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Abstract 36 

 37 

Results from the fully-, biogeochemically-, and radiatively-coupled simulations in which CO2 38 

increases at a rate of 1% per year (1pctCO2) from its pre-industrial value are analyzed to quantify 39 

the magnitude of two feedback parameters which characterize the coupled carbon-climate 40 

system. These feedback parameters quantify the response of ocean and terrestrial carbon pools 41 

to changes in atmospheric CO2 concentration and the resulting change in global climate. The 42 

results are based on eight comprehensive Earth system models from the fifth Coupled Model 43 

Intercomparison Project (CMIP5) and eleven models from the sixth CMIP (CMIP6). The 44 

comparison of model results from two CMIP phases shows that, for both land and ocean, the 45 

model mean values of the feedback parameters and their multi-model spread has not changed 46 

significantly across the two CMIP phases. The absolute values of feedback parameters are lower 47 

for land with models that include a representation of nitrogen cycle. The sensitivity of feedback 48 

parameters to the three different ways in which they may be calculated is shown and, consistent 49 

with existing studies, the most relevant definition is that calculated using results from the fully- 50 

and biogeochemically-coupled configurations. Based on these two simulations simplified 51 

expressions for the feedback parameters are obtained when the small temperature change in 52 

the biogeochemically-coupled simulation is ignored. Decomposition of the terms of these 53 

simplified expressions for the feedback parameters allows identification of the reasons for 54 

differing responses among ocean and land carbon cycle models. 55 

 56 

  57 
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 58 

1. Introduction 59 

  60 

The Earth system responds to the perturbation of its atmospheric CO2 concentration ([CO2]), 61 

caused by anthropogenic fossil fuel and land use change emissions of CO2 or any other forcing, 62 

via both changes in its physical climate and the biogeochemical carbon cycle. Changes in both 63 

the physical climate and the biogeochemical carbon cycle affect each other through multiple 64 

feedbacks. The surface-atmosphere exchange of CO2 over both land and ocean is modulated by 65 

the changes in physical climate and [CO2], and the resulting changes in [CO2] modulates the 66 

physical climate, among other climate forcings.  67 

 68 

The response of the Earth’s carbon cycle for both land and ocean components has been 69 

characterized in terms of carbon-concentration and carbon-climate feedback parameters which 70 

quantify their response to changes in [CO2] and the physical climate, respectively (Friedlingstein 71 

et al., 2006; Arora et al., 2013a). The carbon-concentration feedback (𝛽𝛽) quantifies the response 72 

of the carbon cycle to changes in [CO2] and is expressed in units of carbon uptake or release per 73 

unit change in [CO2] (PgC ppm–1). The carbon-climate feedback (𝛾𝛾) quantifies the response of the 74 

carbon cycle to changes in physical climate and is expressed in units of carbon uptake or release 75 

per unit change in global mean temperature (PgC °C–1). The changes in physical climate, in this 76 

framework, are expressed simply in terms of changes in global mean near surface air 77 

temperature although, of course, the carbon cycle also responds to other aspects of changes in 78 

climate (in particular precipitation over land and circulation changes in the ocean). The 79 
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assumption is that the effect of other aspects of changes in climate on the carbon cycle can be 80 

broadly expressed in terms of changes in near surface air temperature. These feedback 81 

parameters can be calculated from Earth system model (ESM) simulations globally, separately 82 

over land and ocean, regionally, or over individual grid cells (which makes somewhat more sense 83 

over land than over ocean) to investigate their geographical distribution (Friedlingstein et al., 84 

2006; Yoshikawa et al., 2008; Boer and Arora, 2010; Tjiputra et al., 2010; Roy et al., 2011; Arora 85 

et al., 2013a). The feedback analysis has shown that the carbon-concentration feedback is 86 

negative from the atmosphere’s perspective. That is, an increase in [CO2] leads to an increased 87 

carbon uptake by land and ocean which leads to a decrease in [CO2] thereby slowing CO2 88 

accumulation in the atmosphere. The carbon-climate feedback, in contrast, has been shown to 89 

be positive in ESM simulations (at the global scale) from the atmosphere’s perspective since an 90 

increase in temperature decreases the capacity of land and ocean to take up carbon, thereby 91 

contributing to a further increase in atmospheric CO2. 92 

 93 

The carbon-concentration and carbon-climate feedback parameters serve several purposes. 94 

First, these feedback parameters allow comparison of models in a simple and straightforward 95 

manner despite their underlying complexities and different model structures. Inter-model 96 

comparisons, of course, offer several benefits as has been shown for multiple model 97 

intercomparison projects (MIPs). Second, they allow the quantification of the contribution of the 98 

two feedback processes to allowable anthropogenic emissions for a given CO2 pathway. For 99 

example, Arora et al. (2013) and Gregory et al. (2009) showed that the contribution of the carbon-100 

concentration feedback to allowable diagnosed emissions is about 4-4.5 times larger than the 101 
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carbon-climate feedback. Third, they allow the comparison of feedbacks between climate and 102 

the carbon cycle to other feedbacks operating in the climate system as was done by Gregory et 103 

al. (2009). Fourth, the feedback parameters can be considered as emergent properties of the 104 

coupled carbon-cycle climate system which can potentially be constrained by observations as 105 

Wenzel et al. (2014) attempted for the carbon-climate feedback parameter over land. 106 

 107 

Here, we build on the work done in earlier studies that compared the strength of the carbon-108 

concentration and carbon-climate feedback in coupled general circulation models with land and 109 

ocean carbon cycle components. Friedlingstein et al. (2006) (hereafter F06) reported the first 110 

such results from the Coupled Climate Carbon Cycle Models Intercomparison Project (C4MIP). 111 

Arora et al. (2013) (hereafter A13) compared the strength of the carbon-concentration and 112 

carbon-climate feedbacks from models participating in the fifth phase of the Coupled Model 113 

Intercomparison Project (CMIP5, http://cmip-pcmdi.llnl.gov/cmip5/forcing.html, Taylor et al. 114 

(2012)). The A13 study found that the strength of the two feedbacks was weaker and the spread 115 

between models was smaller in their study than in F06. While this comparison is useful, the 116 

primary caveat when comparing results between these two studies is that their results are based 117 

on different scenarios. The results from the F06 study were based on the SRES A2 emissions 118 

scenario, while those in the A13 study were based on the 1% per year increasing CO2 experiment 119 

in which the atmospheric CO2 concentration increases from its pre-industrial value of around 285 120 

ppm until it quadruples over a 140-year period (referred to as the 1pctCO2 experiment in the 121 

framework of the Coupled Model Intercomparison Project, CMIP). The absolute values of the 122 

feedback parameters are known to be dependent on the state of the system, the timescale of 123 
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forcing (i.e. underlying emissions/concentration scenario) and the approach used to calculate 124 

them (Plattner et al., 2008; Gregory et al., 2009; Boer and Arora, 2010; Zickfeld et al., 2011; 125 

Hajima et al., 2014). The varying approaches employed over the past decade have made the 126 

cross-comparison of feedbacks among the studies and different generations of Earth System 127 

Models difficult. 128 

 129 

In order to address the diversity of approaches to diagnose climate carbon cycle feedbacks, and 130 

to promote a robust standard moving forward, the C4MIP community has endorsed a framework 131 

of tiered experiments (Jones et al., 2016) that builds upon the core preindustrial control and 132 

1pctCO2 experiments performed as part of the CMIP DECK (Diagnostic, Evaluation and 133 

Characterization of Klima) experiments (Eyring et al., 2016). Here, we compare carbon-134 

concentration and carbon-climate feedbacks from models participating in the C4MIP (Jones et al., 135 

2016) contribution to the sixth phase of CMIP (CMIP6, Eyring et al., 2016). To maintain continuity 136 

and consistency, feedback parameters are derived from the 1pctCO2 experiments as was done 137 

in A13.  The 1pctCO2 experiment is a DECK  experiment in the CMIP6 framework. All participating 138 

modelling groups are expected to perform DECK experiments to help document basic 139 

characteristics of models across different phases of CMIP (Eyring et al., 2016). 140 

 141 

2. Feedbacks in the coupled climate-carbon system  142 

 143 

We largely follow the climate carbon cycle feedbacks framework presented in A13 (which in turn 144 

was built on F06) but with some additional modifications that are explained below. Only the 145 
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primary equations are presented here while the bulk of the framework is summarized in the 146 

Appendix for completeness. We also provide some history of how the carbon feedbacks analysis 147 

reached its current stage.  148 

 149 

Carbon feedbacks analysis is traditionally based on simulations run with fully-, radiatively-, and 150 

biogeochemically-coupled model configurations of an Earth system model. The objective of these 151 

simulations is to isolate feedbacks discussed above. In a biogeochemically-coupled simulation 152 

(referred to here as the BGC simulation), biogeochemical processes over land and ocean respond 153 

to increasing atmospheric CO2 while the radiative transfer calculations in the atmosphere use a 154 

CO2 concentration that remains at its preindustrial value. Small climatic changes occur in the BGC 155 

simulation due to changes in evaporative (or latent heat) flux resulting from stomatal closure 156 

over land (associated with increasing [CO2]), changes in vegetation structure, and changes in 157 

vegetation coverage and composition (in models which dynamically simulate competition 158 

between their plant functional types) all of which affect latent and sensible heat fluxes at the 159 

land surface. In a radiatively-coupled simulation (referred to here as the RAD simulation) 160 

increasing atmospheric CO2 affects the radiative transfer processes in the atmosphere and hence 161 

climate but not the biogeochemical processes directly over land and ocean, for which the 162 

preindustrial value of atmospheric CO2 concentration is prescribed. In a fully-coupled simulation 163 

(referred to here as the COU simulation) both the biogeochemical and the radiative processes 164 

respond to increasing CO2.  165 

 166 
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Following the F06 methodology which uses time-integrated fluxes (which are the same as the 167 

changes in carbon pool sizes), the changes in land (L) or ocean (O) carbon pools (∆𝐶𝐶𝑋𝑋 ,𝑋𝑋 = 𝐿𝐿,𝑂𝑂) 168 

can be expressed using three equations corresponding to the BGC, RAD, and COU experiments, 169 

as shown in equation (1) (see also the Appendix).  170 

 171 

Radiatively coupled simulation                            ∆𝐶𝐶𝑋𝑋+ = ∫𝐹𝐹𝑋𝑋+ 𝑑𝑑𝑑𝑑 = 𝛾𝛾𝑋𝑋𝑇𝑇+                                     (1a) 172 

Biogeochemically coupled simulation                ∆𝐶𝐶𝑋𝑋∗ = ∫𝐹𝐹𝑋𝑋∗ 𝑑𝑑𝑑𝑑 = 𝛽𝛽𝑋𝑋𝑐𝑐′ + 𝛾𝛾𝑋𝑋𝑇𝑇∗                          (1b) 173 

Fully coupled simulation                                      ∆𝐶𝐶𝑋𝑋′ = ∫𝐹𝐹𝑋𝑋′ 𝑑𝑑𝑑𝑑 = 𝛽𝛽𝑋𝑋𝑐𝑐′ + 𝛾𝛾𝑋𝑋𝑇𝑇′                           (1c)  174 

 175 

where 𝐹𝐹+, 𝐹𝐹∗, and  𝐹𝐹′ are the CO2 flux changes (PgC year–1), ∆𝐶𝐶𝑋𝑋+, ∆𝐶𝐶𝑋𝑋∗, and  ∆𝐶𝐶𝑋𝑋′  the changes in 176 

global carbon pools (PgC), and 𝑇𝑇+, 𝑇𝑇∗, and 𝑇𝑇′ the temperature changes (°C) in the RAD, BGC, and 177 

COU simulations, respectively, and the subscript 𝑋𝑋 = 𝐿𝐿,𝑂𝑂 refers to either the land or ocean 178 

model components. 𝑐𝑐′ is the change in [CO2]. . Here and elsewhere uppercase 𝐶𝐶 is used to denote 179 

pools and lowercase 𝑐𝑐 is used to denote atmospheric CO2 concentration, [CO2]. All changes are 180 

defined relative to a pre-industrial equilibrium state represented by the pre-industrial control 181 

simulation. In the context of a specified-concentration simulation (the 1pctCO2 experiment in 182 

our case), 𝑐𝑐′ is the same in BGC and COU simulations. There is no 𝛽𝛽𝑋𝑋𝑐𝑐′ term in the RAD simulation 183 

since the biogeochemistry sees pre-industrial value of [CO2] and therefore 𝑐𝑐′ = 0 although 𝑇𝑇+ is 184 

a function of increasing 𝑐𝑐′ that is seen only by the radiative transfer calculations.  185 

 186 

These equations assume linearization of the globally integrated surface-atmosphere CO2 flux (for 187 

land and ocean components) in terms of global mean temperature and [CO2] change (compared 188 
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to a pre-industrial control run) and serve to define the carbon-concentration (𝛽𝛽𝑋𝑋) and carbon-189 

climate (𝛾𝛾𝑋𝑋) feedback parameters. A similar set of equations can be written that define the 190 

instantaneous values of the feedback parameters and is based on fluxes rather than their time-191 

integrated values (see equations A4 and A5 in the appendix). Both the time-integrated flux and 192 

instantaneous flux based versions of the feedback parameters evolve over time as shown in A13. 193 

 194 

There are several different ways in which the feedbacks (𝛽𝛽𝑋𝑋   and 𝛾𝛾𝑋𝑋) in a coupled climate and 195 

carbon cycle system may be evaluated: 1) the experiments may use specified (concentration-196 

driven) or freely evolving (emissions-driven) [CO2], 2) any two of the three configurations of an 197 

experiment (COU, RAD, and BGC) may be used to calculate the two feedback parameters, and 3) 198 

the experiment may be based on an idealized scenario (like the 1pctCO2 experiment) or a more 199 

realistic emissions scenario. In addition, the small temperature change in the BGC simulation, T*, 200 

may be ignored, and other external forcings such as nitrogen (N) deposition, or land use change, 201 

which directly affect carbon fluxes may or may not be taken into account. The original framework 202 

proposed by F06 used COU and BGC versions (referred to as coupled and uncoupled in the F06 203 

study) of an emissions driven simulation for the SRES A2 scenario. The F06 framework assumed 204 

that the small temperature change in the BGC simulation can be ignored. A13 used BGC and RAD 205 

versions of the 1pctCO2 experiment in which the evolution of [CO2] is specified and took into 206 

account the small global mean temperature change in the BGC simulation.  207 

 208 

With regard to the use of concentration-driven versus emissions-driven simulations, Gregory et 209 

al. (2009) recommended the use of specified concentration simulations, which ensures 210 
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consistency of [CO2] across models, and this recommendation has now been adopted since 211 

CMIP5. C4MIP has also adopted the use of the 1pctCO2 simulation, i.e., an idealized scenario is 212 

preferred over a more realistic scenario. This recommendation was also made by Gregory et al. 213 

(2009). The 1pctCO2 experiment provides an ideal experiment to compare carbon-climate 214 

interactions across models as the experiment does not include the confounding effects of other 215 

climate forcings (including land use change, non-CO2 greenhouse gases, and aerosols) and is a 216 

CMIP DECK experiment, as mentioned earlier.  217 

 218 

Using equation (1) as an example, Table 1 shows how any two combinations of the three 219 

configurations of an experiment can be used to calculate the values of the two feedback 220 

parameters. The A13 study showed that under the assumption of a linear system and if the 221 

conditions *FFF +=′ + and *TTT +=′ +  are met, i.e. if the sum of flux and temperature changes 222 

in the RAD and BGC simulations is the same as that in the COU simulation, then all approaches 223 

yield exactly the same solution. However, this is not the case because of the non-linearities 224 

involved (see also Schwinger et al., 2014).  225 

 226 

The use of BGC and RAD simulations that have only biogeochemistry or radiative forcing 227 

responding to increases in [CO2] to find the feedback parameters is attractive since these 228 

simulations were designed to isolate the feedbacks. In the RAD simulation (whose purpose is to 229 

quantify the carbon-climate feedback, 𝛾𝛾𝑋𝑋) the pre-industrial global carbon pools for both land 230 

and ocean typically decrease in response to an increase in global temperature (hence the positive 231 

carbon-climate feedback and the negative value of 𝛾𝛾𝑋𝑋). Consequently, negative values of 𝛾𝛾𝑋𝑋 232 
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(positive carbon-climate feedback) are obtained when using the RAD-BGC and RAD-COU 233 

approaches (see Table 1). If, however, 𝛾𝛾𝑋𝑋 is determined using the BGC-COU approach, then 𝛾𝛾𝑋𝑋 is 234 

calculated using BGC and COU simulations in both of which the globally-summed carbon pools 235 

for land and ocean are increasing in response to increasing [CO2]. As a result, the calculated value 236 

of 𝛾𝛾𝑋𝑋 is different than that obtained using the RAD-BGC and RAD-COU approaches. In the ocean, 237 

the RAD simulation mainly measures the loss of near-surface carbon owing to warming of the 238 

surface ocean layer (Schwinger et al., 2014).  The RAD simulation misses the suppression of 239 

carbon drawdown to the deep ocean due to weakening ocean circulation, because there is no 240 

buildup of a strong carbon gradient from the surface to the deep ocean in contrast to the BGC 241 

and COU simulations.  Therefore, the absolute value of 𝛾𝛾𝑋𝑋 is smaller (less negative) when 242 

calculated using the RAD simulation (Schwinger et al., 2014). Over land, in the RAD simulation 243 

carbon is lost in response to increasing temperatures primarily due to an increase in 244 

heterotrophic respiration. However, an increase in temperature also potentially increases 245 

photosynthesis at high latitudes, and this increase compensates for carbon lost due to increased 246 

heterotrophic respiratory losses, especially in the presence of continuously increasing [CO2] seen 247 

in the COU configuration. These are some mechanisms that lead to non-linearities. Since the 248 

ongoing climate change (predominantly caused by increasing [CO2]) is best characterized by the 249 

COU simulation, it can be argued that feedback parameters are more representative when 250 

calculated using the BGC-COU approach. Here, we propose to use the COU and BGC 251 

configurations of an experiment as the standard set from which to calculate the feedback 252 

parameters as recommended in the C4MIP protocol (Jones et al., 2016). However, we also 253 

quantify the values of feedback parameters when using the RAD simulation for comparison. The 254 
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calculated values of the carbon-concentration feedback parameter (𝛽𝛽𝑋𝑋) in contrast, are less 255 

sensitive to the approach used as shown in A13.  256 

 257 

There is no broad consensus on whether temperature change in the BGC simulation should be 258 

assumed to be zero (𝑇𝑇∗ = 0) as standard practice when calculating the strengths of the 259 

feedbacks, as done in F06. While the globally-averaged value of 𝑇𝑇∗ is an order of magnitude 260 

smaller than 𝑇𝑇′, the spatial pattern of 𝑇𝑇∗ is quite different from that of 𝑇𝑇′. The spatial pattern of 261 

temperature change in the COU simulation (𝑇𝑇′) is dominated by radiative forcing of increased 262 

[CO2] with greater warming at high latitudes  and over land than over ocean. In contrast, the 263 

spatial pattern of temperature change in the BGC simulation (𝑇𝑇∗) is determined primarily by 264 

reduction in latent heat flux associated with stomatal closure as [CO2] increases which reduces 265 

transpiration from vegetation (Ainsworth and Long, 2005; Bounoua et al., 1999). This process 266 

leads to a much more spatially variable pattern of temperature change (than 𝑇𝑇′) and the 267 

associated changes in precipitation patterns due to soil moisture-atmosphere feedbacks 268 

(Chadwick et al., 2017; Skinner et al., 2017). The difference in spatial patterns of temperature 269 

and precipitation change in the RAD versus the COU simulation is another reason that the values 270 

of the carbon-climate feedback (𝛾𝛾𝑋𝑋) depend on the simulation used, and this is another pathway 271 

for non-linearities to occur. A complete analysis of the effect of differences in spatial patterns of 272 

climate change and the carbon state on the calculated value of 𝛾𝛾𝑋𝑋 when using the RAD versus 273 

the COU simulation, and if or not the assumption of 𝑇𝑇∗ = 0 should be a standard practice, is 274 

beyond the scope of this study but remains a topic for additional scientific investigation. In the 275 
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interim, we report here values of 𝛽𝛽𝑋𝑋 and 𝛾𝛾𝑋𝑋 by explicitly considering 𝑇𝑇∗but also assuming 𝑇𝑇∗ =276 

0.  277 

 278 

Following Table 1, when using results from the BGC and the COU versions of a specified-279 

concentration experiment the values of the feedback parameters are written as 280 

 281 

𝛽𝛽𝑋𝑋 = 1
𝑐𝑐′
�∆𝐶𝐶𝑋𝑋

∗𝑇𝑇′−∆𝐶𝐶𝑋𝑋
′ 𝑇𝑇∗

𝑇𝑇′−𝑇𝑇∗
�                                                             (2) 282 

𝛾𝛾𝑋𝑋 = ∆𝐶𝐶𝑋𝑋
′ −∆𝐶𝐶𝑋𝑋

∗

𝑇𝑇′−𝑇𝑇∗
                                                                  (3) 283 

 284 

Equations (2) and (3) may be rearranged to explicitly calculate the effect of the 𝑇𝑇∗ = 0 285 

assumption on calculated values of feedback parameters, as shown in equations (4) and (5). Here, 286 

the 𝑇𝑇∗ term is retained only in the second part of the equations whose contribution becomes 287 

zero when 𝑇𝑇∗ is ignored. 288 

 289 

𝛽𝛽𝑋𝑋 = ∆𝐶𝐶𝑋𝑋
∗

𝑐𝑐′
+ 1

𝑐𝑐′
��∆𝐶𝐶𝑋𝑋

′ −∆𝐶𝐶𝑋𝑋
∗ �𝑇𝑇∗

(𝑇𝑇′−𝑇𝑇∗) �                                                         (4) 290 

𝛾𝛾𝑋𝑋 = ∆𝐶𝐶𝑋𝑋
′ −∆𝐶𝐶𝑋𝑋

∗

𝑇𝑇′
+ �∆𝐶𝐶𝑋𝑋

′ −∆𝐶𝐶𝑋𝑋
∗ �𝑇𝑇∗

𝑇𝑇′(𝑇𝑇′−𝑇𝑇∗)                                                         (5) 291 

 292 

Finally, in regards to other external forcings such as nitrogen (N) deposition that directly affect 293 

carbon fluxes, the C4MIP protocol for CMIP6 (Jones et al., 2016) recommended performing 294 

additional simulations for BGC and COU versions of the 1pctCO2 experiment with time varying N 295 

deposition in addition to their standard versions which keep N deposition rates at their pre-296 

industrial level. Simulations with N deposition can only be performed for models that explicitly 297 
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model the N cycle and its interactions with the carbon (C) cycle. The rationale for recommending 298 

increasing N deposition, in conjunction with temperature and CO2 increase, is to be able to 299 

quantify the response of feedback parameters to this third forcing. However, here we restrict 300 

ourselves to the traditional analysis that considers the climate and CO2 forcings only. We do 301 

highlight, however, which models include coupled C-N cycle interactions over land. Analysis of 302 

runs with N deposition forcing is left for future studies. 303 

 304 

2.1. Reasons for differences in feedback parameters among models  305 

 306 

As shown later in this paper, the contribution of the second term involving 𝑇𝑇∗ in expressions for 307 

the carbon-concentration (𝛽𝛽𝑋𝑋) and carbon-climate (𝛾𝛾𝑋𝑋) feedback parameters (in equations 4 and 308 

5, when using the BGC-COU approach) is around 1% to 5%.  This allows to investigate reasons for 309 

differences in the feedback parameters across models as the expressions for the feedback 310 

parameters can be simplified in terms of the changes in the sizes of carbon pools (∆𝐶𝐶𝑋𝑋′  and ∆𝐶𝐶𝑋𝑋∗), 311 

the temperature change in the COU simulation (𝑇𝑇′) and the specified change in [CO2] (𝑐𝑐′) as 312 

follows. 313 

 314 

𝛽𝛽𝑋𝑋 ≈
∆𝐶𝐶𝑋𝑋

∗

𝑐𝑐′
                                                                         (6) 315 

𝛾𝛾𝑋𝑋 ≈
∆𝐶𝐶𝑋𝑋

′ −∆𝐶𝐶𝑋𝑋
∗

𝑇𝑇′
                                                                   (7) 316 

 317 

 318 

2.1.1 Land 319 
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 320 

Over land, equations (6) and (7) can be expanded to investigate, firstly, the contributions from 321 

changes in live vegetation pool (∆𝐶𝐶𝑉𝑉) and dead litter plus soil carbon pools (∆𝐶𝐶𝑆𝑆), to the strength 322 

of the feedback parameters, since ∆𝐶𝐶𝐿𝐿 = ∆𝐶𝐶𝑉𝑉 + ∆𝐶𝐶𝑆𝑆. Secondly, equation (6) can be further 323 

decomposed to gain insight into the reasons for differences across models, in a manner similar 324 

to Hajima et al. (2014). 325 

𝛽𝛽𝐿𝐿 ≈
∆𝐶𝐶𝐿𝐿∗

𝑐𝑐′
=
∆𝐶𝐶𝑉𝑉∗ + ∆𝐶𝐶𝑆𝑆∗

𝑐𝑐′
= �

∆𝐶𝐶𝑉𝑉∗

𝛥𝛥𝑁𝑁𝑁𝑁𝑁𝑁∗
 
𝛥𝛥𝑁𝑁𝑁𝑁𝑁𝑁∗

𝛥𝛥𝐺𝐺𝑁𝑁𝑁𝑁∗
 
∆𝐺𝐺𝑁𝑁𝑁𝑁∗

𝑐𝑐′ � + �
∆𝐶𝐶𝑆𝑆∗

∆𝑅𝑅ℎ∗
   
∆𝑅𝑅ℎ∗

Δ𝐿𝐿𝐹𝐹∗
 
Δ𝐿𝐿𝐹𝐹∗

𝑐𝑐′
� 327 

  = 𝜏𝜏𝑣𝑣𝑣𝑣𝑣𝑣Δ.𝐶𝐶𝐶𝐶𝐶𝐶Δ. ∆𝐺𝐺𝐺𝐺𝐺𝐺
∗

𝑐𝑐′
+ 𝜏𝜏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠Δ  ∆𝑅𝑅ℎ

∗

Δ𝐿𝐿𝐿𝐿∗
 Δ𝐿𝐿𝐿𝐿

∗

𝑐𝑐′
                               (8) 326 

𝛾𝛾𝐿𝐿 ≈
∆𝐶𝐶𝐿𝐿

′−∆𝐶𝐶𝐿𝐿
∗

𝑇𝑇′
= ∆𝐶𝐶𝑉𝑉

′−∆𝐶𝐶𝑉𝑉
∗

𝑇𝑇′
+ ∆𝐶𝐶𝑆𝑆

′−∆𝐶𝐶𝑆𝑆
∗

𝑇𝑇′
                                                                (9) 328 

The superscript * in equation (8) implies that the terms are calculated here using the BGC version 329 

of the 1pctCO2 experiment. In equation (8), 𝛥𝛥𝑁𝑁𝑁𝑁𝑁𝑁 and 𝛥𝛥𝐺𝐺𝑁𝑁𝑁𝑁 represent the change in net and 330 

gross primary productivity, Δ𝐿𝐿𝐹𝐹 the change in litterfall flux, and ∆𝑅𝑅ℎ the change in heterotrophic 331 

respiration, compared to the preindustrial control experiment. The multiplicative terms in 332 

equation (8) do indeed have some physical meaning although they are based on change in the 333 

magnitude of quantities as opposed to their absolute magnitudes. We note here explicitly that 334 

as such, these terms cannot be compared directly to the terms which are based on absolute 335 

magnitudes.  336 

The term  
 𝛥𝛥𝑁𝑁𝐺𝐺𝐺𝐺
 𝛥𝛥𝐺𝐺𝐺𝐺𝐺𝐺

  (fraction) is the fraction of GPP (above its pre-industrial value) that is turned into 337 

NPP after autotrophic respiratory losses are taken into account. We use the term carbon use 338 
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efficiency but subscripted by ∆ (𝐶𝐶𝐶𝐶𝐶𝐶Δ) to represent  
 𝛥𝛥𝑁𝑁𝐺𝐺𝐺𝐺
 𝛥𝛥𝐺𝐺𝐺𝐺𝐺𝐺

. The subscripted ∆ allows 𝐶𝐶𝐶𝐶𝐶𝐶Δ to be 339 

differentiated from 𝐶𝐶𝐶𝐶𝐶𝐶 as used in the existing literature (Choudhury, 2000) which represents 340 

the fraction of absolute GPP that is converted to NPP rather than its change over some time 341 

period, as well as the point that we consider globally-integrated rather than locally-derived 342 

quantities. Similarly, the term 
∆𝐶𝐶𝑉𝑉

 

𝛥𝛥𝑁𝑁𝐺𝐺𝐺𝐺  represents a measure of turnover or residence timescale of 343 

carbon in the vegetation pool (𝜏𝜏𝑣𝑣𝑣𝑣𝑣𝑣Δ, years). The term 
∆𝐺𝐺𝐺𝐺𝐺𝐺
𝑐𝑐′

  (PgC yr-1 ppm-1) is a measure of the 344 

strength of the globally-integrated CO2 fertilization effect. However, in the models that 345 

dynamically simulate changes in vegetation cover, the effect of changes in vegetation coverage is 346 

implicitly included in this term. The term 
∆𝐶𝐶𝑆𝑆

 

∆𝑅𝑅ℎ
  is a measure of the average residence time of carbon 347 

in the dead litter and soil carbon pools (𝜏𝜏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠Δ, years). However, as with CUE, this quantity cannot 348 

be compared directly to the residence time of carbon in the litter plus soil carbon pool calculated 349 

using the absolute values of 𝐶𝐶𝑆𝑆  and 𝑅𝑅ℎ . Nor can it be compared to the changes in carbon residence 350 

time due to the “false priming effect” associated with the increase in NPP inputs, as [CO2] 351 

increases, into the dead carbon pools (Koven et al., 2015).  
∆𝑅𝑅ℎ

 

Δ𝐿𝐿𝐿𝐿   (fraction) is a measure of the 352 

increase in heterotrophic respiration per unit increase in litterfall rate, and  
Δ𝐿𝐿𝐹𝐹 

𝑐𝑐′
  (PgC yr-1 ppm-1) 353 

indicates global increase in litterfall rate per unit increase in CO2, which in principle, should be 354 

close to the change in net primary productivity per unit increase in CO2, �𝐶𝐶𝐶𝐶𝐶𝐶Δ
∆𝐺𝐺𝐺𝐺𝐺𝐺
𝑐𝑐′

�. 355 

Comparison of these terms across models can potentially yield insight into the reasons for large 356 

differences in land carbon uptake across models. 357 

 358 
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2.1.2 Ocean 359 

 360 

The change in the ocean carbon inventory, ∆CO, is defined by an integral of the change in the 361 

dissolved inorganic carbon, ∆DIC, and density over the ocean volume, 362 

Δ𝐶𝐶𝑂𝑂 = 12 𝑔𝑔𝐶𝐶 𝑚𝑚𝑚𝑚𝑚𝑚−1 ∫ Δ𝐷𝐷𝐷𝐷𝐶𝐶 𝑑𝑑𝑑𝑑𝑉𝑉  × 10−15                                        (10) 363 

where ∆CO is in PgC, the ocean dissolved inorganic carbon, DIC in mol m-3 and the ocean volume 364 

V in m3, and the multiplier 10−15  converts g to Pg of carbon. 365 

To gain insight into how the ocean carbon distribution is controlled, the ocean dissolved inorganic 366 

carbon, DIC, may be defined in terms of separate carbon pools (Ito and Follows, 2005; Williams 367 

and Follows, 2011; Lauderdale et al., 2013; Schwinger and Tjiputra, 2018):  368 

𝐷𝐷𝐷𝐷𝐶𝐶 = 𝐷𝐷𝐷𝐷𝐶𝐶𝑝𝑝𝑝𝑝𝑣𝑣𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝𝑣𝑣𝑝𝑝                  +  𝐷𝐷𝐷𝐷𝐶𝐶𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟𝑣𝑣𝑝𝑝𝑟𝑟𝑟𝑟𝑣𝑣𝑝𝑝
         = 𝐷𝐷𝐷𝐷𝐶𝐶𝑠𝑠𝑟𝑟𝑟𝑟 +  𝐷𝐷𝐷𝐷𝐶𝐶𝑝𝑝𝑠𝑠𝑠𝑠𝑣𝑣𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑 + 𝐷𝐷𝐷𝐷𝐶𝐶𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟𝑣𝑣𝑝𝑝𝑟𝑟𝑟𝑟𝑣𝑣𝑝𝑝

                                      (11) 369 

where the preformed carbon, 𝐷𝐷𝐷𝐷𝐶𝐶𝑝𝑝𝑝𝑝𝑣𝑣𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝𝑣𝑣𝑝𝑝 , is the amount of carbon in a water parcel when in 370 

the mixed layer at the time of subduction, and the regenerated carbon, 𝐷𝐷𝐷𝐷𝐶𝐶𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟𝑣𝑣𝑝𝑝𝑟𝑟𝑟𝑟𝑣𝑣𝑝𝑝,  is the 371 

amount of dissolved inorganic carbon accumulated below the mixed layer due to biological 372 

regeneration of organic carbon. The preformed carbon is affected by the carbonate chemistry 373 

and ocean physics. To gain further insight into how close the ocean is to an equilibrium with the 374 

atmosphere, the preformed carbon, 𝐷𝐷𝐷𝐷𝐶𝐶𝑝𝑝𝑝𝑝𝑣𝑣𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝𝑣𝑣𝑝𝑝 , is further split into saturated, 𝐷𝐷𝐷𝐷𝐶𝐶𝑠𝑠𝑟𝑟𝑟𝑟 , and 375 

disequilibrium, 𝐷𝐷𝐷𝐷𝐶𝐶𝑝𝑝𝑠𝑠𝑠𝑠𝑣𝑣𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑 components. The saturated component represents the 376 

concentration in surface water fully equilibrated with the contemporary atmospheric CO2 377 
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concentration. The disequilibrium component represents the extent that surface water is 378 

incompletely equilibrated before subduction, which is affected by the strength of the ocean 379 

circulation altering the residence time in the mixed layer and the ocean ventilation rate. Each of 380 

these components is affected by the increase in atmospheric CO2 and the changes in climate. 381 

 382 

The change in the global ocean carbon inventory, ∆CO, relative to the preindustrial may then be 383 

related to the global volume integral of the change in each of these DIC pools,   384 

Δ𝐶𝐶𝑂𝑂 = Δ𝐶𝐶𝑝𝑝𝑝𝑝𝑣𝑣𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝𝑣𝑣𝑝𝑝                  +  Δ𝐶𝐶𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟𝑣𝑣𝑝𝑝𝑟𝑟𝑟𝑟𝑣𝑣𝑝𝑝
         = Δ𝐶𝐶𝑠𝑠𝑟𝑟𝑟𝑟 + Δ𝐶𝐶𝑝𝑝𝑠𝑠𝑠𝑠𝑣𝑣𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑 + Δ𝐶𝐶𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟𝑣𝑣𝑝𝑝𝑟𝑟𝑟𝑟𝑣𝑣𝑝𝑝

                                      (12) 385 

where ∆Cpreformed is the preformed carbon inventory, ∆Csat is the saturated carbon inventory,  386 

∆Cdisequilib is the disequilibrium carbon inventory and ∆Cregenerated is the regenerated carbon 387 

inventory.   388 

 389 

The simplified expressions for carbon-cycle feedback parameters (6) and (7) based on the air-sea 390 

flux changes to the ocean may then be approximated by the global ocean carbon inventory 391 

changes,  which may be expressed in terms of  these  different global ocean carbon pools 392 

(Williams et al., 2019): 393 

𝛽𝛽𝑂𝑂 ≈
∆𝐶𝐶𝑂𝑂

∗

𝐶𝐶′
= ∆𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝐶𝐶′
         + ∆𝐶𝐶𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑝𝑝𝑝𝑝

𝐶𝐶′

                 = ∆𝐶𝐶𝑠𝑠𝑟𝑟𝑟𝑟
𝐶𝐶′

+ ∆𝐶𝐶𝑝𝑝𝑑𝑑𝑠𝑠𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝐶𝐶′

+ ∆𝐶𝐶𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑝𝑝𝑝𝑝
𝐶𝐶′

                                   (13) 394 

https://doi.org/10.5194/bg-2019-473
Preprint. Discussion started: 9 December 2019
c� Author(s) 2019. CC BY 4.0 License.



19 
 

𝛾𝛾𝑂𝑂 ≈
∆𝐶𝐶𝑂𝑂

′ −∆𝐶𝐶𝑂𝑂
∗

𝑇𝑇′
  =

∆𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
′ −∆𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

∗

𝑇𝑇′
               +

∆𝐶𝐶𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑝𝑝𝑝𝑝
′ −∆𝐶𝐶𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑝𝑝𝑝𝑝

∗

𝑇𝑇′    
                             = ∆𝐶𝐶𝑠𝑠𝑟𝑟𝑟𝑟′ −∆𝐶𝐶𝑠𝑠𝑟𝑟𝑟𝑟∗

𝑇𝑇′
+

∆𝐶𝐶𝑝𝑝𝑑𝑑𝑠𝑠𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
′ −∆𝐶𝐶𝑝𝑝𝑑𝑑𝑠𝑠𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

∗

𝑇𝑇′
+

∆𝐶𝐶𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑝𝑝𝑝𝑝
′ −∆𝐶𝐶𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑝𝑝𝑝𝑝

∗

𝑇𝑇′

     395 

(14) 396 

The anomalies for each of these carbon pools are calculated as 397 

Δ𝐷𝐷𝐷𝐷𝐶𝐶𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟𝑣𝑣𝑝𝑝𝑟𝑟𝑟𝑟𝑣𝑣𝑝𝑝 = −𝑅𝑅𝐶𝐶𝑂𝑂 Δ𝐴𝐴𝑂𝑂𝐶𝐶 + 1
2

(Δ𝐴𝐴𝑚𝑚𝐴𝐴 − Δ𝐴𝐴𝑚𝑚𝐴𝐴𝑝𝑝𝑝𝑝𝑣𝑣 − 𝑅𝑅𝑁𝑁𝑂𝑂 Δ𝐴𝐴𝑂𝑂𝐶𝐶)                         (15) 398 

Δ𝐷𝐷𝐷𝐷𝐶𝐶𝑠𝑠𝑟𝑟𝑟𝑟 = 𝑓𝑓(𝑝𝑝CO2
atm,𝑇𝑇𝑠𝑠, 𝑆𝑆𝑠𝑠,𝑁𝑁, 𝑆𝑆𝑆𝑆,𝐴𝐴𝑚𝑚𝐴𝐴𝑝𝑝𝑝𝑝𝑣𝑣)𝑟𝑟 − 𝑓𝑓((𝑝𝑝CO2

atm,𝑇𝑇𝑠𝑠, 𝑆𝑆𝑠𝑠,𝑁𝑁, 𝑆𝑆𝑆𝑆,𝐴𝐴𝑚𝑚𝐴𝐴𝑝𝑝𝑝𝑝𝑣𝑣)𝑟𝑟=0                   (16) 399 

Δ𝐷𝐷𝐷𝐷𝐶𝐶𝑝𝑝𝑠𝑠𝑠𝑠𝑣𝑣𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑 = Δ𝐷𝐷𝐷𝐷𝐶𝐶 − Δ𝐷𝐷𝐷𝐷𝐶𝐶𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟𝑣𝑣𝑝𝑝𝑟𝑟𝑟𝑟𝑣𝑣𝑝𝑝 − Δ𝐷𝐷𝐷𝐷𝐶𝐶𝑠𝑠𝑟𝑟𝑟𝑟                                            (17) 400 

where 𝑅𝑅𝐶𝐶𝑂𝑂 and 𝑅𝑅𝑁𝑁𝑂𝑂 are constant stochiometric ratios, ΔAOU is the change in apparent oxygen 401 

utilization from its pre-industrial value (where preformed oxygen is assumed to be approximately 402 

saturated with respect to atmospheric oxygen), ΔAlk is the change in alkalinity, To and So are the 403 

ocean temperature and salinity, respectively, P and Si are the phosphate and silicate 404 

concentrations, and Δ𝐴𝐴𝑚𝑚𝐴𝐴𝑝𝑝𝑝𝑝𝑣𝑣 is the change in preformed alkalinity (Ito and Follows, 2005; 405 

Appendix of Lauderdale et al., 2013; Williams and Follows, 2011). In equation (16), ∆𝐷𝐷𝐷𝐷𝐶𝐶𝑠𝑠𝑟𝑟𝑟𝑟 is 406 

calculated using values of 𝑝𝑝CO2
atm, To, So, P, Si, and Alkpre at time t and the pre-industrial values at 407 

time t=0. The preformed alkalinity is estimated from a multiple linear regression using salinity 408 

and the conservative tracer PO (PO=O2-Ro2:PP) (Gruber et al., 1996), with the coefficients of this 409 

regression estimated based on the upper ocean (first 10 meters) alkalinity, salinity, oxygen and 410 

phosphate in each model. The small contribution from minor species (borate, silicate, phosphate) 411 

to the alkalinity is removed from the total alkalinity before using it for estimates of the carbon 412 

system following the algorithm of (Follows et al., 2006).  Our diagnostics of the ocean feedbacks 413 
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and carbon pools depend primarily upon changes in DIC, the preformed and regenerated pools, 414 

relative to the pre industrial, although differences in the pre-industrial ocean do slightly affect 415 

the saturated DIC due to the non-linearity of the carbonate chemistry.  416 

 417 

3. Model descriptions  418 

 419 

Table 2 summarizes the primary features of the eleven comprehensive ESMs that contributed 420 

results to this study. Brief descriptions of land and ocean carbon cycle components of these ESMs 421 

are provided in the Appendix. The eleven ESMs, in alphabetical order, are the 1) Commonwealth 422 

Scientific and Industrial Research Organisation (CSIRO) ACCESS-ESM1.5, 2) Beijing Climate Centre 423 

(BCC) BCC-CSM2-MR, 3) Canadian Centre for Climate Modelling and Analysis (CCCma) CanESM5, 424 

4) Community Earth System Model, version 2 (CESM2), 5) Centre National de Recherches 425 

Météorologiques (CNRM) CNRM-ESM2-1, 6) Institut Pierre-Simon Laplace (IPSL) IPSL-CM6A-LR,  426 

7) Japan Agency for Marine-Earth Science and Technology (JAMSTEC) in collaboration with the 427 

University of Tokyo and the National Institute for Environmental Studies (Team MIROC) MIROC-428 

ES2L, 8) Max Planck Institute for Meteorology (MPI) MPI-ESM1.2-LR, 9) Geophysical Fluid 429 

Dynamics Laboratory (GFDL) NOAA-GFDL-ESM4, 10) Norwegian Climate Centre (NCC) NorESM2-430 

LM, and 11) United Kingdom (UK) UKESM1-0-LL.  431 

 432 

In contrast to the A13 study where only two of the eight participating comprehensive ESMs had 433 

terrestrial N cycle implemented and coupled to their C cycle, in this study six of the eleven 434 
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participating ESMs represent coupling of terrestrial C and N cycles. These six models are the 435 

ACCESS-ESM1.5, CESM2, MIROC-ES2L, MPI-ESM1.2-LR, NorESM2-LM, and UKESM1-0-LL. Note 436 

that CESM2 and NorESM2-LM employ the same land surface component – the version 5 of the 437 

Community Land Model (CLM5) so we expect the land carbon cycle to respond very similarly in 438 

the two models. Three of the ESMs have land components which dynamically simulated 439 

vegetation cover and competition between their PFTs - NOAA-GFDL-ESM4, MPI-ESM1.2-LR, and 440 

UKESM1-0-LL. 441 

 442 

4. Results  443 

 444 

4.1. Global surface CO2 fluxes and temperature change 445 

 446 

Figure 1 shows the simulated changes in temperature in the three model configurations (COU, 447 

BGC, and RAD) of the 1pctCO2 experiment. The values show the model mean and the range 448 

across the ten participating models, since results from the RAD configuration of the NorESM2-449 

LM model were not available at the time of writing of this manuscript. Here and in subsequent 450 

figures, model mean results are also shown for the eight comprehensive ESMs that participated 451 

in the A13 study to allow a direct comparison between CMIP5 and CMIP6 models. The eight 452 

models in the A13 study are a subset of eleven models considered in this study although they 453 

have been updated since CMIP5.  454 

 455 
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As expected, temperature change is higher in the COU and RAD simulations, than in the BGC 456 

simulation, since the radiative forcing responds to increasing [CO2] in these simulations. The small 457 

temperature change in the BGC simulation is due to a number of contributing but also 458 

compensating factors: 1) reduction in transpiration, and hence latent heat flux, due to stomatal 459 

closure in response to increasing [CO2] (Cao et al., 2010), 2) increase in vegetation leaf area index 460 

(LAI), which decreases land surface albedo and hence increases absorbed solar radiation, 3) 461 

increase in vegetation fraction in models that explicitly simulate competition between their plant 462 

functional types (PFTs) over land (NOAA-GFDL-ESM4, MPI-ESM1.2-LR, and UKESM1-0-LL) which 463 

also leads to reduced land surface albedo. As a result, temperature change in the COU simulation 464 

is higher than in the RAD simulation since these biogeochemical processes are active and 465 

contribute to a small additional warming. This is seen in panel (a) for CMIP6 models and panel 466 

(b) for CMIP5 models.  467 

 468 

When comparing CMIP5 and CMIP6 models, the CMIP6 models are on average slightly warmer 469 

than CMIP5 models in the COU and RAD simulations. In Figure 1a, the globally-averaged near 470 

surface temperature change at CO2 quadrupling in the fully-coupled simulation is 5.00 °C (4.87 471 

°C when NorESM2-LM is included) in CMIP6 models, compared to 4.74 °C in CMIP5 models. The 472 

globally-averaged temperature change at CO2 quadrupling in the fully-coupled simulation for the 473 

eight models that are common to this (CMIP6) and the A13 (CMIP5) studies, are 4.97 and 4.74 474 

°C, respectively.  The temperature change in the BGC simulation in CMIP6 models (0.24 °C) is, 475 

however, slightly smaller than in the CMIP5 models (0.26 °C). The values in Figure 1 for 476 

participating CMIP5 models are slightly different than those reported in A13 study because those 477 
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numbers also included the UVic Earth System Climate Model (an intermediate complexity model) 478 

which we have omitted here to keep the comparison consistent between comprehensive ESMs. 479 

In addition, in contrast to A13, the temperature at the end of a simulation in this study is 480 

calculated after fitting a polynomial to the model mean values rather than using the actual model 481 

mean value at the end of the simulation which can be higher or lower than that calculated using 482 

the polynomial fit due to inter-annual variability.   483 

 484 

Figure 2 and 3 show simulated model mean values and the range across models for annual 485 

simulated atmosphere-land and atmosphere-ocean CO2 fluxes and their cumulative values for 486 

participating CMIP6 and CMIP5 models from the fully-, biogeochemically- and radiatively-487 

coupled configurations of the 1pctCO2 experiment. Here, in contrast to Figure 1, results from all 488 

eleven models are included since model mean cumulative atmosphere-land and atmosphere-489 

ocean CO2 fluxes are not particularly sensitive to inclusion/exclusion of the NorESM2-LM models 490 

for which results from the RAD simulation were not available. The general results from CMIP6 491 

models are broadly similar in nature to those from CMIP5 models, as would be expected, with 492 

higher annual and cumulative values of atmosphere-land and atmosphere-ocean CO2 fluxes in 493 

the BGC simulation compared to the COU simulation in which the radiative warming caused by 494 

increasing CO2 weakens the land and ocean sinks.  In the RAD simulation, where land and ocean 495 

carbon cycle components do not respond to increasing [CO2], both components lose carbon, for 496 

reasons discussed below.  497 

 498 
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Over land, the model mean rate of increase of atmosphere-land CO2 flux declines and even 499 

becomes negative in the COU and BGC simulations as the terrestrial CO2 fertilization effect 500 

saturates and the carbon pools build up, which increases the respiratory losses. The biggest 501 

difference between the CMIP5 and CMIP6 models is that the cumulative land carbon uptake in 502 

the COU simulation is about 25 % higher in CMIP6 (635 ± 258 PgC, mean ± standard deviation) 503 

models than in CMIP5 (505 ± 297 PgC) models, although this increase is not statistically significant 504 

across the model ensemble (Mann-Whitney test). The cumulative value of carbon loss in the RAD 505 

simulation is similar in both CMIP6 and CMIP5 models, 250 ± 121 vs. 252 ± 158 PgC, respectively. 506 

This carbon loss occurs due both to increased heterotrophic respiration per unit carbon mass and 507 

reduced GPP (and consequently NPP) in the RAD simulation (not shown).  While NPP declines 508 

globally in response to increase in temperature, mid- to high-latitude net primary production 509 

increases (Qian et al., 2010) so the reduction in global NPP comes largely from the reduction in 510 

the tropics. The large range across land carbon cycle models, seen also in earlier F06 and A13 511 

studies, has not meaningfully declined for CMIP6 models participating in this study and its 512 

implications will be discussed in more detail in Section 5. This is also seen later in Figure 6 which 513 

compares the absolute magnitude and the standard deviation of the strength of the feedback 514 

parameters from CMIP5 and CMIP6 models.  515 

 516 

Over the ocean, the response to increasing [CO2] and changing climate remains fairly similar 517 

across CMIP5 and CMIP6 models. The cumulative ocean carbon uptake in the COU simulation is 518 

593 ± 54 and 611 ± 50 PgC in CMIP6 and CMIP5 models, respectively. Unlike the land uptake, 519 

however, the ocean carbon uptake does not saturate over the length of the simulation in the BGC 520 
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simulation (Figure 3, panels a and b); it keeps on increasing albeit at a declining rate. The 521 

cumulative ocean carbon loss in the RAD simulation is 23 ± 19 and 37 ± 17 PgC in CMIP6 and 522 

CMIP5 models, respectively, and associated with warmer temperatures which reduce CO2 523 

solubility (Goodwin and Lenton, 2009).  524 

 525 

Figure 4 shows results from individual CMIP6 models for which model means and ranges were 526 

shown in Figures 1, 2, and 3. Figure 4 allows identification of models which behave differently 527 

compared to the majority of models. In Figure 4, panels a and c, CanESM5 shows the largest 528 

temperature increase, and NorESM2-LM and MIROC-ES2L the smallest, in response to increase 529 

in [CO2] for the COU and RAD simulations, respectively. For cumulative atmosphere-land CO2 flux 530 

in the COU simulation (panel d), CanESM5 simulates the largest land carbon uptake and ACCESS-531 

ESM1.5 the smallest. This is not the case for the BGC simulation (panel e) where land carbon 532 

uptake from the BCC-CSM2-MR and CNRM-ESM2.1 are the largest among all models, while land 533 

carbon uptake from the ACCESS-ESM1.5 is the lowest. Finally, in the RAD simulation (panel f) the 534 

loss of carbon from land in response to increasing temperatures is lowest in the MPI-ESM1.2-LR 535 

and largest in the BCC-CSM2-MR. Over the ocean, while most models behave very similarly, the 536 

carbon uptake in the BCC-CSM2-MR, ACCESS-ESM1.5, and NOAA-GFDL-ESM4 are larger than 537 

most models in the COU and BGC simulations. In the RAD simulation, almost all models simulate 538 

a loss of carbon from the ocean, but the CNRM-ESM2.1 shows a small uptake. Reasons for 539 

divergent response of some models are presented later.  540 

 541 
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As in F06 and A13, the range in cumulative atmosphere-land CO2 fluxes among models at the end 542 

of the simulation, in response to changes in atmospheric CO2 concentration and surface 543 

temperature, is three to four times larger than for the atmosphere-ocean CO2 fluxes.  544 

 545 

4.2. Carbon budget terms 546 

 547 

Figure 5a shows the carbon budget components of the diagnosed cumulative fossil fuel emissions 548 

at the end of the 140-year period of the 1pctCO2 COU experiment when CO2 concentration 549 

quadruples (𝐶𝐶�4×𝐶𝐶𝑂𝑂2 or simply 𝐶𝐶�), from CMIP6 models. Cumulative emissions can similarly also 550 

be calculated at 2×CO2 (𝐶𝐶�2×𝐶𝐶𝑂𝑂2). The term “carbon budget” in this context refers to the 551 

accounting of carbon internal to individual ESMs. The sum of ocean (Δ𝐶𝐶′𝑂𝑂) and land (Δ𝐶𝐶′𝐿𝐿) sinks 552 

and the resulting atmospheric CO2 growth rate (Δ𝐶𝐶′𝐴𝐴) yields cumulative fossil fuel emissions 553 

which are consistent with the specified CO2 pathway (the 1pctCO2 scenario in this case) as 554 

indicated in the appendix. The corollary to this is that, in a specified emissions simulation, if the 555 

respective fossil fuel emissions were to be used in their models, each model will yield CO2 556 

concentrations that rise at a rate of 1% per year. The term “diagnosed” implies that the 557 

cumulative fossil fuel emissions are calculated after the fact from changes in atmosphere, land 558 

and ocean carbon pools in the specified-concentration 1pctCO2 experiment. In Figure 5a, the 559 

results are arranged in an ascending order according to models’ diagnosed cumulative fossil fuel 560 

emissions. Figure 5b shows the terms of the budgets as fractional components for atmosphere 561 

(A), land (L) and ocean (O) based on equation (A7), where 𝑓𝑓𝐴𝐴 is the airborne fraction of emissions 562 
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and 𝑓𝑓𝐿𝐿 and 𝑓𝑓𝑂𝑂 are the fractions of emissions take up by land and ocean, respectively. More details 563 

are provided in the Appendix.  564 

Δ𝐶𝐶′𝐴𝐴 + Δ𝐶𝐶′𝐿𝐿 + Δ𝐶𝐶′𝑂𝑂 = ∫ 𝐶𝐶𝑟𝑟0 𝑑𝑑𝑑𝑑 = 𝐶𝐶�                                                 (18) 565 

     𝑓𝑓𝐴𝐴 + 𝑓𝑓𝐿𝐿 + 𝑓𝑓𝑂𝑂 = 1                                                                     (19) 566 

All panels in Figure 5 identify models whose land component includes a representation of the N 567 

cycle – the cumulative land carbon uptake (panels a and c) and fractional emissions taken up by 568 

land (panels b and d) for these models are shown in red. Finally, model mean values are also 569 

shown for all models and for models whose land components include and do not include a 570 

representation of the land N cycle. For comparison, panels c and d in Figure 5 show the same 571 

results but for CMIP5 models reported in A13. 572 

 573 

Consistent with Figure 4, and CMIP5 results reported in the A13 study, the differences among 574 

models are primarily due to the diverse response of the land carbon cycle components. While 575 

the model mean cumulative carbon uptake by the ocean is fairly similar between participating 576 

CMIP5 (611 ± 50  PgC) and CMIP6 (593 ± 54 PgC) models, the land uptake is higher in CMIP6 (635 577 

± 258 PgC) compared to CMIP5 (505 ± 297 PgC) models, as mentioned earlier. This is the case 578 

even when the CanESM5, the model with the largest land carbon uptake, is omitted from CMIP6 579 

models (model mean land carbon uptake for the remaining ten models is 578 ± 185  PgC). As a 580 

result, model mean cumulative diagnosed emissions from CMIP6 models (3031 ± 242  PgC) are 581 

about 4% higher than for CMIP5 models (2927 ± 294 PgC). In Figure 5a, the land carbon uptake 582 
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in CESM2 (656 PgC) and NorESM2-LM (652 PgC) model are very similar; as noted above these 583 

models employ the same land component.   584 

 585 

Model mean estimates that are reported separately for models whose land component do and 586 

do not include a representation of N cycle, for both CMIP5 and CMIP6 models, show that model-587 

mean land carbon uptake is lower for models that explicitly represent the N cycle. As a 588 

consequence, the airborne fraction of emissions is also higher for models that represent land N 589 

cycle and their diagnosed cumulative fossil fuel emissions are lower (Figure 5). 590 

 591 

Figure 5a and 5c allow direct comparison of models from the same modelling group. CanESM2, 592 

from the Canadian Centre for Climate Modelling and Analysis, which had below average land 593 

carbon uptake among CMIP5 models, has evolved to CanESM5, a model with the largest land 594 

carbon uptake among CMIP6 models. The reason for this is an increase in the strength of its CO2 595 

fertilization effect as explained in Arora and Scinocca (2016). CESM1, which had one of the lowest 596 

land carbon uptake among CMIP5 models, because of its apparently excessive nitrogen limitation 597 

effect in CLM4, has evolved to CESM2 (with CLM5 land component) with near average land 598 

carbon uptake among CMIP6 models. The transition of CLM from CLM4 to CLM5, and the 599 

reduction in its nutrient constraints on photosynthesis and the parametric controls on 600 

fertilization responses are discussed in Wieder et al. (2019) and Fisher et al. (2019), respectively.  601 

The land carbon uptake in MIROC-ESM increased from the lowest among CMIP5 models (149 602 

PgC) to 701 PgC for MIROC-ES2L, among CMIP6 models, due to a new terrestrial biogeochemical 603 

https://doi.org/10.5194/bg-2019-473
Preprint. Discussion started: 9 December 2019
c� Author(s) 2019. CC BY 4.0 License.



29 
 

component (Ito and Inatomi, 2012). Although the CO2 fertilization effect in this new land model 604 

is weaker likely due to the incorporation of the nitrogen cycle, the model yields relatively higher 605 

NPP (Hajima et al., 2019a), due to a higher 𝐶𝐶𝐶𝐶𝐶𝐶Δ (as confirmed later in section 4.4.1). The land 606 

carbon uptake in the IPSL-CM5A-LR model decreased from being the second largest in CMIP5 607 

models (741 PgC) to below average for the IPSL-CM6A-LR model (477 PgC) due to implementation 608 

of terrestrial photosynthesis downregulation, as a function of CO2 concentration, which leads to 609 

a decrease in GPP across all latitudes, with the largest decrease in the tropics.  610 

The ocean carbon uptake in the IPSL model decreased from being the largest among CMIP5 611 

models at 670 PgC in IPSL-CM5A-LR to 579 PgC for IPSL-CM6A-LR, and this is attributed to a 612 

greater ocean stratification in the IPSL-CM6A-LR. The annual mean mixed layer depth is 46.7 m 613 

and 40.2 m in IPSL-CM5A-LR and IPSL-CM6A-LR, respectively. While NorESM1-ME was one of the 614 

CMIP5 models with the largest ocean carbon uptake (667 PgC), NorESM2-LM has an ocean 615 

carbon uptake (599 PgC) close to the CMIP6 model mean. This is a consequence of changes in 616 

the simulated (shallower depth and weaker strength) Atlantic meridional overturning circulation 617 

and reduced mixed layer biases particularly at high latitudes (less deep winter mixing). Due to 618 

these modifications, the efficiency of carbon export below the mixed layer in NorESM2-LM is 619 

considerably reduced compared to the NorESM1-ME. This, in turn, leads to less excess carbon 620 

stored in the North Atlantic Deep Water (below 2000 m) as well as in the Antarctic Intermediate 621 

Water. For the MPI ESM, the decrease in land carbon uptake from 825 PgC in MPI-ESM-LR for 622 

CMIP5 to 586 PgC in MPI-ESM1.2-LR for CMIP6 is associated with implementation of nitrogen 623 

cycle model (Goll et al., 2017) and a new soil carbon model YASSO (Goll et al., 2015). Compared 624 

to its predecessor HadGEM2-ES, UKESM1 represents a prognostic treatment of terrestrial 625 
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nitrogen including its impact on carbon storage in vegetation biomass and soil organic matter. 626 

Limitation on terrestrial productivity from available nitrogen is the main reason for reduced land 627 

carbon storage in UKESM1-0-LL (408 PgC) compared to HadGEM2-ES (768 PgC).   628 

 629 

Figure A1 in the appendix shows the version of Figure 5 but at the time of CO2 doubling (at year 630 

70). Interestingly, the ordering of the models according to their diagnosed cumulative emissions 631 

at 2×CO2 is different from that at 4×CO2. As expected, however, the model mean fractional 632 

emissions taken up by land and ocean at 2×CO2 are higher than at 4×CO2, because both land and 633 

ocean carbon sinks relatively weaken as CO2 continues to increase. 634 

 635 

4.3. Feedback parameters 636 

Figure 6, panels a and b, compares the carbon-concentration (𝛽𝛽𝐿𝐿) and carbon-climate feedback 637 

(𝛾𝛾𝐿𝐿) parameters over land from participating CMIP6 models. The plots show feedback parameters 638 

from different models as coloured dots but also their mean ± 1 standard deviation as a box. The 639 

feedback parameters are calculated using all of the four approaches that are summarized in Table 640 

1 to illustrate their sensitivity to the approach used. In addition, models whose land component 641 

includes a representation of the N cycle are identified by an additional circle around their 642 

coloured dots.  Figure 6 also shows the mean ± 1 standard deviation values separately for models 643 

that do and do not include a representation of the land N cycle using the BGC-COU approach, in 644 

an attempt to understand the reason for the diverse responses of the land models. Results from 645 

CMIP5 models in the A13 study are shown in a similar format for comparison in panels c and d. 646 
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 647 

Three primary observations can be made from Figure 6. First and foremost, the spread in the 648 

magnitude of carbon-concentration and carbon-climate feedback over land in CMIP6 models is 649 

of similar magnitude to that of CMIP5 models. Second, the carbon-climate feedback (𝛾𝛾𝐿𝐿) is more 650 

sensitive to the approach used (and hence the type of simulations used) to derive its value than 651 

the carbon-concentration feedback (𝛽𝛽𝐿𝐿). Third, in the model mean sense, the absolute strength 652 

of the feedback parameters is weaker for models that include a representation of the N cycle, for 653 

both CMIP5 and CMIP6 models. Both the carbon gain due to increase in atmospheric CO2 654 

concentration and the carbon loss due to increase in globally average temperature in models 655 

with representation of land N cycle is much lower than models that do not include the N cycle. 656 

This response is most likely explained by the N limitation of photosynthesis as CO2 increases and 657 

additional release of N from dead organic matter as warming increases which boosts productivity 658 

thereby compensating for carbon lost due to increased respiratory losses, as also discussed in 659 

A13. The values of the feedback parameters, however, overlap between models that do and do 660 

not include a representation of the N cycle, given the wider spread in the feedback parameter 661 

values among models that do not include a representation of land N cycle, compared to models 662 

that do.  663 

 664 

Figure 7, panels a and b, compare the carbon-concentration (𝛽𝛽𝑂𝑂) and carbon-climate feedback 665 

(𝛾𝛾𝑂𝑂) parameters over the ocean from participating CMIP6 models. As in Figure 6, the feedback 666 

parameters are calculated using all of the four approaches that are summarized in Table 1 and 667 
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results from CMIP5 models are shown for comparison in panels c and d. For both CMIP5 and 668 

CMIP6 models, the absolute spread in the magnitude of the feedback parameters across the 669 

participating models is an order of magnitude smaller for the ocean C cycle component compared 670 

to the land C cycle component, as was also seen in F06 and A13. Similar to the land, the calculated 671 

values of the ocean carbon-climate feedback (𝛾𝛾𝑂𝑂) are more sensitive to the approach used (and 672 

hence the type of simulations used) than the ocean carbon-concentration feedback (𝛽𝛽𝑂𝑂). In 673 

agreement with Schwinger et al. (2014), the absolute values of 𝛾𝛾𝑂𝑂 are 2-3 times larger when 674 

calculated using the COU and BGC simulations, compared to cases when RAD simulation is used, 675 

for reasons mentioned earlier. Figures 6 and 7 show also that while the strength of the carbon-676 

concentration feedback is similar over land and ocean, the strength of the carbon-climate 677 

feedback parameter over ocean is much weaker than over land.  678 

 679 

Section A2 in the appendix discusses how Figures 6 and 7 and corroborate existing studies for the 680 

preferred use of the BGC and COU simulations for finding the feedback parameters. Figure 6 and 681 

7 also show that the effect of assuming T* (the temperature change in the BGC simulation) zero 682 

is around 1% for the calculated value of the carbon-concentration feedback parameter (𝛽𝛽𝑋𝑋,𝑋𝑋 =683 

𝐿𝐿,𝑂𝑂) and around 5% for the carbon-climate feedback parameter (𝛾𝛾𝑋𝑋,𝑋𝑋 = 𝐿𝐿,𝑂𝑂). This small effect 684 

of T* on the calculated global values of the feedback parameter allows investigation of the 685 

reasons for differences among model by using simplified forms of 𝛽𝛽𝑋𝑋 and 𝛾𝛾𝑋𝑋 as presented in 686 

equations (6) and (7). 687 

 688 
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For completeness, Table A1 in the appendix summarizes the values of feedback parameters for 689 

both land and ocean from CMIP6 and CMIP5 models (corresponding to Figures 6 and 7) at 4×CO2 690 

but also at 2×CO2. Table A1 also shows the value of parameter α, the linear transient climate 691 

sensitivity to CO2, following F06 (their equation 6) which is calculated as 692 

𝑇𝑇′ = 𝛼𝛼 𝑐𝑐′                                                                                (20)  693 

at 4 xCO2. 694 

 695 

4.4. Reasons for differences among models 696 

4.4.1 Land 697 

Equations (8) and (9) in Section 2.1.1 are used to gain insight into reasons for differing responses 698 

of land models. In the BGC-COU approach and assuming T*=0 (equation 8), the carbon uptake in 699 

the BGC simulation is used to calculate the carbon-concentration feedback parameter (𝛽𝛽𝐿𝐿). 700 

Figure 8 shows how this carbon uptake over land is separated into vegetation and soil+litter 701 

components both in absolute (panel a) and fractional terms (panel b). The models are arranged 702 

from lowest to highest in terms of their land carbon uptake in the BGC simulation. The 703 

partitioning into vegetation and soil+litter components is not shown for the BCC-CSM2-MR 704 

model because total land carbon uptake in this model exceeded the sum of changes in the 705 

vegetation and soil+litter carbon pools by more than 10% likely because of incomplete 706 

accounting of pool sizes. Figure 8b shows that models vary widely in terms of how the carbon 707 

uptake over land is split into vegetation and soil+litter components. The model mean values 708 
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indicate that slightly more of the carbon sequestered is allocated to vegetation (55%) than to the 709 

soil+litter pools (45%).  710 

 711 

Figure 9 shows the individual components of equation (8) which contribute to terms 712 

corresponding to changes in vegetation (∆𝐶𝐶𝑉𝑉 ) and soil+litter (∆𝐶𝐶𝑆𝑆 ) carbon pools. Panel (a) of 713 

Figure 8 is repeated in Figure 9 for easy correspondence of individual terms with their models. 714 

The model mean values of individual terms do not take into account the results from the BCC-715 

CSM2-MR model. In essence, the terms in Figure 9 are emergent properties of the land models 716 

of the individual ESMs and result from their multiple interacting processes. The comparison of 717 

the individual terms of equation (8) provides additional insight into the reasons for differences in 718 

land models. For example, the CNRM-ESM2-1 model has the highest land carbon uptake among 719 

all models in the BGC simulation. However, this is not caused by a strong CO2 fertilization effect 720 

(the 
∆𝐺𝐺𝐺𝐺𝐺𝐺 

𝑐𝑐′
 term), but rather by the relatively high 𝜏𝜏𝑣𝑣𝑣𝑣𝑣𝑣∆ and 𝜏𝜏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∆ values. The CO2 fertilization 721 

effect is strongest for the three models that simulate vegetation cover dynamically (
∆𝐺𝐺𝐺𝐺𝐺𝐺 

𝑐𝑐′
=722 

0.141, 0.128, and 0.117 PgC yr–1 ppm–1 for NOAA-GFDL-ESM4, MPI-ESM1.2-LR, and UKESM1-0-723 

LL, respectively) since the 
∆𝐺𝐺𝐺𝐺𝐺𝐺 

𝑐𝑐′
 term also implicitly includes the effect of increasing vegetation 724 

cover as CO2 increases. The tree cover in the NOAA-GFDL-ESM4 model, for example, increases in 725 

the BGC simulation – particularly in dry, high-latitude regions above 50° N  (not shown).  However, 726 

these models do not simulate the largest land carbon uptake because of their lower than average 727 

𝜏𝜏𝑣𝑣𝑣𝑣𝑣𝑣∆ and 𝜏𝜏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∆ values. The 
∆𝐺𝐺𝐺𝐺𝐺𝐺 

𝑐𝑐′
 term is unable to capture the CO2 fertilization effect separately 728 
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from increasing vegetation cover and this illustrates the challenge in comparing models that do 729 

and do not simulate vegetation cover dynamically. The CanESM5 model exhibits higher than 730 

average land carbon uptake despite its near average strength of the CO2 fertilization effect, and 731 

𝜏𝜏𝑣𝑣𝑣𝑣𝑣𝑣∆ and 𝜏𝜏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∆ values. However, its 𝐶𝐶𝐶𝐶𝐶𝐶Δ is the highest and therefore a much larger fraction of 732 

GPP is converted to NPP.  Although 𝐶𝐶𝐶𝐶𝐶𝐶Δ is not the same as 𝐶𝐶𝐶𝐶𝐶𝐶, we found that 𝐶𝐶𝐶𝐶𝐶𝐶Δ and 𝐶𝐶𝐶𝐶𝐶𝐶 733 

(calculated at the end of the 1pctCO2 simulation at 4xCO2) are strongly correlated with a 734 

correlation of around 0.90 (not shown). Similarly, 𝜏𝜏𝑣𝑣𝑣𝑣𝑣𝑣∆ is strongly correlated, with a correlation 735 

of 0.96, to 𝜏𝜏𝑣𝑣𝑣𝑣𝑣𝑣 = 𝐶𝐶𝑉𝑉 𝑁𝑁𝑁𝑁𝑁𝑁⁄  calculated at the end of the simulation. The ACCESS-ESM1.5 model 736 

exhibits the lowest land carbon uptake because of its weak CO2 fertilization effect and the lowest 737 

𝐶𝐶𝐶𝐶𝐶𝐶Δ of all models. Finally, the 
∆𝑅𝑅ℎ

 

Δ𝐿𝐿𝐿𝐿  term shows the least variability across models, which is 738 

reflective of the fact that the magnitude of the heterotrophic respiration flux is dominated by 739 

NPP inputs into the dead carbon pools (Koven et al., 2015). Several of these individual terms are 740 

strongly correlated. The 
∆𝐺𝐺𝐺𝐺𝐺𝐺 

𝑐𝑐′
 and 

∆𝐿𝐿𝐿𝐿 

𝑐𝑐′
 terms have a correlation of 0.77, and 𝐶𝐶𝐶𝐶𝐶𝐶Δ  ∆𝐺𝐺𝑁𝑁𝑁𝑁

 

𝑐𝑐′
 and 741 

∆𝐿𝐿𝐿𝐿 

𝑐𝑐′
 have a correlation of 0.94, since a stronger CO2 fertilization effect also implies a larger litter 742 

fall flux per unit CO2. Surprisingly, 𝐶𝐶𝐶𝐶𝐶𝐶Δ and 𝜏𝜏𝑣𝑣𝑣𝑣𝑣𝑣 are negatively correlated (correlation = –0.49) 743 

across models indicating that models which retain a higher fraction of GPP as NPP typically get 744 

rid of vegetation carbon sooner via litter fall as indicated by a faster turnover of vegetation (lower 745 

𝜏𝜏𝑣𝑣𝑣𝑣𝑣𝑣), there by partially compensating for higher 𝐶𝐶𝐶𝐶𝐶𝐶Δ.   746 

 747 
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While Figure 9 investigates reasons for differences among models that lead to different values of 748 

their carbon-concentration feedback over land (𝛽𝛽𝐿𝐿), Figure 10 investigates the reasons for varying 749 

magnitudes of the carbon-climate feedback over land (𝛾𝛾𝐿𝐿). In equation (9), 𝛾𝛾𝐿𝐿 is a function of 750 

change in land carbon (divided into vegetation and soil+litter components) in the COU relative to 751 

the BGC simulation and the temperature change in the COU simulation (𝑇𝑇′). Over land, the higher 752 

temperatures in the COU relative to the BGC simulation affect both autotrophic and 753 

heterotrophic respiratory fluxes, from live and dead vegetation pools, respectively, but also gross 754 

photosynthesis rates. The primary effect of this temperature change in COU versus the BGC 755 

simulation is the loss of carbon from the soil+litter carbon pool (hence the negative sign of 𝛾𝛾𝐿𝐿 for 756 

most models, Figure 6b and 6d) but changes in the vegetation carbon pool also occur. Although 757 

𝛾𝛾𝐿𝐿 also depends on 𝑇𝑇′, Figure 10 arranges models in order from largest to smallest loss of land 758 

carbon in COU relative to the BGC simulation to illustrate the varying response of the models. 759 

This ordering of models changes slightly if the carbon loss (or gain in the CanESM5 model) is 760 

divided by the temperature change  𝑇𝑇′ in the COU simulation (yielding the value of 𝛾𝛾𝐿𝐿 which 761 

assumes T*=0 as in equation 9). 762 

 763 

As shown in Figure 10, all models lose carbon from the soil+litter carbon pool but with widely 764 

varying magnitudes. Although typically smaller than the change in soil+litter carbon pool, the 765 

change in the vegetation carbon pool in the COU relative to the BGC simulation is not of the same 766 

sign across models. Six of the eleven participating models lose carbon in the vegetation pool in 767 

the COU relative to the BGC simulation thereby contributing to increasing the absolute 768 

magnitude of 𝛾𝛾𝐿𝐿, while the remaining five exhibit an increase in the vegetation carbon pool 769 
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thereby decreasing the absolute magnitude of 𝛾𝛾𝐿𝐿. The largest increase in the vegetation carbon 770 

pool is seen in the CanESM5 model that more than compensates for the carbon loss from the 771 

soil+litter carbon pool yielding a positive value of 𝛾𝛾𝐿𝐿 in contrast to other models. This is one of 772 

the few times a positive value of 𝛾𝛾𝐿𝐿 is seen in an Earth system model. Preliminary analysis of 773 

CanESM5 data shows the increase in vegetation carbon, in the COU relative to the BGC 774 

simulation, is caused by the increase in GPP and the resulting vegetation growth at mid-to-high 775 

latitudes in response to warming temperatures and increasing CO2. Interestingly, this doesn’t 776 

happen at 2×CO2 (see Table A1 in the Appendix). At 2×CO2 𝛾𝛾𝐿𝐿 is still negative for CanESM5. 777 

 778 

The loss in land carbon in the COU relative to the BGC simulation (except the CanESM5 model 779 

that gains carbon), indicated by the orange bar in Figure 10, is strongly correlated with the carbon 780 

gain in the BGC simulation (Figure 4e) (correlation is 0.59 for all models and 0.87 when CanESM5 781 

is excluded) but not with the absolute amount of total land carbon. Figure A2 in the appendix 782 

shows the absolute amount of carbon in soil+litter and vegetation pools, and their change from 783 

the beginning, for the BGC simulation. The models vary widely in terms of the absolute size of 784 

the carbon pools, especially for the soil+litter pool. There are two implications of models losing 785 

more carbon in the COU relative to BGC simulation when they take up more carbon in the BGC 786 

simulation alone. First, the transient behaviour of a model is determined primarily by its response 787 

of CO2 and temperature perturbations and not by the absolute amount of land carbon. Second, 788 

that carbon-concentration (𝛽𝛽𝑋𝑋) and carbon-climate (𝛾𝛾𝑋𝑋) feedback parameters must be correlated 789 

as well. Indeed, this is the case over land for both CMIP5 and CMIP6 models, but also true for 790 

ocean feebacks although the correlations are somewhat weaker over the ocean. These 791 
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correlations are shown in Table 3 and are negative since higher positive values of 𝛽𝛽𝑋𝑋 are 792 

correlated with higher negative values of 𝛾𝛾𝑋𝑋 indicating that models that take up more carbon 793 

with increasing CO2 also release more carbon when they “see” the associated higher 794 

temperatures. 795 

 796 

4.4.2 Ocean 797 

The time-integrated air-sea flux of carbon provides the dominant contribution to the increase in 798 

the global ocean carbon through changes in the DIC inventory. However, the global ocean carbon 799 

inventory is also affected by the land to ocean carbon flux from river runoff, and the carbon burial 800 

in ocean sediments (see Table A2 in the appendix).  801 

 802 

Ocean carbon cycle feedbacks are defined in terms of ocean carbon inventory changes for the 803 

COU simulation, and the differences in COU relative to the BGC simulation. To fully understand 804 

the ocean carbon-cycle feedbacks, it is necessary to understand the ocean carbon distributions 805 

for the preindustrial and then analyze the carbon anomalies relative to the preindustrial for these 806 

climate model experiments. 807 

 808 

4.4.2.1 Ocean carbon distribution 809 
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The ocean dissolved inorganic carbon distribution, DIC, is controlled by a combination of physical, 810 

chemical and biological processes. For the preindustrial period, there is less DIC in warmer waters 811 

of the upper ocean and more DIC in colder mid-depth and bottom waters (Figure 11a, 12a); 812 

illustrated here for UKESM1-0-LL as a representative example and Figs S1 to S7 show similar 813 

distributions for all the diagnosed Earth system models. The vertical extent of the low DIC follows 814 

the undulations of the thermocline, which is defined by strong vertical temperature and density 815 

gradients, and is deeper over the subtropical gyres at 30°N and 30°S, and shallower in the 816 

equatorial zone  and at high latitudes. The greater DIC at depth is a consequence of greater 817 

solubility in colder waters and the accumulation of DIC from the regeneration of  organic matter. 818 

 819 

To gain insight into how the ocean carbon distribution is controlled, the DIC is separated into 820 

three pools, DICsat, DICdisequilib, and DICregenerated, as defined earlier.  The DIC distribution for both 821 

the preindustrial period and after 140 years in the 1pctCO2 simulation reveal the following key 822 

features for each of these carbon pools (Figures 11a,b and 12a,b): 823 

• The saturated carbon pool provides the dominant contribution to the DIC, holding more than 824 

2.15 mol C m-3 , particularly within cooler waters below the thermocline;  825 

• The regenerated carbon pool enhances the carbon stored below the surface waters, typically 826 

providing an additional 0.2 mol C m-3 within the Southern Ocean and older waters spreading 827 

from the Southern Ocean into the Atlantic and below the thermocline in the Pacific; 828 

• The disequilibrium carbon is small close to the surface, representing waters close to an 829 

equilibrium with the atmosphere.  There  is sometimes a positive disequilibrium of up to 0.05 830 
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mol C m-3 in some surface waters, which is associated with upwelling transferring carbon-rich 831 

deeper waters to the surface. The disequilibrium carbon is more strongly negative below the 832 

thermocline, typically reaching -0.1 mol C m-3  in the Atlantic and         -0.02 mol C m-3 in the 833 

Southern Ocean and Pacific. In the preindustrial, the undersaturation in carbon below the 834 

thermocline is due to the subduction of cold waters at high latitudes that have not 835 

equilibrated fully with the atmosphere, which then spread by advection along density 836 

surfaces. In the model integrations reaching year 140,  the carbon below the thermocline 837 

become further undersaturated relative to the contemporary atmosphere due to the rapid 838 

rise in [CO2]. 839 

 840 

Next we consider the anomalies in the DIC at year 140 in the COU configurations of the 1pctCO2 841 

simulation calculated relative to the preindustrial period.
 

The carbon anomaly, Δ𝐷𝐷𝐷𝐷𝐶𝐶, in the 842 

COU configuration is positive over the upper thermocline over the Atlantic and Pacific basins, 843 

reaching +0.3 mol C m-3, coinciding with regions that are well ventilated. This gain in carbon is 844 

made up of an increase in the saturated carbon over all depths due to higher atmospheric CO2. 845 

There is a dipole in the disequilibrium anomaly (Figures 11b,c and 12 b,c), generally weakly 846 

positive in the upper ocean and more strongly negative in deeper waters below the thermocline 847 

reaching up to -0.2 mol C m-3. This negative disequilibrium anomaly in deeper waters is smallest 848 

in the relatively well-ventilated mid-depth waters of the North Atlantic, but extends over nearly 849 

all of the more poorly ventilated mid-depth waters of the Pacific (Figures 11b and 12b).  850 

 851 
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The regenerated carbon anomaly is relatively small in magnitude reaching less than 0.05 mol C 852 

m-3 and varies regionally, enhanced within much of the North Atlantic and the thermocline of the 853 

Pacific, but with little change in the deep waters of the Pacific (Figures 11b and 12b). The increase 854 

in regenerated carbon is due to a weakening of ocean overturning leading to an increase in 855 

residence time and an associated accumulation of DIC from the regeneration of biologically-856 

cycled carbon (Bernardello et al., 2014; Schwinger et al., 2014). The regenerated carbon signal 857 

does not change  in the mid depths and deep Pacific as 140 years is too short an integration 858 

timescale for any effect to be detected. 859 

 860 

To diagnose the carbon-cycle feedback parameters, the ocean carbon response needs to be 861 

considered for the BGC configuration where there is no additional warming from the increase in 862 

atmospheric CO2 and limited change in climate and ocean circulation.   The resulting DIC 863 

anomalies are generally very similar to those for the COU configuration (Figures 11b,c and 12b,c), 864 

which is to be expected as the dominant effect for the ocean carbon response is the enhanced 865 

ocean uptake of carbon in response to the increase in [CO2].  There is a weakening in ventilation 866 

in the COU configuration due to the additional radiative forcing. In comparison, in the BGC 867 

configuration, there is no change in the circulation as there is no radiative warming effect, so that 868 

there is slightly more carbon uptake in the northern North Atlantic, such as revealed at around 869 

50oN, compared with the COU configuration. For the BGC configuration, the saturated carbon 870 

pool is slightly greater at depth due to the water masses being cooler than in the COU 871 

configuration, the disequilibrium anomaly shows a less negative anomaly in the northern North 872 
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Atlantic because there is little or no change in ventilation, and there are only slight differences in 873 

the regenerated pool.  874 

  875 

The climate response to rising [CO2] is now considered in terms of the difference in the COU and 876 

BGC configurations, which includes the combined effects of warming and circulation changes 877 

(Figures 11d and 12d). The surface warming drives a decrease in solubility, an increase in 878 

stratification and a reduction in ventilation, which  leads to an overall decrease in carbon uptake 879 

over the Southern Ocean and Pacific basins, and much of the Atlantic basin.  There is a decrease 880 

in the saturated carbon pool associated with the warming acting to inhibit carbon uptake. The 881 

regenerated carbon anomaly is enhanced in the deep northern North Atlantic and in the 882 

Southern Ocean. The regenerated carbon anomaly for this climate response is very similar to that 883 

for the COU configuration, suggesting that the regenerated carbon anomaly is mainly due to 884 

circulation changes: the gain in regenerated carbon anomaly is consistent with the expected 885 

longer residence time from a weaker overturning and ventilation. There is a more negative 886 

disequilibrium anomaly in the deep waters of the North Atlantic, which is a consequence of 887 

weaker ventilation. 888 

 889 

To gain more insight into the disequilibrium response, the ocean DIC response is also considered 890 

for the radiatively-coupled integration (RAD), where there is no increase in [CO2]. The additional 891 

warming leads to a weakening in the overturning, which enhances the residence time in the 892 

surface waters and so generally decreases the magnitude of the disequilibrium anomaly in the 893 
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North Atlantic (Figure S8), making the disequilibrium less negative relative to the preindustrial 894 

and so forming a positive disequilibrium anomaly at year 140. In comparison the COU-BGC 895 

captures the effect of the warming under rising [CO2]  leading to the disequilibrium anomaly 896 

instead becoming more negative at depth, since the weakening in the ventilation leads to more 897 

of the anthropogenic carbon remaining at the surface rather than being transferred into the 898 

deeper ocean (Schwinger et al., 2014).   899 

 900 

4.4.2.2 Changes in ocean carbon pools for diagnosing feedback parameters  901 

The ocean carbon-concentration feedback parameter, 𝛽𝛽𝑂𝑂,  is diagnosed from the changes in the 902 

ocean carbon inventories for the BGC configuration, which does not include radiative warming 903 

due to increasing [CO2] (equation 13). There is a consistent increase in ocean carbon storage 904 

across all models with a model mean value of around 670 PgC (Figure 13, light blue bars). This 905 

increase in ocean carbon storage is made up of an increase in the saturated carbon inventory, 906 

Δ𝐶𝐶𝑠𝑠𝑟𝑟𝑟𝑟, by about 3100 PgC from the increase in [CO2] (Figure 13, red bars). This increase is partly 907 

offset by a more negative disequilibrium carbon, Δ𝐶𝐶𝑑𝑑𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑆𝑆𝑚𝑚𝑆𝑆𝑑𝑑, of typically -2500 PgC (Figure 13, 908 

dark blue bars), representing how the ocean carbon uptake cannot keep up with the rate of [CO2] 909 

increase. There is relatively little change in the regenerated carbon inventory, Δ𝐶𝐶𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟𝑣𝑣𝑝𝑝𝑟𝑟𝑟𝑟𝑣𝑣𝑝𝑝. The 910 

resulting 𝛽𝛽𝑂𝑂 is positive and mainly explained by the chemical response involving the rise in ocean 911 

saturation with no significant biological changes, although the physical uptake of carbon within 912 

the ocean is unable to keep pace with the rise in [CO2].  913 

 914 
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The ocean carbon-climate feedback parameter, 𝛾𝛾𝑂𝑂, is diagnosed from the difference between 915 

the COU model configuration and the BGC configuration, and so includes the effect of an 916 

increasing surface warming under rising [CO2] (equation 14).  There is a broadly consistent 917 

response across models, with a model mean decrease in carbon inventory of around 80 PgC due 918 

to the additional warming in the COU configuration relative to the BGC configuration (Figure 14, 919 

light blue bars). The effect of this additional warming and the associated climate change leads to 920 

a decrease in both the saturated carbon and disequilibrium carbon of typically -60 and -70 PgC 921 

(Figure 14, orange and dark blue bars), representing the decrease in solubility and decreased 922 

ocean ventilation. There is an increase in the regenerated carbon of typically 50 PgC (Figure 14, 923 

green bars), which is due to a weaker circulation leading to a longer residence time of 924 

thermocline and deep waters, so that there is more time for the accumulation of regenerated 925 

carbon below the mixed layer.  The resulting 𝛾𝛾𝑂𝑂 is negative, indicating that the ocean takes up 926 

less carbon in response to the combination of surface warming and a weakening in ocean 927 

ventilation. This response involves a combination of chemical, physical and biological changes 928 

where the warming reduces the solubility of the carbon in the ocean and a weakening in the 929 

circulation decreases the disequilibrium pool, but lengthens the residence time and so increases 930 

the regenerated pool. 931 

 932 

Overall, the ocean carbon inventory increases in the BGC configuration by 666±53 PgC (model 933 

mean ± ensemble standard deviation), and decreases in COU relative to BGC by  -80±15 PgC.   The 934 

resulting 𝛽𝛽𝑂𝑂 is very similar across all the models (0.78±0.06 PgC ppm-1), reflecting the strong 935 

control of carbonate chemistry by rising atmospheric CO2 (Katavouta et al., 2018). The dominant 936 
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contributions are composed of a positive contribution from the saturated carbon (3.66±0.16 PgC 937 

ppm-1) and a negative contribution from the disequilibrium carbon (-2.98±0.16 PgC ppm-1 ) (see 938 

Table A3 in the Appendix); these inter-model differences are relatively small with ratios of the 939 

standard deviation to model mean of only 0.05 and 0.06 respectively. The regenerated 940 

contribution is over two orders of magnitude smaller than the sum of the saturated and 941 

disequilibrium contributions, and so may be neglected for evaluating  𝛽𝛽𝑂𝑂. 942 

 943 

The values of 𝛾𝛾𝑂𝑂 differ more strongly across the models (-16.95±5.62 PgC °C-1) and  arise from 944 

differences in the extent of the surface warming and the dynamical changes in the ocean 945 

circulation and resulting changes in ventilation, residence time and biological regeneration (Table 946 

A3).  The contributions to 𝛾𝛾𝑂𝑂 include negative contributions from the saturated  (-12.78±2.50 PgC 947 

°C-1) and disequilibrium (-16.36±5.31 PgC °C-1) components, which are partly opposed by a 948 

positive contribution from the regenerated component (12.25±8.53 PgC °C-1). The largest 949 

intermodel differences are in the regenerated and disequilibrium responses and a relatively small 950 

spread in the saturated response, with the ratios of the standard deviation to the model mean 951 

are 0.70, 0.33 and 0.20 respectively (Table A3). 952 

 953 

4.5. Transient climate response (TCR) and transient climate response to cumulative 954 

emissions (TCRE) 955 

 956 
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Other than the feedbacks associated with the coupled carbon cycle and climate system, the 957 

idealized 1pctCO2 simulation is also used for calculating two other climate metrics routinely. The 958 

first is the transient climate response (TCR) which is defined as the temperature change, relative 959 

to the preindustrial state, at the time of CO2 doubling (Δ𝑇𝑇2×𝐶𝐶𝑂𝑂2), that occurs at 70 years after the 960 

start of the simulation. The second is the transient climate response to cumulative emissions 961 

(TCRE) which is defined as ratio of TCR to diagnosed cumulative fossil fuel emissions also at the 962 

time of CO2 doubling (𝐶𝐶�2×𝐶𝐶𝑂𝑂2) (Matthews et al., 2009) typically expressed in units of °C/EgC (1 963 

EgC = 1000 PgC).  964 

𝑇𝑇𝐶𝐶𝑅𝑅𝐶𝐶 = Δ𝑇𝑇2×𝐶𝐶𝑂𝑂2
𝐸𝐸�2×𝐶𝐶𝑂𝑂2

                                                           (21) 965 

It has been shown that TCRE is approximately constant over a wide range of cumulative emissions 966 

and emission pathways (e.g. see review by MacDougall, 2016). Therefore, although non-CO2 967 

GHGs and other climate forcings (e.g. aerosols and land use change) also affect the realized 968 

warming, TCRE is a considered to be a straightforward measure of peak warming caused by 969 

anthropogenic CO2 emissions. 970 

 971 

We do not discuss here TCR and TCRE in detail since the focus of our study is on carbon feedbacks. 972 

However, both these quantities are readily calculated using results presented in this study. Table 973 

A4 in the appendix lists TCR,  𝐶𝐶�2×𝐶𝐶𝑂𝑂2, and TCRE from the eleven CMIP6 models considered in this 974 

study. The mean ± standard deviation range for TCR, 𝐶𝐶�2×𝐶𝐶𝑂𝑂2, and TCRE from the eleven CMIP6 975 

models considered here are 1.99 ± 0.44 °C, 1121 ± 73 PgC, and 1.78 ± 0.41 °C EgC–1, respectively. 976 
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For fifteen CMIP5 models, Gillett et al. (2013) calculated the mean ± standard deviation range for 977 

TCRE to be 1.63 ± 0.48 °C EgC–1 and a 5%-95% range for its observationally constrained value as 978 

0.7-2.0 °C EgC–1. The TCRE metric has gained significant policy relevance (Frame et al., 2014; 979 

Millar et al., 2016) and it is used to calculate the remaining allowable carbon emissions to reach 980 

a specified temperature change target above the preindustrial level (Millar et al., 2017; Rogelj et 981 

al., 2019).  982 

 983 

The uncertainties in TCRE stem from uncertainties both in TCR and 𝐶𝐶�2×𝐶𝐶𝑂𝑂2 which is directly 984 

affected by land and ocean carbon uptake. A large fraction of uncertainty in 𝐶𝐶�2×𝐶𝐶𝑂𝑂2 comes from 985 

the diverse response of land carbon cycle models and the results presented here indicate that 986 

representation of the nitrogen cycle is helpful in reducing this uncertainty, as indicated by the 987 

spread across land models. For the results reported here from eleven CMIP6 models, however, 988 

the uncertainty in TCR (mean ± standard deviation = 1.99 ± 0.44 °C) is much greater than the 989 

uncertainty in 𝐶𝐶�2×𝐶𝐶𝑂𝑂2 (1121 ± 73 PgC) so that TCR contributes about 90% of the total uncertainty 990 

in the calculated TCRE value (1.78 ± 0.41 °C EgC–1) (see section A6 in the Appendix).  991 

 992 

The TCRE may also be expressed in terms of a product of a thermal contribution from the 993 

dependence of surface warming on radiative forcing  and a carbon contribution from the 994 

dependence of radiative forcing on cumulative carbon emissions (Williams et al., 2016; Katavouta 995 

et al., 2018), as  996 
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𝑇𝑇𝐶𝐶𝑅𝑅𝐶𝐶 = Δ𝑇𝑇2×𝐶𝐶𝑂𝑂2
Δ𝑅𝑅2×𝐶𝐶𝑂𝑂2

 Δ𝑅𝑅2×𝐶𝐶𝑂𝑂2
𝐸𝐸�2×𝐶𝐶𝑂𝑂2

                                                          (22) 997 

where  Δ𝑅𝑅2×𝐶𝐶𝑂𝑂2 is the change in radiative forcing relative to the preindustrial period. For a suite 998 

of ten CMIP5 models, Williams et al. (2017) show that the inter-model spread in the TCRE 999 

calculated from the 1pctCO2 experiment, is again dominated by the inter-model differences in 1000 

the thermal contribution,  
Δ𝑇𝑇2×𝐶𝐶𝑂𝑂2
Δ𝑅𝑅2×𝐶𝐶𝑂𝑂2

, due to climate feedback and ocean heat uptake over the first 1001 

few decades, but the inter-model differences in the carbon contribution, 
Δ𝑅𝑅2×𝐶𝐶𝑂𝑂2
𝐸𝐸�2×𝐶𝐶𝑂𝑂2

, due to land and 1002 

ocean carbon uptake become of comparable importance after 80 years.  1003 

 1004 

Although a large fraction of uncertainty in TCRE is contributed by physical climate system 1005 

processes that determine TCR and not the biogeochemical processes that determine 𝐶𝐶�2×𝐶𝐶𝑂𝑂2,  1006 

reducing the uncertainty in land and ocean carbon uptake across models will still contribute to 1007 

reducing the uncertainty in the estimates of TCRE on centennial timescales.    1008 

 1009 

5. Summary and conclusions  1010 

Model intercomparison projects offer several benefits including calculation of model mean 1011 

response, quantification of the uncertainty based on the spread across models, and how this 1012 

uncertainty changes over time that allows modellers to evaluate how their model’s response is 1013 

different from others’. The carbon feedbacks analysis presented here based on the C4MIP 1014 
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protocol of experiments (Jones et al., 2016) allows to investigate how feedback strengths have 1015 

evolved since CMIP5 and also attempts to understand the reasons behind the spread in models.  1016 

 1017 

The carbon uptake over land and ocean, in response to increasing atmospheric CO2 1018 

concentration, is well known to be dominated by the positive contribution from the carbon-1019 

concentration feedback (Arora et al., 2013a; Gregory et al., 2009). The strength of this feedback 1020 

is of comparable magnitudes over land (mean ± standard deviation = 0.97±0.40 PgC ppm–1) and 1021 

ocean (0.79±0.07 PgC ppm–1) although the feedback is much more uncertain over land as 1022 

indicated by the standard deviation across the eleven models considered here. This dominant 1023 

positive contribution from the carbon-concentration feedback is, however, opposed by the 1024 

weaker negative carbon-climate feedback that is associated with the climate change that results 1025 

due to increasing atmospheric CO2. The absolute magnitude of this weaker negative feedback is 1026 

about three times larger, but an order of magnitude more uncertain, over land (-45.1±50.6 PgC 1027 

°C–1) than over ocean (-17.2±5.0 PgC °C–1). Model estimates of the ocean carbon-concentration 1028 

feedback are very consistent with each other, reflecting the strong control of how carbonate 1029 

chemistry alters with rising atmospheric CO2. There is a relatively wider range in the model 1030 

estimates of the ocean carbon-climate feedback, particularly in terms of how changes in ocean 1031 

circulation alter the disequilibrium and regeneration terms. Over land, however, since the 1032 

carbon-concentration and carbon-climate feedbacks are determined entirely by biological 1033 

process, which are much less understood, the resulting uncertainty is much higher across land 1034 

models than across the ocean models. This uncertainty in the strength of carbon-concentration 1035 

and carbon-climate feedbacks over land is well known (Arora et al., 2013b; Friedlingstein et al., 1036 
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2006). The inclusion of N cycle results in lower absolute strength of the feedback parameters 1037 

over land but also a reduced spread across the land models. While the uncertainty in TCRE is 1038 

dominated by physical processes affecting the thermal response involving climate feedbacks and 1039 

heat uptake on decadal timescales, a reduction in the uncertainty in land and ocean carbon 1040 

uptake across models will reduce the uncertainty in the TCRE on centennial timescales. 1041 

 1042 

The additional analyses that we have performed to gain further insight into the reasons for 1043 

differences among models provide insight into their diverse response, especially for land models. 1044 

Over land, the diverse response of models is found to be primarily due to the wide range of the 1045 

strength of the CO2 fertilization effect, the fraction of GPP that is converted to NPP, and the 1046 

residence times of carbon in the live (vegetation) and dead (litter plus soil) carbon pools across 1047 

models. There is more consistency in the response of the ocean models, although inter-model 1048 

differences arise from differences in the ventilation and residence time altering the ocean 1049 

disequilibrium and regenerated carbon. 1050 

 1051 

 Finally, the decision to use fully- and biogeochemically coupled configurations of the 1pctCO2 1052 

experiment as the standard simulations to diagnose carbon cycle and climate system feedbacks 1053 

from should provide consistency and continuity for future versions of Earth system models to be 1054 

compared against their predecessors.  1055 

    1056 
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Table 1: The values of the carbon-concentration (𝛽𝛽) and carbon-climate (𝛾𝛾) feedback parameters 1057 
can be solved using results from any two combinations of the RAD, BGC and COU versions of an 1058 
experiment as shown in equation (1). In addition, when using results from the BGC and COU 1059 
simulations the effect of temperature change in the BGC simulation (𝑇𝑇∗) can be neglected, as was 1060 
done in the F06 study, yielding approximate values for 𝛽𝛽𝑋𝑋 and 𝛾𝛾𝑋𝑋. 1061 
 1062 
 1063 
 1064 

Approach 𝜸𝜸𝑿𝑿 𝜷𝜷𝑿𝑿 

The RAD-BGC approach 𝛾𝛾𝑋𝑋 = ∆𝐶𝐶𝑋𝑋
+

𝑇𝑇+
     𝛽𝛽𝑋𝑋 =

∆𝐶𝐶𝑋𝑋∗

𝑐𝑐′
−
𝛾𝛾𝑋𝑋𝑇𝑇∗

𝑐𝑐′
 

The RAD-COU approach 𝛾𝛾𝑋𝑋 = ∆𝐶𝐶𝑋𝑋
+

𝑇𝑇+
     𝛽𝛽𝑋𝑋 =

∆𝐶𝐶𝑋𝑋′

𝑐𝑐′
−
𝛾𝛾𝑋𝑋𝑇𝑇′

𝑐𝑐′
 

The BGC-COU approach 𝛾𝛾𝑋𝑋 = ∆𝐶𝐶𝑋𝑋
′ −∆𝐶𝐶𝑋𝑋

∗

𝑇𝑇′−𝑇𝑇∗
     𝛽𝛽𝑋𝑋 =

1
𝑐𝑐′
�
∆𝐶𝐶𝑋𝑋∗𝑇𝑇′ − ∆𝐶𝐶𝑋𝑋′ 𝑇𝑇∗

𝑇𝑇′ − 𝑇𝑇∗
� 

The BGC-COU approach with 𝑇𝑇∗ = 0 𝛾𝛾𝑋𝑋 = ∆𝐶𝐶𝑋𝑋
′ −∆𝐶𝐶𝑋𝑋

∗

𝑇𝑇′
     𝛽𝛽𝑋𝑋 =

∆𝐶𝐶𝑋𝑋∗

𝑐𝑐′  

 1065 

 1066 

 1067 

 1068 
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 1069 

 1070 

 1071 

 1072 

 1073 

 1074 

 1075 

 1076 

 1077 

 1078 

 1079 

 1080 

 1081 

 1082 

 1083 

 1084 

 1085 

 1086 

 1087 

 1088 

 1089 

 1090 

 1091 

 1092 

 1093 

 1094 

  1095 

Modelling group CSIRO BCC CCCma CESM CNRM GFDL 
ESM ACCESS-

ESM1.5 
BCC-CSM2-MR CanESM5 CESM2 CNRM-ESM2-1  GFDL-ESM4 

Atmosphere 
resolution 

1.875°x1.25°, 
L38 

1.125°x1.125°, 
L46 

2.81° ×2.81°, 
L49 

0.9°x1.25° T127 
(1.4°x1.4°) L91 

Cube-sphere 
C96 (1-
degree) 

Ocean resolution 1° but finer 
between 10S-
10N and in 
the Southern 
Ocean, L50 

1° but 
becoming finer 
to 1/3° within 
30°N - 30°S, 
L40 

1° but 
becoming 
finer to 1/3° 
within 20°N - 
20°S, L45. 

gx1v7 displaced 
pole grid (384 x 
320 lat x lon) 

1°but 
becoming 0.3° 
in the Tropics, 
L75 

0.5 degree tri-
polar grid 

Land carbon/biogeochemistry component 
Model name CABLE2.4 with 

CASA-CNP 
BCC-AVIM2 CLASS-CTEM CLM5 ISBA-CTRIP LM4p1 

Number of live 
carbon pools 

3 3 3 22 6 6 

Number of dead 
carbon pools 

6 8 2 7  7 4 

Number of plant 
functional types 
(PFTs) 

13  16  9 22  16 6 

Fire No No No Yes yes Yes 
Dynamic 
vegetation cover 

No No No No no Yes 

Nitrogen cycle Yes (and 
phosphorus) 

No No Yes No (implicit, 
derived from 
Yin 2002) 

No 

Ocean carbon/biogeochemistry component  
Model name WOMBAT MOM4_L40, 

Ocean carbon 
cycle follows 
OCMIP2 

CMOC 
(biology), 
carbonate 
chemistry 
follows OMIP 
protocol. 

MARBL PISCESv2-gas COBALTv2 

Number of 
phytoplankton 
types 

1 0 1 3 2 2 

Number of 
zooplankton 
types 

1 0 1 1 2 3 

Explicit nutrients 
considered 

Phosphorus, 
Iron 

Phosphorus Nitrogen Nitrogen, 
Phosphorus, 
Silica, Iron 

Nitrogen, 
Phosphorus, 
Silica, Iron 

Nitrogen, 
Phosphorus, 
Silica, Iron 
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 1096 

 1097 

 1098 

 1099 

 1100 

 1101 

 1102 

 1103 

 1104 

 1105 

 1106 

 1107 

 1108 

 1109 

 1110 

Table 2: Primary features of the physical atmosphere and ocean components, and land and ocean 1111 
carbon cycle components of the eleven participating models in this study. 1112 

 1113 

 1114 

Modelling group IPSL JAMSETC (Team 
MIROC) 

MPI NCC UK 

ESM IPSL-CM6A-LR MIROC-ES2L MPI-ESM1.2-
LR 

NorESM2-LM UKESM1-0-
LL 

Atmosphere 
resolution 

2.5°x.3°, L79 2.81x2.81, L40 T63, 1.8°x1.8°. 
L47   

1.9°x2.5°, L32 1.875° 
x1.25°, L85 

Ocean resolution 1°-0.3° in the 
Tropics L75 

Almost 1° but 
becoming finer to 
North pole and 
equator (Tripolar 
system: 360x256), L62 

GR1.5 (1.5°, 
finer close to 
Antarctica and 
Greenland), 
L40 

1° with 
enhanced 
meridional 
resolution near 
the Equator, 
L53 

1° 

Land carbon/biogeochemistry component 
Model name ORCHIDEE, 

branch 2.0 
MATSIRO (physics) 
VISIT-e (BGC) 

JSBACH3.2 CLM5 JULES-ES-
1.0 

Number of live 
carbon pools 

8 3 3 22 3 

Number of dead 
carbon pools 

3 6 18 7 4 

Number of plant 
functional types 
(PFTs) 

15 13  13  22 13 

Fire No No Yes Yes No 
Dynamic 
vegetation cover 

No No Yes No Yes 

Nitrogen cycle No Yes Yes Yes Yes 
Ocean carbon/biogeochemistry component  

Model name PISCES-v2 OECO2 HAMOCC6 Modified 
HAMOCC5.1 

MEDUSA-
2.1 

Number of 
phytoplankton 
types 

2 2 (non-diazotroph and 
diazotroph) 

2 1 2 

Number of 
zooplankton 
types 

2 1 1 1 2 

Explicit nutrients 
considered 

Nitrogen, 
Phosphorus, 
Silica, Iron 

Nitrogen, Phosphorus, 
Iron 

Nitrogen, 
Phosphorus, 
Silica, Iron 

Nitrogen, 
Phosphorus, 
Silica, Iron 

Nitrogen, 
Silica, Iron 
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 1115 

Table 3: Correlation between carbon-concentration (𝛽𝛽𝑋𝑋) and carbon-climate (𝛾𝛾𝑋𝑋) feedback 1116 
parameters over land and ocean across comprehensive ESMs from the CMIP5 intercomparison 1117 
in the A13 study and CMIP6 intercomparison in this study. For land correlation is also shown 1118 
when CanESM5 is excluded from CMIP6 models.  1119 

 1120 

Land Ocean  

−0.69                                      . 
−0.92 (excluding CanESM5) 

−0.64 CMIP6 (11 models) 

−0.82                                      . −0.75 CMIP5 (8 models) 

 1121 

 1122 

 1123 

 1124 

  1125 
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 1126 

 1127 

 1128 

Figure 1: Temperature changes in the fully-, biogeochemically- and radiatively-coupled 1129 
configurations of the 1pctCO2 experiment across participating CMIP6 (panel a) and CMIP5 (panel 1130 
b) comprehensive ESMs that participated in this and the Arora et al. (2013) study, respectively. 1131 
Model mean is indicated by the solid lines and the range across the models is indicated by shading 1132 
around the solid lines. Individual model results are shown in Figure 4. 1133 

 1134 

 1135 
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 1136 

Figure 2: Model mean values and the range across models for annual simulated atmosphere-land 1137 
CO2 flux (top row) and their cumulative values (bottom row) for participating CMIP6 (left column) 1138 
and CMIP5 (right column) models from the fully-, biogeochemically- and radiatively-coupled 1139 
versions of the 1pctCO2 experiment. Individual model results are shown in Figure 4. 1140 

  1141 
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 1142 

 1143 

Figure 3: Model mean values and the range across models for annual simulated atmosphere-1144 
ocean CO2 flux (top row) and their cumulative values (bottom row) for participating CMIP6 (left 1145 
column) and CMIP5 (right column) models from the fully-, biogeochemically- and radiatively-1146 
coupled versions of the 1pctCO2 experiment. Individual model results are shown in Figure 4. 1147 

  1148 
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Figure 4: Individual model values from CMIP6 models for globally-averaged surface temperature 1149 
change (top row), cumulative atmosphere-land CO2 flux (middle row), and cumulative 1150 
atmosphere-ocean CO2 flux (bottom row) from the fully-, biogeochemically- and radiatively-1151 
coupled versions of the 1pctCO2 experiment. Results from the radiatively-coupled configuration 1152 
were not available from NorESM2-LM models at the time of writing.   1153 
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 1154 

Figure 5: Components of the carbon budget terms in cumulative emissions from the eleven 1155 
participating CMIP6 models based on equation (15) in panel (a) and equation (16) in panel (b) 1156 
using results from the fully-coupled 1pctCO2 simulation.  The models are arranged in an 1157 
ascending order based on their cumulative emissions values. Results from participating CMIP5 1158 
models in the A13 study are shown in panels c and d. In addition, ESMs whose land component 1159 
includes a representation of N cycle are identified by red font colour for cumulative land carbon 1160 
uptake (panels a and c) and fractional emissions taken up by land (panels b and d). Model mean 1161 
is shown for all models but also separately for models whose land components include or do not 1162 
include a representation of the N cycle. 1163 

 1164 

  1165 
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 1166 

Figure 6: Carbon-concentration (panel a) and carbon-climate (panel b) feedback parameters 1167 

over land from participating CMIP6 models calculated using the approaches summarized in 1168 

Table 1. The boxes show the mean ± 1 standard deviation range and the individual coloured 1169 

dots represent individual models. Models which include a representation of land nitrogen cycle 1170 

are identified with a circle around their dot. Model-mean ± 1 standard deviation range of 1171 

feedback parameters is also separately shown for models which do and do not represent land 1172 

nitrogen cycle using the BGC-COU approach. Results from participating CMIP5 models in the 1173 

A13 study are shown in panels c and d. Note that among CMIP6 models results from NorESM2-1174 

LM were not available for the RAD simulation at the time of writing. 1175 
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 1176 

 1177 

Figure 7: Carbon-concentration (panel a) and carbon-climate (panel b) feedback parameters 1178 

over ocean from participating CMIP6 models calculated using the approaches summarized in 1179 

Table 1. The boxes show the mean ± 1 standard deviation range. Results from participating 1180 

CMIP5 models in the A13 study are shown in panels c and d. Note that among CMIP6 models 1181 

results from NorESM2-LM were not available for the RAD simulation at the time of writing. 1182 
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 1183 

Figure 8: Carbon uptake over land in the BGC simulation, used to calculate land carbon-1184 
concentration feedback (𝛽𝛽𝐿𝐿) and its partitioning into vegetation and soil+litter carbon pools 1185 
across the participating CMIP6 models (panel a). Panel (b) shows the fractional land carbon 1186 
uptake by vegetation and soil+litter carbon pools in the BGC simulation. No partitioning is 1187 
shown for the BCC-CSM2-MR model because total land carbon uptake in this model exceeded 1188 
the sum of changes in the vegetation and soil+litter carbon pools by more than 10%. Total land 1189 
carbon uptake in models which include a representation of the N cycle is shown in red color. 1190 
The results from the BCC-CSM2-MR model are not used in calculating the model-mean values. 1191 
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 1192 

Figure 9: Individual terms of 1193 
equation (8) which 1194 
contribute to changes in 1195 
vegetation (∆𝐶𝐶𝑉𝑉 ) and 1196 
litter+soil (∆𝐶𝐶𝑆𝑆 ) carbon 1197 
pools. Values from the BCC-1198 
CSM2-MR model are not 1199 
used in calculating the 1200 
model-mean. 1201 

 1202 

 1203 

 1204 

 1205 

 1206 

 1207 

 1208 

 1209 

 1210 

 1211 

 1212 

 1213 

 1214 

 1215 

 1216 

 1217 

 1218 

 1219 

 1220 

  1221 
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 1222 

 1223 

 1224 

Figure 10: The changes in vegetation and soil+litter carbon pools in the COU relative to the BGC 1225 

simulation, as shown in equation (9), which contribute to the calculation of carbon-climate 1226 

feedback over land (𝛾𝛾𝐿𝐿) in the BGC-COU approach. 1227 

  1228 
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 1229 

 1230 

Figure 11. Meridional section of the dissolved inorganic carbon, DIC (mol m-3), and constituent 1231 

carbon pools in UK-ESM1-0-LL for the zonally-averaged Atlantic and Southern Ocean: (a) the 1232 

preindustrial absolute concentrations, and the anomalies relative to the preindustrial state at 1233 

year 140 for (b) the COU configuration, (c) the BGC configuration and (d) the COU minus the 1234 

BGC configuration. The DIC is separated into saturated carbon, DICsat, the disequilibrium 1235 

carbon, DICdisequilib, and the regenerated carbon, DICregenerated. The Atlantic and Southern Ocean 1236 

domains are separated by a black vertical line. 1237 

  1238 
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 1239 

 1240 

Figure 12. Meridional section of the dissolved inorganic carbon, DIC (mol m-3), and constituent 1241 

carbon pools in UK-ESM1-0-LL for the zonally-averaged Pacific and Southern Ocean: (a) the 1242 

preindustrial absolute concentrations, and the anomalies relative to the preindustrial state at 1243 

year 140 for (b) the COU configuration, (c) the BGC configuration and (d) the COU minus the 1244 

BGC configuration. The DIC is separated into saturated carbon, DICsat, the disequilibrium 1245 

carbon, DICdisequilib, and the regenerated carbon, DICregenerated. The Pacific and Southern Ocean 1246 

domains are separated by a black vertical line. 1247 

  1248 
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 1249 

 1250 

Figure 13. Carbon uptake over the ocean in the biogeochemically-coupled simulation, used to 1251 

calculate ocean carbon-concentration feedback and its partitioning into saturated, disequilibrium 1252 

and regenerated carbon pools across the participating CMIP6 models (left panels) using equation 1253 

(12). No partitioning is shown for models for which 3D ocean fields were not available and the 1254 

results of these models are not used in calculating the model mean values (right panel).  The sum 1255 

of the partitions does not exactly match the total ocean uptake diagnosed from the air-sea fluxes 1256 

due to land-ocean interactions involving storage in sediments and river inputs. 1257 

  1258 
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 1259 

 1260 

Figure 14.  Change in saturated, disequilibrium and regenerated carbon pools in the fully coupled 1261 

minus the biogeochemical simulation using equation (12), which contribute to the calculation of 1262 

carbon-concentration feedback over the ocean. The sum of the partitions does not exactly match 1263 

the total ocean uptake diagnosed from the air-sea fluxes due to land-ocean interactions involving 1264 

storage in sediments and river inputs. 1265 

  1266 
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 1267 

Appendix 1268 

 1269 

A1. The climate carbon cycle feedbacks framework 1270 

 1271 

The rate of change of carbon in the combined atmosphere-land-ocean system is written as 1272 

 1273 

𝑝𝑝𝐶𝐶𝐺𝐺
𝑝𝑝𝑟𝑟

= 𝑝𝑝𝐶𝐶𝐴𝐴
𝑝𝑝𝑟𝑟

+ 𝑝𝑝𝐶𝐶𝐿𝐿
𝑝𝑝𝑟𝑟

+ 𝑝𝑝𝐶𝐶𝑂𝑂
𝑝𝑝𝑟𝑟

= 𝐶𝐶                                              (A1) 1274 

 1275 

where the Global carbon pool 𝐶𝐶𝐺𝐺 = 𝐶𝐶𝐴𝐴 + 𝐶𝐶𝐿𝐿 + 𝐶𝐶𝑂𝑂 is the sum of carbon in the Atmosphere, Land 1276 

and Ocean components (PgC), and E is the rate of anthropogenic CO2 emission (PgC/yr) into the 1277 

atmosphere. The equations for the atmosphere, land and ocean are  1278 

𝑝𝑝𝐶𝐶𝐴𝐴
𝑝𝑝𝑟𝑟

= 𝐹𝐹𝐴𝐴(𝑇𝑇, 𝑐𝑐) + 𝐶𝐶
𝑝𝑝𝐶𝐶𝐿𝐿
𝑝𝑝𝑟𝑟

= 𝐹𝐹𝐿𝐿(𝑇𝑇, 𝑐𝑐)        
𝑝𝑝𝐶𝐶𝑂𝑂
𝑝𝑝𝑟𝑟

= 𝐹𝐹𝑂𝑂(𝑇𝑇, 𝑐𝑐)        

                                                            (A2) 1279 

where AOL FFF −=+ )(  are the fluxes between the atmosphere and the underlying land and 1280 

ocean, taken to be positive into the components. The fluxes F are expressed as functions of 1281 

surface temperature T and the surface atmospheric CO2 concentration c. Here and subsequently, 1282 

uppercase C denotes carbon pools and lowercase c denotes atmospheric CO2 concentration. 1283 
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In the fully- , biogeochemically-, and radiatively-coupled versions of the 1pctCO2 experiments 1284 

analyzed here, the rate of change of atmospheric carbon 𝑑𝑑𝐶𝐶𝐴𝐴 𝑑𝑑𝑑𝑑⁄  is specified in equations (A1) 1285 

and (A2). The uptake or release of CO2 by the underlying land and ocean yields an effective 1286 

emission E which serves to maintain the budget. 1287 

 1288 

The changes in atmosphere carbon budgets, from the pre-industrial control simulation, in the 1289 

differently coupled simulations are represented as 1290 

 1291 

Radiatively-coupled                 
𝑝𝑝𝐶𝐶𝐴𝐴

′

𝑝𝑝𝑟𝑟
− 𝐶𝐶+ = 𝐹𝐹𝐴𝐴+ = −𝐹𝐹𝐿𝐿+ − 𝐹𝐹𝑂𝑂+ = Γ𝐴𝐴𝑇𝑇+                               (A3a) 1292 

Biogeochemically-coupled               
𝑝𝑝𝐶𝐶𝐴𝐴

′

𝑝𝑝𝑟𝑟
− 𝐶𝐶∗ = 𝐹𝐹𝐴𝐴∗ = −𝐹𝐹𝐿𝐿∗ − 𝐹𝐹𝑂𝑂∗ = Γ𝐴𝐴𝑇𝑇∗ + Β𝐴𝐴𝑐𝑐′          (A3b) 1293 

Fully-coupled                              
𝑝𝑝𝐶𝐶𝐴𝐴

′

𝑝𝑝𝑟𝑟
− 𝐶𝐶 = 𝐹𝐹𝐴𝐴′ = −𝐹𝐹𝐿𝐿′ − 𝐹𝐹𝑂𝑂′ = Γ𝐴𝐴𝑇𝑇′ + Β𝐴𝐴𝑐𝑐′                      (A3c) 1294 

 1295 

 1296 

which serve to define the instantaneous carbon-concentration (Β𝐴𝐴) and carbon-climate (Γ𝐴𝐴) 1297 

feedback parameters and assume linearization of the globally integrated surface-atmosphere 1298 

CO2 flux in terms of global mean temperature and concentration change. In equation (A3), 𝐹𝐹+, 1299 

𝐹𝐹∗, and  𝐹𝐹′ are the flux changes and 𝑇𝑇+, 𝑇𝑇∗, and 𝑇𝑇′ the temperature changes in the radiatively-, 1300 

biogeochemically- and fully-coupled simulations, and 𝐶𝐶+, 𝐶𝐶∗, and 𝐶𝐶 are the resulting implicit 1301 

emissions. 𝑐𝑐′ is the specified CO2 concentration change above its pre-industrical level in the 1302 

1pctCO2 simulations. In the biogeochemically-coupled simulation there is no radiative forcing 1303 

due to increasing CO2 so T* is small, although not zero and exhibits a distinct spatial pattern. The 1304 
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assumption made in equation (A3) is that the feedback parameters are the same in the three 1305 

cases.  1306 

 1307 

Carbon budget changes for the land component parallel (A3) but without the emissions terms as  1308 

Radiatively-coupled                           
𝑝𝑝𝐶𝐶𝐿𝐿

′

𝑝𝑝𝑟𝑟
= 𝐹𝐹𝐿𝐿+ = Γ𝐿𝐿𝑇𝑇+                                                               (A4a) 1309 

Biogeochemically-coupled               
𝑝𝑝𝐶𝐶𝐿𝐿

∗

𝑝𝑝𝑟𝑟
= 𝐹𝐹𝐿𝐿∗ = Γ𝐿𝐿𝑇𝑇∗ + Β𝐿𝐿𝑐𝑐′                                                  (A4b) 1310 

Fully-coupled                                      
𝑝𝑝𝐶𝐶𝐿𝐿

∗

𝑝𝑝𝑟𝑟
= 𝐹𝐹𝐿𝐿′ = Γ𝐿𝐿𝑇𝑇′ + Β𝐿𝐿𝑐𝑐′                                                   (A4c) 1311 

 1312 

and similarly for the ocean component. Since 𝐹𝐹𝐴𝐴 = −(𝐹𝐹𝐿𝐿 + 𝐹𝐹𝑂𝑂) it follows that Γ𝐴𝐴 = −(Γ𝐿𝐿 + Γ𝑂𝑂) 1313 

and Β𝐴𝐴 = −(Β𝐿𝐿 + Β𝑂𝑂). There are no terms involving 𝑐𝑐′ in the radiatively-coupled simulation 1314 

(equations 3a and 4a) since the pre-industrial value of atmospheric CO2 concentration is 1315 

prescribed for the biogeochemistry components  so  𝑐𝑐′ = 0 and does not affect the flux.  1316 

 1317 

The instantaneous feedback parameters (Β𝐿𝐿 and Γ𝐿𝐿) differ from that in the integrated flux 1318 

approach of Friedlingstein et al. (2006) who express time integrated flux changes (i.e. change in 1319 

pool or reservoir sizes) as functions of temperature and CO2 concentration changes with 1320 

Radiatively-coupled                                  ∫𝐹𝐹𝐿𝐿+ = Δ𝐶𝐶𝐿𝐿+ = γ𝐿𝐿𝑇𝑇
+

                                                   (A5a) 1321 

Biogeochemically-coupled                     ∫𝐹𝐹𝐿𝐿∗ = Δ𝐶𝐶𝐿𝐿∗ = γ𝐿𝐿𝑇𝑇
∗ + β𝐿𝐿𝑐𝑐′                                        (A5b) 1322 

Fully-coupled                                            ∫𝐹𝐹′𝐿𝐿 = Δ𝐶𝐶′𝐿𝐿 = γ𝐿𝐿𝑇𝑇′+ β𝐿𝐿𝑐𝑐′                                       (A5c) 1323 

 1324 
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and similarly for the ocean component, with the assumption  that the Δ𝐶𝐶′𝑂𝑂 term includes changes 1325 

in the carbon amount of ocean sediment as well. 1326 

 1327 

The units of instantaneous and integrated flux based parameters are different (Γ - PgC yr−1 °C−1, 1328 

Β - PgC yr−1 ppm−1 and γ - PgC °C−1, β - PgC ppm−1). Arora et al. (2013) show how the 1329 

instantaneous and integrated flux based feedback parameters are related to each other 1330 

 1331 

Integrating equations (A1) and (A2) from initial time to t  gives 1332 

Δ𝐶𝐶′𝐴𝐴 + Δ𝐶𝐶′𝐿𝐿 + Δ𝐶𝐶′𝑂𝑂 = ∫ 𝐶𝐶𝑟𝑟0 𝑑𝑑𝑑𝑑 = 𝐶𝐶�                                     (A6) 1333 

Where  Δ𝐶𝐶′𝐴𝐴 = 2.12 (𝑐𝑐(𝑑𝑑) − 𝑐𝑐(0)) is the change in atmospheric carbon burden (the factor 2.12 1334 

converts atmospheric CO2 concentration from ppm to atmospheric burden in PgC) and Δ𝐶𝐶′𝑋𝑋 =1335 

∫ 𝐹𝐹′𝑋𝑋
𝑟𝑟
0 𝑑𝑑𝑑𝑑,𝑋𝑋 = 𝐿𝐿,𝑂𝑂 is the cumulative flux equal to the change in the land or ocean carbon pool 1336 

for the fully-coupled simulation. The terms in equation (A6) indicate the contribution of changes 1337 

in atmosphere, land and ocean carbon pools to cumulative emissions 𝐶𝐶� . Finally, division by the 1338 

cumulative emissions term in equations (A6) gives all the terms in a fractional form as 1339 

 1340 

𝑓𝑓𝐴𝐴 + 𝑓𝑓𝐿𝐿 + 𝑓𝑓𝑂𝑂 = 1                                                              (A7) 1341 

 1342 
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where 𝑓𝑓𝐴𝐴 is the airborne fraction of cumulative emissions and 𝑓𝑓𝐿𝐿 and 𝑓𝑓𝑂𝑂 are fractional emissions 1343 

taken up by the land and ocean. These components are evaluated at the time of CO2 quadrupling. 1344 

 1345 

A2. Justification for using BGC and COU simulations for finding feedback parameters 1346 

Figures 6 and 7 provide justification for using the BGC-COU approach, over the RAD-BGC and 1347 

RAD-COU approaches, in calculating the feedback parameters as discussed below. In Figure 7, 1348 

the absolute magnitude of 𝛾𝛾𝑂𝑂 when using the BGC-COU approach is about twice in CMIP5 models 1349 

(and more than three times in CMIP6 models) compared to its model-mean value calculated using 1350 

the RAD-BGC and RAD-COU approaches. The reason for this is that the RAD simulation misses the 1351 

suppression (due to weakening of the ocean circulation) of carbon drawdown to the deep ocean. 1352 

This is because there is no buildup of a strong carbon gradient from the atmosphere to the deep 1353 

ocean in the RAD simulation. This process is important when climate change is forced by 1354 

increasing atmospheric CO2, and therefore feedback parameters calculated using the BGC-COU 1355 

approach are more likely to include all processes relevant to application for realistic scenarios. In 1356 

Figure 6, although the carbon-climate feedback parameter over land (𝛾𝛾𝐿𝐿) is larger in absolute 1357 

amount, it is comparatively less sensitive to the approach used, than over ocean, because over 1358 

land an increase in temperature not only increases the respiratory losses but also affects 1359 

photosynthetic processes especially in conjunction with increasing CO2. Warmer temperatures 1360 

increase photosynthesis over mid to high latitude regions where photosynthesis is currently 1361 

limited by temperature and more so with increasing CO2, but decrease photosynthesis over 1362 

tropical regions where the temperatures are already too warm for optimal photosynthesis. The 1363 
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net result of these compensating processes plays out very differently in different models and in 1364 

the model-mean sense this results in less sensitivity of the calculated value of carbon climate 1365 

feedback parameter over land (𝛾𝛾𝐿𝐿) to the different approaches than over ocean. This is seen in 1366 

both CMIP5 and CMIP6 models. When 𝛾𝛾𝐿𝐿 is calculated using the RAD-BGC and RAD-COU 1367 

approaches, it is exclusively calculated using results from the RAD simulation. However, since 1368 

over land photosynthesis is also affected by temperature in addition to respiration (with widely 1369 

varying responses between models) the 𝛾𝛾𝐿𝐿 values vary widely between models between the RAD-1370 

BGC/RAD-COU approach and the BGC-COU approach. This is seen, for example, for ACCESS-1371 

ESM1.5, IPSL, and CanESM5 models in Figure 6b. The very different values of 𝛾𝛾𝐿𝐿 for individual 1372 

models, when using different approaches to calculate them, are the result of the differing 1373 

responses of the vegetation and soil+litter carbon pools, in the RAD and COU simulations, and 1374 

this is supported by results that were presented in Section 4.3.2.  1375 

 1376 

In Figure 7 value of 𝛾𝛾𝑂𝑂 changes sign for the CNRM-ESM2-1 model from positive when calculated 1377 

using the RAD-BGC or RAD-COU approaches to negative when calculated using the BGC-COU 1378 

approach and this further illustrates the sensitivity of feedback parameters to the approach used 1379 

to calculate them. This non-linear behaviour for a previous version of the CNRM model has been 1380 

document in Schwinger et al. (2014) and caused by the large increase in regenerated DIC in the 1381 

RAD simulation, similar to the increase in the COU relative to the BGC simulation, as shown in 1382 

Figure 14 for the CNRM-ESM2-1 model. This non-linear behaviour is stronger in CNRM-ESM2-1, 1383 

compared to CNRM-ESM1, its previous version (Séférian et al., 2016), most likely due to a new 1384 

parameterization for N fixation which increases ocean NPP and a revised parameterization for 1385 
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organic matter remineralization in the model’s ocean biogeochemistry component (PISCESv2-1386 

gas). A contribution to a positive 𝛾𝛾𝑂𝑂 is also made by declining sea ice in the RAD simulation which 1387 

leads to changes in the sign of the air-sea carbon exchange in the Southern Ocean. The vertical 1388 

profile of dissolved inorganic carbon in the Southern Ocean in BGC and COU simulations (with 1389 

rising [CO2]) is different from that in the RAD simulation (for the preindustrial [CO2]) and this 1390 

leads to additional non-linearities. 1391 

 1392 

  1393 

https://doi.org/10.5194/bg-2019-473
Preprint. Discussion started: 9 December 2019
c� Author(s) 2019. CC BY 4.0 License.



76 
 

A3. Additional Figures 1394 

 1395 

Figure A1: Components of the carbon budget terms in cumulative emissions from the eleven 1396 
participating CMIP6 models based on equation (15) in panel (a) and equation (16) in panel (b) 1397 

using results from the fully-coupled 1% per year increasing CO2 simulation but at 2×CO2 (year 70) 1398 

in contrast to Figure 5 which showed these results at 4×CO2. The models are arranged in an 1399 
ascending order based on their cumulative emissions values. Results from participating CMIP5 1400 
models in the A13 study are shown in panels c and d. In addition, ESMs whose land component 1401 
includes a representation of N cycle are identified by red font colour for cumulative land carbon 1402 
uptake (panels a and c) and fractional emissions taken up by land (panels b and d). Model mean 1403 
is shown for all models but also separately for models whose land components include or do not 1404 
include a representation of the N cycle. 1405 
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 1406 

 1407 

Figure A2: Absolute amounts and the change from the beginning of the BGC simulation for carbon 1408 
in soil+litter (panels a and b) and vegetation (panels c and d) pools. 1409 

 1410 

 1411 
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 1412 

A4. Additional tables 1413 

Table A1: Values of carbon-concentration and carbon-climate feedback parameters for land and 1414 
ocean calculated using the B-C approach (using results from the COU and BGC simulations), and 1415 

the linear transient climate sensitivity to CO2, from CMIP6 and CMIP5 models at 4×CO2 (i.e. at 1416 

the end of the 1pctCO2 simulation) and 2×CO2.  1417 

CMIP6 models at 4×CO2 

 Land Ocean  

 
Carbon-climate 
feedback, 𝛾𝛾𝐿𝐿 

Carbon-concentration 
feedback, 𝛽𝛽𝐿𝐿 

Carbon-climate 
feedback, 𝛾𝛾𝑂𝑂 

Carbon-
concentration 
feedback, 𝛽𝛽𝑂𝑂 

Climate 
sensitivity, α 

 PgC °C–1 PgC ppm–1 PgC °C–1 PgC ppm–1 °C ppm–1 
ACCESS-ESM1.5 -21.1 0.37 -23.75 0.9 0.00546 
BCC-CSM2-MR -163.1 1.81 -19.94 0.92 0.00485 
CanESM5 15.95 1.28 -14.72 0.77 0.00751 
CESM2 -21.6 0.9 -10.85 0.71 0.00637 
CNRM-ESM2-1 -83.11 1.36 -9.38 0.7 0.00632 
IPSL-CM6A-LR -8.67 0.62 -12.97 0.76 0.00687 
MIROC-ES2L -69.57 1.12 -22.25 0.73 0.00436 
MPI-ESM1.2-LR -5.17 0.71 -20.11 0.77 0.00512 
NOAA-GFDL-ESM4 -80.06 0.93 -21.65 0.84 0.00430 
NorESM2-LM -20.95 0.85 -19.64 0.78 0.00410 
UKESM1-0-LL -38.4 0.75 -14.07 0.75 0.00721 
Model mean  -45.07 0.97 -17.21 0.78 0.00568 
Standard deviation 48.24 0.38 4.72 0.07 0.00118 

 1418 

CMIP6 models at 2×CO2 

 Land Ocean  

 
Carbon-climate 
feedback, 𝛾𝛾𝐿𝐿 

Carbon-concentration 
feedback, 𝛽𝛽𝐿𝐿 

Carbon-climate 
feedback, 𝛾𝛾𝑂𝑂 

Carbon-
concentration 
feedback, 𝛽𝛽𝑂𝑂 

Climate 
sensitivity, α 

  PgC °C–1 PgC ppm–1 PgC °C–1 PgC ppm–1 
ACCESS-ESM1.5 -12 0.75 -11.72 1.06 0.00750 
BCC-CSM2-MR -132.84 2.22 -12.38 1.09 0.00592 
CanESM5 -6.22 1.42 -7.71 0.9 0.00950 
CESM2 -12.76 0.98 -4.24 0.84 0.00789 
CNRM-ESM2-1 -44.51 1.37 -3.58 0.81 0.00650 
IPSL-CM6A-LR -12.24 1.11 -7.37 0.87 0.00876 
MIROC-ES2L -63.36 1.45 -10.44 0.85 0.00530 
MPI-ESM1.2-LR -0.81 1.08 -11.4 0.88 0.00636 
NOAA-GFDL-ESM4 -50.69 1.08 -8.97 0.97 0.00543 
NorESM2-LM -15.61 0.94 -9.34 0.88 0.00509 
UKESM1-0-LL -24.01 1 -7.35 0.88 0.00885 
Model mean  -34.10 1.22 -8.59 0.91 0.00701 
Standard deviation 36.61 0.38 2.76 0.09 0.00150 
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 1419 

CMIP5 models at 4×CO2 

 Land Ocean  

 
Carbon-climate 
feedback, 𝛾𝛾𝐿𝐿 

Carbon-concentration 
feedback, 𝛽𝛽𝐿𝐿 

Carbon-climate 
feedback, 𝛾𝛾𝑂𝑂 

Carbon-
concentration 
feedback, 𝛽𝛽𝑂𝑂 

Climate 
sensitivity, α 

  PgC °C–1 PgC ppm–1 PgC °C–1 PgC ppm–1 
BCC-CSM1-1 -109.7 1.4 -17.4 0.85 0.00511 
CanESM2 -64.9 0.99 -11.28 0.7 0.00623 
CESM1-BGC -6.39 0.24 -12.16 0.74 0.00481 
IPSL-CM5A-LR -46.65 1.13 -17.6 0.89 0.00559 
MIROC-ESM -86.82 0.75 -20.94 0.82 0.00660 
MPI-ESM-LR -89.64 1.49 -18.36 0.85 0.00582 
NorESM-ME -4.3 0.22 -18.72 0.87 0.00441 
HadGEM2-ES -54.94 1.24 -21.88 0.82 0.00607 
Model mean  -57.92 0.93 -17.29 0.82 0.00558 
Standard deviation 35.77 0.46 3.54 0.06 0.00070 

 1420 

CMIP5 models at 2×CO2 

 Land Ocean  

 
Carbon-climate 
feedback, 𝛾𝛾𝐿𝐿 

Carbon-concentration 
feedback, 𝛽𝛽𝐿𝐿 

Carbon-climate 
feedback, 𝛾𝛾𝑂𝑂 

Carbon-
concentration 
feedback, 𝛽𝛽𝑂𝑂 

Climate 
sensitivity, α 

  PgC °C–1 PgC ppm–1 PgC °C–1 PgC ppm–1 
BCC-CSM1-1 -57.61 1.75 -11.06 1.03 0.00676 
CanESM2 -48.13 1.05 -6.64 0.85 0.00830 
CESM1-BGC -5.02 0.25 -4.41 0.86 0.00603 
IPSL-CM5A-LR -37.28 1.58 -8.88 0.99 0.00609 
MIROC-ESM -64.79 1.04 -12.36 0.94 0.00778 
MPI-ESM-LR -62.52 1.86 -11.24 0.99 0.00686 
NorESM-ME 1.02 0.24 -9.53 1 0.00506 
HadGEM2-ES -21.78 1.43 -11.27 0.92 0.00836 
Model mean -37.01 1.15 -9.42 0.95 0.00690 
Standard deviation 24.17 0.59 2.53 0.06 0.00110 

 1421 

 1422 

  1423 
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Table A2:  Estimate of the change in the ocean carbon inventory (PgC) expected from a time 1424 
integral of the global air-sea carbon flux into the ocean versus the volume integral of the change 1425 
in the dissolved inorganic carbon, together with the small residual. The time integral of the air-1426 
sea carbon flux provides the dominant contribution to the change in the ocean carbon inventory, 1427 
although there is a small mismatch due to the land to ocean carbon flux from river runoff and the 1428 
ocean to land carbon flux from carbon burial in ocean sediments. 1429 

 1430 

Model Time integral of the 
global air-sea carbon 
flux into the ocean 
(PgC) 

Global ocean volume 
integral of ∆DIC (PgC) 

Residual 
(PgC) 

ACCESS-ESM1.5 763 736 27 
CanESM5 656 651 5 
CNRM-ESM2-1 597 658 -61 
MIROC-ES2L 625 632 -7 
MPI-ESM1.2-LR 657 621 36 
NOAA-GFDL-ESM4 720 759 -39 
NorESM2-LM 671 628 43 
UKESM1-0-LL 637 609 28 
Model mean (𝑥̅𝑥) 666 662  
Standard deviation (σx) 53 55  

Coefficient of variation (σx/|𝑥̅𝑥|) 0.08 0.08  

 1431 

 1432 

  1433 

https://doi.org/10.5194/bg-2019-473
Preprint. Discussion started: 9 December 2019
c� Author(s) 2019. CC BY 4.0 License.



81 
 

 1434 

Table A3: Carbon-cycle feedback parameters for the ocean, βO and γO, diagnosed from the air-1435 
sea carbon fluxes and separately diagnosed for the ocean carbon inventory and its separate 1436 
ocean saturated, disequilibrium and regenerated DIC pools for the subset of eight CMIP6 models 1437 
for which 3D ocean data were available; their sum does not exactly match the diagnostics from 1438 
the air-sea fluxes due to land-ocean interactions involving storage in sediments and river inputs.    1439 

 1440 

 1441 

Table A4: Transient Climate Response (TCE, Δ𝑇𝑇2×𝐶𝐶𝑂𝑂2), diagnosed cumulative emissions at 1442 

2×CO2 (𝐶𝐶�2×𝐶𝐶𝑂𝑂2), and transient climate response to cumulative emissions (TCRE) for the eleven 1443 

CMIP6 models considered in this study. 1444 

 1445 

CMIP6 model TCR (°C) Cumulative diagnosed 
emissions (PgC) 

TCRE (°C EgC–1) 

ACCESS-ESM1.5 2.13 1064 2.00 
BCC-CSM2-MR 1.68 1291 1.30 
CanESM5 2.69 1214 2.21 
CESM2 2.24 1073 2.08 
CNRM-ESM2-1 1.84 1124 1.64 
IPSL-CM6A-LR 2.48 1107 2.24 
MIROC-ES2L 1.50 1135 1.32 
MPI-ESM1.2-LR 1.80 1127 1.60 
NOAA-GFDL-ESM4 1.54 1066 1.44 
NorESM2-LM 1.44 1075 1.34 
UKESM1-0-LL 2.51 1054 2.38 
Mean 1.99 1121 1.78 
Standard deviation 0.42 70 0.39 

 1446 

  1447 

 Carbon-concentration feedback (PgC ppm–1) Carbon-climate feedback (PgC oC–1) 
 βO βsat βdis βreg γO γsat γdis γreg 

ACCESS-ESM1.5 0.90 3.54 -2.69 0.005 -23.75 -13.60 -20.47 11.52 
CanESM5 0.77 3.83 -3.06 -0.001 -14.72 -10.72 -8.62 4.29 
CNRM-ESM2-1 0.70 3.75 -3.01 0.03 -9.38 -14.56 -17.66 29.27 
MIROC-ES2L 0.73 3.76 -3.01 -0.001 -22.25 -16.48 -25.50 21.08 
MPI-ESM1.2-LR 0.77 3.34 -2.62 0.002 -20.11 -14.37 -15.37 8.40 
NorESM2-LM 0.78 3.67 -2.92 -0.004 -19.64 -12.91 -14.44 9.19 
UKESM1-0-LL 0.75 3.62 -2.88 -0.02 -14.07 -8.87 -11.04 6.56 
NOAA-GFDL-ESM4 0.84 3.77 -2.93 0.05 -21.65 -10.75 -17.77 7.7 

Model mean (𝑥̅𝑥) 0.78 3.66 -2.89 -0.003 -16.95 -12.78 -16.36 12.25 
Standard deviation (σx) 0.06 0.16 0.16 0.009 5.62 2.50 5.31 8.53 
Coefficient of variation (σx/|𝑥̅𝑥|) 0.08 0.05 0.06 3.00 0.33 0.20 0.33 0.70 

https://doi.org/10.5194/bg-2019-473
Preprint. Discussion started: 9 December 2019
c� Author(s) 2019. CC BY 4.0 License.



82 
 

A5. Model descriptions 1448 

A5.1. Commonwealth Scientific and Industrial Research Organisation (CSIRO) ACCESS-ESM1.5 1449 

The Australian Community Climate and Earth System Simulator ACCESS-ESM1.5 (Ziehn et al., 1450 

2017; Ziehn et al., 2019, The Australian Earth System Model: ACCESS-ESM1.5, in prep) is 1451 

comprised of a number of component models. The atmospheric model is the UK Met Office 1452 

Unified Model at version 7.3 (Martin et al., 2010, 2011) with their land surface model replaced 1453 

with the Community Atmosphere Biosphere Land Exchange (CABLE) model (Kowalczyk et al., 1454 

2013). The ocean component is the NOAA/GFDL Modular Ocean Model (MOM) at version 5 1455 

(Griffies, 2014) with the same configuration as the ocean model component of ACCESS1.0 and 1456 

ACCESS1.3 (Bi et al., 2013). Sea ice is simulated using the LANL CICE4.1 model (Hunke and 1457 

Lipscomb, 2010). Coupling of the ocean and sea-ice to the atmosphere is through the OASIS-MCT 1458 

coupler(Valcke, 2013). The physical climate model configuration used here is very similar to the 1459 

version (ACCESS1.3) that contributed to the Coupled Model Intercomparison Project Phase 5 1460 

(CMIP5) (Bi et al., 2013). The carbon cycle is included in ACCESS through the CABLE land surface 1461 

model and its biogeochemistry module, CASA-CNP (Wang et al., 2010), and through the World 1462 

Ocean Model of Biogeochemistry and Trophic-dynamics (WOMBAT) (Oke et al., 2013).  1463 

 1464 

The WOMBAT model is based on a NPZD (nutrient-phosphate, phytoplankton, zooplankton and 1465 

detritus) model with the additions of bio-available iron limitation, dissolved inorganic carbon, 1466 

calcium carbonate, alkalinity and oxygen.  Productivity drives uptake and formation of carbon 1467 

and oxygen which exchange with the atmosphere.  Sinking and remineralization of detritus 1468 
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carries biogeochemical tracers to the deep ocean.  Iron is supplied by dust deposition, continental 1469 

shelves and background ocean values.   1470 

 1471 

The Australian community model CABLE simulates the fluxes of momentum, heat, water and 1472 

carbon at the surface. The biogeochemistry module CASA-CNP simulates the flow of carbon and 1473 

nutrients such as nitrogen and phosphorus between three plant biomass pools (leaf, wood, root), 1474 

three litter pools (metabolic, structural, coarse woody debris) and three organic soil pools 1475 

(microbial, slow, passive) plus one inorganic soil mineral nitrogen pool and three phosphorus soil 1476 

pools. 1477 

 1478 

In the CABLE configuration applied here we use 10 vegetated types and 3 non-vegetated types. 1479 

CABLE calculates gross primary production (GPP) and leaf respiration at every time step using a 1480 

two-leaf canopy scheme (Wang and Leuning, 1998) as a function of the leaf area index (LAI). This 1481 

set-up uses a simulated (prognostic) LAI based on the size of the leaf carbon pool and the specific 1482 

leaf area. Daily mean GPP and leaf respiration values are then passed onto CASA-CNP to calculate 1483 

daily respiration fluxes and the flow of carbon and nutrients between the pools. Similar to the 1484 

previous version, ACCESS-ESM1 (Law et al., 2017; Ziehn et al., 2017), the model is run with 1485 

nitrogen and phosphorus limitation enabled. 1486 

 1487 
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A5.2. Beijing Climate Center (BCC) Climate System Model version 2 with Medium Resolution 1488 

(BCC-CSM2-MR) 1489 

BCC-CSM2-MR (Wu et al., 2019) is the second generation of the BCC model with medium 1490 

resolution that was released to run CMIP6 simulations. It is a fully-coupled global climate model 1491 

and updated from its previous version of BCC-CSM1.1 used for CMIP5 (Wu et al., 2013). The 1492 

atmospheric component of BCC-CSM2-MR is the BCC Atmospheric General Circulation Model 1493 

version 3 (BCC-AGCM3-MR, Wu et al., 2019). The land component is the BCC Atmosphere and 1494 

Vegetation Interaction Model version 2.0 (BCC-AVIM2, Li et al., 2019) with terrestrial carbon 1495 

cycle.  The oceanic component is the Modular Ocean Model version 4 with 40 levels (hereafter 1496 

MOM4-L40). The sea ice component is Sea Ice Simulator (SIS). These components are physically 1497 

coupled through fluxes of momentum, energy, water, and carbon at their interfaces. The 1498 

coupling was realized with the flux coupler version 5 developed by the National Center for 1499 

Atmosphere Research (NCAR). 1500 

 1501 

The atmospheric component of BCC-CSM2-MR has a horizontal resolution of T106 approximately 1502 

1.125° and 46 vertical levels in a hybrid sigma/pressure vertical coordinate system with the top 1503 

level at 1.459 hPa. The ocean component resolution of BCC-CSM2-MR is 1° longitude by 1/3° 1504 

latitude between 30°S and 30°N ranged to 1° latitude at 60°S and 60°N and nominally 1° 1505 

polarward with tripolar coordinates, and there are 40 z-levels in the vertical.  1506 

 1507 

https://doi.org/10.5194/bg-2019-473
Preprint. Discussion started: 9 December 2019
c� Author(s) 2019. CC BY 4.0 License.



85 
 

The atmospheric component model BCC-AGCM3-MR in BCC-CSM2-MR is developed from its 1508 

previous CMIP5 version (Wu et al., 2008). The main updates include a modification of deep 1509 

convection parameterization, a new scheme for cloud fraction, indirect effects of aerosols 1510 

through clouds and precipitation, and the gravity wave drag generated by deep convection (Wu 1511 

et al., 2019).Atmospheric CO2 concentration in BCC-AGCM3-MR for this work is a prognostic 1512 

variable and calculated through a budget equation which considered advective transport in the 1513 

atmosphere, anthropogenic CO2 emissions, and interactive CO2 fluxes at the interfaces with land 1514 

and ocean. But chemical processes are not taken into account. The terrestrial carbon cycle in 1515 

BCC-AVIM2 (Li et al., 2019) operates through a series of biochemical and physiological processes 1516 

on photosynthesis and respiration of vegetation, and takes into account carbon loss due to 1517 

turnover and mortality of vegetation, and CO2 release into atmosphere through soil respiration. 1518 

The vegetation litter to the ground surface and into the soil is divided into eight terrestrial carbon 1519 

pools (surface structural, surface metabolic, surface microbial, soil structural, soil metabolic, soil 1520 

microbial, slow, and passive carbon pools) according to the timescale of the decomposition of 1521 

carbon in each pool and transfers between different pools. Allocation to and from the three 1522 

vegetation biomass pools (leaf, stem, root) leads to dynamic vegetation that in turn produces 1523 

litter fall and ultimate transfer to soil organic carbon. The allocation of carbon to the three 1524 

vegetation biomass pools is dependent on light availability, water stress and phenology stages of 1525 

the canopy and follows the formulations of Arora and Boer (2005).  1526 

 1527 

The biogeochemistry module to simulate the ocean carbon cycle in MOM4_L40 is based on the 1528 

protocols from the Ocean Carbon Cycle Model Intercomparison Project–Phase 2 (OCMIP2, 1529 
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http://www.ipsl.jussieu.fr/OCMIP/phase2/). The OCMIP biogeochemistry module parameterizes 1530 

the process of marine biology in terms of geochemical fluxes without explicit representation of 1531 

the marine ecosystem and food web processes, and includes five prognostic variables: 1532 

phosphate, dissolved organic phosphorus, dissolved oxygen, dissolved inorganic carbon, and 1533 

alkalinity. Ocean carbon cycle processes in BCC-CSM2-MR follow OCMIP, except for 1534 

parameterizing the export of organic matter from surface waters to deep oceans (Wu et al., 1535 

2013). 1536 

 1537 

A5.3. Canadian Centre for Climate Modelling and Analysis (CCCma) fifth generation Earth 1538 

System Model, CanESM5 1539 

CanESM5 has evolved from its predecessor CanESM2 (Arora et al., 2011) that was used in the 1540 

Coupled Model Intercomparison Project phase 5 (CMIP5). CanESM5 represents a major update 1541 

to CanESM2 and described in detail in Swart et al. (2019). The major changes relative to CanESM2 1542 

are the implementation of completely new models for the ocean, sea-ice, marine ecosystems, 1543 

and a new coupler. The resolution of CanESM5 (T63 or ~2.8° in the atmosphere and ~1° in the 1544 

ocean) remains similar to CanESM2, and is at the lower end of the spectrum of CMIP6 models. 1545 

The atmospheric component of CanESM5 is represented by version 5 of the Canadian 1546 

Atmospheric Model (CanAM5) has several improvements relative to its predecessor, CanAM4 1547 

(von Salzen et al., 2013) including changes to aerosol, clouds, radiation, land surface and lake 1548 

processes. CanAM5 uses a triangular spectral truncation in the model dynamical core, with an 1549 

approximate horizontal resolution of 2.8 degrees in latitude/longitude. It uses a hybrid vertical 1550 
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coordinate system with 49 levels between the surface and 1 hPa, with a vertical resolution of 1551 

about 100 m near the surface. Relative to the 35 levels used in CanESM2 most of the additional 1552 

14 levels were added in the upper troposphere and stratosphere. 1553 

 1554 

The land surface in CanESM5 is modelled using the Canadian Land Surface Scheme (CLASS; 1555 

Verseghy, 2000) and the Canadian Terrestrial Ecosystem Model (CTEM; Arora and Boer, 2005, 1556 

2010) which together form the land component of CanESM5. CLASS-CTEM simulate the physical 1557 

and biogeochemical land surface processes, respectively, and together they calculate fluxes of 1558 

energy, water, CO2 and wetland CH4 emissions at the land-atmosphere boundary. Over land, 1559 

three permeable soil layers are used with default thicknesses of 0.1, 0.25, and 3.75 m for which 1560 

liquid and frozen soil moistures and temperature are prognostically calculated. The depth to 1561 

bedrock is specified on the basis of the global data set which reduces thicknesses of the 1562 

permeable soil layers where soil depth is less than 4.1 meters. Snow is represented using one 1563 

layer whose snow water equivalent and temperature are modelled prognostically. The 1564 

introduction of dynamic wetlands and their methane emissions is a new biogeochemical process 1565 

added since the CanESM2 (Arora et al., 2018). Nitrogen cycle over land is not represented but 1566 

the effect of photosynthesis down-regulation as CO2 increases is represented. The magnitude of 1567 

the parameter representing this down-regulation is increased in CanESM5, compared to 1568 

CanESM2, following Arora and Scinocca (2016) who found best value of this parameter that 1569 

reproduced various aspects of the historical carbon budget for CanESM4.2 (a model version more 1570 

similar to CanESM2 than CanESM5). Other than wetlands, and the changes to the strength of the 1571 
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CO2 fertilization effect, the remaining terrestrial ecosystem processes are represented the same 1572 

as in CanESM2.  1573 

 1574 

The physical ocean component of CanESM5 is based on NEMO version 3.4.1. It is configured on 1575 

the tripolar ORCA1 C-grid with 45 z-coordinate vertical levels, varying in thickness from ~6 m near 1576 

the surface to ~250 m in the abyssal ocean. The horizontal resolution is based on a 1° Mercator 1577 

grid, varying with the cosine of latitude, with a refinement of the meridional grid spacing to 1/3° 1578 

near the equator. Two modifications have been introduced to the NEMO's mesoscale and small-1579 

scale mixing physics in CanESM5 and these are detailed in Swart et al. (2019). Sea ice is 1580 

represented using the LIM2 sea ice model (Bouillon et al., 2009; Fichefet and Morales Maqueda, 1581 

1997), which is run within the NEMO framework. 1582 

 1583 

Ocean carbon cycle is represented using the Canadian Model of Ocean Carbon (CMOC) which 1584 

was developed for earlier versions of CanESM (Arora et al., 2011; Christian et al., 2010), and 1585 

includes carbon chemistry and biology. The biological component is a simple Nutrient-1586 

Phytoplankton-Zooplankton-Detritus (NPZD) model, with fixed Redfield stoichiometry, and 1587 

simple parameterizations of iron limitation, nitrogen fixation, and export flux of calcium 1588 

carbonate.  1589 

 1590 

A5.4. Community Earth System Model, version 2 (CESM2) 1591 
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The CESM2 (Danabasoglu et al., 2019:  The Community Earth System Model version 2 - CESM2, 1592 

in preparation) contains substantial improvements since CESM1. The resolution remains the 1593 

same as in CESM1 (0.9° latitude x 1.25° longitude for the atmosphere and land with 32 vertical 1594 

atmospheric levels and 25 ground levels and ~1° for the ocean).  The Community Atmosphere 1595 

Model version 6 (Neale, R. B. et al., 2019: The NCAR Community Atmosphere Model version 6 1596 

(CAM6): Scientific configuration and simulation fidelity, in preparation) includes many changes 1597 

to the representation of physical processes with the primary change being the inclusion of the 1598 

Cloud Layers Unified By Binormals (CLUBB) unified turbulence scheme. 1599 

 1600 

The CESM2 ocean component (POP2) is largely the same as that used in CESM1 except with a 1601 

new parameterization for mixing effects in estuaries along with several other numerical and 1602 

physics improvements.  The sea ice model is CICE version 5.1.2 (CICE5; (Hunke et al., 2015) . 1603 

Ocean biogeochemistry is represented by the Marine Biogeochemistry Library (MARBL).  MARBL 1604 

represents multiple nutrient co-limitation (N, P, Si, and Fe).  It includes three explicit 1605 

phytoplankton functional groups (diatoms, diazotrophs, and pico/nano phytoplankton), one 1606 

implicit phytoplankton group (calcifiers) and one zooplankton group.  MARBL includes prognostic 1607 

carbonate chemistry and simulates sinking particulate organic matter.  Major updates relative to 1608 

CESM1 include a representation of subgrid-scale variations in light and variable C:P 1609 

stoichiometry. Atmospheric deposition of iron is computed prognostically in CESM2 as a function 1610 

of dust and black carbon deposition simulated by CAM6. Riverine nutrient, carbon, and alkalinity 1611 

fluxes are supplied to the ocean from a dataset.  1612 
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 1613 

The land component is the Community Land Model version 5 (CLM5, Lawrence et al., 2018) which 1614 

simulates land water, energy, momentum, carbon and nitrogen cycling.  CLM5 includes an 1615 

extensive suite of new and updated processes and parameterizations that collectively improve 1616 

the model’s hydrological, biogeochemical and ecological realism and enhance the representation 1617 

of anthropogenic land use activities on climate and the carbon cycle. The primary updates are as 1618 

follows with details, references, and additional updates described and listed in (Lawrence et al., 1619 

2018): (1) updated parameterizations and structure for hydrology and snow (spatially explicit soil 1620 

depth, dry surface layer, revised groundwater scheme, revised canopy interception and canopy 1621 

snow processes, updated fresh snow density, and inclusion of the Model for Scale Adaptive River 1622 

Transport); (2) a plant hydraulics scheme to more mechanistically represent plant water use and 1623 

limitation; (3) vertically-resolved soil biogeochemistry with base organic matter decomposition 1624 

rates varying with depth and modified by soil temperature, water, and oxygen limitation and 1625 

nitrification and denitrification updated as in Century model; (4) a methane production, 1626 

oxidation, and emissions model; (5) improved representation of plant N dynamics to address 1627 

deficiencies in CLM4 through introduction of flexible plant carbon : nitrogen (C:N) stoichiometry 1628 

which avoids the problematic CLM4 separation of potential and actual plant productivity, 1629 

explicitly simulating photosynthetic capacity response to environmental conditions through the 1630 

Leaf Utilization of Nitrogen for Assimilation (LUNA) module, and accounting for how N availability 1631 

affects plant productivity through the Fixation and Uptake of Nitrogen (FUN) module which 1632 

determines the C costs of N acquisition; methane emissions and oxidation from natural land 1633 

processes; (6) a global active crop model with six crop types and time-evolving irrigated areas 1634 
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and industrial fertilization rates; (7) updated canopy processes including a revised canopy 1635 

radiation scheme and canopy scaling of leaf processes, co-limitations on photosynthesis and 1636 

updated stomatal conductance; (8) a new fire model that includes representation of natural and 1637 

anthropogenic ignition sources and suppression along with agricultural, deforestation, and peat 1638 

fires; and (9) inclusion of carbon isotopes. 1639 

 1640 

A5.5. Centre National de Recherches Météorologiques (CNRM)  CNRM-ESM2-1 1641 

CNRM-ESM2-1 is the second generation Earth System model developed by CNRM-CERFACS for 1642 

CMIP6 (Séférian et al., 2019). 1643 

 1644 

The atmosphere component of CNRM-ESM2-1 is based on version 6.3 of the global spectral model 1645 

ARPEGE-Climat (ARPEGE-Climat_v6.3). ARPEGE-Climat resolves atmospheric dynamics and 1646 

thermodynamics on a T127 triangular grid truncation that offers a spatial resolution of about 150 1647 

km in both longitude and latitude. CNRM-ESM2-1 employs a ‘‘high-top’’ configuration with 91 1648 

vertical levels that extend from the surface to 0.01 hPa in the mesosphere; 15 hybrid σ-pressure 1649 

levels are available below 1500 m. 1650 

 1651 

The surface state variables and fluxes at the surface-atmosphere interface are simulated by the 1652 

SURFEX modeling platform version 8.0 over the same grid and with the same time-step as the 1653 

atmosphere model. SURFEXv8.0 encompasses several submodules for modeling the interactions 1654 
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between the atmosphere, the ocean, the lakes and the land surface. Over the land surface, 1655 

CNRM-ESM2-1 uses the ISBA-CTRIP land surface modeling system (http://www.umr-1656 

cnrm.fr/spip.php?article1092&lang=en) to solve energy, carbon and water budgets at the land 1657 

surface (Decharme et al., 2019; Delire et al., 2019). Its physical core explicitly solves the one-1658 

dimensional Fourier and Darcy laws throughout the soil, accounting for the hydraulic and thermal 1659 

properties of soil organic carbon. It uses a 12-layer snow model of intermediate complexity that 1660 

allows separate water and energy budgets for the soil and the snowpack. It accounts for a 1661 

dynamic river flooding scheme in which floodplains interact with the soil and the atmosphere 1662 

through free-water evaporation, infiltration and precipitation interception and a two-1663 

dimensional diffusive groundwater scheme to represent unconfined aquifers and upward 1664 

capillarity fluxes into the superficial soil. More details on these physical aspects can be found in 1665 

Decharme et al. (2019).  1666 

 1667 

To simulate the land carbon cycle and vegetation-climate interactions, ISBA-CTRIP simulates 1668 

plant physiology, carbon allocation and turnover, and carbon cycling through litter and soil. It 1669 

includes a module for wild fires, land use and land cover changes, and carbon leaching through 1670 

the soil and transport of dissolved organic carbon to the ocean. Leaf photosynthesis is 1671 

represented by the semi-empirical model proposed by Goudriaan et al. (1985). Canopy level 1672 

assimilation is calculated using a 10-layer radiative transfer scheme including direct and diffuse 1673 

radiation. Vegetation in ISBA is represented by 4 carbon pools for grasses and crops (leaves, stem, 1674 

roots and a non-structural carbohydrate storage pool) with 2 additional pools for trees 1675 

(aboveground wood and coarse roots). Leaf phenology results directly from the carbon balance 1676 
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of the leaves. The model distinguishes 16 vegetation types (10 tree and shrub types, 3 grass types 1677 

and 3 crop types) alongside desert, rocks and permanent snow. In the absence of nitrogen cycling 1678 

within the vegetation, an implicit nitrogen limitation scheme that reduces specific leaf area with 1679 

increasing CO2 concentration was implemented in ISBA following the meta-analysis of Yin (2002). 1680 

Additionally, there is an ad-hoc representation of photosynthesis down-regulation. The litter and 1681 

soil organic matter module is based on the soil carbon part of the CENTURY model (Parton et al., 1682 

1988). The 4 litter and 3 soil carbon pools are defined based on their location above- or below-1683 

ground and potential decomposition rates. The litter pools are supplied by the flux of dead 1684 

biomass from each biomass reservoir (turnover). Decomposition of litter and soil carbon releases 1685 

CO2 (heterotrophic respiration). During the decomposition process, some carbon is dissolved by 1686 

water slowly percolating through the soil column. This dissolved organic carbon is transported by 1687 

the rivers to the ocean. A detailed description of the terrestrial carbon cycle can be found in 1688 

Delire et al. (2019). 1689 

 1690 

The ocean component of CNRM-ESM2-1 is the Nucleus for European Models of the Ocean 1691 

(NEMO) version 3.6 (Madec et al., 2017) which is coupled to both the Global Experimental Leads 1692 

and ice for ATmosphere and Ocean (GELATO) sea-ice model (Salas Mélia, 2002) version 6 and 1693 

also the marine biogeochemical model Pelagic Interaction Scheme for Carbon and Ecosystem 1694 

Studies version 2-gas (PISCESv2-gas). NEMOv3.6 operates on the eORCA1L75 grid (Mathiot et al., 1695 

2017) which offers a nominal resolution of 1° to which a latitudinal grid refinement of 1/3° is 1696 

added in the tropics; this grid describes 75 ocean vertical layers using a vertical z*-coordinate 1697 

with partial step bathymetry formulation (Bernard et al., 2006). 1698 
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 1699 

The atmospheric chemistry scheme of CNRM-ESM2-1 is Reactive Processes Ruling the Ozone 1700 

Budget in the Stratosphere version 2 (REPROBUS-C_v2). This scheme resolves the spatial 1701 

distribution of 63 chemistry species but does not represent the low troposphere ozone non-1702 

methane hydrocarbon chemistry. CNRM-ESM2-1 also includes an interactive tropospheric 1703 

aerosol scheme included in the atmospheric component ARPEGE-Climat. This aerosol scheme, 1704 

named Tropospheric Aerosols for ClimaTe In CNRM (TACTIC_v2), represents the main 1705 

anthropogenic and natural aerosol species of the troposphere. 1706 

 1707 

The ocean biogeochemical component of CNRM-ESM2-1 uses the Pelagic Interaction Scheme for 1708 

Carbon and Ecosystem Studies model volume 2 version trace gases (PISCESv2-gas), which derives 1709 

from PISCESv2 as described in Aumont et al. (2015). PISCESv2-gas simulates the distribution of 1710 

five nutrients (from macronutrients: nitrate, ammonium, phosphate, and silicate to 1711 

micronutrient: iron) which regulate the growth of two explicit phytoplankton classes 1712 

(nanophytoplankton and diatoms). Dissolved inorganic carbon (DIC) and alkalinity (Alk) are 1713 

involved in the computation of the carbonate chemistry, which is resolved by “Model the Ocean 1714 

Carbonate SYstem” version 2 (MOCSY 2.0,Orr & Epitalon, 2015) in PISCESv2-gas. MOCSY 2.0 1715 

enables a better and faster resolution of the ocean carbonate chemistry at thermodynamic 1716 

equilibria. Oxygen is prognostically simulated using two different oxygen-to-carbon ratios, one 1717 

when ammonium is converted to or mineralized from organic matter, the other when oxygen is 1718 

consumed during nitrification. Their values have been set respectively to 131/122 and 32/122.   1719 
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 1720 

At ocean surface, PISCESv2-gas exchanges carbon, oxygen, dimethylsulfide (DMS) and nitrous 1721 

oxide (N2O) tracers with the atmosphere using the revised air-sea exchange bulk as published by 1722 

Wanninkhof (2014). PISCESv2-gas uses several boundary conditions which represent the supply 1723 

of nutrients from five different sources: atmospheric deposition, rivers, sediment mobilization, 1724 

sea-ice and hydrothermal vents. 1725 

 1726 

A5.6. Institut Pierre Simon Laplace (IPSL) IPSL-CM6A-LR 1727 

IPSL-CM6A-LR is the coupled climate model of the Institut Pierre Simon Laplace (Servonnat et al., 1728 

2019, in preparation). It results from the integration of the following components: the LMDZ 1729 

atmospheric general circulation model (version 6A-LR, Hourdin et al., 2019), the NEMO oceanic 1730 

model (version 3.6,  Aumont et al., 2015; Madec et al., 2017; Rousset et al., 2015; Vancoppenolle 1731 

et al., 2009) and the ORCHIDEE land surface model (version 2.0, Peylin et al., 2019, in 1732 

preparation). 1733 

 1734 

The atmospheric general circulation model LMDZ6A-LR builds onto its previous version that has 1735 

notably incorporated advances in the parameterization of turbulence, convection, and clouds. 1736 

More specifically, LMDZ6A-LR includes a turbulent scheme based on the prognostic equation for 1737 

the turbulent kinetic energy that follows Yamada (1983), a mass flux representation of the 1738 

organized structures of the convective boundary layer called "Thermal Plume Model" (Hourdin 1739 
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et al., 2002; Rio et al., 2010; Rio and Hourdin, 2008), and a parameterization of the cold pools or 1740 

wakes created below cumulonimbus by the evaporation of convective rainfall (Grandpeix et al., 1741 

2010; Grandpeix and Lafore, 2010). It is based on a regular horizontal grid with 144 grid points 1742 

regularly spaced in longitude and 142 in latitude, corresponding to a resolution of 2.5° × 1.3°, and 1743 

79 vertical layers. 1744 

 1745 

IPSL-CM6A-LR further includes NEMO (Nucleus for European Models of the Ocean), which is itself 1746 

composed of three major building blocks: the ocean physics NEMO-OPA (Madec et al., 2017), the 1747 

sea-ice dynamics and thermodynamics NEMO-LIM3 (Rousset et al., 2015; Vancoppenolle et al., 1748 

2009), and the ocean biogeochemistry NEMO-PISCES (Aumont et al., 2015). The grid used has a 1749 

nominal resolution of 1° in the zonal and meridional directions with a latitudinal grid refinement 1750 

of 1/3° in the Tropics. Vertical discretization uses a partial step formulation (Bernard et al., 2006), 1751 

which ensures a better representation of bottom bathymetry, with 75 levels. The initial layer 1752 

thicknesses increase non-uniformly from 1 m at the surface to 10 m at 100 m depth, and reaches 1753 

200 m at the bottom, and are subsequently time-dependent. NEMO-PISCES (Aumont et al., 2015) 1754 

models the lower trophic levels of marine ecosystem (phytoplankton, microzooplankton and 1755 

mesozooplankton) and the biogeochemical cycles of carbon and of the main nutrients (P, N, Fe, 1756 

and Si). This model is also able to compute air-sea carbon fluxes. 1757 

 1758 

Finally, IPSL-CM6A-LR includes ORCHIDEE, a global process-based terrestrial biosphere model 1759 

Krinner et al. (2005); Peylin et al., 2019, in preparation) that calculates carbon, water and energy 1760 
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fluxes between the land surface and the atmosphere. Photosynthesis and all components of the 1761 

surface energy and water budgets are calculated at a half-hourly resolution while the dynamics 1762 

of the carbon storage (including carbon allocation in plant reservoirs, soil carbon dynamics, and 1763 

litter decomposition) are resolved on a daily basis. Photosynthesis depends on light availability 1764 

and CO2 concentration, soil moisture and temperature and is parameterized based on Farquhar 1765 

et al. (1980) and Collatz et al. (1992) for C3 and C4 plants, respectively. This latest version of 1766 

ORCHIDEE includes a downregulation capability that models a reduction of the terrestrial 1767 

photosynthesis rates as a function of CO2 concentration. In ORCHIDEE, the spatial distribution of 1768 

vegetation is represented using 15 plant functional types (PFTs) (Cramer, 1997; Prentice et al., 1769 

1992; Wullschleger et al., 2014). More precisely these PFTs are decomposed into 3 groups 1770 

according to their physiological behavior under similar climate conditions: tall vegetation 1771 

(forests) is represented by 8 PFTs, short vegetation (grasses and crops) is represented by 6 PFTs, 1772 

and bare soil. The fractional coverage of these PFTs vary geographically. A soil type is associated 1773 

with each one of these 3 PFT groups. This 3-group partitioning allows for dividing each grid box 1774 

into 3 tiles for which an independent hydrological budget is calculated, using the 11-layer 1775 

physically based hydrology scheme. In ORCHIDEE the wood harvest product from the LUHv2h 1776 

database is used in addition to the annual land cover maps. 1777 

 1778 

A5.7. Team MIROC (Japan Agency for Marine-Earth Science and Technology / the University of 1779 

Tokyo / the National Institute for Environmental Studies) MIROC-ES2L 1780 

 1781 
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MIROC-ES2L (Hajima et al., 2019a) is based on the global climate model MIROC5.2 (Tatebe et al., 1782 

2018), which is a minor updated version of MIROC5 used for CMIP5 (Watanabe et al., 2010). The 1783 

physical core shares almost same structure and characteristics with the latest model MIROC6 1784 

(Tatebe et al., 2019), except for the atmospheric spatial resolution and treatment of cumulus 1785 

clouds. This model interactively couples an atmospheric general circulation model (CCSR-NIES 1786 

AGCM, Tatebe et al., 2019) including an on-line aerosol component (SPRINTARS, Takemura et al., 1787 

2000), an ocean GCM with sea-ice component (COCO, Hasumi, 2015), and a land physical surface 1788 

model (MATSIRO, Takata et al., 2003).  The land and ocean biogeochemical components are 1789 

represented by VISIT (Ito and Inatomi, 2012) and OECO2 (Hajima et al., 2019a), respectively, 1790 

which are interactively coupled to the atmospheric component. There exists another branched 1791 

version that has atmospheric chemistry component with finer atmospheric grid (MIROC-ES2H), 1792 

but not used in this study. 1793 

 1794 

The atmospheric grid resolution is approximately 2.81° with 40 vertical levels between the 1795 

surface and about 3 hPa. For the ocean, the model employs tripolar coordinate system with 62 1796 

vertical levels. To the south of 63°N, the ocean model has longitudinal grid spacing of about 1°, 1797 

while the meridional grid spacing varies from about 0.5° near the equator to 1° in the mid-1798 

latitudes. Over the Arctic ocean the grid resolution is even finer following the tripolar coordinate 1799 

system. The physical terrestrial component resolves vertical soil profile with 6 layers down to 1800 

14m depth, with two types of land-use tiles (agriculture and non-agriculture). Terrestrial 1801 

biogeochemical component considers two layered soil organic matter (the upper litter layer and 1802 
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the lower humus layer), with 5 types of land-use tiles (primary vegetation, secondary vegetation, 1803 

urban, crop, and pasture).  1804 

 1805 

The terrestrial biogeochemical component covers major processes relevant to global carbon 1806 

cycle, with vegetation (leaf, stem, and root), litter (leaf, stem, and root), and humus (active, 1807 

intermediate, and passive) pools and with a static biome distribution. Details on carbon cycle 1808 

processes in the model can been found in (Ito and Oikawa, 2002). N cycle is simulated with N 1809 

pools of vegetation (canopy and structural), organic soil (litter, humus, and microbe), and 1810 

inorganic nitrogen (ammonium and nitrate). The model considers two major nitrogen influxes 1811 

into ecosystem (biological nitrogen fixation and external nitrogen inputs). Fluxes out of land 1812 

ecosystem in the model are N2/N2O emissions, leaching, NH3 emission, and other emission like 1813 

volatilization from land-use product pools. For installing into MIROC-ES2L, the terrestrial 1814 

ecosystem processes were modified such that photosynthetic capacity is controlled by leaf N 1815 

concentration. Processes associated with land-use change are also modified to take full 1816 

advantage of CMIP6 LUC forcing dataset. Further details can be found in (Hajima et al., 2019a). 1817 

 1818 

The new ocean biogeochemical component model, OECO2, is a NPZD-type model and modified 1819 

from the previous model (Watanabe et al., 2011). The biogeochemical compartments of OECO2 1820 

are nitrate, phosphate, dissolved iron, dissolved oxygen, two types of phytoplankton (non-1821 

diazotroph and diazotroph), zooplankton, and particulate detritus. There exist other 1822 

compartments of dissolved inorganic carbon (DIC), total alkalinity, calcium, calcium carbonate, 1823 
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and N2O. All organic materials have identical elemental stoichiometric ratio. The model considers 1824 

external nutrient inputs (atmospheric N/Fe deposition, inorganic N/P from rivers, biological N 1825 

fixation, Fe input from ocean bottom/shelf) and nutrient loss (denitrification for N and loss into 1826 

sediment for N, P, and Fe). The emission, transportation and deposition processes of iron are 1827 

explicitly simulated by the atmospheric aerosol component.  1828 

 1829 

A5.8. Max Planck Institute for Meteorology (MPI) MPI-ESM1.2-LR 1830 

The MPI-ESM1.2-LR model (Mauritsen et al., 2019) consists of ocean, atmosphere, land and sea-1831 

ice components which are connected via a coupler analogous to the predecessor MPI-ESM 1832 

versions (Giorgetta et al., 2013). The atmosphere model, ECHAM6.3, at the LR resolution has a 1833 

spectral truncation at T63 or approximately 200-km grid spacing with 47 vertical levels. It is 1834 

directly coupled to the land model, JSBACH3.2, through surface exchange of mass, momentum, 1835 

and heat. The ocean general circulation model, MPIOM1.6 in MPI-ESM1.2-LR runs on a  bi-polar 1836 

grid GR1.5 and has 40 unevenly placed levels. It computes transport of tracers of the ocean 1837 

biogeochemistry model HAMOCC6 (Ilyina et al., 2013; Paulsen et al., 2017). The MPI-ESM-LR 1838 

configuration computes 45–85 model years per physical day enabling new simulations which 1839 

were not feasible previously, such as for instance, large ensemble simulations (Maher et al., 1840 

2019) or millennial-scale simulations with interactive carbon cycle (Brovkin et al., 2019). 1841 

  1842 

Terrestrial vegetation in JSBACH includes vegetation dynamics which interacts with land use 1843 

changes (Reick et al., 2013), accounting for the latest changes in the land use harmonization 1844 
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dataset by Hurtt et al. (2006). The new SPITFIRE model simulates burned area and carbon 1845 

emissions to atmosphere due to wildfires and anthropogenic fires (Lasslop et al., 2014), replacing 1846 

old global fire parameterization used in the CMIP5 model. Soil carbon model YASSO simulates 1847 

dynamics of 4 fast soil carbon pools which are different for leaf and woody litter types, plus a 1848 

slow humus pool (Goll et al., 2015). Nitrogen and carbon pools are coupled based on CO2-induced 1849 

nitrogen limitation (Goll et al., 2017). 1850 

 1851 

The ocean biogeochemistry model HAMOCC6 has been extended as compared to the previous 1852 

version described in Ilyina et al. (2013) to explicitly resolve nitrogen-fixing cyanobacteria as an 1853 

additional prognostic phytoplankton class (Paulsen et al., 2017). This allows to capture the 1854 

response of N2 fixation and ocean biogeochemistry to changing climate conditions. Additionally, 1855 

updates of existing processes have been performed. This includes for instance the addition of a 1856 

vertically varying settling rate for detritus following the formulation by Martin et al. (1987). 1857 

Finally some empirical relationships in the parameterized processes have been updated to follow 1858 

recommendations of the C4MIP and OMIP protocols (Jones et al., 2016; Orr et al., 2017). The full 1859 

overview of changes in HAMOCC is given in Mauritsen et al. (2019). 1860 

 1861 

A5.9. Geophysical Fluid Dynamics Laboratory (GFDL) NOAA-GFDL-ESM4 1862 

 1863 
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GFDL-ESM4.1 is a comprehensive, fully-coupled Earth System Model developed by NOAA’s 1864 

Geophysical Dynamics Laboratory with a fully-interactive carbon cycle and interactive 1865 

atmospheric chemistry (Dunne et al., 2019, in prep., The GFDL Earth System Model version 4.1 1866 

(GFDL-ESM4.1): Model description and simulation characteristics) that builds on previous 1867 

generation modeling efforts of the carbon cycle (ESM2-series) (Dunne et al., 2012, 2013) and 1868 

atmospheric chemistry (CM3) (Donner et al., 2011) along with increased resolution and improved 1869 

numerics and physics akin to GFDL’s 4th generation coupled climate model (CM4.0; Held et al., 1870 

2019, in preparation), and representation of additional Earth System Processes. 1871 

 1872 

The atmospheric component, GFDL AM4.1, is based on the third generation finite volume cube-1873 

sphere dynamical core (FV3) (Lin, 2004) with a 1° horizontal resolution and 49 vertical levels. The 1874 

model top is located at ~0.1 hPa to resolve the stratosphere. AM4.1 shares the critical 1875 

developments in model physics with the AM4.0 model (Zhao et al., 2018) including radiation, 1876 

convection, and clouds.  AM4.1 differs from the AM4.0 model in its enhanced vertical resolution 1877 

and its more explicit representation of atmospheric chemistry that motivated a separate 1878 

radiative and gravity wave tuning. 1879 

 1880 

AM4.1 includes interactive tropospheric and stratospheric gas-phase and aerosol chemistry 1881 

represented through 56 prognostic (transported) tracers and 36 diagnostic (non-transported) 1882 

chemical tracers.  The tropospheric chemistry includes reactions for the oxidation of methane 1883 

among other volatile organic compounds.  The stratospheric chemistry accounts for the major 1884 
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ozone loss cycles and heterogeneous reactions on liquid and solid stratospheric aerosols.  Details 1885 

on the base chemical mechanism including improvements relative to the previous generation 1886 

model (AM3) are included in Horowitz et al. (2019, in prep). 1887 

 1888 

Land hydrology and ecosystem dynamics are represented by the GFDL Land Model version 4.1 1889 

(LM4p1; Shevliakova et al., 2019, in prep) and builds on the previous generation LM3.1 model 1890 

(Milly et al., 2014). Soil carbon dynamics and biogeochemistry represented through the CORPSE 1891 

model (Sulman et al., 2019) with an explicit treatment of soil microbes.  LM4.1 also includes a 1892 

new fire model FINAL (Rabin et al., 2018). Vegetation dynamics represented by the second 1893 

generation age-height structured approach the Perfect Plasticity Approximation (PPA) (Weng et 1894 

al., 2015, Martinez Cano et al., 2019, in prep). There are 6 carbon pools in LM4.1 representing 1895 

leaves, fine roots, heartwood, sapwood, seeds, and non-structural carbon (i.e. sugars).  Litter is 1896 

broken into leaf and coarse wood categories as well into fast and slow timescale partitions.  Soil 1897 

has 20 vertical levels each with its own prognostic state for energy, water and soil carbon 1898 

variables.  There are 5 types of vegetation forms in LM4.1 representing C3 grass, C4 grass, tropical 1899 

trees, temperate deciduous trees, cold evergreen trees. A combination of these vegetation types 1900 

could coexist in some location. The model also includes a new treatment of stomatal conductance 1901 

and plant hydraulics. The vegetation state is used to drive a dust emission model that is coupled 1902 

with the atmosphere for transport (Ginoux et al., 2019, in prep.). ESM4 implementation of LM4.1 1903 

does not include an interactive nitrogen cycle. 1904 

 1905 
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The ocean biogeochemical component of ESM4 is version 2 of the Carbon, Ocean 1906 

Biogeochemistry and Lower Trophics (COBALTv2) model (Stock et al., 2014b).  COBALTv2 uses 33 1907 

tracers to represent carbon, alkalinity, oxygen, nitrogen, phosphorus, iron, silica, calcite and 1908 

lithogenic mineral cycling within the ocean.  Relative to previous generation ocean 1909 

biogeochemistry models developed at GFDL, COBALTv2 includes an enhanced representation of 1910 

plankton food web dynamics to resolve the flow of energy from phytoplankton to fish (Stock et 1911 

al., 2014a) and enhance the model’s capacity to resolve linkages between food webs and 1912 

biogeochemical cycles.  COBALTv2 explicitly includes small, large (split into diatoms and non-1913 

diatoms), and diazotrophic phytoplankton groups, three zooplankton groups, bacteria and three 1914 

labilities of dissolved organic matter. Other updates include a temperature-dependence to 1915 

sinking organic matter remineralization (Laufkötter et al., 2017), the addition of semi-labile 1916 

dissolved organic material, carbonate chemistry calculations based on the open source Model of 1917 

the Ocean Carbonate SYstem version 2.0 (Orr and Epitalon, 2015).   1918 

 1919 

Data from the NOAA-GFDL-ESM4 model used in the analysis presented in this paper are 1920 

accessible via the Earth System Grid Federation (ESGF) for 1pctCO2 (Krasting et al., 2019b) 1921 

simulation and for its radiatively- and biogeochemically-coupled configurations (Krasting et al., 1922 

2019a). 1923 

 1924 

A5.10. Norwegian Climate Centre (NCC) NorESM2-LM 1925 
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The NorESM2-LM is based on the latest release of the Community Earth System Model 1926 

(CESM2.1), whose development is supported by the National Center for Atmospheric Research 1927 

at the United States. NorESM2 keeps the original land and sea-ice components of CESM2.1 (i.e., 1928 

CLM5, and CICE5, respectively). The atmospheric component is CAM6 (as in CESM), but with 1929 

modifications regarding the energy and angular momentum conservation. Further, the 1930 

atmospheric chemistry module of CAM6 has been replaced by the scheme developed by the 1931 

Norwegian Meteorological Institute. The ocean physical and biogeochemical components of 1932 

NorESM2 are the  isopycnal ocean circulation and carbon cycle components updated from  1933 

NorESM1 version (Schwinger et al., 2016; Tjiputra et al., 2013)  1934 

 1935 

The CLM5 (Community Land Model version 5) prognostically simulates the carbon and nitrogen 1936 

cycles, which include natural vegetation, crops, and soil biogeochemistry. The carbon and 1937 

nitrogen budgets comprise leaf, live stem, dead stem, live coarse root, dead coarse root, fine-1938 

root, and grain pools. Each of these pools has short-term and long-term storage of non-structural 1939 

carbohydrates and labile nitrogen. In addition to the vegetation pools, CLM includes a series of 1940 

decomposing carbon and nitrogen pools as vegetation successively breaks down to coarse woody 1941 

debris, and/or litter, and subsequently to soil organic matter. Details on the CLM5 models are 1942 

available in Lawrence et al. (2018).  1943 

 1944 

Similar to the earlier version, the ocean carbon cycle component in NorESM2 is based on the 1945 

Hamburg Oceanic Carbon Cycle (HAMOCC; Maier-Reimer et al., 2005) model, which has been 1946 
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adopted to the isopycnic ocean general circulation model. The current version includes new 1947 

processes, refined parameterizations, as well as new diagnostic tracers. The ecosystem model is 1948 

based on an NPZD-type model with multi nutrient limitation in its phytoplankton growth 1949 

formulation. Riverine fluxes of inorganic and organic carbon as well as nutrients are now 1950 

implemented. Unlike the earlier version, the sea-to-air dimethyl sulfate (DMS) fluxes alter the 1951 

atmospheric radiative forcing and hence the climate carbon cycle feedback. More details on the 1952 

ocean carbon cycle of NorESM2 are available in Tjiputraet al. (2019, in preparation). 1953 

 1954 

A5.11. The United Kingdom Community Earth System Model, UKESM1-0-LL 1955 

UKESM1-0-LL (Sellar et al., 2019) is based upon the HadGEM3-GC3.1 (Williams et al., 2018) global 1956 

climate model which includes coupled ocean, atmosphere, land and sea-ice components. The 1957 

atmosphere component is the Unified Model with a resolution of 1.875˚ by 1.25˚ with 85 vertical 1958 

levels up to a model top of 90 km (Walters et al., 2019) and includes a modal aerosol scheme 1959 

(Mann et al., 2010). The ocean component uses the NEMO dynamical ocean at 1˚ resolution with 1960 

75 vertical levels (Storkey et al., 2018). The sea-ice component uses CICE on the same grid as the 1961 

ocean with 5-ice thickness categories (Ridley et al., 2018). The land component uses the JULES 1962 

land surface model (Wiltshire et al., in preparation), however, the land surface configuration is 1963 

substantially updated for UKESM. The primary differences between the physical and earth system 1964 

models is the inclusion of a terrestrial carbon and nitrogen cycle (Wiltshire et al., in preparation), 1965 

ocean biogeochemistry (Yool et al., 2013) and tropospheric-stratospheric chemistry model. 1966 

Atmospheric chemistry in UKESM1 is simulated by the UKCA chemistry and aerosol model with 1967 
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the specific configuration a combination of tropospheric (O’Connor et al., 2014) and 1968 

stratospsheric chemistry (Morgenstern et al., 2009, 2017).  1969 

 1970 

Terrestrial biogeochemistry is represented by the JULES-ES model cycle (Wiltshire et al., in 1971 

preparation). The land surface is represented by 13 plant functional types (PFTs) including 4 1972 

managed crop and pasture land types. The height, leaf area index and spatial distribution of the 1973 

PFTs are dynamic simulated by TRIFFID dynamic global vegetation model (Cox, 2001). Soil carbon 1974 

is represented by the 4 pool Roth-C scheme (Coleman and Jenkinson, 1999). Terrestrial carbon 1975 

uptake may be limited by the availability of nitrogen. Nitrogen does not directly affect 1976 

photosynthetic capacity through leaf N concentrations but acts indirectly by controlling the 1977 

biomass and leaf area index within the TRIFFID DGVM. A second mechanism acts through soil 1978 

carbon by limiting the decomposition of litter into soil carbon in the RothC model. The vegetation 1979 

model includes retranslocation of Nitrogen during senescence of leaves and roots into a labile 1980 

pool to supply nutrients for the following seasonal leaf out. The soil model simulates 1981 

mineralisation and immobilisation with mineralised nitrogen becoming available for plant uptake 1982 

and ecosystem loss. Inorganic Nitrogen is represented by a single gridbox pool from which all 1983 

PFTs have equal access. Nitrogen deposition is prescribed from ancillary data.  1984 

 1985 

Land-use change is represented by the application of time-varying fields of crop and pasture to 1986 

the DGVM, which allocates space dynamically to C3 and C4, crop and pasture types. Pasture is 1987 

represented as natural grass whereas crops include a harvest parameterization and are fertilized. 1988 
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Biogenic Volatile Organic Compound (BVOC) emissions from vegetation are simulated and affect 1989 

the formation of secondary organic aerosols. Mineral dust is emitted from bare soil and acts as 1990 

both an aerosol and a fertiliser to the ocean.  1991 

 1992 

Ocean biogeochemistry is represented by MEDUSA-2 (Yool et al., 2013) which resolves a dual 1993 

size-structured ecosystem of small (nanophytoplankton and microzooplankton) and large 1994 

(microphytoplankton and mesozooplankton) components. This explicitly includes the 1995 

biogeochemical cycles of nitrogen, silicon and iron nutrients as well as the cycles of carbon, 1996 

alkalinity and dissolved oxygen. Large phytoplankton are treated as diatoms and utilise silicic acid 1997 

in addition to nitrogen, iron and carbon. Like the living components, the detrital components are 1998 

split into two size classes. At the seafloor, MEDUSA-2 resolves 5 reservoirs to temporarily store 1999 

sinking organic material reaching the sediment. The model's nitrogen, silicon and alkalinity cycles 2000 

are closed and conservative (e.g. no riverine inputs), while the other three cycles (carbon, iron, 2001 

oxygen) are open. The ocean’s iron cycle includes aeolian (land derived dust) and benthic sources, 2002 

and is depleted by scavenging. The ocean’s carbon cycle exchanges CO2 with the atmosphere. 2003 

The ocean’s oxygen cycle exchanges with the atmosphere, and dissolved oxygen is additionally 2004 

created by primary production and depleted by remineralisation. Ocean biogeochemistry also 2005 

feeds back on the atmosphere through the production of marine DMS and marine organic 2006 

aerosols. 2007 

 2008 

A6. Contribution of uncertainties in Δ𝑇𝑇2×𝐶𝐶𝑂𝑂2 and 𝐶𝐶�2×𝐶𝐶𝑂𝑂2 to TCRE. 2009 
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 2010 

The uncertainty in TCRE, as indicated by its standard deviation (σTCRE), can be represented in 2011 

terms of the standard deviation of Δ𝑇𝑇2×𝐶𝐶𝑂𝑂2 (𝜎𝜎Δ𝑇𝑇), standard deviation of 𝐶𝐶�2×𝐶𝐶𝑂𝑂2 (𝜎𝜎E), and their 2012 

means Δ𝑇𝑇���� and E� across the eleven CMIP6 models. Since Δ𝑇𝑇2×𝐶𝐶𝑂𝑂2 and 𝐶𝐶�2×𝐶𝐶𝑂𝑂2 are nearly 2013 

independent (correlation between these two quantities is only 0.02 across the eleven CMIP6 2014 

models considered here), we can write 2015 

 σ𝑇𝑇𝐶𝐶𝑅𝑅𝐸𝐸 = 𝑇𝑇𝐶𝐶𝑅𝑅𝐶𝐶 ��������.��𝜎𝜎Δ𝑇𝑇
Δ𝑇𝑇����
�
2

+ �𝜎𝜎E
E�
�
2
                                                   (A8) 2016 

which allows to calculate to contributions of �𝜎𝜎Δ𝑇𝑇
Δ𝑇𝑇����
�
2
 and �𝜎𝜎E

E�
�
2
 to σ𝑇𝑇𝐶𝐶𝑅𝑅𝐸𝐸. 2017 

 2018 

 2019 

 2020 

 2021 

 2022 

 2023 

 2024 

 2025 

 2026 

 2027 

  2028 
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