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Abstract

We have computed the contributions of the quartic Casimir invariants to the four-loop anomalous

dimensions of twist-2 spin-N operators at N ≤ 16. The results provide new information on the

structure of the next-to-next-to-next-to-leading order (N3LO) splitting functions P
(3)

ik (x) for the

evolution of parton distributions, and facilitate approximate expressions which include the quartic-

Casimir contributions to the (light-like) gluon cusp anomalous dimension. These quantities turn

out to be closely related, by a generalization of the lower-order ‘Casimir scaling’, to the corre-

sponding quark results. Using these findings, we present an approximate result for the four-loop

gluon cusp anomalous dimension in QCD which is sufficient for phenomenological applications.
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1 Introduction

Over the past years, the next-to-next-to-leading order (NNLO, N2LO) of perturbative QCD has

become the standard approximation for many hard-scattering processes at the LHC and other high-

energy colliders. In certain cases, e.g., when a very high accuracy is required or when the NNLO

corrections are rather large, it is useful to extend the analyses to the next order, N3LO. Coefficient

functions (partonic cross sections) have been computed at N3LO for inclusive lepton-hadron deep-

inelastic scattering (DIS) [1] and Higgs production in proton-proton collisions [2,3]. Very recently,

first N3LO results have been presented for jet production in DIS [4].

In principle, N3LO analyses of processes involving initial-state hadrons require parton distribu-

tion functions (PDFs) evolved with the four-loop splitting functions. These functions also include

quantities that are relevant beyond the evolution of PDFs. In particular, their leading behaviour

for large momentum fractions x is given by important universal quantities, the (light-like) cusp

anomalous dimensions of quarks and gluons [5]. The complete computation of the four-loop split-

ting functions is a formidable task. Until now, a phenomenologically relevant amount of partial

results has been published only for the (non-singlet) quark-quark splitting functions [6, 7].

In this letter, we address a specific part of the four-loop flavour-singlet splitting functions,

the terms with quartic Casimir invariants which occur at this order for the first time. As shown

below, the present partial results for these terms provide structural and numerical information that

is relevant for future research on N3LO corrections and for QCD phenomenology beyond PDFs.

2 Notations and general properties

The QCD evolution equations for the flavour-singlet quark and gluon distributions of hadrons,

qs(x,µ
2) =

nf

∑
i=1

[

qi(x,µ
2)+ q̄i(x,µ

2)
]

and g(x,µ2) , (2.1)

can be written as
d

d lnµ2

(

qs

g

)

=

(

Pqq Pqg

Pgq Pgg

)

⊗
(

qs

g

)

. (2.2)

Here qi(x,µ
2), q̄i(x,µ

2) and g(x,µ2) denote the respective number distributions of quarks and

antiquarks of flavour i and of the gluons in the fractional hadron momentum x, ⊗ stands for the

Mellin convolution in the momentum variable, and µ represents the factorization scale. In the

present context, the renormalization scale can be identified with µ without loss of information.

The quark-quark splitting function Pqq can be expressed as Pqq = P+
ns +Pps in terms of the

non-singlet splitting function P+
ns for quark-antiquark sums and a pure-singlet contribution Pps.

The splitting functions can be expanded in powers of the strong coupling constant,

Pik (x,αs) = ∑
n=0

an+1
s P

(n)
ik (x) with as ≡

αs(µ
2)

4π
. (2.3)
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The off-diagonal quantities Pqg and Pgq include integrable logarithms up to an
s ln2n−2(1−x) in the

threshold limit x → 1, see refs. [8], while the diagonal quantities Pqq and Pgg have the form [9]

P
(n−1)
kk (x) =

xAn,k

(1− x)+
+ Bn,k δ(1−x) + Cn,k ln(1−x) + Dn,k + O((1−x) lnℓ(1−x)) , (2.4)

where An,q and An,g are the (light-like) n-loop quark and gluon cusp anomalous dimensions [5].

The coefficients Cn,k and Dn,k can be predicted from lower-order information [7, 9]. In the small-x

(high-energy, BFKL [10]) limit, the splitting functions are single-logarithmic enhanced with terms

up to x−1 lnn x for P
(n)
gk and x−1 lnn−1 x for P

(n)
qk [11].

The splitting functions in eq. (2.2) are related to the anomalous dimensions of twist-2 spin-N

operators with N = 2, 4, 6, . . . by a Mellin transformation,

γ
(n)
ik (N,αs) = −

∫ 1

0
dx xN−1 P

(n)
ik (x,αs) , (2.5)

where the negative sign is a standard convention. The splitting functions P
(n)
ik (x) are known to

NNLO, i.e., at n ≤ 2 in eq. (2.3) [12]. The N3LO contributions to eq. (2.5) have been obtained at

N ≤ 6 [13]; the results for N = 2 and N = 4 have been presented in numerical form in ref. [14].

Much more is known about their non-singlet counterparts [6, 7], see below.

Here we are interested in contributions with quartic color factors which we abbreviate as

d
(4)
xy ≡ d abcd

x d abcd
y , (2.6)

where x,y labels the representations with generators T a
r and

d abcd
r =

1

6
Tr(T a

r T b
r T c

r T d
r + five bcd permutations) . (2.7)

In SU(nc), for fermions in the fundamental representation (trace-normalized with TF = 1
2
),

d
(4)
AA /nA =

1

24
n2

c (n
2
c +36) , (2.8)

d
(4)
FA /nA =

1

48
nc(n

2
c +6) , (2.9)

d
(4)
FF /nA =

1

96
(n2

c −6+18n−2
c ) . (2.10)

The dimension of the adjoint representation is related to nF = nc =CA by nA = (n2
c −1) = 2ncCF .

Terms with quartic Casimir invariants occur for the first time at four loops, the order considered

here, in splitting functions, coefficient functions and the beta function of QCD [15]. This effective

‘leading-order’ situation implies particular relations and facilitates calculational simplifications.

The d
(4)
xy terms at four loops are scheme-independent. They should therefore fulfil the relation

γ
(3)
qq (N)+ γ

(3)
gq (N)− γ

(3)
qg (N)− γ

(3)
gg (N)

Q
= 0 (2.11)

for the color-factor substitutions [14]
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(2nf )
2 d

(4)
FF

na
= 2nf

d
(4)
FA

na
= 2nf

d
(4)
FF

nc
=

d
(4)
FA

nc
=

d
(4)
AA

na
(2.12)

that lead to an N = 1 supersymmetric theory, for lower-order discussions see refs. [16]. Here and

below
Q
= denotes equality for the quartic Casimir contributions. The factor of two for each power

of nf is due to the transition from QCD and its SU(nc) generalization to nf = 1 Majorana fermions.

We have verified eq. (2.11) at a sufficient number of N-values. At higher values of N this relation

can be used to avoid the hardest diagram computations, those of the d
(4)
AA contributions to γ

(3)
gg .

As in the non-singlet cases, the splitting functions are (conjectured to be) constrained by a

conformal symmetry of QCD at some non-integer space-time dimension D = 4−2ε [17]. We find

that the moments of the off-diagonal splitting functions are consistent with the resulting predic-

tion in terms of reciprocity-respecting sums (see below), but fulfil the stronger, newly discovered

condition

γ
(0)
qg (N)γ

(3)
gq (N)

Q
= γ

(0)
gq (N)γ

(3)
qg (N) . (2.13)

This result provides a stringent check of our very challenging high-N computations. Other features

resulting from the special status of quartic Casimir contributions at four loops are discussed below.

3 Diagram computations and N-space results

Computations of four-loop inclusive DIS have been performed at N ≤6 for all colour factors in a

manner analogous those at three loops in refs. [18], for sample results see ref. [14]. The ensuing

moments of the four-loop splitting functions provide crucial reference results for validating the

present calculation performed in the framework of the operator-product expansion (OPE).

Our OPE diagram computations have been performed analogously to those presented in ref. [7].

The Feynman diagrams for the anomalous dimensions of the flavour-singlet twist-2 spin-N oper-

ators have been generated using QGRAF [19], and then processed by a FORM [20] program, see

ref. [21], that collects self-energy insertions, determines the colour factors and finds the topologies

in the notation of the FORCER package [22] that performs the integral reduction after the harmonic

projection [23] to the desired value of N. For computational efficiency, diagrams with the same

colour factor and topology are merged into meta-diagrams.

The main issue in these covariant-gauge calculations in a massless off-shell case is the correct

treatment of the gluon operators, see refs. [24]. Since, as discussed above, we are dealing here

with an effective lowest-order case, we are not confronted with the full complexity of this issue.

We expect to return to this point in a future publication of all four-loop contributions to the singlet

anomalous dimensions. For three-loop on-shell OPE calculations with heavy quarks see ref. [25].

We now present our results for the quartic-Casimir contributions to the anomalous dimensions

(2.5) at N = 2,4, . . . ,16. These include fractions and the values ζ3 and ζ5 of Riemann’s ζ-function,

but, as factorization-scheme independent ‘leading-order’ contributions, do not include terms with

even-n values ζn, see refs. [26]. For brevity the results are written down in a numerical form.
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The non-singlet and pure-singlet quark-quark anomalous dimensions include

γ
(3)+
ns (N)

∣

∣

∣

d
(4)
FA /nF

= +773.10566 δN,2 +69.385963 δN,4 −186.61376 δN,6

−346.75182 δN,8 −465.07282 δN,10 −559.57588 δN,12

−638.52578 δN,14−706.44946 δN,16 − . . . , (3.1)

γ
(3)
ns (N)

∣

∣

∣

nf d
(4)
FF /nF

= −65.736531 δN,2 −135.95246 δN,4 −176.15626 δN,6

−205.54604 δN,8 −229.07719 δN,10 −248.80626 δN,12

−265.82674 δN,14−280.80532 δN,16 − . . . , (3.2)

γ
(3)
ps (N)

∣

∣

∣

nf d
(4)
FF /nF

= −146.97872 δN,2 −88.852325 δN,4 −37.651992 δN,6

−20.290180 δN,8 −12.702121 δN,10 −8.7568928 δN,12

−6.4465398 δN,14−4.9735061 δN,16 − . . . . (3.3)

The corresponding results for the quark-gluon and gluon-quark quantities read

γ
(3)
gq (N)

∣

∣

∣

d
(4)
FA /nF

= −773.10566 δN,2 −154.99156 δN,4 −33.190677 δN,6

−3.6877393 δN,8 +5.6280884 δN,10 +8.8432407 δN,12

+9.8467770 δN,14+ . . . , (3.4)

γ
(3)
gq (N)

∣

∣

∣

nf d
(4)
FF /nF

= +212.71525 δN,2 +40.812981 δN,4 +20.540955 δN,6

+13.623478 δN,8 +10.207939 δN,10 +8.1771347 δN,12

+6.8293658 δN,14+5.8681866 δN,16 + . . . (3.5)

and

γ
(3)
qg (N)

∣

∣

∣

nf d
(4)
FA /nA

= −386.55283 δN,2 −154.99156 δN,4 −41.488346 δN,6

−5.1628350 δN,8 +8.4421327 δN,10 +13.896521 δN,12

+16.001012 δN,14+ . . . , (3.6)

γ
(3)
qg (N)

∣

∣

∣

n2
f d

(4)
FF /nA

= +106.35762 δN,2 +40.812981 δN,4 +25.676194 δN,6

+19.072869 δN,8 +15.311908 δN,10 +12.849783 δN,12

+11.097719 δN,14+9.7803110 δN,16 + . . . . (3.7)

Finally the quartic-Casimir contributions to the four-loop gluon-gluon anomalous dimension are

found to be

γ
(3)
gg (N)

∣

∣

∣

d
(4)
AA /nA

= +139.70415 δN,4 −42.404324 δN,6

−196.38527 δN,8 −317.16583 δN,10 −414.93934 δN,12

−496.71624 δN,14 − . . . , (3.8)
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γ
(3)
gg (N)

∣

∣

∣

nf d
(4)
FA /nA

= +386.55283 δN,2 −441.47043 δN,4 −458.54303 δN,6

−462.79602 δN,8 −469.79385 δN,10 −478.54929 δN,12

−487.97876 δN,14−497.49491 δN,16 − . . . , (3.9)

γ
(3)
gg (N)

∣

∣

∣

n2
f d

(4)
FF /nA

= −106.35762 δN,2 −117.11160 δN,4 −121.74849 δN,6

−123.79780 δN,8 −124.86680 δN,10 −125.48946 δN,12

−125.88108 δN,14−126.14172 δN,16 − . . . . (3.10)

The absence of a δN,2 term, i.e., the vanishing of the N = 2 contribution in eq. (3.8) is required

by the momentum sum rule. The implications of eqs. (3.8) – (3.10) for the large-x limit (2.4) are

addressed in section 4 below.

As for the non-singlet case in ref. [7], these fixed-N results are sufficient to deduce the all-N

form of the ζ5 contributions. The quark-quark anomalous dimensions can be expressed as

γ
(3)+
ns (N)

∣

∣

∣

ζ5 d
(4)
FA /nF

=
320

3

(

S1(24η−24S1+58)−69η2 +
63

2
η−37

)

, (3.11)

γ
(3)
ns (N)

∣

∣

∣

ζ5 nf d
(4)
FF /nF

=
1280

3

(

6η2 −2S1 −5η+3
)

, (3.12)

γ
(3)
ps (N)

∣

∣

∣

ζ5 nf d
(4)
FF /nF

=
1280

3

(

9η2 +14η−4ν−
1

4

)

(3.13)

in terms of the quantities

η ≡
1

N
−

1

N +1
≡ D0 −D1 =

1

N(N +1)
, (3.14)

ν ≡
1

N −1
−

1

N +2
≡ D−1 −D2 =

3

(N −1)(N +2)
(3.15)

and the harmonic sum S1 ≡ S1(N) =∑N
k=1 k−1 which are reciprocity-respecting (RR), i.e., invariant

under the replacement N → 1−N corresponding to f (x)→−x f (x−1) in x-space.

The all-N results for the ζ5 d
(4)
xy contributions to the four-loop quark-gluon and gluon-quark

anomalous dimensions read

γ
(3)
gq (N)

∣

∣

∣

ζ5 d
(4)
FA /nF

=
320

3

(

24(2D−1 −2D0 +D1)S1 −24D2
−1 +126D2

0 +63D2
1

−30D−1 −202D0 +
391

2
D1 −8D2

)

, (3.16)

γ
(3)
gq (N)

∣

∣

∣

ζ5 nf d
(4)
FF /nF

=
1280

3

(

−24D2
0 −12D2

1 +4D−1 +32D0 −34D1

)

(3.17)

and

γ
(3)
qg (N)

∣

∣

∣

ζ5 nf d
(4)
FA /nA

=
640

3

(

24(D0 −2D1 +2D2)S1 −63D2
0 −126D2

1 +24D2
2

−8D−1 +
391

2
D0 −202D1 −30D2

)

, (3.18)

γ
(3)
qg (N)

∣

∣

∣

ζ5 n2
f d

(4)
FF /nA

=
2560

3

(

12D2
0 +24D2

1 −34D0 +32D1 +4D2

)

. (3.19)
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By multiplying eqs. (3.16) and (3.17) with

γ
(0)
qg (N) = −2CF (D0 −2D1 +2D2) , (3.20)

and eqs. (3.18) and (3.19) with

γ
(0)
gq (N) = −2nf (2D−1−2D0 +D1) , (3.21)

one arrives at two RR expressions that fulfil eq. (2.13) at all N; the required relation between nA,

nF and CF has been given below eq. (2.10).

The corresponding gluon-gluon anomalous dimension are given by the RR expressions

γ
(3)
gg (N)

∣

∣

∣

ζ5 d
(4)
AA /nA

=
64

3

(

30
(

12η2 −4ν2 − S1(4S1+8η−8ν−11)−7ν
)

+188η−
751

3
−

1

6
N (N +1)

)

, (3.22)

γ
(3)
gg (N)

∣

∣

∣

ζ5 nf d
(4)
FA /nA

=
128

3

(

10
(

15η2 −6S1 +2ν
)

−121η+
287

3
+

1

3
N (N +1)

)

, (3.23)

γ
(3)
gg (N)

∣

∣

∣

ζ5 n2
f d

(4)
FF /nA

=
256

3

(

−120η2 +23η−
17

6
−

1

6
N (N +1)

)

. (3.24)

These results exhibit interesting features in the large-N threshold limit and the N→1 BFKL limit.

Unlike all N-space expressions for QCD splitting functions calculated up to now, eqs. (3.22)

– (3.24) include terms of the form ζ5 N(N + 1) . In the complete results, these terms have to be

compensated by contributions that develop ζ5-terms in the limit N →∞, since the overall leading

large-N behaviour is given by lnN multiplied by the cusp anomalous dimension [5] due to the

Mellin transform of eq. (2.4). This compensation has occurred before, in the three-loop coefficient

functions for inclusive DIS [1], where ζ5 enters with positive powers of N in the combination

f (N) = 5ζ5 −2S−5 +4ζ3S−2 −4S−2,−3 +8S−2,−2,1 +4S3,−2 −4S4,1 +2S5 (3.25)

of ζ-values and harmonic sums [27] that ensures the correct large-N behaviour. It may be worth-

while to note that the N(N +1) terms in eqs. (3.22) – (3.24) cancel in the SUSY limit (2.12).

In addition, both eq. (3.11) and (3.22) include terms of the form ζ5[S1(N)]2 – with the same

coefficients, as required in view of eqs. (2.11) and (2.12) – that also need to be compensated in the

large-N limit. A natural possibility is that the diagonal QCD splitting function include terms with

[S1(N)]2 f (N), i.e., the same structure as the ‘wrapping correction’ in the anomalous dimensions

in N = 4 maximally supersymmetric Yang-Mills theory [28]. Unfortunately we are not (yet) in

a position to derive the all-N structure of the ζ3-terms, which could provide further evidence for

(or exclude) the occurrence of the function (3.25) in the four-loop anomalous dimensions in QCD.

In the limit N → 1, eqs. (3.16) and (3.22) include terms with 1/(N − 1)2. Since the lead-

ing terms at four-loop are proportional to 1/(N −1)4 [11], these represent next-to-next-to-leading

logarithmic (NNLL) contributions in this high-energy (small-x) limit. Unless these terms are com-

pensated by contributions that develop ζ5-terms in the limit N→1, the complete NNLL four-loop

contributions in QCD cannot possibly be obtained by resumming lower-order information, as such

information cannot predict coefficients of quartic Casimir invariants.
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4 x-space results and cusp anomalous dimensions

The fixed-N moments (3.1) – (3.9) of the quartic-Casimir contributions to the four-loop splitting

functions can be employed to obtain x-space approximations which small uncertainties at least

at x >
∼ 0.1. In the quark-quark and gluon-gluon cases, these approximations involve only two

unknown coefficients of terms that do not vanish for x → 1, i.e., the coefficients A4 and B4 in

eq. (2.4). The predictable coefficients C4 and D4 vanish for the d
(4)
xy terms, since there are no

lower-order quantities with these colour factors. Consequently, the coefficients of the leading

large-x terms, i.e., the cusp anomalous dimensions, can be determined with a rather high accuracy.

This programme has been carried out in ref. [7] for the complete non-leading large-nc (Nnc)

n0
f and n1

f parts of P
(3)

ns (x) in QCD as well as for all individual colour factors. The leading large-nc

contributions and the n2
f and n3

f terms are completely known [6, 7, 29]. The results for A4,q are

collected in table 1, where the n0
f part has been improved upon using the Nnc results for QCD.

The coefficients of A4,q which are known exactly have also been determined from the quark form

factor [30, 31], the results are in complete agreement. Very recently, the exact coefficient of C3
Fnf

has been obtained in ref. [32].

quark gluon A4,q A4,g

C4
F − 0 −

C3
F CA − 0 −

C2
FC2

A − 0 −

CFC3
A C4

A 610.25±0.1

d
(4)
FA /NF d

(4)
AA /NA −507.0±2.0 −507.0±5.0

nf C3
F nf C2

FCA −31.00554

nf C2
FCA nf CFC2

A 38.75±0.2

nf CFC2
A nfC

3
A −440.65±0.2

nf d
(4)
FF /NF nf d

(4)
FA /NA −123.90±0.2 −124.0±0.6

n2
f C2

F n2
f CFCA −21.31439

n2
f CFCA n2

f C2
A 58.36737

− n2
f d

(4)
FF /NA − 0.0±0.1

n3
f CF n3

f CA 2.454258 2.454258

Table 1: Fourth-order coefficients of the quark and gluon cusp anomalous dimensions determined from

the large-x limit (2.4) of the quark-quark and gluon-gluon splitting functions. The errors in the quark case

are correlated due to the exactly known large-nc limit. Our numerical value of −31.00± 0.4 [7] for the

coefficient of nfC
3
F in A4,q has been replaced by recent exact result of ref. [32]. This and the exact values for

the n2
f and n3

f coefficients have been rounded to seven digits.
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We have now performed analogous determinations of the quartic-Casimir coefficients of A4,g.

The results are also shown in table 1, together with the only piece known exactly so far, the CAn3
f

contribution [6, 33]. We see that, as up to the third order [12], the corresponding quark and gluon

entries have the same coefficients (for now: as far as they have been computed, and within numer-

ical errors). We refer to this (for now: conjectured) relation as generalized Casimir scaling.

Unlike to three loops, this relation does not have the consequence that the values of A4,g and

A4,q are related by a simple numerical Casimir scaling in QCD, i.e., a factor of CA/CF = 9/4.

However, this numerical Casimir scaling is restored in the large-nc limit of the quartic colour

factors, and therefore also in the overall large-nc limit, see also ref. [34].

The results of refs. [6, 7] and the present paper lead to the following results for the four-loop

quark and gluon cusp anomalous dimensions, expanded in powers of αs/(4π), recall eq. (2.3),

A4,q = 20702(2) − 5171.9(2)nf + 195.5772n2
f + 3.272344n3

f , (4.1)

A4,g = 40880(30) − 11714(2) nf + 440.0488n2
f + 7.362774n3

f . (4.2)

For comparison, the large-nc coefficients of A4,q (not changing the overall factor of CF ) read

21209.0, 5179.37 and 190.841, respectively, for the n0
f , n1

f and n2
f contributions. The numeri-

cal Casimir scaling between A4,g and A4,q is broken by almost 15% in the n0
f terms. This breaking

is due to the non-leading large-nc (Nnc) part of the quartic-Casimir term, which is larger by a factor

of 6 in A4,g than in A4,q due to ‘36’ and ‘6’ in eqs. (2.8) and (2.9). This much larger size of the Nnc

contribution in the gluon case also leads to the much larger uncertainty of its n0
f coefficient.

Combining the above with the lower-order coefficients , we arrive at the very benign expansions

Aq(αs,nf =3) = 0.42441αs [1+0.72657αs+0.73405α2
s +0.6647(2)α3

s + . . . ] ,

Aq(αs,nf =4) = 0.42441αs [1+0.63815αs+0.50998α2
s +0.3168(2)α3

s + . . . ] ,

Aq(αs,nf =5) = 0.42441αs [1+0.54973αs+0.28403α2
s +0.0133(3)α3

s + . . . ] (4.3)

and

Ag(αs,nf =3) = 0.95493αs [1+0.72657αs+0.73405α2
s +0.415(2)α3

s + . . . ] ,

Ag(αs,nf =4) = 0.95493αs [1+0.63815αs+0.50998α2
s +0.064(2)α3

s + . . . ] ,

Ag(αs,nf =5) = 0.95493αs [1+0.54973αs+0.28403α2
s −0.243(2)α3

s + . . . ] (4.4)

in terms of αs for the physically relevant values of the number nf of light flavours. Due to the

additional cancellations between the terms without and with nf in eq. (4.1) and (4.2), the numerical

Casimir scaling is completely broken in fourth-order contributions.

The remaining uncertainties are practically irrelevant for all phenomenological applications,

which include (but are by no means exhausted by) calculations of the soft-gluon exponentiation at

next-to-next-to-next-to-leading logarithmic (N3LL) [35] and higher accuracy, see, e.g., ref. [36],

and similar calculations in other frameworks such as soft-collinear effective theory.

Another application is the absolute ratio |F g(q2)/F g(−q2)| of the renormalized time-like and

space-like Higgs-gluon-gluon form factors in the heavy-top limit. This quantity is infrared finite
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and directly enters the cross section for Higgs boson production in hadronic collisions. Using

eq. (4.4) for the small A4,g contribution, we can update the result of ref. [37] which used a value

based on a Padé estimate for A4,q and numerical Casimir scaling. The new result for nf = 5 reads

∣

∣

∣

F g(q2)

F g(−q2)

∣

∣

∣

2

= 1+4.7124 αs+13.694 α2
s +25.935 α3

s +(34.82±0.01)α4
s + . . . . (4.5)

While the coefficient of α4
s is noticeably smaller than in ref. [37], the general pattern is unchanged:

large coefficients, but definitely no sign of a runaway growth – on the contrary. The numerical α4
s

effect in eq. (4.5) is a fraction of a percent at scales close to the mass of the Higgs boson.

5 Summary

We have presented the first calculations of a substantial number of moments of contributions to the

four-loop (N3LO) flavour-singlet splitting functions P
(3)
ik outside the large-nf limit. Specifically,

we have obtained the even moments N≤16 of all terms with quartic Casimir invariants. The cal-

culations have been performed in the framework of the operator-product expansion; the results at

N ≤ 6 (and partly at N = 8) have been checked against those of conceptually much simpler, but

computationally much harder determinations via structure functions in deep-inelastic scattering.

Our results show features expected for these effectively lowest-order contributions, such as

the supersymmetric relation, and properties not predicted before, in particular a simple relation

between the quartic-Casimir parts of the off-diagonal splitting functions P
(3)
qg and P

(3)
gq . We have

obtained the all-N expressions for the ζ5 parts. The diagonal quantities P
(3)
qq and P

(3)
gg include

contributions which have the structure of the wrapping corrections found in N = 4 maximally

supersymmetric Yang-Mills theory. The all-N expressions for P
(3)
gg includes numerator-N terms.

Such terms are not entirely new, but have not been encountered in splitting functions before.

The calculated moments of P
(3)
gg enable a numerical determination of a quantity that is im-

portant in a much wider context, the (light-like) four-loop gluon cusp anomalous dimension A4,g.

We find for the quartic-Casimir parts, and conjecture for all other terms, that the coefficients for

A4,g are related to those of its quark counterpart A4,q by a direct generalization of the Casimir

scaling found at lower orders. This allows us to present numerical results for A4,g in QCD that are

sufficiently accurate for all phenomenological purposes. Due to differences in (the contributions

that are non-leading in the large-nc limit to) the quartic colour factors, there is no simple relation

between the numerical values of A4,g and A4,q for physical values of the number of flavours nf .

FORM files of our fixed-N and all-N moments of the four-loop splitting functions, including

the analytic expressions for the former quantities not shown in section 3, can be obtained from the

preprint server https://arXiv.org by downloading the source of this article. They are also available

from the authors upon request.
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