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Objectives: A commercial chemical, biological, radiological and nuclear (CBRN)

protective covert garment has recently been developed with the aim of reducing thermal

strain. A covert CBRN protective layer can be worn under other clothing, with equipment

added for full chemical protection when needed. However, it is unknown whether the

covert garment offers any alleviation to thermal strain during work compared with a

traditional overt ensemble. Therefore, the aim of this study was to compare thermal strain

and work tolerance times during work in an overt and covert ensemble offering the same

level of CBRN protection.

Methods : Eleven male participants wore an overt (OVERT) or covert (COVERT) CBRN

ensemble and walked (4 km·h−1, 1% grade) for a maximum of 120min in either a wet

bulb globe temperature [WBGT] of 21, 30, or 37◦C (Neutral, WarmWet and HotDry,

respectively). The trials were ceased if the participants’ gastrointestinal temperature

reached 39◦C, heart rate reached 90% of maximum, walking time reached 120min or

due to self-termination.

Results: All participants completed 120min of walking in Neutral. Work tolerance

time was greater in OVERT compared with COVERT in WarmWet (P < 0.001,

116.5[9.9] vs. 88.9[12.2] min, respectively), though this order was reversed

in HotDry (P = 0.003, 37.3[5.3] vs. 48.4[4.6] min, respectively). The rate of

change in mean body temperature and mean skin temperature was greater

in COVERT (0.025[0.004] and 0.045[0.010]◦C·min−1, respectively) compared

with OVERT (0.014[0.004] and 0.027[0.007]◦C·min−1, respectively) in WarmWet

(P < 0.001 and P = 0.028, respectively). However, the rate of change in

mean body temperature and mean skin temperature was greater in OVERT

(0.068[0.010] and 0.170[0.026]◦C·min−1, respectively) compared with COVERT

(0.059[0.004] and 0.120[0.017]◦C·min−1, respectively) in HotDry (P = 0.002 and

P < 0.001, respectively). Thermal sensation, thermal comfort, and ratings of

perceived exertion did not differ between garments at trial cessation (P > 0.05).
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Conclusion: Those dressed in OVERT experienced lower thermal strain and longer

work tolerance times compared with COVERT in a warm-wet environment. However,

COVERT may be an optimal choice in a hot-dry environment. These findings have

practical implications for those making decisions on the choice of CBRN ensemble to be

used during work.

Keywords: core temperature, clothing, heat stress, occupational work, personal protective equipment

INTRODUCTION

Protection from chemical, biological, radiological and nuclear
(CBRN) threats is a priority for hazmat teams and first
responders deployed to potentially contaminated zones. Within
these threat areas, an individual is unable to remove their CBRN
protective ensemble and other personal protective equipment
(PPE). As a consequence, an uncompensable environment is
often experienced, with the internal danger of heat illness
(Carter and Cammermeyer, 1985; Stewart et al., 2011) adding
to the external danger (i.e., CBRN threat). Left unchecked,
extreme deep body temperatures may result in organ failure and
potentially death (Laing and Sleivert, 2002; Carter et al., 2005;
Lucas et al., 2014).

The danger of heat illness arises as a result of the CBRN
ensemble providing a physical barrier between the individual’s
skin surface and the environment, thus reducing heat loss
from the body (McLellan et al., 2013). CBRN ensembles
are often bulky, encapsulating and permit low water vapor
permeability (Cheung et al., 2000). As an individual conducts
work in these ensembles, air is trapped between the skin and
ensemble, which warms, humidifies, and consequently impairs
the avenues of heat loss, particularly evaporation (Nagata,
1978; Nunneley, 1989; Muza et al., 2001). The combination of
these factors may result in a lethal combination of increased
metabolic heat production (e.g., from added mass), impaired
heat loss and an exacerbated rise in body temperature. Indeed,
many studies have detailed the thermal strain during work in
CBRN ensembles (Bishop et al., 1995; van den Heuvel et al.,
2009; Blacker et al., 2013). Further, others have described the
increased thermal strain and/or reduced work tolerance times
in CBRN ensembles with warmer environmental temperatures
in both field (Yokota et al., 2014) and laboratory trials
(McLellan et al., 1993; Richmond et al., 2013; DenHartog et al.,
2017).

CBRN ensembles are categorized on their level of protection
and consequently differ on their level of permeability (Seed et al.,
2008). The National Fire Protection Association (NFPA) 1991
and 1994 standards (2012; 2016) describe four classifications
which vary in their level of encapsulation and CBRN protection.
Unsurprisingly, previous research has demonstrated the
correlation between the increased level of CBRN protection with
reduced work tolerance times, as well as increased cardiovascular
and thermal strain (McLellan et al., 1993; Montain et al.,
1994; Yokota et al., 2014), highlighting the importance to
optimize CBRN ensemble choice. Interestingly, CBRN ensemble
comparisons within the same class (i.e., equivalent level of CBRN
protection) may also result in differences in thermal strain

(van den Heuvel et al., 2009) and work tolerance times
(DenHartog et al., 2017).

A recent development has seen the commercial production
of a covert CBRN garment that meets the NFPA 1994 (2012)
standard if the hands and head are covered with appropriate
additions. A covert CBRN protective layer can be worn
under other clothing, with equipment added for full chemical
protection when needed. The covert nature of the garment has
enabled wearers to move freely through public areas without
drawing attention or creating hysteria, often associated with the
presence of military or emergency first responders in traditional
overt CBRN ensembles.

Early studies showed that replacing an overt ensemble with
CBRN protective combat clothing or a covert ensemble may
extend work tolerance times in the heat (McLellan et al., 1992,
1994; Amos and Hansen, 1997). The improved tolerance to
work may be a result of reduced trapped air layers, as well as
improved water vapor permeability demonstrated with greater
sweat evaporation compared with the respective overt ensemble.
However, improved performance with a covert ensemble is
not unanimous (Bomalaski et al., 1993). The covert ensembles
utilized in these studies (McLellan et al., 1992, 1994; Bomalaski
et al., 1993; Amos and Hansen, 1997) were prototypes and were
compared to the highest level of protection. However, these
ensembles would not meet the NFPA 1991 (2016) standard as the
required breathing apparatus would not be encapsulated within
the ensemble.

It is currently unknown whether commercially available
covert ensembles are able to alleviate physiological strain during
work compared with overt CBRN ensembles. Therefore, the aim
of this study was to investigate the work tolerance times as well
as physiological responses in varying environmental conditions
between an overt and covert CBRN ensemble, both meeting the
same NFPA 1994 (2012) class standard. It is hypothesized the
covert ensemble will reduce thermal strain, resulting in longer
work tolerance times compared with an overt CBRN ensemble.

METHODS

The present study was approved by the Queensland University
of Technology’s Human Research Ethics Committee (approval
number: 1000001160) and complied with standards set in the
Declaration of Helsinki. The participants were made aware of
the purpose, procedures and risks of the study prior to giving
their informed written consent. A total of 11 male participants
volunteered. Their physical characteristics were as follows [mean
(SD)]: 23 (3) years of age; height of 177.4 (5.5) cm; body mass
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of 77.4 (7.9) kg; maximal oxygen uptake (VO2max) of 56.9 (4.0)
ml·kg−1

·min−1. All participants were non-smokers and free from
any vascular, blood, and respiratory conditions.

Eight participants completed both ensembles within an
environment, however, these were not always the same eight
between environments. Table 1 provides an overview of trials
completed for each participant. Due to equipment failure in the
warm-wet trial, only seven participants were included in the
analysis of skin temperature and mean body temperature.

Participants were instructed to refrain from alcohol, tobacco,
caffeine and strenuous exercise, as well as to consume 45mL of
water per kg of body mass in the 24 h preceding each visit to the
laboratory.

Preliminary Session
Participants’ height and nude body mass were measured before
performing a progressive incremental running test to exhaustion
on a motorized treadmill to ascertain VO2max. Following a warm
up period, participants were fitted with expired gas analysis
equipment (Moxus, AEI Technologies, Pennsylvania, USA) and
a heart rate (HR) monitor (Polar Team2, Kempele, Finland). The
test started at a speed of ∼9 km·h−1 and a 1% grade. On every
minute, the speed was increased by 1 km·h−1 until a speed the
participant could maintain for at least 2min was established.
Thereafter, the grade was increased by 1% every minute until
volitional exhaustion was achieved. The variables used for
determination of VO2max followed the standard laboratory
procedure and were as follows: plateau in VO2 (i.e., <150
mL·min−1 change with increase in workload); HR within 10
beats per minute of age predicted maximum (i.e., 220—age);
respiratory exchange ratio >1.10; rating of perceived exertion
≥19. Where two criteria were met, two highest successive 15 s
values for VO2 defined participants’ VO2max.

Following the incremental test, participants were familiarized
with the ensembles (detailed below) whilst walking on the
treadmill at the speed to be utilized for the experimental sessions.

Ensembles
During experimental trials, participants wore either an overt
(OVERT) or covert (COVERT) ensemble, both adhering to

TABLE 1 | Trial completion matrix.

Environment Neutral WarmWet HotDry

Ensemble OVERT COVERT OVERT COVERT OVERT COVERT

Participant 1 X X X X X X

Participant 2 X X X X

Participant 3 X X X X X X

Participant 4 X X X X

Participant 5 X X X X X X

Participant 6 X X X X

Participant 7 X X X X X X

Participant 8 X X X X X X

Participant 9 X X

Participant 10 X X

Participant 11 X X

the Class 3 NFPA 1994 (2012) standard. Specific details of
ensembles:

1. OVERT: Emergency Response Suit (1.35 kg; Lion Apparel,
Ohio, USA) consisting of a one-piece hooded jumpsuit,
including inner gloves, booties and was worn with outer gloves
and a respirator and filter (0.70 kg; Promask with a Pro2000
PF10 filter, Scott Safety, Lancashire, England). Combined
ensemble mass of 2.05 kg.

2. COVERT: Chemical Protective Clothing System (1.40 kg; Lion
Apparel, Ohio, USA) consisting of a jacket, trousers, a hood,
booties and inner and outer gloves worn underneath a Nomex
Flight Suit (0.85 kg; CWU 27/P, Propper, Missouri, USA). The
Flight Suit is a one-piece garment which covers the torso and
the full length of arms and legs. A respirator and filter were
also worn (0.70 kg; as detailed above). Combined ensemble
mass of 2.95 kg.

For the OVERT trial, participants wore a base ensemble which
consisted of a t-shirt, shorts, socks and underwear. For the
COVERT trial, the base ensemble was the same as detailed above
except no t-shirt was worn. Athletic shoes with a soft rubber sole
were also worn during testing. These base ensemble requirements
were standardized in accordance with the American Society for
Testing and Materials guidelines (2007).

Experimental Sessions
The experimental sessions involved walking for up to 120min on
a motorized treadmill at a speed of 4 km·h−1 with a 1% gradient.
Presentation of ensembles and environmental conditions were
randomly assigned. The experimental sessions were conducted
in a climate controlled chamber maintained at a wet bulb globe
temperature (WBGT) of 21◦C (Neutral), 30◦C (WarmWet), or
37◦C (HotDry) obtained by the following dry bulb temperatures
and relative humidities (rh): 24◦C, 50%; 32◦C, 60%; and 48◦C,
20%, respectively. A wind speed equivalent to∼4.7 km·h−1 and a
radiant heat load, from radiant heaters positioned ∼1.3m above
and either side of the participant, were incorporated throughout
all trials.WBGT (Quest Temp, Airmet, Australia) andwind speed
(Kestrel 4000, KestrelMeters, Minnesota, USA) were monitored
at the level of the participants’ waist.

Standard termination criteria were applied during each trial
in accordance with the American Society for Testing and
Materials guidelines (2007): (1) deep body temperature >39.0◦C;
(2) 120min of exercise; (3) HR≥ 90% of maximum; or (4) fatigue
or nausea (self-termination). Following the attainment of one of
the termination criteria, the participant exited the environmental
chamber and removed the ensemble.

Measurements
Pre-trial hydration status was confirmed as urine specific gravity
(USG; PAL 10 s, ATAGO, Tokyo, Japan) of <1.020 (Armstrong,
2005). If participants did not meet this guideline they were
given an additional 500mL of tap water, which was consumed
30min prior to the commencement of the trial. Nude body mass
was measured prior to exercise and on completion of the trial,
following complete towel drying to remove surface sweat. Deep
body temperature was estimated using a gastrointestinal pill (Tgi)
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ingested 6 h prior to the experimental trials and recorded at 30 s
intervals (CorTemp, HQ Inc., Palmetto, FL, USA). All ingestible
pills were calibrated and raw data corrected as previously
described (Hunt and Stewart, 2008; Hunt et al., 2017). Mean skin
temperature (Tmsk) was estimated using iButton thermocrons
(DS1922L-F50 iButtons, Maxim Integrated, California, USA)
attached to four locations (i.e., back of neck, inferior border
of right scapula, dorsal left, hand and proximal third of right
tibia) (ISO 9886) (2004) and recorded at 30 s intervals. HR
was measured using a chest strap and monitor (Polar Team2,
Kempele, Finland) and recorded at 30 s intervals.

Thermal sensation was assessed using a modified scale (Gagge
et al., 1967), where 1 had the anchor of “extremely cold” and 13
“unbearably hot.” Similarly, thermal comfort was assessed using
a modified scale (Gagge et al., 1967), where 1 had the anchor
of “comfortable” and 5 “extremely uncomfortable.” Rating of
perceived exertion was assessed using the Borg 15-point scale
(Borg, 1982), where 6 had the anchor of “very, very light” and
20 “maximal exertion.” All perceptual data were recorded every
15min, with participant’s final values recorded at the cessation of
exercise.

Calculations
Mean skin temperature (Tmsk) was calculated as [ISO 9886
(2004)]:

Tmsk = 0.28Tneck + 0.28Tscapula + 0.16Thand + 0.28Tshin

Mean body temperature (Tb) was calculated as Hardy and Du
Bois (1938b):

Tb = 0.8Tgi + 0.2Tmsk

Statistical Analyses
Statistical analyses were conducted using SPSS version 23 for
Windows (IBM Corporation, New York, USA). An α of 0.05
was used to determine statistical significance. Data were assessed
for normality with a Shapiro-Wilk test and visual inspection
of data (e.g., boxplots). A univariate general linear model was
utilized with model factors comprising “participant” as a random
factor and “ensemble” and “environment” as fixed factors.
Where a significant main effect for environment was observed,
pairwise comparisons were used to investigate differences in
the dependent variable, with Bonferroni adjustments applied

for multiple comparisons. Where a significant interaction was
observed, pairwise comparisons were used to investigate the
within-group differences in the dependent variable.

RESULTS

Participants commenced exercise euhydrated, with all
physiological data similar between trials (Table 2, all P > 0.05).

FIGURE 1 | Individual work tolerance time for participants wearing CBRN

ensembles in WarmWet (A) and HotDry (B).

TABLE 2 | Mean (SD) baseline physiological and hydration indices within each environment and ensemble.

Environment Neutral WarmWet HotDry

Ensemble OVERT COVERT OVERT COVERT OVERT COVERT

HR (bpm) 81 (11) 76 (8) 84 (10) 78 (7) 84 (8) 80 (6)

Tgi (
◦C) 37.1 (0.3) 37.1 (0.2) 37.1 (0.3) 37.0 (0.2) 37.3 (0.3) 37.0 (0.3)

Tmsk (◦C) 33.2 (0.6) 33.2 (0.5) 33.5 (0.9) 33.5 (0.7) 33.3 (0.8) 33.2 (0.5)

Body mass (kg) 79.9 (7.3) 80.5 (7.5) 78.5 (8.3) 77.7 (8.5) 80.0 (7.7) 80.4 (7.5)

USG 1.012 (0.005) 1.012 (0.007) 1.013 (0.007) 1.009 (0.006) 1.014 (0.005) 1.014 (0.005)

HR, heart rate; Tgi , gastrointestinal temperature; Tmsk , mean skin temperature; USG, urine specific gravity.
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Work Tolerance Times and Termination
Criteria
An overview of work tolerance times for WarmWet and
HotDry is shown in Figures 1A,B respectively. There was a
significant main effect for environment (Table 3, P < 0.001)
and ensemble (P = 0.012), as well as an interaction of both
factors (P < 0.001). Pairwise comparisons revealed participants
exercised for longer in Neutral vs. WarmWet (P < 0.001),
with participants in the latter environment exercising for longer
than HotDry (P < 0.001). When considering the interaction
of both factors, pairwise comparisons revealed in WarmWet
participants exercised for longer in OVERT vs. COVERT
(Table 3, P < 0.001). However, in HotDry, participants exercised
for longer in COVERT vs. OVERT (P = 0.003).

Physiological Strain at the Cessation of
Trial
At the cessation of trial, there was a main effect for environment
for all physiological variables measured (Table 4, all P < 0.001),

TABLE 3 | Mean (SD) work tolerance times and the number of participants

meeting each termination criteria within each environment and ensemble.

Environment Neutral WarmWet HotDry

Ensemble OVERT COVERT OVERT COVERT OVERT COVERT

Work tolerance

time

(minutes)†‡§

120.0

(0.0)

120.0

(0.0)

116.5

(9.9)

* 88.9

(12.2)

37.3

(5.3)

* 48.4

(4.6)

HR (≥90% max) – – – – 2 –

Tgi (>39◦C) – – 1 5 6 8

Self-termination – – – 3 – –

Duration

(120min)

8 8 7 – – –

HR, heart rate; Tgi , gastrointestinal temperature.
†main effect for environment, ‡main effect

for ensemble, §significant interaction, *significant difference between ensembles within
environment (P < 0.05).

whilst a significant main effect for ensemble was observed for HR
(P = 0.018), Tgi (P = 0.022), Tmsk rate of change (P = 0.021)

and Tb (P = 0.014). There was a significant interaction for Tgi

rate of change (P = 0.003), Tmsk (P < 0.001), Tmsk rate of change
(P < 0.001), Tgi to Tmsk gradient (P < 0.001), Tb (P = 0.017), Tb

rate of change (P < 0.001), body mass loss (P = 0.016) and sweat
rate (P = 0.019).

InWarmWet, COVERT, compared with OVERT, had a higher
Tmsk (P < 0.001), Tb (P < 0.001), lower body mass loss
(P = 0.039), a faster rate of change in Tgi (P < 0.001), Tmsk

(P = 0.028) and Tb (P < 0.001). In HotDry, OVERT, compared
with COVERT, had a higher Tmsk (P = 0.001), a negative Tgi

to Tmsk gradient (P < 0.001), faster rate of change in Tmsk

(P < 0.001) and Tb (P = 0.002), as well as a greater sweat rate
(P = 0.032).

Perceptual Data at the Cessation of Trial
At the cessation of the trial, there was a main effect for
environment for thermal sensation, thermal comfort and
RPE (Figure 2, all P < 0.001). Pairwise comparisons for
thermal sensation revealed participants felt warmer as WBGT
increased (Neutral < WarmWet < HotDry, all P < 0.05).
Pairwise comparisons for thermal comfort and RPE revealed
participants felt more uncomfortable and reported a greater
perceived exertion in WarmWet vs. Neutral (P < 0.001);
however, there was no difference between WarmWet and
HotDry (P > 0.05). A main effect for ensemble was observed
for RPE only, with participants reporting a greater perceived
exertion in COVERT vs. OVERT (P = 0.020). No significant
interactions were observed for any perceptual variables
(P > 0.05).

DISCUSSION

The novel finding from this study was that in a warm-wet
environment work tolerance times were longer in OVERT
compared with COVERT, whilst in a hot-dry environment the

TABLE 4 | Mean (SD) physiological strain at the cessation of trial within each environment and ensemble.

Environment Neutral WarmWet HotDry

Ensemble OVERT COVERT OVERT COVERT OVERT COVERT

HR (bpm)†‡ 100 (7) 110 (10) 145 (19) 164 (8) 161 (16) 161 (17)

Tgi (
◦C)†‡ 37.6 (0.2) 37.7 (0.3) 38.5 (0.5) 38.9 (0.2) 38.9 (0.2) 39.1 (0.0)

Tgi (
◦C·min−1)†§ 0.004 (0.002) 0.005 (0.003) 0.012 (0.006) * 0.021 (0.004) 0.045 (0.009) 0.042 (0.003)

Tmsk (◦C)†§ 34.7 (0.4) 35.0 (0.3) 36.8 (0.4) * 37.5 (0.4) 39.5 (0.2) * 39.0 (0.3)

Tmsk (◦C·min−1)†‡§ 0.013 (0.007) 0.015 (0.005) 0.027 (0.007) * 0.045 (0.010) 0.170 (0.026) * 0.120 (0.017)

Tgi to Tmsk gradient†§ 2.9 (0.4) 2.7 (0.4) 1.6 (0.4) 1.4 (0.4) −0.6 (0.2) * 0.1 (0.3)

Tb (◦C)†‡§ 37.1 (0.2) 37.1 (0.3) 38.1 (0.4) * 38.6 (0.2) 39.1 (0.2) 39.0 (0.1)

Tb (◦C·min−1)†§ 0.006 (0.003) 0.007 (0.003) 0.014 (0.004) * 0.025 (0.004) 0.068 (0.010) * 0.059 (0.004)

Body mass loss (%)†§ 1.0 (0.2) 1.4 (0.4) 2.7 (0.6) * 2.3 (0.3) 1.4 (0.3) 1.5 (0.2)

Sweat rate (% body mass loss·h−1)†§ 0.5 (0.1) 0.7 (0.2) 1.4 (0.3) 1.6 (0.2) 2.2 (0.4) * 1.9 (0.3)

HR, heart rate; Tgi , gastrointestinal temperature; Tmsk , mean skin temperature; Tb, mean body temperature. †main effect for environment, ‡main effect for ensemble, §significant
interaction, *Significant difference between ensembles within environment (P < 0.05).
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FIGURE 2 | Mean (SD) thermal sensation (A), thermal comfort (B) and rating

of perceived exertion (C) in each CBRN ensemble and environment. †main

effect for environment, ‡main effect for ensemble (P < 0.05).

order was reversed. As such, work tolerance times appear to
be both environment and ensemble configuration dependent.
Contrary to our hypothesis these data suggest that, depending
on environmental conditions, COVERT may not be an optimal
alternative to OVERT.

Individuals in Neutral were able to complete the duration of
the test in either ensemble (Table 3). In WarmWet, individuals

worked for 31% (∼28min) longer in OVERT vs. COVERT.
While participants exercised for 30% longer in COVERT
compared with OVERT in HotDry, the improvement in absolute
work tolerance time was 11min. Despite this being lower than
the improvement observed in WarmWet, the increase in work
tolerance time is of practical benefit to workers dressed in CBRN
ensembles. Given that the same workload was employed between
trials, the reason for the difference in times and reversal of order
may be due to differences in ensemble properties.

An individual’s thermoregulation whilst dressed in these
CBRN ensembles may be affected by a wide range of clothing
factors including insulation, air and water vapor permeability
as well as skin coverage, layering and fit of the ensemble
(Havenith, 1999). Multiple clothing layers trap air creating a
microenvironment, subsequently decreasing heat loss through
layers (Sullivan and Mekjavić, 1992; Havenith, 1999). While the
outer layer of both ensembles covered the surface area of the
body, the CBRN protective undergarment in the COVERT trial
also coveredmost of the individual’s body, leaving only the hands,
feet and head free from coverage. A greater coverage of the body
increases total thermal resistance (insulation) (Parsons, 2003),
resulting in reduced dry heat exchange between the skin and
environment leading to greater Tmsk.

When compared with OVERT, there was a faster rate
of change in Tmsk in COVERT during WarmWet (Table 4)
with the order reversed in HotDry. With dry heat exchange
already compromised in COVERT (due to double layering) it is
paradoxical to observe a slower rate of change in Tmsk vs. OVERT
in HotDry. Since ambient air temperature is warmer than skin
temperature in HotDry, slowing the rate of change in Tmsk would
require manipulation of sweat evaporation as this is the primary
avenue of heat loss under this circumstance (Hardy and Du Bois,
1938a). However, we are unable to speculate further as there was
nomeasure of sweat efficiency nor any testingmade on a sweating
thermal manikin in the present study.

Irrespective of the ensemble, work tolerance times and
physiological strain were significantly influenced by the
environment in a dose-dependent manner (Table 3). The
literature has consistently demonstrated reduced work tolerance
times with increasing ambient temperatures and/or humidity
in both PPE and/or CBRN protective ensembles (McLellan
et al., 1996, 2013; Stewart et al., 2014; Costello et al., 2015a,b;
DenHartog et al., 2017). Compared with COVERT inWarmWet,
McLellan et al. (1993) reported similar work tolerance times
(83min, in 30◦C, 50% rh) which included similar body surface
area coverage to the present study. However, it is difficult to
directly compare the present study to previous investigations
given the wide range of ensembles and environmental conditions
tested.

Previous studies utilizing covert ensembles during continuous
walking have reported both longer (McLellan et al., 1994) and
shorter (Bomalaski et al., 1993) work tolerance times compared
to the present study. Both studies utilized similar walking speed
to the present study, whilst the participants in the Bomalaski
et al. (1993) study were older (mean [SD]: 35 [5] years of age)
than the participants in the McLellan et al. (1994) and present
study, which may have contributed to the shorter work tolerance
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time. It is not clear why the participants in the McLellan et al.
(1994) study walked on average 39min longer than the present
study. Dry bulb temperature in the present study was 8◦C greater
than utilized by McLellan et al. (1994) but both had similar water
vapor pressures (i.e., 2.2 kPa) which would primarily govern work
tolerance times at this metabolic rate (McLellan et al., 2013) as
dry heat loss in both environments were negligible (Hardy and
Du Bois, 1938a). Though untested, it is speculated that ensemble
properties, such as air permeability (Havenith et al., 2011), may
differ between the prototype used by McLellan et al. (1994) and
COVERT used in the present study.

An advantage of the covert CBRN protective layer utilized
in the present study is that it is able to be worn discreetly,
with additional PPE added to meet Class 3 NFPA 1994 (2012)
standard. However, the authors are aware the present study
did not include a period of time (resting and during walking)
which compared the covert CBRN protective layer worn under
the Nomex flight suit vs. “normal” (e.g., cotton) clothing alone
in each environment. This may be important as the covert
CBRN protective layer will increase thermal and vapor resistance
relative to “normal” clothing alone, and may inadvertently
predispose individuals to greater initial deep body temperature
at the start of work (Mclellan, 2008).

While COVERT may outperform OVERT in a hot-dry
environment, presumably because of an increased efficiency
to evaporate sweat, this advantage may not translate to all
individuals. For example, the participants in the present study
represent individuals who are young, fit and healthy and thus
experience greater sweat rates than older individuals (Smith et al.,
2013; Stapleton et al., 2014), who may not be able to take full
advantage of the reduced vapor resistance offered by COVERT.
Future research should include an age comparison using the
present study’s ensembles and environmental conditions to
ensure any recommendations on ensemble choice are tailored for
a wide range of individuals.

While the present study did not utilize a repeated measures
design, analysis of work tolerance times of the five participants
who completed all three environments and both ensembles (see
Table 1) revealed the same outcome as the present study. That
is, all participants completed 120min walking in Neutral in
both ensembles, whilst in WarmWet work tolerance times were
longer in OVERT vs. COVERT, though this order was reversed in
HotDry.

Based on the observations in the present study it is concluded
that OVERT may be the optimal choice when performing
work in a warm-wet environment, whereas COVERT would be
recommended in a hot-dry environment. These findings have
practical implications for those making decisions on the choice
of CBRN ensemble to be used during work.
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