have long-term
consequences from their earlier cancer treatment [156]. Therefore life-long
follow-up of childhood and adolescent cancer survivors is recommended [72].

The NCSI also highlighted the need for linkage between routine data sources
such as cancer registry data and primary and secondary care data to measure
health outcomes for cancer survivors [154]. One of the key factors in studying
long-term outcomes for cancer survivors is having detailed information on
treatment received as part of their care. The YSRCCYP records detailed
treatment information for cancer patients therefore with linkage to hospital data
is a very valuable source of data to explore these long-term health effects and
their associations with initial treatment.
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2.11Late mortality

Five-year survival is often used as a benchmark to measure cancer survival.
Outcomes are measured from the date of diagnosis and those surviving beyond
five years from this date are considered to be a long-term survivor. Late
mortality of childhood cancer survivors refers to mortality occurring beyond 5-
years from diagnosis [79].

Long-term childhood cancer survivors are at an increased risk of excess late
mortality compared to the general population and several studies have
described these risks. The overall late mortality rate in 5-year childhood cancer
survivors has been estimated to be between 8 and 13 times higher compared to
the general population [31, 32, 79, 81, 157-161]. The age range of patients
included in the studies varies as does the period of diagnosis therefore results
may not be directly comparable. These estimates are based the CCSS
including those diagnosed aged 0-19 years [31, 79, 157, 159], the BCCSS
which includes those at 0-14 years at diagnosis [32, 81] and population-based
cancer registry studies in the Nordic region including those aged 0-19 years at
diagnosis [158, 160]. In Scotland, the standardised mortality ratio (SMR) was
6.1 for 0-24 year olds, which was 11.0 for children and 4.7 for 15-24 year olds
[161].

2.11.1 Cause of death

The main causes of death 5-years post diagnosis are recurrence and/or
progression of original cancer, subsequent neoplasms, diseases of the
circulatory system and diseases of the respiratory system [31, 32, 79, 81, 160,
161]. Recurrence or progression of the original disease is the leading cause of
late mortality accounting for between 58% and 66% of deaths in long-term
childhood and young adult cancer survivors [31, 81, 160, 161]. Second or
subsequent tumours were the next most common cause of death accounting for
between 11% and 19% of all deaths [31, 81, 160, 161]. Diseases of the
circulatory system account for 5-7% of deaths [31, 81, 161] and diseases of the
respiratory system account for 2-4% of deaths [31, 81, 161].

The leading causes of death change over follow-up period. Recurrence or
progression is the leading cause of death in the period 5-10 years post
diagnosis. The cumulative mortality of death due to recurrence increases rapidly



54

with time from diagnosis to about 15 years from diagnosis and then levels off
during further follow-up when mortality due to second cancers and other causes
of death start to increase [31, 35, 160]. For example in the BCCSS, 97% of
deaths are attributable to recurrence in the period 5-14 years post diagnosis
and this reduces to 8% of deaths more than 45 years post diagnosis, while over
the same time period, deaths due to second primary tumours account for 8% of
the excess deaths increasing to 58% [32]. Among survivors aged over 60
circulatory disease overtakes subsequent primary neoplasms as the leading
cause of death [81].

2.11.2 Variation by cancer type, sex and age and treatment

The overall mortality rate varies by type of primary cancer, age at diagnosis, sex
and treatment received. Significant increased mortality were observed for all
diagnostic groups with SMRs highest for leukaemia patients and CNS tumours,
in particular medulloblastoma and PNET, and Ewing sarcoma patients [31, 32,
81]. The mortality rate and absolute excess risk of death were higher in males,
however the SMR was higher in females compared to males due to lower
background mortality rates in females [31, 79, 81]. Children diagnosed between
0-4 years and 5-9 years had higher SMRs compared to those diagnosed at
older ages [31, 32, 81, 161]. Reulen et al found that the SMR for all causes was
11.8 for patients treated with radiotherapy compared to 7.2 for those not treated
by radiotherapy while patients who received chemotherapy had an SMR of 15.8
compared to 8.1 for those not receiving chemotherapy, however no further
details of treatment information were given [32]. Mertens et al used the detailed
treatment information recorded in the CCSS and investigated the associations
with cause of death and found that exposure to radiation, alkylating agents, and
epipodophyllotoxins were associated with an increased risk of mortality from a
subsequent tumour; exposure to cardiac radiation and anthracyclines were
associated with an increased risk of death from cardiac disease; and exposure
to radiation was associated with an increased risk of death due to causes other
than recurrence, external causes, subsequent malignancy, cardiac or
respiratory diseases [31].

2.11.3 Changes over time

Both the CCSS and BCCSS published studies in 2016 examining late mortality
[79, 81] including additional patients diagnosed more recently than those
included in previous studies published in 2008 [31] and 2010 [32] respectively.
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These studies have shown that late mortality for long-term survivors has
reduced over time. In the CCSS, 15 years post diagnosis the cumulative
mortality decreased from 10.7% for patients diagnosed in the 1970s to 5.8% for
those diagnosed in 1990s [79]. While in the BCCSS, patients diagnosed and
treated between 1990 and 2006 experienced 30% of the excess number of
deaths experienced by those diagnosed and treated before 1970 [81]. Both
studies found reductions in deaths from recurrence and progression and also in
health related or non-neoplastic causes of death. Garwic et al also found in the
Nordic countries that the SMR in the time period 5-9 years after diagnosis
decreased from 30.2 for patients diagnosed in the 1960s to 18.6 for patients
diagnosed in the 1990s [160]. In Scotland 0-24 year olds diagnosed 1998-2003
had 46% decreased risk of death compared to those diagnosed 1981-85 [161].
These results provide evidence that reducing treatment exposure in order to
decrease the frequency of late effects is translating to a significant reduction in
late mortality.

To summarise, childhood cancer survivors have an increased risk of late
mortality that remains elevated throughout the life course. The leading causes
of death are recurrence or progression of primary cancer, subsequent tumours,
cardiac and respiratory diseases. Type of primary tumour, age, sex and
treatment modality are all associated with late mortality. There is evidence that
late mortality rates are decreasing over time reflecting changes in treatment
protocols to reduce exposure to toxic therapies.

2.12 Late effects

As well as having an increased risk of late mortality childhood cancer survivors
experience a range of adverse health outcomes. Complications and side effects
of treatment can arise anytime following treatment and can generally be split
into three phases: acute (during treatment), early (within months after treatment
ends) and late effects. Late effect is the term used to describe a long-term
adverse health outcome that persists or develops several years after cancer is
diagnosed and treated [162]. Several studies have been used to observe and
describe late effects in long-term childhood cancer survivors including studies
based on clinical assessments which may also pick up sub-clinical disorders,
those based on patient self-reported outcomes, as well as studies based on
linkage to hospital admissions and other sources of routine data [162]. Late
effects in TYA have also been examined but to a lesser extent than for children



56

and many of the late effects in TYA have been derived from studies of
childhood cancer survivors [67].

Based on the CCSS with a mean follow-up of 18 years, it was estimated that:
62% of childhood cancer survivors had at least one chronic condition, which
was 3.3 times higher compared to matched sibling controls; 28% had a severe
or life threating chronic condition which was 8.2 times higher than in the sibling
controls; and 38% of survivors reported multiple chronic conditions which was
4.9 times higher compared to siblings [37]. Survivors of bone tumours, CNS
tumours and Hodgkin lymphoma were at highest risk of subsequent chronic
conditions and significant associations between treatment received for
childhood cancer, sex and age at diagnosis and adverse health conditions were
reported [37]. A study from the Netherlands also reported that 75% of long-term
childhood cancer survivors had one or more adverse health outcomes and 40%
had a severe or life-threatening condition [36]. Results from the St Jude Lifetime
Cohort Study in the USA, which included 10-year childhood cancer survivors,
reported that 98% of this cohort had 1 or more chronic health conditions and
68% had a severe or disabling or life threatening condition [163]. By age 50, a
survivor experienced on average 5 severe or disabling or life threatening
conditions compared to an average of 2 conditions in matched controls [40].
Findings from the CCSS have shown that the incidence of serious chronic
health conditions in long-term survivors has decreased for those diagnosed
more recently; the 20-year cumulative incidence of severe or disabling or life
threatening conditions decreased from 33% for those diagnosed 1970-79 to
28% for those diagnosed 1990-99 [164].

The next section of this chapter focuses on three specific outcomes: 1)
subsequent malignant neoplasms (Section 2.13), 2) cardiovascular late effects
(Section 2.14) and 3) respiratory late effects (Section 2.15). These were
selected for inclusion as these are the leading causes of late mortality and
morbidity in long-term CYA cancer survivors and were included as outcomes for
analysis in this thesis.

2.13Subsequent malignant neoplasms

It is well recognised that the intense treatments used to treat paediatric cancers
increase the patient’s risk of developing another cancer in later life. Deaths from
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subsequent malignant neoplasms are one of the leading causes of late mortality
in childhood cancer survivors [31, 81, 160, 161].

A primary cancer is one that originates in a primary site or tissue and is not an
extension, nor a recurrence, nor a metastasis [165]. A second cancer is defined
as a new primary cancer that occurs in a person who has had cancer in the
past, this may also be described as a subsequent primary cancer, second
primary cancer, subsequent malignant neoplasm or a second malignant
neoplasm [166]. Throughout the rest of this thesis the abbreviation SMN is used
to define subsequent malignant neoplasm unless otherwise stated. The
International Agency for Research on Cancer (IARC), the International
Association of Cancer Registries (IACR), World Health Organisation (WHO) and
the European Network of Cancer Registries have published rules for defining
and recording multiple primary tumours in cancer registries where the
recognition and existence of two or more primary cancers does not depend on
time [165]. Neoplasms of different morphology should be regarded as multiple
cancers even if diagnosed simultaneously in the same site [165]. Studies may
use different follow-up periods and eligibility criteria to examine SMNSs.

Studies based on the CCSS, BCCSS and TYACSS only include 5-year
survivors of childhood cancer and examine all new neoplasms recorded after
this date [35, 82, 167, 168]. Several studies have based their definition of SMNs
on the IARC and IACR rules for defining multiple primaries irrespective of the
time elapsed since the primary neoplasm was diagnosed; including in a large
study of SMNs after childhood non-CNS solid tumours based on data from 13
cancer registries [169], a Canadian study focussing on SMNs developing in the
first 5 years following diagnosis [170], and a large study based in the Nordic
countries [34]. While other studies have examined SMNs in patients who
survived a minimum of two months [171], three months [172], three years [173]
or five years [174] following diagnosis of a primary cancer.

For childhood cancer survivors the risk of developing a SMN was between 3 —
10 times higher than that of the general population [34, 35, 167, 170, 171].
These studies differed in terms of inclusion criteria of childhood cancer
survivors and the definitions used to define the SMN making direct comparison
between studies difficult. However, all found a substantial increased risk
compared to the general population. Pole et al showed that 40% of SMNs in
childhood cancer survivors occurred in the first 5 years following diagnosis [170]
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therefore comparisons between studies including all cancer survivors and those
only containing 5-year survivors may vary substantially in the number of SMNs
reported. The magnitude of excess risks and specific types of second cancer
vary widely with type of first cancer and also in length of follow-up. In the CCSS
the median time to first occurrence of subsequent malignant neoplasm was 18
years and was shortest for development of leukaemia at 9 years and longest for
small intestine and colorectal cancer at 23 years [167].

The cumulative incidence for a SMN continues to increase across the life-
course; 25-30 years after diagnosis of a childhood cancer the cumulative
incidence of developing a SMN ranged from 4-8% [167, 170, 171, 173, 174].
Long-term childhood cancer survivors from the CCSS had a cumulative
incidence of a SMN by age 55 of 16% [168], similar results were also found in
the BCCSS where the cumulative incidence by age 55 was 14% [35]. Findings
based on the CCSS have shown that the cumulative incidence of SMNs
decreased for those diagnosed in the 1990s compared to those diagnosed
1970s [164, 175].

All types of childhood cancer are associated with an increased risk of SMN
however several studies have shown that the standardised incidence ratios
(SIR) are highest for a primary diagnosis of Hodgkin lymphoma (SIRs range
from 6-16 [35, 167, 170, 171, 173]), retinoblastoma (SIRs range from 13-15 [35,
171]) and bone tumours (SIR range from 4-18 [35, 170, 173]) and in particular
Ewings sarcoma (SIRs range from 9-13 [167, 171]). The highest cumulative
incidence of second malignancy following a non-CNS solid primary tumour
occurred after retinoblastoma reaching 18% 50 years after the diagnosis of the
primary cancer [169].

A range of SMNs are diagnosed in long-term childhood cancer survivors,
studies reporting these have used different coding and groupings of SMN and
have different periods of follow-up but the most common sites and types of
SMN include female breast cancer, CNS tumours, bone tumours, soft tissue
sarcomas, melanoma, thyroid, digestive tumours, genitourinary tumours and
endocrine tumours [35, 167-170, 173]. The incidence and range of subsequent
neoplasms change over follow-up. Pole et al examined SMN in the first 5-years
from diagnosis of a childhood cancer and found early SMNs (those developing
within 5 years of diagnosis) were more likely to be leukaemia, lymphoma or
sympathetic nervous system tumours and around one third of early SMNs were
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solid tumours [170]. The site distribution of second cancers changes over the
life-course. In the Nordic countries CNS tumours accounted for 39% of SMN
diagnosed in 0-14 years olds but only 9% of SMNs in 60+ years where breast
cancers were the most common SMN comprising 32% of all SMNs [34]. In the
BCCSS bone tumours and glioma accounted for 50% of the excess risk for
patients aged <20 years at diagnosis of a SMN, whereas digestive and
genitourinary tumours accounted for 36% of the excess risk in those aged over
40 [35].

An increased risk of SMNs in those who received radiotherapy or chemotherapy
has been reported in several studies [35, 167, 168, 170, 173], with the greatest
excess risk for those that received both treatment modalities [173]. The risk of
developing a colorectal cancer for childhood cancer survivors treated with
abdominopelvic radiation is similar to that of individuals with a strong family
history of colorectal cancer; cumulative incidence by age 50 is 1.4% for
childhood cancer survivors compared to 1.2% those with a family history of
colorectal cancer [35].

Other risk factors associated with an increased risk of SMN were female sex
[167, 168], age at diagnosis, although Friedman et al [167] reported that older
age at diagnosis increased the risk of SMN while Pole et al [170] reported
younger age at diagnosis increased the risk, attained age [35] and treatment
era [34, 167].

Several studies based on pooled European data on almost 70,000 5-year
survivors of childhood cancer have examined the risk of diagnosis of specific
subsequent tumours including leukaemia and soft-tissue sarcomas and bone
tumours [176-178]. Compared to the general population childhood cancer
survivors had 4-times the expected risk of leukaemia [176], 16-times the
expected risk of soft tissue sarcoma [177] and 22-times the expected risk of
bone tumours [178]. The large sample size of these studies enabled a detailed
examination of risks for specific subtypes of these diagnostic groups.

Studies on SMNs in TYA are limited. The TYACSS study examined SMNs in a
cohort of 200,000 5-year survivors diagnosed aged 15-39 years in England and
Wales and reported the risk of SMNs after each specific AYA cancer type [82].
SMNs were most frequently diagnosed in survivors of breast cancer, cervical
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cancer, testicular cancer and Hodgkin lymphoma with the cumulative incidence
35-years post-diagnosis of all SMNs ranging from 12% for breast cancer
survivors, to 27% in female survivors of Hodgkin Lymphoma. Lung cancers
accounted for a substantial proportion of the excess number of SMNs
diagnosed within these groups [82]. A study based on SEER data reported on
SMNs diagnosed in a cohort of 150,000 AYAs (aged 15-39 years) in the US
after specific AYA cancer types and reported an SIR of 1.6, compared to an SIR
of 4.3 or children and 1.1 for older adults [174]. Higher risks of SMNs were
observed for patients with a primary diagnosis of AML, Hodgkin lymphoma,
NHL, testicular cancer, melanoma, breast cancer and sarcoma, with the highest
SIRs for survivors of Hodgkin lymphoma (SIR=3) [174]. For those aged 15-39
years at diagnosis of primary cancer the 30-year cumulative incidence was 18%
for those who received radiation compared to 12% for those that did not [174]. A
further US study based on two-year survivors aged 15-39 years at diagnosis
estimated the incidence of SMNs were 2.6 time higher than matched controls
with a cumulative incidence of 13% twenty-years post diagnosis [179]. Older
age at primary diagnosis, female sex, ethnic group, advanced stage of disease
and radiotherapy exposure were all associated with an increased risk of SMN,
although these risk factors varied by first cancer type [179].

In childhood cancer survivors it is estimated that 40% of SMNs are diagnosed
within 5-years from primary tumour [170] and in the US, a study of 15-39 year
olds estimated that 73% of SMNs were diagnosed 1-5 years from primary
diagnosis [180]. There are differences in the types of SMNs diagnosed by
latency period: early onset SMNs are more likely to be leukaemias and
lymphomas [181]. Few studies have assessed the impact of latency on survival.
In AYA aged 15-39 years, the risk of death doubled for those with a latency
period of 1-5 years compared to those with a latency period of 6 years or more
[180]. While in Canada childhood cancer survivors with early onset SMNs were
1.8 times more likely to die that those who developed an SMN after 5-years
[170]. Another US study of SMNs developing before the age of 20 found those
with a latency of less than 5-years had lower survival, but this study only
included primary solid tumours [182].

Survival from SMNs is lower in children and AYAs compared to survival rates
for the same type of primary tumour; 5-year survival in children was 80% for
primary tumours compared to 47% for SMNs and in AYA 81% for primary
tumours compared with 60% for SMNs [183]. Another study of childhood cancer
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survivors reported an increased risk of death for those with a SMN compared to
those diagnosed with a first cancer after adjustment for potential confounders
including sex, age at diagnosis, decade of diagnosis, ethnicity and diagnostic
group [184]. An increased risk of death was found across several diagnostic
groups: breast cancer, thyroid cancer, AML, CNS tumours, melanoma, bone
cancers and soft tissue sarcomas [184]. A Dutch study found survival from
sarcoma SMNs was worse than for patients with a first primary sarcoma, and
there were no survival differences between primary tumours and SMNs for
breast cancer or melanoma. However, this study was based on a small number
of long-term survivors (45 sarcoma, 41 breast cancer and 17 melanoma
survivors) [185].

To summarise, the risk of developing a SMN continues to increase throughout
follow-up and varies by type of primary cancer and other risk factors such as
sex, age at diagnosis, length of follow-up and treatment received for primary
cancer. A range of different types of SMN are diagnosed and these vary across
the life course. Studies based on the TYA age range are more limited.
Prognosis following SMN diagnosis is an important area for further research.

2.14 Cardiovascular late effects

Improvements in survival for childhood cancer are due to advancements in
treatments such as chemotherapy and radiotherapy, however, these treatments
are cardiotoxic and can cause persistent and progressive damage to the
cardiovascular system [186, 187]. As childhood cancer survivors age they may
experience impaired myocardial growth as a consequence of earlier cardiotoxic
treatment [186]. In particular, exposure to anthracyclines and radiation to the
chest have been shown to increase the risk of cardiovascular late effects [186-
188], with a dose response relationship [189, 190]. It is important to monitor
patients to identify early signs of cardiac disease before it progresses to clinical
presentation as if left undetected and untreated it may lead to heart failure and
death [186-188].

Cardiovascular disease is one of the leading causes of non-cancer related late
mortality in childhood cancers survivors [79, 81]. The standardised mortality
ratio (SMR) for cardiovascular disease is between 3 and 7 times higher for
childhood cancer survivors compared to the general population [31, 32, 81, 189,
191] and 13% of all excess deaths 45 years after diagnosis are attributable to
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cardiac causes [32]. SMRs are highest for survivors diagnosed with Hodgkin
lymphoma and renal tumours [31]. In the CCSS deaths from cardiac related
events have decreased over time [79]. However, findings based on the BCCSS
showed a quadratic relationship with treatment area with the greatest risk of
cardiac mortality observed for those treated in the 1980s, and a subsequent
decline for those treated more recently [191]. The cumulative incidence for
cardiac mortality in long-term childhood cancer survivors was 2% 35-years after
diagnosis [189] increasing to 5% at 60-years post diagnosis [191]. The TYACSS
study reported an overall SMR for cardiac mortality of 1.4, which was highest for
those aged 15-19 year at diagnosis (SMR=4.2) and decreased with increasing
age to and SMR of 1.2 for those aged 35-39 years at diagnosis [192].

The late effects of cardiovascular diseases are one of the most studied late
effects in childhood cancer survivors. A systematic review published in 2017
identified 64 papers which included all cardiovascular clinical and subclinical
outcomes occurring at least 1-year post diagnosis [193]. The authors found the
definitions of outcomes used varied by study therefore the estimated prevalence
of the study endpoints varied considerably. A range of disease groups were
included, the most frequent end point was heatrt failure, included in 41 studies
with the prevalence ranging from 0.1% to 54%. There was large variation in the
size and design of the included studies as well as the differences in the
definition of the endpoints and methods of reporting and measurement of the
outcomes, for example some studies relied upon self-report whereas other
included clinical measurements. A meta-analysis was conducted for
hypertension and stroke only and pooled estimates of the mean prevalence
were 20% for hypertension and 2% for stroke, however there was considerable
statistical heterogeneity for the hypertension estimate. Pooled estimates for
other endpoints could not be calculated due to lack of consistency in the
definitions of outcomes [193].

Significant risk factors for cardiovascular late effects are female sex, and
younger age at diagnosis and longer duration of follow-up [186, 187, 190]. An
increased risk of cardiac events are found for most diagnostic groups, with
particularly high risks for survivors of Hodgkin lymphoma [190]. Many long-term
survivors will also develop modifiable risk factors related to cardiovascular
disease (such as hypertension or obesity) which may further compound their
risk of a cardiac event in later life [186, 187]. For example, survivors who
received chest radiation or anthracycline chemotherapy in combination with
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hypertension had a significantly increased risk of coronary artery disease, heart
failure and valvular disease beyond that expected under an additive assumption
[194].

Clinical outcomes have been identified by various different approaches each
with their own strengths and limitations. Studies based on the CCSS [190, 194]
use patient self-report which may suffer from recall bias, however this study has
very detailed treatment information. Compared to sibling controls cancer
survivors were more likely to report heart failure, myocardial infarction,
pericardial disease and valvular disease with a significant increased risk for
those exposed to anthracyclines and cardiac radiation [190].The cumulative
incidence continued to increase throughout follow-up; by age 45 the cumulative
incidence of coronary artery disease was 5.3%, heart failure was 4.8%, valvular
disease was 1.5% and arrhythmia was 1.3% [194]. By age 50 years, the
cumulative incidence of ischemic heart disease was 7.7% and for stroke was
6.3% [195].

Other studies have used linkage of cancer registrations to hospital admissions
[196-198], which provide an objective measure of cardiovascular disease
morbidity, however less severe cases of cardiovascular complications which
may be treated in primary care will not be included. These studies had varying
amounts of information on treatment available. Admission rates for
cardiovascular disease in long-term survivors of childhood and young adult
cancers are estimated to be between 2-5 times higher than in general
population controls [196, 197, 199-203]. Survivors of Hodgkin lymphoma had
the highest hospitalisation rates for cardiovascular disease in the CCSS and in
Scandinavia [197, 204]. Studies examining specific cardiovascular diseases
showed an increased risk of hospitalisations for several cardiovascular
disorders including: hypertension, ischemic heart disease, pulmonary heart
disease, heart failure, valvular disease, conduction disorders, pericardial
disease and cerebrovascular disease [196, 197, 199, 203]. Based on clinical
follow-up of 10-year survivors, the St Jude Lifetime Cohort Study reported a
cumulative incidence of severe chronic cardiovascular events of 17% by age 40
increasing to 35% by age 50 [40]. Further examination of this cohort restricted
to survivors of Hodgkin lymphoma only, reported a cumulative incidence of 46%
by age 50 of a severe chronic cardiovascular event with myocardial infarction
and structural heart defects making the largest contribution to this [205].
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Exposure to cardiac radiation was associated with an increased risk but no
association with anthracycline dose was found [205] .

In Yorkshire cardiac late effects were examined in 0-29 year olds using linkage
of YSRCCYP data to Hospital Episode Statistics, including over 3000 long-term
survivors with up to 20 years follow-up [196]. Overall 4% survivors had at least
one hospitalisation for a cardiovascular event and compared to the general
population, hospitalisations were increased for childhood survivors but not for
TYA survivors. However, there were increased rates for TYA for specific
outcomes including: pericardial disease, cardiomyopathy and heart failure,
pulmonary heart disease and hypertension. This study included patients
diagnosed up to 2006 and included hospital admissions up to 2011, further
information is now available for patients diagnosed since 2007 and hospital
admission data are now available up to 2017. As the risk of cardiovascular
events continues to increase across the life course it is important to continue to
monitor and report these adverse outcomes to understand more about the
burden of late effects in childhood and young adult cancer survivors. Eight
European countries, including the UK, are contributing data to establish a large
cohort to study symptomatic cardiac late events in 5-year childhood cancer
survivors. Ascertainment of outcomes will be obtained through linkage to
hospital data and medical records, patient and GP questionnaires and visits to
follow-up clinics. The cohort will include approximately 60,000 cancer survivors
and this large sample size will allow detailed examination of outcomes in
relation to several risk factors [206].

To summarise, the risk of cardiovascular late effects increases throughout
follow-up. Age at primary diagnosis, type of cancer, sex, anthracycline use and
chest radiation are all risk factors for cardiovascular late effects.
Hospitalisations for cardiovascular conditions have been examined in several
studies including one study based on the YSRCCYP.

2.15 Respiratory late effects

Primary lung tumours are very rare in children, however, the lung is a common
site for metastases, even several years after treatment [207]. The lung is one of
the most radiation sensitive structures in the body and radiotherapy and
chemotherapy used to treat childhood cancer can cause permanent lung
damage. In addition lung function diminishes over time as a function of normal
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aging and the effects of early lung damage for cancer treatments may
compound these developments. Individual and combined exposure to chest
radiation, certain chemotherapy drugs, hematopoietic stem cell transplant and
thoracic surgery increase the risk of respiratory late effects among childhood
cancer survivors [207]. Specific chemotherapy agents identified as increasing
the risk of respiratory late effects are: bleomycin, alkylating agents such as
busulfan and cyclophosphamide, and nitrosureas such as carmustine (BCNU),
lomusine (CCNU) [207, 208]. Respiratory conditions are a common cause of
morbidity in long-term survivors and can have a major impact on quality of life
[208]. Respiratory complications range in severity from subclinical to severe and
life threatening complications. Children with cancer may have other risk factors
that predispose them to long-term respiratory problems including: genetic
susceptibility to chemotherapy or radiotherapy, underlying asthma or chronic
obstructive lung disease, infection, cigarette use and exposure to environmental
respiratory toxins [207].

Late mortality from respiratory disease is between 3 and 9 times higher for
childhood cancer survivors compared to the general population [31, 32, 81, 83,
157, 159, 161]. However, a decrease in the risk of death from respiratory
conditions has been observed for children diagnosed more recently as cancer
treatments have been modified to reduce long-term side effects [79, 83]. A UK
study investigating respiratory mortality in survivors of cancer diagnosed before
age 40 years reported SMRs of 6.8 for children and 1.7 for TYA (aged 15-39
years) with pneumonia being the most common cause of respiratory death in
both age groups [83]. The most recent figures from the BCCSS estimated an
absolute excess risk of 2.3 deaths per 10,000 person years from respiratory
diseases [81]. In the CCSS survivors of AML and neuroblastoma had the
highest risk of respiratory deaths [159].

In studies of hospital admissions for long-term survivors of CYA cancer, there
was an increased risk of admissions for respiratory conditions in survivors
compared to the general population with rates in cancer survivors 2-6 times
higher than in general population controls [199-204]. These studies of hospital
admissions were population-based and used an objective measure of hospital
admission as a proxy indicator for morbidity, however only one study included
admissions for specific respiratory conditions [203]. Compared to the general
population childhood cancer survivor had an increased risk of admissions for
pneumonia, acute upper respiratory infections, bronchitis and emphysema and
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respiratory failure [203]. In Scotland the admissions for respiratory diseases
were associated with area level deprivation with the cumulative incidence
significantly higher among the most deprived compared to the least deprived
which may reflect differences in smoking prevalence by deprivation [199]. Many
respiratory conditions may be diagnosed and treated by GPs (primary care) and
patients may not present at hospital with these conditions therefore hospital
admissions may only capture the more extreme morbidity within these patients.
Results from the CCSS based on self-reported hospital admissions showed that
admissions for respiratory conditions were higher in all diagnostic groups
compared to the general population and were highest for survivors of Hodgkin
lymphoma with a SIR of 4.5 (95%3.8, 5.4) [204].

Three studies based on the CCSS have investigated self-reported respiratory
outcomes, two studies included patients diagnosed with all cancers [209, 210]
while one was restricted to patients diagnosed with CNS tumours only [211].
The first study by Mertens et al in 2002 [209] included 15 different respiratory
outcomes. Analysis was based on three defined time periods (diagnosis to end
of treatment, end of treatment to 5 years post diagnosis and >5 years post
diagnosis) and the patients report of the earliest age at onset of disease.
Therefore if a patient had a condition that first occurred during treatment but
was still present 5-years post diagnosis this would not be included in the later
time period. The authors found that survivors had an increased risk of lung
fibrosis, recurrent pneumonia, chronic cough, pleurisy, use of supplemental
oxygen, abnormal chest wall, exercise induced shortness of breath, bronchitis,
recurrent sinuthres infection and tonsillitis during follow-up compared to
matched sibling controls [209]. Treatment factors were found to be significantly
associated with respiratory conditions 5-years post diagnosis, particularly chest
radiation; the cumulative incidence of lung fibrosis for those treated with chest
radiation was 3.5% at 20 years post diagnosis [209]. Sex and age at diagnosis
were also associated with worse outcomes; females had increased risk of
chronic cough, shortness of breath and exercise induced shortness of breath,
those aged less than 5 years at diagnosis had increased risk of exercise
induced shortness of breath, while those aged =15 years at diagnosis had an
increased risk of pleurisy [209]. A more recent study of the CCSS with a longer
follow-up time period was published in 2016 and included 6 respiratory
conditions [210]. By age 45, cumulative incidence of any respiratory condition
was 29.6% (95% CIl 29.1% to 30.0%) for childhood cancer survivors compared
t0 26.5% (95% CI 24.9 to 28.0%) for sibling controls [210]. Survivors had
increased risks of chronic cough, oxygen need, lung fibrosis and recurrent
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pneumonia, again these were strongly associated with treatment modality [210].
Huang et al included 7 respiratory outcomes in CNS childhood cancer survivors
and found there was an increased risk of lung fibrosis, chest wall abnormality,
chronic cough and supplemental oxygen use in survivors compared to matched
siblings [211]. Craniospinal radiation was associated with a 10 fold increased
risk of chest wall deformity (RR = 10.4, 95% CI 7.6 to 14.4) [211], but not with
increased risk of other respiratory outcomes reported. Based on clinical follow-
up of 10-year survivors, the St Jude Lifetime Cohort Study reported a
cumulative incidence of severe chronic respiratory conditions of 13% by age 40
increasing to 22% by age 50 [40]. Within this cohort those with impaired lung
function had reduced physical function [212]. A study of long-term childhood
cancer survivors in Switzerland based on patient reported outcomes with sibling
comparisons reported a cumulative incidence of any respiratory disease 35-
years post diagnosis of 21% [213]. Cumulative incidence of pneumonia was
highest for those treated with both pulmonary toxic chemotherapy and chest
radiation [213].

Other studies based on long-term cancer survivors include results from
pulmonary function test (PFT) mainly carried out when survivors attend long-
term follow-up clinics and limited to single centre studies which are not
population-based with smaller sample sizes [163, 214-217], including several
studies identified in a systematic review published in 2011 [207]. PFT provide
objective measures of lung diseases including obstructive lung disease,
restrictive lung disease, diffusion capacity and overall respiratory dysfunction,
however the definitions of these can vary between studies making direct
comparisons difficult. These adverse respiratory outcomes may also include
undiagnosed conditions in survivors who are not presenting with symptoms.
The prevalence of respiratory abnormalities based on PFT results ranged from
44% to 65%, however the percentage of patients with symptoms was estimated
at between 19% and 29% [163, 214-217]. At age 50 the cumulative prevalence
of abnormal respiratory function was 81% [163].

Several smaller studies have examined the association between treatment and
respiratory abnormalities. Mulder et al included 193 PFTs in patients who
received pulmotoxic therapy for a primary cancer in childhood and found that
chest radiation particularly in combination with bleomycin or lung surgery was
the most important risk factor for impaired pulmonary function up to 18 years
post diagnosis [215]. In a study of 121 childhood cancer survivors who
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underwent a baseline PFT a median of 12 years from diagnosis and a further
follow-up 5 years later, found that those treated with chest radiation had a
significant decline in lung diffusion function over time [214]. A further study of
143 childhood cancer survivors found that patients who underwent chest
radiation or surgery were more likely to have a respiratory abnormality when
assessed at long-term follow-up clinics [217].

Lung cancer is rarely reported as a second malignancy after childhood cancer
[208], for example, amongst 14,000 survivors in the CCSS only 11 cases of
subsequent lung cancer were observed with a median time to diagnosis of 20
years [167].In the BCCSS, there were 36 respiratory SMNs reported in 17981
survivors, with respiratory SMNs accounting for 9% of the total absolute excess
risk in survivors aged over 40 years [35]. However, subsequent lung cancers
were more frequently diagnosed in long-term survivors in the TYACSS, where it
was observed that lung cancers accounted for a substantial proportion of the
excess number of subsequent tumours across a range of AYA cancers 35 years
post diagnosis including breast (2.9%), cervical (3.6%), testicular (2.7%) and
Hodgkin lymphoma (5.1% in males and 3.8% in females) [82]. Given the rarity
of subsequent lung tumours in childhood cancer survivors, treatment associated
risk factors have not been identified. However with longer follow-up of childhood
cancer survivors it is likely that subsequent lung cancers will increase and
studies investigating the role of treatment exposures can be conducted [208].

In summary, many studies have shown that treatment is a major risk factor for
respiratory late effects as are sex and age at diagnosis. Studies looking at
specific causes of respiratory conditions were either based on self-reported
outcomes or abnormalities based upon lung function tests which may also
detect asymptomatic disease. Analyses of hospital admissions have only
considered the broad category of all respiratory conditions, only one study has
examined specific respiratory conditions. No studies have examined hospital
admissions by treatment modality.

2.16 Key gaps in the knowledge

Cancer incidence and survival trends in children and young adults have been
studied extensively, however it is important to continue to monitor these trends
in population-based studies to assess the impact of changes to treatment and
health policies and variation in outcomes by patient characteristics.
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Furthermore, many studies have limited clinical prognostic information such as
stage at presentation and treatment. The research presented in this thesis aims
to explore alternative statistical methods to gain further insights into survival
trends by utilising the statistical cure model. These models are becoming more
frequently used and reported for a range of adult cancers, however there are
limited applications to population-based studies in children and young people
with cancer. Cure models are based on mortality outcomes and while survival
rates for children and young people with cancer are high overall there is wide
variation by diagnostic group, therefore it is important to assess cure separately
by diagnostic group. The application of cure models to data from population-
based cancer registries in children and young adults are limited to mainly
studies of leukaemia. No studies have considered the application of cure
models to a range of diagnostic groups in children and young adults as has
been conducted for adult cancers. The use of other prognostic risk factors in the
cure models (such as age, sex, stage/grade, treatment for studies based on
cancer registry data) are limited. This evidence gap is addressed by Aim 1 of
this thesis with the results presented in Chapter 5.

There is a growing body of literature reporting on the long-term late health
effects of treatment for childhood and young adult cancers. However, much of
late effects literature for TYAs is based upon extrapolation of findings from
childhood studies despite these being distinct populations. More studies are
needed to explore risks specifically in the TYA population. TYAs are included in
analysis in this study to address this knowledge gap.

The prevalence of chronic health conditions in childhood cancers survivors is
high and the incidence of chronic conditions increases over time with increasing
follow-up and does not appear to plateau. Studies based on large cohorts with
sibling controls are limited by self-reported outcomes whereas studies based on
clinical assessments are often based on single-institutions and therefore not
population-based and also do not compare with the health of the general
population. Important prognostic risk factors for adverse health outcomes in
later life include treatment factors, diagnostic group, age and sex.

The YSRCCYP linked to hospital admission data provides an important source
of data to enable the examination of morbidity requiring hospitalisation for the
Yorkshire population, this work has previously been conducted for
cardiovascular disease [196] but not for other disease areas. Updated
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estimated of cardiovascular admissions are included in Aim 2c of this thesis
(Chapter 8). Respiratory disease is one of the most common causes of late
mortality and morbidity and is associated with exposure to treatment for
childhood cancers including specific chemotherapy drugs and radiation to the
chest. Therefore it is important to estimate the prevalence of hospital
admissions for respiratory conditions and associated risk factors to identify the
groups of survivors at greatest risk. This is addressed by Aim 2a of this thesis
with results included in Chapter 6.

Childhood cancer survivors are at increased risk of subsequent malignant
neoplasm, however this risk has not been quantified in the Yorkshire region and
while many studies have been conducted in children, studies including the TYA
age range are more limited. Several studies have examined SMN occurrence
but mainly focussed on SMNs after 5-years and few examined the impact of
latency on survival. This is addressed by Aim 2b with results presented in
Chapter 7.

Finally, many studies focus on one outcome only but it is also important to
consider multiple morbidities, as cancer survivors are at increased risk of an
array of late effects as a consequence of their earlier treatment with over one
third of long-term survivors reporting multiple chronic conditions [37]. By utilising
several different sources of routinely collected follow-up data this project aimed
to evaluate the cumulative burden of morbidity from cardiovascular and
respiratory diseases and subsequent tumours in long-term survivors (Aim 3,
Chapter 8). Details of the specific data sets and methodology used in this thesis
are described in Chapter 3 and Chapter 4 includes a detailed descriptive
analysis of the study population.
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Chapter 3 Data and methods

This chapter outlines the datasets included in the analysis presented in this
thesis and details the statistical methods applied to address the thesis aims and
objectives listed in Section 1.3. The project is based upon data from the
Yorkshire Specialist Register of Cancer in Children and Young People
(YSRCCYP), which is described in detail at the start of this chapter. Data
linkage to other datasets, including Hospital Episode Statistics (HES), National
Cancer Registration and Analysis Service (NCRAS) and cytogenetic data, were
performed to obtain additional outcomes and other clinical data. For each
additional data source a description is included detailing the key variables and
all outcomes included in analysis. This study utilised individual level identifiable
and sensitive data and the ethical implications and details of ethical approvals
are included. Finally the statistical methods used in analysis are described.

3.1 Data sources

The main source of data used in this study was the YSRCCYP. Further linkage
to data from other sources was carried out to produce the results presented in
this thesis. All sources of data are detailed below including details of the key
variables extracted from each source.

3.1.1 Yorkshire Specialist Register of Cancer in Children and Young

People

The YSRCCYP is a population-based cancer register which records all cancers
diagnosed in children and young people aged 0-29 years resident in Yorkshire.
The register was established in 1974, originally only recording cancers in
children aged 0-14 years, but from 1990 onwards included teenagers and
young adults aged 15-29 years. When the register began, the NHS in England
was administered by regional Health Authorities so the region covered by the
register was that of the Yorkshire Regional Health authority which included
West Yorkshire, North Yorkshire and Humberside, but excluded South
Yorkshire. From 1998-2009 cancers diagnosed in 0-29 year olds from South
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Yorkshire were included in the register to ascertain complete coverage of the
Yorkshire and Humber region for this time period.

The total population of the Yorkshire and Humber region from the 2011 census
was 5.3 million, which included 2 million individuals aged 0-29 years. The region
is broadly representative of the age and sex structure of the rest of England
[218, 219]. The region covers both urban and rural communities with a
significant ethnic minority population in parts of West Yorkshire, mainly those of
South Asian origin and in particular of Pakistani origin; 4% of the Yorkshire and
Humber population was Pakistani compared with 2% in England and Wales
[219]. The Yorkshire and Humber region has a different deprivation profile
compared to England with twice as many areas of high deprivation (based on
the Index of Multiple Deprivation) [220].

The register receives notifications of cancers diagnosed from several sources
including directly from the Principal Treatment Centres (PTC) in Leeds and
Sheffield, which treat the majority of children and teenagers with cancer in the
region. Secondary sources of ascertainment include neuropathology reports,
hospital admissions and other regional and national cancer registries. The
register regularly receives extracts from Public Health England on all patients
diagnosed in Yorkshire aged 0-29 years from the National Cancer Registration
and Analysis Service (NCRAS). This is the main source of notifications for
patients aged 25-29 years. Notifications of cancer include basic personal
demographic information, date of diagnosis and details of morphology and
topography. Validation checks are conducted on NHS number, postcode, age at
diagnosis, date of birth, date of death, morphology and topography codes when
these data are entered into the database. Further fields that must be completed
during the registration process are date of diagnosis and gender. Validation
reports are conducted quarterly to monitor data quality and completeness of
these data fields.

A dedicated data collection manager then extracts further information from the
patient medical records from the relevant hospitals in the region, including
details on clinical factors including stage at diagnosis and treatment.
Notifications of relapse are also received directly from the PTCs and this
information, including the date of relapse, is recorded in the database. Each
patient is followed up every two years via hospital consultants and GP to
ascertain their vital status and any further information on relapses. Further
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information on date and cause of death are obtained from NCRAS. All data
received from NCRAS is cross-checked against the data held on YSRCCYP
and additional registrations added. Completeness of registrations each year are
monitored by examination of annual incidence trends for each diagnostic group.

When treatment data is received from NCRAS, this is cross-checked against
the register to check, for example, surgery and chemotherapy start dates are
consistent. Any further anomalies with data that are identified, for example while
undertaking specific data analysis, are flagged with the data collection manager
and further verification from patient notes may be undertaken, and data updated
on the database.

This study included all patients aged 0-29 years diagnosed between 1990 and
2011 resident in the Former Yorkshire Health Authority region only. Table 3.1
lists the local authority areas included in the NHS Yorkshire and Humber
Region and those included in the Former Yorkshire Health Authority (when the
register was established). These local authority areas are used to derive
population statistics for the region covered by the registry. Patients resident in
South Yorkshire were not included in this study these patients were only
included in the YSRCCYP database from 1998-2009 and not the full time period
of interest.
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Table 3.1: Local Authority names and codes for Yorkshire.

Included in Former Yorkshire
Health Authority

Area code Areaname

E06000010 Kingston upon Hull, City of Yes
E06000011 East Riding of Yorkshire Yes
E06000012 North East Lincolnshire Yes

E06000013 North Lincolnshire Yes
E06000014 York Yes
E07000163 Craven Yes
E07000164 Hambleton Yes
EO07000165 Harrogate Yes
E07000166 Richmondshire Yes
E07000167 Ryedale Yes
E07000168 Scarborough Yes
E07000169 Selby Yes
E08000016 Barnsley No
E08000017 Doncaster No
E08000018 Rotherham No
E08000019 Sheffield No
EO08000032 Bradford Yes
EO08000033 Calderdale Yes
E08000034 Kirklees Yes
EO08000035 Leeds Yes
E08000036 Wakefield Yes

Source: [221]

The aims of this study were to examine long-term outcomes; therefore patients
were included from 1990 onwards for several reasons. The latest follow-up
information on death at the time analysis started was to the end of 2016;
therefore all patients were followed up for at least 5 years with the potential to
have up to 26 years follow-up for those diagnosed in 1990. To ensure
consistency over time in the age range of patients only those diagnosed from
1990 onwards were included, as prior to this diagnoses in the 15-29 year age
group were not registered. Furthermore, prior to 1990 NHS number was not as
well recorded and this is a key personal identifier used for linkage to other data
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sources (see next sections) so to ensure the maximum potential to link to other
sources this cut off was also chosen.

Diagnoses are defined based on ICD-0O3 topography and morphology codes.
These are then mapped to the ICCC-3 codes [43] which were used to define the
diagnostic groups used in this study. The ICD-O3 codes are also mapped to the
Birch classification [8], which is commonly used for TYA cancer diagnosis.
ICCC-3 and Birch are generally similar, however the Birch classification system
separates out the carcinomas into separate groups as these are more common
in TYA compared to children, where in the ICCC-3 classification they are alll
grouped together. (See 3.3.1 for more details on diagnostic groups used in
analysis).

Other data items extracted from the register included: patient’s date of birth,
date of diagnosis, sex, stage or grade of cancer at diagnosis, treatment
received, which included binary indicators of receiving surgery, chemotherapy
or radiotherapy as well as further details of the treatment including surgery
codes (OPCS-4), dates of surgery and outcome of surgery, information on
chemotherapy regimens and drugs and radiotherapy site. Postcode at diagnosis
was extracted and used as a personal identifier (along with others) for linkage to
other data sources and postcode was also mapped to area level deprivation
indices (see Section 3.3.4).

3.1.2 Hospital Episode Statistics

The Hospital Episode Statistics (HES) database includes records of all NHS
hospital activity for individuals resident in England and is managed by NHS
Digital (formally known and the Health and Social Care Information Centre)
[222]. It includes several different datasets including admitted patient care
(APC, inpatient), outpatient care (OP) and accident and emergency care (A&E)
[223]. HES data are not collected for research purposes but are collected to
allow each hospital to be reimbursed for the care they deliver, so called
‘payment by results’. In order to be paid correctly hospital providers need to
accurately record all procedures carried out and clinically code all details of the
patient’s conditions and treatments. HES data are collated for each financial
year and stored as a series of separate records for each period of care rather
than at the patient level as patients may have more than one admission each
year. For each patient a unique identifier, called the HESID, is created by NHS



76

Digital, which uniquely identifies each patient and provides a method to track
them in HES data. An alternative method would be to use the patients unique
NHS number, however NHS number was not recorded in all records,
particularly for historic records, and also the NHS number is an identifiable field
[224]. HES is commonly used for secondary data analysis and research [225].
Furthermore, by linking to a cohort of cancer patients, provides a rich and
powerful source of data to examine hospitalisations in long-term cancer
survivors.

There have been issues with the quality of data recorded in HES although the
quality of data is improving year on year. Inpatient data have been recorded
since 1989, however prior to 1997 the data quality was not regarded as of
sufficient quality for research purposes: the HESID was introduced in 1996 to
allow the tracking of individuals across multiple admissions [224]. Outpatient
data are only available from 2003/04 onwards and A&E data from 2007/08
onwards, there are also concerns regarding the data quality of these datasets,
for example examination of the outpatient HES linked to the YSRCCYP from
2003-2016 identified that 99.4% of records had the main diagnostic code
recorded as “unknown and unspecified cause of morbidity”. Therefore in order
to estimate the prevalence of late effects in a cohort of cancer patients, only the
inpatient (APC) data from 1997 onwards was used in this study.

Inpatient HES are recorded as a series of Finished Consultant Episodes (FCE)
which represent a period of care (known as an episode) under a particular
consultant speciality at a single hospital provider. A patient’s whole stay in
hospital is known as a spell and a spell may contain more than one episode if a
patient is treated under more than one consultant during their admission. There
are two main types of spells: provider spells and continuous inpatient (CIP)
spells. Provider spells are the time a patient stays in one hospital and the
provider spell ends when the patient is transferred to another hospital, dies or is
discharged. A CIP is a continuous period of care within the NHS, regardless of
any transfers between hospital providers and the spell ends when the patient
dies or is discharged from hospital [226]. The hierarchical structure of spells and
episodes is shown in Figure 3.1.
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CIP spells

Provider spells

Episodes

Figure 3.1: Hierarchical structure of CIP spells, Provider spells and Episodes in
HES.

Source: [226]

Identifiers from patients from the YSRCCYP were sent to NHS Digital for
linkage to HES on NHS number, date of birth, sex and postcode [222]. Separate
data extracts were sent on 4 different occasions, the first extract was received

in 2012 and included patients diagnosed between 1974 (the start of the register)
and 02/02/2012 who were alive on 01/04/1996 and HES records from April
1996 to March 2011. Since then three further extracts have been received to
allow further follow-up of the cohort and HES data to be obtained for patients
recorded on the register since 2012 with follow-up including admissions up to
31st March 2017. In this study patients diagnosed between 1990 and 2011 were
included with corresponding hospital admission data available from April 1997
to March 2017.

3.1.2.1 Diagnostic codes and operation codes

HES uses the WHO International Classification of Diseases 10 (ICD-10) coding
system to record all diagnostic information. In the APC episodes this is recorded
as a primary diagnosis, the main reason the patient was admitted, and up to 19
other diagnostic codes can be recorded, these can be used to record other
important co-morbidities related to the admission. All procedures or
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interventions are recorded using the Office of Population, Censuses and
Surveys: Classification of Interventions and Procedures, 4" Revision (OPCS-4)
and up to 20 of these can be recorded alongside the date of the procedure.

The analysis in this thesis considers all diagnostic codes listed in any of the 20
fields to ensure the whole admission patterns of the patient were included.
Information on cardiovascular and respiratory admissions were extracted from
these data (see Section 3.4.5). Within HES data the outcome of interest was the
date of first admission and also any subsequent admissions. CIPs were created
for each patient within the cohort using the methodology described by NHS
Digital [226], to ensure that all episodes within the same admission for each
individual were captured as one event. For the rest of this thesis a CIP will be
described as an admission. The respiratory or cardiovascular diagnosis may
occur in any episode of an admission for each individual. Previous research in
the Yorkshire register examining cardiovascular outcomes using HES data was
also based on CIPs [196].

3.1.2.2 Comparison group

The rate of hospitalisations in the cancer survivor cohort were compared to age
and sex matched admissions in the general population of Yorkshire and
Humber. These data were requested and received from NHS Digital in addition
to the linked data for the cancer patients. This consisted of an extract of all HES
episodes in Yorkshire between 1997 and 2017 for those aged <56 years
including age, sex, date of admission and all diagnostic codes associated with
each episode along with a unique ID (derived from the HESID) to link
individuals between episodes over the study period. From this, an age-matched
cohort was constructed for each calendar year. For example, the cancer
survivor cohort was aged 5 to 34, so for the background Yorkshire population all
admissions in those age 5 to 34 years were retained, and in 2016 the cancer
survivor cohort was aged 5 to 56 years therefore all admission in this age range
were retained. Then for each calendar year the number of admissions for each
diagnostic code of interest, the total number of admissions by single year of age
and sex were tabulated and used to create admission rates in the general
population by dividing the number of admissions by mid-year population
estimates obtained from the Office for National Statistics [227]. This then
provided an external reference data set to calculate indirect standardised rates.
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All diagnostic and procedure fields were included and the same codes
considered to identify population-based rates of admissions for respiratory and
cardiovascular morbidity (see Section 3.4.5).

3.1.3 National Cancer Registration and Analysis Service

Data on all subsequent malignant neoplasms (SMN) were obtained from the
YSRCCYP database and the National Cancer Registration and Analysis
Service (NCRAS) [48]. If a patient was diagnosed with a SMN while under the
age of 30 and resident in Yorkshire then this is recorded in the YSRCCYP
database. However, if the patient is 30 or older when diagnosed or is no longer
resident in Yorkshire this information was obtained from NCRAS. An application
to obtain these data was approved through Public Health England (PHE) Office
for Data Release (ODR1516_163 Al). Patient identifiers including NHS
Number, Date of Birth, Postcode and Sex were sent to PHE for linkage to
identify SMNs for patients within the Yorkshire register.

Data received back from NCRAS included date of subsequent tumour diagnosis
and diagnostic group, coded to ICD-O2 or ICD-O3 (depending on date of
diagnosis) for all tumours diagnosed up to 315 December 2015.

3.1.4 Cytogenetic risk group

Analysis presented in Chapter 5 focussed on acute lymphoblastic leukaemia
(ALL) patients only. A key prognostic indicator for ALL is cytogenetic risk group.
Cytogenetic information is important not only for predicting survival but also to
identify patients at increased risk of relapse and those less likely to respond to
treatment after relapse [228]. Cancer registries do not routinely collect this
information therefore this information was obtained via linkage to the Leukaemia
Research Cytogenetics Group database (held and managed at Newcastle
University) for a subset of patients recruited into clinical trials. Patients were
matched on personal identifiers including NHS number, patient names, date of
birth and sex. Cytogenetic risk group was coded as good, intermediate or poor
for B-cell precursor ALL and all T-cell precursor ALL were included in one group
[229]. Some patients after linkage, were unable to be assigned a risk group and
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were categorised as “Unknown”, with the “not linked” group included as a
separate category.

3.2 Ethical approval and data security

The YSRCCYP has received ethical approval from the Northern and Yorkshire
Multi Centre Research Ethics Committee (MREC/00/3/001) and approval from
the Health Research Authority Confidential Advisory Group (CAG 1-07(b)/2014)
which permits the processing of identifiable cancer registration data without the
need for informed patient consent. An amendment to ethics was made to allow
the collection of long-term follow-up data on SMNs as part of this project.
Favourable ethical approval for this amendment was granted in January 2017.
Approval for the updated HES data was granted by NHS Digital Data Access
Request Service in April 2017 and approval from PHE Office for Data Release
in November 2017 for SMN information.

The YSRCCYP database contains personal, identifiable and sensitive data
including names, dates of birth, addresses, NHS numbers and detailed clinical
information. All data are held within secure networks within the University of
Leeds and can only be accessed by authorised members. No information is
ever published in which individuals can be identified. To ensure no patient
identifiable data are disclosed numbers may be suppressed where there are
fewer than 5 cases, other cells in tables may also be suppressed to avoid
disclosure by difference.

3.3 Study variables

3.3.1 Diagnostic group

Diagnostic group was based on the ICCC-3 as described in Section 3.1.1
above. As well as all cancers combined analyses were conducted for the main
diagnostic groups and some specific subgroups. ICCC-3 was used when
considering all ages so direct comparisons between children and TYA for
specific diagnostic groups could be made. If only considering TYA then Birch
classification was used as this system more appropriate for this age group —in
particular the carcinoma groups. Analysis based on Birch only have been
identified in the relevant sections of this thesis. Analysis based on cure models
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including clinical risk factors was based on those diagnosed with ALL only
(ICCC-3 group 1a) (see Section 3.5.2.3).

3.3.2 Age at diagnosis

For most analysis the whole 0-29 year age range was included, mainly
categorised into two groups: children (0-14 years) and TYA (15-29 years).
However the cure model ALL analysis was based on those aged 1-17 years
only (see Section 3.5.2.3 for further justification and details).

3.3.3 Disease severity

Stage or grade of disease was available for some tumours but the levels of
completeness varied by diagnostic group [230]. White cell count (WCC) was
used a proxy for stage for leukaemia patients; the Ann Arbour staging system
was used for lymphoma; the Royal Marsden or TNM stage was used for
testicular germ cell tumours and FIGO stage for ovarian germ cell tumours.
There was insufficient stage information recorded for bone tumours and soft
tissue sarcomas. CNS tumours were categorised according to WHO grade.
Stage or grade of disease was included in descriptive analysis including the
reporting of levels of missing data. Methods to deal with missing data, such as
multiple imputation [231, 232] were not considered as this was out with the
scope of this project but it is an important analytical issue to address in future
studies (see Chapter 9 Discussion). Section 3.5.3 describes the methods used
to select potential confounders for adjustment in statistical models including
identifying a minimum adjustment variable set, where possible variables other
than stage were used in adjusted models to avoid excluding cases with
incomplete data.

3.3.4 Deprivation

Postcode at diagnosis was linked to 2001 Census wards to obtain the
Townsend Deprivation score [233]. Townsend deprivation scores are area
based measures derived from Census data on the percentage of homes that
are not owner-occupied, the percentage of economically active residents who
are unemployed, the percentage of households that do not have access to a car
and the percentage of households with more than one person per room. Each
of these variables are standardised using z-scores and then a composite score
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is created to give an overall score for each area [234]. The areas used
throughout this thesis were wards and the scores for each ward in England
were then ranked and split into fifths. The scores and deprivation fifths were
then assigned to each individual within the study population by mapping their
postcode at diagnosis to a 2001 electoral ward. For patients in the register no
individual level social class variables are available therefore an area based
measure of deprivation had to be used, although this may lead to problems with
ecological fallacy where area-level associations may not infer associations at
the individual level [235]. Other area level measures of deprivation are
available, such as Carstairs and the Index of Multiple Deprivation, however to
ensure comparability with other studies based on the Yorkshire register,
Townsend was used to this has been used previously within the register.

3.3.5 Ethnicity

Ethnicity was obtained from a combination of ethnicity recorded in HES and the
naming algorithm program Onomap [236]. Since 1995 in England it has been
mandatory to collect self-reported ethnic group data in HES data [237]. Ethnicity
recorded in HES is based on ethnic groups used in the Census and different
ethnic groups were recorded in HES from 2001 onwards to reflect changes to
the Census ethnic group categories [223]. Within HES data ethnicity is recorded
for each episode, therefore each patient may have more than one episode and
potentially multiple ethnic codes may be recorded. For patients with multiple
admissions and more than one ethnic groups recorded the most common ethnic
group was assigned to each individual, as recommended by several authors
[238-240]. Due to small numbers in the Black and Chinese groups, ethnicity
was categorised as White, South Asian or Other.

Onomap is a name recognition program which was developed based on
surnames and forenames from public name registers from over 26 countries
and classifies individual names into cultural ethnic or linguistic groups [241,
242]. It includes all ethnic minority groups in the UK and unlike other naming
algorithms such as Nam Pehchan [243] and SANGRA [244], is not limited to
the South Asian group only. The Onomap taxonomy classifies names into one
of 185 different types, which are nested within 66 subgroups, which are then
nested within 16 larger groups. The surname and forename recorded in the
YSRCCYP database for each person was matched to an Onomap type which is
the lowest level in the Onomap classification system. As above three ethnic
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groups were included: White, South Asian or Other to be consistent with the
ethnicity groups from HES.

A combined HES and Onomap ethnic group was assigned based on the
previous reported methodology [236]. (Lesley Smith was lead author of this
publication and contributed to the study design, conducted the statistical
analysis and drafted the manuscript). If both sources agreed then this group
was assigned to each patient. If either source was missing but the other was not
then the non-missing group was used. A further Onomap type is the Muslim
group which is defined as having origins in the Middle East and this group
cannot be directly mapped to the South Asian group [245]. Where Onomap
assigned Muslim and HES was recorded as South Asian, then the individual
was assigned to the South Asian group. There were still patients with
discrepancies between the two classifications therefore two further ethnic group
indicators were created: one where these patients were assigned the HES
ethnic group and another where they were assigned the Onomap ethnic group.
Analysis of incidence trends within this population found that the two combined
indicators showed a similar trend in results [236], therefore the combined
indicator which prioritises HES was chosen to categorise patients into one of
three ethnic groups; White, South Asian or Other. Despite using these two
sources ethnicity information was still missing for some individuals. The
Onomap program licence expired in 2016, with no further updates available,
and at this stage an ethnic group had not been assigned using this program to a
small number of individuals included in the study population.

3.3.6 Treatment

Treatment data were extracted from the register. Three separate binary
indicators for receiving surgery, radiotherapy or chemotherapy were created.
From these a combined treatment modality indicator was created within each
diagnostic group where patients with no treatment recorded were included as a
separate category.

Further details of surgery were extracted based on OPCS-4 codes. Details on
chemotherapy drugs were extracted. Details on radiotherapy site were also
obtained from the register database. For analysis on respiratory late effects
(Section 3.5.5) three treatment exposures were of interest: 1) patients who had
received any chemotherapy drugs with known lung toxicity which included
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bleomycin, busulphan, carmustine, cyclophosphamide and lomustine, 2) those
who had received radiotherapy to the chest which included radiotherapy to the
lungs, heart and mediastinum as well as total body irradiation and 3) those who
had received thoracic surgery including operations of the chest wall, lobectomy
and other operations on the lung. For the analysis involving the cumulative
burden of admissions for respiratory and cardiovascular disease and SMNs
(Section 3.5.8) any patients who had received anthracyclines were also
identified. Accurate dose information for radiotherapy or chemotherapy was not
available, therefore these treatment exposures were included as binary
variables only.

3.4 Outcomes

3.4.1 Overall survival

Overall survival was defined from date of diagnosis to date of death or
censoring. All patients were followed-up to 315t December 2016 to ensure at
least 5 years follow-up for each patient.

3.4.2 Relative survival

Relative survival is described in detail in the background chapter (Section
2.7.5). Briefly, it is defined as the observed survival divided by the expected
survival where the expected survival is obtained from national life tables
stratified by age, sex and calendar year. Mortality rates in the general
population were obtained by age, sex and year from national lifetables for
England published by the Office for National Statistics [104].

3.4.3 Event-free survival

In addition to overall survival there is interest in event-free survival (EFS) which
incorporates relapse, in addition to death and censoring. This outcome is
commonly reported from clinical trial data but population-based information on
relapse are limited. Relapse information is collected with the YSRCCYP.
Relapse was defined as recurrent disease either occurring locally at the same
site as the initial diagnosis and/or elsewhere [246]. The exact date of relapse
was extracted for analysis. EFS was defined from date of diagnosis to date of
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relapse or date of death, whichever occurred first. EFS was examined on a
subset of children with ALL and the results are included in Chapter 5.

3.4.4 Subsequent malignant neoplasms

Ascertainment of subsequent malignant neoplasms (SMN) were obtained from
the YSRCCYP and linkage to the National Cancer Registration and Analysis
Service (NCRAS) (Section 3.1.3). All tumours were registered following the
coding of multiple primary cancer rules recommended by the International
Association of Cancer Registries (IACR) and the International Agency for
Research on Cancer (IARC) [165]. These rules state that a primary cancer is
one that originates in a primary site of tissue and is not an extension, a
recurrence or a metastases. All subsequent tumours, regardless of time since
diagnosis of first tumour, were included.

A SMN was defined as a malignant neoplasm of any site with a different
morphology from that of the primary tumour. Subsequent diagnoses were coded
according the ICD-0O3, tumours with a behaviour code of 0 (benign) and 1 (in-
situ) were excluded with a few exceptions (Table 3.2). CNS tumours with benign
or in-situ behaviour that are included in the ICCC-3 were included (for example
pilocytic astrocytomas and meningiomas) [43]. Unlike tumours located
elsewhere in the body, benign CNS tumours in children present with similar
clinical symptoms, prognosis and late effects as malignant tumours including
serious neurologic morbidity. All bladder cancers were included regardless of
behaviour type as there are known difficulties classifying the malignant potential
of tumours of benign, in-situ or uncertain behaviour [35, 247]. Non-melanoma
skin cancers (ICD-O3 codes C44) were excluded as there is known variation in
registration of these tumours in England and not all tumours are reported
resulting in an underestimation in the general population [248].
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Table 3.2: Non-malignant morphology codes included in analysis of subsequent
tumours

Topography Morphology Description

C70.0 M9530/0 Meningioma, not otherwise specified (NOS)
C70.9 M9530/0 Meningioma, NOS

C71.2 M9530/0 Meningioma, NOS

C71.9 M9413/0 Dysembryoplastic neuroepithelial tumor
C71.9 M9421/1 Pilocytic astrocytoma

D32.0 M9530/0 Meningioma, NOS

D32.9 M9530/0 Meningioma, NOS

D32.9 M9532/0 Fibrous meningioma

D42.0 M9530/1 Meningioma, NOS

D43.2 M9505/1 Ganglioglioma, NOS

D43.4 M9505/1 Ganglioglioma, NOS

D46.2 M9983/1 Refractory anemia with excess blasts

The ICCC-3 or Birch classification system used to categorise tumours in
children and TYA is not appropriate to classify SMNs within this cohort as
follow-up for SMN includes those diagnosed up to age 53 years therefore
ICDO2/03 was used as this is used to classify adult cancers. SMNs were
categorised into a broad diagnostic groups based on ICDO2/03 codes. These
included: 1) Leukaemia, 2) Lymphoma, 3) CNS tumours, 4) Digestive, 5)
Respiratory, 6) Breast, 7) Testicular, 8) Thyroid, 9) Soft tissue and 10) Other.
The specific groups of SMN tumours were selected based on the numbers
observed within the cohort and those used in other published studies [35].

3.4.5 Late effects based on hospital admissions

The linked cancer registry-HES data were used to identify late effects based on
hospital admissions in 5-year survivors. Only admissions occurring at least 5-
years post diagnosis were included. Whilst this is an arbitrary cut point it is the
standard convention in studies based on long-term survivors. A five-year period
is chosen to ensure sufficient time has passed since the end of treatment
(treatment for leukaemia may last up to 3 years) so that any conditions
diagnosed may be defined as a late effect of treatment and not a consequence
of short term toxicity. Additionally 5-year survival is frequently used as a bench
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mark and patients surviving beyond this period as assumed to be cured of their

cancer. Therefore there is great interest in understanding and quantifying health
issues after this period. By using this cut-off it also allows comparison with other
published literature.

A long-term cancer survivor cohort was established from the YSRCCYP
database including all children and young people, aged 0-29 years, diagnosed
between 1990 and 2011 and surviving at least 5-years from diagnosis. HES
admissions occurring between April 1997 and March 2017 were used to identify
late effects for respiratory and cardiovascular conditions as described below.
HES data were available from 1997 onwards, therefore in this study patients
who were diagnosed in 1990-1991 did not start follow-up 5-years from
diagnosis but shortly after when admission data were available.

For both respiratory and cardiovascular conditions admissions were based on
the primary diagnosis and all secondary diagnostic fields within each HES
episode to ensure all conditions were identified. Sensitivity analysis was also
carried out based on identifying conditions based on the primary diagnosis field
only.

3.4.5.1 Respiratory late effects based on hospital admissions

Respiratory admissions were classified based on ICD-10 codes and included:

1. Any respiratory conditions (JO0-J99)

2. Asthma (J45-J46)

Pneumonia (J10.0, J11.0, J12-J18)

Chronic lower respiratory disease (J40-J44, J47)

Lung fibrosis (J84.1)

Respiratory conditions due to other external agents (J70) (this includes
radiation and drug-induced lung disorders).
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To quantify hospitalisations due to respiratory conditions the first admission for
each disease type was included. Readmissions following first admissions were
also identified. Time to first admission for each condition was calculated starting
from 5-years after the diagnosis date.
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3.4.5.2 Cardiovascular late effects based on hospital admissions

Cardiovascular admissions were classified based on ICD-10 codes and
included:

1. All cardiovascular conditions (100-199, G45)

2. Hypertension (110-115)

Coronary heart disease (120-125)

Cardiomyopathy and heart failure (142, 143, 150, 151)
Valvular heart disease (134-139)

Pericardial disease (130-132)

Conduction disorders (arrhymias) (144-149)
Cerebrovascular disease (160-169, G45)
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These are the same cardiovascular included in previous analysis based on the
YSRCCYP [196]. To quantify hospitalisations due to cardiovascular conditions
the first admission for each disease type was included. Time to first admission
for each condition was calculated starting from 5-years after the diagnosis date.

3.4.5.3 Admission in the general population

In order to establish if the admission rates for respiratory and cardiovascular
disease were higher in the cancer survivor cohort compared to the general
population, individual-level inpatient admission data for the whole Yorkshire and
Humber region were obtained matching the cancer survivor cohort in terms of
age and sex over the same time period. These data were used to estimate
admission rates in the general population for each specified admission type
using population denominator data based on single-year of age, sex and
calendar year for the Yorkshire and Humber region obtained from the Office for
National Statistics.[227]

3.5 Statistical Methods

3.5.1 Descriptive statistics

The number of patients and incidence rates by diagnostic group were
calculated, and described for all patients and for two broad age groups: children
(0-14 years at diagnosis) and TYA (15-29 years at diagnosis). Age standardised
incidence rates (ASR) were calculated using the direct method and the
European standard population, to allowed valid comparisons to be made over
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time [249]. ASRs and 95% confidence intervals (95% CI) are presented per
1,000,000 persons per year.

Overall survival by diagnostic group and age group, were calculated using the
Kaplan-Meier survival estimate. Survival estimates were only calculated for
groups including at least 50 patients following the methodology of PHE [250].
Retinoblastoma, hepatic tumours and Other specified and unspecified tumours
were excluded from survival analysis due to the small numbers in these groups.
Kaplan-Meier survival curves were used to graphically assess trends in survival
over time, initially using three time periods 1990-1996, 1997-2003, 2004-2011,
however if there was fewer than 50 cases in each time period then two time
periods were considered 1990-2000 and 2001-2011. These plots were used to
assess if statistical cure was a reasonable assumption. In addition to overall
survival plots, relative survival was also estimated using Ederer Il method [99].
For children and young adults diagnosed with cancer, deaths due to other
causes within this age range are rare, and the estimates of overall survival and
relative survival are very similar; however much of the methodology and
statistical programs written to model cure were developed in the relative survival
framework therefore relative survival is presented also.

3.5.2 Cure models

As described in detail in Chapter 2 different types of cure models are available
to model statistical cure including the flexible parametric, the mixture and the
non-mixture cure model. As recommended, the flexible parametric cure model
is the most suitable when survival is relative high, as is the case with survival
from childhood and young adult cancers, and these models perform as well as
the mixture and non-mixture models in other situations [28, 115]. The first aim of
this thesis was to assess the feasibility of applying cure models to children and
young people diagnosed with cancer and this was done in three stages; 1)
comparison of different types of cure models, 2) estimation of trends in cure by
diagnostic group and 3) examination of association between prognostic risk
factors and cure for childhood leukaemia. Each of these stages is described in
detail below.

3.5.2.1 Comparison of cure models
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For all cancers combined different cure models were run and the results
obtained compared between models. The models included were: 1) flexible
parametric (FP) cure model, 2) mixture cure model with Weibull distribution and
3) non-mixture cure model with Weibull distribution. The models were run on all
cancers combined to ensure the largest sample size as possible rather than
stratifying by diagnostic group and reducing statistical power. For each model
covariates included were time period, using three periods of diagnosis (1990-
1996, 1997-2003, 2004-2011) and age group, using two broad age groups (0-
14 years and 15-29 years). The resulting estimates (and 95% CI) obtained for
each model were the percentage cured, the median survival time (MST) of the
uncured and the time at which 90% of the uncured had died. These metrics are
commonly reported and clinically informative in addition to the 5-year survival
rate [28, 115, 251].

The FP cure model uses splines to model the underlying survival curve and it
has been shown that the FP cure models are fairly robust to the number and
position of the knots used as long as the last knot is placed at the last observed
death or later and the other knots are distributed along the full follow-up time
[115]. FP cure models were run in Stata using the stpm2 command with the
cure option as described by Andersson et al [115]. These models place
boundary knots at the minimum and maximum of the uncensored survival times
and an additional knot is placed at the 95% centile of the uncensored survival
time. The degrees of freedom can be specified to alter the number of internal
knot points; the default is 5 degrees of freedom. Sensitivity analysis was
conducted to evaluate the optimum number of knots to ensure the best model
fit. Models with between 4 and 8 degrees of freedom (between 3 and 7 internal
knots) were fitted using the centiles of the uncensored survival times shown in
Table 3.3 [115]. Models were compared using Akaike information criterion (AIC)
and Bayesian information criterion (BIC) and graphical assessments of the
model fit. Models fit statistics such as AIC and BIC may be of limited value
when comparing cure models as they measure model fit over the full follow-up
time and cure model needs to fit well at end of follow-up where data may be
more sparse [28, 115]. However, they are still useful to give some indication of
the best model fit but should not be used alone but in combination with other
assessments, such as graphical plots of model fit. Diagnosis period and age
group were included as time varying coefficients so that the percentage cured
and the survival function of the uncured varied by these covariates.
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Table 3.3: Flexible Parametric cure model knot positions

Degrees of Number of Centile positions
freedom internal knots

4 3 33,67, 95

5 4 25, 50, 75, 95

6 5 20, 40, 60, 80, 95

7 6 17, 33, 50, 67, 83, 95

8 7 14, 29, 43,57, 71, 86, 95

Source: [115]

Mixture and non-mixture cure models were run in Stata using the strsmix and
strsnmix commands using the Weibull distribution to model the survival of the
uncured [114]. The percentage cured, the MST of the uncured and the time
which 90% of the uncured had died as well as model fit statistics (AIC and BIC)
from these models were estimated and compared with results from the FP cure
model.

Cure models provide estimates separately for each combination of covariates in
the model, therefore to make comparisons between levels of each covariate
while adjusting for the other covariates standardised estimates were calculated
[251, 252]. For example, the cure percentage for each age group was estimated
assuming that the distribution of the other covariates (in this example time
period) were the same as the whole study population. Standardised estimates
were calculated for all reported outcomes.

For each model, the model fit was assessed by comparing the survival
estimates from the cure model with empirical life table estimates of relative
survival. Finally to investigate differences in the survival curves of the uncured
the observed Kaplan-Meier survival for patients who died was estimated and
plotted alongside the survival curve of the uncured estimated from the cure
models.

3.5.2.2 Estimation of cure by diagnostic group

For a range of diagnostic groups the FP cure model was run to describe trends
in the percentage cured and MST of the uncured over time and differences by
age group between children and TYA. Only groups with at least 50 patients in
each time period and age group were considered further in the cure models.
Initially three time periods (1990-1996, 1997-2003 and 2004-2011) were chosen
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but for diagnostic groups with less than 50 patients in each time period (and age
group) two time periods (1990-2000, 2001-2011) were then considered to
ensure enough patients in each group. For certain diagnostic groups models
were only considered for children only or TYA only depending on the numbers
in each group. Table 3.4 shows the age groups and time periods included for
each diagnostic group. For bone tumours all years were considered together as
there were less than 50 children diagnosed in the earlier time period. For germ
cell tumours and other epithelial tumours, due to the small number of children
diagnosed only models for TYA were included.

Table 3.4: Age groups and time periods included in cure models for each
diagnostic group

Diagnostic group Age groups Time periods

Leukaemia Children, TYA 1990-1996, 1997-2003, 2004-2011
Lymphoma Children, TYA 1990-1996, 1997-2003, 2004-2011
CNS tumours Children, TYA 1990-1996, 1997-2003, 2004-2011
Bone tumours Children, TYA All years combined

Soft tissue sarcoma Children, TYA 1990-2000, 2001-2011

Germ cell tumours TYA only 1990-1996, 1997-2003, 2004-2011
Neuroblastoma Children only 1990-2000, 2001-2011

Renal tumours Children only 1990-2000, 2001-2011

Other epithelial TYA only 1990-1996, 1997-2003, 2004-2011

Each covariable (age group and period of diagnosis) was included in a
univariate model and also an adjusted model including both. Results presented
for each diagnostic group and time period include the standardised percentage
cured and the standardised median survival time of the uncured, adjusting for
the other variable in the model.

3.5.2.3 Association between prognostic risk factors and cure for
childhood leukaemia

A detailed exploration of the association between prognostic clinical risk factors
and statistical cure was assessed for patients with acute lymphoblastic
leukaemia (ALL). ALL was chosen to examine in detail as it is the most
commonly diagnosed cancer in childhood accounting for 25% of all childhood
cancers [10] and has clinically defined prognostic risk factors [229, 253]. All
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patients diagnosed with ALL between October 1990 and June 2011 aged 1-17
years were included. This age range was included rather than the commonly
used childhood age range 0-14 years, as it reflects the age range treated in
clinical practice at the hospitals in the study region. This also was the upper age
limit of the UKALL 2003 trial which started in 2003 although this increased to 20
years in 2006 and to 24 years from 2007 onwards [253], 18-24 year olds were
not included in this analysis, as prior to 2006 they would have been treated on
different protocols. Infants (aged <1 year) were excluded from this analysis also
as they comprised a small group with poor prognosis.

Overall survival and event-free survival (EFS) were examined by prognostic risk
factors graphically by Kaplan-Meier survival curves. The prognostic risk factors
included were period of diagnosis, age, sex and white cell count (WCC). These
risk factors were chosen as these are used in clinical practice for risk
stratification [253]. Trends over time were assessed using three time periods
corresponding to the recruitment periods of three main trials for ALL in the UK:
UKALL XI from October 1990 to March 1997 [254], ALL97 and ALL97/99 from
April 1997 to September 2003 [255-257] and UKALL2003 from October 2003 to
June 2011 [253]. Within the ALL 97 trial, the duration and treatment intensity
changed in November 1999 (with this phase known as ALL97/99) [256],
however, due to small sample size it was not possible to consider these two
separate sub-periods. Age was categorised as 1-9 years and 10-17 years and
WCC was used a proxy for disease severity and categorised as <50 x 10°/L and
>50 x 10°%/L, with those with higher WCC having worse prognosis.

Flexible parametric cure models were used to estimate the percentage cured
and the median survival time of the uncured for both overall survival and EFS.
Models based on overall survival were modelled in the relative survival
framework using the background mortality rate from national lifetables. No such
estimates can be used when modelling EFS so these models were run in a non-
relative survival framework. In the models based on EFS the uncured group
includes a mixture of those who died and those who relapsed therefore
interpretation of the survival time of the uncured is difficult. For analysis of cure
based on EFS only the percentage cured is presented.

Univariable and multivariable models were included as described above with
the multivariable model including period of diagnosis, age, sex and WCC. From
the multivariable model standardised cure proportion and MST of the uncured
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were calculated to allow comparison between different levels of each risk factor.
Excess mortality rate ratios (EMRR), which are equivalent to the hazard ratio
from a Cox model, were also estimated from the cure model to allow the
examination of the association of covariates on survival and cure for the overall
survival model only. A separate cure model including cytogenetic risk group was
also included.

Finally, the cumulative incidence of relapse was estimated by time period with
death as a competing risk [258] to examine trends in the risk of relapse over
time.

3.5.3 Selection of confounders for adjustment

In several of the analyses described in Sections 3.5.5 to 3.5.8 regression
models were used to estimate the association between an exposure and the
outcome of interest. These analyses have been undertaken within a causal
inference framework where identification and selection of confounders were
based on graphical causal diagrams. Directed acyclic graphs (DAGs) can be
used to visually represent theoretical causal relationships between a series of
variables and identify confounders, mediators and colliders in relation to the
exposure and outcome in the research question of interest [259-266].

In a DAG, arrows (also known as arcs or edges) connect nodes which represent
variables in a causal relationship. A path is a set of arrows connecting any two
variables. Arrows may only be uni-directional and relationships must be acyclic
so that no paths can lead back to a node. Ideally the DAG should include all
variables that influence two or more other variables in the DAG, even if these
are unmeasured within the dataset. The causal path of interest is the
hypothesized association between exposure and outcome. A “back-door” path
is an alternative path between the exposure and outcome. Confounding is the
presence of at least one open back-door path between exposure and outcome.

A confounder is a variable which is associated with the exposure and outcome
of interest and does not lie on the causal pathway between exposure and
outcome. Confounders should be identified from prior knowledge and not based
upon available data. When a confounder is controlled for the back-door path is
closed.
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Exposure - » Qutcome

" b

Confounder

A mediator is a variable that lies on the causal path between exposure and
outcome. A path that includes a mediator is also known as an indirect causal
path. Mediators leave the indirect causal path open and controlling for
mediators will close the indirect causal path preventing or limiting the ability to
observe an association between exposure and outcome. Mediators should not
be treated as confounders and should not be adjusted in the model of interest.

Exposure » Mediator » Qutcome

Another important variable to consider in the context of DAGs are collider
variables [264]. A collider can be identified on a DAG when two arrows along a
path point to a variable. Controlling for a collider will open the back door path
introducing confounding, therefore colliders should not be adjusted for.

Exposure Outcome

4

= Collider

Relationships between exposure and outcomes are often complex involving
many potential confounders and mediators therefore causal diagrams are a
useful tool to explore such relationships. When more than one variable lies on
the back door path the adjustment of one variable is sufficient to close this path.
In a DAG with many paths, control of a small number of variables (a minimum
set of confounders) will close all back-door paths. Dagitty in an online tool
(http://www.dagitty.net/) that can be used to visual DAGs and identify minimum
adjustment variable sets [267]. DAGitty was used to plot all DAGs used
throughout this thesis and to obtain a minimum sufficient adjustment set for
each model of interest. The details for each included DAG are included in the
relevant sections relating to each analysis.
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The advantages of using DAGSs in this context are that the assumptions
underlying the models are explicit which aids transparency and reproducibility of
the research [264, 266]. The limitations of using DAGs are that they are non-
parametric and the direction of the arrows is not always known. In the DAGs
presented in this thesis all variables have been drawn in temporal order to help
show the assumptions being made in terms of direction of causality. Another
limitation is that decisions on which relationships exists can be difficult to
decide. Indeed the lack of paths between two variables is as strong an
assumption as the inclusion of a path [264]. The DAGS developed in this thesis
were developed with discussion with the PhD supervisors and based on
previous published literature and clinical expertise. It is acknowledged that the
misspecification if a DAG may lead to incorrect adjustment and statistical
inferences.

3.5.4 Competing risk regression models

A competing risk in survival analysis is defined as an event which prevents the
occurrence of the primary event of interest [268-271]. In the analyses of hospital
admissions and SMNs (as measures of late effects) presented in this thesis
death was considered as a competing risk, since if a patient died they were no
longer at risk for hospitalisation or SMN.

3.5.4.1 Cumulative incidence function (CIF)

If competing risks are not present then the complement of the Kaplan-Meier
(KM) function can be used to estimate the incidence of an outcome over time.
Estimating the cumulative incidence using the KM method in the presence of
competing risks, by treating those who experience a competing event as
censored, is not appropriate as this will produce biased estimates [270]. The
KM survival function will overestimate the incidence in the presence of
competing risks and it is recommended that the cumulative incidence function
should be used to estimate incidence which describes the absolute risk of the
event of interest over time [270-272]. The cumulative incidence function (CIF)
was calculated to estimate the probability of late effects over time including
death as a competing risk using the stcompet command in Stata [258].

3.5.4.2 Competing risk regression models
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In standard survival analysis (with no competing risks) Cox proportional hazards
models can be used to estimate the relative effect of covariates on the hazard
function. There is a direct correspondence between the effect of a covariate on
the hazard of the outcome and the effect of a covariate on the incidence of the
outcomes. If a covariate increases the hazard of the occurrence of the outcome
it will also increase the incidence of the outcome [273]. In the presence of
competing risks there is no longer a direct relationship between the hazard and
the risk. The way in which covariates are associated with cause-specific
hazards may not be the same as the way they are associated with the
cumulative incidence. Two different hazard based regression models have been
described and used to deal with competing risks: 1) estimating the effect of
covariates on the cause-specific hazard function and 2) estimating the effects of
covariates on the subdistribution hazard function (or the CIF) [269-273].

These two methods differ in their use and interpretation and the method chosen
should depend on the specific research question. Details of the two approaches
are given below.

3.5.4.3 Cause-specific regression models

Cause-specific models can be used to estimate the association between
covariates and the rate of occurrence of the event of interest (the hazard). In
these models subjects who experience a competing event are treated as
censored subjects and removed from the risk set for calculation of the hazard
[269, 271, 272]. This model can be implemented using, for example, a Cox
model. The cause-specific hazard ratio provides a summary of the relationship
between a covariate and the rate of occurrence in subjects who are currently
event-free without considering the effect of the competing risk. These models
are best suited to address aetiological research questions [269, 271, 272].

3.5.4.4 Fine-Gray subdistribution hazard model

Fine and Gray [274] defined a regression model to directly estimate the
relationship between covariates and the cumulative incidence function, or the
probability of the occurrence of the event of interest. These models are known
as Fine-Gray models, subdistribution hazard models or CIF regression models.
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The subdistribution hazard is the probability of failure due to an event at that
moment in time, given that this event has not already occurred. The risk set
includes all subjects who have not yet experienced the outcome of interest, so
includes those who are event-free and also those who have experienced a
competing event [269, 273]. Subjects who experienced the competing event are
included in the risk set so that they can be counted in the proportion of the
population that cannot have the event of interest. These models are
recommended if the research question is focussed on estimating incidence and
predicting prognosis [269, 271, 272]. Therefore, this model was chosen and
used to investigate the relationship between patient risk factors and the
incidence of respiratory late effects where death was considered a competing
risk.

The interpretation of the coefficients from the Fine-Gray model is not
straightforward [272, 273]. Exponentiated regression coefficients denote the
subdistribution hazard ratio (SHR) and can be used to describe the direction of
the observed association but cannot be used to directly quantify the magnitude
of the association since the magnitude of the relative effect of the covariate on
the subdistribution hazard function is different from the magnitude of the effect
of the covariate on the CIF [273]. A sHR=1 implies no association between the
covariate and the CIF, while if the sHR>1 then this implies than a 1-unit
increase in the covariate is associated with an increased incidence of the event
of interest and if the sHR<1 then the covariate is associated with a decreased
incidence [272].

The magnitude of the regression coefficients do not provide information of the
magnitude of the covariate on the incidence, however, the magnitude of
coefficients from the same model may be compared [273]. For example, if one
covariate has a larger regression coefficient than a second covariate then the
magnitude of the first covariate on the incidence of the outcome will be greater
than the magnitude of the second covariate. Limitations of these models are the
sHRs cannot be directly compared from different models with different
outcomes, or from different studies since the CIF will not be the same for
different types of events [269, 273].

The Fine-Gray model is a semi-parametric model. Similar to the Cox model, the
baseline subhazard does not need to be specified and the model assumes that
the subdistribution hazards are proportional [274]. This assumption can be
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checked graphically by plotting non-parametric cumulative incidence functions
by covariates to check for crossing incidence curves or including time varying
coefficients where the assumption is violated if there is a significant interaction
between the covariate and time [95, 270].

3.5.5 Respiratory admissions

The cumulative incidence for each respiratory condition based on attained age
was calculated, treating death as a competing risk [258]. This was based on all
diagnosis codes in HES and those based on the primary diagnostic code only.

Admission rates in the general population were used to calculate the expected
number of admissions in the cancer survivor cohort and indirect standardisation
techniques were used to obtain the hospitalisation rate ratio (HRR)
standardised to the general population by age, sex and year [275]. HRRs
compare the ratio of the observed to expected admission counts and were
calculated for all ages and separately for children and TYA.

Fine-Gray competing risk regression models (as described in 3.5.4.4) were
used to examine the association between three treatment exposures
(pulmonary toxic chemotherapy, radiation to the chest and thoracic surgery) and
the risk of admission for a respiratory condition. Models were included for: 1)
any respiratory admission, 2) asthma, 3) pneumonia and 4) chronic lower
respiratory disease. Models were not included for lung fibrosis and conditions
due to other external agents because of a small number of observed
admissions (fewer than 10 admissions). The proportional subdistribution
hazards assumption was tested by including each covariable as a time varying
coefficient and assessing its statistical significance [95].

Further models were examined including two-way interactions between age
group and treatment. Models included an interaction term between age group
(children and TYA) and pulmonary toxic chemotherapy and an interaction term
between age group and chest radiation to determine whether the association
between treatment and risk of admission differed by age. No interaction models
were included for thoracic surgery due to small numbers.
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The DAG shown in Figure 3.2 shows the potential causal relationships between
treatment exposures (in this case pulmonary toxic chemotherapy as the main
exposure of interest) and respiratory admissions. From this a minimal sufficient
adjustment set was derived and included deprivation, diagnosis age, diagnosis
year, diagnostic group, ethnicity and the other treatment exposures. These
covariates were all included in an adjusted model. Similarly for the other
treatment exposures (chest radiotherapy and thoracic surgery) the same
adjustment set was identified.

N i
Environmental factors

Genetics
Year_of_diagnosis.

Smoking
Diagnostic_group

@ exposure @ ancestor of outcome unobserved (latent)
@ outcome ancestor of exposure and other vanable
ancestor of exposure  Outcome == causal path
O adjusted variable w= biasing path

Figure 3.2: DAG representing the relationship between treatment exposures
and respiratory admissions

Subsequent admissions and mortality were examined for those admitted for at
least one respiratory condition. Flexible parametric survival models were used
to estimate the risk of subsequent mortality comparing those whose first
admission (five-years post diagnosis) was for pneumonia compared to those
admitted for other respiratory conditions.

3.5.6 SMN analysis
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The cumulative incidence of developing a SMN was calculated treating death as
a competing risk [258]. This was calculated overall and by age at primary
diagnosis for children (0-14 years) and TYA (15-29 years). Time at risk for
developing a SMN for each person was calculated from date of diagnosis until
the earliest of first SMN diagnosed, death or the end of follow-up period
(31/12/2015).

To compare SMN rates in cancer survivors with rates in the general population,
standardised incidence ratios (SIRs) and absolute excess risks (AER) were
calculated. SIRs were obtained by calculating the ratio of the observed number
of SMNSs to the expected number of incidence cancers based on general
population data. National incidence rates by 5-year age band, sex and 1-year
calendar period were obtained from the Office of National Statistics [276]. The
AER was calculated as the difference between the observed and expected
number of SMNs, divided by the total number of person years at risk, reported
per 10,000 person years. It can be interpreted as the excess number of
subsequent tumours observed per 10,000 survivors per year. The SIR provides
relative excess risk, while the AER is a measure of the absolute excess risk.
The SIR and AER were calculated for all cancers combined, by primary
diagnostic group and by age at primary tumour diagnosis (children and TYA).
Further sensitivity analysis was conducted, to allow comparison with the
published literature, by estimating the SIR and AER for tumours occurring 5-
years post diagnosis only in 5-year survivors only.

The latency time, the time between diagnosis of the first and subsequent
tumour, was grouped into time periods (<5 years, 5 to <10 years, 10+ years).
Descriptive analyses are presented by latency periods, including the median
time between primary and subsequent tumours, by age and SMN type.

Survival analysis was conducted for those who developed an SMN to
investigate the relationship between latency time and the impact on survival
including Kaplan-Meier plots and flexible parametric survival models. Follow-up
time started on the date of diagnosis of SMN and follow-up for death or
censoring until 31t December 2016 to allow at least one year follow-up for all.
The main exposure of interest was latency period, the association between this
and survival was modelled based in the DAG presented in Figure 3.3. From this
DAG the minimal adjustment set identified included primary tumour treatment,
year of diagnosis and SMN type.
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Figure 3.3: DAG representing the relationship between SMN latency period and
survival

3.5.7 Cardiovascular admissions

Hospitalisations for cardiovascular admissions for survivors of childhood and
young adult cancer have been examined in detail previously using the Yorkshire
register [196], therefore a detailed analysis of risk factors for cardiovascular
admissions is out with the scope of this thesis. However, the previous work only
included HES admissions up to 2011, therefore incidence of admissions up to
2017 for Yorkshire patients are included in Chapter 8. It is also important to
include cardiovascular admissions in this analysis as they represent one of the
most common causes of late morbidity and mortality in childhood cancer
survivors and are included as an event in the cumulative burden analysis
(methods described in Section 3.5.8).

The cumulative incidence for each cardiovascular condition based on attained
age was calculated, treating death as a competing risk [258]. This was based
on all diagnosis codes in HES and those based on the primary diagnostic code
only.
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Admission rates in the general population were used to calculate the expected
number of admissions in the cancer survivor cohort and indirect standardisation
techniques were used to obtain the hospitalisation rate ratio (HRR)
standardised to the general population by age, sex and year [275]. HRRs were
calculated for all ages and separately for children and TYA.

3.5.8 Cumulative burden

In addition to focussing on each late effect (respiratory admission,
cardiovascular admission and SMN) independently the cumulative burden of all
three events was examined. This also included multiple hospital admissions for
respiratory and cardiovascular conditions and multiple SMN diagnoses. Figure
3.4 shows hypothetical examples for 5 individuals with different patterns of
events. For example subject A had two respiratory admissions before
censoring, while subject B had 3 cardiovascular admissions then died.

Study Entry

Subject
A o0
B @ o 00
C -
D

E  J

Cancer 5-years
diagnosis post -diagnosis

. Respiratory admission . Death

. Cardiovascular admission Censoring

. SMN diagnosis

Figure 3.4: Diagrams of five hypothetical individuals with multiple and recurrent
events

The cumulative incidence for each event type (respiratory admission,
cardiovascular admission or SMN diagnosis) were examined, where follow-up
time started 5-years post diagnosis and ended at date of event or date of death
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or end of follow-up (31t December 2015), which ever came first [258]. The
cumulative incidence of combined outcomes were also estimated where the
time at risk ended at the date of the last event. The cumulative incidence was
calculated on the attained age scale.

The mean cumulative count (MCC) was used to estimate the total burden of all
hospitalisations for respiratory and cardiovascular disease and all SMNs. The
MCC estimates the mean number of multiple and recurrent events per individual
in the population within a given time period in a competing risk framework [277].
Patients who experience an event are kept in the risk set until they experience a
competing risk or are censored. The MCC estimates are presented as the
average number of events per survivor. The MCC was calculated for the full
cohort and three treatment groups: anthracyclines, pulmonary toxic
chemotherapy and radiation to the chest.

3.5.8.1 Multiple failure time models

To estimate the association between previous cancer treatment and cumulative
burden, adjusting for potential confounders, the Prentice, Williams and Peterson
total time (PWP-TT) survival model for multiple-failure times was used [278].
This model is an extension of the Cox model which allows recurrent events for
each individual. The PWP-TT model is a stratified model for ordered multiple
events, where all individuals are at risk for the first stratum but only those with
an event in the previous stratum are at risk for the successive one. Robust
standard errors to account for correlations within individuals. The total time
model was used which measures time to events from the start of follow-up
[279]. The PWP-TT model may fail to converge if the risk sets for recurrent
events are too small, therefore for respiratory and cardiovascular admissions
number of events was limited to the first 10 admissions. These models have not
been developed within a competing risk framework therefore deaths were also
considered as a failure event in these models using the approach described by
Westbury et al [280]. An alternative would be to code each death as a censored
event, however this would not be appropriate as censoring should be
uninformative and this is not the case if the individual has died (as they are then
unable to experience the events of interest). Alternative methods would be to
use multi-state modelling and this is discussed further in Chapters 8 and 9.
Sensitivity analysis was conducted looking at time to first admission for each
outcome using standard competing risk regression (where death was treated as
a competing risk).
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The DAG shown in Figure 3.5 shows the relationships between patient and
tumour related variables and cumulative burden (with anthracycline as the main
exposure of interest). From this the minimal sufficient adjustment set included
diagnostic group, age at cancer diagnosis, year of diagnosis, deprivation,
ethnicity and the other treatment exposures (pulmonary toxic chemotherapy and
chest radiation). Similarly for the other treatment exposures (pulmonary toxic
chemotherapy and chest radiation) the same adjustment set was identified.
These variables were included in the adjusted model.
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Figure 3.5: DAG showing relationship between treatment exposures and
cumulative burden

Further subgroup analysis was conducted by estimating the MCC by age at
diagnosis and by diagnostic group. PWP-TT models with two-way interactions
between age group at diagnosis and each treatment exposure and further
models with two-way interactions between diagnostic group and each treatment
exposure were tested to determine whether the association between treatment
and cumulative burden differed by age at diagnosis or diagnostic group.
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3.6 Overview of results chapters

The following four chapters of this thesis include the main results from the
statistical analysis described above. Slightly different follow-up time periods
were available for outcomes based on different data sources therefore the total

number of individuals included in each chapter differs (in addition some
chapters are based on 5-year survivors only). Table 3.5 details the study
populations included in the following chapters.

Table 3.5: Summary of study population included in each analysis chapter

Analysis (Chapter)

Diagnosis period

End of follow-up

Descriptive analysis
(Chapter 4)

Cure models

(Chapter 5)

ALL cure (Chapter 5)
Respiratory admissions
(Chapter 6)

SMN (Chapter 7)

SMN survival

(Chapter 7)

Cardiovascular admissions

(Chapter 8)
Cumulative burden
(Chapter 8)

1990-2011

1990-2011

Oct 1990-June 2011
1990-2011, 5-year
survivors only
1990-2010

1990-2010 (SMN
diagnosed up to 2015)
1990-2011, 5-year
survivors only
1992-2010, 5-year
survivors only

End of 2016

End 2016

End 2016

March 2017
(admissions start 1997)
End 2015

End 2016

(at least 1-year for all)
March 2017
(admissions start 1997)
End 2015

(follow-up starts 1997)
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Chapter 4 Descriptive analysis of the study population

4.1 Introduction

This chapter describes the study population used in this thesis. Firstly incidence
rates are described, followed by trends in survival including survival curves for
each diagnostic group for children and TYA. Examination of the survival curves
is the first step in assessing if statistical cure is a valid assumption. A
description of the demographic and clinical characteristics of the study
population is presented. Results from linkage to HES data are reported
including a comparison of the characteristics of those matched and unmatched.
Finally descriptive statistics are provided for general admissions to hospital
within the study population.

4.2 Cancer incidence

The full study sample comprised a total of 5471 patients diagnosed with a
primary tumour in Yorkshire between 1990 and 2011 aged under 30, this
included 2109 children aged 0-14 years and 3362 TYA aged 15-29 years. The
(European) age standardised incidence rate (ASR) was 169 per 1,000,000
persons per year (per million) (95% CI 165 to 174). The ASR was higher in TYA
(202 per million, 95% CI 195 to 209) compared to children (138 per million),
95% CI 132 to144). In children the most commonly diagnosed cancers were
leukaemias, CNS tumours and lymphomas while for TYA it was lymphomas,
germ cell tumours, other epithelial tumours and CNS tumours. (Table 4.1). For
TYAs the other epithelial group consisted of 50% thyroid carcinomas and 45%
other and unspecified carcinomas. Further breakdown of the TYA tumours by
Birch classification are provided in Table 4.5.



Table 4.1: Number of diagnoses and age standardised incidence rate (ASR) per 1,000,000 person years

All ages (0-29 years)

Children (0-14 years)

TYA (15-29 years)

Diagnostic group* N (%) ASR (95% Cl) N (%) ASR (95% Cl) N (%) ASR (95% Cl)
| Leukaemia 994 (18.2)  32.2(30.2,34.2) 644 (30.6)  42.8(39.4,46.1) 350 (10.6)  21.1(18.9, 23.3)
Il Lymphoma 1108 (20.3)  33.1(31.2,35.1) 239 (11.3)  15.0(13.1,16.9) 869 (25.9)  52.1 (48.7, 55.6)
Il CNS tumours 899 (16.4)  28.1(26.3,30.0)  483(22.9)  31.0(28.2,33.8) 416 (12.4)  25.1(22.7,27.5)
IV Neuroblastoma 163 (3.0) 5.7 (4.8, 6.6) 150 (7.1) 10.4 (8.7, 12.0) 13 (0.4) 0.8 (0.4, 1.2)

V Retinoblastoma 66 (1.2) 2.4 (1.8, 2.9) 66 (3.1) 4.6 (3.5,5.7) - -

VI Renal tumours 159 (2.9) 5.4 (4.5, 6.2) 121 (5.7) 8.3 (6.8, 9.8) 38 (1.1) 2.3 (1.6, 3.0)

VIl Hepatic tumours 41 (0.8) 1.4 (0.9, 1.8) 24 (1.1) 1.7 (1.0, 2.3) 17 (0.5) 1.0 (0.5, 1.5)
VIl Bone tumours 232 (4.2) 7.1 (6.2, 8.0) 89 (4.2) 5.5 (4.4, 6.7) 143 (4.3) 8.7 (7.3, 10.2)

IX Soft tissue 370 (6.8) 115 (10.3, 12.7) 166 (7.9) 10.7 (9.0, 12.3) 204 (6.1) 12.4 (10.7, 14.1)
sarcomas

X Germ cell tumours 928 (17.0)  27.5 (25.8, 29.3) 85 (4.0) 5.6 (4.4, 6.8) 843 (25.1)  50.5 (47.1, 54.0)
XI Other Epithelial 502 (9.2) 14.8 (13.5, 16.1) 40 (1.9) 2.5 (1.7, 3.3) 462 (13.7)  27.7(25.1,30.2)
tumours

XII Other tumours 9(0.2) 0.3 (0.1, 0.5) 2(0.1) 0.1 (0, 0.3) 7(0.2) 0.4 (0.1, 0.8)

All cancers 5471 169.4 (164.9, 173.9) 2109 138.1 (132.2, 144.0) 3362 202.2 (195.3 209.0)

*Diagnostic group based on ICCC-3.

80T
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4.3 Survival

Table 4.2 shows the number of deaths and 5-year survival estimates by age
group and diagnostic group. Survival estimates were only calculated for groups
including at least 50 cases (therefore hepatic tumours and other tumours were
excluded), and no estimates for retinoblastoma were calculated as there was
only 1 death within this group. For all patients the median follow-up was 11.2
years (IQR 5.5 to 18.1 years). This was similar for children (11.6 years (IQR 5.3
to 18.7 years)) and TYA (11.0 years (IQR 5.6 to 17.8 years)).

For all cancers combined, for those diagnosed 0-29 years the 5-year survival
was 78% (95% CI 76 to 79), this varied from 55% for neuroblastoma (95% ClI
47 to 62) to 94% for germ cell tumours(95% CI 92 to 95). Overall 5-year survival
was 76% (95% CI 75 to 78) for children ranging from 55% for neuroblastoma
(95% CI 46 to 62) to 93% for germ cell tumours (95% CI 85 to 97). For TYA 5-
year survival for all cancers combined was 78% (95% CI 77 to 80), which
ranged from 58% for leukaemia (95% CI 53 to 63) to 94% for germ cell tumours
(95% CI 92 to 95). Compared to children survival was lower for TYA for
leukaemia (81% for children (95% CI 78 to 84) and 58% for TYA (95% CI 53 to
63) and CNS tumours (72% for children (95% CI 68 to 76) and 67% for TYA
(95% CI 62 to 71)).



Table 4.2: Number of deaths and 5-year overall survival by diagnostic group

All ages (0-29 years)

Children (0-14 years)

TYA (15-29 years)

Diagnostic N No deaths* 5-year N No deaths* 5-year N No deaths* 5-year

group (%) survival (%) survival (%) survival
(95% ClI) (95% ClI) (95% ClI)

| Leukaemia 994 305(30.7) 73(70,76) 644 148(23.0) 81(78,84) 350 157 (44.9) 58 (53, 63)

Il Lymphoma 1108 199 (18.0) 86 (84,88) 239 42 (17.6) 85(79,89) 869 157 (18.1) 86 (84, 88)

[Il CNS tumours 899 361(40.2) 69(66,72) 483 177(36.7) 72(68,76) 416 184 (44.2) 67 (62,71)

IV Neuroblastoma 163 76 (46..6) 55 (47,62) 150 70 (46.7) 55 (46, 62) 13 6 (46) -

V Retinoblastoma 66 1(2) - 66 1(2) - - - -

VI Renal tumours 159 31 (19.5) 85(78,90) 121 22 (18.2) 85 (77, 90) 38 9 (23.7) -

VIl Hepatic 41 20 (49) - 24 7 (29) - 17 13 (76.5) -

tumours

VIIl Bone tumours 232 106 (45.7) 61 (55, 67) 89 40 (45) 61 (50, 70) 143 66 (46.2) 62 (53, 69)

IX Soft tissue 370 157 (42.4) 61 (56,66) 166 68 (41.0) 63 (55, 70) 204 89 (43.6) 60 (53, 66)

sarcomas

X Germ cell 928 78 (8.4) 94 (92, 95) 85 8(9) 93 (85,97) 843 70 (8.3) 94 (92, 95)

tumours

XI Other 502 133 (26.5) 77 (73,81) 40 6 (15) - 462 127 (27.5) 76 (72,79)

Epithelial tumours

XII Other tumours 9 3 (38) - 2 0 - 7 3 (43) -

All cancers 5471 1470 (26.9) 78(76,79) 2109 589 (27.9) 76(75,78) 3362 881(26.2) 78(77,80)

*percentage within each diagnostic group

Survival estimates only provided for diagnostic groups including at least 50 patients
Survival estimates not provided for retinoblastoma due to small number of deaths within this group

oTT
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4.3.1 Comparison of overall and relative survival

Table 4.3 compares the 5-year overall survival with 5-year relative survival
estimates. For all ages and diagnostic group the estimates and 95% confidence
intervals are very similar, only differing to the first decimal place. The Kaplan-
Meier survival curves by diagnostic group and age group presented in the next
section, (Section 4.4) are based on overall survival.



Table 4.3: Comparison of 5-year overall survival and 5-year relative survival by age group and diagnostic group

All ages (0-29 years)

Children (0-14 years)

TYA (15-29 years)

Diagnostic Overall Relative Overall Relative Overall Relative

group survival survival* survival survival* survival survival*
(95% ClI) (95% ClI) (95% ClI) (95% ClI) (95% ClI) (95% ClI)

| Leukaemia 73.1(70.3,75.6) 73.3(70.4,75.9) 81.4(78.1,84.2) 81.5(78.2,84.3) 58.0 (52.7,63.0) 58.2(52.8, 63.1)

Il Lymphoma 85.8 (83.6,87.8) 86.0(83.8, 88.0) 84.5(79.3,88.5) 84.6(79.4, 88.6) 86.2 (83.7,88.3) 86.4(84.0, 88.6)

Il CNS tumours

IV Neuroblastoma
VI Renal tumours
VIIl Bone tumours

IX Soft tissue
sarcomas

X Germ cell
tumours

XI Other
Epithelial tumours

All cancers

69.4 (66.3, 72.3)
54.6 (46.6, 61.9)
84.9 (78.3, 89.6)
61.2 (54.6, 67.1)
61.1 (55.9, 65.8)

93.6 (91.9, 95.0)

76.5 (72.5, 80.0)

77.6 (76.4, 78.7)

69.5 (66.4, 72.4)
54.8 (46.8, 62.0)
85.1 (78.5, 89.8)
61.3 (54.7, 67.3)
61.2 (56.0, 66.0)

94.0 (92.2, 95.4)

76.7 (72.7, 80.1)

77.8 (76.6, 78.8)

71.6 (67.4, 75.4)
54.7 (46.4, 62.2)
85.1 (77.4, 90.4)
60.7 (49.7, 69.9)
62.7 (54.8, 69.5)

92.9 (85.0, 96.8)

76.4 (74.6, 78.2)

71.7 (67.5, 75.5)
54.8 (46.5, 62.4)
85.3 (77.6, 90.5)
60.7 (49.8, 70.0)
62.7 (54.9, 69.6)

93.2 (85.2, 97.0)

76.5 (74.7, 78.3)

66.8 (62.0, 71.1)

61.5 (53.1, 69.0)
59.8 (52.7, 66.2)

93.7 (91.9, 95.2)

75.8 (71.6, 79.4)

78.3 (76.9, 79.6)

66.9 (62.2, 71.3)

61.7 (53.2, 69.2)
60.0 (52.9, 66.4)

94.1 (92.2, 95.5)

75.9 (71.8, 79.6)

78.5 (77.1, 80.0)

*Relative survival based on Ederer Il estimates

AN
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4.4 Survival trends

This section describes trends in survival by time period and age group, for each
diagnostic group. The included time periods were chosen to include at least 50
patients. These Kaplan-Meier plots were also used to graphically assess if
statistical cure is a reasonable assumption for analysis in Chapter 5.

4.4.1 All cancers combined

For both children and TYA survival for all cancers combined has steadily
improved over time, with similar survival curves for children and TYA diagnosed
between 2004 and 2011 (Figure 4.1). The survival curves flatten out after about
10 years follow-up, but in earlier time periods, particularly for TYA the curves do
not level off until about 15-20 years after diagnosis. Statistical cure would seem
a reasonable assumption for all cancers combined.

All cancers combined

Children TYA
100 100

751 757

501 50

Survival (%)
Survival (%)

254 251

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Survival time (years) Survival time (years)

— 1990-1996 1997-2003 —— 2004-2011

Figure 4.1: Survival trend for all cancers combined

4.4.2 Leukaemia

For both children and TYA survival has improved over time but at different rates
(Figure 4.2). In each time period survival was higher in children compared to
TYA. For TYA, there was only a small increase in survival between the first and
second time period but then a substantial improvement in the latest time period.
All curves tended to level off and flatten out between 8-10 years from diagnosis,
suggesting it is appropriate to model statistical cure for leukaemia.
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Leukaemia

Children

100 100

75 75\l

S 50 T 50
3 3
3 >
(7] %]
25 25
0 T T T T T T T D T T T T T T T
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Survival time (years) Survival time (years)
— 1990-1996 —— 1997-2003 —— 2004-2011

Figure 4.2: Survival trend for leukaemia

4.4.3 Lymphoma

Lymphoma survival has improved over time and is relatively high and similar for
both children and TYA diagnosed in the latest time period (Figure 4.3). Survival
curves for children levelled off after around 10 years follow-up but for TYA it
was slightly later around 10-15 years post diagnosis.

Lymphoma
Children
100 y\_‘_‘_‘_ 100
757 \H_‘— 75«
S s50- S 50
g g
(7] %]
254 25
0 T T T T T T T D‘ T T T
0 5 10 15 20 25 30 0 10 15 2 25 30
Survival time (years) Survival time (years)
— 1990-1996 —— 1997-2003 —— 2004-2011

Figure 4.3: Survival trend for lymphoma.
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4.4.4 CNS tumours

For children CNS survival improved from 1990-96 to 1997-2003 but no further
increase was observed in 2004-2011 (Figure 4.4). For TYA survival improved in
each time period but was slightly lower than that for children. The survival
curves tended to continue to decrease over time and only showed evidence of
plateauing around 15-20 years post diagnosis. Statistical cure may not be
feasible for this diagnostic group without further follow-up.

CNS tumours

Children TYA
100 100

75 75-\

501 501

Survival (%)
Survival (%)

254 25+

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Survival time (years) Survival time (years)

— 1990-1996 1997-2003 —— 2004-2011

Figure 4.4: Survival trend for CNS tumours.

4.45 Bone tumours

Temporal trends in survival for bone tumours could not be assessed due to
small numbers, even when two time periods were considered there were still
fewer than 50 children in each time period. Therefore survival was caluclated for
all years combined for children and TYA separately (Figure 4.5). The survival
curves are similar for both children and TYA, the curves tend to flatten out after
around 10-15 years suggesting that statistical cure may be an appropriate
assumption for this diagnostic group.
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Bone tumours

Children TYA

100 100

754 75
g g

% s0- S 50
: :
- -
w w

25 251

0 0

T T T T T T T
0 5 10 15 20 25 30

25
Survival time (years)

o -

1 15 20
Survival time (years)

All years combined: 1990-2011

Figure 4.5: Survival for bone tumours

4.4.6 Softtissue sarcoma

30

Temporal trends for soft tissue sarcoma were analysed using two time periods
to ensure sufficient numbers in each group. For children survival improved
slightly for patients diagnosed 2001-2011 compared to those diagnosed 1990-
2000, however for TYA survival was slightly lower for those diagnosed more
recently (Figure 4.6). For both age groups and time periods the curves plateau

about 5-10 years from diagnosis.

Soft tissue sarcomas

Children TYA
100 100

75 75+
9 9
S s50- S 50

: z
- =3
(7] w

251 251

0- 0

0 5 10 15 20 25 30 0 5 10 15 20 25 30

Survival time (years) Survival time (years)

— 1990-2000 —— 2001-2011

Figure 4.6: Survival trend for soft tissue sarcomas
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4.4.7 Germ cell tumours

Temporal trends for germ cell tumours could not be estimated for children due
to insuffient sample size, therefore temporal trends in survival were only
estimated for TYA using three time periods. Survival for TYA were high in each
time period and curves were relatively flat, in the earliest time period there was
some suggestion that the survival curve continued to decrease over time,
because of this and the relatively high survival statistical cure maybe more
difficult to model for this group (Figure 4.7).

Germ cell tumours

Children TYA

100_\\—|—‘— moi%\_;__

75 757

w
o
1

Survival (%)
o
o
Survival (%

254
25+

T T T T T T T
R © 5 _1 15 20 25 30
0 5 10 15 20 25 30 Survival time (years)

Survival time (years) — % - — -
SR 1990-1896 1997-2003 2004-2011

Figure 4.7: Survival trend for germ cell tumours

4.4.8 Neuroblastoma

Neuroblastoma survival was only estimated for children using two time periods.
Survival improved for those diagnosed between 2001 and 2011 compared to
those diagnosed from 1990-2000 (Figure 4.8). The survival curves flatten out
around 5-10 years after diagnosis. Cure would seem a reasonable assumption
for children with neuroblastoma.
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Neuroblastoma
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Figure 4.8: Survival trend for neuroblastoma

4.4.9 Renal tumours

Again survival trends for renal tumours were only estimated for children using
two time periods. There was a slight increase in survival over time. Survival
curves plateaued around 5 years, suggesting statistcal cure would seem a
reasonable assumption for children with renal tumours (Figure 4.9).

Renal
Children
100 1
75
S
8 50
c
.
w
25
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T T T T T T T
0 5 10 15 20 25 30

Survival time (years)

— 1990-2000 —— 2001-2011

Figure 4.9: Survival trend for renal tumours
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4.4.10 Carcinomas

Temporal trends for carcinomas were only estimated for TYA (based on Birch
classification) using three time periods. Survival improved from 1990-1996 to
1997-2003 and remained the same in 2004-2011 (Figure 4.10). The curves
remained stable after about 10 years from diagnosis suggesting statistical cure
may be feasible.

Carcinomas
TYA
100 4
54
=
S 50
e
=
%}
25+
0_
T T T T T T T
0 5 10 15 20 25 30
Survival time (years)
— 1990-1996 1997-2003 —— 2004-2011

Figure 4.10: Survival trend for carcinomas

4.5 Demographic and clinical characteristics of the study

population

The demographic and clinical characteristics of the study population are
described in Table 4.4 and Table 4.5. Nearly one third (27%) of the study
population were aged 25-29 years at diagnosis and 60% were male.
Chemotherapy was the most common treatment received with 64% received
some chemotherapy, 49% had surgery and 29% radiotherapy and 15%
relapsed. Ethnicity was assigned based on a combination of HES and Onomap
as described in Chapter 3, however ethnicity was still not available for 2% of the
study population. Yorkshire has greater levels of deprivation compared to
England as whole; based on the Townsend indicator 24% of all wards in
Yorkshire are in the most deprived fifth. However, 41% of the study population
were resident in the most deprived deprivation quintile at the time of diagnosis.
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Table 4.4: Demographic and clinical characteristics of the study population

Variable Category N %
(N=5471)
Age group 0-4 years 1001 18.3
5-9 years 544 9.9
10-14 years 564 10.3
15-19 years 803 14.7
20-24 years 1071 19.6
25-29 years 1488 27.2
Sex Males 3287 60.1
Females 2184 39.9
Period of diagnosis 1990-1996 1645 30.1
1997-2003 1685 30.8
2004-2011 2141 39.1
Surgery No 2781 50.8
Yes 2690 49.2
Chemotherapy No 1986 36.3
Yes 3485 63.7
Radiotherapy No 3880 70.9
Yes 1591 29.1
Relapse No 4658 85.1
Yes 813 14.9
Deprivation quintile 1 (least deprived) 341 6.2
2 646 11.8
3 1112 20.3
4 1132 20.7
5 (most deprived) 2240 40.9
Ethnicity* White 4729 86.4
South Asian 409 7.5
Other 233 4.3
Missing 100 1.8

* Ethnicity combination of HES, and Onomap (see Section 3.3.5 for methods).

Around one third of children were diagnosed with leukaemia and 26% of TYAS
were diagnosed with lymphoma, 26% with germ cell tumours and 15% with
carcinomas. (Table 4.5)
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Table 4.5: Diagnostic groups for children and TYA

Age group Diagnostic group N %

Children (0-14 years) ICCC-3 N=2109
Leukaemia 644 30.5
Lymphoma 239 11.3
CNS tumours 483 22.9
Neuroblastoma 150 7.1
Soft tissue 166 7.9
sarcoma
Retinoblastoma 66 3.1
Renal tumours 121 5.7
Hepatic tumours 24 1.1
Bone tumours 89 4.2
Germ cell tumours 85 4.0
Other tumours 42 2.0

TYA (15-29 years) Birch N=3362
classification
Leukaemia 347 10.3
Lymphoma 863 25.7
CNS tumours 412 12.3
Bone tumours 170 51
Soft tissue 180 54
sarcoma
Germ cell tumours 828 24.6
Melanoma and 14 0.4
skin cancer
Carcinomas 512 15.2
Other 36 1.1

A further key prognostic indicator for cancer survival is severity of disease at
diagnosis, generally measured by stage or grade at presentation. For leukaemia
patients white cell count (WCC) is used as a proxy for stage and used in clinical
practice for risk stratification [253]. Stage is not well recorded for all diagnostic
groups and Table 4.6 includes the stage details, including the number with
missing stage for specific diagnostic groups where previous analysis of the
Yorkshire Register data has indicated the staging data are of sufficient quality
for inclusion in analysis [281]. Previous research based on the YSRCCYP
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explored the missing data mechanisms for stage in detail and used multiple
imputation to impute stage under the missing at random assumption [281].

The range of missing stage/grade data ranged from 20% for leukaemia to 43%
for both lymphoma and germ cell tumours (Table 4.6). After excluding those
with missing stage, 75% of leukaemia patients had low white cell count (<50 x
10°/L), over two thirds of lymphoma patients presented with stage | and Il
disease. 40% of CNS tumours were grade | while 27% were grade IV. Only 7%
of patients with germ cell tumours presented with advanced stage disease
(stages lll and V).

Table 4.6: Stage and Grade distribution by diagnostic group

Diagnostic group and staging Stage category N % %
system exgluding
missing

Leukaemia <50 x 109L, 595 59.9 75.2

White Cell count >50 x 10%/L 196 19.7 24.8
Missing 203 204

Lymphoma I 125 11.3 19.9

Ann Arbor stage Il 297 26.8 47.4
n 116 10.5 18.5
v 89 8.0 14.2
Missing 481 434

CNS tumours I 243 27.0 40.2

WHO grade Il 138 15.4 22.8
n 63 7.0 10.4
\Y 161 17.9 26.6
Missing 294 32.7

Germ cell tumours (TYA only) | 345 40.9 71.3

Royal Marsden, TNM and FIGO I 101 12.0 20.9

combined I 18 2.1 3.7
\Y 20 2.4 4.1

Missing 359 42.6
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4.6 HES linkage summary

HES data were available for admissions between 15t April 1997 and 315t March
2017. The flowchart in Figure 4.11 shows the results from the linkage of the
cancer registry data to HES. The linkage was to any record in the HES
database, not just restricted to inpatient admissions only. This include linkage to
any HES records in the full time period so may relate to episodes around the
time of cancer diagnosis and treatment. Overall 9.8% of eligible patients did not
link to an inpatient HES episode.

Diagnosed 1990-2011
N=5471

| Died before 01/04/1997
N=396

Eligible for HES linkage
N=5075

No HES linkage
N=498 (9.8%)

y

Linked to HES admission
between 1997 and 2017
N=4577

Figure 4.11: Summary of linkage of registry data to HES inpatient admissions

A comparison between the characteristics of those linked and not linked to HES
admission data are shown in Table 4.7. There were significant differences
between linked and not linked individuals by diagnostic group, age group, sex,
year of diagnosis. There was no evidence of a difference by deprivation.
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Table 4.7: Comparison of those linked and not-linked to HES inpatient
admissions (row %s)

Characteristic Total Linked Not linked
n (%) n (%) n (%)
ALL 5075 4577 (90.2) 498 (9.8)
Diagnostic group <0.0001
Leukaemia 903 858 (95.0) 45 (5.0)
Lymphoma 1043 932 (89.4) 111 (10.6)
CNS tumours 814 771 (94.7) 43 (5.3)
Neuroblastoma 132 126 (95.5) 6 (4.5)
Bone tumours 210 204 (97.1) 6 (2.9)
Soft tissue sarcoma 336 317 (94.3) 19 (5.7)
Germ cell tumours 910 783 (86.0) 127 (14.0)
Other 727 586 (80.6) 141 (19.4)
Age group <0.0001
0-4 years 916 872 (95.2) 44 (4.8)
5-9 years 449 477 (95.1) 22 (4.9)
10-14 years 525 506 (96.4) 19 (3.6)
15-19 years 764 704 (92.1) 60 (7.9)
20-24 years 987 862 (87.3) 125 (12.7)
25-29 years 1384 1156 (83.5) 228 (16.5)
Sex <0.0001
Males 3052 2707 (88.7) 345 (11.3)
Females 2023 1870 (92.4) 153 (7.6)
Year of diagnosis <0.0001
1990-1996 1250 1014 (81.1) 236 (18.9)
1997-2003 1684 1637 (97.2) 47 (2.8)
2004-2011 2141 1926 (90.0) 215 (10.0)
Deprivation
quintile 0.05
1 (least deprived) 309 272 (88.0) 37 (12.0)
2 595 519 (87.2) 76 (12.8)
3 1028 938 (91.2) 90 (8.8)
4 1066 964 (90.4) 102 (9.6)
5 (most deprived) 2077 1884 (90.7) 193 (9.3)




125

4.7 Descriptive statistics of HES admission data

A total of 4577 patients linked to inpatient HES data, of these there were a total
of 101104 episodes and 94603 CIPS. The median number of episodes per
individual was 13 (Inter quartile range (IQR) 5, 13) (Table 4.8).

Table 4.8: Summary of all HES admissions
Mean Median (IQR)

Number of episodes per patient 22 13 (5, 31)
Number of spells per patient 21 12 (4, 30)
Number of CIPS per patient 21 12 (4, 29)

In Chapters 6 and 8, HES data were used to estimate late effects in 5-year
survivors incorporating admissions 5-years post diagnosis only. Out of 4235 5-
year survivors, 2649 (62.6%) had at least one admission 5-years post
diagnosis. There were a total of 20019 episodes and 18299 CIPs. The median
number of episodes per individual was 3 (IQR 1, 7).

Table 4.9: Summary of HES admissions 5-years post diagnosis in 5-year
survivors

Mean Median (IQR)

Number of episodes per patient 8 3(4,7)
Number of spells per patient 7 3(4,7)
Number of CIPS per patient 7 3(4,7)

4.8 Discussion

4.8.1 Results in context

Cancers in children and young adults are rare. In Yorkshire, as reported
elsewhere, incidence is higher in TYA compared to children. Since the early
1990s cancer incidence in children in the UK has increased by 15%, the
incidence rate for cases diagnosed 2010-2012 was 157 per million [11]. This
compared with an incidence rate of 138 per million in this study based on all
cases diagnosed from 1990-2011. Nationally for TYA (aged 15-24 years)
incidence rates have increased by 33% since the early 1990s. National rates
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have been estimated to be 298 per million in 2010-2012 [15]. For England,
crude incidence rates for the 13-24 year age group were estimated to be 298
per million for 2013-2015 [87]. Neither of these rates included the 25-29 year
age group that are included in this thesis, therefore direct comparison between
rates is difficult. In Yorkshire for 15-29 year olds the incidence rate from 1990-
2011 was 202 per million.

For the study cohort overall 5-year survival was 76% for children and 78% for
TYA, with both age groups showing significant increases in survival over time.
National 5-year survival for children diagnosed 2006-2010 was 82% [11] and for
TYA (15-24 years) diagnosed 2001-2005 was 81% [15]. In general, there is no
evidence to suggest that incidence and survival rates and trends are different in
Yorkshire compared to national data.

Survival varies by diagnostic group and from the study data included in this
thesis for most diagnostic groups there were sufficient numbers to examine
survival trends. Although for some diagnostic groups, bone tumours, soft tissue
sarcoma, neuroblastoma and renal tumours, several years’ data had to be
aggregated and limited temporal trends analysis could be conducted.

The first step in determining if statistical cure is an appropriate assumption is to
graphically check if the survival curves level off and plateau during follow-up
[28]. For most diagnostic groups this seems a reasonable assumption, although
the length of follow-up needed may vary by diagnostic group, for example
longer follow-up may be needed for CNS tumours. Further examination of cure
models by diagnostic group are presented in Chapter 5. Leukaemia is the most
commonly diagnosed cancer within children and acute lymphoblastic leukaemia
(ALL) accounts for 80% of all leukaemias [10]. This subgroup is included in a
detailed analysis examining statistical cure and relapse by clinical
characteristics, including further linkage to cytogenetic risk factor data (results
also presented in Chapter 5).

Linkage to HES admission data were available for 90% of the study cohort. This
is comparable to other cancer registry linked HES admission studies [240, 281,
282]. There were some differences in individuals linked and not linked to HES
and results based on hospital admissions need to be interpreted with this in
mind (See Section 4.8.2 below and further discussion in Chapter 9). HES
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admissions will be used as a proxy for long-term morbidity in Chapters 6 and 8
to quantify and assess the late effects of respiratory and cardiovascular disease
in childhood and young adult cancer survivors.

4.8.2 Strengths and limitations

Key strength of the data used throughout this thesis are that the data are
population-based and includes detailed patient, tumour and treatment related
factors. The full 0-29 year age range were included, compared to other studies
that may not include this full age range. No data were available for those aged
30-39 years at diagnosis so limited comparisons with studies based on the TYA
age range of 15-39 years (such as TYACCS) were possible. However this
thesis does provide essential intelligence on long-term outcomes for this
understudied TYA group.

The late effects for this cohort were based upon hospital admission data
providing an objective outcome measure compared to other studies based on
self-reported questionnaires, which may suffer from recall bias and non-
response, or studies based on clinical assessments, which may pick up non-
symptomatic conditions and are generally single-centred.

There are several limitations to be acknowledged. Firstly given the rarity of
certain diagnostic groups, limited analysis is possible due to small numbers. For
example examining trends in survival for each diagnostic group a threshold of a
minimum of 50 cases was used to ensure sufficient number to enable robust
estimation of survival by age groups and time period. While this is an arbitrary
threshold it is in line with national recommendations from PHE [250].

Stage data were not available for all diagnostic groups and even for the
diagnostic groups with sufficient stage information it was still missing for up to
40% of cases. This has implications for inclusion in statistical models as a
potential confounder. However, as discussed in the methods (Section 3.5.3),
variables other than stage were selected based on the relevant DAGs.

Linkage to HES was only available for 90% of the study population and analysis
of those linked and not linked showed difference by patient characteristics. This
means that certain groups may be under-represented in the analysis of late
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effects, including those diagnosed with germ cell tumours, who also have high
survival rates, and those aged 25-29 years at diagnosis. This is a limitation of
this study. However, there were no differences in the linkage rate by
deprivation. The linkage rate was lower for those diagnosed in the earlier time
period as HES data were only available from 1997 onwards so for these
patients no admissions around the time of diagnosis and treatment were
available, only longer-term admissions. Hospital admissions were used as the
basis to evaluate long-term morbidity and for those not linked to any HES
admissions it is unclear if no late effects were observed in this group as a result
of actually having no long-term admissions or as a results of linkage errors and
therefore these admissions were not captured. This means that the estimates of
long-term morbidity may be an underestimation of the true burden of disease.
Further issues around potential linkage errors and the implications of this are
discussed further in Chapter 9, Section 9.4.1. It was observed that 60% of 5-
year survivors had at least one admission 5-years post diagnosis. Reassuringly
the linkage rate for these data are similar to other national studies based on
cancer registry linked HES data [240, 281, 282] and compare favourably with
studies based on questionnaire responses which typically have lower response
rates, for example the BBCSS had a response rate of 70% [80].

4.8.3 Summary

This chapter provides a detailed description of the registry and linked hospital
admission data that were used in the analysis presented in Chapters 5-8.
Chapter 5 includes further detailed modelling of statistical cure. HES
admissions will be used as a proxy for morbidity in Chapters 6 and 8 to quantify
and assess the late effects of respiratory and cardiovascular disease in
childhood and young adult cancer survivors. Chapter 7 includes investigation of
subsequent tumours based on cancer registration data. Table 3.6 showed the
different study populations included in each chapter and the descriptive
characteristics of these groups are provided at the start of each relevant chapter
in relation to the outcome of interest.
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Chapter 5 Application of cure models to children and young

adults diagnosed with cancer

5.1 Introduction

The results presented in this chapter address Aim 1 of this thesis and a key gap
in the literature which was to assess the feasibility of applying cure models to
CYA diagnosed with cancer using data from a regional population-based
specialist cancer register. Three different cure models were compared: 1) the
flexible parametric (FP) cure model, 2) mixture cure model and 3) non-mixture
cure model. In order to fit the FP cure model the optimal model had to be
determined first, which was achieved by comparing models with different
internal knot points and comparing model fit statistics to select the best fitting
FP cure model (Section 5.2). Then a comparison between the three different
types of cure models was carried out based on all cancers combined (Section
5.3). All cancers combined were used for methodological comparisons to
maximise the study sample, however there are wide variations in survival by
diagnostic group so trends in cure by diagnostic group were estimated using the
FP cure model, comparing differences by age group and time period (Section
5.4). Full details of the statistical methods were included in Chapter 3 and
descriptive statistics of the study population were included in Chapter 4
including Kaplan-Meier survival plots. The final section of this chapter focusses
on patients with ALL and incorporates clinical risk factors (Section 5.5). Full
details of the justification of this specific study population and the statistical
methods were detailed in Chapter 3 (Section 3.5.2.3).

5.2 Selecting the optimal flexible parametric cure model

To identify the best fitting FP cure model several models with different degrees
of freedom and internal knots were compared based on all cancers combined
(see methods in Section 3.5.2). Model fit statistics, the AIC and BIC, for each
model were compared. Predicted survival curves were plotted graphically and
compared to the life table Ederer Il estimated at yearly intervals.
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5.2.1 Flexible Parametric model fit statistics

Five different models were compared, with knot points placed at different times
throughout follow-up, model fit statistics are presented in Table 5.1. Based on
the AIC the models with 7 or 8 degrees of freedom were similar with the lowest
AIC and based on the BIC models with 5-8 degrees of freedom were similar and
had the lowest BIC (Table 5.1), suggesting a model with at least 5 degrees of
freedom (4 internal knot points) would be optimal.

Table 5.1: Comparison of model fit statistics for flexible parametric cure model
with different knot points

Degrees of Number of Centile positions of AIC BIC
freedom internal knots knot points

4 3 33,67,95 11774.9 11860.8
5 4 25, 50, 75, 95 11744.5 11837.0
6 5 20, 40, 60, 80, 95 11743.0 11842.1
7 6 17, 33, 50, 67, 83, 95 11732.8 11838.6
8 7 14, 29, 43,57, 71, 86, 95 11728.0 11840.3

5.2.2 Flexible Parametric predicted survival plots

Predicted survival was plotted for the full cohort for each model with different
knot points and compared to yearly Ederer Il life table estimates of relative
survival stratified by age group and time period to assess differences in
predicted survival from the models. Figure 5.1 shows that all models provided
similar model fit in terms of estimating survival. For nearly all age groups and
time periods the predicted survival from the cure model was very similar to the
lifetable estimates with the exception of the 0-14 year age group diagnosed
between 1997 and 2003 and 15-29 year age group diagnosed between 1990
and 1996. For these groups the predicted survival from the cure model was
slightly higher than the lifetable estimates, however the data are sparse and the
predicted survival curve was within the 95% confidence limits of the Ederer Il
estimates indicating adequate model fit.

Figure 5.2 shows the estimated survival curves of the uncured from the different
models. Again all models showed similar predicted survival of the uncured with
the exception of the model based on 4 degrees of freedom.



Figure 5.1: Plot of predicted survival from flexible parametric cure models with different degrees of freedom (df) and Ederer II
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Figure 5.2: Plot of predicted survival of the uncured from flexible parametric cure models with different degrees of freedom (df)
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5.2.3 Optimal flexible parametric cure model

The model with 5 degrees of freedom (4 internal knots placed at the 25™, 501",
75™, and 95" centiles of the uncensored death times) was chosen as the most
parsimonious model. This model had the lowest BIC, similar AIC to the model
with 6 degrees of freedom and showed similar predicted survival estimates
compared to models with more degrees of freedom. This model was used in
further comparisons with the mixture and non-mixture cure models presented in
the next section.

5.3 Comparison of flexible parametric, mixture and non-

mixture cure models

Three different types of cure model were compared: flexible parametric (FP),
mixture and non-mixture. These models were compared in terms of model fit
statistics and model parameters including the percentage cured, the median
survival time (MST) of the uncured and the time when 90% of the uncured had
died. Plots of predicted survival curves and the survival curves of the uncured
group were also compared between models.

5.3.1 Model fit statistics

Based on model fit statistics (Table 5.2), the mixture and non-mixture model
showed very similar values, which were slightly higher than the AIC for the FP
model, and slightly lower than the BIC for the FP model.

Table 5.2: Comparison of model fit statistics from the flexible parametric,
mixture and non-mixture cure model

Flexible Mixture Non-Mixture
parametric
AIC 11744.46 11747.49 11746.26

BIC 11836.96 11826.77 11825.55
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5.3.2 Percentage cured

The three different cure models gave very similar estimates of the percentage of
patients cured for each age group and period of diagnosis; 73% for children,
75% for TYA, and all showed that the percentage of patients cured increased
over time. Based on the FP model 67% of patients diagnosed between 1990
and 1996 were cured increasing to 79% for patients diagnosed between 2004
and 2011 (Table 5.3).

Table 5.3: Comparison of percentage cured from flexible parametric, mixture
and non-mixture cure model

Percentage cured (95% CI)

Flexible Mixture Non-mixture
Parametric

Age group

0-14 years 73 (71, 75) 73 (71, 75) 73 (71, 75)
15-29 years 75 (73, 76) 75 (73, 76) 75 (73, 76)
Diagnosis

period

1990-1996 67 (65, 70) 66 (63, 68) 66 (63, 68)
1997-2003 74 (72, 77) 74 (72, 76) 74 (72, 76)
2004-2011 79 (77, 81) 80 (78, 82) 80 (78, 82)

The predicted survival curves for the three models were similar for all age

groups and time periods (Figure 5.3).



Figure 5.3: Predicted relative survival from flexible parametric (FP), mixture and non-mixture cure model
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5.3.3 Survival of the uncured

The median survival time (MST) of the uncured estimated from the mixture and
non-mixture model were very similar (Table 5.4), however these varied slightly
from those obtained from the FP model, which were generally lower. For
example, for 15-29 year olds the MST from the FP model was 1.4 years (95%
Cl 1.3 to 1.6) compared to 1.6 years (95% CI 1.4 to 1.8) from the mixture model
and 1.6 years (95% CI 1.4 to 1.7) from the non-mixture model. The largest
difference in estimates of the MST was for those diagnosed between 1990 and
1996; the MST was 1.3 years (95% CI 1.1 to 1.4) from the FP model, 1.7 years
(95% CI 1.4 to 1.9) from the mixture model and 1.7 years (95% CIl 1.4 to 1.9)
from the non-mixture model. Based on the FP cure model the MST estimates
remained fairly stable over time, however both the mixture and non-mixture
models suggest non-statistically significant decrease in MST over time. There
were also substantial differences in the time when 90% of the uncured had died,
again the mixture and non-mixture model estimates were similar and showed a
decrease over time, while the FP model showed no difference in trend over
time.

Figure 5.4 shows the predicted survival of the uncured from the three different
models alongside the Kaplan-Meier observed survival for patients that died. For
all age groups and time periods the predicted survival of the uncured is the
same for the mixture and non-mixture model but there are differences between
them and the FP cure model and the observed survival. The FP cure model
more accurately models the observed survival particularly in the earliest and
latest time periods for both children and TYA.



Table 5.4: Comparison of median survival time of the uncured and time when 90% uncured are dead from flexible parametric,

mixture and non-mixture cure model

Flexible Parametric

Median survival
time of uncured

Time when 90%
uncured dead

Mixture

Median survival
time of uncured

Time when 90%
uncured dead

Non-mixture

Median survival
time of uncured

Time when 90%
uncured dead

(years) (years) (years) (years) (years) (years)
(95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI)
Age group
0-14 years 1.3(1.1,1.4) 6.4 (5.8, 6.9) 1.3(1.1, 1.5) 6.5 (5.4, 7.5) 1.3(1.1, 1.5) 6.6 (5.5, 7.7)
15-29 years 1.4(1.3,1.6) 6.6 (6.1, 7.1) 1.6 (1.4, 1.8) 6.5 (5.7, 7.4) 1.6(1.4,1.7) 6.7 (5.8, 7.6)
Diagnosis
period
1990-1996 1.3(1.1,1.4) 6.3 (5.8, 6.8) 1.7 (1.4,1.9) 8.9 (7.3,10.5) 1.7 (1.4,1.9) 9.1(7.4,10.8)
1997-2003 1.4 (1.2, 1.6) 6.6 (6.0, 7.1) 15(1.3,1.7) 6.4 (5.3, 7.5) 15(1.3,1.7) 6.5 (5.4, 7.6)
2004-2011 1.4(1.2,1.5) 6.6 (6.0, 7.1) 1.3(1.1, 1.5) 4.9 (4.1,5.6) 1.3(1.1,1.5) 49 (4.1,5.7)

LET



Figure 5.4: Predicted survival of the uncured from FP, mixture and non-mixture cure model and observed survival for those
patients that died
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5.3.4 Summary of cure model comparison

The percentage cured predicted for each model was similar. However, there
were some differences in the predicted survival of the uncured particularly the
time when 90% of uncured had died where the mixture and non-mixture models
produced similar estimates which were slightly different to the FP model. The
AIC suggested that the FP cure model was the best fitting model while the BIC
suggested that the mixture or non-mixture model was best fitting. However,
these model fit statistics should be interpreted cautiously with cure models (see
Section 2.8). Plots of the predicted and observed survival of the uncured
showed that the FP model was the best fitting. Therefore the FP model was
selected to use in further analysis of cure models presented in this chapter.

5.4 Cure by diagnostic group

So far, cure models have been included for all cancers combined, however
there is wide variation in survival by diagnostic group therefore separate models
by cancer type are needed. Survival curves by age group, time period and
diagnostic group were presented in Chapter 4 and showed that for all cancers
the survival curves generally flattened out over time between 5-10 years from
diagnosis. However the time at which this occurred varied by diagnostic group.
For example, for CNS tumours it was longer at around 15-20 years.

The FP cure model was used to model cure by age group (children 0-14 years
and TYA 15-29 years) and diagnosis period for the most common diagnostic
groups in children and young people. Age groups and time periods were chosen
to include at least 50 patients to ensure robust estimates as described in
Chapters 3 and 4. From each model the percentage cured, MST of the uncured
and time when 90% of the uncured had died were estimated.

5.4.1 Trends in cure by age group

Table 5.5 shows the cure model estimates by diagnostic group and age group.
For children (0-14 years) diagnosed between 1990 and 2011, the percentage
cured ranged from 55% for neuroblastoma (95% CI 46 to 62) and bone tumours
(95% CI 43 to 65) to 84% for renal tumours (95% CI 76 to 89). The percentage
cured was also high for leukaemia (79%, 95% CI 76 to 82) and lymphoma
(82%, 95% CI 77 to 87)). There was little variation in the median survival time of
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the uncured which ranged from 1.0 years for neuroblastoma (95% CI 0.7 to 1.2)
to 1.9 years for bone tumours (95% CI 1.4 to 2.5). The time when 90% of the
uncured had died ranged from 2.8 years for neuroblastoma (95% CI 2.5 to 3.0)
to 9.4 years for CNS tumours (95% CI 8.4 to 10.4). For TYA (15-29 years)
diagnosed between 1990 and 2011, the percentage cured ranged from 53% for
leukaemia (95%CI 48 to 58) to 93% for germ cell tumours (95% CI 92 to 96).
The median survival time of the uncured varied from 0.8 years for germ cell
tumours (95% CI1 0.4 to 1.2) to 1.9 years for lymphoma (95% CI 1.4 to 2.3) and
CNS tumours (95% CI 1.4 to 2.4). The time when 90% of the uncured had died
ranged from 3.9 years for germ cell tumours (95% CI 0.7 to 7.0) to 9.3 years for
CNS tumours (95% CI 8.4 to 10.2).

For leukaemia and CNS tumours the percentage cured was higher for children
compared to TYA but there was little difference in the survival of the uncured.
The percentage cured for lymphoma, bone tumours and soft tissue sarcomas
was similar for children and TYA (Table 5.5)
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Table 5.5: Cure model results by age group and diagnostic group

Group Percentage Median survival Time when 90%

cured time of uncured uncured dead
(95% Cl) (years) (years)
(95% ClI) (95% ClI)

Leukaemia

0-14 years 79 (76, 82) 1.3(0.9, 1.6) 5.7 (4.8, 6.7)

15-29 years 53 (48, 58) 1.2 (0.9, 1.5) 5.4 (4.5, 6.3)

Lymphoma

0-14 years 82 (77, 87) 1.2 (0.7, 1.6) 7.5(5.5,9.4)

15-29 years 83 (81, 86) 1.9(1.4,2.3) 8.1 (6.6, 9.5)

CNS tumours

0-14 years 63 (59, 68) 1.6 (1.1, 2.0) 9.4 (8.4,10.4)

15-29 years 55 (50, 60) 1.9(1.4,2.4) 9.3 (8.4, 10.2)

Bone tumours

0-14 years 55 (43, 65) 1.9(1.4,2.5) 5.9(4.6,7.3)

15-29 years 56 (47, 64) 1.7 (1.4,2.1) 5.7(4.3,7.1)

Soft tissue

sarcoma

0-14 years 60 (52, 67) 1.5(1.1, 1.8) 4.4 (3.3,5.5)

15-29 years 58 (51, 65) 1.5(1.2,1.8) 4.5 (3.4,5.6)

Germ cell

tumours*

15-29 years 94 (92, 96) 0.8(0.4,1.2) 3.9(0.7, 7.0)

Neuroblastoma

0-14 years 55 (46, 62) 1.0 (0.7, 1.2) 2.8 (2.5, 3.0)

Renal tumours

0-14 years 84 (76, 89) 1.4(0.7,2.1) 4.3 (2.2,6.3)

Carcinomas*

15-29 years 71 (67, 75) 1.1 (0.9, 1.3) 4.7 (3.8,5.7)

*based on Birch classification for TYA only
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5.4.2 Trends in cure by period of diagnosis

Table 5.6 shows the cure model estimates by diagnostic group and period of
diagnosis. For several diagnostic groups the percentage cured increased over
time including leukaemia, lymphoma, CNS tumours, neuroblastoma (children
only), and other epithelial tumours (TYA only) (Table 5.6). The percentage
cured for germ cell tumours was high (>90%) across the whole time period and
remained similar. The percentage cured for soft tissue sarcoma and renal
tumours did not change over time. For all diagnostic groups there was little
change in the survival of the uncured over time. For lymphoma patients the
median survival of the uncured increased from 1.2 years (95% CI 0.9 to 1.6) for
those diagnosed 1990-1996 to 2.0 years (95% CI 1.3 to 2.7) in 2004-2011 but
this increase was not statistically significant.
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Table 5.6: Cure model results by period of diagnosis and diagnostic group

Group Percentage Median survival Time when 90%
cured time of uncured uncured dead
(95% Cl) (years) (years)
(95% ClI) (95% ClI)
Leukaemia
1990-1996 58 (53, 63) 1.2 (0.9, 1.6) 5.5 (4.6, 6.3)
1997-2003 68 (63, 73) 1.3(0.9,1.7) 5.7 (4.7, 6.6)
2004-2011 81 (77, 85) 1.2 (0.7, 1.7) 5.7 (4.6, 6.8)
Lymphoma
1990-1996 76 (72, 81) 1.2 (0.9, 1.6) 7.4 (5.6, 9.3)
1997-2003 83 (79, 87) 1.9(1.3,2.5) 8.1(6.7, 9.6)
2004-2011 89 (86, 92) 2.0(1.3,2.7) 8.2 (6.8,9.7)
CNS tumours
1990-1996 52 (46, 58) 1.6 (1.1, 2.1) 9.1(8.1,10.1)
1997-2003 61 (55, 67) 1.6 (1.1, 2.2) 9.4 (8.4,10.4)
2004-2011 65 (59, 71) 1.9 (1.3, 2.5) 9.5 (8.6, 10.5)
Soft tissue sarcoma
1990-2000 59 (52, 66) 1.6 (1.1, 1.8) 4.6 (3.6, 5.6)
2001-2011 58 (51, 65) 1.4(1.2,1.8) 4.3(3.1,5.4)
Germ cell tumours* (15-29 years only)
1990-1996 92 (88, 95) N/A N/A
1997-2003 96 (93, 98) 1.9 (0.8, 3.0) 5.6 (2.9, 8.4)
2004-2011 94 (91, 96) 1.0 (0.5, 1.6) 3.8(1.1, 6.6)
Neuroblastoma (0-14 years only)
1990-2000 40 (29, 51) 0.9 (0.6,1.2) 2.7(2.4,2.9)
2001-2011 70 (58, 79) 1.1 (0.7, 1.4) 2.9 (2.6, 3.1)
Renal tumours (0-14 years only)
1990-2000 80 (68, 88) 1.3(0.5,2.1) 4.3(2.2,6.3)
2001-2011 89 (76, 95) 1.5 (0.5, 2.6) 4.6 (2.3, 6.8)
Carcinomas* (15-29 years only)
1990-1996 61 (51, 69) 1.0 (0.7, 1.3) 4.5 (3.5, 5.5)
1997-2003 75 (67, 81) 1.3(0.9,1.7) 49 (4.0,5.8)
2004-2011 74 (68, 80) 1.1(0.8, 1.4) 4.7 (3.7,5.7)

N/A model estimates not available for these groups

* Based on Birch Classification
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5.5 Trends in cure for childhood acute lymphoblastic

leukaemia

This section contains results from the analysis of cure models including children
(aged 1-17 years) diagnosed with ALL (full methodology included in Section
3.5.2.3). Both overall survival and event-free survival (EFS) were included as
outcomes in the cure models.Figure 5.5. shows the flowchart for the study
population used in this analysis, including 7 patients who were excluded as they
had missing data on white cell count.

All cancers diagnosed 1990-
2011, aged 0-29 years
N=5471

A 4

Leukaemias
N=994

v
Acute lymphoblastic
leukaemias (ALL)
N=646

!

ALL diagnosed
aged 1-17 years
N=536

v
ALL diagnosed
aged 1-17 years
October 1990-June 2011
N=505

Excluded missing white cell count
N=7

A

Included in main ALL cure
model analysis
N=492

v

Linked to cytogenetic
database
N=417

Figure 5.5: Flow chart of study sample included in ALL cure analysis

A total of 492 patients were included in the main analysis, of whom 81 (17%)
died and 90 (18%) relapsed within the follow-up period (Table 5.7). The median
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time to relapse was 2.5 years and among relapsing patients 53% (n=48) died

during follow-up.

Table 5.7: Characteristics of ALL patients in Yorkshire aged 1-17 years

N

(% of total)

Deaths

(% within each group)

Relapse
(% within each group)

Full cohort
Diagnosis period
Oct 1990-Mar 1997
Apr 1997-Sep 2003
Oct 2003-Jun 2011
Age group

1-9 years

10-17 years

Sex

Males

Females

White cell count
<50 x 10%/L

250 x 109/L

492

138 (28.1)
163 (33.1)
191 (38.8)

385 (78.2)
107 (21.8)

281 (57.1)
211 (42.9)

391 (79.5)
101 (20.5)

81 (16.5)

32 (23)
27 (17)
22 (12)

60 (16)
21 (20)

50 (18)
31 (15)

54 (14)
27 (27)

90 (18.3)

53 (38)
24 (15)
13 (7)

72 (19)
18 (17)

58 (21)
32 (15)

67 (17)
23 (23)

Figure 5.6 shows the overall survival and EFS trends over time. Five-year
survival increased slightly from 86% (95% CI 79 to 91) in 1990-1997 to 89%
(95% CI 84 to 93) in 2003-2011, while there was a significant increase in 5-year
EFS over the same period from 62% (95% CI 53 to 69) to 86% (95% CI 81 to
91). The survival curves tended to flatten out around 8-10 year after diagnosis.
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Figure 5.6: Overall survival and event-free survival by period of diagnosis, ALL
patients aged 1-17 years

5.5.1 Overall survival

Results from the cure model based on overall survival are shown in Table 5.8.
Results from the unadjusted and adjusted models were similar. The adjusted
excess mortality rate ratio (EMRR) was 55% lower in 2003-2011 compared to
1990-1997 (Adjusted EMRR=0.45, 95% CI 0.26 to 0.80). The adjusted
percentage cured increased from 77% (95% CI 70 to 84%) in 1990-1997 to
89% (95% CI 84 to 93%) in 2003-2011 and the median survival time of the
uncured decreased from 3.2 years (95% CI 2.2 to 4.1) to 0.7 years (95% Cl 0 to
1.5) over this time period. The adjusted EMRR was 2.4 times higher for those
with a higher WCC compared to those with lower WCC (Adjusted EMRR=2.40,
95% CI 1.49 to 3.87). There were significant differences in the percentage
cured by WCC, 87% (95% CI 84 to 90) for those with lower WCC and 72%
(95% CI 63 to 81%) for those with higher WCC. The percentage cured was
similar for those aged 1-9 years (84%, 95% CI 81, 88)) and those ages 10-17
years at diagnosis (81%, 95% CI 73 to 88) and males (83%, 95% CI 79 to 88)
and females (85%, 95% CI 80 to 90). There were no differences in the MST of
the uncured by age, sex or WCC.



Table 5.8: Unadjusted and adjusted cure model results for overall survival for ALL patients

Median survival time of the
uncured (years)

5- year survival
(95% ClI)

Excess mortality rate ratio Cure percentage

(95% CI) (95% CI)
(95% CI)

Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted
Diagnosis period
Oct 1990-Mar 1997 86 (79, 91) 1.0 - 1.0 - 78 (70,84) 77 (70,84) 3.2(22,4.1) 3.2(2.2,4.1)
Apr 1997-Sep 2003 87 (81, 91) 0.70(0.41,1.19) 0.67(0.39,1.14) 84(78,89) 84(78,90) 2.0(0.9,3.2) 2.1(0.8,3.3)
Oct 2003-Jun 2011 89 (84, 93) 0.52 (0.30,0.92) 0.45(0.26,0.80) 88(82,92) 89(84,93) 0.8(0.1,1.5) 0.7 (0, 1.5)
Age group
1-9 years 89 (85, 92) 1.0 - 1.0 - 85(80,88) 84(81,83) 2.4(14,34) 1.7(11,25)
10-17 years 83 (75, 89) 1.29 (0.76,2.17) 1.32(0.78,2.26) 81(71,87) 81(73,88) 2.2(0.7,3.6) 2.1(0.9,3.2)
Sex
Males 88 (83, 91) 1.0 - 1.0 - 83(78,87) 83(79,88) 2.4(14,35) 19(11,27)
Females 88 (82, 92) 0.86 (0.54,1.36) 0.90(0.57,1.43) 85(79,89) 85(80,90) 2.2(0.9,34) 1.8(0.962.7)
White cell count
<50 x 10%/L 90 (87, 93) 1.0- 1.0- 87 (83,90) 87(84,90) 1.7(1.0,2.4) 19(1.1,2.6)
250 x 10%/L 77 (68, 84) 2.29 (1.43,3.68) 2.40(1.49,3.87) 72(62,80) 72(63,81) 1.5(0.7,2.2) 1.8(1.0,2.6)

Adjusted estimates are presented for each variable assuming that the distribution of the other variables is the same as the whole study

population, therefore allowing direct comparison between groups

VT
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5.5.2 Event-free survival

Table 5.9 shows results of the EFS cure model. In these models, the
percentage cured defines the group of patients free from relapse or who have
not died and the uncured group contains a mixture of those who died and those
who relapsed. The interpretation of the uncured group is not straightforward or
clinically relevant therefore the focus of the results is on the percentage cured
only.

The overall trends by risk factor are similar to the model for overall survival
except that the estimates of the percentage cured are slightly lower in the EFS
model. The adjusted percentage cured increased from 58% (95% CI 49 to 66)
in 1990-97 to 86% (95% CI 81 to 91) in 2003-2011. There were significant
differences in the percentage cured by WCC; 79% (95% CI 75 to 83) for those
with lower WCC and 61% (95% CI 51 to 70%) for those with higher WCC. The
percentage cured was similar for those aged 1-9 years and those aged 10-17
years and similar for males and females.

Table 5.9: Unadjusted and adjusted cure model results for event-free survival
for ALL patients

5-year event-free
survival (95% CI)

Cure percentage

(95% ClI)

Unadjusted Adjusted
Diagnosis period
Oct 1990-Mar 1997 62 (53, 69) 59 (50, 67) 58 (49, 66)
Apr 1997-Sep 2003 80 (73, 86) 77 (70,83) 77 (71, 83)
Oct 2003-Jun 2011 86 (81, 91) 85 (79,90) 86 (81, 91)
Age group
1-9 years 78 (73, 82) 76 (71,80) 76 (72, 80)
10-17 years 77 (67, 84) 74 (65,82) 73 (65, 81)
Sex
Males 75 (70, 80) 73 (68, 78) 74 (69, 78)
Females 80 (74, 85) 78 (71,83) 77 (72,83)
White cell count
<50 x 10%/L 81 (76, 84) 78 (74,82) 79 (75, 83)
250 x 109/L 65 (55, 74) 63 (53, 71) 61 (51, 70)
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5.5.3 Cytogenetic risk groups

Linkage of cancer registrations to cytogenetic risk group was available for 417
ALL patients. There were differences by age for those that were matched to a
record or not, however, there were no differences by diagnostic period, sex or
WCC (Table 5.10). Some patients after linkage, were unable to be assigned a
risk group and were categorised as “unknown”, while the not linked patients
were kept as a separate group. However, estimates are not calculated for
groups with fewer than 50 cases, therefore estimates are only provided for the
good and intermediate risk group and the not linked cases (Table 5.11).

Table 5.10: Comparison of patient characteristics for those linked and not
linked to cytogenetic risk group data

Linked Not linked Chi-squared
N=417 N=75 p-value
Variable n (%) n (%)
Diagnosis period
Oct 1990-Mar 1997 121 (29%) 17 (23%) 0.42
Apr 1997-Sep 2003 134 (32%) 29 (39%)
Oct 2003-Jun 2011 162 (39%) 29 (39%)
Age group
1-9 years 334 (80%) 51 (68%) 0.02
10-17 years 83 (20%) 24 (32%)
Sex
Males 237 (57%) 44 (59%) 0.77
Females 180 (43%) 31 (41%)
White cell count
<50 x 10%/L 333 (80%) 58 (77%) 0.62
250 x 109/L 84 (20%) 17 (23%)

Based on cytogenetic risk group, the percentage cured was 90% for patients in
the good risk group (95% CI 84 to 94), 75% for intermediate risk group (95% ClI
66 to 82), and 90% for patients not linked (95% CI 81 to 95) (Table 5.11). There
were no differences in the median survival time of the uncured between the risk
groups.
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Table 5.11: Cure model results for overall survival by cytogenetic risk group

Cytogenetic risk N 5-year Cure Median
group survival percentage survival time of
(95% CI) (95% CI) the uncured
(years)
(95% Cl)
Good 183 92 (87, 95) 90 (84, 94) 1.4 (0, 3.8)
Intermediate 124 84 (76, 89) 75 (66, 82) 29(1.6,4.2)
High 24 - - -
T-ALL 48 - - -
Unknown 38 - - -
Not linked 75 91 (81, 95) 90 (81, 95) 1.7 (0, 4.8)

5.5.4 Risk of relapse

In addition to estimating EFS, the cumulative incidence for the risk of relapse
was estimated for each diagnostic period. There was a substantial reduction in
the risk of relapse over time (Figure 5.7). 5-years post diagnosis the cumulative
incidence of relapse reduced from 36% (95% CI 28 to 44) for those diagnosed

1990-1997 to 6% (95% CI 3 to 10) for those diagnosed 2003-2011.
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5.5.5 Checking model fit

A check of the model fit was carried out to ensure the validity of the model and
the underlying cure model assumptions. Figure 5.8 shows the predicted survival
curves, the proportion cured and yearly Ederer 1l life table estimates of survival
for each diagnostic period. Model fit is adequate and the predicted cure
proportion is very close to the empirical life table estimates of survival for each
time period.
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1.00 1.00
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Figure 5.8: Plot of predicted relative survival from FP cure models for ALL
patients and Ederer Il lifetable estimates of relative survival

5.6 Discussion

5.6.1 Results in context

Results from this chapter show that it is feasible to model statistical cure for
children and young people diagnosed with cancer. Comparison of results from
different cure models, flexible parametric, mixture and non-mixture models,
showed that the percentage cured was generally the same for all models,
however, there were differences in the survival of the uncured. The two main
assumptions of the cure model were satisfied: 1) that cure was a reasonable
assumption and 2) that the survival of the uncured was modelled appropriately.
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These assumptions were assessed graphically and through assessment of the
model fit.

Model fit statistics such as the AIC and BIC, have limited use for cure models as
they estimate the model fit over the whole time period and for cure models the
interest is in the model fit towards the end of follow-up where data are more
sparse, therefore model selection should not be based upon these criteria alone
[28, 115, 116]. Based on the AIC the flexible parametric model was the best
fitting, but based on the BIC the mixture or non-mixture model showed better
model fit.

The survival of the uncured from the flexible parametric model more closely
predicted the observed survival of this group therefore the flexible parametric
model was chosen to use in further modelling in this chapter. This model is also
recommended over the mixture and non-mixture models when survival is
relatively high [28], as is the case for some diagnostic groups for children and
young people with cancer.

Plots of survival from the cure models compared to lifetable estimates of
survival also showed good agreement providing further evidence that the cure
model assumptions were satisfied for this cohort.

The percentage cured is a useful measure of long-term survival and may be
more informative for communicating prognosis to patients rather than focussing
on the benchmark of 5-year survival. For all cancers combined, the percentage
cured was 73% for children and 75% for TYA diagnosed between 1990 and
2011 and there was a significant increase over time in the percentage cured
from 66% for those diagnosed 1990-1996 to 80% for those diagnosed 2004-
2011, while over this time period the median survival time of the uncured group
remained the same. There is great variation in survival by cancer type therefore
cure models by diagnostic group are clinically informative. Analysis by age
group and time period showed that the percentage cured ranged from 40% for
children diagnosed with neuroblastoma in 1990-2000 to 95% for TYA with germ
cell tumours diagnosed 1997-2003. There were some issues in calculating the
median survival time of the uncured for germ cell tumours, which may be due to
the high survival and limited number of deaths within this group.
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Generally for most diagnostic groups there was in improvement in survival over
time which was mainly driven by an increase in the percentage of patients cured
rather than an increase in the survival of the uncured. There was no change in
the percentage cured for germ cell tumours, which was very high in all time
periods, or for soft tissue sarcomas which remained around 60%.

Due to the small sample size it was not possible to look in detail at further
associations been clinical risk factors and cure for all diagnostic groups.
However, a detailed analysis of children diagnosed with ALL was carried out.
There are also clearly defined clinical risk stratification factors for childhood ALL
and data were available on these for inclusion in statistical models.

An increase in the percentage of patients diagnosed with childhood ALL who
have been cured with more contemporary therapeutic approaches was
observed. However, there remained a relatively small group of patients where
treatment was unsuccessful and whose survival was relatively short; the median
survival time of the uncured diagnosed in most recent time period was around 1
year. The survival trends of patients who are not long-term survivors (the
uncured) have not been described before, and the interpretation of trends in the
survival of the uncured is difficult. Improvements in risk stratification and
minimal residual disease monitoring [253] will have led to more patients moving
to the cured group, leaving the most chemo-resistant patients in the uncured
group. Due to the high proportion of patients cured these estimates are based
on a relatively small sample size and should be interpreted with caution. Key
prognostic post-relapse factors are duration of first remission, site of relapse
and genetic subgroup [228]. This small group of uncured patients may contain a
heterogeneous group in terms of molecular genetics and further investigation
and examination of in this group is needed.

Trends in EFS were also estimated and showed a similar pattern of trend,
however, there was a greater increase in the percentage cured based on EFS
which was mainly due to a significant reduction in the risk of relapse over time.
Population-based estimates of EFS for ALL patients have not previously been
reported, mainly due to lack of routinely collected data on relapse. The
estimates of 5-year population-based EFS for ALL patients are similar to those
reported in national clinical trials: between October 1990 and March 1997
estimated 5-year EFS was 62% compared with 63% reported in the UKALLXI
study [254]; between April 1997 and September 2003 estimated 5-year EFS
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was 80%, compared to 74% for ALL97 study and 80% for ALL97/99 study [229,
256]; and between October 2003 and June 2011 estimated 5-year EFS was
86% compared to 87% reported by the UKALL2003 study [253]. Similarly the
UKALL2003 study found the 5-year cumulative incidence of relapse of 9% [253]
compared to our findings of 6% during the same time period although those
aged 18-24 years were not included in this analysis but they were included in
UKALLZ2003. These findings provide evidence of the validity of these estimates
and completeness of the ascertainment of relapse data for the population-based
YSRCCYP and the potential to use routine cancer registry data to estimate
long-term relapse incidence and event-free survival.

For patients diagnosed between 2003 and 2011, the 5-year survival estimate
was very similar to the percentage of patients cured. The proportion cured for
childhood ALL has been increasing since the 1970s reflecting major
improvements in survival during this time [29, 30]. This increasing trend
continued including patients diagnosed up to 2011, however the rate of increase
may have slowed down; between 1997-2003 and 2003-2011 the percentage
cured increased from 84% to 89%. This is consistent with population-based
survival trends reported by clinical trial era [283, 284].

Cytogenetic information is important not only for predicting survival but also to
identify patients at increased risk of relapse and those less likely to respond to
treatment after relapse [228]. Cancer registries do not routinely collect this
information, so this is a unique feature of this analysis and a major strength,
although there may have been changes to cytogenetic information available
over time. 5-year overall survival for those in the good risk group in patients in
the ALL97/99 trial was 94%, and in this study the estimated percentage cured in
this risk group to be 91% providing valuable information on the long-term
survival for this group of patients.

5.6.2 Strengths and limitations

Previous studies have shown that flexible parametric cure models are generally
robust to the number and position of knots [115]. For all cancers combined, the
optimal flexible parametric cure model was chosen by comparing different
models with different knot points (comparing models with between 3 and 7 knot
points). Results showed that all models produced similar results in concordance
with previous findings.
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As well as reporting the percentage cured, results were presented on the
survival of the uncured including the median survival time and the time when
90% of the uncured had died. Although the latter measure uses an arbitrary cut
point it is a useful summary statistic when assessing cure models, but this
measure did show the largest discrepancy when comparing flexible parametric,
mixture and non-mixture cure models, as shown in Figure 5.4, where subtle
differences in the survival curves of the uncured had larger implications on this
outcome. Given the high survival rates observed these estimates are based on
a small number of deaths and therefore replication of these findings in studies
with larger samples is needed. A further limitation of this study is that when
stratifying by diagnostic group, estimates by age group and time period may be
based on small numbers and the survival of the uncured could not be estimated
for TYAs with germ cell tumours, again mainly due to the high survival and
small number of deaths within this group.

As indicated in Chapter 2, a key gap in the literature was a lack of population-
based studies of cure in children and TYA cancers incorporating clinical risk
factors, this was a key strength of the analysis presented here in particular for
ALL patients where cure was estimated including age, sex and white cell count.
Cytogenetic risk group was also included for those with available data. Cure
was only estimated for cytogenetic risk groups with at least 50 cases, which
meant that cure was only estimated for the good and intermediate risk groups. It
was also estimated for the not linked group which included 15% of ALL patients.
There were no differences in those cases without and without cytogenetic data
apart from by age group with a higher rate of not linked cases in the older age
group. Those not linked were most likely to be those not enrolled on clinical
trials and difference in ALL trial recruitment rates by age have been reported;
estimated between 85-99% for children [283] and 66-77% for those aged 15-17
years [285]. While recruitment rates for ALL trials are high they are not
population-based. The estimated percentage cured for the not linked cases was
similar to the good risk group, indicating generally good prognosis for this
subgroup. Again a larger sample size may have enabled cure to be estimated
for all cytogenetic risk groups.

All cases included in analysis had at least 5-years follow-up data but for some
diagnostic groups a longer follow-up period may be needed to estimate cure
robustly. The data showed that for ALL the survival curves tended to flatten out
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after 8-10 years follow-up but there may remain some excess mortality after
this, suggesting that, particularly for more recently diagnosed patients, a longer
follow-up period may be needed.

5.6.3 Summary

This chapter used population-based data to estimate cure for children and TYA
cancers incorporating clinical risk factors. Estimates of the proportion cured and
the median survival time of the uncured by tumour type, over time and for
children and TYAs were calculated. Generally for most diagnostic groups there
was an improvement in survival over time which was mainly driven by an
increase in the proportion of patients cured rather than an increase in the
survival of the uncured. Statistical cure is measured at the population level and
does not provide information on individual level cure. Overall survival and even
event-free survival do not measure quality of survival or account for the late
effects of earlier cancer treatment. In the next chapter long-term health
outcomes and late effects of treatment are evaluated using linkage of cancer
registrations to hospital admissions to investigate respiratory morbidity in long-
term survivors.
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Chapter 6 Respiratory late effects

6.1 Introduction

Respiratory conditions are one of the most common causes of late morbidity
and mortality for long-term survivors of childhood cancer. Previous studies have
described respiratory late effects based upon self-reported outcomes or hospital
admissions for all respiratory conditions combined. However only one study
(based in Scandinavia) has considered admissions for specific respiratory
conditions [203]. This chapter provides a comprehensive analysis of respiratory
morbidity in long-term survivors based on linked cancer registrations to hospital
admissions to address Aim 2a of this thesis and addresses a key gap in the
current knowledge identified in Chapter 2. Full details of the statistical methods
are provided in Chapter 3 (Section 3.5.5). A description of admission patterns in
the cancer survivor cohort is provided along with the cumulative incidence.
Admission rates in cancer survivors were compared to rates in the general
population using hospitalisation rate ratios. The association between treatment
exposures and admission was investigated using competing risks regression
models. Finally a description of trends in readmissions and subsequent
mortality is provided.

6.2 Description of respiratory admissions

The analysis presented in this chapter is based upon 5-year survivors only. A
total of 4235 individuals were included of whom 667 (15.7%) were admitted to
hospital at least once for a respiratory condition.

Table 6.1 shows the patient characteristics by admission status. Younger
patients, females, those diagnosed in the earlier time period (1990-1996) and
those who received radiotherapy to the chest had higher rates of admission.
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Table 6.1: Patient characteristics overall and by respiratory admission

All Respiratory No respiratory
(N=4235) admission admission
(N=667) (N=3568)
Characteristic n % n % n %
Age group (at diagnosis)
0-4 years 756 17.8 144 216 612 17.2
5-9 years 426 10.1 73 109 353 9.9
10-14 years 426 10.1 77 115 349 9.8
15-19 years 623 14.7 97 145 526 14.7
20-24 years 838 1938 110 165 728 204
25-29 years 1166 27.5 166 249 1000 28.0
Sex
Males 2555 60.3 332 498 2223 62.3
Females 1680 39.7 335 50.2 1345 37.7
Period of diagnosis
1990-1996 1185 28.0 253 37.9 932 26.1
1997-2003 1309 30.9 241 36.1 1068 29.9
2004-2011 1741 411 173 259 1568 44.0
Deprivation quintile
1 (least deprived) 252 6.0 30 4.5 222 6.2
2 515 12.2 79 118 436 12.2
3 857 20.2 130 195 727 204
4 893 211 151 226 742 20.8
5 (most deprived) 1718 40.6 277 415 1441 40.4
Ethnicity
White 3666 86.6 599 89.8 3067 87.9
South Asian 324 7.7 51 7.7 273 7.8
Other 165 3.9 17 2.6 148 4.2
Missing 80 1.9
Pulmonary toxic 1342 317 213 319 1129 31.6
chemotherapy
Radiotherapy to chest 139 4.0 40 6.0 129 3.6

Thoracic surgery 28 0.7 6 0.9 22 0.6
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There were different admission patterns by diagnostic group (Figure 6.1).
Overall 18% of children were admitted at least once and this ranged from 9%
for neuroblastoma to 23% for renal tumours. For TYA, overall 14% were
admitted which ranged from 9% for germ cell tumours to 23% for bone tumours.
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Figure 6.1: Percentage of survivors admitted for a respiratory condition by
diagnostic group and age group

6.3 Comparison with general population

The observed and expected number of admissions for each respiratory
condition and the corresponding hospitalisation rate ratio (HRR) are shown in
Table 6.2 for the whole cohort and by age group at diagnosis. For all respiratory
conditions the risk of hospitalisation was 1.86 (95% CI 1.73 to 2.01) times
higher in cancer survivors compared to the general population. For each
respiratory condition the excess risk was significantly higher and was highest for
respiratory conditions due to external agents (HRR=162, 95% CI 73 to 360) and
lung fibrosis (HRR=13, 95% CI 6.5 to 26). However, these two outcomes were
based on fewer than 10 observed cases and wide variations in the estimated
confidence intervals. The HRR was 3.9 (95% CI 3.27 to 4.59) for pneumonia,
3.6 (95% CI 2.70 to 4.78) for lower respiratory conditions and 1.5 (95% CIl 1.34

to 1.69) for asthma.



160

The HRR was similar for children and TYA for any respiratory conditions (2.05,
95% CI1 1.83 to 2.30 and 1.74, 95% CI 1.57 to 1.93, respectively) and asthma
(1.54, 95% CI 1.28 to 1.85 for children and 1.49, 95% CI 1.29 to 1.73 for TYA).
However, for pneumonia and chronic lower respiratory diseases the HRR was
higher for children compared to TYA; 6.52 (95% CI 5.09 to 8.35) and 2.85 (95%
Cl 2.26 to 3.60), respectively for pneumonia and 9.40 (95% CI 5.85 to 15.1) and
2.66 (95% CI 1.86 t03.80) respectively for chronic lower respiratory diseases.

Table 6.2: Observed and expected respiratory admissions and hospitalisation
rate ratio (HRR) by type of respiratory admission and age group

Observed Expected HRR (95% CI)
admissions admissions

All ages (0-29 years)

Any respiratory admission 667 358 1.86 (1.73, 2.01)
Asthma 289 192 1.51(1.34, 1.69)
Pneumonia 134 35 3.87 (3.27, 4.59)
Chronic lower respiratory disease 47 13 3.59 (2.70, 4.78)
Lung fibrosis 8 1 13.1 (6.5, 26.1)
Respiratory conditions due to other 6 0.04 162 (73, 360)

external agents
Children (0-14 years)

Any respiratory admission 294 143 2.05 (1.83, 2.30)
Asthma 115 75 1.54 (1.28, 1.85)
Pneumonia 63 10 6.52 (5.09, 8.35)
Chronic lower respiratory disease 17 2 9.40 (5.85, 15.1)
TYA (15-29 years)

Any respiratory admission 373 214 1.74 (1.57,1.93)
Asthma 174 117 1.49 (1.29, 1.73)
Pneumonia 71 25 2.85 (2.26, 3.60)
Chronic lower respiratory disease 30 11 2.66 (1.86, 3.80)

For children and TYA HRR not calculated for lung fibrosis or respiratory conditions due
to other external agents due to small numbers

Stratifying by diagnostic group (Table 6.3) the excess risk for all respiratory
conditions was higher in cancer survivors compared to the general population
for all age groups for leukaemia, lymphoma and CNS tumours. For germ cell
tumours for all ages and for TYA only there was no excess risk of admission
compared to the general population.
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Table 6.3: Observed and expected respiratory admissions and hospitalisation
rate ratio (HRR) by diagnostic group

Observed Expected HRR (95% CI)
admissions admissions

All ages

Leukaemia (n=725) 142 61 2.32 (1.97, 2.74)
Lymphoma (n=950) 158 82 1.92 (1.64, 2.24)
CNS tumours (n=619) 103 50 2.05 (1.69, 2.49)
Germ cell tumours (n=869) 88 73 1.21 (0.98, 1.49)
Children (0-14 years)

Leukaemia (n=522) 111 46 2.40 (1.99, 2.89)
Lymphoma (n=202) 36 18 2.06 (1.48, 2.85)
CNS tumours (n=344) 68 31 2.22 (1.75, 2.81)
TYA (15-29 years)

Leukaemia (n=201) 31 15 2.09 (1.47, 2.98)
Lymphoma (n=745) 122 65 1.88 (1.57, 2.25)
CNS tumours(n=273) 35 20 1.78 (1.28, 2.49)
Germ cell tumours (n=779) 75 65 1.16 (0.92, 1.45)
Carcinomas (n=383) 63 30 2.11 (1.65, 2.71)

For all ages and children diagnosis based on ICCC-3 classification, for TYA diagnosis
based on Birch classification

Figure 6.2 compares the age at first admission for each respiratory condition in
the cancer survivor cohort and the general population. For any respiratory
admission the median age was similar in both groups: 27 years for cancer
survivors and 25 years in the general population. The median age at admission
was lower for cancer survivors compared to the general population for
pneumonia (27 year and 31 year respectively) and chronic lower respiratory
conditions (35 years and 43 years respectively).
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Figure 6.2: Box plot of age at first admission in cancer survivors compared to
the general population

6.3.1 Comparison based on primary diagnosis only

A sensitivity analysis was carried out to estimate admission trends based on the
primary diagnostic code each HES admission only with the results shown in
Table 6.4. Based on primary admission only 352 admissions were observed,
compared to 667 when all diagnostic codes within each admission were used.
However when comparing to the admission rates in the general population the
HRR was similar (1.82, 95% CI 1.64 to 2.02). The biggest difference in
admissions were for asthma where based on primary diagnoses only 22
admissions were observed (compared to 289 admissions from analysis based
on all diagnostic codes) giving a non-significant reduction in admissions
compared to the general population (HRR=0.89, 95% CI 0.59 to 1.35). The
number of observed admissions for pneumonia and chronic lower respiratory
disease were lower when based on primary admission only, 96 for pneumonia
compared to 134 based on all diagnostic codes and 13 for chronic lower
respiratory conditions compared to 47 based on all diagnostic codes. However,
the HRRs were similar to those based on all diagnostic codes: HRR= 3.82, 95%
Cl 3.12 to 4.66 for pneumonia and HRR=3.26, 95% CI 1.89 to 5.61. This trend
was observed across both age groups.
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Table 6.4: Observed and expected number of respiratory admissions and
hospitalisation rate ratio (HRR) based on primary diagnosis for admissions only

Observed Expected HRR (95% CI)
admissions admissions

All ages (0-29 years)

Any respiratory admission 352 194 1.82 (1.64, 2.02)
Asthma 22 25 0.89 (0.59, 1.35)
Pneumonia 96 25 3.82 (3.12, 4.66)
Chronic lower respiratory disease 13 4 3.26 (1.89, 5.61)
Children (0-14 years)

Any respiratory admission 173 87 1.99 (1.71, 2.31)
Asthma 12 12 0.99 (0.56, 1.75)
Pneumonia 43 7 5.80 (4.30, 7.81)
Chronic lower respiratory disease 8 1 11.1 (5.54, 22.2)
TYA (15-29 years)

Any respiratory admission 179 107 1.68 (1.45, 1.94)
Asthma 10 13 0.79 (0.42, 1.47)
Pneumonia 53 18 2.99 (2.28, 3.91)
Chronic lower respiratory disease 5 3 1.53 (0.64, 3.68)

HRR not calculated for lung fibrosis or respiratory conditions due to other
external agents due to small numbers

6.4 Cumulative incidence

The cumulative incidence for admissions for any respiratory disease increased
with increasing age without reaching at plateau (Figure 6.3). By age 40, the
cumulative incidence for an admission for any type of respiratory condition was
49.3% (95% CI 44.6 to 53.7), asthma was 20.2% (95% CI 17.6 to 23.0),
pneumonia was 13.2% (95% CI 8.2 to 19.5) and lower respiratory disease was
3.2% (95% CI 2.1 to 4.6). The cumulative incidence for lung fibrosis and
conditions due to external agents at age 40 were less than 1%.
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Figure 6.3: Cumulative incidence of respiratory admission by attained age

Sensitivity analysis was conducted to calculate the cumulative incidence based
on primary admission only with the results shown in Figure 6.4. The cumulative
incidence continued to increase without reaching a plateau. For all respiratory
conditions the cumulative incidence by age 40 was 32.9% (95% CI 27.5 to
38.3), asthma was 2.4% (95% CI 1.2 to 4.4), pneumonia was 10.2% (95% ClI
5.3 to 16.8) and chronic lower respiratory disease was 1.3% (95% CI 0.6 to
2.4). Compared to Figure 6.3, the biggest difference in cumulative incidence
was observed for asthma.
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Figure 6.4: Cumulative incidence of respiratory admission by attained age
based on primary diagnoses only

6.5 Association between treatment exposure and risk of

admission

The association between each treatment exposure (pulmonary toxic
chemotherapy, chest radiation and thoracic surgery) and risk of admission were
investigated using competing risks regression models where death prior to
admission was considered a competing risk. Results are presented for
unadjusted and adjusted models in Table 6.5. For any respiratory admission
after adjustment for potential confounders, those who received pulmonary toxic
chemotherapy had an increased risk of admission (sHR=1.24, 95%C 1.02 to
1.51). There was no statistically significant association between receiving
radiation to the chest (sHR=1.25, 95% CI 0.87 to 1.78) or thoracic surgery
(sHR=1.38, 95% CI 0.59 to 3.24) and risk of admission.
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Table 6.5: Association between treatment exposure and risk of admission for
any respiratory disease, subdistribution Hazard Ratio (sHR) and 95% CI

Treatment exposure Unadjusted sHR  Adjustedt sHR
(95% ClI) (95% ClI)

Pulmonary toxic chemotherapy

No 1.0 - 1.0 -

Yes 1.13 (0.96,1.33) 1.24 (1.02,1.51)

Chest radiotherapy

No 1.0- 1.0-

Yes 1.23(0.89,1.71) 1.25(0.87,1.78)

Thoracic surgery

No 1.0- 1.0-

Yes 1.17 (0.51, 2.68) 1.38(0.59, 3.24)

t Adjusted for deprivation, diagnosis age, diagnosis year, diagnostic group, ethnicity
and treatment exposures
Models exclude 80 individuals with missing ethnicity

Table 6.6 shows the associations between treatment exposures and admissions
for asthma, pneumonia and chronic lower respiratory disease. For asthma there
were no significant associations between any of the treatment exposures and
admission, in both unadjusted and adjusted models. For pneumonia, exposure
to pulmonary toxic chemotherapy was associated with an increased risk of
admission (adjusted sHR=1.47, 95% CI 1.00 to 2.15), but there was no
significantly increased risk for the other treatment exposures. For chronic lower
respiratory disease the risk of admission increased for those who received
thoracic surgery (adjusted sHR=8.74, 95% CI 2.61 to 29.3).



Table 6.6: Association between treatment exposure and risk of admission for asthma, pneumonia and chronic respiratory
diseases, subdistribution Hazard Ratio (sHR) and 95% CI

Asthma Pneumonia Chronic lower respiratory
disease
Treatment Unadjusted Adjustedt sHR Unadjusted Adjustedt sHR Unadjusted Adjustedt sHR
exposure sHR (95% CI) sHR (95% CI) sHR (95% CI)
(95% ClI) (95% ClI) (95% ClI)
Pulmonary toxic
chemotherapy
No 1.0- 1.0- 1.0- 1.0 - 1.0 - 1.0 -
Yes 1.00 (0.77,1.28) 0.84 (0.64, 1.12) 1.64 (1.16,2.32) 1.47 (1.00, 2.15) 1.43 (0.80, 2.57) 0.98 (0.50, 1.92)
Chest

radiotherapy
No

Yes

Thoracic surgery

No
Yes

1.0 -
1.18 (0.72, 1.94)

1.0 -
0.86 (0.20, 3.58)

1.0 -
1.22 (0.71, 2.10)

1.0 -
0.98 (0.23, 4.11)

1.0 -
1.66 (0.90, 3.07)

1.0 -
1.86 (0.46, 7.51)

1.0 -
1.24 (0.63, 2.41)

1.0 -
2.26 (0.57, 9.05)

1.0 -
2.01 (0.79, 5.12)

1.0 -
7.94 (2.50, 25.3)

1.0 -
1.31 (0.42, 4.08)

1.0 -
8.74 (2.61, 29.3)

t Adjusted for deprivation, diagnosis age, diagnosis year, diagnostic group, ethnicity and treatment exposures

Models exclude 80 individuals with missing ethnicity

9T



168

Models were fitted including a two-way interaction between age group and each
treatment exposure, the result are shown in Table 6.7. An interaction between
thoracic surgery and age was not included due to small numbers of those
receiving surgery. There was no significant interaction between pulmonary toxic
chemotherapy and age for any of the outcomes. The association between chest
radiation and age was statistically significant for any respiratory admission,
asthma and chronic lower respiratory disease. For each of these outcomes the
risk of admission was significantly higher for children who received radiation to
the chest but not for TYA.
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Table 6.7: Association between treatment exposure and risk of admission for
respiratory disease including interaction with age group, adjusted

subdistribution Hazard Ratio (sHR) and 95% CI

Outcome Treatment Children sHRY TYAsSHR t Interaction
exposure (95% Cl) (95% Cl) p-value
Any Pulmonary toxic chemotherapy
respiratory -\, 1.0 - 1.0 - 0.43
admission
Yes 1.34 (1.01,1.78) 1.17 (0.91, 1.49)
Chest radiotherapy
No 1.0- 1.0- 0.003
Yes 3.32 (1.68, 6.57) 1.01 (0.68, 1.51)
Asthma Pulmonary toxic chemotherapy
No 1.0 - 1.0 - 0.51
Yes 1.08 (0.69, 1.70) 0.90 (0.62, 1.30)
Chest radiotherapy
No 1.0- 1.0- 0.05
Yes 3.20 (1.14,8.99) 0.98 (0.53, 1.78)
Pneumonia Pulmonary toxic chemotherapy
No 1.0- 1.0- 0.76
Yes 1.88 (1.08, 3.27) 1.67 (0.96, 2.93)
Chest radiotherapy
No 1.0- 1.0-
Yes 0.88 (0.12, 6.66) 1.25 (0.61, 2.57) 0.75
Chronic lower Pulmonary toxic chemotherapy
respiratory 1.0 - 1.0 -
disease
Yes 2.03 (0.73,5.60) 0.59 (0.26, 1.32) 0.06
Chest radiotherapy
No 1.0 - 1.0 -
Yes 15.7 (3.6, 67.6) 0.49 (0.11, 2.26) 0.001

t sHRs from adjusted interaction model, adjusting for deprivation, diagnosis year,

diagnostic group, ethnicity and treatment exposures

6.6 Checking proportionality assumption
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The Fine and Gray competing risk regression models are based upon the
proportional hazards assumption. This assumption was checked by fitting
models including each variable in turn as a time varying coefficient, based on
the model for any respiratory conditions. For categorical variables, this was
testing by including dummy variables for each category. Table 6.8 shows the
coefficients, 95% confidence intervals and p-values for each variable when
included as a time varying coefficient in the model for any respiratory
admission. There was no evidence that the proportional hazards assumption
were violated for any of the variables included in the models.

Table 6.8: Estimated subdistribution hazard ratio (SHR) including each variable
as time varying coefficient in model for any respiratory admission

Variable/category SHR for time (95% CI) P
varying
coefficient

Pulmonary toxic chemotherapy 0.98 (0.95, 1.01) 0.27
Chest radiation 0.95 (0.90, 1.01) 0.11
Thoracic surgery 0.93 (0.77,1.13) 0.46
Deprivation quintile 2 1.02 (0.94,1.10) 0.61
Deprivation quintile 3 1.00 (0.93,1.07) 0.96
Deprivation quintile 4 0.99 (0.92,1.06) 0.74
Deprivation quintile 5 0.98 (0.91, 1.05) 0.58
Age at diagnosis 1.00 (1.00, 1.00) 0.17
Year of diagnosis 1.00 (1.00, 1.00) 0.88
Lymphoma 1.01 (0.96, 1.05) 0.77
CNS tumours 0.98 (0.93, 1.04) 0.51
Neuroblastoma 0.94 (0.84, 1.06) 0.32
Bone tumours 0.99 (0.91,1.07) 0.74
Soft tissue sarcoma 1.02 (0.95, 1.09) 0.67
Germ cell tumours 1.04 (0.99, 1.09) 0.13
Other solid tumours 0.97 (0.92,1.02) 0.26
South Asian ethnicity 1.02 (0.96, 1.09) 0.52
Other ethnicity 1.03 (0.93,1.13) 0.62

6.7 Readmissions and subsequent mortality
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Following the first admission for any respiratory disease trends in readmissions
and subsequent mortality were described. This section of analysis is restricted
to those with at least one admission for a respiratory condition (n=667), Overall
45% were readmitted for a respiratory condition at least once with 10%
readmitted twice and 18% readmitted at least 3 times (Table 6.9). Focussing on
those admitted for pneumonia only (n=134) 13% were readmitted for
pneumonia once and 12% readmitted at least twice.

Table 6.9: Readmissions following initial hospitalisation for respiratory condition

N (%)
Readmission for any respiratory conditions
(after admission for any respiratory disease N=667)
No readmission 364 (54.6)
1 readmission 116 (17.4)
2 readmissions 66 (9.9)
3+ readmissions 121 (18.4)
Readmissions for pneumonia
(after admission for pneumonia n=134)
No readmission 101 (75)
1 readmission 17 (13)
2+ readmissions 16 (12)

Survival following first admission was calculated from date of first admission to
date of death or censoring. Overall, 109 deaths were observed in those
admitted for any respiratory conditions (Table 6.10). Figure 6.5 shows the
Kaplan-Meier survival curve for those who first admission was for pneumonia
compared to those admitted for other respiratory conditions. One year after first
admission the survival rate was lower for those admitted for pneumonia (84%,
95% CI 74 to 90) compared to those admitted for other respiratory conditions
(93%, 95% CI 91 to 95). After adjustment for potential confounders, the risk of
death doubled for those whose first admission was for pneumonia compared to
those whose first admission was for another respiratory disease (HR= 2.00,
95% CI 1.24 to 3.23).
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Survival following initial respiratory admission
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Figure 6.5: Kaplan-Meier survival following first respiratory admission type

Table 6.10: Mortality following first admission for respiratory disease for long-
term survivors

First admission N Subsequent 1 year survival (%)t Adjusted HR Tt
deaths (%) (95% ClI) (95% ClI)

All 667 109 (16%) 92 (89, 94) -

Pneumonia 86 24 (28%) 84 (74, 90) 2.00 (1.24, 3.23)

Other respiratory 581 85 (15%) 93 (91, 95) 1.0 -

conditions

t Survival measured from date of first admission 5-years post diagnosis

t1 Adjusted for deprivation, diagnosis age, diagnosis year, diagnostic group, ethnicity,
and treatment exposures

6.8 Discussion

6.8.1 Results in context

Long-term survivors for childhood and young adult cancers were hospitalised
for respiratory conditions twice as often as general population controls. This
excess risk varied by respiratory disease type and was greater for those
diagnosed in childhood aged 0-14 compared to 15-29 year olds. The cumulative
incidence of admissions continued to increase throughout life, reaching 50% by
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age 40. Pulmonary toxic chemotherapy was associated with an increased risk
of admission and in particular admissions for pneumonia, while radiation to the
chest increased the risk of admission in children but not for TYA. Long-term
survivors admitted for pneumonia had an increased risk of subsequent death
following admission compared to those first admitted for other types of
respiratory disease.

Linked hospital admissions were used as an objective measure of disease
burden, compared to other studies of long-term survivors which rely upon self-
reported outcomes. However, there are issues and complexities associated with
this approach. Within each hospital admission the primary reason for admission
is recorded along with (up to 19) secondary diagnostic codes mainly
representing co-morbidities. The cumulative incidence of respiratory admission
by age 40 based on all diagnostic codes was 50% compared to 33% when
based on the primary admission only, the largest difference being in asthma
admissions (20% falling to 2%), with no excess risk in hospitalisation compared
to the general population. This implies that while asthma is a common co-
morbidity in long-term cancer survivors it is not the main reason for subsequent
hospitalisation. This is consistent with asthma more generally in the UK where
the majority of asthma patients have mild disease mainly treated within primary
care without experiencing exacerbation requiring hospitalisation [286].

Based on the primary admission rates only, the cumulative incidence results in
this study (33% by age 40) are similar to other published studies. In the CCSS
the cumulative incidence of any pulmonary condition by age 45 was 30% [210],
in Switzerland the cumulative incidence of respiratory disease 35 years after
cancer diagnosis was 21% [213], and the St Jude Lifetime Cohort Study found
cumulative incidence by age 40 of 42% [40]. The cumulative incidence based
on all diagnostic codes within each admission was 50% by age 40, which is
slightly higher than those reported from other studies listed above. Direct
comparison between studies is difficult and the differences in cumulative
incidence may be due to different methods of event ascertainment (hospital
admissions vs self-report vs clinical assessment), different time periods of
recruitment or different age ranges included. Analyses presented in this chapter
included those diagnosed up to 29 years whereas in other studies the upper
age limit was 21 years. However, one notable difference was the cumulative
incidence of lung fibrosis, the cumulative incidence of lung fibrosis was <1 % by
age 40. This was substantially lower than that reported in other studies; it was
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reported to be 5% in the CCSS at age 45 years [210] and 3% 35-years post
diagnosis in Switzerland [213]. The lower rate observed in this cohort may be
due to differences in treatments relating to better outcomes or due to coding
issues associated with using routine health data. For example lung fibrosis may
be not be coded within the HES record at all or may be coded as another
respiratory condition. Furthermore, it is unclear from this analysis if the
respiratory admissions are isolated late effects or due to complications of
recurrent cancer. Relapse rates prior to first admission for respiratory conditions
were slightly higher for those first admitted with pneumonia (29%) compared to
those admitted for other respiratory conditions (19%).

Admissions for pneumonia and lower respiratory diseases were 3.5-4 times
more likely in cancer survivors compared to the general population. In a large
Scandinavian record linkage study, admissions for pneumonia were 2.8 times
higher and admission for bronchitis and emphysema were double in cancer
survivors compared to population controls [203]. One reason for the excess
admissions in cancer survivors may be that they are more likely to be admitted
for a respiratory condition, given that they have had cancer, than someone
without cancer who would be managed for the same condition without a
hospitalisation.

Pneumonia is the most common cause of respiratory deaths [83] and survivors
with recurrent pneumonia are more likely to have limitations with daily living
activities [210], therefore identifying those at greatest risk is important in order
to identify preventative strategies, such as influenza and pneumococcal
vaccinations. The analysis presented in this chapter identified a significant
increased risk of pneumonia admissions for those treated with pulmonary toxic
chemotherapy and an increased risk of subsequent mortality for those admitted
with pneumonia compared to admissions for other respiratory conditions.

Higher excess risks of admission for those diagnosed in childhood compared to
those diagnosed with cancer between 15-29 years for pneumonia and lower
respiratory conditions were found which supports recent findings showing that
children have a greater respiratory mortality (SMR of 6.8) than those aged 15 to
39 years at diagnosis (SMR 1.7) with differences in mortality from pneumonia
evident (SMR 8.2 in children and 2.1 in AYA) [83]. The association between
receiving pulmonary toxic chemotherapy and the risk of admission was similar
in both age groups, however, there was a significant association between
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radiation to the chest and hospital admissions for those diagnosed as children
but not at older ages. This would appear to support previous studies that have
identified those diagnosed at younger ages to be more likely to have abnormal
respiratory function [207, 209, 217, 287].

6.8.2 Strengths and limitations

A key strength of this study is the inclusion of those diagnosed up to age 29
years, compared to previous studies of respiratory morbidity which only include
those diagnosed up to age 21 [209-211, 213]. This also allowed the
examination of differences in outcomes between children and TYA and two-way
interactions between age group and treatment exposures to be included.

Another key strength of this analysis was the use of population-based data with
general population controls to enable the calculation of the excess risk in long-
term survivors. Treatment data were available, to enable specific treatment
groups of interest to be identified, for example those who received specific
chemotherapy drugs with known lung toxicity. However detailed treatment dose
information was not available to allow further examination of dose-response on
outcomes. Subgroup analysis with two-way interactions between age group and
thoracic surgery and each outcome could not be considered due to small
numbers.

Hospital admissions were used and an objective outcome to measure long-term
morbidity due to respiratory conditions. This is a key strength compared to
studies based on self-reported outcomes, which may suffer from recall bias, or
studies based on clinical assessments, which may pick up asymptomatic
respiratory conditions. However, the main limitation of this study is that hospital
admission data may measure the severe end of the disease spectrum whilst
many respiratory conditions, such as asthma, will be managed and treated
within a primary care setting. Therefore these findings may be a potential
underestimation of the true extent of respiratory disease burden.

HES data were available from 1997 onwards, and study patients who were
diagnosed in 1990-1991 did not start follow-up 5-years from diagnosis but
shortly afterwards (6/7 years post diagnosis) when admission data were
available. Therefore for those diagnosed in the earlier time period there may be
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an underestimation of admissions. However, for those diagnosed 1990-1996,
21% had at least 1 respiratory admission, compared to 10% of those diagnosed
2004-2011. Furthermore, the analysis considered time to first admission for
each respiratory condition, incorporating the total person-time at risk, so this
bias is likely to be small. For those admitted for at least one respiratory
conditions 45% were readmitted at least once.

The limitations of linkage to HES data to quantify late effects within this cohort
have previously been discussed in Section 4.8.2 and are considered further in
Section 9.4.1.

6.8.3 Summary

Respiratory hospitalisations are significantly increased in CYA cancer survivors
compared to the general population and contribute to a substantial burden of
disease in long-term survivors. Respiratory morbidity was one of three health
outcomes used to evaluate long-term outcomes in survivors in the next chapter;
results from the investigation of subsequent malignant neoplasms are reported.
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Chapter 7 Subsequent malignant neoplasms

7.1 Introduction

The leading causes of morbidity and mortality in long-term cancer survivors are
subsequent malignant tumours, cardiovascular and respiratory diseases. In
Chapter 7, respiratory morbidity was examined in terms of hospital admissions,
and in Chapter 9 cardiovascular hospital admissions are investigated. The focus
of this chapter is subsequent malignant neoplasms (SMN), addressing Aim 2b
of this thesis. Long-term survivors of childhood and young adult cancer are at
increased risk of developing a SMN in later life [33-35, 167, 168, 170, 171, 173-
175, 288, 289]. This chapter describes the occurrence of subsequent tumours
for patients in Yorkshire using the YSRCCYP data alongside national cancer
registrations, with a particular focus on age at diagnosis and the time to develop
a SMN. Many studies on SNM development include only 5-year survivors and
examine the development of SMNs 5-years post diagnosis, excluding any early
on-set SMNs, for example studies from the CCSS and BCCSS [33, 35, 167,
168, 175]. However, it has been estimated that up to 40% of SMNs occur in the
first five years from diagnosis [170]. Studies on SMNs in TYA are more limited,
however, recently it has been shown that TYA who develop an SMN within 1-5
years of their primary diagnosis have an increased risk of death compared to
those with a longer latency period [180]. The analysis presented in this chapter
also describes subsequent mortality in those who develop a SMN, to assess the
impact of latency on risk of death. This area of research was identified as a gap
in the current literature in Chapter 2. Full details of the statistical methods are
provided in Chapter 3 (Section 3.5.6).

7.2 Description of SMNs

There were 5104 patients diagnosed with cancer between 1990 and 2010. Of
these patients 140 (2.7%) developed a total of 158 SMNs over a total of 57,390
person years follow-up (range of follow-up 0 to 26.0 years). Table 7.1 shows the
baseline characteristics of the cohort for those who did and did not develop a
SMN. The following analysis is restricted to the first SMN diagnosed within each
patient. SMNs were more commonly diagnosed in those with a primary tumour
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diagnosed aged 25-29 years, those diagnosed in an earlier time period, a
primary diagnosis of a CNS or germ cell tumour and those treated with
radiotherapy for their first tumour.

Table 7.1: Patient characteristics of those with and without SMN diagnosed

No SMN SMN
(n=4964) (n=152)
Characteristic Group n % n %
Age group 0-4 years 921 18.6 21 15.0
5-9 years 503 10.1 17 12.1
10-14 years 519 10.5 14 10.0
15-19 years 730 14.7 16 11.4
20-24 years 966 19.5 19 13.6
25-29 years 1325 26.7 53 37.9
Sex Males 2973 59.9 82 58.6
Females 1991 401 58 414
Period of diagnosis 1990-1996 1550 31.2 69 49.3
1997-2003 1623  32.7 37 26.4
2004-2010 1791 36.1 34 24.3
Diagnostic group Leukaemia 938 18.9 15 10.7
Lymphoma 1002 20.2 21 15.0
CNS tumours 801 16.1 48 34.3
Neuroblastoma 153 3.1 0 0.7
Retinoblastoma 60 1.2 2 1.4
Renal tumours 145 2.9 5 3.6
Hepatic tumours 37 0.8 0 -
Bone tumours 221 4.5 3 2.1
Soft tissue sarcoma 295 5.9 6 4.3
Germ cell tumour 857 17.3 30 21.4
Other 455 9.1 10 7.1
Ethnicity White 4335 873 124 88.6
South Asian 354 7.1 10 7.1
Other 206 4.2 5 3.6
Missing 69 1.4 1 0.7
Deprivation fifth 1 (least deprived) 313 6.3 9 6.4
2 583 11.7 16 11.4
3 1014 204 22 15.7
4 1041 21.0 30 214

5 (most deprived) 2013 406 63 45.0
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Chemotherapy Yes 3231 651 79 56.4
Radiotherapy Yes 1375 277 54 38.6
Surgery Yes 2441 493 83 59.3

The most common type of SMNs diagnosed were CNS tumours (n=48), and
these were most frequently diagnosed following a primary CNS tumour (Table
7.2). SMNs were also more frequently diagnosed in those whose first tumour
was a germ cell tumour (n=30) or a lymphoma (n=21).

Table 7.2: Diagnostic group of first and subsequent tumours

Subsequent tumours
First tumour
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Leukaemia 7 3 2 1 2 15
Lymphoma 5 5 1 1 1 4 3 21
CNS 1 33 2 1 4 5 48
Neuroblastoma 0
Retinoblastoma 1 1 2
Renal 1 2 2 5
Bone 2 3
Soft tissue 1 1 1 3 6
Germ cell 1 1 3 1 11 1 9 30
Other 1 1 1 2 1 10
Total 16 8 44 8 5 3 12 13 7 24 140

7.3 Cumulative incidence

The cumulative incidence increased with increasing follow-up and was similar
for those diagnosed as children and TYAs (Figure 7.1). For both age groups
combined, 10-years post diagnosis the cumulative incidence of SMN was 1.8%
(95% CI 1.4 to 2.2) which increased to 3.7% (95% CI 3.1 to 4.5) 20-years from
diagnosis.
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Figure 7.1: Cumulative incidence of SMN by age group

7.4 Comparison with general population

For all primary diagnostic groups combined, a total of 140 SMNs were
observed, compared to 33 expected diagnoses giving an SIR of 4.3 (95% CI 3.6
to 5.0) (Table 7.3). SIRs and AERs were only estimated for primary diagnostic
groups with at least 5 observed SMNs. A significant excess risk was observed
for all primary diagnostic groups. The excess risk was highest for CNS tumours
(SIR=13.3, 95% CI 10.0 to 17.7). Increased absolute excess risks were also
found; the overall AER per 10,000 person years was 18.7 (95% CI 14.2 to
23.2). The AER was significantly higher for most primary diagnostic groups and
was highest for survivors of CNS tumours (AER=53.6, 95% CI 36.6 to 70.5),
followed by germ cell tumours (AER=18.5, 95% CI 8.3 to 28.8).



181

Table 7.3: Standardised incidence ratio (SIR) and absolute excess risk (AER)
per 10,000 person years, for SMN by primary diagnostic group (all ages)

Primary Person- SIR AER
diagnosis years Observed Expected (95% CI) (95% CI)
All tumours 57390 140 32.9 3 61'256 03) (14 128'273 2)
Leukaemia 10342 15 3.4 @ 6211-377 26) 3 illé 3)
2.22 8.9
Lymphoma 13000 21 9.5 (1.44, 3.41) (0.6, 17.2)
13.3 53.6
CNS tumours 8291 48 3.6 (10.0, 17.7) (36.6, 70.5)
7.41 22.8
Renal tumours 1896 5 0.7 (3.08, 17.8) (-1.8, 47.5)
Soft tissue 4.04 15.7
sarcoma 2867 6 15 (1.82, 8.99) (-3.0, 34.4)
Germ cell 3.69 18.5
tumours 11797 30 8.1 (2.58, 5.27) (8.3, 28.8)
2.18 11.2
Other 4818 10 4.6 (1.17,4.05  (-4.3,26.8)

SIR and AER not estimated for diagnostic groups with fewer than 5 observed cases

7.4.1 Comparison with SMN development 5-years post diagnosis

only

For comparability with other studies the SIR and AER were also calculated
based on 5-year survivors only (n=3932) and for SMNs that were diagnosed 5-
years post diagnosis. Table 7.4 shows the results by primary diagnostic group
with at least 5 observed SMNs. Overall, the excess risk was three times higher
than expected (SIR=3.4, 95% CI 2.8 to 4.2) with significant excess risks
observed for survivors of leukaemias, CNS tumours, soft tissue sarcomas and
germ cell tumours. The AER for all cancers combined was 17.3 (95% CI 11.5 to
23.1). The AER was significantly higher for leukaemia, CNS tumours and germ
cell tumours.
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Table 7.4: Standardised incidence ratio (SIR) and absolute excess risk (AER)
per 10,000 person years, by primary diagnostic group (all ages) for SMNs

occurring 5-years post diagnosis

Primary Person- SIR AER
diagnosis years  Observed Expected (95% CI) (95% CI)
All tumours 36229 89 26.3 3.38 17.3
(2.75, 4.17) (115, 23.1)
Leukaemia 6512 11 2.7 4.15 12.8
(2.3,7.5) (1.7, 23.9)
Lymphoma 8435 13 7.8 1.66 6.2
(0.97, 2.87) (-4.4, 16.8)
CNS tumours 5017 31 2.8 11.24 56.3
(7.9, 16.0) (33.6, 79.0)
Soft tissue 1796 5 1.2 4.2 21.2
sarcoma (1.75, 10.1) (-5.9, 48.4)
Germ cell 7630 21 6.6 3.20 18.8
tumours (2.08, 4.90) (5.4,32.3)

7.4.2 Comparison based on age at primary diagnosis

Figure 7.2 shows the SIR by main diagnostic group comparing age groups at
primary diagnosis, while Figure 7.3 shows the comparisons in the AER by age
and primary diagnostic group, to show estimates of the relative and absolute
excess risks. These estimates are based on all SMNs occurring anytime since
primary diagnosis. SIRs and AERs were not estimated for children with germ

cell tumours due to small numbers but were for TYAS as this is one of the most
common diagnostic groups within the age range. For all cancers combined the
SIR was higher for those diagnosed as children (SIR=10.6, 95% CI 8.1 to 13.9)
compared to those diagnosed as TYA (SIR=3.2, 95% CI 2.6 to 3.9). This was
also observed for leukaemia, lymphoma and CNS tumours, with a significantly
increased risk for lymphoma only; SIR for children 8.5 (95% CI 3.8 to 18.8) and
SIR for TYA 1.7 (95% CI 1.03 to 2.9). For all diagnostic groups the absolute
excess risk in the cancer survivors was higher than in the general population.
Overall the absolute excess risk was similar for children and TYA survivors
(AER=20.6, 95% CI 14.1 to 27.0 and AER=17.4, 95% CIl 11.3 to 23.5, per
10,000 person years, respectively). There was no significant increased absolute
excess risk for TYA leukaemia and lymphoma survivors. The AER was highest
for CNS survivors in both age groups (AER=42.5, 95% CI 23.3 to 61.7 for
children and AER=69.6, 38.6 to 100.6 for TYA)
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Figure 7.2: Standardised incidence ratio (SIR) of SMN by age and primary
diagnostic group

The dashed line represents SIR=1 (excess risk equal in cancer survivors compared to
general population)
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Figure 7.3: Absolute excess risk (AER) of SMN by age and primary diagnostic
group

The dashed line represents AER=0 (excess risk equal in cancer survivors compared to
general population)
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7.5 Latency for SMNs

The median time to development of an SMN was 7.6 years (IQR 3.4 to 13.1),
with 36% of all SMNs diagnosed within 5 years of the primary tumour, this
percentage was higher for those whose first tumour was diagnosed as a TYA
(42%) compared to those diagnosed as children (27%) (Table 7.5). The range
in latency time was similar for those diagnosed as children and TYA, however
the median time to SMN was slightly lower for TYA (6.9 years (IQR 3.1 to 12.8))
compared to children (9.3 years (IQR 4.8, 15.1)).

Table 7.5: Latency period by age group

Latency period All ages Children TYA
N=140 N=52 N=88
<5 years 51 (36%) 14 (27%) 37 (42%)
5 years-<10 years 35 (25%) 15 (29%) 20 (23%)
10 + years 54 (39%) 23 (44%) 31 (35%)

The type of SMN diagnosed varied by latency period (Table 7.6). Leukaemias
and lymphomas accounted for a larger percentage of SMNs diagnosed within 5
years (22% and 12%, respectively) compared to SMNs diagnosed after 5 years
(6% and 2% respectively). CNS tumours were the most frequently diagnosed
SMN in both time periods; accounting for 25% of all SMNs within 5 years and
35% of all SMN after 5 years. Thyroid cancers were the next most common
SMN type diagnosed after 5 years (13%).
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Table 7.6: SMN types by latency period

All Latency <5 years Latency 25 years

N=140 N=51 N=89
SMN type n (%) n (%) n (%)
Leukaemia 16 (11%) 11 (22%) 5 (6%)
Lymphoma 8 (6%) 6 (12%) 2 (2%)
CNS 44 (31%) 13 (25%) 31 (35%)
Digestive 8 (6%) 2 (4%) 6 (7%)
Respiratory 5 (3%) 3 (6%) 2 (2%)
Breast 3 (2%) 1 (2%) 2 (2%)
Testicular 12 (9%) 6 (12%) 6 (7%)
Thyroid 13 (9%) 1 (2%) 12 (13%)
Soft tissue 7 (5%) 4 (8%) 3 (3%)
Other 24 (17%) 4 (8%) 20 (22%)

Comparing SMN types with at least 10 diagnoses, to ensure sufficient numbers
per group, the median latency between primary tumour and SMN was shortest
for leukaemias (4.1 years, IQR 1.9 to 8.8 years) and testicular cancers (4.9
years, IQR 2.6 to 12.1 years) and longest for thyroid cancers (15.1 years, IQR
9.9 to 20.4 years) (Figure 7.4).
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CNs| |—— | i o N=4
Testicular l— H n=12
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Other I— 4| Py
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Figure 7.4: Box plot of latency time by SMN type
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7.6 Survival following SMN

Patients who experienced an SMN had a higher percentage of deaths (41%)
compared to those without an SMN (27%). This next section of analysis
focusses on survival for those diagnosed with an SMN only (n=140). Follow-up
time was calculated from diagnosis date of subsequent tumour to death or
censoring date (315 December 2016) ensuring at least 1-year follow-up. Overall
survival varied by latency period (Figure 7.5). Survival was similar for those with
a latency period of <5 years and between 5-10 years from primary diagnosis,
however, survival was higher for those with a latency period of 10 years or
more. One-year survival was 96% (95% CI 86 to 99) for those with a latency
period of 10+ years compared to 61% (95CI 46 to 73) for latency <5 years and
66% (95% CI 48 to 79) of those with latency of 5-10 years.

100
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—— <5years - 5-10 years —— 10+ years

Figure 7.5: Kaplan-Meier survival from SMN by latency period

A flexible parametric survival model was used to examine the association
between latency period and survival after adjustment for potential confounders
with the results shown in Table 7.7. In both the unadjusted and adjusted models
there was a significant association between latency period and survival. The
risk of death was 87% lower for those with a latency period of 10 or more years
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compared to those with a latency period of less than 5 years (HR=0.13; 95% ClI
0.0 to 0.33).

Table 7.7: Association between latency period and subsequent mortality
following SMN diagnosis, hazard ratio (HR), 95% CI

Latency period Unadjusted HR Adjusted HRt
(95% ClI) (95% ClI)

<5 years 1.0- 1.0-

5-10 years 0.86 (0.48, 1.55) 0.40 (0.19, 0.84)

10+ years 0.29 (0.15, 0.57) 0.13 (0.05, 0.33)

t Adjusted for year of diagnosis of primary tumour, treatment received for primary
tumour and SMN type

7.7 Discussion

7.7.1 Results in context

Subsequent malignant neoplasm developed in 3% of the study population. The
cumulative incidence continued to increase throughout follow up, reaching 4%
20-years post diagnosis and was similar for children and TYA. In this analysis
all those diagnosed under 30 years were included, whereas other studies have
focussed on children only (with different definitions cut-offs at 15/18/21 years)
[33-35, 167-171, 173, 175, 288-290] or TYA only (again with different age
ranges being used, 15-24/15-39 years) [82, 174, 291] making direct comparison
difficult. Other factors hindering direct comparability include different inclusions
of primary tumour types, different definitions and inclusions of subsequent
tumours, studies focussing on late SMNs only and different periods of follow-up
and timescales used (for example cumulative incidence based on attained age
and years from diagnosis). In this analysis 36% of SMNs were diagnosed as
early onset SMNs therefore the estimated cumulative incidence may be higher
than studies including late onset SMNs only. One of the more comparable
studies to this was conducted in Canada on children (<15 years) diagnosed with
primary cancer between 1985 and 2008 and found the cumulative incidence 15-
years from diagnoses was 2.6% [170], compared to a cumulative incidence of
2.4% (95%C 1.7 to 3.2) 15-years post diagnosis in this study.

Compared to the general population the incidence of subsequent tumours was
4.3 times higher than expected, which was higher for children (SIR=10.62) than
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for TYA (SIR=3.2). Again direct comparison with other studies is difficult and
previously estimated SIRs range from 2 to 10 [33-35, 167-171, 173-175, 288,
290, 291]. A study based on SEER data [174] comparing SMNs in children and
adolescents and young adults (15-39 years) found an SIR of 5.4 in children and
2.0 for AYA, so following a similar trend to that presented here of higher SIR in
children compared to TYA. This was also observed across several primary
diagnostic groups. The absolute excess risk, which measures the number of
additional incident cases beyond those expected in the general population, was
similar for children and TYAs, around 20 extra diagnoses per 10,000 person
years. Both the SIR and AER were used as these provide complementary
measures of both the relative and absolute excess risks.

A large study (including 200,000 survivors) based on 15-39 year old survivors in
England and Wales examined subsequent neoplasms after 16 types of
adolescent and young adult cancers and identified a small number of specific
subsequent tumours that account for a substantial proportion of the excess
number of neoplasms including many diagnoses of subsequent lung cancers
[82]. This the largest study within this age group with extensive follow-up to
identify specific types of subsequent tumours and highlights the unique features
of the teenage and young adult population and differences compared to
children. The results presented here included the 15-29 year age group,
however, very few subsequent lung tumours were recorded, which may be due
to the shorter follow-up period and relatively younger age of the cohort
compared to the TYACSS study.

In the analysis presented in this chapter all tumours developing anytime
following diagnosis were included, in contrast to the majority of studies in long-
term childhood cancer survivors (i.e. those surviving at least 5-years) which only
include tumours that develop 5-years post diagnosis [33, 35, 167, 168, 175,
288]. Sensitivity analysis was carried out restricting the estimation of
standardised incidence ratios to those that developed 5-years post diagnosis
only and found an SIR 3.4 times higher than expected, with significant excess
risks by primary diagnostic groups. The number of primary diagnostic groups
included were limited by sample size, however the highest SIR was observed
for those diagnosed with primary CNS tumour with an estimated SIR of 11 (95%
Cl 8 to 16), this is higher than other previous estimates from the BCCSS (SIR=
2.7,95% CI 2.4 to 3.2) [35] and the CCSS (SIR for medulloblastoma and PNET
=7.3,95% Cl 4.7 to 11.4, and SIR for other CNS =6.9, 95% CI 4.0 to 11.7)
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[167], but there are many factors previously mentioned why these findings may
not be directly comparable. The estimated SIRs for those with primary
leukaemias and soft tissue sarcomas were more similar; SIR for leukaemia in
Yorkshire cohort was 4.2 (95% CI 2.3 to 7.5) compared with 4.3 (95% CI 3.6 to
5.2) in the BCCSS and 4.4 (95% CI 3.7 to 5.3) for ALL in the CCSS and SIR for
soft tissue sarcoma was 4.2 (95% CI 1.8 to 10.1) in Yorkshire compared with
3.2 (95% CI 2.5, 4.1) in the BCCSS and 5.8 (95% Cl 4.3 to 7.3) in the CCSS
[35, 167]

The median time to SMN development was around 8 years. Just under half of
all SMN in TYA were diagnosed within 5 years from the primary tumour, this
figure was slightly lower for children at 27%. These findings are consistent with
previous studies that identified a significant proportion of all SMNs were
diagnosed within 5-years of diagnosis [170, 180]. The number of early onset
SMNs was slightly higher in TYA compared to children, which may reflect the
higher baseline incidence of tumours in the general population in this age

group.

The types of SMNs diagnosed differed by latency period. Therapy related
leukaemias are more likely to develop as early onset tumours while solid
tumours generally had a longer latency period and may correspond to
previously irradiated sites [181, 292].

CNS tumour were the most frequently diagnosed tumour type in both periods.
Risk of CNS tumours are increased for those with previous CNS radiation and
linked to genetic factors [292]. The analysis presented in this thesis included
certain non-malignant tumours, such as those included in the ICCC-3
Classification [43], for example meningiomas and pilocytic astrocytomas. In fact,
34% of all diagnosed CNS SMNs were of non-malignant histology. A study in
the Nordic countries reported that nearly a third of all SMNs (occurring any time
since diagnosis) were CNS tumours and estimated an SIR of 10.4 (95% CI 6.7
to 16) for a CNS subsequent tumour following a primary CNS tumour, similar to
our estimate of 13.3 (95% CI 10.1 to 17.7). Some of these excess brain tumours
may be asymptomatic tumours picked up via routine imagining of CNS survivors
[169].
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Survival following SMN diagnosis is an important area of research [293] with
limited studies examining the impact of SMNs on survival. The impact on
latency on survival for AYAs with SMNs in the USA found higher death rates in
those who developed SMN 1-5 years from primary tumour compared to SMNs
that developed 6 or more years after primary tumour [180]. This study was a
large population-based study including details on cause of death, however it
only focussed on the 15-39 year age range. While in Canada those with early
onset SMNs were 1.8 times more likely to die that those who developed an
SMN after 5-years, this study was limited to children only [170]. Another US
study of SMN developing before the age of 20 found those with a latency of less
than 5-years had lower survival, but this study only included primary solid
tumours [182]. A shorter latency period was associated with decreased survival
for both children and TYAs combined in the results presented here. The
mechanisms for this may be multi-factorial. Chemotherapy and radiotherapy are
associated with increased risk of SMN development [181], but the impact of
these factors on subsequent mortality is unknown. Treatment for the primary
tumour may affect potential treatment options for SMNs due to the cumulative
toxic effect which may then impact on prognosis. There are clear differences in
the type of tumours diagnosed by latency and early onset SMNs may be more
aggressive that those with longer latency. However, both SMN type and primary
treatment exposure were adjusted for and the relationship between latency and
survival was still evident. There may be other unmeasured and residual
confounding factors that explain this relationship. Genetic predisposition and
family history have a significant impact on SMN development [181], however it
is not known how this impacts on survival. Genetic information was not
available but this was included as a latent variable in the DAG (Section 3.5.6).

7.7.2 Strengths and limitations

Key strengths of this analysis are that it was population-based and was not
based on patient recall or suffer from selection bias by only including those
responding to questionnaires. Subsequent tumours were ascertained from both
the YSRCCYP and national cancer registrations to identify tumours diagnosed
outside of the Yorkshire region and those diagnosed after the age of 30. Both
these registers have high ascertainment rates and potential losses to follow-up
are minimal.

SMNs were coded according to the classification of multiple primary tumours
defined by IACR/IARC where subsequent tumours were based on those with a
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different histology to the primary tumour [165]. However, there is still a
possibility that a relapse or recurrence of the primary tumour has been mistaken
for a subsequent tumour. In additional certain non-malignant tumour types were
included as these are commonly diagnosed and classified according to the
ICCC-3 [43]. These were mainly benign CNS tumours that present with similar
clinical symptoms and prognosis as malignant tumours.

The other main limitations are around the small sample size meaning subgroup
analysis by, for example primary diagnosis, was not possible. Treatment
information was extracted from the YSRCCYP database for all primary tumours,
however treatment information for SMNs was not available. Follow-up was
limited to SMN diagnosed under age 55, while the large cancer survivors
studies (such as the BCCSS and CCSS) have follow-up up to age 60+,
therefore different patterns of SMN may occur with longer follow-up as cancer
rates in the general population start to increase steadily in these age groups.
Only time to first SMN was considered in this analysis and some survivors in
this study had more than one subsequent tumour diagnosed. Larger studies
would be needed to examine these individuals in more detail. Further analysis
incorporating all SMNSs in addition to respiratory and cardiovascular admission
in 5-year survivors is presented in Chapter 9.

The main limitation regarding the analysis by latency period is due to
differences in survivorship and follow-up by latency period. Those with a longer
latency period are more likely to be those with better initial prognosis and have
been followed-up for longer by definition. In the latency survival analysis follow-
up started from date of diagnosis of SMN and each individual was followed-up
for at least one year. The median follow-up time for those with SMN diagnosed
within 5 years was 3.2 years compared to 4.9 years for those with an SMN
diagnosed after 5 years. From the Kaplan-Meier plot differences in survival by
latency were evident after 1-year follow-up (63% in those with latency less than
5 years compared to 96% in those with latency of 10 or more years). The
analysis of latency was based on 140 patients only, therefore replication of
these findings in larger studies is needed. This would also allow examination of
differences in subsequent mortality and latency by age group which was not
possible in the analysis presented here due to small numbers.

7.7.3 Summary
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Subsequent malignant neoplasms developed in 3% of the study population, with
36% of these occurring within 5-years of the primary diagnosis. The cumulative
incidence continued to increase throughout follow up, reaching 4% twenty-years
post diagnosis. A shorter latency period was associated with decreased
survival. SMNs were the second health outcome to be investigated in this
thesis. The next chapter evaluates the third long-term outcome, cardiovascular
disease, and then goes on to explore the cumulative burden of multiple and
recurrent morbidity outcomes.
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Chapter 8 Cumulative burden of respiratory and cardiovascular

morbidity and subsequent tumours

8.1 Introduction

The most common causes of late morbidity and mortality in long-term survivors
of childhood and young adult cancers are subsequent neoplasms,
cardiovascular and respiratory diseases. Chapters 7 and 8 provided a detailed
description of respiratory morbidity and SMNSs. The first section of this chapter
focusses on hospital admissions for cardiovascular disease, including a
comparison with rates in the general population (addressing Aim 2c of this
thesis). Similar to the analysis for respiratory admissions, both admissions
based on all diagnostic fields within each HES admission and the primary
admission are compared. The next section in this chapter goes on to explore
the cumulative burden of subsequent neoplasms, respiratory and
cardiovascular diseases combined, to specifically address Aim 3 of this thesis.
A lack of studies based on multiple and recurrent events was identified in the
literature review in Chapter 2, therefore this chapter addresses this knowledge
gap. The time to the first event for each outcome is described along with the
cumulative burden estimated using the mean cumulative count (MCC). The
association between treatment exposure and the cumulative burden is explored
utilising multiple failure time models to account for all admissions and all
subsequent tumours within each individual.

8.2 Description of cardiovascular admissions

The analysis presented in this section is based upon 5-year survivors
diagnosed between 1990 and 2011, with follow-up to March 2017. A total of
4235 individuals were included of whom 427 (10.1%) were admitted to hospital
at least once for a cardiovascular condition. As well as all cardiovascular
conditions combined, seven specific conditions were included as shown in
Table 8.1. Hypertension was the most common condition based on all
diagnostic codes. Restricting admissions to cardiovascular conditions using only
the primary diagnosis field within each HES record reduced the total number of
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admissions to 201 (4.7%) of survivors, with fewer than 30 admissions for each
specified condition.

Table 8.1: Number of survivors admitted for cardiovascular conditions

Cardiovascular disease ICD10 codes All diagnostic Primary

codes in HES admissions only
n (%) n (%)

All cardiovascular 100-199, G45 427 (10.1%) 201 (4.7%)

Hypertension 110-115 140 (3.3%) 9 (0.2%)

Coronary (Ischemic) heart  120-125 39 (0.9%) 20 (0.5%)

disease

Cardiomyopathy and heart 142, 143, 150, 64 (1.5%) 22 (0.5%)

failure 151

Valvular heart disease 134-139 20 (0.5%) 3 (0.1%)

Pericardial disease 130-132 20 0.5%) 10 (0.2%)

Conduction disorders 144-149 63 (1.5%) 26 (0.6%)

(Arrhythmias)

Cerebrovascular disease 160-169,G45 37 (0.9%) 23 (0.5%)

8.2.1 Cumulative incidence

The cumulative incidence for admissions for any cardiovascular disease
increased with increasing age without reaching at plateau (Figure 8.1). By age
40, the cumulative incidence for an admission for any type of cardiovascular
condition was 24.0% (95% CI 21.5 to 26.7), hypertension was 7.3% (95% CI 5.6
to 9.3), heart failure was 4.6% (95% CI 3.4 to 6.1), conduction disorders was
3.6% (95% CI 2.7 to 4.7), cerebrovascular disease was 2.5% (95% CI 1.6 to
3.7), pericardial disease was 1.4% (95% CI 0.9 to 2.2) and valvular heart
disease was 1.3% (95% CI 0.6 to 2.4).
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Figure 8.1: Cumulative incidence of cardiovascular admission by attained age

Sensitivity analysis was conducted to calculate the cumulative incidence based
on primary admission only with the results shown in Figure 8.2. The cumulative
incidence continued to increase with attained age. However, the incidence rates
were substantially lower than when based on all diagnostic codes. By age 40,
the cumulative incidence for any cardiovascular admission was 12.4% (95% CI
14.4 to 14.4). For all specified conditions by age 40 the cumulative incidence
was between 1% and 2%.



196

50 — ANy cardiovascular admission
m— Hypertension
m—— Heart failure
40 | s Conduction disorders
=R = Cerebrovascular
8 = Coronary heart disease
o)
_8 30 Pericardial disease
g Valvular heart disease
[}
=
& 20
3
E
3
(@]
10+
o ad

0 15 20 25 30 35 40 45 50 55
Attained age (years)

[ =
—_

Figure 8.2: Cumulative incidence of cardiovascular admission by attained age
based on primary diagnoses only

8.2.2 Comparison with general population

The observed and expected number of admissions for each cardiovascular
condition and the corresponding hospitalisation rate ratio (HRR) are shown in
Table 8.2. For all cardiovascular conditions the risk of hospitalisation was 1.67
times higher (95% CI 1.52 to 1.83) in cancer survivors compared to the general
population. For each cardiovascular condition except coronary heart disease
the excess risk was significantly higher in cancer survivors compared to the
general population ranging from 1.56 (95% CI 1.32 to 1.84) for hypertension to
4.48 (95% CI 3.50 to 5.72) for cardiomyopathy and heart failure.
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Table 8.2: Observed and expected cardiovascular admissions and
hospitalisation rate ratio (HRR)

Observed Expected HRR (95% CI)
admissions admissions

All cardiovascular 427 255 1.67 (1.52, 1.83)
Hypertension 140 90 1.56 (1.32, 1.84)
Coronary heart disease 39 31 1.26 (0.92, 1.73)
Cardiomyopathy and heart failure 64 14 4.48 (3.50, 5.72)
Valvular heart disease 20 7 3.04 (1.96, 4.71)
Pericardial disease 20 6 3.63 (2.34, 5.62)
Conduction disorders 63 32 1.95 (1.52, 2.50)
Cerebrovascular disease 37 13 2.78 (2.01, 3.84)
Heart transplant 7 10 0.71 (033, 1.49)

Stratifying by age group at diagnosis (Table 8.3) the excess risk for all
cardiovascular admissions was higher in children (HRR=3.11, 95% CI 2.64 to
3.67) compared to TYA (HRR=1.36, 95% CI 1.21 to 1.52). This trend of higher
HRR in children compared to TYA was observed for all specific conditions with
notable differences in the excess risk by age for hypertension (4.12, 95% CI
2.94 to 5.78 in children and 1.30, 95% CI 1.08 to 1.58 in TYA), coronary heart
disease (3.50, 95% CI 1.67 to 7.34 in children and 1.11, 95% CI1 0.78 to 1.56 in
TYA), cardiomyopathy (14.4, 95% CI 10.3to 20.3 in children and 2.58, 95% ClI
1.82 to 3.67 in TYA) and cerebrovascular disease (8.44, 95% CI 5.17 to 13.8 in
children and 1.84, 95% CI 1.20 to 2.82 in TYA).
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Table 8.3: Observed and expected cardiovascular admissions and
hospitalisation rate ratio (HRR) by age at diagnosis

Observed Expected HRR (95% CI)
admissions admissions

Children

All cardiovascular 141 45 3.11 (2.64, 3.67)
Hypertension 34 8 4.12 (2.94, 5.76)
Coronary heart disease 7 2 3.50 (1.67, 7.34)
Cardiomyopathy and heart failure 33 2 14.4 (10.3, 20.3)
Valvular heart disease 7 1.6 4.39 (2.09, 9.12)
Pericardial disease 11 15 7.18 (3.98, 12.97)
Conduction disorders 18 7 2.49 (1.57, 3.95)
Cerebrovascular disease 16 1.9 8.44 (5.17, 13.77)
TYA

All cardiovascular 286 210 1.36 (1.21, 1.52)
Hypertension 106 81 1.30 (1.08, 1.58)
Coronary heart disease 32 29 1.11 (0.78, 1.56)
Cardiomyopathy and heart failure 31 12 2.58 (1.82, 3.67)
Valvular heart disease 13 5 2.61 (1.52, 4.50)
Pericardial disease 9 4 2.26 (1.18, 4.34)
Conduction disorders 45 25 1.79 (1.34, 2.40)
Cerebrovascular disease 21 11.4 1.84 (1.20, 2.82)

8.2.3 Comparison based on primary diagnosis only

Sensitivity analysis was carried out to estimate admission trends based on the
primary diagnostic code only for each HES admission, with the results shown in
Table 8.4. HRR were not calculated if there were fewer than 5 admission for a
particular group. Based on primary admission only 201 admissions were
observed, compared to 148 expected giving an HRR of 1.36 (95% CI 1.18 to
1.56). Significant excess risks were observed for all conditions except coronary
heart disease (HRR=0.94, 95% CI 0.61 to 1.46). A significant excess risk of all
cardiovascular admissions were observed for children (HRR=2.71, 95% CI 2.16
to 3.41) but not for TYA (HRR=1.05, 95% CI 0.88 to 1.25). Overall the excess
risk was highest for cardiomyopathy and this was observed for both children
(HRR=17.2, 95% CI 9.5 to 31.0) and TYA (HRR=3.30, 95% CI 1.80 to 5.88),
again with higher excess risk observed in children compared to TYA.
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Table 8.4: Observed and expected number of admissions and hospitalisation
rate ratio (HRR) based on primary diagnosis for admissions only

Observed Expected HRR (95% CI)
admissions admissions

All ages

All cardiovascular 201 148 1.36 (1.18, 1.56)
Hypertension 9 4 2.05 (1.07, 3.94)
Coronary heart disease 20 22 0.94 (0.61, 1.46)
Cardiomyopathy and heart failure 22 4 5.48 (3.61, 8.32)
Valvular heart disease <5 - -
Pericardial disease 10 4 2.52 (1.35, 4.68)
Conduction disorders 26 16 1.58 (1.08, 2.32)
Cerebrovascular disease 23 10 2.25(1.49, 3.38)
Children 0-14 years

All cardiovascular 74 27 2.71 (2.16, 3.41)
Hypertension 8 0.7 10.9 (5.43, 21.7)
Coronary heart disease <5 - -
Cardiomyopathy and heart failure 11 0.6 17.2 (9.5, 31.0)
Valvular heart disease <5 - -

Pericardial disease 1 6.23 (2.97, 13.1)
Conduction disorders 4 1.83 (0.87, 3.83)
Cerebrovascular disease 10 1 7.83 (4.21, 14.5)
TYA 15-29 years

All cardiovascular 127 120 1.05 (0.88, 1.25)
Hypertension <5 - -
Coronary heart disease 18 20 0.89 (0.56, 1.41)
Cardiomyopathy and heart failure 11 3.4 3.30 (1.80, 5.88)
Valvular heart disease <5 - -
Pericardial disease <5 - -
Conduction disorders 19 13 1.51 (0.96, 2.36)
Cerebrovascular disease 13 9 1.45 (0.84, 2.50)

HRR not calculated for groups where observed number of admission was fewer than 5
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8.3 Cumulative burden subsequent neoplasms, cardiovascular

and respiratory admissions

The analysis of the cumulative burden of all SMNs and all hospitalisations due
to cardiovascular and respiratory conditions was restricted to 5-year survivors
diagnosed between 1992 and 2010 to ensure consistent follow-up across all
outcomes. All survivors were followed up till December 2015. A total of 3686
five-year survivors were included contributing to 28,335 person-years follow-up
(starting 5-years post diagnosis). A total of 533 (15%) survivors were admitted
to hospital at least once for a respiratory condition, 225 (6%) had 2 or more
respiratory admissions, 316 (9%) were admitted at least once for a
cardiovascular condition, 125 (3%) were admitted more than once for
cardiovascular disease and 74 (2%) diagnosed with at least one SMN (Table
8.5).

Table 8.5: Summary of outcomes for cumulative burden analysis

Outcome n %
At least 1 respiratory admission 533 14.5
1 admission 305 8.3

2 admissions 89 24

3 admissions 47 1.3

4 admissions 30 0.8

5+ admissions 59 1.6

At least 1 cardiovascular admission 316 8.6
1 admission 183 5.0

2 admissions 48 1.3

3 admissions 19 0.5

4 admissions 8 0.2

5+ admissions 50 1.4

At least 1 SMN 74 2.0
1 SMN 71 1.9

2 SMNs 3 0.1

Combined outcomes

Respiratory and cardiovascular admission 134 3.6
Respiratory and SMN 16 0.4
Cardiovascular and SMN 11 0.3

All 3 events 7 0.2
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The median time from diagnosis to first event was 8.2 years (IQR 6.1 to 12.6)
where the first event was a respiratory admission, 10.7 years (IQR 6.7 to 14.5)
where the first event was a cardiovascular admission and 10.7 years (IQR 7.6
to 13.5) where the first event was a SMN (Figure 8.3). Subsequent events
following first event are shown in Figure 8.3.

First event Second event

Cardiovascular admission

N=94

Median (IQR) time from first event

Respiratory admission 0.8 years (0 to 3.3)

N=477
Median (IQR) time from diagnosis
SMN
8.2 years (6.1 to 12.6)
| N=8

Median (IQR) time from first event

0.3 years (0.01t0 2.7)

Respiratory admission

N=42

Median (IQR) time from first event

Cardiovascular admission 16 years (0.8 to 3.0)

N=214
Median (IQR) time from diagnosis
SMN
10.7 years (6.7 to 14.5)
| N=8

Median (IQR) time from first event

0.4 years (0.02to 4.1)

Respiratory admission

N=12

Median (IQR) time from first event

SMKX 0.7 years (0.2 to 1.3)
N=56
Median (IQR) time from diagnosis
10.7 years (7.6 to 13.5) Cardiovascular admission
]
N<5

Figure 8.3: Flow chart showing order of events and time between events

Medians were only estimated for groups with more than 5 individuals. Event 3 not
included due to small numbers (<5 in each group)
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8.3.1 Overall burden

The cumulative incidence for admissions for respiratory disease, cardiovascular
disease and SMN increased with attained age (Figure 8.4). By age 40 years,
the cumulative incidence for an admission for respiratory disease was 51%
(95% CI 46 to 55), cardiovascular disease was 25% (95% CI 22 to 28), and
SMN was 6% (95% CI 5 to 8). By age 40 years, the cumulative incidence of
being hospitalised for both a respiratory and cardiovascular condition was 12%
(95% CI 10 to 14) for all other combinations of outcomes the cumulative
incidence was less than 2%. The MCC showed that by age 40 years an
average of 2.1 events per survivor were observed (95% CI 1.8 to 2.7).

Any respiratory Respiratory & cardiovascular

Any cardiovascular

SMN

m——  Respiratory & SMN
- == Cardiovascular & SMN
* 4541

= Mortality = All 3 evenis

Cumulative incidence %
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o
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3.0+

2.5

2.0+

0.5+
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Figure 8.4: Cumulative incidence and cumulative burden of SMN, respiratory
and cardiovascular admissions.

A. Cumulative incidence for each event type (respiratory admission, cardiovascular
admission, SMN). B. Cumulative incidence for combinations of events (date of last
event used as follow-up end point). C. Mean cumulative count for all respiratory and
cardiovascular admissions and all SMNs.
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8.3.2 Treatment specific risks

The MCC for each treatment group are shown in Figure 8.5. There were no
statistical differences in the MCC by treatment group. By age 40 years, the
average number of events (per survivor) for those who received anthracyclines
was 2.2 (95% CI 1.8 to 2.8) compared with 2.1 (95% CI 1.6 to 2.7) for those
who did not; for those who received pulmonary toxic chemotherapy the MCC
was 2.0 (95% CI 1.6 to 2.5) compared to 2.1 (95% CI 1.7 to 2.8) for those who
did not; and the MCC for those who received radiation to the chest was 2.1
(95% CI 1.7 t0 2.8) and 2.1 (95% CI 1.7 to 2.6) in those who did not.

>
vy)

3.0 3.0+
= No anthracycline = No pulmonary toxic chemotherapy

Anthracycline = Pulmonary toxic chemotherapy

Mean number of events per survivor
Mean number of events per survivor
N
[4)]

1

1.09
0.5+
0.04
T T T T T T T T T T T T T T T T T T T T T T
5 10 15 20 25 30 35 40 45 H0 55 5 10 15 20 25 30 35 40 45 50 55
Attained age (years) Attained age (years)
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Figure 8.5: Mean cumulative count by treatment group

A. Anthracycline exposure, B. Pulmonary toxic chemotherapy exposure, C. Radiation
to the chest exposure.
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Table 8.6 shows the results of the unadjusted and adjusted models assessing
the association between treatment exposures and risk of events (taking into
account all and recurrent events). In unadjusted models there was no
statistically significant association between any of the treatment exposures and
risk of events. After adjustment for confounders the risk of an event was higher
for those treated with pulmonary toxic chemotherapy (HR=1.22, 95% CI 1.04 to
1.44), there was no statistically significant association with anthracycline
exposure (HR=0.94, 95% CI1 0.79 to 1.11) or radiation to the chest (HR=1.11,
95% CI 0.86 to 1.43).

Table 8.6: Association between treatment exposures and risk of events, hazard
ratios (HR) and 95% ClI

Treatment Unadjusted HR Adjusted HR t
(95% ClI) (95% Cl)

Anthracycline

No 1.0- 1.0-

Yes 1.04 (0.93, 1.17) 0.94 (0.79, 1.11)

Pulmonary toxic

chemotherapy

No 1.0- 1.0-

Yes 1.07 (0.95, 1.20) 1.22 (1.04, 1.44)

Chest Radiotherapy

No 1.0- 1.0-

Yes 1.12 (0.88, 1.41) 1.11 (0.86, 1.43)

tAdjusted for diagnostic group, age at cancer diagnosis, year or diagnosis, deprivation,
ethnicity and the other treatment exposures
Models exclude 36 individuals with missing ethnic group

Sensitivity analysis was conducted to assess the association between treatment
groups and each outcome individually using time to first event for each outcome
within a competing risk framework (Table 8.7). In unadjusted analyses there
was a significant association between anthracycline exposure and admission for
respiratory conditions (sHR=1.28, 95% CI 1.08 to 1.53) and chest radiation and
respiratory conditions (sHR=1.45, 95% CI 1.02 to 2.06). After adjustment for
confounders, for those treated with pulmonary toxic chemotherapy there was an
increased risk of respiratory admissions (sHR= 1.27, 95% CI 0.99 to 1.63) and
SMN diagnosis (sHR=1.81, 95% CI 0.98 to 3.34).



Table 8.7: Association between treatment exposure and time to first event for each outcome, sub-distribution hazard ratios
(sHR) and 95% ClI

Respiratory admission Cardiovascular admission SMN
Treatment Unadjusted sHR Adjusted sHR ¥ Unadjusted sHR Adjusted sHR t Unadjusted sHR Adjusted sHR t
(95% CI) (95% Cl) (95% CI) (95% ClI) (95% ClI) (95% Cl)
Anthracycline
No 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0-
Yes 1.28 (1.08,1.53) 0.94 (0.72,1.23) 0.89 (0.70,1.14) 0.84 (0.59, 1.20) 0.50 (0.28,0.90) 0.50 (0.24, 1.05)
Pulmonary toxic
chemotherapy
No 1.0- 1.0 - 1.0 - 1.0- 1.0 - 1.0 -
Yes 1.11(0.93,1.34) 1.27 (0.99,1.63) 1.00(0.79,1.27) 1.09 (0.78,1.51) 1.28(0.79,2.06) 1.81(0.98, 3.34)
Chest Radiotherapy
No 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 -
Yes 1.45(1.02,2.06) 1.44(0.97,2.12) 1.16(0.72,1.85) 1.15(0.69,1.92) 0.83(0.26,2.65) 1.00 (0.31, 3.25)

tAdjusted for diagnostic group, age at cancer diagnosis, year of diagnosis and deprivation and the other treatment exposures
Models exclude 36 individuals with missing ethnic group

S0¢
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8.3.3 Differences by age

Differences by age group at diagnosis were evaluated by estimating the MCC
separately for children and TYA, this was based upon time since diagnosis
rather than attained age to enable direct comparison between age groups and
follow-up periods. The MCC for each age group is shown in Figure 8.6. For
children the mean number of event per survivor was 0.4 (95% CI 0.3 to 0.6) 10-
years post diagnosis increasing to 1.2 (95% CI 0.9 to 1.4) 20-years after
diagnosis. For TYA, 10-years post diagnosis the mean number of events was
0.3 (95% CI1 0.2 to 0.4) increasing to 0.9 (95% CI1 0.8 to 1.1) 20-years post
diagnosis.

Mean number of events per survivor
o = = oy ~ w
(6, o w o w o
1 1 L 1 1 1

o
o
1

T
5 10 15 20 25
Years from diagnosis

Children

TYA

Figure 8.6: Mean cumulative count by age group

A two-way interaction between treatment exposure and age group was
examined and separate models run for children and TYA to examine the
association between treatment and risk of events. There were significant
interactions between age group and chest radiotherapy (p=0.03) and some
evidence of an interaction between pulmonary toxic chemotherapy and age
group (p=0.08) (Table 8.8). The risk of experiencing an event was significantly
increased for children treated with pulmonary toxic chemotherapy (HR=1.24,
95%C% 1.02 to 1.51) and radiation to the chest (HR=1.60, 95% CI 1.16 to 2.20)
but no increased risk was observed for TYA (HR=1.07, 95% CI 0.89 to 1.28 for
chemotherapy and HR=1.03, 95% CI 0.79 to 1.36 for radiotherapy).
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Table 8.8: Association between treatment exposures and risk of events
stratified by age at diagnosis, adjusted hazard ratios (HR) and 95% CI

Children TYA
(N=1391) (N=2257)
Treatment Adjusted HR t Adjusted HR t Interaction
(95% ClI) (95% ClI) p-value
Anthracycline
No 1.0- 1.0-
Yes 1.14 (0.91,1.42) 0.97 (0.77,1.23) 0.29
Pulmonary toxic
chemotherapy
No 1.0- 1.0-
Yes 1.24 (1.02,1.51) 1.07 (0.89, 1.28) 0.08
Chest Radiotherapy
No 1.0 - 1.0 -
Yes 1.60 (1.16, 2.20) 1.03 (0.79, 1.36) 0.03

tAdjusted for diagnostic group, year of diagnosis, deprivation and the other treatment
exposures
Models excludes 36 with missing ethnicity (2 children and 34 TYA)

8.3.4 Differences by diagnostic group

Differences by diagnostic groups were estimated for leukaemia, lymphoma,
CNS tumours, germ cell tumours and other solid tumour. For each of these
diagnostic groups the MCC was calculated and models run to examine the
association between treatment and risk of events within each diagnostic group.
For CNS, germ cell tumours and other solid tumours models examining the
relationship between anthracyclines and chest radiation were not included due
to a small number of individuals treated with these within the diagnostic groups.

The MCC by diagnostic group is shown in Figure 8.7. The MCC was lowest for
those diagnosed with germ cell tumours and highest for those with lymphomas
and other solid tumours. By age 40 years, the mean number of events (per
survivor) for those with germ cell tumours was 0.8 (95%C 0.6 to 1.0); 1.3 (95%
Cl1 0.9 to 1.8) for CNS tumours; 2.2 (95% CI 1.6 to 2.8) for those with
leukaemia, 2.4 (95% CI 1.5 to 3.6) for lymphoma, and 2.4 (95% CI 1.8 to 3.0)
for those with other solid tumours.



208

Leukmaemia

Lymphoma
CNS tumours

Germ cell tumours

N
o
1

Other solid tumours

e
o
1

Mean number of events per survivor
— —
o )]
| 1

o
4]
1

0.0+

T T T T

5 10 15 20 25 30 35 40 45 50 55
Attained age (years)

Figure 8.7: Mean cumulative count by diagnostic group

There were significant interactions between diagnostic group and pulmonary
toxic chemotherapy (p<0.001) and chest radiation (p=0.004) (Table 8.9). The
risk of experiencing an event was significantly increased for those diagnosed
with a CNS tumour treated with pulmonary toxic chemotherapy (HR=3.21,
95%C% 2.36 to 4.35), and for those with leukaemia treated with radiation to the
chest (HR=1.82, 95% CI 1.16 to 2.85).



Table 8.9: Association between treatment exposures and risk of events stratified by diagnostic group, adjusted hazard ratios

(HR) and 95% CI

Leukaemia Lymphoma CNS tumours Germ cell Other solid
tumours tumours

(N=621) (N=820) (N=538) (N=749) (N=922)
Treatment Adjusted HR T Adjusted HR T Adjusted HR T Adjusted HR T Adjusted HR T Interaction

(95% ClI) (95% ClI) (95% ClI) (95% ClI) (95% ClI) p-value
Anthracycline
No 1.0- 1.0- - - 1.0- 0.10
Yes 0.89 (0.67,1.17) 0.92 (0.67, 1.27) - - 1.22 (0.96, 1.55)
Pulmonary
toxic
chemotherapy
No 1.0- 1.0- 1.0- 1.0- 1.0 - <0.001
Yes 1.00 (0.72,1.38) 1.17 (0.84,1.62) 3.21(2.36,4.35) 1.18(0.91,1.53) 1.35(0.96, 1.91)
Chest
Radiotherapy
No 1.0- 1.0- - - - 0.004
Yes 1.82 (1.16,2.85) 0.85(0.64, 1.13) - - -

tAdjusted for age at diagnosis, year of diagnosis, deprivation and the other treatment exposures

Not all models estimated due to small numbers

Models exclude 36 with missing ethnicity (2 lymphoma, 3 CNS tumours, 22 germ cell tumours and 9 other solid tumours)

602
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8.3.5 General population rates

It is not possible to estimate the cumulative burden in relation to that in the
general population as no reference data exist combining cancer incidence and
cardiovascular and respiratory hospitalisations However, publically available
national data are available by age group showing the number of hospital
episodes for cardiovascular and respiratory conditions in England (Figure 8.8)
and the number of new cancer cases diagnosed in the UK (Figure 8.9).

There are a higher number of admission for respiratory disease compared to
cardiovascular disease up to age 40-44 years. From age 45 onwards admission
for both disease types increase, but admissions for cardiovascular diseases
increase at a faster rate. At age 60-64 years there are twice as many
admissions for cardiovascular disease compared to respiratory disease (Figure
8.8). The number of new cancer cases increases with increasing age, with a
steep increase from around age 45 onwards (Figure 8.9).
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Figure 8.8: Number of HES episodes for cardiovascular and respiratory
disease by age group, England, 2017-2018.

Source: [294]



211

60,000

50,000

40,000

30,000

Number of cases

20,000

10,000

0-4 ¢
5.9

10-14
15-19 4
20-24
25.29
30-34
35-39

= 40-44

49
50-54
55.59
60-64
65-69
70-74
75-79
80-84
85-89

90+

ge group
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Source: [2]

8.4 Discussion

8.4.1 Results in context

Cardiovascular conditions are one of the most common late effects in long-term
survivors. Cardiovascular late effects in long-term survivors of cancer in children
and young adults within Yorkshire have been described previously based on
linked cancer registrations and hospital admissions [196, 281], therefore a
thorough investigation of the relationship with previous treatment was not
conducted here. However, the results presented in this chapter included a
longer follow-up period than previously reported. The cumulative incidence and
comparison of the incidence with the general population were reported for
specific cardiovascular conditions in both children and TYA.

By age 40, the cumulative incidence for an admission for a cardiovascular
condition was 24%. Previously reported cumulative incidences for the Yorkshire
cohort were based on time from cancer diagnosis rather than attained age with
a cumulative incidence of 8% for children and 14% for TYA 20-years post
diagnosis [196]. The findings reported here are similar to other studies reporting
the cumulative incidence by attainted age: from the AliCCS study, the
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cumulative incidence for hospitalisations for cardiovascular conditions was 18%
by age 40 [197], St Jude Life study report cumulative incidence of 17% for a
severe cardiovascular event by age 40 [40]. Both these studies included those
less than 18/20 years of age at diagnosis. Similarly to the results for respiratory
admissions included in Chapter 6, restricting the results to the primary
diagnostic code for each admissions reduces the cumulative incidence
substantially, mainly driven by hypertension being recorded as a comorbidity.

Admissions for cardiovascular disease were almost twice as likely in cancer
survivors compared to the general population, with a higher excess risk
observed in children (HRR=3.1, 95% CI 2.6 to 3.7) compared to TYA (HRR=1.4,
95% CI 1.2 to 1.5). Previously reported results from Yorkshire (with a slightly
different cancer diagnosis period and shorter follow-up period) reported
admission rates were 2.6 (95% CI 1.9 to 3.6) times higher than the general
population for children and for TYA admissions were 1.2 (95% CI 0.9 to 1.5)
times higher but the excess risk in TYAs was not statistically significantly higher
than in the general population [196]. Other studies based on hospital
admissions for cardiovascular conditions also reported relative risks of
admissions around 2 times higher than population controls [197, 203].

The second part of analysis presented in this chapter described the combined
burden of hospitalisations for respiratory and cardiovascular diseases and
SMNs in long-term survivors of childhood and young adult cancers. Long-term
survivors experience a high burden of morbidity due to these conditions; by age
40-years each survivor experienced an average of 2 events. Respiratory
admissions accounted for the largest proportion of these. After adjustment for
potential confounders, there was a significant increased cumulative burden for
those treated with pulmonary toxic chemotherapy but not for anthracyclines and
radiation to the chest.

Overall there was no difference in the mean number of events by treatment
group indicating that the burden of late effects is similar in both groups. There
may be several explanations for this. The analysis was based on all cancers
combined which may mask any differences by treatment within diagnostic
groups. For example, further stratification by diagnostic group showed that the
MCC was lowest for germ cell tumours, and treatment varies by diagnostic
group. However, further stratification by diagnostic group and treatment was not
possible due to small sample size. The SJLIFE study, which included 10-year
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survivors and was based on clinical assessment and medical record validation,
reported a cumulative burden by age 40 years of 2.55 for cardiovascular
conditions, 0.75 for respiratory conditions and 0.45 for SMNs giving a total
cumulative burden for these three conditions combined of 3.75 per individual
[40]. This compares with our findings of the cumulative burden of 2.14 events
per individual based upon hospital admissions including both the primary
admission diagnosis as well as any recorded co-morbidities. As discussed in
Chapter 6 in relation to respiratory admission hospital admission data capture
the severe end of the disease spectrum and many respiratory and
cardiovascular conditions will be managed and treated within a primary care
setting. Therefore these findings may be a potential underestimation of the true
extent of disease burden.

These findings provide an estimate of the health care usage due to these three
conditions within long-term survivors which are useful to inform clinical
guidelines and health service planning. The analysis was restricted to three
disease areas that make significant contributions to the most common causes
of late mortality within long-term childhood cancer survivors. The cumulative
burden of long-term conditions has been assessed in other studies but based
upon specific subgroups or outcomes. The MCC was used to quantify long-term
conditions in survivors of Hodgkin lymphoma only [205, 295], to estimate the
cumulative burden of SMNs [175], to examine differences in cumulative burden
by ethnicity [296], haematopietic stem cell transplantation [297], and to estimate
hospitalisations for neurologic disorders in CNS survivors [298]. In the
calculations of the MCC every event was weighted equally for example, an
admission where asthma was recorded as a comorbidity was given the same
weight as the diagnosis of a SMN. From the cumulative incidence it can be
seen that respiratory admissions had the largest contribution to the MCC. Other
studies have shown that childhood and young adult cancer survivors have an
increased risk of hospitalisations for cardiovascular and respiratory conditions
compared to the general population, these studies have been based on time to
first admission only and no estimates are given of the cumulative burden of all
hospitalisations [199, 201-204, 291]. A Dutch study of hospitalisation in long-
term childhood cancer survivors which included all admissions throughout
follow-up found that those treated with surgery or radiotherapy had the highest
rates of hospitalisation [200].

After adjustment for age at diagnosis, diagnostic group, deprivation,
anthracycline exposure and radiation to the chest, it was found that those
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treated with pulmonary toxic chemotherapy drugs had an increased cumulative
burden of events. These findings concur with previous analysis based in
Yorkshire on single late effects. No association was found between
anthracyclines or chest radiation and admission for cardiovascular disease
[196]. Results from Chapter 6 on respiratory admissions showed that respiratory
admissions were associated with prior treatment with pulmonary toxic
chemotherapy, while radiation to the chest was associated with an increased
risk of hospitalisation in children but not TYA. In the UK, comprehensive risk
stratified follow-up has been implemented for childhood and adolescent cancer
survivors using a three tiered model based on cancer type and treatment
intensity [299-301] and has been shown to predict increasing levels of moderate
to severe late effects with increasing risk levels [302, 303]. Further work
incorporating these risk stratification groups with the cumulative burden
described here is needed.

8.4.2 Strengths and limitations

Key strengths of this analysis are that objective outcomes were used and the
study was population-based. The MCC was used to estimate the cumulative
burden, which is an important metric to quantify disease burden over time
incorporating multiple and recurrent morbidities [304]. This measure accounts
for the total person-time at risk and censoring within a competing risk
framework, in this case death was considered a competing risk. An alternative
would be to simply count the total number of events observed for each case,
however this method would not account for differing follow-up periods or
translate into an easily interpretable count per individual.

All diagnostic codes within each HES episode were used to identify respiratory
and cardiovascular admissions, as shown in Chapter 6 for respiratory
admissions and in this chapter for cardiovascular admissions, the cumulative
incidence is reduced substantially when only the primary admission code was
used. However, in order to capture all conditions and comorbidities all
diagnostic codes were used in the cumulative burden analysis. A limitation of
this is that all events, (SMN diagnoses and hospital admissions) are all
weighted equally in the MCC, ideally different weightings could be used
depending on the severity of the condition, and in the case of hospitalisations, if
the diagnosis was the primary admission or a recorded comorbidity. This
requires substantial further work to establish a criteria for weighting each
condition and currently statistical methods accounting for different weightings in
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the MCC calculation are not available. This is an important area for further
research.

No reference data exist combining cancer incidence and cardiovascular and
respiratory hospitalisations, therefore it was not possible to estimate the excess
burden in cancer survivors compared to the general population. However, these
conditions were selected based on prior knowledge of the increased risks
compared to the general population [36, 37, 79, 81]. Furthermore, earlier results
from this chapter for cardiovascular disease, Chapter 6 for respiratory disease
and Chapter 7 for SMNs shows the excess risks for each specific outcome
compared to the general population. Examination of national age-specific
admission patterns and cancer incidence shows the risks increase steeply in
the general population from mid 40s/50s onwards. With further follow-up of the
Yorkshire cohort to older ages morbidity rates will increase, further highlighting
the need for life-long follow-up care for this population of long-term survivors.

Another further limitation of this study is that in statistical models, death is
considered as an event, again given equal weighting as hospitalisation and
SMN diagnosis. An alternative would have been to consider deaths as a
censoring event, but this would not be appropriate in this case. Right censoring
should be non-informative meaning that it should not be related to the outcome
of interest, however, if an individual dies they are unable to experience any
further events. Therefore it was decided to classify deaths as an event and
follow-up ended for each individual at this time. This approach has been
recommended in analysis of hospital admission data [280]. An alternative
approach would be to consider these models in a competing risk frame work
using other more complex statistical methods such as multi-state models [268].
This issue is discussed further in Chapter 9 as an area for further research.

A final limitation of the modelling approach to acknowledge is that in the PWP
multiple-failure time models only the first 10 admissions for both respiratory and
cardiovascular conditions were included. The PWP models may fail to converge
if the risk sets for recurrent events are too small [279]. Ten events was chosen
as the threshold based on the included data, however less than 0.5% of the
study population had more than 10 admissions for respiratory and
cardiovascular admission so the loss of information for these individuals was
minimal.
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8.4.3 Summary

Cardiovascular admissions were almost twice as likely in cancer survivors
compared to the general population, with a higher excess risk observed in
children compared to TYA. The cumulative burden of all admissions for
respiratory and cardiovascular conditions and all SMNs was estimated and by
age 40, an individual experienced and average of 2 events. There was a
significant increased cumulative burden for those treated with pulmonary toxic
chemotherapy but not for anthracyclines or radiation to the chest. The next and
final chapter of this thesis is the discussion chapter draws the final conclusions
of this thesis together.
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Chapter 9 Discussion

9.1 Introduction

This study describes survival trends and long-term outcomes for childhood and
young adult cancer survivors using high-quality population-based cancer
registry and linked hospital admission data, to provide vital intelligence to aid
our understanding of the long-term health of young people diagnosed with
cancer.

Chapters 5-8 of this thesis provide the evidence to the address the three aims
set out in Chapter 1 and gaps in the current literature described in Chapter 2. A
detailed discussion is provided at the end of each chapter summarising the key
findings in the context of the current published literature and identifies the key
strengths and limitations of each analysis. In this final discussion chapter the
novel findings which have arisen from this thesis are summarised below with
respect to the original aims, the clinical implications are discussed, strengths
and limitations of the work identified and finally areas for further research are
considered.

Aim 1: To assess the feasibility of applying cure models to CYA

diagnosed with cancer using data from a regional population-based

specialist cancer register
Cure models were successfully implemented to cancer registration data for
children and young people using data from the YSRCCYP database (Chapter
5). Cure models provide additional metrics useful to identify and describe trends
in survival. Additional measures include the percentage cured which is a
summary of long-term survival and the median survival time of the uncured
which gives information on those who are not long-term survivors. A flexible
parametric cure model was used to obtain estimates of the proportion cured and
the median survival time of the uncured by tumour type, over time and for
children and TYAs. Generally for most diagnostic groups there was an
improvement in survival over time which was mainly driven by an increase in
the proportion of patients cured rather than an increase in the survival time of
the uncured. Further detailed clinical risk factor data were incorporated into cure
models for children with ALL. These models also revealed that the proportion
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cured increased over time while there was little change in the median survival
time of the uncured. By incorporating information on relapse, population-based
estimates of event-free survival were also estimated for children diagnosed with
ALL.

Aim 2: To evaluate the long-term health outcomes for CYA cancer
survivors
Linkage of cancer registrations and hospital admissions data were used to
address Aim 2 with a particular focus on three outcomes that contribute most to
late mortality and morbidity in long-term child and young adult cancer survivors.

a. Respiratory morbidity

This was addressed using hospitalisations for respiratory conditions occurring at
least 5-years post diagnosis (Chapter 6). The cumulative incidence of
hospitalisation for respiratory conditions increased with attained age reaching
50% by age 40. Long-term survivors were hospitalised for respiratory conditions
twice as often as general population comparisons; this excess risk varied by
respiratory disease type and was greater for those diagnosed in childhood aged
0-14 compared to 15-29 year olds. Pulmonary toxic chemotherapy was
associated with an increased risk of admissions for all respiratory disease
especially pneumonia, while radiation to the chest increased the risk of
admissions in children but not for TYA. Long-term survivors admitted for
pneumonia had an increased risk of subsequent death following admission
compared to those admitted for other types of respiratory disease.

b. Subsequent malignant neoplasm

This analysis was based on cancer registrations ascertained from the
YSRCCYP and NCRAS presented in Chapter 7. Subsequent malignant
neoplasms developed in 3% of the study population, with 36% of these
occurring within 5-years of the primary diagnosis. The cumulative incidence
continued to increase throughout follow up, reaching 4% twenty-years post
diagnosis and patterns were similar for children and TYA. Compared to the
general population the incidence of subsequent tumours was 5 times higher
than expected, with a higher excess risk for children than for TYA. A shorter
latency period was associated with decreased survival.

c. Cardiovascular morbidity



219

Linked cancer registration and hospital admission data were used to estimate
the cumulative incidence of cardiovascular morbidity resulting in hospitalisation
and comparison with the general population (Chapter 8). By age 40, the
cumulative incidence for an admission for a cardiovascular condition was 24%.
Admissions for cardiovascular disease were almost twice as likely in cancer
survivors compared to the general population, with a higher excess risk
observed in children compared to TYA.

Aim 3: To assess the cumulative burden of subsequent tumours,

cardiovascular and respiratory morbidity for CYA cancer survivors
Novel methodology incorporating multiple and recurrent events was used to
estimate the cumulative burden of combined admissions for respiratory and
cardiovascular conditions and SMN diagnoses (Chapter 8). The mean
cumulative count was used to estimate the total burden of all hospitalisations for
respiratory and cardiovascular disease and all SMNs within a competing risks
framework while also accounting for the total person-time at risk. By age 40, an
individual experienced and average of 2 events, mainly driven by respiratory
admissions. After adjustment for potential confounders, there was a significant
increased cumulative burden for those treated with pulmonary toxic
chemotherapy but not for anthracyclines or radiation to the chest.

9.2 Originality of study findings

As identified in the literature review in Chapter 2, there are limited studies based
on cure models for children and TYA diagnosed with cancer. Cure models were
systematically included for all diagnostic groups within children and young
people. Furthermore, for children with leukaemia clinical prognostic risk factors,
including cytogenetic risk groups were incorporated into a cure model to provide
estimates of long-term survival and cure. This work was published in the British
Journal of Haematology in 2018 [305].

This is the first study to describe the relationships between treatment exposures
and hospital admissions for specific respiratory condition in survivors of CYA
cancers. This work was published in the International Journal of Cancer in 2019
[306]. SMNs have not been examined within the Yorkshire register previously.
The focus on this analysis was on early as well as late onset tumours and the
impact of latency on survival.
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Many studies of the late effects in childhood cancer survivors focus on single
disease areas and time to first event. However, long-term survivors are at
increased risk of multiple morbidities and recurrent disease. This is the first
study to examine the combined burden of all hospital admissions for respiratory
and cardiovascular disease and SMNSs in long-term survivors using statistical
methods that account for multiple and recurrent events. This work has been
submitted to the International Journal of Cancer (September 2019) and is
currently under review.

9.3 Clinical implications of study findings

Five-year survival estimates are commonly used as a measure of comparison
for survival, often across different groups of patients, for example, by age, sex
or geographical area. These five-year survival rates are often used a measure
of cure [307], however for some cancer sites this period of follow-up may be too
short to fully assess cure particularly for childhood cancers with high survival
rates [308, 309]. Indeed, national survival figures reported by the ONS for
childhood cancer now also include 10-year survival estimates [12]. Cure models
provide additional metrics to those obtained from standard survival analysis by
estimating the proportion of patients cured and whose life expectancy is the
same as the general population. These metrics are of interest to many groups
including clinicians, epidemiologists, public health professionals and cancer
patients themselves. The work presented in this thesis provides estimates for
long-term prognosis. Variation in the percentage cured ranged from 40% for
children diagnosed with neuroblastoma to 95% for TYA with germ cell tumours.

Despite high survival and cure rates, survivors of CYA cancers are at increased
risk of late effects of treatment and in this sense may never be defined as being
cured of their cancer [309, 310]. Two separate meeting of specialists, including
oncologists, psychologists, general practitioners, epidemiologists and cancer
survivors, have been convened to establish a definition of cure: one for long-
term survivors of childhood cancer in 2006 [311] and one for long-term survivors
of adult cancer in 2014 [312]. From both these meetings a consensus statement
was published to define what is meant by cure. For childhood cancer survivors
cure refers to cure from the original cancer regardless of any potential for, or
presence of, remaining disabilities or side effects of treatment. Children treated
for cancer can be considered cured when the chance that they die from their
cancer is no greater than that of age matched peers in the general population
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dying from any cause [311]. For long-term survivors of adult cancers a patient
can be defined as cured if their life expectancy is the same as that of the age
and sex matched general population [312]. Both these definitions are based on
long-term survival but do not take into account the quality of life of the surviving
cancer patient or the late side effects of treatment and are in essence the same
definition of cure that is measured at the population level from a cure model.
However, for cancer survivors cure may mean the return to the potential for a
normal life [313]. Therefore, in addition to estimating survival and cure for CYA
cancer survivors it is essential to examine long-term quantitative and qualitative
health outcomes of this group of survivors.

Life-long clinical follow-up of childhood and adolescent cancer survivors is
recommended [72]. In the UK, a risk stratified three-level aftercare model has
been implemented based upon cancer type and treatment intensity [299-301].
The model has been shown to predict increasing levels of morbidity with
increasing risk levels with levels 1 and 2 having substantially lower levels of
follow-up care at hospital compared to individuals in level 3 [303]. In the current
climate of limited resources within the NHS in England, follow-up care service
need to be planned appropriately to ensure the best outcomes possible for
individuals. The work presented in this thesis adds to the evidence base,
particularly around health service usage, identifying those at greatest risk of
presenting at hospital with cardiovascular and respiratory conditions, which will
aid strategies for prevention and early identification and treatment for long-term
health conditions. There is a growing need for increased self-management of
conditions with support and access to specialist services when required. For
example, for respiratory health it is vitally important long-term survivors do not
smoke, are a healthy weight and regularly exercise. However if presenting with
symptoms of cough they may need appropriate follow-up and access to
specialist services.

Teenagers and young adults with cancer are a unique group with growing
recognition that the late effects of treatment experienced in this group should
not be based on extrapolation of findings of studies in long-term childhood
cancer survivors [67, 73]. Where possible in this thesis outcomes were
considered separately for children (aged 0-14 years) and TYA (aged 15-29
years). For respiratory admissions, subsequent tumours and cardiovascular
admissions the excess risks compared to the general population (measured by
hospitalisation rate ratios or standardised incidence rate) were greater in
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children than in TYA. Further analysis investigation the association between
treatment exposure and later outcomes, observed that radiation to the chest
was associated with an increased risk of respiratory admission and total
cumulative burden in children but notin TYA.

Many studies of the late effects in childhood cancer survivors focus on single
disease areas, however long-term survivors are at increased risk of multiple
morbidities and recurrent disease. Assessing the impact of multimorbidity is a
growing area of research and an emerging priority for health care services [314,
315]. Common epidemiological measures such as the incidence or prevalence
of single conditions do not adequately capture the wider burden of late effects in
long-term cancer survivors and studies which capture complex disease
trajectories are needed [304]. The results presented in Chapter 8 identified that
long-term survivors experienced a high disease burden due to respiratory and
cardiovascular disease and SMNs. Long-term follow up care is needed that
accounts for the complexity of health needs for this high risk population.

9.4 Strengths and limitations

9.4.1 Data quality

This study used high-quality population-based data. The YSRCCYP has high
ascertainment and minimal loss to follow-up. Approximately 5550 children and
young people with cancer were included in the full cohort available for inclusion
in analysis which included 4200 long-term survivors. This included those
diagnosed over a 21 year period from 1990 to 2011 with a minimum follow-up
period of 5-years.

Key strengths of this work were the availability and inclusion of clinical data
such as treatment and relapse information and additionally for ALL patients
cytogenetic risk groups. Population-based estimates for event-free survival
(based on time to relapse) for ALL patients with the YSRCCYP cohort were
similar to those reported from national ALL clinical trials [229, 253, 254, 256]
providing evidence of the validity of the estimates and completeness of the
ascertainment of relapse data within the study sample.
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While detailed treatment data were available for inclusion in statistical analysis
(including identification of specific chemotherapy drugs) there was a lack of
dose information meaning that more detailed treatment exposure data could not
be included.

The study sample included all those diagnosed with cancer under the age of 30,
providing vital evidence for the TYA age group in addition to children. There are
many studies of the late effects of childhood cancer survivors such as that from
the BCCSS and CCSS which include those diagnosed under 15 year and 21
years respectively. However, studies examining late effects including teenagers
and young adults are more limited. For example, previous studies of respiratory
morbidity have only included those aged up to age 21 [209-211, 213]. The
TYACSS study has shown that SMNs diagnosed in TYAs aged 15-39 years
follow a different pattern to those developed in childhood survivors indicating
that further follow-up and investigation of this unique group is needed. There is
a growing international consensus that the TYA age range should include those
aged 15-39 years [68]. However, for the analysis presented in this thesis data
were only available for TYAs aged 15-29 years at diagnosis. A limitation of the
analysis is that in most analyses only two broad age groups were considered
(children vs TYA) rather than look at variation in outcomes within these age
ranges. These age groups were chosen to ensure consistency in the analyses
presented and sufficient numbers within each age group to obtain robust
estimates. The only exception is the analysis of cure for ALL patients which
included those aged 1-17 years and two age groups within this, 1-9 years and
10-17 years, which were selected based on risk stratification criteria [229, 253].

Morbidity outcomes were based on hospital admissions as an objective
outcome measure, compared to other studies based upon self-reported
outcomes which may suffer from recall and selection bias as they are reliant
upon completion of questionnaires from responders. Or studies based on
clinical assessment which are mainly single-centred and may pick up
asymptomatic outcomes. However, there are several limitations to this type of
analysis where outcomes are based upon HES data. Linkage to HES admission
data were available for 90% of the study cohort. There were some differences in
individuals linked and not linked to HES and results based on hospital
admissions need to be interpreted with this in mind. Certain groups may be
underrepresented in the analysis presented here including those diagnosed with
germ cell tumours, who also have high survival rates, and those diagnosed at
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older ages. This may results in an underestimation of the burden of late effects
within these groups. Reassuringly there were no differences in linkage rates by
deprivation.

Linkage of the YSRCCYP to HES data was conducted by NHS Digital using
standard procedures including four unique identifiers: NHS number, date of
birth, sex and postcode. Despite this it is still possible that there is a mismatch
within the linkage process and the cancer registration record was incorrectly
matched to the wrong HES data. These errors are likely to be small. Those not
linked to any HES records include a mix of those diagnosed with cancer who
never engage with health services, those whose cancers do not require an
inpatient hospital stay, those admitted to private hospitals and those not linked
due to linkage errors. The linkage rate for the cohort included in this thesis is
comparable to other English cancer registry linked HES admission studies [240,
281, 282].

HES data were available from 1997 onwards, study patients who were
diagnosed in 1990-1991 did not start follow-up exactly 5-years from diagnosis
but shortly after when admission data were available (potentially 6-7 years post
diagnosis). This may bias the findings slightly, however, these individuals were
included in analysis and the statistical methods used accounted for the person-
time at risk. The linkage rate to HES was also slightly lower for these individuals
as no records of admission were available around the time of their diagnosis
and treatment. Therefore for those diagnosed in the earlier time period the
identification of late effects based on hospital admissions may be an
underestimation of morbidity.

The analysis of hospital admission was based on 5-year survivors and included
admissions 5-years post diagnosis only. An obvious limitation of this is that any
admissions in the time period from the end of treatment to 5-years post
diagnosis are not captured. The cumulative incidence plots, particularly for
respiratory admissions shows a large jump immediately 5-year post diagnosis
which suggests there are many admissions prior to this which were not
included, again perhaps suggesting an underestimation of the true risk of late
effects in this cohort.
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HES data are not collected primarily for research purposes but are the basis for
“Payment by Results” for hospitals to be reimbursed for the care they provide
[316]. This has implications for the accuracy and coding of admissions which
has improved over time with more diagnostic codes being used and
improvements in coding accuracy [225]. Diagnostic coding practices may also
vary between hospitals particularly with the recoding of comorbidities. For both
respiratory and cardiovascular outcomes sensitivity analysis was conducted
comparing admissions based on the primary diagnosis and including all
diagnostic codes with the biggest differences in cumulative incidence found for
asthma and hypertension which were more commonly recorded as a
comorbidities rather than the primary reason for admission.

A further limitation of using hospital admissions as an outcome measure is that
hospital admissions are likely to measure the severe end of the disease
spectrum whilst many respiratory and cardiovascular conditions will be
managed and treated within a primary care setting. However, conditions such
as asthma and hypertension were commonly recorded as comorbidities in HES
as observed in the analysis of respiratory and cardiovascular admissions. An
alternative approach would have been to use HES Outpatient records. On initial
inspection of these data over 99% of records had the diagnosis field coded as
“Other ill-defined and unspecified causes of morbidity”, meaning limited
analyses could be undertaken on these data. Furthermore, outpatient data were
only available from 2003 onwards.

A further advantage of using HES data for outcomes was that data on general
population controls were available. Admissions for the same disease types were
matched by age, sex and admission year for the Yorkshire region so that the
excess risk in the cancer survivor cohort could be estimated. This is
advantageous over studies reliant upon sibling controls as siblings will have
been exposed to the same genetic and similar environmental risks as the
cancer survivor therefore the true excess risk may be underestimated.

Follow-up was limited to examine late effects in those aged up to 56 years only.
Further follow-up of this cohort to older ages is needed as the risk for
cardiovascular and respiratory disease and cancers increase in the general
population beyond this point in life (as shown in Figure 8.8 and Figure 8.9).
Analysis presented here included long-term survivors diagnosed since the
1990s. This include those more recently diagnosed compared to other studies:
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the BCCSS includes those diagnosed since 1940 [80], the CCSS since 1970
[78] and TYACSS since 1971 [317]. Treatment for childhood cancers are
evolving to reduce late-effects while maintaining high survival rates therefore
the estimates of the late effects obtained from these studies and indeed the
results presented in this thesis may not be applicable to children and young
people diagnosed with cancer today.

Finally, the results generated from this thesis are based upon one region only.
However, the Yorkshire region population comprises 2 million under 30 years
and is comparable in size to Scandinavian countries such as Denmark and
Norway and is representative of the England and Wales in terms of childhood
cancer incidence [318] therefore these results should be generalizable to the
wider population. However, some analyses were limited by small sample size
when examining subgroups, for example some temporal trends by diagnostic
group, some two-way interactions between age group and treatment exposures
and the analysis by cytogenetic risk group for ALL patients.

9.4.2 Modelling issues

The main strengths of the analysis presented in this thesis are the use of
appropriate statistical methodology to address study aims as described in detail
in Chapter 3. However, the limitations of each of these methods need to be
acknowledged.

A comparison of the mixture, non-mixture and flexible parametric cure models
showed consistency in the predicted percentage cured but differences in the
survival time of the uncured group. The flexible parametric cure model was
selected to conduct further analysis as the survival of the uncured using this
model more closely predicted the survival of those that died than the other
methods and this model is recommended over the other models when survival
is high [28] as in the case when considering CYA cancer survival. However, the
survival estimates of the uncured should be interpreted with caution given that it
is based on a relatively small sample size. The small sample size for some
diagnostic groups when stratified by age group and period of diagnosis limited
further analyses.
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Time to cure was not predicted for the cure models as this is not recommended
for use with the flexible parametric cure model due to placement of the last knot
at the last observed death time to allow estimation of the percentage cured
[123]. The time to cure varied by diagnostic group as shown in the Kaplan-Meier
plots of survival included in Section 4.4. In this study each individual had at
least 5-years of follow-up data but a longer follow-up period may be needed for
some diagnostic groups, for example CNS tumours in TYAS, to obtain more
robust estimated of the proportion cured.

The selection of potential confounders was based on causal inference
methodology using DAGs to make clear the underlying assumptions. The DAGs
were developed based on published evidence and clinical expertise but
incorrect specification of the DAG may result in incorrect adjustment for
potential confounders and statistical inference. However, this method was
chosen over other methods to select confounders for adjustment such as
methods based on p-values or stepwise regression procedures which are not
recommended as they do not incorporate the causal relationships of interest or
adequately control for confounding [266]. By using DAGs the assumptions
underlying each model are explicit, which aids transparency and reproducibility
of the research [264, 266].

Data on lifestyle factors, such as smoking, obesity and exercise, and genetic
rick factors, including family history and genetic predisposition, were not
available to include as potential confounders in adjusted models. However, the
choice of confounder adjustment sets were based upon DAGSs, where these
confounders were included in the DAGs as unmeasured latent variables. This
ensured that the selected adjustment set did not include these variables,
although they were accounted for in the underlying causal structure of model
assumptions. The major limitation of not having information on lifestyle or
genetic risk factors is that it is not possible to assess the impact of these on
late-effects. However, that was not the focus on the analysis presented in this
thesis and the interest was mainly in assessing the association between
treatment exposures and late effects.

For most variables included in the statistical models data were complete,
however, for ethnicity and stage missing data was an issue. Ethnic group was
based on a combination of HES data and the naming algorithm software
Onomap. In theory by using this approach an ethnic group should have been
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assigned to all individuals in the study sample, but the licence for the Onomap
software expired in July 2016 at which point not all individuals in the cohort had
been assigned an ethnic group based on the results from this software.
Therefore a small percentage (<2%) of individuals did not have an ethnic group
assigned. These individuals were excluded from models which adjusted for
ethnicity. Sensitivity analysis was conducted running models without adjusting
for ethnic group and results were similar. A new version of the Onomap
software should be available soon (https://www.onomap.org/) at which time and
ethnic group could be assigned to all individuals.

The levels of missing data by stage varied by diagnostic group from 20% for
leukaemia to 43% for both lymphoma and germ cell tumours. For some
diagnostic groups no stage data were available at all. Although stage was
included in all DAGs as a potential cofounder minimum adjustment sets that
included variables other than stage were selected. An alternative to this would
be to use missing data techniques to impute stage for those with missing
values, however this was out with the scope of this project and is discussed
further in recommendations for further research (Section 9.5).

The work presented on cumulative burden used the mean cumulative count to
guantify the cumulative disease burden within a competing risk framework
accounting for death, and multiple failure-time survival models to examine the
association with previous cancer treatment. The advantage of using these
methods are that multiple and recurrent events can be examined and analyses
are not limited to the first occurrence of an event, while also incorporating the
total person-time at risk for each individual. The main limitation of these
analyses are that all events are weighted equally which may not be appropriate.
For example if an individual is admitted to hospital for pneumonia this is
weighted the same as an admission for another condition where hypertension is
recorded as a co-morbidity. In the Prentice, Williams and Petersen models
death was also considered as an event, again given an equal weighting to all
other events. Methods that assign weights to different outcomes are not readily
available for implementation in standard statistical software packages and is a
potential area for further research. Alternative methods, such as multi-state
modelling, may also be applicable and are discussed further in Section 9.5.
Sensitivity analysis was conducted looking at time to first admission for each
outcome using standard competing risk regression (where death was treated as
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a competing risk) and a similar association between treatment exposures and
outcomes was found providing validity and robustness to the study findings.

9.5 Recommendations for future research

High quality data are essential to fully explore the complex disease trajectories
of long-term CYA cancer survivors. Data linkage of routinely collected clinical
datasets offers a rich data source to explore these pathways. Advantages of
using routinely available data are that it is population-based with objective
outcomes, and places no additional burden on individuals compared to
traditional patient-completed questionnaires. Further work should explore the
feasibility of linkage to other datasets such as primary care data. Research
evaluating the consistency and triangulation between incidence of late effects
based on hospital admissions, primary-care and self-reported data are needed.
Further research utilising prescribing data could also be undertaken as a
measure of long-term morbidity. Such studies have been undertaken in Finland
for example, on long-term CYA cancer survivors in relation to medication for the
metabolic syndrome and cardiovascular conditions [319, 320].

The analysis conducted in this thesis was undertaken within a causal inference
framework to assess relationships between treatment exposures and hospital
admissions. Another area of future research is to develop a risk prediction
model to identify which survivors are more likely to be admitted to hospital for
respiratory and cardiovascular conditions.

The outcomes selected for inclusion in this study were chosen as these are the
most common causes of late mortality and morbidity in CYA cancer survivors.
However, other disease areas could be considered, both individually as
outcomes and to be incorporated into the cumulative burden analysis.

This study included those age 0-29 years, the full AYA age range includes
those 15-39 years and further work examining these outcome in the full 15-39
age range is needed.

In this study cytogenetic risk data were available for some leukaemia patients.
Further work incorporating genetic, biological and molecular data with cancer
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registration data are needed. This is particularly important in the context of
personalised medicine where is it recognised that individualised and targeted
therapies are needed to obtain the best outcomes for individuals [321].

Methods to deal with missing data are commonly used in epidemiological
studies [231, 232]. However, methods to deal with missing data within a
competing risk framework have so far focussed on cause-specific models [322,
323] and methods to deal with missing data applied to subdistribution hazards
models are needed.

Finally the models used to explore the relationship between treatment
exposures and cumulative burden were not conducted within a competing risk
framework, with death treated as an event and given the same weightings as
the other events of interest. An alternative approach for further consideration
are multi-state models where an illness-death model would allow a distinction
between multiple events (such as hospitalisations) and deaths to be
incorporated [268, 279].

9.6 Conclusions

This thesis aimed to investigate the long-term survival and adverse health
outcomes for children and young people diagnosed with cancer in Yorkshire.
Generally for most diagnostic groups there was an improvement in survival over
time which was mainly driven by an increase in the proportion of patients cured
rather than an increase in the survival of the uncured. Despite the high survival
rates long-term survivors have significant burden of adverse health outcomes in
later life. The results presented provide an evidence base to aid risk-
stratification for the long-term follow-up care for this high risk population.
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Appendix A Summary of studies utilising cure modes in children and

young adults with cancer

Table A.9.1: Summary of studies included in literature review of applications of
cure models in children and young adults with cancer

Author, year Study Study population Cancer type Type of
type cure
model
AIRTUM Cancer Italy All cancers Mixture
working group, registry All ages (0-44 years combined and
2014 [120] separate age group) 50 separate
Diagnosed 1976-2009 diagnostic
N=1,624,533 groups
Anderssonet  Cancer Sweden AML Mixture
al, 2009 [135] registry 19-80 years (19-40
years separate age
group)
Diagnosed 1973-2001
N=6439
Anderssonet  Cancer Sweden Cutaneous Flexible
al, 2014 [251]  regqistry All ages (0-30 years malignant parametric
separate age group) melanoma
Diagnosed 1996-2005
N=5850
Andrae et al, Cancer Sweden Cervical cancer  Mixture
2012 [324] registry 23-65 years (including
Diagnosed 1999-2001 screening
N= 1230 history)
Ater et al, Clinical USA Low grade Non-
2012 [325] trial Children under 10 glioma mixture
Recruited 1997-2005
n=274
Bejan- Cancer France Colon cancer Mixture
Angoulvant et  registry 15 years + (15-44 years
al, 2008 [126] separate age group)
Diagnosed 1980-1996
N=9998
Bouliotis etal, Cancer Nottingham, UK Hodgkin Non-
2015 [138] registry All ages (0-26 years lymphoma mixture
separate age group) model
Diagnosed 1973-2002
N=768
Crocetti et al, Cancer Europe CNS tumours; Mixture
2012 [143] registry All ages glial and non-
Diagnosed 1995-2002 glial tumours

n=44,947
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Author, year Study Study population Cancer type Type of
type cure
model
Cvancarova et Cancer Norway All cancers Mixture
al, 2012 [124]  registry All ages combined and
Diagnosed 1963-2007 23 most
N=627,346 common sites
Dal Maso etal, Cancer Italy All cancers Mixture
2014 [121] registry 15-74 years (15-44 years combined and
separate age group) 26 most
Diagnosed 1985-2005 common sites
N=818,902
De Angeliset  Cancer Finland Colon cancer Mixture
al, 1999 [24] registry All ages (0-44 years
separate age group)
Diagnosed 1953-1992
N=22,617
Edlinger et al, Cancer Tyrol, Austria All cancers Mixture
2014 [125] registry All ages combined and
Diagnosed 2005-2009 25 most
N=16,144 common sites
Elorantaetal, Cancer Sweden Colon cancer Mixture
2010 [128] registry All ages (0-50 years
separate age group)
Diagnosed 1965-2000
N=58,873
Elorantaetal, Cancer Sweden Melanoma, Flexible
2014 [127] registry 19-80 years (19-50 year  colon cancer parametric
separate age group) and AML
Diagnosed 1973-2007
N=121,886
Eriksson etal, Cancer Sweden Melanoma Flexible
2016 [252] registry All ages (0-50 years parametric
separate age group)
Diagnosed 1990-2007
N=856
Francisci etal, Cancer Europe All cancers Mixture
2009 [131] registry 15-99 years (15-44 years combined and
separate age group) five common
Diagnosed 1988-1999 sites: breast
N=5,967,548 (women only),
lung, prostate,
colorectal and
stomach
Frazier et al, Clinical UK and USA Extracranial Non-
2015 [326] trial Paediatric age range germ cell mixture
(Does not specify upper  tumours

age limit)
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Author, year Study Study population Cancer type Type of
type cure
model

Diagnosed 1985-2009

N=519
Gamel et al, Hospital USA Melanoma Mixture
2002 [327] data 11-92 years

Diagnosed 1978-1996

N=5342
Gatta et al, Cancer Europe Cervical cancer  Mixture
1999 [328] registry 15-99 years

Diagnosed 1979-1989

N=40,906
Gatta et al, Cancer Europe Embryonal Mixture
2012 [144] registry All ages tumours:

Diagnosed 1995-2002

N=3322
Gatta et al, Cancer Europe ALL Mixture
2013 [30] registry Children 0-14 years

TYA, 15-24 years

Diagnosed 1982-2002

N=22,886
Gieser et al, Clinical USA ALL Mixture
1998 [133] trial Age range not specified cure model

Period of recruitment not

specified

N=763
Glimelius et al, Cancer Sweden Hodgkin Flexible
2015 [139] registry 18-59 years (18-29 years lymphoma parametric

separate age group)

Diagnosed 1992-2009

N=1947
Hunsberger et  Clinical USA Neuroblastoma  Mixture
al, 2009 [146] trial Age range not specified

Recruited 1986-2001

N=2558
Ito et al, 2012 Cancer Osaka, Japan Colorectal Mixture
[129] registry All ages (<50 years

separate age group)

Diagnosed 1975-2000

N=33,885
Ito et al, 2012 Cancer Osaka, Japan Stomach cancer Mixture
[329] registry 15-99 years (15-39

years separate age

group)

Diagnosed 1975-2000

N=66,032
Lee, 1995 Clinical 302 boys (no further ALL Mixture
[134] trial details given)
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Author, year

Study
type

Study population

Cancer type

Type of
cure
model

Nesbit et al,
1994 [136]

Clinical
trial

USA
0-21 years

Diagnosed 1979-1983

N=381

AML (study of
bone marrow

transplantation)

Not
specified

Pfirrmann et
al, 2014 [141]

Clinical
trial

Germany
11-58 years

Diagnosed 1995-2004

N=256 patients receiving
allogeneic hematopoietic
stem cell transplantation

Chronic myeloid

leukaemia

Non-
mixture

Rahimzadeh et

al, 2014 [330]

Hospital
data

Tehran, Iran

Age range 23 to 79 years
Treated 2006-2008

N=305

Breast cancer

Non-
mixture

Rutqvist and

Wallgren, 1985

[331]

Hospital
data

Sweden
<40 years

Women undergoing
surgery between 1921

and 1959
N=458

Breast cancer

Mixture

Shack et al,
2012 [130]

Cancer
registry

North West England
15-99 years (15-44 years
separate age group)
Diagnosed 1997-2004

N=25,563

Colorectal
cancer

Mixture

Shah et al,
2008 [29]

Cancer
registry

Great Britain
0-14 years

Diagnosed 1971-2000

N=13,069

Leukaemia

Mixture

Shah et al,
2013 [137]

Cancer
registry

England

15-99 years (15-24 years
and 25-39 years
separate age groups)
Diagnosed 1971-2006

N=48,380

AML

Mixture

Silversmit et
al, 2017 [132]

Cancer
registry

Belgium

15-99 years (15-
34/44/49/54/59 as
separate age group
depending on cancer)
Diagnosed 1999-20100

N=94,891

Cervix, colon,
corpus uteri,
melanoma,
oesophagus,
pancreas,
stomach

Mixture

Smoll et al,
2012 [119]

Cancer
registry

USA, SEER

All ages (16-39 years
separate age group)

Glioblastoma
multiforme

Non-
mixture
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Author, year Study Study population Cancer type Type of
type cure
model
Diagnosed 2001-2006
n=11,189
Sposto, 2002 Clinical USA NHL, Hodgkin Compariso
[25] trial Age range not specified  Lymphoma and n of Cox
Diagnosed 1978-1990 ALL and
NHL n=345 mixture
Hodgkins lymphoma and and non-
NHL n=97 mixture
ALL (two studies n=636 cure
and n=942) models
Sposto et al, Clinical USA Hodgkin Non-
2007 [140] trial Age range not specified  lymphoma and mixture
Hodgkin lymphoma neuroblastoma  cure model
n=780 Neuroblastoma
n=317
Trama et al, Cancer Europe Testicular, Mixture
2012 [145] registry All ages paratesticular
Diagnosed 1995-2002 and
n=25,769 extragonadal
germ cell
tumours
Venturaetal, @ Cancer Tuscany, Italy Stomach cancer Bayesian
2014 [147] registry 15-94 years (15-44 in women mixture
years separate age model
group)
Diagnosed 1987-2005
N=not stated
Verdecchiaet Cancer Europe Colon cancer Mixture
al, 1998 [118] registry 15-99 years (15-44 years
separate age group
Diagnosed 1978-1985
N=74,475
Wang et al, Cancer USA SEER Melanoma Mixture
2012 [148] registry 5-101 years (<40 years
as separate age group)
Dates of diagnosis not
stated
n=637
Weston et al, Clinical UK Ewings sarcoma Non-
2004 [332] trial Age range 1-34 years mixture

Recruited 1987-1993
Ewings Tumour Study

ET-1 n=142
ET-2 n=243




262

Author, year Study Study population Cancer type Type of
type cure
model
Weston et al, Clinical UK, Germany, Ewings sarcoma Non-
2009 [149] trial Netherlands and Austria mixture
Age range not stated
Recruited 1987-1999
Ewings Tumour Study
ET-2 n=242,
Eicess-92 n=647
Weston et al, Clinical UK, Germany, Ewings sarcoma Non-
2010 [150] trial Netherlands and Austria mixture
Age range not stated
Recruited 1987-1999
Ewings Tumour Study
ET-2 n=242,
Eicess-92 n=647
Woods et al, Cancer West Midlands, England  Breast Mixture
2009 [117] registry and New South Wales, and non-
Australia mixture

15-99 years (15-39 years
separate age group)
Diagnosed 1980-1995
N=80,313




