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Abstract: Modern industrial requirements are continuously demanding better performances and 

higher rotational speeds from current aero-engines. Under this circumstance, mitigation of rotor 

vibration is of considerable importance for safe and efficient functioning of rotating machinery. The 

main objective of this paper is to investigate the application of nonlinear vibration absorber on 

vibration suppression of a rotor-casing system having imbalance-looseness-rub coupled fault. Due to 

large vibration amplitude and pedestal looseness, both the geometrical nonlinearity of the rotor shaft 

and the support nonlinearity are considered in the system. When dealing with blade-casing rub, the 

initial gap between them is treated to be in non-uniform distribution because of coating 

inhomogeneity. Then the equations of motion in the presence and absence of nonlinear vibration 

absorber are respectively obtained according to the Lagrange’s equation. Through numerical 

simulation, the vibration mitigation of the rotor-casing system is realized in the different conditions 

of rotational speed and disc eccentricity. Moreover, from the perspective of vibration displacement 

and impact force, the effects of the nonlinear vibration absorber on the pedestal looseness and 

blade-casing rub are further discussed. The numerical results reveal that the nonlinear vibration 

absorber can effectively suppress the nonlinear vibration of the system and alleviate the detrimental 

influence of the coupled fault in a wide frequency range. 

Key words: rotor-casing system, imbalance-looseness-rub coupled fault, vibration mitigation, 

nonlinear vibration absorber. 

1. Introduction 

Rotating machines, such as generator sets, aero-engines and wind turbines, play a significant 

pole in modern industry. Hence, the in-depth and comprehensive research on the behaviour of 

rotating machinery and the associated phenomena become extremely relevant [1-3]. Due to the 

increase of rotational speed and the narrowing of initial rotor-stator gap, the possible contact between 

rotor and stator is considered a serious malfunction that may lead to catastrophic failure [4-6]. In 

order to achieve condition monitoring and appropriate design of rotating machinery, it is of high 

significance to analyse their dynamic performance associated with rotor-stator rub fault. 
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As one of frequently-occurring faults in rotating machines, rub-impact fault has attracted a huge 

amount of interest all along. From the viewpoint of rotor-stator contact area, there are three types of 

rub-impact fault, including no rub, partial one and full annular one [7-10]. A full annular rub 

indicates that the rotor is in continuous contact with the stator, which usually happens under large 

unbalance. In contrast, a partial rub refers to intermittent rotor-stator rub, which is the most common 

in the rotating machinery. Up to now, many studies have been carried on the different types of 

rub-impact fault. Dai et al. [11] numerically investigated the forced nonlinear vibration of a rotor 

system subjected to full annular rub and motion-limiting stops. Zhang et al. [12] analytically studied 

the nonlinear synchronous full annular rub motion of a flexible rotor induced by the mass unbalance 

and the contact-rub force. Yu [13] discussed the reverse full annular rub based on a two 

degree-of-freedom rotor/seal model where a rubbing location could be simulated away from the 

lumped rotor mass. By utilizing an experimental apparatus, Choi [14] studied the dynamic behaviour 

of a rotor system with full annular rub. And then they observed that the phenomena of backward 

rolling and backward slipping were closely related to the friction and the eccentricity of the rotor. 

Vlajic et al. [15, 16] investigated the dynamics of a modified Jeffcott rotor that undergoes either 

forward synchronous whirling or self-excited backward whirling motions with continuous stator 

contact. 

In order to detect and mitigate slight rub prior to more severe full rub condition, partial rub 

should be investigated in-depth. Smyth et al. [17] considered viscoelasticity in the stator support and 

investigated its influence on the global dynamics of rotor-stator rub, where the viscoelastic stator 

supports were modelled using fractional calculus. In reference [18], an overhung rotor model having 

two degrees of freedom was explored to determine the effect of friction during contact between rotor 

and stator. Pennacchi et al. [19] presented some experimental results obtained on a test rig, in which 

rub conditions of real machines were reproduced and short arc rub was considered. Torkhani et al. 

[20] built a numerical model and an experimental set-up to investigate the partial rub of a rotor in 

contact with a non-rotating obstacle. In particular, the dynamic behaviours corresponding to light, 

medium and severe partial rub were analysed in [20]. In order to study the stability and nonlinear 

dynamics of a complex braking system with a rotor-stator contact, Sinou et al. [21] developed a 

nonlinear strategy based on the centre manifold, the rational approximants and the alternating 

frequency/time domain method. In simulating rub-impact between the journal and the associated 

pads, Ebrahim et al. [22] employed mixed lubrication theory along with elastic-plastic asperity 

contact model. According to a modular kit, Ehehalt et al. [23] presented an integral experimental 

approach and then observed a great variety of vibration phenomena. Qin and Chen et al. [24-26] 

established a cylindrical shell model with arbitrary boundary conditions and simulated the partial rub 

between the rotating shell and stator in a rotor system. 

Rotor-stator rub is usually identified as a secondary fault, which may be caused by mass 

imbalance, shaft crack, shaft misalignment and support looseness. It is worth noting that, due to 

manufacturing error, poor installation quality, long-term load, thermal effect and other factors, 

looseness fault has become one of the most common faults in rotary engines. To reduce vibration and 

noise and maintain the performance of rotating machinery, research on looseness fault has become a 



popular topic [27]. Jiang et al. [28] proposed a nonlinearity measure based assessment method for the 

pedestal looseness of a rotor-bearing system under constant rotational speeds. Taking a simple drum 

rotor with bolted joints as an example, Qin et al. [29] calculated the influences of the time-varying 

joint stiffness resulting from the bolt loosening on the steady-state response of the rotor system. In 

[30], the self-loosening of bolts in curvic coupling was analysed by the self-rotation of nut in the 

cases of cyclic torque loads on discs after the preload of bolts. Muszynska et al. [31] studied the 

dynamic behaviour of a one-lateral-mode unbalanced and radially side-loaded rotor with either a 

loose pedestal, or with occasional rotor-to-stator rubbing. The above literature indicates that the 

existence of rub-impact and looseness will indeed lead to vibration with large amplitude, reduce 

operation quality, and even cause some disastrous consequences. 

As far as the stability and safety of the rotating machinery are concerned, how to make noise 

reduction and suppress undesired vibration is one of the key problems to be solved urgently. Under 

this circumstance, these aims may be achieved by structural control [32]. According to the inherent 

characteristics of the control strategy, there are usually four main groups, including passive, 

semi-active, active, and hybrid methods. Active absorbers act on feedback to a control system, which 

could deal with multiple modes of vibration. Since it is difficult to install a large number of devices 

needed for active control in the limited internal space of rotating machinery, passive control methods 

are gradually accepted by the majority of researchers in recent decades. As described in [33], there 

are two commonly used passive devices for vibration reduction, namely the linear vibration absorber 

and the nonlinear vibration absorber. The linear vibration absorber usually refers to the linear tuned 

mass damper (TMD), which consists of a linear spring and a mass and sometimes a viscous damper. 

However, TMD only attenuates the vibration of a primary system over a relatively narrow frequency 

range [34]. The nonlinear vibration absorber as a bigger concept can be thought to contain three 

sub-types: a nonlinear tuned vibration absorber, a nonlinear energy sink, and a bistable tuned 

vibration absorber, according to whether the linear stiffness term is positive, vanishing, or negative 

[35, 36]. Through a nonlinear vibration absorber, the irreversible energy transfer from the primary 

system to the nonlinear attachment is activated [37]. There are two elements in a nonlinear vibration 

absorber: an essentially nonlinear stiffness and a linear viscous damper. Different from a linear TMD, 

a nonlinear vibration absorber is capable of efficient vibration mitigation over a relatively wide 

frequency range. In the past years, the vibration control of system by employing the nonlinear 

vibration absorber has attracted a huge amount of interest already. Gendelman et al. [38, 39] 

demonstrated the ability of a simple eccentric rotator to perform as a nonlinear vibration absorber in 

theoretical and experimental methods. Ahmadabadi [40] proposed an application of lightweight 

vibration control strategy known as nonlinear vibration absorber to mitigate the undesired vibrations 

in engine crankshaft systems. Parseh et al. [41] considered a nonlinear, simply supported beam under 

harmonic excitation coupled to a nonlinear vibration absorber. On this basis, they investigated the 

steady state dynamic of the beam by combing averaging method with arc-length continuation. Kani 

et al. [42] presented the analysis of the energy transfer between the nonlinear beam and the nonlinear 

vibration absorber, in which the control parameters were optimized by both sensitive analysis and 

particle swarm optimization. Bab et al. [43-45] installed a number of smooth nonlinear vibration 



absorbers on the rotor-bearing system and performed a vibration attenuation analysis in an operating 

speed range. Tehrani et al. [46] studied the application of linear and nonlinear vibration absorbers on 

the vibration mitigation of a rotor system with several flexible blades. Additionally, they discussed 

the bifurcation diagrams and the Lyapunov exponent of the system under different parameters. In 

[47], the vibration reduction of a rotor system was investigated by employing different passive 

control methods. 

Different from the previous analysis of dynamic phenomena and nonlinear mechanism in 

nonlinear mechanics, this paper focuses on suppressing or even eliminating the adverse effects of 

blade-casing rub and pedestal looseness through nonlinear vibration absorber. By analyzing the 

vertical vibration of the loose pedestal and the impact force of the blades, the response difference of 

the rotor-casing system induced by the nonlinear vibration absorber is investigated. This paper is 

organized as follows: Firstly, the governing equations of motion of the rotor-casing system without 

and with the nonlinear vibration absorber are respectively derived in Section 2. In this part, the 

blade-casing rub model in the presence of non-uniform gap and the pedestal looseness model are 

given. Secondly, the vibration characteristics of the system without nonlinear vibration absorber are 

studied in Section 3, in which the effects of geometrical nonlinearity of shaft and the support 

nonlinearity of loose pedestal are considered. After that, the vibration mitigation of the rotor-casing 

system having the above coupled fault is realized by the nonlinear vibration absorber in Section 4. At 

last, some conclusions are summarized in Section 5. 

2. Governing equations of motion 

In this section, considering the action of imbalance-pedestal looseness-rub coupled fault, the 

governing equations of motion of a rotor-casing system in the presence and absence of a nonlinear 

vibration absorber are respectively derived by using the Lagrange’s equation. Fig. 1 depicts a 

rotor-casing system, which includes a casing, a continuous rotating shaft, a disc with an absorber, 

two pedestals and eight straight blades. In the dynamic model process, several assumptions are made 

as follows: 

(1) The shaft is modelled as a massless flexible Euler beam with uniform circular cross section. 

(2) The disc is considered as an annular rigid body having a mass eccentricity. At the same time, 

it is installed in the middle of the shaft. 

(3) Because the stiffness of the blades installed in some rotor test rigs is much larger than that of 

the shaft, the elastic deformation of the blades is ignored. In addition, all the blades are identical, 

including material characteristic and geometrical dimension. 

(4) The casing is treated as a lumped mass, which is supported by linear springs and viscous 

dampers. 

(5) The impact between blades and casing happens in the normal direction. Meanwhile, the 

tangential rub between them is assumed to be a sliding friction. 

(6) The thermal effects and friction torque caused by the rub-impact are not considered. 

(7) The operating speed of the rotor system is higher than the first critical speed, but much 

lower than the second critical speed. 



According to the above assumptions, only the first shaft mode is involved and the second mode 

will not be excited. When a disc is installed in the middle of a shaft, the gyroscopic effect of disc 

does not exist or is very weak. With this in mind, the gyroscopic effect of the disc is ignored in the 

process of dynamic modeling of rotor-casing system. 
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Fig. 1. Schematic diagram of a rotor-casing system in the presence of nonlinear vibration absorber: 

(a) rotor-casing model, and (b) disc with nonlinear vibration absorber. 

2.1 Blade-casing rub model 

First of all, the mathematical model for describing the blade-casing rub in the presence of 

non-uniform gap is given in this part. For the purpose of gas path sealing, oxidation and corrosion 

control, the coating technology has been gradually recognized and widely adopted in the modern 

aviation industry [48]. However, due to coating inhomogeneity, aerodynamic load and thermal load, 

an initial gap between blades and casing may appear and its spatial distribution is non-uniform rather 

than ideally uniform in the circumstantial direction. Then several straight blades may collide with the 

casing, as shown in Fig. 2(a). 
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(a) blade-casing rub diagram (b) force analysis diagram 

Fig. 2. Schematic diagram of rub-impact between rotating blades and casing in the presence of 

non-uniform initial gap: (a) blade-casing rub diagram, and (b) force analysis diagram. 



Assume that the ith blade and the jth blade collide with the casing simultaneously, as shown in 

Fig. 2(b). And then a variable  b i  is defined to describe the position angle of the ith blade with 

respect to the space-fixed axis o x , namely 

    b
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where N  denotes the number of blades;   denotes the rotational speed of the rotor. 

Fig. 3 illustrates the non-uniform gap between the ith blade and the casing. It is clear that there 

are three segments for describing the gap non-uniformity. Accordingly, the expressions of the 

non-uniform gap are [49, 50] 
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When the gap non-uniformity is not taken into consideration, the initial gap between blades and 

casing is set to 0 . On this basis, the gap non-uniformity is considered and the maximum magnitude 

of the non-uniform gap is expressed as max . Meanwhile, the location and the range of the 

non-uniform gap are defined as   and  , respectively. 
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Fig. 3. Schematic diagram of the non-uniform gap: (a) illustration of variables describing the 

non-uniform gap, and (b) three segments in the non-uniform gap. 

If the radial displacement of the ith blade  b i  is larger than the non-uniform gap   b i   

at this moment, blade-casing rub happens and then the corresponding force is given by 
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where  Ik i  denotes the impact stiffness of the ith blade;   denotes the kinetic coefficient of 

friction; sgn denotes the sign function. 

Otherwise, there is no contact between the ith blade and the casing. Then the above equation 

can be changed to 
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When calculating the impact displacement given in Eq. (3), the radial displacement of the ith 

blade obeys the following expression: 

        b d b d bcos sin ,i x i y i      (5) 

where dx  and dy  denote the lateral and vertical displacements of the disc, respectively. 

According to the Coulomb law, the tangential frictional force is mainly determined by the 

normal impact force and coefficient of friction. Therefore, the tangential relative velocity relv  at the 

contact point between the ith blade and the casing is given by 

         rel d b d b d bcos sin ,v R l i y i x i        (6) 

where dR  denotes the outer radius of the disc;  bl i  denotes the length of the ith blade; dx  and 

dy  denote the lateral and vertical velocities of the disc, respectively. 

For N  blades uniformly mounted on the disc, it is necessary to judge whether all these blades 

will collide with the casing in the whirling motion of the system. As a result, the total rub-impact 

force in the two directions o x  and o y  can be expressed as 
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2.2 Pedestal looseness model 

In this part, the mathematical model for describing pedestal looseness is further established. 

Because of possible poor installation quality or long period of vibration, the looseness fault is more 

likely to happen at the pedestal, as shown in Fig. 4. The looseness fault could immediately weaken 

the elastic constraint stiffness of pedestal and promote the violent vibration to a great extent. 

According to the inherent property of the looseness fault, the constraint stiffness of the pedestal 

having looseness fault can be expressed as [51] 
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where py  denotes the vertical displacement of the loose pedestal; L  denotes the initial loose gap; 

p1k  denotes the constraint stiffness under the loose state; p2k  denotes the constraint stiffness under 

the locked state. 
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Fig. 4. Schematic diagram of pedestal model supporting the rotor system: (a) no looseness fault, and 

(b) looseness fault. 

Similarly, the expression of the constraint damping of the pedestal considering looseness fault is 

given by 
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where p1c  denotes the constraint damping under the loose state; p2c  denotes the constraint 

damping under the locked state. 

2.3 Rotor-casing model in the presence of nonlinear vibration absorber 

For reducing the large vibration amplitude caused by the above coupled fault, the nonlinear 

vibration absorber is introduced to the rotor-casing system. As shown in Fig. 1(b), a rod is installed 

in the disc and rigidly connected with the rotor shaft. This rod passes through the centre of the 

absorber. In addition, two nonlinear springs and two viscous dampers are adopted between the 

absorber and the disc. Under the centrifugal force given by the disc eccentricity, the whirling motion 

of the rotor system happens. In this condition, the nonlinear vibration absorber can only slide along 

the fixed rod. 

Fig 5 shows two kinds of system states, including motion before whirling and in whirling. At 

the initial moment, the rod is assumed to be parallel to the coordinate axis of o x . Meanwhile, 

there is an initial offset between the centre of absorber and the centre of disc. It can be defined as 0r , 

as shown in Fig. 5(a). 

In order to describe the whirling motion of the system (see Fig. 5(b)), the position vectors of the 

disc, absorber mass, imbalance mass, and casing can be expressed as 
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where dx  and dy  denote the lateral and vertical displacements of the disc; cx  and cy  denotes 

the lateral and vertical displacements of the casing; N  denotes the relative displacement between 

the absorber centre and the disc centre; e  denotes the disc eccentricity;   denotes the relative 

angle between the radial directions of the absorber mass and the imbalance mass. 
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Fig. 5. Schematic diagram of motion states of the rotor-casing system with nonlinear vibration 

absorber: (a) before whirling motion and (b) in whirling motion. 

After that, the equations of motion of rotor-casing system in the presence of the nonlinear 

vibration absorber are derived by utilizing the Lagrange’s equation. The system shown in Fig. 1 can 

be divided into five subsystems, including disc, casing, imbalance mass, nonlinear vibration absorber, 

and loose pedestal. From this viewpoint, the total kinetic energy of the system can be expressed as 

 d i N c P+ + ,T T T T T T     (12) 

where the kinetic energies of the disc and the imbalance mass are given by 
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For the nonlinear vibration absorber installed in the disc, according to the position vector (i.e., 

Eq. (11)), the kinetic energy can be expressed as 
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In addition, the kinetic energies of the casing and the loose pedestal are derived as 
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where dm  denotes the mass of the disc; em  denotes the imbalance mass; Nm  denotes the mass of 

the absorber; cm  denotes the mass of the casing; pm  denotes the mass of the loose pedestal; 
N  

denotes the relative velocity of the absorber centre and the disc centre; cx  and cy  denotes the 

lateral and vertical velocities of the casing; py  denotes the vertical velocity of the pedestal. 

Combined with the above five parts, the potential energy of the system is further derived. The 

restoring force of the nonlinear springs used in the nonlinear vibration absorber can be given as 
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where Nk  denotes the nonlinear stiffness of the nonlinear vibration absorber. 

In this condition, the potential energy of the nonlinear vibration absorber is given by 
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Due to the severe imbalance excitation and the pedestal looseness, the whirling motion with 

large amplitude is more likely to occur in the flexible shaft. At this point, the geometrical relation 

between the displacement of the shaft and its strain becomes nonlinear rather than linear. According 

to the authors’ previous work [52], the equation of motion of the massless flexible shaft having 

geometric nonlinearity is 
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where EI  denotes the bending stiffness of the shaft; w  denotes the elastic deflection of the shaft; 

A  denotes the area of the cross section; ncQ  denotes the non-conservative force. 

On this basis, Eq. (20) is further converted into the ordinary differential equation by using the 

first mode of a simply-supported beam. Thus, the restoring force of the shaft obeys the following 

form: 
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where Lk  and k  are seen as the structural linear stiffness and the geometrical nonlinear stiffness. 

They can be expressed as 
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Obviously, the structural linear stiffness Lk  is consistent with that in mechanics of material. In 

addition, the geometrical nonlinear stiffness k  is determined by the length of shaft l , area of cross 

section A , and diametrical moment of inertia I . 

According to Eqs. (19) and (21), the total potential energy of the system, including the shaft, 

nonlinear vibration absorber, casing and loose pedestal, can be expressed as 
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where ck  denotes the support stiffness of the casing; pk  denotes the constraint stiffness of the 

pedestal. 

Moreover, due to the existence of the viscous damping, the total dissipative energy of the 

system is given by 
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where Nc  denotes the damping of the nonlinear vibration absorber; cc  denotes the damping of the 

casing. 

Then substitute Eqs. (12), (23) and (24) to the Lagrange’s equations as follows: 
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where iq  denotes the ith generalized coordinate; Q  denotes the generalized excitation of the 

system. 

Consequently, the governing equations of motion of the rotor-casing system in the presence of 

nonlinear vibration absorber can be expressed in the matrix form, namely 

 ,  
g

Mu Cu Ku F   (26) 

where the generalized displacement vector of the system is 

 d d N c c p, , , , , ,x y x y y   
T

u   (27) 

which suggests that the dynamic model proposed in this paper has six degrees of freedom. 

Additionally, the mass, damping and stiffness matrices of the system are respectively written as 
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Moreover, the generalized force vector acting on the rotor-casing system with the nonlinear 

vibration absorber can be expressed as 
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It is clear that the generalized force vector includes the centrifugal force provided by the disc 

eccentricity, two components of rub-impact force, and three particular additional excitations. It 

should be noted that these additional excitations are determined by the initial offset of the nonlinear 

vibration absorber. 

2.4 Rotor-casing model in the absence of nonlinear vibration absorber 

To reveal the vibration reduction effect brought about by the nonlinear vibration absorber, a 

comparison of the vibration responses of the rotor-casing system with and without absorber is 

conducted. So the dynamic model of the rotor-casing system in the absence of nonlinear vibration 

absorber is set up in this section. 

Through the similar derivation just like in section 2.3, the governing equations of motion of the 

rotor-casing system without absorber are written as 
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In this case, there will be five degrees of freedom in the system. And then the generalized 



displacement vector is changed to 
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At the same time, the mass, damping and stiffness matrices of the rotor-casing system in the 

absence of the absorber take the following forms: 
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When the nonlinear vibration absorber is not considered in the system, the particular additional 

excitations given in Eq. (31) will disappear. Then the expression of the new generalized force vector 

is 
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From Eqs. (32)-(37), it can be seen that the dynamic model of the system without the nonlinear 

vibration absorber is very similar to that given in [53], in which the accuracy of the theoretical model 

has been verified by the vibration experiment performed on a rotor test rig. In other words, the 

dynamic model proposed in this paper is valid and could be used in the following numerical 

simulation. 



3. Vibration characteristic without nonlinear vibration absorber 

Due to several strong nonlinear factors (i.e., pedestal looseness and blade-casing rub), it is 

impossible to determine the dynamic characteristics of the rotor system using an analytical method. 

Therefore, the Runge-Kutta method is used in the dynamics simulation, in which the linear 

interpolation method is utilized to estimate the occurrence of rub-impact fault. Meanwhile, the time 

integration step is set to  2 1000  . The main structural parameters used in this paper are given in 

the Appendix. 

In order to fully understand the vibration characteristics of the rotor-casing system without 

nonlinear vibration absorber, a sweep frequency analysis is conducted in advance, where the 

frequency range is  100,  300  rad/s  . The influences of the geometrical nonlinearity of the shaft 

and the pedestal looseness on the amplitude-frequency curves are shown in Fig. 6, in which the 

horizontal axis represents the rotational speed and the vertical axis represents the vertical 

displacement of disc. 

When the nonlinear factors involved in the system are put on the back burner, the resonant 

frequency of the system is 149 rad/s  . According to the linear vibration theory, it is mainly 

determined by the structural linear stiffness Lk , disc mass dm  and imbalance mass em . On this 

basis, the influence of geometrical nonlinearity is further analysed. Due to the additional geometrical 

nonlinear stiffness k , the resonant frequency increases from 149 rad/s  to 160 rad/s , as shown in 

Fig. 6(a). Therefore, it may be not accurate to predict the critical speed only by the linear stiffness 

and the mass of the system when the serious whirling motion occurs. 

Next the comparison of the amplitude-frequency curve of the system without and with pedestal 

looseness is accomplished. The looseness fault could immediately weaken the constraint stiffness of 

the pedestal, which further leads to increase of vibration amplitude. Fig. 6(b) shows the change of 

amplitude-frequency curve of the rotor system with or without pedestal looseness. The resonant 

frequency decrease from 160 rad/s   to 152 rad/s  . Meanwhile, the resonant amplitude of disc 

increases from 4.53 mm  to 5.87 mm . 

  

(a) without and with geometrical nonlinearity (b) without and with pedestal looseness 

Fig. 6. Amplitude-frequency curve of the system: (a) without and with geometrical nonlinearity, and 

(b) without and with pedestal looseness. 



For the above response peaks of four conditions, the time histories of vertical displacement of 

disc are introduced for analyzing the vibration characteristics of the system. As shown Fig. 7, the 

regular 1T-periodic motion is observed in the vibration response of the system. However, due to 

pedestal looseness, the increase of vibration amplitude by 22.8 %  is extremely unfavorable for the 

safe operation of rotating machinery. 

  

(a) with and without geometrical nonlinearity (b) with and without pedestal looseness 

Fig. 7. Time histories of vertical displacement of disc: (a) with and without geometrical nonlinearity, 

and (b) with and without pedestal looseness. 

The pedestal looseness not only aggravates the whirling motion of the rotor system, but also 

makes the blade-casing rub happen more easily. Therefore, it is of significance to further investigate 

the vibration response of the system subjected to pedestal looseness and blade-casing rub. When the 

rub-impact fault happens, the rotor system and the casing are coupled, which may lead to more 

complicated motion to some extent. 

When the rotational speed is 152 rad/s  , the dynamic responses of the rotor-casing system 

having coupled fault are shown in Fig. 8. Since that the imbalance force is much larger than the 

rub-impact force, the rotor system remains regular 1T-periodic motion, as shown in Fig. 8(a). From 

the whirling orbit of the system, it can be seen that rub-impact fault only occurs at the position of 

non-uniform initial gap. The fault form is recognized as partial one. As a result, the pulse-like motion 

of casing and pulse-like impact force can be observed in Fig. 8(c) and (d). Since the rotor system and 

the casing are closely coupled, the pedestal looseness will not only aggravate the disc vibration, but 

also enhance the casing vibration. Meanwhile, the resultant impact force increases and becomes 

more intensive. The main reason is that the pedestal looseness causes the blades to collide with the 

casing in several places, such as the first zone and the second zone. 

Keeping the other parameters used in Table 1 unchanged, the rotational speed of the rotor 

system is reset to 143 rad/s  , which means that the working state of the system is far away from 

the resonance region. Accordingly, the dynamic characteristics of the system are shown in Fig. 9. For 

the case of no pedestal looseness, the whirling amplitude of the disc is smaller than the initial gap. 

Therefore, the blade-casing rub will not happen at this speed. The rotor and the casing are not 

coupled together, so the casing is in a stationary state. In the presence of the looseness fault, the 

whirling amplitude of the disc is synchronously intensified. For this reason, the blades and the casing 

have a slight collision in the non-uniform gap, that is, the first rub zone. Then the pulse-like motion 



of casing and the pulse-like impact force with small amplitude are also found in Fig. 9(c) and (d). 

The above dynamic phenomena suggest that the existence of the pedestal looseness will not only 

aggravate the rub-impact degree, but also cause it to occur at a lower speed. 

  

(a) time histories of vertical displacement of disc (b) whirling orbit of disc 

  

(c) time histories of vertical displacement of 

casing 

(d) resultant impact force of disc 

Fig. 8. Dynamic response of the rotor-casing with imbalance-looseness-rub coupled fault at 

152 rad/s  : (a) time histories of vertical displacement of disc, (b) whirling orbit of disc, (c) time 

histories of vertical displacement of casing, and (d) resultant impact force of disc. 

 

  

(a) time histories of vertical displacement of disc (b) whirling orbit of disc 



  

(c) time histories of vertical displacement of 

casing 

(d) resultant impact force of disc 

Fig. 9. Dynamic response of the rotor-casing system with imbalance-looseness-rub coupled fault at 

143 rad/s  : (a) time histories of vertical displacement of disc, (b) whirling orbit of disc, (c) time 

histories of vertical displacement of casing, and (d) resultant impact force of disc. 

To sum up, blade-casing and pedestal looseness have a potential threat to the safe operation of 

rotating machinery. The effective vibration suppression of the system, especially in the resonance 

region, is one of the important measures for realizing the smooth operation of the faulty system. This 

is of great significance in the actual aviation industry. 

4. Vibration mitigation of the rotor system 

Next this section focuses on the vibration reduction of the faulty system by means of the 

nonlinear vibration absorber, in which the displacement of disc and loose pedestal, and the impact 

force of blades are emphasized. In this way, it is expected to alleviate the damage of coupled fault 

and improve the stability of the system. 

4.1 Parameter optimization of nonlinear vibration absorber 

In order to reduce the resonant amplitude at the critical speed, the parameters of the nonlinear 

vibration absorber are firstly optimized. For convenient analysis, two coefficients k  and m  are 

adopted to describe the changes of the stiffness and the mass of the absorber, namely 
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According to some publications [33, 54, 55], the ranges of these two coefficients are set to 

 k 1:1: 20   and  m 1:1: 20  , respectively. Then the governing equations of motion of the rotor 

system (i.e., Eq. (26)) are numerically solved under different coefficients k  and m . 

Then the control parameters are optimized in the four cases of installation angle, including

0 rad  , 8  rad  , 3 4  rad  , and  rad  . During the optimization process, the 

absorber mass varies from d0.0005m  to d0.01m  with an increase step size of d0.0005m . The 

nonlinear stiffness of the absorber varies from L0.05k  to Lk  with an increase step size of 

L0.05k . For each pair of absorber mass and absorber stiffness, the maximum vertical vibration 



amplitude of the disc at the resonant speed is obtained, as shown in Fig. 10, in which the different 

colours indicate the different amplitudes. In order to compare the response differences caused by the 

nonlinear vibration absorber, the grey plane is added in Fig. 10 for representing the maximum 

vertical vibration amplitude of the disc without the absorber. It is clear that the nonlinear vibration 

absorber sometimes suppress the system vibration but sometimes not. The main reason is that when 

the control parameters are not appropriate, the absorber may play a detrimental role like the disc 

eccentricity, which further intensifies the whirling response of the system. On the contrary, by 

selecting appropriate parameters, the absorber could make the vibration energy transfer from the 

main system to the subsystem, achieves vibration reduction. 

Therefore, according to effective area for optimization, the installation angle of the nonlinear 

vibration absorber is set to   . Meanwhile, the pair of the absorber mass and the absorber 

stiffness is m 3   and k 2  . After obtaining the absorber parameters, the vibration control of the 

system will be performed in the following part. 

  

(a) 0 rad   (b)  rad
8


   

  

(c) 
3

 rad
4


   (d)  rad   

Fig. 10. Optimization results of the rotor system with different installation angle of nonlinear 

vibration absorber: (a) 0 rad  , (b)  rad
8


  , (c) 

3
 rad

4


  , and (d)  rad  . 

4.2 Vibration characteristic of the system with nonlinear vibration absorber 



At the beginning, the blade-casing rub in the presence of non-uniform gap is temporarily 

ignored. Then by employing the nonlinear vibration absorber, the research on vibration mitigation of 

the rotor-casing system subjected to imbalance-looseness coupled is conducted. 

As the rotational speed changes from 100  to 300 rad/s , where the first critical speed is 

located, the vibration amplitude-frequency responses of the system without and with the nonlinear 

vibration absorber are depicted in Fig. 11. Due to the existence of the absorber, part of the vibration 

energy of the main system is transferred. Therefore, the vibration mitigation of the disc in resonant 

state reaches 49% . Meanwhile, the vibration amplitude of the disc in non-resonant state is 

effectively reduced as well.  

The comparison of vertical vibration responses of the pedestal without and with the absorber is 

shown in Fig. 11(b). Obviously, the nonlinear vibration absorber can effectively reduce the vibration 

amplitude of the pedestal. More specifically, the maximum amplitude of the pedestal is limited to at 

least 45%  of that of the pedestal without the absorber. The main reason is that the loose pedestal 

and the disc are closely coupled by the nonlinear restoring force of the shaft. When the vibration 

displacement of the disc is affected by the absorber, that of the loose pedestal will also be reduced. 

The above phenomena reveal the nonlinear vibration absorber could mitigate the damage caused by 

the looseness fault to some extent. 

  
(a) response comparison of disc without and with 

nonlinear vibration absorber 

(b) response comparison of pedestal without and 

with nonlinear vibration absorber 

Fig. 11. Vibration amplitude-frequency responses of the system: (a) response comparison of disc 

without and with nonlinear vibration absorber, and (b) response comparison of pedestal without and 

with nonlinear vibration absorber. 

To further understand the vibration behavior of disc and loose pedestal, the time histories of 

vertical displacement of them without and with nonlinear vibration absorber are shown in Fig. 12. It 

is clear that the disc at resonant state remains the 1T-periodic motion, but the vibration amplitude is 

indeed reduced by the absorber. Since the looseness fault leads to the piecewise form of constraint 

stiffness, the vibration response of the pedestal appears more complicated. Similarly, the motion 

pattern of the pedestal is not obviously affected by the absorber, but the vibration amplitude is 

reduced as well. 



  
(a) disc without and with nonlinear vibration 

absorber 

(b) loose pedestal without and with nonlinear 

vibration absorber 

Fig. 12. Time histories of vertical displacement of the system in resonance state: (a) disc without and 

with nonlinear vibration absorber, and (b) pedestal without and with nonlinear vibration absorber. 

  

(a) disc without and with nonlinear vibration 

absorber 

(b) loose pedestal without and with nonlinear 

vibration absorber 

Fig. 13. Time histories of vertical displacement of the system at 250 rad/s  : (a) disc without and 

with nonlinear vibration absorber, and (b) loose pedestal without and with nonlinear vibration 

absorber. 

Then the rotational speed of the rotor system is adjusted to 250 rad/s  , which is far away 

from the resonant vibration region. And the time histories of vertical displacement of disc and loose 

pedestal are given in Fig. 13. According to a similar mechanism of targeted energy transfer, the 

vibration amplitude of the disc decreases from 0.28 mm  to 0.03 mm . Also due to the coupled 

relation between disc and pedestal, the effective reduction of vibration amplitude of pedestal is 

accomplished. Through the study of the system response in resonant and non-resonant regions, it is 

further confirmed that the nonlinear vibration absorber could effectively work in a wide frequency 

range. 

Based on the above analysis, the inner relation between the nonlinear vibration absorber and the 

dynamic response of the system having imbalance-looseness-rub coupled fault is further studied. It 

can be seen from Figs. 14(a) and (b) that the whirling amplitude of disc sharply decreases in the 

presence of absorber. This amplitude is only larger than the initial gap at the non-uniform position, 

and in other cases, it is much smaller than the initial gap. Therefore, the slight partial rub happens 



between blades and casing, which causes the pulse-like motion with small amplitude of casing. It is 

also due to the partial rub that the impact force is expressed in the form of pulse, as shown in Fig. 

14(d). To sum up, the absorber could weaken the blade-casing rub in the presence of non-uniform 

gap, including impact severity and impact frequency. 

  

(a) time histories of vertical displacement of disc (b) whirling orbit of disc 

  

(c) time histories of vertical displacement of 

casing 

(d) resultant impact force of disc 

Fig. 14. Considering nonlinear vibration absorber or not, the dynamic response of the rotor-casing 

system with imbalance-looseness-rub coupled fault at resonant state: (a) time histories of vertical 

displacement of disc, (b) whirling orbit of disc, (c) time histories of vertical displacement of casing, 

and (d) resultant impact force of disc. 

The exciting force induced by the mass imbalance is a major source of rotor vibration in field, 

so it is necessary to analyse the effect of disc eccentricity on the dynamic characteristics of the 

system with the above coupled fault. In the end, the different disc eccentricities are taken to discuss 

the change law of vibration response and impact force. 

For convenient analysis, two variables k  and m  are defined to describe the different cases 

of rotational speed and disc eccentricity, namely 
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where the ranges of the two variables are set to  c 5:1: 21   and  m 1:1: 21  , respectively. 

Then considering the effect of pedestal looseness, the dynamic characteristics of the system 



without and with nonlinear vibration absorber are calculated under the different rotational speeds and 

disc eccentricities, as shown in Fig. 15. According to the vibration theory, the maximum vibration 

amplitude of the disc always happens at the resonant rotational speed. Meanwhile, due to the grow of 

disc eccentricity, the centrifugal force acting on the system tends to increase. So the vertical vibration 

amplitude of the disc in resonant state increases from 1.68 mm  to 8.47 mm . 

On this basis, the nonlinear vibration absorber is introduced to the system for reducing the 

vibration amplitude. With the same growth of disc eccentricity, the vibration amplitude of disc 

changes from 0.69 mm  to 4.97 mm . This illustrates that the absorber can effectively suppress the 

vibration of the disc, regardless of the level of disc eccentricity. Moreover, considering that the 

motion of the pedestal and the disc are coupled with each other, it is necessary to discuss the effect of 

nonlinear vibration absorber on the pedestal vibration. By comparing Fig. 15(c) with Fig. 15(d), it is 

clear that the nonlinear vibration absorber can reduce the vibration amplitude of pedestal in a wider 

range of disc eccentricity. 

  

(a) disc without absorber (b) disc with absorber 

  

(c) pedestal without absorber (d) pedestal with absorber 

Fig. 15. Vibration displacement of the system having pedestal looseness under different disc 

eccentricities and rotational speeds: (a) disc without absorber, (b) disc with absorber, (c) pedestal 

without absorber and (d) pedestal with absorber. 

At last, both pedestal looseness and blade-casing rub are taken into account. In the same range 

of parameters (see Eq. (39)), the effect of nonlinear vibration absorber on the dynamic characteristics 

of system is further investigated, including rub response and resultant impact force. As shown in Figs. 



16(a) and (b), the nonlinear vibration absorber can successfully control the rub response of the disc 

to a great extent. For example, when the disc eccentricity is 1 mm , the vibration amplitude of the 

disc is reduced by 31.2% . 

What is more, the inner relation between blade-casing rub and absorber is further revealed in the 

different conditions of rotational speed and disc eccentricity. The whirling amplitude of the disc is an 

important basis for judging whether rub-impact fault happens. When there is a small eccentricity at 

the disc, with the contribution of nonlinear vibration absorber, the whirling amplitude of the disc is 

smaller than the non-uniform initial gap. Under this circumstance, the absorber can prevent the 

blades and the casing from rubbing. Even if there is a large imbalance happening at the disc, through 

the absorber, the resultant impact force can decrease from 5558 N  to 1959 N . 

The above analysis confirms that the nonlinear vibration absorber can suppress the nonlinear 

vibration of the rotor-casing system with coupled fault under different work conditions. It can also 

hinder the occurrence of faults to some extent. 

  

(a) displacement of disc without absorber (b) displacement of disc with absorber 

  

(c) impact force of disc without absorber (d) impact force of disc with absorber 

Fig. 16. Vibration displacement and resultant impact force of the system having 

imbalance-looseness-rub coupled fault under different disc eccentricities and rotational speeds: (a) 

displacement of disc without absorber, (b) displacement of disc with absorber, (c) impact force of 

disc without absorber, and (d) impact force of disc with absorber. 

5. Conclusions 



Taking a rotor-casing system having imbalance-looseness-rub coupled fault as the object, a 

nonlinear vibration absorber is utilized to investigate the vibration mitigation in this paper. By 

employing the Lagrange’s equation, the equations of motion in the presence and absence of the 

absorber are respectively derived. In the derivation, several key nonlinear factors are considered, 

such as the geometrical nonlinearity of the shaft caused by whirling motion with large amplitude and 

the support nonlinearity caused by looseness. For contact analysis, due to the coating inhomogeneity, 

the initial gap between the blades and the casing is non-uniform rather than ideally uniform. The 

equations of motion of the system are numerically solved and the dynamic characteristics of the 

system without and with the absorber are analysed in terms of amplitude-frequency curve, time 

history of vibration displacement, whirling orbit and colour contour plot. Moreover, the influences of 

the nonlinear vibration absorber on the blade-casing rub and the pedestal looseness are discussed as 

well. According to the numerical results, the following conclusions can be obtained. 

(1) The nonlinearity of the shaft and the pedestal looseness could directly affect the resonant 

characteristic of the system. The whirling amplitude of the system is sharply amplified by the 

pedestal looseness. 

(2) The pedestal looseness not only raises the possibility of blade-casing rub, but also 

aggravates the severity of rub-impact, which is extremely detrimental to the safe operation of 

rotating machinery. 

(3) In a wide frequency range, where the first critical speed is located, the nonlinear vibration 

absorber can effectively suppress the nonlinear vibration of rotor-casing system. At the same time, 

the absorber can hinder the possible damage caused by blade-casing rub and pedestal looseness to a 

great extent. 

(4) For different cases of disc eccentricity, the vibration displacement of the system is reduced 

by the nonlinear vibration absorber. Based on the impact force, the absorber can even prevent the 

occurrence of rub-impact in some work conditions. 

In general, by means of passive control strategy, the complex nonlinear vibration is restrained 

into regular periodic motion. This is just from the perspective of nonlinear mechanics, which 

provides a theoretical support for the smooth operation of aero engines. 
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Appendix A 

Table 1 Main parameters of a rotor-casing system 

Physical parameter Variable Value 

Equivalent mass of disc with blades (kg) dm  58.3613 



Eccentric mass of disc (kg) em  29.1807 

Mass of casing (kg) cm  11.6723 

Mass of loose pedestal (kg) pm  58.3613 

Length of shaft (mm) l  448.8 

Radius of shaft (mm) r  12.2 

Elastic modulus of shaft (GPa) E  210 

Structural damping of shaft (N.s/m) c  261.8 

Support stiffness of casing (MN/m) ck  20 

Support damping of casing (N.s/m) cc  2100 

Eccentricity of disc (mm) e  0.5 

Radius of disc (mm) dR  243.2 

Damping of nonlinear vibration absorber (N.s/m) Nc  26.18 

Initial offset of nonlinear vibration absorber (mm) 0r  12.2 

Stiffness of pedestal under the loose state (MN/m) p1k  10 

Damping of pedestal under the loose state (N.s/m) p1c  350 

Stiffness of pedestal under the locked state (MN/m) p2k  220 

Damping of pedestal under the locked state (N.s/m) p2c  500 

Initial loose gap of pedestal (mm) L  3 

Number of blades N  8 

Location of non-uniform gap (rad)   4   

Range of non-uniform gap (rad)   9   

Initial gap between blades and casing (mm) 0  5 

Maximum magnitude of non-uniform gap (mm) max   3 

Impact stiffness between blades and casing (MN/m) Ik  1 

Coefficient of friction   0.1 
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