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ABSTRACT

In this dissertation I use lattice gauge theory to study models of electroweak symmetry

breaking that involve new strong dynamics.

Electroweak symmetry breaking (EWSB) is the process by which elementary particles

acquire mass. First proposed in the 1960s, this process has been clearly established by

experiments, and can now be considered a law of nature. However, the physics underly-

ing EWSB is still unknown, and understanding it remains a central challenge in particle

physics today. A natural possibility is that EWSB is driven by the dynamics of some new,

strongly-interacting force. Strong interactions invalidate the standard analytical approach

of perturbation theory, making these models difficult to study.

Lattice gauge theory is the premier method for obtaining quantitatively-reliable, non-

perturbative predictions from strongly-interacting theories. In this approach, we replace

spacetime by a regular, finite grid of discrete sites connected by links. The fields and

interactions described by the theory are likewise discretized, and defined on the lattice so

that we recover the original theory in continuous spacetime on an infinitely large lattice

with sites infinitesimally close together. The finite number of degrees of freedom in the

discretized system lets us simulate the lattice theory using high-performance computing.

Lattice gauge theory has long been applied to quantum chromodynamics, the theory of

strong nuclear interactions. Using lattice gauge theory to study dynamical EWSB, as I do in

this dissertation, is a new and exciting application of these methods. Of particular interest

v



is non-perturbative lattice calculation of the electroweak S parameter. Experimentally

S ≈ −0.15(10), which tightly constrains dynamical EWSB. On the lattice, I extract S from

the momentum-dependence of vector and axial-vector current correlators. I created and

applied computer programs to calculate these correlators and analyze them to determine

S. I also calculated the masses and other properties of the new particles predicted by these

theories.

I find S & 0.1 in the specific theories I study. Although this result still disagrees with

experiment, it is much closer to the experimental value than is the conventional wisdom

S & 0.3. These results encourage further lattice studies to search for experimentally viable

strongly-interacting theories of EWSB.
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Chapter 1

Introduction

In this dissertation we discuss the application of lattice gauge theory to models of elec-

troweak symmetry breaking (EWSB) that involve new strong dynamics. After reviewing

technicolor models of dynamical EWSB, and lattice gauge theory methods that are used

to obtain non-perturbative predictions from strongly-interacting systems, we consider in-

vestigations of SU(3) gauge theory with Nf = 2, 6 and 10 fermions in the fundamental

representation [1, 2, 3, 4]. Our featured result is a lattice calculation of the electroweak S

parameter, which we find can be significantly smaller than näıve scaling arguments would

suggest, though still larger than the experimental value.

The underlying questions motivating this research concern the origins of masses for

elementary particles. The explanation of elementary particles’ masses has been a deep

mystery since the 1960s proposal that the weak and electromagnetic interactions are com-

bined in a unified electroweak gauge theory [5]. Although electroweak unification initially

appeared incompatible with the existence of massive particles, this difficulty was overcome

by the discovery that electroweak gauge invariance could be hidden through a spontaneous

symmetry breaking process [6, 7, 8, 9, 10, 11]. While this generic picture of electroweak

symmetry breaking has been strongly supported by experiments since the 1970s [12, 13],

the dynamics underlying this process remain unknown. Understanding EWSB is a cen-

tral challenge in particle physics today, and is the main goal of the CERN Large Hadron

Collider (LHC).

A natural possibility is that EWSB is driven by the dynamics of some new strong force

at the TeV scale [14, 15, 16]. Such dynamical EWSB results from a process much like

spontaneous chiral symmetry breaking in quantum chromodynamics (QCD), the theory of

1



2

the strong nuclear force. Because perturbation theory cannot make reliable predictions for

strongly-interacting theories, much of the conventional wisdom regarding dynamical EWSB

relies on this superficial similarity to QCD. By making the (unjustified) assumption that

new strong dynamics closely resemble the behavior of QCD, certain features of the former

can be estimated from the extensive experimental information available on the strong

nuclear force. Of particular interest is the electroweak S parameter [17, 18], which tightly

constrains QCD-like theories of dynamical EWSB.

The value of S in a given theory is related to that theory’s spectrum of vector and

axial-vector states. Precision electroweak measurements provide an experimental value

of S that is small or negative: for a “reference” Higgs boson mass of roughly 1 TeV,

S ≈ −0.15(10) [13]. Taking experimental information on the spectrum of QCD and raising

it to the electroweak scale produces S = 0.32(3) [18]. For an SU(Nc) gauge theory of

new strong dynamics with Nf fermions in the fundamental representation, näıve scaling

therefore suggests S ∼ 0.3
Nf

2
Nc

3 , in considerable disagreement with experiment even for

the minimal QCD-like case with Nf = 2 and Nc = 3.

This scaling argument is “näıve” in the sense that it is not motivated by any first-

principles considerations, but primarily counts degrees of freedom, assuming that they do

not affect the dynamics of the theory. In fact, we know that as Nf increases for a fixed Nc,

these theories behave very differently than QCD [19, 20], making QCD-based conventional

wisdom unreliable. In order to determine the true theoretical status of EWSB through new

strong dynamics, we need to perform non-perturbative calculations. Lattice gauge theory

is the premier method for obtaining quantitatively-reliable, non-perturbative predictions

from strongly-interacting theories [21, 22].

In lattice gauge theory, we discretize euclidean spacetime into a regular grid of sites

connected by links. The fields and interactions described by the theory are likewise dis-

cretized, and defined on the lattice in such a way that the original theory in continuous

space and time is recovered when the lattice is taken to be infinitely large, with its sites in-

finitesimally close together. In particular, we recover Lorentz invariance in the continuum



3

limit, while gauge invariance is exactly maintained even with non-zero “lattice spacing”

between sites.

The finite number of degrees of freedom in the discretized system permits stochastic

simulation of the lattice theory using high-performance computing. Numerical techniques

for such simulations have steadily progressed for decades, primarily in application to QCD.

Lattice QCD is a mature field, in the sense that the systematic effects of working in a dis-

crete spacetime with a finite volume are understood and under control for most calculations

(cf. recent reviews [23, 24, 25, 26, 27] and notable results [28, 29, 30, 31, 32, 33, 34]). The

application of lattice gauge theory to strongly-interacting theories beyond QCD, especially

theories relevant to dynamical EWSB, is undergoing rapid development [35, 36, 37, 38, 39],

spurred by advances in both computing hardware and numerical algorithms. These calcu-

lations are still exploratory, and face severe practical challenges.

One difficulty that merits special note is our need for chiral symmetry on the lattice [40,

41, 42, 43, 44]. Common lattice discretizations of fermions explicitly break chiral symmetry,

obscuring the spontaneous chiral symmetry breaking that drives EWSB in technicolor

theories. We use domain wall fermions to address this issue [45, 46, 47, 48]. At the cost of

adding a fifth dimension to the lattice, this fermion formulation decouples the continuum

and chiral limits, making it possible (although computationally expensive) to recover chiral

symmetry at non-zero lattice spacing.

Ongoing studies of SU(3) lattice gauge theory with Nf = 6 andNf = 10 fermions in the

fundamental representation have produced very interesting results [1, 2, 3, 4], which this

dissertation reports. More generally, non-perturbative explorations of strongly-interacting

gauge theories other than QCD will help improve our understanding of quantum field

theory itself, even if strong dynamics are not directly responsible for EWSB. Our featured

result is the first lattice calculation of the S parameter in a theory other than scaled-up

QCD. We find that S with Nf = 6 and Nf = 10 can be significantly smaller than QCD

dynamics would suggest, though still larger than the experimental value.
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Outline

We include considerable detail in this outline to help the reader locate information of inter-

est. Briefly stated, Section 2 discusses the problem, Section 3 our methods and Section 4

our results.

In Section 2 we review electroweak gauge invariance and the spontaneous symmetry

breaking process that hides it. We begin in Section 2.1 by considering the standard model,

the simplest realization of this process. Some theoretically unsatisfying features of the stan-

dard model motivate the introduction of strongly-interacting alternatives in Section 2.2.

We consider chiral symmetry breaking in QCD to illustrate the “technicolor” scenario in

which a similar process at the electroweak scale drives EWSB. This framework must be

extended to communicate EWSB to the fermions, which we discuss in Section 2.2.2. In

Section 2.2.3 we briefly review some phenomenological challenges facing extended techni-

color. These include tension between fermion masses and flavor-changing neutral currents,

precision measurements of electroweak observables, and the large mass of the top quark.

In Section 2.2.4 we argue that some of these challenges can be addressed by theories with

approximately conformal (“walking”) dynamics, as opposed to QCD-like behavior. We

develop this concept in Section 2.3, and related to the “conformal windows” of gauge

theories.

Moving on to the lattice gauge theory techniques we use in our investigations, Sec-

tion 3.1 reviews the basic formulation of quantum field theories on the lattice, presenting

the euclidean path integral (Section 3.1.1) and simple lattice actions for gauge fields (Sec-

tion 3.1.2) and fermions (Section 3.1.3). Lattice fermions suffer from a “doubling problem”,

and we show how this is addressed both by Wilson fermions (which explicitly break chiral

symmetry) and overlap fermions (which preserve a modified chiral symmetry at non-zero

lattice spacing).

In Section 3.2 we present some numerical techniques we use in stochastic simulations,

dividing the work into the generation (Section 3.2.1) and analysis (Section 3.2.2) of gauge

configurations. For the former, we summarize the basic hybrid Monte Carlo (HMC) al-
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gorithm. To illustrate simple lattice analyses, we discuss measurement of meson masses

and decay constants as well as the chiral condensate
〈
ψψ
〉
. Next, in Section 3.2.3 we con-

sider some of the challenges of working on the lattice, focusing on autocorrelations between

measurements as well as systematic effects from working with massive fermions in a finite,

discrete spacetime.

We discuss domain wall fermions (DWFs) in Section 3.3, first relating them to the

overlap operator, then presenting their five-dimensional formulation in Section 3.3.1. Al-

though DWF possess exact chiral symmetry at finite lattice spacing in the limit that this

fifth dimension becomes infinitely long, numerical simulations must be performed on finite

lattices, and in Section 3.3.2 we discuss the residual chiral symmetry breaking that results.

Section 3.3.3 concludes this discussion by introducing the observables that enter our lattice

calculation of the S parameter.

Section 4 brings together the preceding discussions to consider the application of lattice

gauge theory to models of dynamical EWSB. We begin by presenting a brief overview of

the field in Section 4.1.1, reviewing the goals and status of this work, as well as some of

the unique challenges it faces. We then focus on the program and initial results of the

Lattice Strong Dynamics (LSD) Collaboration in Section 4.1.2, and dedicate Section 4.2 to

a detailed discussion of our lattice calculation of the S parameter. Section 4.2.1 presents

the formulation of S parameter on the lattice, and Section 4.2.2 discusses our data and

results. This discussion includes explicit consideration of the relevant systematic effects,

controlling which is one of the topics of ongoing research we summarize in Section 4.2.3.

Section 5 reviews the document and summarizes our conclusions.

Contributions

I carried out the work discussed in this dissertation as a member of the Lattice Strong

Dynamics (LSD) Collaboration. Within the LSD Collaboration, I was responsible for:

• developing custom software to measure the lattice observables that go into the cal-

culation of the S parameter, on top of the USQCD SciDAC software libraries;
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• carrying out and validating these measurements on LSD Collaboration gauge config-

uration ensembles;

• analyzing these data to obtain results for S itself.

According to LSD Collaboration operating procedures, the final results were checked

through independent analyses by other collaboration members. Similarly, I carried out

such checks of other measurements, for example of mres, ZA and the light meson spec-

trum. My work on code development and validation was discussed and guided by regular

collaboration conference calls and through direct communication with other collaboration

members. The main aspect of LSD Collaboration work in which I did not play an active

role was the generation of the gauge configurations themselves.

Results presented below for mres, ZA, vector and axial-vector current correlators Π,

and related quantities such as the S parameter, are those produced by my own analyses.

Although as mentioned above I also performed some investigations of the light meson

spectrum, decay constants,
〈
ψψ
〉

and other observables, analyses of these quantities by

other members of the LSD Collaboration include refinements above and beyond what

I implemented myself. For Nf = 2 and Nf = 6 I use those collaboration results in

this dissertation, while for ongoing Nf = 10 investigations, I present my own results. I

personally produced all figures in this document.



Chapter 2

Dynamical electroweak symmetry breaking

In this section we review the context of our studies: the as-yet-unknown mechanism re-

sponsible for the spontaneous symmetry breaking process that hides electroweak gauge

invariance, SU(2)L × U(1)Y → U(1)em. We proceed by considering the standard model

(SM), which introduces a single elementary scalar field as the agent of electroweak sym-

metry breaking. This scalar field has not yet been experimentally observed, and combined

with certain theoretically unsatisfying features of the standard model itself, this motivates

us to consider models of physics beyond the standard model (BSM) in which a new strongly-

interacting interaction is responsible for EWSB. Of course, these models have also have

not yet been experimentally confirmed, and face theoretical challenges of their own. We

conclude this section by considering ways in which at least some of these difficulties may

be overcome if the strongly-interacting theory exhibits approximately conformal (walking)

dynamics.

2.1 Electroweak symmetry breaking in the standard model

2.1.1 Electroweak interaction

The standard model joins the SU(2)L ×U(1)Y electroweak theory with quantum chromo-

dynamics [49, 50, 51], to form an SU(3)C×SU(2)L×U(1)Y gauge theory with fermions and

gauge fields transforming as illustrated in Table 2.1. Our notation most closely resembles

that used in [52, 53]; other useful reviews include [54, 55, 56, 57]. We omit discussion of

well-known complications such as the three generations of fermions, quark mixing described

by the Cabibbo–Kobayashi–Maskawa (CKM) matrix [58, 59], and massive neutrinos.

7
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Table 2.1: Transformation properties of fermion and gauge fields in the
standard model.

Field SU(3)C SU(2)L U(1)Y Lorentz

QL =

(
uL
dL

)
3 2 1/6 ( 1

2
, 0)

uR 3 1 2/3 (0, 1
2
)

dR 3 1 -1/3 (0, 1
2
)

LL =

(
νL
eL

)
1 2 -1/2 ( 1

2
, 0)

eR 1 1 -1 (0, 1
2
)

GAµ 8 1 0 ( 1
2
, 1

2
)

W a
µ 1 3 0 ( 1

2
, 1

2
)

Bµ 1 1 0 ( 1
2
, 1

2
)

We organize the standard model lagrangian as

LSM = Lg + Lf + LH (2.1)

Lg = −1

4
GAµνG

Aµν − 1

4
W a
µνW

aµν − 1

4
BµνB

µν (2.2)

Lf =
∑

ψ

ψi /Dψ. (2.3)

Here a = 1, 2, 3; A = 1, . . . , 8; the explicit sum runs over the fermions ψ = QL, uR, dR,

LL, eR; and the two-index objects are the usual field strength tensors, generically

F kµν = ∂µF
k
ν − ∂νF

k
µ + gf ijkF iµF

j
ν (2.4)

with structure coefficients f ijk determined by

[T i, T j ] = if ijkT k. (2.5)

The generators T a = 1
2
σa and TA = 1

2
λA, where σa are the Pauli matrices and λA are

the Gell-Mann matrices. Finally, the sum over ψ in Eqn. 2.3 involves gauge-covariant
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derivatives Dµ that we can read off from Table 2.1:

iDµQL =
(
i∂µ + g3T

AGAµ + g2T
aW a

µ +
g1
6
Bµ

)
QL (2.6)

iDµuR =

(
i∂µ + g3T

AGAµ +
2g1
6
Bµ

)
uR (2.7)

iDµdR =
(
i∂µ + g3T

AGAµ − g1
3
Bµ

)
uR (2.8)

iDµLL =
(
i∂µ + g2T

aW a
µ − g1

2
Bµ

)
LL (2.9)

iDµeR = (i∂µ − g1Bµ) eR. (2.10)

Before specifying LH , we note some features of the theory as it currently stands. First,

the gauge bosons GAµ , W a
µ and Bµ all appear massless, since any mass term such as

1
2
m2
BBµB

µ is not invariant under a gauge transformation Bµ → Bµ − 1
g1
∂µχ.

Similarly, all fermions appear to be massless as well, due to the transformation prop-

erties in Table 2.1. Fermion mass terms have the form

mψψψ = mψ

(
ψLψR + ψRψL

)
, (2.11)

where ψR = 1
2(1 + γ5)ψ ≡ PRψ and ψL = 1

2 (1 − γ5)ψ ≡ PLψ are right- and left-handed

fermion fields, respectively. Because the standard model is a chiral gauge theory in which

right- and left-handed fermions are in different representations, we cannot construct gauge-

invariant fermion mass terms using only the fields listed in Table 2.1.

Based on these considerations, it appears that chiral gauge theories such as the elec-

troweak theory are unable to describe massive fermion and gauge boson fields. Ref. [5],

which introduced the SU(2)L×U(1)Y electroweak theory, noted this feature as its “princi-

pal stumbling block”, and this is the content of our statement in Section 1 that “electroweak

unification initially appeared incompatible with the existence of massive particles”.

2.1.2 Electroweak symmetry breaking

Clearly, the purpose of LH in the standard model lagrangian Eqn. 2.1 is to overcome this

stumbling block and allow the theory to describe the massive fields observed in nature.
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We accomplish this by introducing a (complex) elementary scalar doublet Φ =


 φ+

φ0




transforming in the (1, 2, 1/2) representation of SU(3)C × SU(2)L ×U(1)Y , with a gauge-

invariant potential engineered to produce spontaneous (global) symmetry breaking,

LH = (DµΦ)†(DµΦ) + µ2Φ†Φ − |λ|(Φ†Φ)2 + LY . (2.12)

(We will return to the Yukawa interactions represented by LY .) We have written the Φ†Φ

term with a positive sign to emphasize that the true vacuum state of the theory is not

Φ = 0, but can be chosen by a gauge transformation to be

〈Φ〉 =
1√
2


 0

v


 , (2.13)

where v =
√
µ2/|λ|. Numerically, v = (GF

√
2)−1/2 ≈ 246 GeV, where GF = 1.16637(1) ×

10−5 GeV−2 is the Fermi constant. In essence, we are generalizing the Ginzburg–Landau

model of superconductivity [60] to a relativistic theory with gauge group SU(2)L×U(1)Y .

A generic SU(2)L × U(1)Y gauge transformation

eiχ
a(x)Ta+iβ(x)/2

√
2


 0

v


 (2.14)

would leave the vacuum 〈Φ〉 invariant if χ1 = χ2 = 0 while χ3 = β, which shows that the

spontaneous symmetry breaking preserves a U(1) subgroup of SU(2)L × U(1)Y , which we

identify with electromagnetism. The other three independent gauge transformations corre-

spond to the Nambu–Goldstone bosons (NGBs) expected from the three broken generators

of SU(2)L × U(1)Y → U(1)em [61, 62, 63].

We now parameterize

Φ(x) =
U(x)√

2


 0

v + h(x)


→ 1√

2


 0

v + h(x)


 , (2.15)
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where h(x) is a real scalar field (the Higgs boson) with mass mh =
√

2µ = v
√

2λ, and U(x)

is a gauge transformation that we choose to be U(x) = 1 (the “unitary gauge”). This choice

of gauge appears to have removed the NGBs from the theory, but the remarkable fact noted

by Refs. [6, 7, 8, 9, 10, 11], building on earlier work in the context of superconductivity [64,

65, 66, 67], is that the would-be-NGBs reappear as the longitudinal degrees of freedom of

massive gauge bosons. The gauge boson masses come from the kinetic term (DµΦ)†(DµΦ),

which involves the gauge-covariant derivative

iDµΦ =
(
i∂µ + g2T

aW a
µ +

g1
2
Bµ

)
Φ. (2.16)

The relevant terms (since here we are not interested in exploring the couplings of the Higgs

boson to the gauge bosons) are

∆Lmass =
1

8

(
0 v

)

 g2W

3
µ + g1Bµ g2(W

1
µ − iW 2

µ)

g2(W
1
µ + iW 2

µ) −g2W 3
µ + g1Bµ




2
 0

v


 (2.17)

≡ g2
2v

2

8

(
0 1

)


√
g2
2 + g2

1Aµ/g2
√

2W+
µ

√
2W−

µ −
√
g2
2 + g2

1Zµ/g2




2
 0

1




≡ m2
WW

+
µ W

−µ + 1
2
m2
ZZµZ

µ.

In the second line, we define

W±
µ ≡

W 1
µ ∓ iW 2

µ√
2

Zµ ≡
g2W

3
µ − g1Bµ√
g2
2 + g2

1

Aµ ≡
g2W

3
µ + g1Bµ√
g2
2 + g2

1

(2.18)

corresponding to the physical W±, Z and photon, respectively. The photon is massless,

and the masses of the W± and Z are

mW =
1

2
g2v mZ =

√
g2
2 + g2

1

2
v ≡ mW

cos θw
, (2.19)



12

where we define the weak mixing angle

cos θw =
g2√
g2
2 + g2

1

sin θw =
g1√
g2
2 + g2

1

(2.20)

Finally, in the standard model fermion masses are also obtained by introducing just

this single field Φ with the spontaneous symmetry breaking potential of Eqn. 2.12. All we

need are the gauge-invariant Yukawa interactions stored in LY ,

LY = −
∑

ψ

λψ

{(
ψL · Φ

)
ψR + ψR

(
Φ† · ψL

)}
, (2.21)

where λψ is an arbitrary dimensionless coupling for each fermion field ψ. The fermion mass

is now obtained by expanding around the vacuum of Eqn. 2.13,

LY = −
∑

ψ

λψv√
2



ψL ·


 0

1


ψR + ψR

(
0 1

)
· ψL



 (2.22)

⇒ mψ =
1√
2
λψv. (2.23)

While electroweak symmetry breaking is necessary for fermion masses generation, it is not

a sufficient condition, and there is no requirement that the agent of EWSB also provide

masses to the fermions. The fact that Φ plays both roles in the standard model makes this

theory pleasantly simple and efficient.

2.1.3 Theoretically unsatisfying features of the standard model

Of course, theoretical simplicity is not the reason the model discussed above became the

standard model of particle physics. The SU(2)L × U(1)Y → U(1)em EWSB framework

in general predicted the existence of the weak neutral current discovered in 1973 [68, 69],

and explained charged and neutral weak currents in terms of massive W± and Z gauge

bosons experimentally observed roughly a decade later [70, 71, 72, 73, 74]. More pertinent

to the standard model itself was the excellent agreement that gradually developed between

precise measurements of a wide variety of observables and the predictions of the theory [12].
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(The demonstration that the standard model is renormalizable also contributed to its

appeal [75], but this fact holds less significance in the context of present-day attitudes

concerning effective field theories.) At present, the standard model is consistent with all

experimental data [76, 13]. Although global electroweak fits prefer a Higgs boson mass

(mh ≈ 95 GeV) that has been experimentally excluded by direct searches, a range of

possibilities 120 GeV . mh . 150 GeV remains viable [77].

Despite the continued phenomenological success of the standard model, there is broad

consensus that this theory is likely to break down around the TeV-scale energies that are

now being probed at the CERN Large Hadron Collider (LHC). (Of course the standard

model does not provide a quantum theory of gravity, but the most natural scale for such

physics is the Planck scale MP l ∼ 1019 GeV, well above the TeV scale.) In part, this is

due to the discovery of phenomena such as dark matter that cannot be explained by the

standard model [78]. In addition, there are several aspects of the standard model that are

widely considered theoretically unsatisfying.

To motivate considering theories beyond the standard model, we will qualitatively re-

view some of these arguments. The first is that although the standard model provides a

description of EWSB, it does not provide any dynamical explanation of the process. In-

stead, the scalar field Φ and its potential in Eqn. 2.12 are introduced by hand in order

to produce spontaneous symmetry breaking. All fermion masses and mixings are likewise

arbitrary free parameters, and the Yukawa couplings in Eqn. 2.22 range over many orders

of magnitude from yt ≃ 1 for the top quark to ye ≃ 10−6 for the electron (and even smaller

if the same framework is extended to accommodate non-zero neutrino masses). The simple

fact that Φ is even an elementary scalar field may cause concern, since all known elementary

particles are either fermions or gauge bosons.

The triviality of scalar field theory in four dimensions may explain why no elementary

scalar fields have yet been observed. Triviality is the statement that the β function de-

scribing the scale dependence of the coupling λ(µ) in Eqn. 2.12 is positive [79, 80]. In
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perturbation theory, the leading-order term is

β(λ) = µ
∂λ

∂µ
=

3λ2

2π2
+ O(λ3) > 0. (2.24)

(Comparable results hold non-perturbatively, established by both analytical considera-

tions [81, 82, 83], and numerical lattice simulations [84, 85, 86, 87, 88, 89].) This requires

that the standard model be considered an effective field theory valid only up to some scale

Λnew at which new physics become important. Solving Eqn. 2.24 then gives

λ(µ) ≈
[

1

λ(Λnew)
+

3

2π2
log

(
Λnew
µ

)]−1

<
2π2

3 log (Λnew/µ)
, (2.25)

showing how the coupling flows to the trivial fixed point λ → 0 as µ
Λnew

→ 0. The

connection between the coupling and the Higgs boson mass mh = v
√

2λ requires that

mh . 700 GeV in order for the theory to have any range of validity. If we want the

standard model to be valid up to the Plank scale around which quantum gravitational

effects should become important, we need mh . 200 GeV [89].

There is another problem with trying to push the cutoff Λnew up to very high scales,

namely that quantum corrections make m2
h quadratically sensitive to Λ2

new. In the absence

of some new physics to stabilize the electroweak scale, extreme fine-tuning is necessary to

maintain a large hierarchy between mh and Λnew. Supersymmetry is a popular way to

stabilize the electroweak scale, but supersymmetric models accomplish this by introducing

a large number of elementary scalar fields, along with O(100) new free parameters [90].

These considerations lead to the general expectation that some new physics will be

found around the TeV scale. To motivate the form of new physics we consider, let us con-

clude this section by recalling our comment above that the standard model is a generaliza-

tion of Ginzburg–Landau phenomenology. In the microscopic theory of superconductivity

due to Bardeen, Cooper and Schrieffer (BCS) [91, 92], the scalar order-parameter field of

Ginzburg and Landau is supplanted by the dynamics of the fundamental fermionic degrees

of freedom. In the next section we will see how something similar can be done to obtain
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electroweak symmetry breaking without a elementary scalar fields.

2.2 New strong dynamics

Motivated by the considerations above, we want to consider theories in which electroweak

symmetry breaking is due to the dynamics of elementary fermion fields. Specifically, we

will focus on “technicolor” (TC) theories in which dynamical EWSB results from chiral

symmetry breaking (χSB) in a new, strongly-interacting sector. We begin by considering

quantum chromodynamics (QCD) as a concrete example of χSB due to strong interactions,

and show how this process can produce EWSB. Then we need to extend the framework

to accommodate fermion masses, which leads us to a discussion of some phenomenological

challenges that this approach faces. We conclude this section by considering how at least

some of these challenges may be addressed if the running coupling of the theory evolves

very slowly, or “walks”. Recent reviews of technicolor and related theories include Refs. [93,

94, 95, 96, 97, 98].

2.2.1 Technicolor

It is instructive to begin our discussion of technicolor by considering what would happen

if we were to remove LH from Eqn. 2.1, but leave the rest of the theory the same (still

considering, for simplicity, a single generation) [52, 99]. Then the theory possesses a global

SU(2)L × SU(2)R chiral symmetry that is spontaneously broken to the vector subgroup

SU(2)V by the strong QCD interaction [61, 62, 100]. This is described by the appearance

of a non-zero vacuum expectation value for the chiral condensate

〈
ψψ
〉

=
〈
ψLψR + ψRψL

〉
6= 0. (2.26)

Let us see how this spontaneous chiral symmetry breaking produces electroweak symmetry

breaking.

Three massless Nambu–Goldstone bosons (the pions πa) appear as a result of chiral

symmetry breaking, in terms of which we can formulate an effective low-energy field theory
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known as chiral perturbation theory (χPT) [101, 102]. The leading-order chiral lagrangian

including electroweak interactions is

Lχ =
F 2

4
Tr
[
(DµΣ)†DµΣ

]
− 1

4
W a
µνW

aµν − 1

4
BµB

µ, (2.27)

where the gauge kinetic terms are the same as in Eqn. 2.2 and

Σ = exp

(
4i

F
T aπa

)
. (2.28)

The flavor matrices T a are the same as in Eqn. 2.5. Because the pions are exact NGBs

(mπ = 0) in this calculation, F can be identified with the pion decay constant fπ defined

by

〈0|Aaµ(x)|πb(p)〉 = ipµfπδ
abe−ip·x, (2.29)

where p is the momentum of the pion and Aaµ(x) is the axial-vector current

Aaµ(x) = ψ(x)γµγ
5T aψ(x). (2.30)

The covariant derivative for the field Σ is [103]

iDµΣ =
(
i∂µ + g2T

aW a
µ − g1T

3Bµ
)
Σ =

(
− 4

F
T a∂µπ

a + g2T
aW a

µ − g1T
3Bµ

)
Σ, (2.31)

where the SU(2)L gauge fields W a
µ act only on the left of Σ.

We now expand F 2

4 Tr
[
(DµΣ)†DµΣ

]
much as we expanded (DµΦ)†(DµΦ) in the stan-

dard model (Eqn. 2.17). Applying
{
T a, T b

}
= 1

2
δab and neglecting terms proportional to

[Σ, T 3], we have

∆Lmass = 2(∂µπ
a)2 −F (∂µπ

a)W aµ+
F 2g2

2

8
(W a

µ )2 +
F 2g2

1

8
B2
µ+F (∂µπ

3)Bµ− Fg2g1
4

W 3
µB

µ.

(2.32)

By changing variables to

Aaµ ≡
{
W 1
µ ,W

2
µ ,W

3
µ − g1

g2
Bµ

}
, (2.33)
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we obtain

∆Lmass =
F 2g2

2

8

(
Aaµ −

4

Fg2
∂µπ

a

)(
Aaµ − 4

Fg2
∂µπa

)
, (2.34)

gauge boson mass terms for the fields W̃ a
µ = Aaµ − 4

Fg2
∂µπ

a. Accounting for the effects of

the field redefinition Eqn. 2.33 on the gauge field kinetic terms produces exactly the same

massive W± and Z gauge bosons as in the standard model,

∆Lmass =
F 2g2

2

4
W+
µ W

−µ +
F 2(g2

2 + g2
1)

8
ZµZ

µ ≡ m2
WW

+
µ W

−µ + 1
2
m2
ZZµZ

µ (2.35)

mW =
1

2
g2F mZ =

√
g2
2 + g2

1

2
F =

mW

cos θw
, (2.36)

if we identify F = v = 246 GeV to match Eqn. 2.19.

Before proceeding, we note a few important features of this calculation. First, the pions

were exact Nambu–Goldstone bosons with mπ = 0. When we work on the lattice, we are

not able to directly simulate massless pions, and have to extrapolate to the chiral limit.

Less obviously, the pions possessed the appropriate quantum numbers to be “eaten” by the

gauge bosons because of the electroweak SU(2)L×U(1)Y charges of the quark fields QL, uR

and dR (Table 2.1). If more than two flavors of the massless strongly-interacting fermions

were charged in this way under the electroweak interaction, chiral symmetry breaking would

produce more than the three pions eaten by the W± and Z. Phenomenology requires that

any additional would-be NGBs obtain masses of O(100GeV) through interactions with

other sectors of the theory; we refer to these massive pseudoscalars as pseudo-Nambu–

Goldstone bosons (PNGBs).

Historically, Refs. [104, 105] introduced the idea that a strongly-coupled non-vectorial

gauge theory could spontaneously break a global symmetry and obtain massive gauge

bosons from the resulting NGBs, while Ref. [106] showed the relation mZ cos θw = mW =

g2F/2 for the case of SU(2) × U(1). Refs. [14, 15, 16] added the final ingredient of the

first technicolor models, the idea of a new, asymptotically-free gauge theory that becomes

strongly coupled around the electroweak scale v = 246 GeV. At least one pair of Nf
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massless technifermions charged under this new interaction form an electroweak doublet,

so that chiral symmetry breaking dynamics drive electroweak symmetry breaking.

For the purposes of this dissertation, we will take the technicolor gauge group to be

SU(Nc); with Nc > 2, the chiral symmetry breaking pattern SU(Nf )L × SU(Nf )R →

SU(Nf )V produces N2
f − 1 NGBs. N2

f − 4 of them must become PNGBs with masses

obtained from other interactions, as mentioned above and discussed in more detail below.

Notationally, we will use capital letters (T , U , D) to refer to technifermions, and ND ≥ 1

to refer to the number of electroweak doublets in the technicolor sector. It is simplest to

put every left-handed technifermion into an electroweak doublet, ND = Nf/2, but this is

not necessary so long as anomaly cancellation can be satisfied.

2.2.2 Extended technicolor

Technicolor as discussed above addresses most of the criticisms of the standard model

raised in Section 2.1.3: no elementary scalar fields have been introduced, the theory is

asymptotically free, and there is no hierarchy problem destabilizing the electroweak scale.

However, we have yet to see how fermion masses and mixings can be accommodated in the

technicolor framework.

In order to avoid the reintroduction of elementary scalar fields, the typical technicolor

approach to explaining fermion masses proposes another new gauge interaction under which

both technifermions as well as the quarks and leptons are charged, and are in the same

representations [107, 108]. (For a brief review of some TC models that do reintroduce scalar

fields, bosonic technicolor and supersymmetric technicolor, see Ref. [93] and references

therein.) Exchange of ETC gauge bosons then generates quark and lepton masses as

illustrated in Fig. 2·1. This extended technicolor (ETC) gauge interaction is also assumed

to be asymptotically free, and dynamically broken to SU(Nc)TC×SU(3)C×SU(2)L×U(1)Y

at some very high scale ΛETC ≫ v. This gives the as-yet-unobserved ETC gauge bosons

very large masses METC ∼ gETCΛETC , where gETC is the ETC gauge coupling, which we

expect to be strong gETC ∼ 1 at the scale METC .
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Figure 2·1: Diagram illustrating how extended technicolor theories gener-
ate fermion masses through the exchange of massive ETC gauge bosons.

The situation is in fact very complicated. To naturally account for large hierarchies

between the various quark and lepton masses, ETC models often assume a sequence of

dynamical symmetry breakings at several scales, at least one for each of the three genera-

tions [109]. Due to the lack of direct information on ETC dynamics, the strong interactions

involved, and the stringent experimental information on quark and lepton masses, mixings,

CP violation, etc., no reasonably realistic ETC model exists. This is not surprising, given

that ETC seeks to solve the “flavor problem” responsible for the considerable majority of

the free parameters in the standard model. For our purposes, we can simply integrate out

all the massive ETC gauge bosons, and consider the resulting effective field theory at much

lower scales Λ ≪METC .

After integrating out the massive ETC gauge bosons, we are left with effective four-

fermion interactions involving technifermions (T ), quarks and leptons (q), which we can

collect into the generic operators [93, 96]

g2
ETC

M2
ETC

{
αab(Tγµt

aT )(TγµtbT ) + βab(Tγµt
aT )(qγµtbq) + γab(qγµt

aq)(qγµtbq)
}

(2.37)

where ta label the ETC generators and αab, βab and γab are dimensionless coefficients. The

βab terms in Eqn. 2.37 connect the quarks and leptons to the technifermions, and produce
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generic quark and lepton masses [94]

m ≃ g2
ETC

M2
ETC

〈
TT
〉∣∣
METC

. (2.38)

Here the mass and technifermion condensate
〈
TT
〉

are both renormalized at the scale

METC , since asymptotic freedom implies that the dominant momentum running around

the loop is O(METC) [110, 111, 112]. We omit the “|METC
” label on m since below METC

the technicolor and flavor sectors decouple, and the running of m is given by the QCD

logarithmic evolution, which we neglect here. At scales µ > METC , the quark and lepton

masses fall off more rapidly, at least as fast as 1/µ [94].

The scale-dependence of
〈
TT
〉

is not as clear-cut, since it depends on the anomalous

dimension γm(α(µ)) of the operator TT , which in turn depends on the running coupling

α(µ) = g(µ)2/(4π). In the conventions of näıve dimensional analysis [113, 114], around the

electroweak scale v ≪METC

〈
TT
〉∣∣

ΛTC
≃ 4π(v/

√
ND)3, (2.39)

where ΛTC ≃ 4πv/
√
ND and ND is the number of electroweak doublets.1 The evolution of

〈
TT
〉

from ΛTC to METC is given by its renormalization group equation

〈
TT
〉∣∣
METC

=
〈
TT
〉∣∣

ΛTC
exp




METC∫

ΛTC

dµ

µ
γm(α(µ))


 , (2.40)

where we ignore all interactions except for technicolor. If technicolor behaves like QCD,

then γm(α(µ)) is negligible for µ much above ΛTC , and we can approximate
〈
TT
〉∣∣
METC

≈
〈
TT
〉∣∣

ΛTC
. We will revisit this issue in Section 2.2.4 below.

Similar considerations allow us to obtain masses for the pseudo-Nambu–Goldstone

1Due to the factor of v/
√

ND, models with large ND are known as low-scale technicolor (LSTC).
Refs. [115, 116, 117] use the requirement that the technifermions, quarks and leptons all transform to-
gether in a few ETC representations [108], to suggest that ND is generically large. Experimental searches
for technihadrons usually consider LSTC models [118, 119, 120].
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bosons from the αab terms in Eqn. 2.37, which connect four technifermions,

M2
PNGB ≃ g2

ETC

M2
ETC

〈
TTTT

〉∣∣
METC

. (2.41)

For large Nc, we can approximate
〈
TTTT

〉
≃
〈
TT
〉2

. Finally, the γab terms in Eqn. 2.37,

which involve only quark and lepton fields, represent potentially dangerous flavor-changing

neutral currents (FCNCs). Stringent constraints on FCNC processes provide some of the

most severe phenomenological challenges for extended technicolor.

2.2.3 Challenges

In this section we review some phenomenological challenges facing (extended) technicolor

theories as introduced above. In the next section, we consider possible means to address

at least some of these difficulties in the framework of walking technicolor.

Flavor-changing neutral currents

Notable flavor-changing neutral current processes include µ→ eee, µ→ eγ, KL → µe, and

mixing between the neutral mesons K–K, D–D, B–B and Bs–Bs. Here we qualitatively

discuss the implications of these processes for extended technicolor, omitting detailed cal-

culations. The essential difficulty is the ETC prediction that both FCNC observables as

well as quark, lepton and PNGB masses are proportional to M−2
ETC , since they are all dom-

inated by the operators in Eqn. 2.37. Experimental limits on FCNC processes therefore

imply limits on the quark and lepton masses obtainable from Eqn. 2.38 and the PNGB

masses obtainable from Eqn. 2.41.

For example, if we assume ETC interactions do not contribute to CP violation, then

limits on D–D mixing [121] imply M
(c)
ETC & 1.5 × 103 TeV [122], where (c) indicates that

this constraint is specific to the ETC interactions responsible for the charm quark mass.

The resulting limit on the charm quark mass is mc . 1 MeV, far below its physical value.

(As discussed below Eqn. 2.38, this mass is defined at the scale M
(c)
ETC , but varies only

logarithmically for energy scales down to ΛQCD ∼ 1 GeV where strong QCD effects start
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to become important.) If ETC interactions are CP-violating, as they may well be, then

constraints on the imaginary part of the K–K mass matrix lead to the limits M
(s)
ETC & 104

TeV and ms . 0.1 MeV. If the theory possesses any PNGBs, they would receive masses of

at most O(GeV), far smaller than experimental bounds.

These limits assume that the ETC interactions introduce unsuppressed tree-level FC-

NCs. At least some ETC contributions to FCNC processes must be present in order for

extended technicolor to produce the CKM mixing matrix. While approximate flavor sym-

metries could suppress these FCNCs, in a way similar to the Glashow–Iliopoulos–Maiani

mechanism [123], ETC models attempting to incorporate this feature are (like most ETC

models) extremely complicated and little developed [124, 125, 93, 126, 127].

FCNCs are formally a problem of extended technicolor and flavor physics, as opposed

to technicolor as a theory of electroweak symmetry breaking. However, because ETC is

the natural means to communicate EWSB to the quarks and leptons in the TC framework,

FCNCs can be considered a reasonable means of constraining the entire approach.

Precision electroweak observables

Precision electroweak observables are quantities that we can use to search for the effects of

physics beyond the standard model, and thereby constrain BSM theories. This approach

has received much attention over the past couple of decades, due to the continuing lack

of direct evidence that would reveal the physics responsible for electroweak symmetry

breaking. The Higgs boson of the standard model remains undiscovered, as do the new

particles predicted by supersymmetric theories, technicolor, and other models of BSM

physics. Technicolor models, for example, predict a number of so-called technihadrons

(bound states of technifermions), the lightest of which include analogs of the ρ, ω and

a1 mesons of QCD. As discussed in Section 2.2.1 above, there may also be a number of

massive pseudo-Nambu–Goldstone bosons.

While we expect experiments at the CERN Large Hadron Collider to find evidence

for such particles if they do exist [128, 129, 130] (and experiments at the Fermilab Teva-
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tron have made progress constraining their possible masses [13, 118, 119, 120]), precision

electroweak observables make it possible to constrain BSM theories with already-existing

data. These data encompass a variety of electroweak processes (from Z boson decays to

neutrino scattering to atomic parity violation [13]), and to make possible simple compar-

isons between theories and experiment, are typically represented by a small number of

parameters.

The most commonly used parameterization of precision electroweak observables as S,

T and U was introduced by Peskin and Takeuchi [17, 131, 18], building on the formal-

ism of Refs. [132, 133]. Other equivalent formulations were presented around the same

time [134, 135, 136, 137], and such parameterizations can be related to the electroweak

chiral lagrangian introduced much earlier [138, 139, 140, 103]. In the remainder of this

section we introduce the Peskin–Takeuchi parameterization, and qualitatively review its

implications for technicolor. We will have much more to say about the S parameter in

Section 4.2 below.

The S, T and U parameters represent the contributions of BSM physics to the vacuum

polarization functions shown in Fig. 2·2. In this figure, we imagine that each of the gauge

boson propagators appears as an internal line with momentum Q in diagrams describing

some scattering process such as e+e− → e+e−. (In anticipation of working on the lattice,

we consider euclidean Q2 = −q2 > 0.) Because these processes only modify the gauge boson

propagators, they are sometimes called “oblique” corrections as opposed to the “direct”

(vertex and box) corrections that involve the external fermions not shown in Fig. 2·2.

Fig. 2·2 shows how the diagrams are related to the transverse electroweak vacuum

polarization functions Π(Q2), which we can define in terms of current correlators as

Πµν
ij (Q) ≡

∫
d4xeiQ·x

〈
Jµi (x)Jνj (0)

〉
= δµνΠij(Q

2) − QµQν

Q2
[Πij(Q

2) + ΠL
ij(Q

2)], (2.42)

where Πij(Q
2) and ΠL

ij(Q
2) are the transverse and longitudinal components of Πµν

ij (Q),
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Figure 2·2: Electroweak vacuum polarization amplitudes (oblique correc-
tions), omitting terms that involve higher powers of the small Πs.

respectively.2 In terms of these functions,

S = 16π
d

dQ2

[
Π

(new)
3e (Q2) − Π

(new)
33 (Q2)

]
Q2=0

= 4π
d

dQ2

[
Π

(new)
V V (Q2) − Π

(new)
AA (Q2)

]
Q2=0

(2.43)

T =
4π

sin2 θw cos2 θwm2
Z

[
Π

(new)
11 (0) − Π

(new)
33 (0)

]
(2.44)

U = π
d

dQ2

[
Π

(new)
11 (Q2) − Π

(new)
33 (Q2)

]
Q2=0

, (2.45)

where in the first line we have introduced the vector and axial correlators via

Π33 = (ΠV V + ΠAA) /4 Π3e = ΠV V /2. (2.46)

Qualitatively, T represents violations of the “custodial” SU(2)V isospin symmetry that

guarantees mW = mZ cos θw, while S can be thought of as an isospin-symmetric measure

of the size of the sector responsible for electroweak symmetry breaking. The S parameter

places the tightest constraints on technicolor theories. Most models predict U to be very

small, and in effective field theories based on the standard model it corresponds to a

2These conventions follow Ref. [18]; some other authors (including Refs. [141, 142]) define the transverse
component of Πµν

ij (Q) as Q2Π(1)(Q2), and the longitudinal component as Q2Π(0)(Q2).
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dimension-eight operator, while S and T correspond to the dimension-six operators [143,

144]

Sg2g1
8πv2

Φ†T aΦW a
µνB

µν − Tg2g1 cos θw sin θw
2πv2

|Φ†DµΦ|2 (2.47)

where Φ is the scalar doublet introduced in Eqn. 2.12 and v is its vacuum expectation

value. Alternately, in chiral perturbation theory we have

S

16π
Tr
[
T aW a

µνΣB
µνT 3Σ†

]
. (2.48)

As an aside, we mention that there are two other dimension-six operators we do not discuss

here, which correspond to parameters called Y and W [145].

The superscripts (new) in Eqns. 2.43 through 2.45 are meant to remind us that we are

interested only in the contributions from new physics beyond the standard model. Because

loops of Higgs bosons can appear in the diagrams of Fig. 2·2, we subtract this contribution

to the parameters so that S = 0 and T = 0 in the standard model. Performing this

subtraction requires specifying some “reference” value for the Higgs boson mass, which we

take to be M
(ref)
H = 1 TeV, a typical technihadronic scale. Switching from one M

(ref)
H to

another changes ∆S = log
(
M

(1)
H /M

(2)
H

)
/(6π). Experimentally, forM

(ref)
H = 300 GeV [13],

S = −0.07(10) T = 0.12(11) U = 0.07(10), (2.49)

so we conclude S ≈ −0.15(10) for M
(ref)
H = 1 TeV.

Of course, the point of parameterizing precision electroweak measurements in this way is

to compare these experimental results with theoretical predictions. For strongly-interacting

theories, however, the diagrams in Fig. 2·2 require non-perturbative treatment to obtain

any quantitatively reliable result. Peskin and Takeuchi attempted to circumvent this diffi-

culty by assuming that the dynamics of the strongly-interacting theories closely resembled

those of QCD [18]. By taking experimental information on QCD and scaling it up to the
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electroweak scale, they found (as always, for M
(ref)
H = 1 TeV)

S ≈ 0.3
Nf

2

Nc

3
, (2.50)

in considerable disagreement with the experimental value S ≈ −0.15(10).

Non-perturbative calculation of the S parameter using lattice gauge theory is the sub-

ject of Section 4.2 in this dissertation, so we will not discuss it here. While lattice gauge

theory (the subject of Section 3.1) is the premier method for non-perturbative calculations,

a very active field of research focuses on developing and applying relations between certain

strongly- and weakly-interacting theories. This approach encompasses gauge–gravity (or

AdS/CFT) dualities [146, 147, 148, 149], and electric–magnetic dualities [150, 151], and

ideally might permit determination of quantities such as S in strongly-interacting theories

through controlled perturbative calculations. While current results from this program are

interesting, they remain qualitative and inconclusive [152, 153, 154, 155, 156].

Top quark mass

The difficulty that the large top quark mass mt = 172 GeV poses to (extended) technicolor

goes beyond the issue of flavor-changing neutral currents discussed above. The top quark

mass is so large that the associated ETC scale (M
(t)
ETC ∼ 3 TeV [157]) is comparable to

the electroweak scale itself. This calls into question our entire approach of separating

the technicolor dynamics responsible for electroweak symmetry breaking from the ETC

dynamics responsible for flavor physics.

In addition, the large splitting between the top and bottom quark masses requires

that the relevant ETC interactions strongly break isospin symmetry, which could generate

excessively large contribution to the T parameter discussed above [158, 159].

The top quark mass is arguably the single greatest challenge facing the (extended)

technicolor framework; below we will see that typical walking technicolor theories cannot

resolve this issue, and in Section 2.3 we will briefly mention some of the extensions that

aim to address it.
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2.2.4 Walking technicolor

Let us consider the first challenge discussed in the previous section, the tension between

quark and lepton masses on the one hand, and flavor changing neutral currents on the

other. Considering the relevant terms in Eqn. 2.37, we see that unlike the FCNC terms,

the masses in Eqn. 2.38 include a factor of
〈
TT
〉∣∣
METC

. In all of the discussions above,

we assumed that
〈
TT
〉∣∣
METC

≃
〈
TT
〉∣∣

ΛTC
≃ 4π(v/

√
ND)3. This is appropriate only for

precociously asymptotically free theories such as QCD, where the running coupling and

the anomalous dimension γm(α(µ)) appearing in the
〈
TT
〉

renormalization group equation

(Eqn. 2.40) drop precipitously at energies above the low-energy scale ΛIR.

Thus we see a straightforward way in which achievable quark and lepton masses could

be increased without affecting FCNCs: simply suppose that γm(α(µ)) is large throughout

a wide range of scales between ΛTC and METC , which implies that α(µ) itself is large and

slowly-varying. Models with a slowly-running coupling of this sort are known as walking

theories, and were introduced by Refs. [160, 161, 162, 163, 164, 165]. In this section we

discuss the consequences of walking, focusing on the issues discussed in Section 2.2.3 above.

In Section 2.3 below, we consider a more systematic framework for walking technicolor,

and non-QCD dynamics more generally.

First and most obviously, walking affects the
〈
TT
〉

renormalization group equation,

Eqn. 2.40. If for simplicity we suppose that the anomalous dimension is approximately

constant (but non-zero), γm(α(µ)) ≃ γm in the range from ΛTC up to METC , we have

〈
TT
〉∣∣
METC

=
〈
TT
〉∣∣

ΛTC
exp




METC∫

ΛTC

dµ

µ
γm


 ≃

〈
TT
〉∣∣

ΛTC

(
METC

ΛTC

)γm

. (2.51)

The approximate gap equation for the technifermion propagator (discussed further around

Eqn. 2.55 below) requires γm ≤ 1. Quark and lepton masses can therefore be enhanced

by a potentially large factor, given strange- and charm-quark FCNC constraints implying

M
(s)
ETC , M

(c)
ETC ∼ 103–104ΛTC . However, the top quark mass is so large that even for

γm ≈ 1 the associated ETC scale can only be raised from M
(t)
ETC ∼ 3 TeV to M

(t)
ETC ∼ 10
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TeV [157].

Similarly, walking enhances the PNGB masses from Eqn. 2.41 above, M2
PNGB ∝

〈
TTTT

〉∣∣
METC

. This enhancement may be so large that these pseudoscalars might not

even be well-described as pseudo-Nambu–Goldstone bosons [166]. More significantly, this

enhancement of the PNGB mass may kinematically forbid decays of the vector techni-

hadrons ρT , ωT , aT into two or three pseudoscalars. This has important consequences

for collider phenomenology, implying that the technivectors may be very narrow reso-

nances [115, 167, 168, 169, 116, 117].

Finally, qualitative arguments suggest that the S parameter may be reduced in walking

theories compared to the QCD-based analysis discussed in Section 2.2.3 above [170, 171,

172]. At a minimum, walking invalidates that analysis, requiring the value of S to be

computed non-perturbatively. More speculatively, we can note from Eqn. 2.43 that S

depends on the difference between vector and axial vacuum polarization functions. The

connection between walking behavior and the conformal window suggests that the spectra

of walking theories may exhibit parity doubling [173], i.e., reduced splitting between vector

and axial spectral functions, which would decrease S. We now consider more carefully this

connection between walking behavior and the conformal window.

2.3 Conformal windows and non-QCD dynamics

In the previous section, we saw that by introducing a large, slowly-running coupling

α(µ) = g(µ)2/(4π), we could address some of the phenomenological challenges facing tech-

nicolor theories. In this section we argue that such walking behavior is not necessarily just

wishful thinking, but can be expected from general properties of SU(Nc) gauge theories.

In particular, we introduce the concept of the conformal window N
(c)
f ≤ Nf < N

(af)
f for a

gauge theory with Nf fermions transforming in representation R, and argue that walking

behavior may be realized when Nf is slightly below the critical value N
(c)
f that defines the

lower edge of the conformal window.

We begin by considering the perturbative β function of SU(Nc) Yang–Mills theory with
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Nf massless fermions in representation R [50, 51],

β(α) =
∂α

∂(log µ2)
= β0α

2 + β1α
3 + · · · (2.52)

β0 = − 1

4π

(
11

3
Nc −

4

3
T (R)Nf

)
(2.53)

β1 = − 1

(4π)2

[
34

3
Nc − T (R)Nf

(
20

3
Nc + 4C2(R)

)]
, (2.54)

where T (R) is the trace normalization and C2(R) the quadratic Casimir. For the funda-

mental representation T (R) = 1/2 and C2(R) = (N2
c − 1)/(2Nc), and we have applied

C2(Adj) = Nc for the adjoint representation. While β0 and β1 are universal, all higher-

order terms depend on the choice of renormalization scheme.

In order to maintain asymptotic freedom, we require β0 < 0, which implies Nf <

11Nc/(4T (R)) ≡ N
(af)
f . (While some of the first walking technicolor proposals imagined

models with nontrivial ultraviolet fixed points [160, 163], this scenario is more speculative,

and certain conditions must be satisfied in order to recover results that follow directly from

asymptotic freedom, such as Eqns. 2.38 and 2.41 above, or the Weinberg sum rules discussed

in Section 4.2.1 [18].) For Nc = 3 with fermions in the fundamental representation, this is

the familiar N
(af)
f = 16.5.

Asymptotic freedom allows us to consider the evolution of the coupling down from some

high energy scale where α is small and the perturbative expansion reliable. For precociously

asymptotically free theories such as QCD, with Nf ≪ N
(af)
f , the coupling stays small until

rising precipitously around some low energy scale ΛIR,3 as illustrated schematically in

Fig. 2·3. The β function, as a function of α, is always negative and quickly grows large in

magnitude as α increases, as shown in Fig. 2·4.

If instead of Nf ≪ N
(af)
f we consider the other extreme Nf . N

(af)
f , then the two-

loop β function crosses zero while the coupling is small enough to trust the perturbative

expansion in Eqn. 2.52 [19, 20]. Because β0 < 0, this indicates an infrared-attractive

3We introduced the näıve dimensional analysis convention ΛIR ≃ 4πF in Section 2.2.2 above. Another
approach takes ΛIR to be the dimensional transmutation scale at which the running coupling in a given
perturbative scheme diverges [174]. We have in mind ΛQCD ∼ 0.1–1 GeV for QCD, ΛTC ∼ 0.1–1 TeV for
technicolor.
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Figure 2·3: Cartoon of the coupling α as a function of energy scale µ for
a precociously asymptotically free theory such as QCD.

fixed point (IRFP), illustrated in Fig. 2·4. The theory is conformal in the infrared: chiral

symmetry is not broken, all particles are massless, and the coupling flows to a fixed value

αIR at low energies, as shown in Fig. 2·5. As Nf decreases away from N
(af)
f , the IRFP

moves to stronger coupling and the perturbative analysis breaks down. Although the value

of the coupling associated with the IRFP is scheme-dependent, the existence of an IRFP

is scheme-independent, as is the value of the mass anomalous dimension γm at the fixed

point.

For small enough Nf less than some critical value N
(c)
f , spontaneous chiral symmetry

breaking occurs before the renormalization group flow reaches an IRFP. If we call the

critical coupling associated with chiral symmetry breaking αχSB , then for Nf slightly

below N
(c)
f we expect αχSB slightly below αIR, that is 0 < (αIR − αχSB)/αIR ≪ 1. This

theory exhibits chiral symmetry breaking as required by technicolor, and we require that it

is “close enough” to the IRFP for the fixed point to approximately govern the dynamics of

the theory from the scale of chiral symmetry breaking up to some much higher scale where

either asymptotic freedom sets in, or new (e.g., extended technicolor) physics becomes

relevant. Over this range of scales µ, the mass anomalous dimension γm(µ) approximately

equals the scheme-independent fixed-point value it would have taken had χSB not occurred
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Figure 2·4: Cartoon of the β function as a function of the coupling α for a
QCD-like theory (lower line) and an IR-conformal theory (upper line) with
IR fixed point where the upper line crosses β = 0 at αIR.

Figure 2·5: Cartoon of the coupling α as a function of energy scale µ for an
IR-conformal theory. The IR fixed point at αIR is indicated with a dotted
horizontal line.



32

and affected the dynamics. That is, we have located walking technicolor slightly below the

lower edge of the conformal window. We illustrate this scenario in Figs. 2·6 (for the

coupling) and 2·7 (for the β function).

Figure 2·6: Cartoon of the coupling α as a function of energy scale µ for
a walking theory in which chiral symmetry breaking occurs at a coupling
slightly below the would-be IR fixed point at αIR (dotted horizontal line).

This approach to describing walking dynamics as approximately conformal was em-

phasized by Refs. [175, 176]. It can be formalized by considering the gap equation for the

fermion propagator [177, 164, 112], an approximation that relates the anomalous dimension

to the running coupling by

γm(µ) = 1 −
√

1 − 3C2(R)

π
α(µ). (2.55)

This relation is assumed to break down when chiral symmetry breaking occurs, which

identifies αχSB = π
3C2(R) and, more importantly, γ(µ) ≈ 1 over the large range of scales µ

for which α(µ) is close to (but less than) αχSB. This result realizes the dream of Eqn. 2.51,

in that quark and lepton masses can be enhanced by a potentially large factor METC/ΛTC

without affecting flavor-changing neutral currents.

The issue now becomes locating the lower edge of the conformal window, N
(c)
f . We will

discuss results of lattice searches for N
(c)
f in Section 4.1.1 below, but there are also some
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Figure 2·7: Cartoon of the β function as a function of the coupling α for
a walking theory in which chiral symmetry breaking occurs at a coupling
αχSB slightly below the would-be IR fixed point at αIR.

notable analytical estimates. For instance, Ref. [176] combines the critical coupling αχSB

from the gap equation with the two-loop perturbative β function to find

N
(c)
f =

Nc

T (R)

[
66C2(R) + 17Nc

30C2(R) + 10Nc

]
, (2.56)

which becomes N
(c)
f ≈ 7.9 (11.9) for SU(2) (SU(3)) gauge theory with fermions in the

fundamental representation. However, the result depends fairly strongly on the scheme

used for the β function; the SU(3) prediction drops to N
(c)
f ≈ 9.9 in three-loop MS

perturbation theory [178]. An alternate approach conjectures that the Nambu–Goldstone

bosons of the theory in the infrared should have fewer degrees of freedom than the gluons

and fermions of the theory in the ultraviolet [179]. This implies N
(c)
f ≈ 4Nc for Nc ≥ 3,

and N
(c)
f ≈ 4 for Nc = 2 (because of the pseudo-reality of SU(2) representations).

Finally, we note that the gap equation requires γm ≤ 1. As we saw in Section 2.2.4,

γm ≤ 1 does not solve the problem posed by the large top quark mass. However, the gap

equation is approximate, and γm > 1 is not excluded by this analysis (although unitarity

requires γm < 2 [180]). Early models with γm > 1 supposed that the ETC four-fermion

interactions were strong enough at the electroweak scale to play a role in the technifermions’
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chiral symmetry breaking [181, 182, 183]; this approach resembles the Nambu–Jona-Lasinio

model [184, 185] and tends to require significant fine-tuning.

A more recent proposal for obtaining γm > 1 is to consider a theory that would be

IR-conformal in isolation (i.e., it is within the conformal window), but is driven to chiral

symmetry breaking by other interactions or relevant operators [186, 157, 187, 188]. Recent

analytical studies have begun to shed light on the range of behavior that is possible in

such theories [189, 190, 191, 192, 193]. There are also approaches to explaining the top

quark mass that do not use γm > 1, such as topcolor-assisted technicolor [194] (which

proposes new strong gauge interactions specifically for the third generation), and monopole

condensation [195].

It is possible that ongoing or future lattice studies may find evidence for theories with

γm > 1. We now turn to discuss lattice gauge theory and its application to strongly-

interacting theories.



Chapter 3

Lattice gauge theory

Lattice gauge theory (LGT) is a non-perturbative regularization of quantum gauge field

theories, in which we discretize euclidean spacetime into a regular grid of sites connected

by links. In this document we focus on hypercubic lattices of size L3×2L. In the combined

limit that the lattice becomes infinitely large (L→ ∞) while the lattice spacing a between

sites becomes infinitesimally small (a → 0), we must recover the original gauge theory

defined in the continuum.

In addition to regularizing the theory, the fact that the lattice formulation involves a

finite number of degrees of freedom permits numerical calculation of observables from the

defining path integral. Such numerical computations will be the focus of our discussion.

Although these calculations are non-perturbative, they are carried out through stochastic

importance sampling, which introduces statistical errors. Additional systematic effects

result from considering a discretized theory in a finite volume.

In this section we review the formulation and application of lattice gauge theory, consid-

ering lattice QCD (SU(3) gauge theory with Nf = 2 light fermions) as a relatively familiar

example. After summarizing basic lattice actions and observables, we discuss Monte Carlo

lattice simulation procedures, and consider the corresponding statistical and systematic

effects. Finally, we focus on a systematic effect that is particularly important to explor-

ing technicolor models on the lattice, the explicit chiral symmetry breaking that arises

both from the need to perform simulations at non-zero fermion mass as well as from many

common lattice actions themselves. We review domain wall fermions, a formulation that

decouples the continuum and chiral limits by adding a fifth dimension to the lattice.

Useful introductions to and reviews of lattice gauge theory include [196, 197, 198, 199,

35
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21, 22, 200]; in addition, several chapters from a forthcoming volume [201] are already

available [202, 102, 44, 203, 204, 205, 206, 207].

3.1 Formulation

3.1.1 Euclidean path integral

We begin our discussion of the formulation of lattice gauge theory by considering the

euclidean path integral for a generic gauge theory, assuming familiarity with the stan-

dard Wick rotation procedure for relating a euclidean theory to the physical theory in

Minkowski spacetime. Because we are working in euclidean spacetime, Q2 = −q2 > 0 and

the spacetime index µ = 1, . . . , 4, where µ = 4 corresponds to the Wick-rotated temporal

component. By using periodic boundary conditions, for most of these considerations we

can treat the lattice as though it were infinitely large, with fixed lattice spacing a > 0. For

convenience, we will often use “lattice units” which take a = 1.

Under local gauge transformations Ωx ∈ SU(3), the fermions transform as

ψx → Ωxψx ψx → ψxΩ
†
x. (3.1)

The gauge-covariant derivative ψx+abµDµψx now connects fermion fields at lattice sites

separated by a distance a > 0. In order to maintain exact gauge invariance, we associate

the gauge fields with the links between neighboring sites by defining

Ux,µ = exp [igaAµ(x+ aµ̂/2)] , (3.2)

where Aµ(x) = Aaµ(x)T
a is the continuum gauge field. This notation is common, but

potentially confusing, because

Ux,µ → ΩxUx,µΩx+abµ, (3.3)

so we consider Ux,µ the parallel transporter along the link from site (x+aµ̂) to site x. The

oppositely-directed variable is U †
x,µ, and since Ux,µ ∈ SU(3), U †

x,µUx,µ = Ux,µU
†
x,µ = 1.
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Now that we have defined our variables, we can write down the partition function

Z = Tr [exp(−S)] =

∫
DUDΨDΨ exp

[
−S(U,Ψ,Ψ)

]
, (3.4)

where S is the lattice action and the integration is over all configurations of the gauge and

fermion fields on the lattice, for example
∫
DΨ ≡

∫ ∏
x dψx. For

∫
DU ≡

∫ ∏
x,µ dUx,µ we

use the gauge-invariant Haar measure, so that no gauge-fixing is required for the functional

integral to be well defined. If we take the temporal extent of the lattice to be finite, then

we can write

Z = Tr [exp(−aNtS)] = Tr
[
T̂Nt

]
, (3.5)

where T̂ = exp(−aS) is the transfer matrix operator. Acting on a state in the Hilbert

space, T̂ evolves the state through a euclidean time interval a. T̂ must be positive (i.e.,

have only positive eigenvalues) in order for the theory to describe a unitary Hilbert space

with a real hamiltonian [208].

Similarly, the path integral defining the expectation value of an observable O is

〈O〉 =
1

Z
Tr [O exp(−aNtS)]

=
1

Z

∫
DUDΨDΨO(U,Ψ,Ψ) exp

[
−Sg(U) − ΨD(U)Ψ

]
.

(3.6)

We break up the lattice action S into two pieces, Sg for the gauge fields and Sf = ΨD(U)Ψ

for the fermions, where D(U) is a lattice Dirac operator. In the next two sections, we will

discuss each of Sg and Sf in turn, introducing simple lattice actions that possess a positive

transfer matrix.

3.1.2 Lattice gauge action

The simplest gauge action was introduced by Wilson [209], and is most conveniently written

in terms of the plaquette variables

Px,µν = Tr
[
Ux,µUx+bµ,νU

†
x+bν,µU

†
x,ν

]
, (3.7)
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where µ 6= ν and the trace is over color and spin indices that we will not write explicitly. The

plaquette corresponds to the unit lattice square bounded by the four links in the trace, with

normal vector defined by the direction of the links in the product. P †
x,µν is the oppositely-

directed plaquette. Considering for a moment the abelian case Fµν = ∂µAν − ∂νAµ, and

reintroducing the lattice spacing a,

Ux,µ = exp [igaAµ(x+ aµ̂/2)]

⇒ Px,µν = eiga exp [Aµ(x+ a
2
µ̂) +Aν(x+ aµ̂+ a

2
ν̂) −Aµ(x+ aν̂ + a

2
µ̂) −Aν(x+ a

2
ν̂)]

≃ exp
[
iga2Fµν(x+ aµ̂/2 + aν̂/2)

]
, (3.8)

where the final equality becomes exact in the continuum limit a → 0. Therefore, to

reproduce a continuum gauge action of the form FAµνF
Aµν (returning to SU(3)), we could

imagine a lattice action including terms like

2 − eigFµν(x) − e−igFµν(x) ≃ 2 − Px,µν − P †
x,µν = 2 − 2RePx,µν . (3.9)

We need to sum over all x and µ, ν with µ 6= ν in order to ensure that the action is

gauge-invariant. This line of reasoning gives us the plaquette gauge action

Splaq = β
∑

x

∑

µ,ν;µ<ν

(
1 − 1

Nc
Px,µν

)
, (3.10)

where β ≡ 2Nc/g
2. As a→ 0, Splaq →

∫
d4x1

4FµνF
µν + O(a2).

Given the simple form of the action when expressed in terms of the plaquette variables,

it is natural to consider generalizations of Eqn. 3.7 involving additional links in the trace.

Like the plaquette, the sum of such variables over lattice sites and orientations would be

gauge-invariant. The smallest closed loops after the plaquette involve six links, and so

correspond to dimension-six operators that introduce O(a2) lattice artifacts in quantities

calculated with the plaquette gauge action. However, by explicitly adding one or more of

these operators to the lattice action itself, we can hope to tune the coefficients of terms in

the action so that these artifacts are reduced in some observables.
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Of the three six-link loops, the simplest is the 2×1 rectangle

Rx,µν = Tr
[
Ux,µUx+bµ,µUx+bµ+bν,νU

†
x+bµ+bν,µU

†
x+bν,µU

†
x,ν

]
. (3.11)

The other two (the “chair” and “parallelogram” loops) involve links in three dimensions,

and we will not consider them. Adding a rectangle term to the plaquette gauge action, we

have the generic improved gauge action

Simp = β
∑

x

{
c0

∑

µ,ν;µ<ν

(
1 − 1

Nc
Px,µν

)
+ c1

∑

µ,ν

(
1 − 1

Nc
Rx,µν

)}
(3.12)

with the normalization c0 = 1 − 8c1. Noteworthy choices of the rectangle coefficient c1

include:

c1 = − 1

12
(tree-level Lüscher–Weisz [210])

c1 = −0.331 (Iwasaki [211, 212])

c1 = −1.4088 (DBW2: doubly-blocked from Wilson in two-coupling space [213, 214])

The tree-level Lüscher–Weisz action is based on a one-loop perturbative calculation follow-

ing the Symanzik improvement program [215, 216] (so is sometimes known as the tree-level

Symanzik-improved action), while the Iwasaki and DBW2 actions are inspired by the

renormalization group.

3.1.3 Lattice fermions and doubling

Wilson [209] also introduced the simplest phenomenologically viable lattice action for

fermions. Let us start from the free theory, Sf =
∫
d4xψ(x)γµ∂µψ(x) +mψ(x)ψ(x), and

discretize the derivative as the lattice central difference

∂µψ(x) → ∆µψx =
ψx+bµ − ψx−bµ

2
(3.13)
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(recall a = 1 in lattice units). We need to use the link variables Ux,µ to transport the ψ

field between neighboring lattice sites, which introduces the gauge fields into the action,

Sf =
1

2

∑

x,µ

ψxγ
µ
[
Ux,µψx+bµ − U †

x−bµψx−bµ

]
+m

∑

x

ψxψx ≡ ψDnaive(m)ψ. (3.14)

By performing a Fourier transform, it is straightforward to find the free momentum-space

propagator

D̃−1
naive(p,m) = (iγµ sin(pµ) +m)−1 =

−iγµ sin(pµ) +m∑
µ sin2(pµ) +m2

, (3.15)

where pµ = 2πixµ/Nµ and Nµ is the length of the lattice in direction µ. For small pµ ≈

(0, 0, 0, 0), we can approximate γµ sin(pµ) ≈ /p and recover the usual fermion propagator

in the continuum. However, the same thing (up to negative signs) happens at fifteen

other locations in the Brillouin zone, pµ ≈ (0, 0, 0, π), (0, 0, π, 0), . . . , (π, π, π, π). The

näıve lattice fermion action we have written down therefore describes sixteen degenerate

fermions, not just one.

This is known as the “doubling problem”, and Wilson addressed it by adding another

term to Eqn. 3.14, the “Wilson term” rψx∆
2
µψx. This term involves the central difference

discretization of the second-derivative,

∆2
µψx =

ψx+bµ − 2ψx + ψx−bµ

2
. (3.16)

The Wilson term is a dimension-five operator, so it does not interfere with our recovery

of the correct continuum physics as a → 0. Here r is a free dimensionless parameter, and

setting r = 1 when we insert this term into Eqn. 3.14 produces a pleasantly compact result,

Sf = −1

2

∑

x,µ

ψx

[
(1 − γµ)Ux,µψx+bµ + (1 + γµ)U †

x−bµψx−bµ

]
+ (4 +m)

∑

x

ψxψx

≡ ψDW (m)ψ.

(3.17)

Although the Wilson Dirac operator DW is not hermitian, it satisfies “γ5-hermiticity”,



41

which is the statement that HW ≡ γ5DW is a hermitian operator, or

D†
W = γ5DW γ5. (3.18)

Now the free momentum-space propagator becomes

D̃−1
W (p,m) = [iγµ sin(pµ) +m+

∑

µ

(1 − cos(pµ))]
−1

=
−iγµ sin(pµ) +m+

∑
µ(1 − cos(pµ))∑

µ sin2(pµ) + [m+
∑

µ(1 − cos(pµ))]2
,

(3.19)

so that all the doubler modes with any component pµ ≈ π obtain large masses ∝ a−1.

Unfortunately, the Wilson term explicitly introduces ψψ = ψLψR + ψRψL into the

action, thereby breaking the chiral symmetry of the massless lattice theory. (Again, this

chiral symmetry breaking vanishes in the continuum limit.) This consequence was general-

ized into a famous theorem by Nielsen and Ninomiya [40, 41, 42] (building on earlier work

by Refs. [217, 218, 219]), which states that in an even number of euclidean dimensions, the

fermion operator D̃(p) cannot simultaneously satisfy the four conditions [44]

1. D̃(p) is a periodic, analytic function of p;

2. D̃(p) ∝ γµpµ for |pµ| ≪ 1;

3. D̃(p) is invertible everywhere except pµ = 0;

4. γ5D̃(p) + D̃(p)γ5 = 0.

Here the second and third conditions forbid doublers, while the fourth condition is the

statement of chiral symmetry. The first condition guarantees that the operator is local in

coordinate space.

A tradeoff seems to be necessary between doubling and chiral symmetry. The näıve

fermion action possesses both, while the Wilson fermion action possesses neither. In be-

tween, staggered fermions [220, 221, 222] retain a portion of the full chiral symmetry, and

at the same time reduce doubling from sixteen-fold to four-fold by spreading out the four
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spinor components of the fermionic field across the 24 hypercube. The resulting lattice

action is very computationally efficient, and improved forms of it are still widely used.

However, there are undoubled chiral lattice fermion actions that evade the Nielsen–

Ninomiya theorem, one of which we will consider in Section 3.3 below. In particular,

Ginsparg and Wilson showed that a remnant of chiral symmetry remains on the lattice [43],

γ5D(0) +D(0)γ5 = 2D(0)γ5D(0) (3.20)

where D(m = 0) is the massless lattice Dirac operator. The Ginsparg–Wilson relation can

be considered a redefinition of what is meant by a chiral rotation [223],

γ5D(0) +D(0)γ̂5 = 0, (3.21)

where γ̂5 = γ5(1 − 2D(0)). Unfortunately, the lattice Dirac operators that exactly realize

this modified chiral symmetry at non-zero lattice spacing are extremely expensive to use

in the numerical simulations we discuss below. The outstanding example is the overlap

operator [224, 225, 226, 227, 228]

Dov(m) =
(
M5 +

m

2

)
+
(
M5 −

m

2

)
γ5sign [γ5DW (−M5)] (3.22)

where 0 < M5 < 2 is a large mass parameter and numerically evaluating the operator sign

function

sign [X] =
X√
X†X

(3.23)

is the cause of its computational expense.

3.2 Simulation procedures

Now that we have presented the basic formulation of lattice gauge theory, let us consider

how we carry out numerical lattice simulations. In practice, we divide the work into

two pieces. First, we apply importance sampling Monte Carlo techniques to generate an

ensemble of gauge field configurations from the path integral for our lattice action. Then
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we analyze these stored gauge configurations to calculate observables of interest.

This division of the work into configuration generation on the one hand, and configu-

ration analysis on the other, is motivated by the different computational requirements of

each piece of the simulation. Configuration generation through the hybrid Monte Carlo

algorithm we discuss below involves running long molecular dynamics evolutions in order

to generate independent (uncorrelated) samples of the gauge fields. Because this evolution

must run for many molecular dynamics steps, it is most efficient to perform the calcula-

tion on the largest available supercomputing resources, to minimize the time to solution.

Once gauge configurations have been generated, however, they can trivially be analyzed in

parallel. Therefore it is most efficient to perform the analysis of each configuration on the

smallest computing resource that can handle the calculation.

In the next two sections we discuss each of these steps in turn, and then consider the

systematic effects inherent in lattice simulations.

3.2.1 Configuration generation

To use importance sampling Monte Carlo to simulate the euclidean theory described by

Eqn. 3.6, we must be able to interpret the factor e−S as a probability distribution. This

requires that the action be positive. For the gauge action Sg ∼ FµνF
µν , this condition

is easy to satisfy. The fermion action Sf = ΨDΨ is quadratic in the anti-commuting

fermionic fields, so this piece of the action can be reformulated in terms of more tractable

bosonic “pseudofermion” fields Φ,

∫
DΨDΨ exp

[
−ΨDΨ

]
∝ det[D] ∝

∫
DΦ†DΦ exp

[
−Φ†D−1Φ

]
(3.24)

(any constant factor from the gaussian integral on the left will be re-absorbed into the

gaussian integral on the right). In order to ensure positivity, we restrict ourselves to even

numbers of fermions Nf . In this case, γ5-hermiticity implies det[D]2 = det[D†D], and our

measure becomes

exp
[
−Sg − Φ†(D†D)−1Φ

]
,
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which is positive definite (because we assume a non-zero fermion mass m > 0), and can

therefore be treated as a probability distribution. Increasing Nf only requires adding more

pairs of pseudofermion fields to this expression. (See Refs. [229, 230] for an example of a

more complicated algorithm that is not restricted to even Nf .)

The complication introduced by the pseudofermion fields is the need to invert D†D,

typically a large, sparse matrix. These inversions (calculated iteratively using an algo-

rithm such as conjugate gradient [231]) form the bulk of the computational expense of

lattice gauge theory simulations. In addition, because the inverse (or equivalently the

determinant) must be recomputed globally after any change in the gauge fields, local up-

dating schemes are inefficient. Instead, we want to use some global updating scheme that

generates a new configuration by changing all the link variables simultaneously. In the

remainder of this section, we briefly summarize the hybrid Monte Carlo (HMC) algo-

rithm [232, 233], some form of which is currently used in nearly all lattice gauge theory

simulations [234, 203]).

We divide the Markov step of the HMC algorithm into three pieces. First we generate

gaussian random values for the pseudofermion fields Φ, as well as a real auxiliary field πµ

that we add to the action via

1 =

∫
Dπe−π2/2. (3.25)

This πµ plays the role of a fictitious momentum that is conjugate to the gauge field,

producing an effective hamiltonian Heff = 1
2π

2 + Sg + Φ†(D†D)−1Φ. The next piece

of the algorithm is hamiltonian evolution of πµ and the gauge field over a short trajec-

tory of length τ in a “molecular dynamics time”. During this evolution we keep Φ fixed.

We perform this evolution through inexact integration of Hamilton’s equations, which di-

vides τ into Nτ steps of length δτ = τ/Nτ , and introduces δτ -dependent numerical errors
〈
∆H2

eff

〉1/2
> 0. The first-order Verlet (leapfrog) method is a simple example of such an

integration algorithm, though higher-order methods such as the Omelyan integrator are

used in practice [235, 236].
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Note that the molecular dynamics evolution involves the force (Lie derivative)

dπ

dτ
= −∂Sg

∂U
− Φ†∂(D†D)−1

∂U
Φ = −∂Sg

∂U
−
[
(D†D)−1Φ

]† ∂D†D

∂U

[
(D†D)−1Φ

]
, (3.26)

which requires the expensive computation of the inverse at each step in the evolution. After

carrying out the Nτ steps in the integration, we stochastically correct for the numerical

errors by performing a Metropolis (Rosenbluth–Teller) accept/reject test [237, 238], the

third and final piece of the algorithm. So long as the integrator is reversible and preserves

phase-space volume (i.e., is symplectic), this acceptance test guarantees that the algorithm

maintains detailed balance and will approach the correct fixed-point distribution.

Repeating the Markov step outlined above produces an ensemble of gauge configura-

tions. These configurations are not completely independent, to an extent that depends

on our choice of molecular dynamics integrator and evolution parameters, an issue we will

return to in Section 3.2.3. For now, let us consider how we analyze these configurations to

measure some observables of interest.

3.2.2 Configuration analysis

Assuming that we have used the HMC algorithm described above to generate an ensemble of

gauge configurations, in this section we discuss the analysis of these configurations. While

observables involving only the gauge fields (such as the plaquette averaged over the lattice)

are generally inexpensive to compute and can be useful to monitor the HMC evolution,

typically we are most interested in the behavior of the valence fermions. Therefore in this

section we focus on fairly simple but illustrative observables, including meson masses and

decay constants as well as the chiral condensate
〈
ψψ
〉
.

Treating the euclidean action as a hamiltonian, a generic two-point correlation function

has the form

Cij(t) =
1

Z
Tr
[
Oi(t)Oj(0)e

−NtH
]

=
1

Z

∑

m

〈m|eHtOie−HtOje−NtH |m〉, (3.27)

where |m〉 are a complete set of energy eigenstates, e−NtH |m〉 = e−NtEm. Inserting another



46

complete set of states produces

Cij(t) =
1

Z

∑

m,n

〈m|Oi|n〉〈n|Oj |m〉e−Ente−Em(Nt−t). (3.28)

In the case i = j, if we consider t≫ 1 and Nt−t≫ 1 (and subtract the vacuum expectation

value |〈0|Oi|0〉|2 if it non-zero), then the correlator Cii will be dominated by the lightest

state with the appropriate quantum numbers, whose energy we identify as its mass M ,

C(t) ≈ A (exp [−Mt] + exp [−M(Nt − t)]) . (3.29)

Fig. 3·1 shows an example of this approximation to the correlation function describing

propagation of a (flavor non-singlet) meson from a source at time t0 to a sink at time t,

CΓ(|t− t0|) =

〈
∑

x

Tr

[{
ψ(x, t)ΓT aψ(x, t)

}{
ψ(0, t0)ΓT

bψ(0, t0)

}]〉
(3.30)

= −
〈
∑

x

Tr
[
D−1(0, t0;x, t)ΓT

aD−1(x, t;0, t0)ΓT
b
]〉

,

where the sum over the spatial volume of the lattice projects out the zero-momentum

component of the correlator. We write the second line to emphasize that measuring

valence fermion observables requires additional inversions of the lattice Dirac operator,

against some source(s) placed on the gauge configurations being analyzed. (D−1(y;x) =

γ5

(
D−1(x; y)

)†
γ5 is the fermion propagator from site x to site y, and in the future we will

generally use translation invariance to write it as D−1(y − x).) As in Section 2.2.1, the

flavor matrices T a are normalized so that Tr
[
T aT b

]
= 1

2
δab (similar traces over color and

spin are not explicitly written). The Γ is some product of γ matrices. For example, the

pseudoscalar channel corresponds to Γ = γ5 and γ4γ5 (because the pseudoscalar mass is

nonzero on the lattice, these two currents are related by the axial Ward–Takahashi identity

we will discuss in Section 3.3.3 below); the vector channel corresponds to Γ = γi and the

axial channel to Γ = γiγ5, for i = 1, 2, 3. The specific correlator shown in Fig. 3·1 uses

Γ = γ5.
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Figure 3·1: Comparing pseudoscalar C(t) data with the approximation
of Eqn. 3.29 (solid black line), using Meff from the plateau in Fig. 3·2
for 323 ×64 LSD Collaboration ensembles with Nf = 2 and mf = 0.01
(cf. Section 4.1.2 for details of ensembles and measurements). The dotted
lines showing the statistical error are too close to the solid line to see.

We see in Fig. 3·1 that the asymptotic form of Eqn. 3.29 only seems to describe the

correlator well for 10 . |t− t0| . 55. We can be more precise by considering the “effective

mass” formula

meff (t) = log

[
C(t)

C(t+ 1)

]
. (3.31)

According to Eqn. 3.29, for 1 ≪ |t− t0| ≪ Nt this function should show a “plateau”, i.e.,

meff (t) should be approximately constant for a range of t, at a value we take to be the

effective massMeff of the state. Because C(t) typically reaches a minimum around |t−t0| ≈

Nt/2 (as in Fig. 3·1), meff (t) crosses zero, breaking the plateau into two disconnected

pieces. A simple modification that evades this issue is to consider instead

C(t− 1) + C(t+ 1)

2C(t)
→ cosh(Meff ), (3.32)

which possesses a long plateau shown in Fig. 3·2. Obtaining such long plateaus is the main

motivation for working on L3×2L lattices with temporal extent longer than the spatial
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length.

In practice, these effective mass plateaus are used simply to determine the proper

range of t to use in a direct fit to Eqn. 3.29 or more complicated forms involving additional

exponentials. However, for the simple case shown in Fig. 3·2, the effective mass result

M2
P = 0.01904(22) is very close to the Lattice Strong Dynamics (LSD) Collaboration result

obtained by a simultaneous fit to eight correlators including both Γ = γ5, γ4γ5, and using

four different combinations of sources and sinks, M2
P = 0.01873(20). Baryon masses can be

obtained in essentially the same way, although the operators and contractions required are

more complicated, and the resulting correlators are noisier, with much shorter plateaus.

Meson decay constants are also measured from the same two-point correlation functions

we have been considering. Let us rewrite Eqn. 2.29 as

FP =
〈0|Aa0(x, t)|πa(p = 0)〉

MP
, (3.33)

where we do not sum over the flavor index a, which is present to indicate that these

operators are flavor non-singlet. Because 〈0|Aa0(x)|πa(p = 0)〉 is precisely the ground state

that we expect to dominate 〈
∑

x
Aa0(x, t)A

a
0(0, t0)〉 for 1 ≪ |t− t0| ≪ Nt, we can determine

the decay constants from the coefficient A in Eqn. 3.29. For example,

〈
∑

x,i

V a
i (x, t)V b

i (0, 0)

〉
→ 3

2
δabZ2

V F
2
VMV

[
e−MV t + e−MV (Nt−t)

]
, (3.34)

where the factor of 3
2 comes from the sum over spatial components i and the trace over flavor

matrices. Note that measuring the decay constant F requires previous determination of

the corresponding mass M , and in some cases the renormalization factor Z that we discuss

in Section 3.3.3 below.

Finally, the chiral condensate
〈
ψψ
〉

involves the complication that it directly connects

sources and sinks at the same lattice site,

〈
ψψ
〉

= − 1

4NcV

〈
∑

x

ψ(x)ψ(x)

〉
=

1

4NcV

〈
∑

x

D−1(x;x)

〉
=

1

4NcV

〈
Tr
[
D−1(m)

]〉
,

(3.35)
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Figure 3·2: Jackknife fit results for the ratio [C(t− 1) +C(t+ 1)]/[2C(t)]
of pseudoscalar correlators, and cosh(Meff ) (solid black line), for the same
ensembles as Fig. 3·1. The bottom panel zooms in on the plateau in the
range 15 ≤ |t − t0| ≤ 50. The dotted lines show the statistical error in
cosh(Meff ).
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where the first negative sign is a phase convention inserted to make
〈
ψψ
〉
> 0 (for m > 0).

The factor of 4Nc accounts for the implicit traces over color and spin. This is the simplest

example of a quark-line disconnected diagram, which on its face seems to require a number

of inversions proportional to the lattice volume V . In practice, we estimate the result

stochastically, by performing the inversions using only Nsc random sources η. Typically,

each η uses a unitary random number (e.g., an element of U(1) or Z2) for each color,

spin and spatial degree of freedom, so that η∗aα(x)ηbβ(y) = δabδαβδxy [239]. For
〈
ψψ
〉

this

straightforward approach suffices, and only a few random sources are needed to estimate
〈
ψψ
〉

with reasonably small error. This is because the chiral condensate is usually very

large in lattice simulations; the explicit chiral symmetry breaking due to non-zero fermion

mass introduces a contribution ∝ m/a2, which would diverge in the continuum limit a→ 0.

3.2.3 Systematic effects

Now that we have reviewed the basic features of numerical lattice gauge theory simulations,

let us consider some of the shortcomings of this approach. These include autocorrelations

in the measurements that we perform, as well as systematic effects from working with

massive fermions in a finite, discrete spacetime.

In principle these issues can be addressed by performing long-running simulations at

various lattice spacings a, on lattices of various sizes ∼ L4, and with various pseudoscalar

masses M2
P , in order to perform controlled extrapolations to the continuum (a → 0),

infinite-volume (L → ∞) and chiral (M2
P → 0) limits. Due to practical limitations in

computing power, often only chiral extrapolations are performed, while simulations at

different L or a (if they are performed at all) are used to estimate the magnitude of the

corresponding systematic effects.

In this section we consider in turn autocorrelations, discretization errors, finite volume

effects, and issues related to chiral extrapolations (both for lattice QCD and for studies

motivated by dynamical electroweak symmetry breaking). Our goal is to briefly summarize

the relevant issues and estimate the severity of the resulting systematic effects.
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Autocorrelations

Because the gauge configurations produced by the HMC algorithm are not completely

independent, there are autocorrelations between the measurements performed on them.

That is, the value of each observable measured on a given configuration is correlated with

the value measured on preceding and subsequent configurations. These autocorrelations

can depend strongly on the observable, on the evolution algorithm, on the lattice action,

and on the simulation parameters (lattice size, lattice spacing and fermion mass).

The straightforward statistical issue introduced by autocorrelations is the risk of un-

derestimating statistical errors. We address this by performing measurements on only a

subset of the configurations in the ensemble, and combining these measurements into blocks

(sometimes called bins) as described in Section 4.1.2 below. These blocks are the data used

in our analyses, which are all performed with jackknife procedures [240]. Given N blocks

of measurements, we construct N jackknife samples by removing a single block from the

data set and averaging over the rest. Referring to the data xi in the Jth jackknife sample

as x
(J)
i ,

x
(J)
i =

1

N − 1

∑

k 6=J

xi(k). (3.36)

Analyses performed using data sample x
(J)
i produce output parameters a

(J)
α . The overall

result of the jackknife procedure is

aα =
1

N

N∑

J=1

a(J)
α (3.37)

with standard deviation

σα =

√√√√N − 1

N

N∑

J=1

(
a

(J)
α − aα

)2
. (3.38)

In general, this standard deviation suffices to quantify uncertainties, but in one case we

will propagate errors using the covariance matrix Cαβ given by

Cαβ =
N − 1

N

N∑

J=1

(
a(J)
α − aα

)(
a

(J)
β − aβ

)
. (3.39)
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Ref. [203] encourages recomputing the covariance matrix for each jackknife sample, which

requires considering the jackknife samples of the jackknife samples (that is, samples formed

by discarding all possible pairs of blocks from the full data set). This allows estimation of

the statistical fluctuations (of order N−3/2) in Eqn. 3.39.

A related danger is that autocorrelations can grow dramatically as the lattice spacing a

decreases, especially autocorrelations in observables related to topology [241]. This critical

slowing down can undermine the statistical reliability of all observables (not just those

related to the topology), particularly for the small ensembles and small lattice spacings

used by the LSD Collaboration. At a minimum, insufficient topological evolution implies

that the theory is not being correctly sampled by the Monte Carlo simulation. Because we

expect the topology to be fixed in the infinite-volume limit, we may be able to treat errors

resulting solely from fixed topology as finite-volume effects [242].

Discretization errors

By discretization errors we refer to deviations of lattice measurements from the corre-

sponding continuum values that are proportional to the lattice spacing a. As discussed

in Section 3.1.2 above, much effort has gone into designing “improved” lattice actions

that reduce or eliminate leading O(a) discretization errors [215, 216], and we use modern

O(a2)-accurate actions in our simulations.

In practice, the lattice spacing does not appear as a tunable parameter in the lattice

action. Instead one adjusts the gauge coupling β, and the scale-dependence of the running

coupling relates a change in the coupling to a change in the lattice spacing. The scale can be

translated into physical units through any well-known and reliably-calculated dimensionful

quantity, such as the mass of the lightest vector state MV 0 ≡ limM2
P
→0MV . Modern

lattice QCD simulations [29] typically use (2MV 0)
−1 . a . (4MV 0)

−1 (specializing to

lattice QCD, MV 0 = mρ = 770 MeV, this is 0.125 . a . 0.065 fm, or 1.5 . a−1 . 3

GeV), with discretization errors below the percent level. LSD Collaboration simulations

are performed at small a ≈ (5MV 0)
−1 (for QCD, a ≈ 0.055 fm or a−1 ≈ 3.6 GeV), and
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should therefore suffer from small discretization errors.

As mentioned in the previous section, it can be dangerous to reduce the lattice spac-

ing too much, because this increases autocorrelations and requires longer simulations to

produce the same number of independent measurements. Additional considerations imply

that the total cost of generating an independent gauge configuration using an algorithm

like hybrid Monte Carlo scales with a large negative power of a−6–a−7. For example,

maintaining the same physical volume requires that the size of the lattice scales as a−4 (see

Refs. [243, 244] for the remainder of the accounting). Reducing the physical volume leads

to additional systematic effects, which we now discuss.

Finite volume effects

The danger of working on a finite spacetime with (anti-)periodic boundary conditions is

that observables may be affected by signals propagating all the way around the lattice. In

order for these unphysical contaminations to be negligible, the linear length L of the lattice

must be several times larger than the longest correlation length of the system, which is

generally the inverse mass M−1
P of the lightest pseudoscalar meson (the pseudo-Nambu–

Goldstone boson in theories exhibiting chiral symmetry breaking). Fortunately, these finite

volume effects are exponentially suppressed by MPL for the observables we consider [245],

and the conventional wisdom for lattice QCD is that MPL & 4 reduces finite-volume errors

in the spectrum to the percent level or less.

While this general argument is not specific to QCD, we should expect to encounter more

severe finite volume effects in “walking” theories for which the coupling evolves more slowly

as the energy scale changes. Lattice simulations require that the coupling be relatively weak

at the scale of the inverse lattice spacing a−1, to avoid a transition into a strongly-coupled

lattice phase without a well-defined continuum limit. Walking behavior involves a large

separation between a−1 and the scale of chiral symmetry breaking, which implies that the

lattice volume must grow very large in order to contain the low-energy physics of interest.

In the context of walking technicolor, for example, the separation between the ultra-
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violet scale where asymptotic freedom sets in and the infrared scale of chiral symmetry

breaking is expected to be METC/ΛTC ∼ 103–104. It is very unlikely that the lattices

used in numerical simulations will exceed L/a . 102 in the foreseeable future. Lattice

studies of walking (and IR-conformal) theories are therefore likely to require step-scaling

and renormalization group techniques such as those summarized in Section 4.1.1 below, in

addition to zero-temperature simulations performed by the LSD Collaboration.

Such considerations were part of the motivation for the LSD Collaboration to proceed

cautiously from Nf = 2 QCD toward the SU(3) conformal window, as discussed further

in Section 4.1.2 below. Comparison with lattice QCD gives some confidence that finite

volume effects are small on all of our ensembles with MPL > 4, and direct confirmation of

this expectation is underway. However, for a given lattice size L, satisfying this condition

limits the range of masses we are able to study, introducing other systematic effects that

we now discuss.

Chiral extrapolations

With few exceptions, lattice gauge theory simulations are performed with unphysically

heavy particles, and chiral extrapolations are performed to connect numerical results to

continuum physics. In QCD, results are extrapolated (and, increasingly, interpolated) to

the physical point mπ ≈ 135 MeV, mK ≈ 494 MeV, mΩ ≈ 1.672 GeV, etc. In theories that

aim to model dynamical electroweak symmetry breaking, the situation is more complicated.

In principle, two of the Nf flavors of strongly-interacting fermions must be extrapolated to

the chiral limit m = 0 so that three exactly massless (M2
P = 0) Nambu–Goldstone bosons

are available to be eaten by the W± and Z. The other Nf − 2 flavors must remain massive

so that no unphysically light pseudo-NGBs appear in the spectrum.

In practice, such elaborate extrapolations are not performed as part of current lattice

calculations exploring technicolor theories, including those we discuss in Section 4. Instead,

all Nf fermions are taken to be degenerate. Some quantities (such as the mass MV of the

lightest vector state) are well-behaved in the limit M2
P → 0 with N2

f − 1 NGBs; others
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(such as the S parameter) diverge in this limit if Nf > 2. In this situation we are forced to

keep M2
P > 0 and estimate the effects of the two-flavor extrapolation by comparison with

the Nf = 2 theory.

For quantities related to the chiral symmetry breaking process itself (in particular MP ,

FP and
〈
ψψ
〉
), it is important to exploit chiral perturbation theory (χPT [101, 246]) to en-

sure that the chiral extrapolation uses the proper functional form (in particular accounting

for so-called chiral logarithms) [102]. Not surprisingly given our introduction of technicolor

in terms of a chiral lagrangian, Eqn. 2.27, it is possible to relate the S parameter to one of

the low energy constants of next-to-leading order χPT, Lr10(µ). The relation is

S(µ,M
(ref)
H ) =

1

12π

[
−192π2

(
Lr10(µ) +

1

384π2

{
log

[
m2
K

µ2

]
+ 1

})
+ log

[
µ2

M
(ref)
H

]
− 1

6

]
,

(3.40)

where µ is a (techni)hadronic renormalization scale (such as the mass of the lightest vector

meson state) and M
(ref)
H is the reference Higgs boson mass. The kaon mass mK appears

because Lr10(µ) is a parameter of three-flavor χPT; a related two-flavor formulation of χPT

uses the low-energy constant

ℓr5(µ) = Lr10(µ) +
1

384π2

(
log

[
m2
K

µ2

]
+ 1

)
, (3.41)

and a scale-invariant quantity ℓ5 can be defined by cancelling out the µ-dependence of

ℓr5(µ),

ℓ5 = −192π2ℓr5(µ) − log

[
m2
π

µ2

]
. (3.42)

While χPT cannot reliably be applied to chiral extrapolations of LSD Collaboration data

(due to large M2
P and Nf > 2 [1, 2]), this approach is used to calculate S in scaled-

up QCD by Refs. [141, 142]. These studies fit low-M2
P , low-Q2 data for ΠV−A(Q2) ≡
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ΠV V (Q2) − ΠAA(Q2) (cf. Eqn. 2.43) to the χPT expression

ΠV−A(M2
P , Q

2) = −F 2
P −Q2

[
8Lr10(µ) +

1

24π2

(
log

[
M2
P

µ2

]
+

1

3
−H(x)

)]
(3.43)

H(x) = (1 + x)

[√
1 + x log

(√
1 + x− 1√
1 + x+ 1

+ 2

)]
,

where x ≡ 4M2
P /Q

2.

3.3 Chiral lattice fermions

In addition to the explicit chiral symmetry breaking due to non-zero fermion mass, we saw

above in Section 3.1.3 that simple discretizations of the fermion action also introduce χSB

to evade the doubling problem. This has several unwelcome consequences. Without chiral

symmetry on the lattice, the input (bare) fermion mass mf may receive additive (not just

multiplicative) renormalization, so that the chiral limit M2
P → 0 is not known a priori

in terms of mf . In addition (assuming that the lattice gauge action is O(a2)-accurate),

lattice fermion actions that preserve chiral symmetry on the lattice automatically result in

discretization errors only quadratic in a, smaller than the O(a) discretization errors that

can occur from actions that break chiral symmetry [247]. Finally, lack of chiral symmetry

allows operators to mix that would not if the action were chiral, which can complicate

analyses and obscure signals. Qualitatively, because we are interested in applying lattice

gauge theory to models of electroweak symmetry breaking that result from spontaneous

χSB, we should make every effort to ensure that explicit chiral symmetry breaking does

not contaminate our investigations.

We also saw in Section 3.1.3 that lattice fermion can exactly possess a (modified)

chiral symmetry at non-zero lattice spacing, described by the Ginsparg–Wilson relation,

Eqn. 3.20. There we wrote down the overlap operator, Eqn. 3.22, and in this section

we consider a related formulation, the domain wall fermion (DWF) action introduced

by Refs. [45, 46, 47]. Originally motivated by the connection between anomalies in 2n

dimensions and currents in 2n+1 dimensions, the DWF formulation adds a fifth dimension



57

to the lattice, of length Ls. Actually, the fifth “dimension” consists of Ls copies of the

same four-dimensional gauge field, connected by the action we describe below.

However, the DWF operator can just as well be understood as an approximation (specif-

ically the polar approximation [248, 249, 250]) to the sign function in the overlap operator,

signLs
[H5] =

(1 +H5)
Ls − (1 −H5)

Ls

(1 +H5)Ls + (1 −H5)Ls
(3.44)

whereH5 = γ5DW (−M5) is used to form the transfer matrix that describes the propagation

of fermion modes along the fifth dimension,

T̂5 =
1 −H5

1 +H5
. (3.45)

As Ls → ∞, the approximation signLs
[H5] becomes exact, and in that limit domain wall

fermions possess exact chiral symmetry at finite lattice spacing.

Our goal in this section is not to review the fascinating field of chiral symmetry on the

lattice (for that purpose, see Ref. [44]), but primarily to establish our notational conventions

and introduce some DWF concepts that will play a role in the calculations we discuss in

Section 4. We begin with the formulation of the domain wall operator.

3.3.1 Domain wall formulation

Our notation and implementation of domain wall fermions largely follows the work of

the RBC and UKQCD Collaborations, Refs. [48, 251, 252, 253, 254, 247]. We label the

Ls copies of the gauge field along the fifth dimension with the index s = 0, · · · , Ls − 1.

Although domain wall fermions only possess exact chiral symmetry in the limit Ls → ∞,

we take the length of the fifth dimension Ls to be finite, and periodically identify s = Ls

with s = 0. In numerical simulations, Ls ∼ O(10), and we will discuss the “residual” chiral

symmetry breaking due to finite Ls in Section 3.3.2 below.

The domain wall fermion action is Sf = ΨDDWF (m)Ψ + Φ†DDWF (m = 1)Φ, where

Ψ(x, s) and Φ(x, s) are five-dimensional fermion and Pauli–Villars regulator fields, respec-

tively. The domain wall Dirac operator DDWF (m) is built from the four-dimensional
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Wilson Dirac operator DW (m),

[DW (−M5)]x,y = (4 −M5)δx,y −
1

2

[
(1 + γµ)U †

x,µδx,y+µ + (1 − γµ)Ux,µδx+µ,y

]

[DDWF (mf )]s,s′ = [DW (−M5) + 1] δs,s′ + PL
[
(1 +mf )δs,Ls−1δs′,0 − δs+1,s′

]
(3.46)

+ PR
[
(1 +mf )δs,0δs′,Ls−1 − δs,s′+1

]
.

Here PR = 1
2
(1 + γ5), PL = 1

2
(1 − γ5) and 0 < M5 < 2 can be considered the height of the

domain wall. In the form of an Ls × Ls matrix, we can write the operator DDWF (m) as




DW (−M5) + 1 −PL 0 · · · mPR

−PR DW (−M5) + 1 −PL · · · 0

0 −PR DW (−M5) + 1 · · · 0

...
...

...
. . .

...

mPL 0 0 · · · DW (−M5) + 1




. (3.47)

In the fifth dimension the Pauli–Villars operator DDWF (1) has anti-periodic boundary

conditions, but the in the limit of zero fermion mass m→ 0, the Dirac operator DDWF (m)

has Dirichlet boundary conditions. DDWF is γ5-hermitian if we also reflect around the

midpoint of the fifth dimension,

D†
DWF = γ5RDDWFRγ5, (3.48)

where Rs,s′ = δs,Ls−1−s′ . This still satisfies the condition det [DDWF ] = det
[
D†
DWF

]

needed to show the positivity of the action.

Qualitatively, we see that m couples the left and right walls, and we can understand

Eqns. 3.46 and 3.47 to represent light, chiral lattice modes localized near the domain walls.

The doublers (and additional modes from the enlarged dimensionality of the operator)

propagate in the fifth dimension, and obtain large masses from the Wilson term in the

action. As Ls increases, so does the number of these heavy modes, which the Pauli–Villars

regulator fields cancel in the limit Ls → ∞.



59

Although the domain wall fermion formulation introduces a fifth dimension, it describes

four-dimensional physics. Adopting the notation of Ref. [48], we define the four-dimensional

fermion fields q(x) as the chiral projections of the five-dimensional fermion fields Ψ(x, s)

on the domain walls at s = 0 and s = Ls − 1,

q(x) = PLΨ(x, 0) + PRΨ(x,Ls − 1) q(x) = Ψ(x,Ls − 1)PL + Ψ(x, 0)PR. (3.49)

Since PRγ5 = γ5PR = PR and PLγ5 = γ5PL = −PL, the flavor non-singlet pseudoscalar

operator is

P a(x) = q(x)γ5T
aq(x) = Ψ(x, 0)PRT

aΨ(x,Ls − 1) − Ψ(x,Ls − 1)PLT
aΨ(x, 0), (3.50)

where the flavor matrices T a = 1
2
τa are normalized so that Tr

[
T aT b

]
= 1

2
δab. A similar

“midpoint” pseudoscalar operator is defined by shifting s → s + Ls/2 (recall that s = Ls

is periodically identified with s = 0):

Jamid(x) = Ψ(x,Ls/2)PRT
aΨ(x,Ls/2 − 1) − Ψ(x,Ls/2 − 1)PLT

aΨ(x,Ls/2). (3.51)

We use Jamid(x) to determine the residual chiral symmetry breaking due to finite Ls. At

low energies

Jamid = mresP
a(x) + O(a2), (3.52)

where the residual mass mres quantifies chiral symmetry breaking as we now discuss.

3.3.2 Residual chiral symmetry breaking

As explained above, the chiral symmetry of domain wall fermions only becomes exact in

the limit Ls → ∞. For the low-energy observables that we are interested in, at scales small

compared to the inverse lattice spacing a−1, the residual chiral symmetry breaking due

to finite Ls can be represented as an additive renormalization mres of the input fermion

mass mf . (Of course, mf > 0 itself breaks chiral symmetry.) The chiral limit can then be

obtained as m ≡ mf +mres → 0.
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For the Nf = 2 simulations discussed in Section 4 (which have large cutoff a−1 and

relatively small Ls = 16), the residual mass mres is exponentially suppressed by Ls, domi-

nated by a term ∝ e−λcLs/Ls. Here λc is the “mobility edge”, adapted to lattice QCD from

condensed matter physics by Ref. [255]. At stronger coupling (smaller a−1) or larger Ls, an

additional contribution to mres that is ∝ 1/Ls becomes important [254]. This contribution

arises from eigenmodes of log T̂5 that have localized four-dimensional support and have

eigenvalues near zero, |λ| < λc. (T̂5 is the transfer matrix defined in Eqn. 3.45 above.)

Such near-zero modes are believed to be lattice artifacts (“dislocations”) localized to a few

lattice spacings a; however, they contribute to the effects of chiral symmetry breaking on

low-energy observables. Because we must increase the coupling to match low-energy scales

for Nf > 2, such effects may become more important as Nf increases, cf. Section 4.1.2.

While we will not discuss further the analytic dependence of mres on Ls (or on other

DWF parameters such as M5), we summarize here our non-perturbative calculation of

mres. We consider the ratio

R(|t− t0|) =

〈∑
x

Tr
[
Jamid(x, t)P

b(0, t0)
]〉

〈∑
x

Tr [P a(x, t)P b(0, t0)]〉
=

〈∑
x
Jamid(x, t)P

a(0, t0)〉
〈∑

x
P a(x, t)P a(0, t0)〉

, (3.53)

which measures the pseudoscalar coupling to the midpoint operator (Eqn. 3.51), normalized

by the pseudoscalar correlator itself [48, 251, 252, 253]. We explicitly write the trace in

Eqn. 3.53 to emphasize that the flavor index a in the final expression is not summed over,

but indicates that these operators are flavor non-singlet.

Similarly to the effective masses discussed in Section 3.2.2 above, for 1 ≪ t ≪ Nt the

ratio R(t) should be approximately constant, and we identify mres as the value of this

plateau, as illustrated in Fig. 3·3. As discussed above, the physical domain wall fermion

modes are localized around the left (s = 0) and right (s = Ls − 1) walls in the fifth

dimension as chiral symmetry improves. Improving this localization reduces R(t) and

mres, since P a(x) is defined on the walls while Jamid(x) is defined halfway between them.

Similarly, the ratio vanishes in the limit Ls → ∞, which reflects our statement that the

domain wall fermion formulation possesses exact chiral symmetry in this limit, even at
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non-zero lattice spacing.

3.3.3 Local and conserved currents

We conclude our brief overview of domain wall fermions by considering the vector and

axial currents that appear in the calculation of the S parameter. Here we actually have

two options. The simple approach is to use q(x) from Eqn. 3.49 in the usual continuum

expressions,

V a
µ (x) = q(x)γµT

aq(x)

= Ψ(x,Ls − 1)γµPRT
aΨ(x,Ls − 1) + Ψ(x, 0)γµPLT

aΨ(x, 0)

(3.54)

Aaµ(x) = q(x)γµγ5T
aq(x)

= Ψ(x,Ls − 1)γµPRT
aΨ(x,Ls − 1) − Ψ(x, 0)γµPLT

aΨ(x, 0).

(3.55)

We refer to V a
µ (x) and Aaµ(x) as “local” currents because they involve q(x) and q(x) at the

same site x. Ref. [47] introduced the corresponding conserved currents Vaµ(x) and Aa
µ(x),

which are built from the point-split current

jaµ(x, s) = Ψ(x+ µ̂, s)
1 + γµ

2
U †
x,µT

aΨ(x, s) − Ψ(x, s)
1 − γµ

2
Ux,µT

aΨ(x+ µ̂, s) (3.56)

by summing over the fifth dimension,

Vaµ(x) =

Ls−1∑

s=0

jaµ(x, s) Aa
µ(x) =

Ls−1∑

s=0

sign

(
s− Ls − 1

2

)
jaµ(x, s). (3.57)

Because jaµ(x, s) is point-split, we should think of Vaµ(x) and Aa
µ(x) as the currents carried

by the link between x and (x+ µ̂), properly located at (x+ µ̂/2).

Vaµ(x) is conserved in the sense that its divergence vanishes,

∆µVaµ(x) =

Ls−1∑

s=0

∆µj
aµ(x, s) = 0. (3.58)
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Figure 3·3: Jackknife fit results for R(|t− t0|) and mres (solid black line)
from 323×64 LSD Collaboration ensembles with Nf = 2 and mf = 0.01
(cf. Section 4.1.2 for details of ensembles and measurements). The bottom
panel zooms in on the plateau in the range 10 ≤ t ≤ 54. The dotted lines
show the statistical error in mres.
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Here ∆µ is the lattice finite difference operator with five-dimensional continuity equation

∆µj
aµ(x, s) =





−ja5 (x, 0) −mP a(x) s = 0

ja5 (x, s − 1) − ja5 (x, s) 0 < s < Ls − 1

ja5 (x,Ls − 2) +mP a(x) s = Ls − 1

(3.59)

where for notational convenience we have defined

ja5 (x, s) ≡ Ψ(x, s + 1)PRT
aΨ(x, s) − Ψ(x, s)PLT

aΨ(x, s+ 1). (3.60)

Note that ja5 (x,Ls − 1) = P a(x) and ja5 (x,Ls/2 − 1) = Jamid(x). When acting on a four-

dimensional operator,

∆µf(x) = f(x) − f(x− µ̂), (3.61)

so the local current V a
µ (x) is not conserved. We can also discuss current conservation in

terms of the Ward–Takahashi identity [256, 257]

∆µ 〈Vaµ(x)O(y〉) = i 〈δaO(y)〉 . (3.62)

Similarly, Aa
µ(x) is “partially” conserved (i.e., conserved in the chiral limit),

∆µAaµ(x) = 2mfP
a(x) + 2Jamid(x) ≈ 2(mf +mres)P

a(x) (3.63)

∆µ 〈Aaµ(x)O(y〉) = 2mf 〈P a(x)O(y)〉 + 2 〈Jamid(x)O(y)〉 + i 〈δaO(y)〉 , (3.64)

which follows from Eqns. 3.57 and 3.59. If the operator O(x) is a flavor non-singlet defined

on the walls (i.e., built from the fields q(x) and q(x)), then 〈Jamid(x)O(y)〉 vanishes in the

limit Ls → ∞ [47].

While Vaµ(x) and Aa
µ(x) approach the corresponding continuum currents with unit nor-

malization as a→ 0,1 the continuum limits of the non-conserved local currents V a
µ (x) and

1According to Ref. [258], the conserved axial current receives an additional multiplicative renormalization
ZA from the effects of finite Ls, which is expected to be negligible in practice, ZA − 1 ∝ m2

res. Although
Ref. [247] argues that ZA − 1 ∝ mres, this is still a small (sub-percent level) effect, though it may become
more important for larger Nf , cf. Section 4.1.2.
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Aaµ(x) may differ from the true currents by a multiplicative renormalization constant Z.

More generally, we can define ZV and ZA for the vector and axial currents, respectively,

which relate

Aa
µ(x) = ZAA

a
µ(x) + O(a2) Vaµ(x) = ZV V

a
µ (x) + O(a2) (3.65)

at finite lattice spacing. While ZA = ZV in the chiral limit, these two renormalization

factors can differ in simulations at non-zero lattice spacing and fermion mass.

We can determine ZV and ZA non-perturbatively, much as we calculate mres above. The

basic idea is to consider a correlator involving one conserved current and one local current,

normalized by the corresponding correlator with only local currents. The cleanest signal

comes from coupling the temporal component of the axial current with the pseudoscalar

operator,

C(|t− t0 + 1/2|) =

〈
∑

x

Aa
4(x, t)P

a(0, t0)

〉
(3.66)

L(|t− t0|) =

〈
∑

x

Aa4(x, t)P
a(0, t0)

〉
(3.67)

(recall that Aa
4(x, t) is located at (x + t̂/2), and we do not sum over the flavor index a).

Then, like R(t) in Eqn. 3.53, C(t)/L(t) is approximately constant for 1 ≪ t ≪ Nt, and

this constant can be identified with ZA. This procedure can be improved by constructing

arithmetic averages of C(|t − t0 + 1/2|) and L(|t − t0|), to account for the fact that they

are not at exactly the same location. Ref. [48] argues that the ratio

ZA(t) =
1

2

{
C(t+ 1/2) + C(t− 1/2)

2L(t)
+

2C(t+ 1/2)

L(t) + L(t+ 1)

}
(3.68)

eliminates O(a) discretization effects and also reduces O(a2) effects. We show an example of

the ZA(t) plateau in Fig. 3·4 for LSD Collaboration ensembles with Nf = 2 and mf = 0.01.

Fig. 3·4 also shows a plateau for ZV , which we calculate non-perturbatively in a slightly

different way. Because ZA = ZV in the chiral limit, independently measuring the two Z
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factors can provide another measure of residual chiral symmetry breaking and its effects

on observables. In addition, because our calculation of ZV differs from that of ZA, we may

be able to estimate the magnitude of O(a) discretization effects by comparing our results

for the two Z factors, especially in the chiral limit.

Straightforwardly changing Eqn. 3.68 from axial currents to the vector case would

replace P a(x) with the (flavor non-singlet) scalar operator q(x)T aq(x), and we find the

resulting correlators to be very noisy. Empirically, we find cleaner signals for ZV from the

ratio

ZV (|t− t0|) =
〈∑

x
Vai (x, t)V a

i (0, t0)〉〈∑
x
V a
j (x, t)V a

j (0, t0)
〉 , (3.69)

where we sum over the spatial indices i and j, but not the flavor index a. The ratio in

Eqn. 3.69 also gives reasonable results for ZA when we replace Vai (x) and V a
i (x) with Aa

i (x)

and Aai (x). We refer to these results as Z
(i)
A to distinguish them from ZA as calculated by

Eqn. 3.68.
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Figure 3·4: Jackknife fit results for ZA(|t − t0|) and ZV (|t − t0|) as well
as ZA and ZV (solid lines) from 323×64 LSD Collaboration ensembles with
Nf = 2 and mf = 0.01 (cf. Section 4.1.2 for details of ensembles and
measurements). The bottom panel zooms in on the plateaus in the range
10 ≤ t ≤ 54. The dotted lines show the statistical errors in the Z factors.



Chapter 4

Lattice strong dynamics

We now bring together the two preceding discussions, by considering the application of

lattice gauge theory (Section 3) to models of dynamical electroweak symmetry breaking

(Section 2). Although technicolor theories are the immediate motivation for these studies,

even if strong dynamics are not directly responsible for EWSB, this work will help improve

our very limited understanding of strongly-interacting gauge theories beyond QCD. Because

theories of physics beyond the standard model generally involve strongly-coupled dynamics

(if in some cases only at very high energies such as the scale of supersymmetry breaking),

improving our understanding of strong interactions may prove invaluable to future efforts

to unravel BSM physics.

Lattice studies beyond QCD have generated a great deal of interest and activity in

recent years, and we begin this section with a brief overview of the field. We review the

goals and status of the work, as well as some of the unique challenges that face lattice studies

attempting to explore walking or IR-conformal dynamics. Although we sketch the current

state of results, detailed discussions of all the models and methods under consideration is

well beyond the scope of this document. Recent reviews include Refs. [35, 36, 37, 38, 39].

The remainder of Section 4.1.2 focuses on the program and initial results of the Lattice

Strong Dynamics (LSD) Collaboration. To address some of the challenges of studying non-

QCD theories on the lattice, LSD Collaboration explorations are grounded on the relatively

firm footing of lattice QCD. That is, we study SU(3) gauge theories and systematically

increase the number Nf of fermions in the fundamental representation, from Nf = 2

(lattice QCD) to Nf = 6 and Nf = 10. By matching the scales used in these studies, we

can search for deviations from QCD-like behavior, and from expectations based on scaling

67
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QCD results with Nf .

After briefly reviewing Nf = 6 (and some preliminary Nf = 10) LSD Collaboration

results on the enhancement of the chiral condensate
〈
ψψ
〉

relative to lattice QCD [1, 4],

we consider the corresponding results for the masses and decay constants of the lightest

vector and axial mesons. This leads us to a detailed discussion of our lattice calculation

of the electroweak S parameter [3, 4]. For Nf = 2, we find S = 0.311(21), in agreement

with the initial estimate S = 0.32(3) made by scaling up experiment QCD spectrum data

to the electroweak scale [18]. For Nf = 6 and Nf = 10 we find results for S that can be

well below the value obtained by simply scaling QCD dynamics by a factor of Nf/2. We

conclude the section by discussing the systematic effects entering these results for the S

parameter, and future directions both for this calculation and for the LSD Collaboration

program as a whole.

4.1 General considerations

We begin our discussion of lattice studies of theories beyond QCD by briefly summarizing

the current state of the field, focusing on the goals and recent results of these explorations,

as well as the particular challenges they face. We then introduce the program of the LSD

Collaboration and discuss some if its initial results.

4.1.1 Overview of the field

Goals

Although attempts to apply lattice gauge theory techniques to questions related to dynam-

ical electroweak symmetry breaking date back to the mid-1980s [259, 260, 261, 262, 263,

264, 265, 266, 267, 268], only in recent years have algorithmic advancements and steadily

increasing computational resources begun to produce reliable results that have attracted

great interest.

Beginning with Refs. [269, 270], most studies have focused on delineating the conformal

window for the theories with the fewest degrees of freedom (and therefore the minimal



69

computational requirements), specifically SU(2) and SU(3) gauge theories with fermions

in the fundamental, adjoint or two-index symmetric representations. A related goal, for

those theories that appear to exhibit walking or IR-conformal behavior, is to determine

the mass anomalous dimension γm, with particular interest in identifying any theories with

γm & 1. Next, with the CERN Large Hadron Collider beginning direct exploration of the

TeV scale, predictions for the particle spectra of TeV-scale strongly-interacting theories

are of great interest. These calculations can also be used to calculate the S parameter in

these theories, and search for any theories with S small enough to satisfy phenomenological

constraints.1 Finally, lattice simulations may observe more speculative possibilities such

as pseudo-dilatons [274].

Status

In Table 4.1, we attempt to compactly summarize the conclusions of recent lattice searches

for conformal windows, specifying whether the cited studies indicate an infrared fixed point

in the continuum chiral limit (IRFP), are better described by chiral symmetry breaking

(χSB), or could be consistent with both possibilities. (We also note in the table where

asymptotic freedom is lost, to reveal the range of possibilities.) This classification omits a

vast amount of information, and we encourage direct consultation of the cited sources and

references therein.

There is general consensus that both SU(3) gauge theory with Nf = 16 fundamental

fermions and SU(2) gauge theory with Nf = 2 adjoint fermions are IR-conformal. Simi-

larly, SU(3) gauge theories with Nf ≤ 8 fermions in the fundamental representation are

thought to exhibit chiral symmetry breaking. With the exception of Refs. [290, 291], stud-

ies of SU(2) gauge theories with fermions in the fundamental representation have focused

on simulations performed at large temperatures and baryonic density (chemical potential),

rather than directly searching for the conformal window.

1Studying the spectrum and S is most natural in theories exhibiting chiral symmetry breaking, though
recent conjectures on the S parameter of “mass-deformed” IR-conformal theories may benefit from com-
parison with lattice studies [271, 155, 272, 273].
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Table 4.1: Lattice studies of the IR behavior of SU(Nc) gauge theories
with Nf fermions in the specified representation.

Nc Nf Rep. Result Ref.

2 2 Adj. IRFP [275, 276, 277, 278, 279, 280, 281]
Unclear [282, 283, 284, 285, 278, 286]

2 3 Adj. Asymptotic freedom lost

2 2 Fund. χSB [287, 288]
2 4 Fund. χSB [289]
2 6 Fund. Unclear [290]
2 8 Fund. Unclear [291]
2 11 Fund. Asymptotic freedom lost

3 4 Fund. χSB [292, 293, 294]
3 6 Fund. χSB [1], this work
3 8 Fund. χSB [270, 295, 296, 294, 297, 298]
3 9 Fund. χSB [294]
3 10 Fund. IRFP [299]
3 12 Fund. χSB [294, 297, 300, 301]

IRFP [270, 295, 302]
Unclear [298, 303]

3 16 Fund. IRFP [266, 267, 293, 294, 304]
3 17 Fund. Asymptotic freedom lost

3 2 Sym. χSB [300]
Unclear [305, 306, 307, 308, 309]

3 4 Sym. Asymptotic freedom lost
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The case of SU(3) gauge theory with Nf = 2 fermions transforming in the two-index

symmetric (sextet) representation illustrates the potential sensitivity of these studies to

the method used: initial signs of an IRFP reported by Ref. [307] vanished when those

authors improved their action to reduce lattice artifacts [309]. The current disagreement

regarding the IR behavior of SU(3) gauge theory with Nf = 12 fermions in the fundamental

representation is also likely due (at least in part) to the different methods used by the

various studies. It is not clear at this time which of these methods may prove most reliable.

Detailed discussion of the many methods employed in these studies is well beyond the

scope of this document, but we mention that the most common lattice technique to search

for signs of an IRFP is to use step-scaling techniques that measure some definition of the

running coupling over a wide range of scales. The Schrödinger functional scheme for the

coupling [310, 311, 312] is widely used, as are definitions of the coupling from the potential

between static charges [313, 314, 304].2 Monte Carlo renormalization group techniques

operate similarly [315, 316, 317], applying blocking transformations to change the scale.

The spectrum or thermodynamical phase diagram of the theory can also be compared to

the behavior expected from either IR conformality or chiral symmetry breaking [318, 319,

320, 273].

Although SU(2) gauge theory with Nf = 2 fermions in the adjoint representation

appears to possess an IR fixed point in the continuum chiral limit, measurements of the

mass anomalous dimension at this fixed point have consistently found γm to be significantly

smaller than the γm & 1 that appears to be needed for the simplest theories of walking

technicolor to remain viable. Using a variety of different methods, Refs. [277, 279, 280, 281]

all find γm . 0.6. Studies of SU(3) gauge theory with Nf = 2 fermions in the two-index

symmetric representation also find γm . 0.6 [319, 309]. For SU(3) gauge theory with

Nf = 16 fermions in the fundamental representation, the theory is weakly coupled and

γm negligible; Ref. [298] finds a very small γm = 0.06(2) for Nf = 12 as well. So far,

2We reiterate the points made in Section 2.3, that although the value of the coupling associated with an
IRFP is scheme-dependent, the existence of an IRFP, and the mass anomalous dimension γm at that IRFP,
are scheme-independent.
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the only hint of a large γm & 1 comes from the SU(2) theory with Nf = 6 fermions in

the fundamental representation. Here Ref. [290] reports 0.135 < γm < 1.03, but large

uncertainties make it unclear whether or not the theory possesses an IRFP at all.

Challenges

One challenge that our discussion above clearly reveals is the large number of possible

models that could be candidates for physics beyond the standard model, or could be theo-

retically interesting in their own right. It is not practical (or possible) to study all of these

models in detail. Instead, our strategy (guided by experiment and model-building) must

be to map out isolated islands in the theoretical sea, and attempt to understand how the

properties of a given theory depend on its most basic features: the gauge group and matter

content.

Another difficulty is that, unlike lattice QCD, we do not have extensive experimental

information to guide us. Without this means of assessing the systematic effects of working

in a finite, discrete spacetime, we are obligated to carefully ensure that our lattice calcu-

lations provide reliable information about continuum physics. This produces a significant

increase in computational cost; the LSD Collaboration, for instance, uses computation-

ally expensive domain wall fermions due to the closer connection to continuum physics

possessed by this chiral lattice formulation, as opposed to cheaper Wilson or staggered

fermions. Similarly, the different methods employed by the various groups studying lattice

gauge theories beyond QCD cannot be evaluated by how well they reproduce experimen-

tal information; more care must be taken to understand and resolve any discrepancies in

results obtained by different methods.

Additional costs arise from the larger number of degrees of freedom possessed by most

of these theories compared to lattice QCD. Besides the linear growth in the number of

inversions required as Nf increases, the additional fermions contribute to the total forces

entering into hybrid Monte Carlo simulations, requiring that the HMC step size be reduced

by a factor of roughly
√
Nf . The total cost of the simulations therefore increases ∝ N

3/2
f .
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Finally, and perhaps most significantly, the walking or IR-conformal dynamics that we

aim to study present challenges to lattice methods by their very nature. As discussed in

Section 3.2.3, the emergence of widely separated scales that is associated with walking

behavior demands very large lattices (or the use of step-scaling techniques) for results to

be reliable.

4.1.2 Lattice Strong Dynamics Collaboration program

The challenges just discussed play a significant role shaping the strategy of the LSD Col-

laboration. As mentioned, we exploit the good chiral and flavor symmetries of domain wall

fermions, despite the associated computational expense. More broadly, we ground our en-

tire program of exploration on the relatively well understood case of lattice QCD, using it

as a baseline to help us observe and understand new features of other strongly-interacting

theories. Our initial studies of SU(3) gauge theories systematically increase the number

Nf of degenerate fermions in the fundamental representation, from the Nf = 2 of lattice

QCD to Nf = 6 and Nf = 10. The Nf = 10 studies are ongoing, and all Nf = 10 results

presented here are preliminary and may change prior to publication. Additional LSD

Collaboration studies of SU(2) gauge theories with Nf = 2, 4 and 6 are underway but will

not be discussed here. (In particular, we make no claim in Table 4.1 above regarding the

IR behavior implied by our Nf = 10 or SU(2) studies.)

Although we use only a single lattice spacing, we take care to match this scale between

all three sets of simulations (with Nf = 2, Nf = 6 and Nf = 10) as described below. The

point of this scale matching is to permit the most direct comparisons possible between our

results for the different theories. Our main simulations (producing the results discussed

below) are performed on 323×64 lattices, and additional simulations on 163×32 and 243×32

lattices permit (ongoing) numerical checks of finite volume effects. Because our calculations

are exploratory, aiming for 10% accuracy, only short runs are performed at 5–6 different

input fermion masses 0.005 ≤ mf ≤ 0.03 for each Nf .
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Simulation details

LSD Collaboration simulations use domain wall fermions with the Iwasaki improved gauge

action (Eqn. 3.12), using lattice volume 323×64, fifth-dimension length Ls = 16 and do-

main wall height M5 = 1.8 (cf. Eqn. 3.46). Gauge configuration generation is performed

using the HMC algorithm implemented in the Columbia Physics System,3 which provides a

well-optimized multilevel [321] symplectic integrator with Hasenbusch preconditioning [322]

and chronological inversion. Our computations are performed primarily on the BlueGene/L

supercomputer at Lawrence Livermore National Laboratory, with additional resources pro-

vided by the USQCD Collaboration, the NSF Teragrid, and Boston University.

The first step in our studies is matching the scale at which we perform simulations. This

is done by means of 163×32 simulations carried out with a range of β = 2Nc/g
2, where

g is the bare coupling. Because the additional dynamical fermions in the path integral

have the effect of “smoothing out” the gauge field over many lattice spacings [251], the

gauge coupling must be increased (β decreased) for larger Nf . Although the transition into

the strongly-coupled lattice phase is similarly shifted to lower β, the effects of additional

fermions are less significant at the scale of one or two lattice spacings (as revealed by

the dramatic growth in mres discussed below), and we must carefully ensure that our

simulations are well away from this strong-coupling transition. Here we are helped by our

use of a very small lattice spacing, a ≈ (5MV 0)
−1 (where MV 0 ≡ limM2

P
→0MV and MV is

the mass of the lightest vector state), which was originally chosen to maximize the range of

scales available for the coupling to evolve on these lattices. The β used in our simulations

are

Nf = 2 : β = 2.7 Nf = 6 : β = 2.1 Nf = 10 : β = 1.95. (4.1)

In the context of technicolor, the proper dimensionful quantity to use to determine the

scale is the pseudoscalar decay constant in the chiral limit, limM2
P
→0 FP = v = 246 GeV. In

3http://qcdoc.phys.columbia.edu/cps.html

http://qcdoc.phys.columbia.edu/cps.html
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practice, the short runs on small lattices that we use to match scales do not allow reliable

chiral extrapolations of FP ; instead we must consider these data at M2
P > 0, along with the

more accessible observable MV 0. In our Nf = 6 simulations, not only these two quantities,

but also the nucleon mass and Sommer scale [323] match their Nf = 2 values [1, 4], which

we consider “accidental” and unlikely to persist for Nf = 10. We estimate that the scale

as defined by FP as well as that defined by MV 0 are matched to within our 10% target

accuracy across all three simulations (though the Nf = 10 results are preliminary), cf.

Figs. 4·8 and 4·10.

Finally, as discussed in Section 3.2.3 above, a disadvantage to performing simulations

at such a small lattice spacing is that the evolution of the topology can be very slow,

especially at small M2
P . In our simulations for both Nf = 2 and Nf = 6, we find that

the topological charge evolves sufficiently to provide a reasonable sampling of different

topological sectors for all mf ≥ 0.01. However, topological evolution is not sufficient for

mf = 0.005, or for most of our Nf = 10 simulations, and the resulting systematic effects

are under investigation [1, 4].

Measurement details and analysis overview

Table 4.2 lists the 323×64 LSD Collaboration ensembles used in the analyses presented

below. For each ensemble, we begin performing measurements after a thermalization time

of several hundred molecular dynamics trajectories. The initial gauge configuration in each

ensemble is usually chosen to be random (a disordered start labelled by “dis” in Table 4.2),

or is set to unity, U(x) = 1 (an ordered start labelled by “ord”). In one case, the Nf = 2

mf = 0.005 ensemble labelled “thm”, a new Monte Carlo Markov chain was started from a

thermalized configuration selected from the disordered-start Nf = 2 mf = 0.005 ensemble.

Instead of starting a Nf = 10 ensemble with mf = 0.005 from a completely random gauge

configuration, we set U(x) = 1 on one half of the lattice (0 ≤ t ≤ 31) and use a random

gauge field on the other half (32 ≤ t ≤ 63), a mixed start labelled “mix”.

Thermalization times may vary for different observables, and for Nf = 2 and Nf = 6
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we choose the thermalization cuts shown in Table 4.2 by requiring that all of
〈
ψψ
〉
, the

plaquette, pseudoscalar correlators and vector correlators reach a thermalized state. For

those Nf and mf where we generate both ordered- and disordered-start ensembles, we also

monitor the convergence of observables to common values. Similarly, the Nf = 10 mf =

0.005 mixed-start ensemble allows us to monitor thermalization by comparing observables

computed on each 324 subvolume, to see how the initially ordered and disordered domains

evolve. Thermalization generally occurs more quickly as mf increases.

Because Nf = 10 simulations are ongoing, thermalization analyses have not yet been

finalized. We choose preliminary Nf = 10 thermalization cuts by examining pseudoscalar

and vector masses MP and MV calculated from measurements over a range of 100 trajec-

tories (e.g., trajectories 300 through 400, 320 through 420, etc.), as a function of the first

trajectory included in the range. We place the thermalization cut around the point where

MP and MV begin to fluctuate around a stable value, as opposed to evolving monotoni-

cally, as illustrated in Fig. 4·1. Although the LSD Collaboration is currently generating five

ordered-start Nf = 10 ensembles at the same values of mf as the mixed- and disordered-

start ensembles listed in Table 4.2, only two of these ensembles have accumulated a sig-

nificant number of trajectories, and even these do not yet appear to be thermalized, as

illustrated in Fig. 4·2. We therefore omit these ordered-start Nf = 10 ensembles from this

preliminary analysis.

Once a given ensemble is thermalized, we perform measurements on every fifth trajec-

tory, alternating the time t0 at which we place the source. Specifically, we use point sources

at t0 = 0 and 32 on trajectories numbered with multiples of 10 (Ntraj mod 10 = 0), and

point sources at t0 = 16 and 48 on alternating trajectories (Ntraj mod 10 = 5). The fifth

column of Table 4.2 lists the resulting total number of measurements for each ensemble.

For Nf = 2 and Nf = 6, LSD Collaboration results for meson masses and decay con-

stants presented below do not include measurements on the alternating trajectories, but

add measurements using gauge-fixed wall sources placed at t0 = 0 and 32 on every tenth

trajectory.
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Figure 4·1: MP and MV for the mixed-start Nf = 10 mf = 0.005 ensem-
ble, calculated from measurements over the 100 trajectories starting from
the trajectory number indicated on the horizontal axis.

Figure 4·2: MP and MV for the ordered-start Nf = 10 mf = 0.005
ensemble, calculated from measurements over the 100 trajectories starting
from the trajectory number indicated on the horizontal axis.
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Table 4.2: LSD Collaboration ensembles, thermalization cuts and blocks
used in analyses.

Nf mf Start Traj N LB NB

2 0.005 dis 515–1260 300 30
ord 405–820 168 30
thm 5–1080 432 30
Tot: 900 30 75

2 0.010 dis 535–2450 768 30
ord 535–950 168 30
Tot: 936 30 78

2 0.015 dis 510–1495 396 30 33

2 0.020 dis 705–1420 288 30 24

2 0.025 ord 205–830 252 30 21

2 0.030 ord 225–610 156 30 13

6 0.005 dis 605–1200 240 30
ord 435–1180 300 30
Tot: 540 30 45

6 0.010 dis 405–820 168 30
ord 425–510 36 30

675–1270 240 30
Tot: 444 30 37

6 0.015 dis 415–950 216 30 18

6 0.020 dis 415–800 156 30 13

6 0.025 dis 410–825 168 30 14

6 0.030 dis 505–760 104 20 13

10 0.005 mix 405–520 48 30
550–665 48 30

Tot: 92 30 8

10 0.010 dis 405–790 156 30 13

10 0.015 dis 340–755 168 30 14

10 0.020 dis 325–890 228 30 19

10 0.025 dis 310–755 180 30 15
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The point of performing measurements only on every fifth trajectory, and at vary-

ing t0, is to minimize autocorrelations between the measurements, as discussed in Sec-

tion 3.2.3 above. To address remaining autocorrelations, we average the measurements

over blocks (sometimes called “bins”) of length LB = 20–30 trajectories (8–12 measure-

ments per block), treating each block as a single measurement in our subsequent jackknife

analyses. Although larger block lengths are more effective at removing autocorrelations,

increasing LB reduces the statistics available for analyses.

We choose LB by calculating MP and MV with a variety of 10 ≤ LB ≤ 60, and

comparing the statistical error bars and the stability of the reults. We find stable results

with comparable error bars for all LB in this range. An example is shown in Fig. 4·3, which

plots MP against LB for the Nf = 10 ensemble with mf = 0.01. Details of this study for

Nf = 2 and Nf = 6 will be presented in Ref. [4]; blocking parameters for Nf = 10 are

preliminary.

Figure 4·3: MP for Nf = 10 with mf = 0.01, as a function of block length
LB .

In cases where we have generated multiple ensembles with the same Nf and mf , we

analyze all of their blocks together as a single data set. The last column of Table 4.2 shows

the number of blocks NB for each Nf and mf .
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Residual mass and renormalization factors

We calculate the residual mass mres as discussed in Section 3.3.2, fitting the ratio

R(|t− t0|) =

〈∑
x

Tr
[
Jamid(x, t)P

b(0, t0)
]〉

〈∑
x

Tr [P a(x, t)P b(0, t0)]〉
=

〈∑
x
Jamid(x, t)P

a(0, t0)〉
〈∑

x
P a(x, t)P a(0, t0)〉

, (4.2)

to a constant in the range 10 ≤ t ≤ 54. Our results are plotted versus M2
P /M

2
V 0 in

Fig. 4·4 and tabulated in Table 4.3. (As discussed in the next section below, plotting versus

M2
P /M

2
V 0 provides a more directly physical comparison between theories with different Nf ,

since the relation between M2
P and the fermion mass m is strongly Nf -dependent.)

Figure 4·4: mres for Nf = 2, Nf = 6 and (preliminary) Nf = 10. Because
the empty point has MPL < 4, it may suffer from non-negligible finite-
volume effects, and is omitted from the linear M2

P → 0 extrapolation (×).
Error bars are smaller than the symbols.

While mres varies little with M2
P /M

2
V 0, as expected, we observe significant increases in

mres as Nf increases. Following the argument of Ref. [251], we can ascribe this qualitative

behavior to the fact that we must significantly increase the bare coupling (decrease β) in

order to match the scale a−1 between the simulations with different Nf , as discussed in

Section 4.1.2. Increasing Nf has little effect on short-distance lattice dislocations, which we
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Table 4.3: mres and Z factors for Nf = 2, Nf = 6 and (preliminary)
Nf = 10, using fit range 10 ≤ t ≤ 54. The final lines for each Nf show
the results of linear M2

P → 0 extrapolations. The Nf = 2 extrapolations
labelled “MPL > 4” only include the five heaviest data points that satisfy
this condition.

Nf mf M2
P /M

2
V 0 mres · 105 ZA ZV Z

(i)
A

2 0.005 0.2615 2.636(7) 0.85078(7) 0.84895(7) 0.84775(13)
2 0.010 0.4053 2.661(6) 0.85079(5) 0.84872(6) 0.84709(15)
2 0.015 0.5950 2.674(7) 0.85104(7) 0.84835(8) 0.84651(20)
2 0.020 0.8771 2.699(8) 0.85146(7) 0.84815(8) 0.84623(30)
2 0.025 1.0427 2.694(7) 0.85166(6) 0.84766(9) 0.84624(23)
2 0.030 1.2877 2.723(9) 0.85233(6) 0.84771(12) 0.84584(23)

2 – → 0 2.627(8) 0.85021(13) 0.84925(11) 0.84801(23)
2 – MPL > 4 2.636(8) 0.85007(14) 0.84919(17) 0.84753(18)

6 0.005 0.4729 84.34(19) 0.72676(6) 0.72204(7) 0.72099(11)
6 0.010 0.6546 85.59(47) 0.72689(12) 0.72100(8) 0.71853(17)
6 0.015 0.9729 87.80(29) 0.72675(5) 0.72061(10) 0.71666(26)
6 0.020 1.3487 88.70(29) 0.72684(6) 0.71952(17) 0.71571(41)
6 0.025 1.7190 90.45(35) 0.72734(4) 0.71871(14) 0.71460(38)
6 0.030 2.1191 92.34(37) 0.72760(8) 0.71772(9) 0.71297(52)

6 – → 0 82.28(38) 0.72625(20) 0.72300(8) 0.72300(77)

10 0.005 0.570 171.8(4) 0.70727(9) 0.70209(6) 0.70098(12)
10 0.010 0.783 173.7(4) 0.70707(11) 0.70184(7) 0.70049(15)
10 0.015 1.107 177.0(2) 0.70729(5) 0.70116(5) 0.69910(14)
10 0.020 1.473 181.1(3) 0.70735(5) 0.70020(4) 0.69689(15)
10 0.025 1.856 185.7(3) 0.70765(6) 0.69916(7) 0.69394(19)

10 – → 0 165.1(11) 0.70690(17) 0.70358(21) 0.70436(65)
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expect to contribute to chiral symmetry breaking (i.e., increase mres), from the discussion

in Section 3.3.2.

Table 4.3 also includes our results for the renormalization constant Z, calculated in the

three ways described in Section 3.3.3. To review, ZV and Z
(i)
A are both calculated from a

simple ratio,

ZV (|t− t0|) =
〈∑

x
Vai (x, t)V a

i (0, t0)〉〈∑
x
V a
j (x, t)V a

j (0, t0)
〉 (4.3)

(and similarly for Z
(i)
A ), while ZA is built from the more elaborate expression

C(|t− t0 + 1/2|) =

〈
∑

x

Aa
4(x, t)P

a(0, t0)

〉

L(|t− t0|) =

〈
∑

x

Aa4(x, t)P
a(0, t0)

〉

ZA(t) =
1

2

{
C(t+ 1/2) + C(t− 1/2)

2L(t)
+

2C(t+ 1/2)

L(t) + L(t+ 1)

}
(4.4)

that accounts for the fact that the conserved and local currents are not defined at exactly

the same location. Results from these three different definitions are plotted in Fig. 4·5 for

Nf = 6, which has the most significant disagreement between the three Z factors in the

chiral limit M2
P → 0.

At non-zero M2
P , disagreement between the three Z factors comes from both chiral

symmetry breaking effects as well as the different ingredients in the calculation of each.

For example, we expect discretization errors for ZV and Z
(i)
A to be O(a), while the ratios

in Eqn. 4.4 are designed so that even a piece of the O(a2) discretization errors for ZA will

cancel out. In addition, because the correlators 〈Aa
i (x)A

a
i (0)〉 and 〈Aai (x)Aai (0)〉 are the

noisiest of those involved in these calculations, we expect Z
(i)
A to have the largest statistical

errors.

In the chiral limit M2
P → 0, the remaining disagreement between our results for ZA, ZV

and Z
(i)
A can be used to estimate the O(a) discretization effects, which we find to be small

(half a percent or less). Because systematic effects should be smallest for ZA as calculated

from Eqn. 4.4, we take the chiral extrapolation of ZA as the common renormalization factor
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Figure 4·5: Comparison of Z factors for Nf = 6, with linear M2
P → 0

extrapolations (×). Note the small vertical scale.

Z used in the calculation of the S parameter below. We plot ZA and its linear M2
P → 0

extrapolations in Fig. 4·6.

Light meson spectrum and condensate enhancement

The first physical result reported by the LSD Collaboration for the Nf = 6 theory was the

enhancement of the chiral condensate
〈
ψψ
〉

at the scale of the lattice cutoff a−1 [1]. By

virtue of the Gell-Mann–Oakes–Renner relation (equivalent to leading-order chiral pertur-

bation theory) [324, 101],

M2
P

2m
=

〈
ψψ
〉

F 3
P

in the limit m,M2
P → 0 (4.5)

our matching of the pseudoscalar decay constant FP between the simulations with different

Nf relates the enhancement of the condensate to a stronger dependence of the pseudoscalar

mass-squared M2
P on the renormalized fermion mass m. This effect is plotted in Fig. 4·7,

and is the reason we plot other results versus M2
P /M

2
V 0 to ensure a more directly physical

comparison between theories with different Nf .
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Figure 4·6: ZA for Nf = 2, Nf = 6 and (preliminary) Nf = 10. Because
the empty point has MPL < 4, it may suffer from non-negligible finite-
volume effects, and is omitted from the linear M2

P → 0 extrapolation (×).
Error bars are smaller than the symbols.

Figure 4·7: Pseudoscalar mass-squared M2
P plotted versus m = mf +mres

for Nf = 2, Nf = 6 and (preliminary) Nf = 10. Error bars are smaller than
the symbols.
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Data for M2
P are also presented in Table 4.4, which additionally includes results for the

masses MV and MA of the lightest vector and axial states. (MA has not yet been reliably

measured for the Nf = 10 theory.) As mentioned in Secs. 2.2.4 and 2.3, parity doubling

between the vector and axial spectral functions has been conjectured as a possible means

to reduce the S parameter in walking theories. In Fig. 4·8 we compare MV and MA plotted

versus M2
P /M

2
V 0 for Nf = 6 and Nf = 2, and in Fig. 4·9 we plot the ratio MA/MV . For

Nf = 2, our results for the ratio are roughly consistent with the physical ma1/mρ = 1.59(5)

of QCD [13], if we omit from the chiral extrapolation the lightest Nf = 2 point, which has

MPL < 4 and may suffer from non-negligible finite-volume effects as a result.

Figure 4·8: Masses of the lightest vector (MV , filled) and axial (MA,
empty) states, plotted versus M2

P /M
2
V 0 for Nf = 2 and Nf = 6.

For M2
P . M2

V 0, Fig. 4·9 indicates a substantial decrease in MA/MV for Nf = 6,

moving toward unity. In order to achieve parity doubling, the corresponding vector and

axial decay constants FV and FA must also be comparable. We plot these results for

Nf = 2 and Nf = 6 in Fig. 4·11 and tabulate their values in Table 4.5, which also includes

results for FP plotted in Fig. 4·10. We do not report chiral extrapolations of these data.

A particular difficulty for FP that was raised in Section 3.2.3 is the need to perform chiral
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Table 4.4: LSD Collaboration results for the masses of the lightest pseu-
doscalar, vector and axial states, for Nf = 2 and Nf = 6. Some preliminary
results for Nf = 10 are also included. Chiral extrapolations are linear in
M2
P → 0, and for Nf = 2 the lightest (mf = 0.005) data are omitted from

the extrapolations, as described in the text.
Nf mf M2

P MV MA MA/MV

2 0.005 0.01208(33) 0.2379(26) 0.3132(58) 1.316(25)
2 0.010 0.01873(20) 0.2495(22) 0.3533(67) 1.416(27)
2 0.015 0.02750(40) 0.2620(26) 0.3857(113) 1.472(42)
2 0.020 0.04053(61) 0.2951(33) 0.4142(99) 1.404(44)
2 0.025 0.04819(67) 0.3043(37) 0.4211(110) 1.384(32)
2 0.030 0.05951(67) 0.3210(30) 0.4264(131) 1.328(38)

2 – → 0 0.2150(31) 0.3201(107) 1.476(40)

6 0.005 0.02069(55) 0.2430(44) 0.2695(71) 1.109(19)
6 0.010 0.02864(23) 0.2661(30) 0.3289(84) 1.236(31)
6 0.015 0.04257(45) 0.3096(23) 0.4259(37) 1.376(16)
6 0.020 0.05901(43) 0.3422(25) 0.4717(77) 1.378(26)
6 0.025 0.07521(34) 0.3742(22) 0.4969(88) 1.328(22)
6 0.030 0.09271(45) 0.4045(35) 0.5818(200) 1.438(51)

6 – → 0 0.2092(31) 0.2253(78) 1.123(23)

10 0.005 0.02229(29) 0.2426(49) – –
10 0.010 0.03064(120) 0.2531(71) – –
10 0.015 0.04332(43) 0.2776(57) – –
10 0.020 0.05764(65) 0.3083(33) – –
10 0.025 0.07262(56) 0.3370(52) – –

10 – → 0 0.1978(31) – –
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Figure 4·9: Ratio of axial and vector masses MA/MV plotted versus
M2
P /M

2
V 0 for Nf = 2 and Nf = 6. Because the empty point has MPL < 4,

it may suffer from non-negligible finite-volume effects.

perturbation theory fits jointly for all of M2
P , FP and

〈
ψψ
〉
. While such fits function for

Nf = 2, they fail for Nf = 6, due both to the larger MP of the Nf = 6 simulations, as well

as the Nf -dependence of next-to-leading and next-to-next-to-leading order coefficients in

χPT expansions [325].

Although the signs of parity doubling that we observe for Nf = 6 are suggestive, they

are not yet conclusive and should be viewed with caution. Similar parity doubling was

discovered to be caused by finite volume effects in an early Nf = 8 study [265], and a

careful analysis by Ref. [292] also found these observables to be more sensitive to finite

volume effects, considering the Nf = 4 theory compared to Nf = 2. In the next section we

report more compelling results from direct lattice calculation of the S parameter itself.

4.2 Electroweak S parameter

We now focus on our calculation of the S parameter on the LSD Collaboration ensembles

listed in Table 4.2 above. We first review the S parameter, expanding on the introduc-

tion presented in Section 2.2.3 and providing details of the lattice calculation. We then
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Figure 4·10: Pseudoscalar decay constant FP plotted versus m = mf +
mres for Nf = 2 and Nf = 6 and (preliminary) Nf = 10. Error bars are
smaller than the symbols.

Figure 4·11: Vector (filled) and axial (empty) decay constants FV and FA
plotted versus M2

P /M
2
V 0 for Nf = 2 and Nf = 6.



89

Table 4.5: LSD Collaboration results for the decay constants of the lightest
pseudoscalar, vector and axial states, for Nf = 2 and Nf = 6.

Nf mf M2
P /M

2
V 0 FP FV FA

2 0.005 0.2615 0.0258(5) 0.0417(6) 0.0393(11)
2 0.010 0.4053 0.0299(4) 0.0430(5) 0.0384(14)
2 0.015 0.5950 0.0328(9) 0.0435(14) 0.0384(20)
2 0.020 0.8771 0.0358(5) 0.0487(8) 0.0389(17)
2 0.025 1.0427 0.0373(5) 0.0476(13) 0.0379(24)
2 0.030 1.2877 0.0381(5) 0.0502(14) 0.0386(29)

6 0.005 0.4729 0.0208(7) 0.0404(10) 0.0365(14)
6 0.010 0.6546 0.0306(8) 0.0426(10) 0.0360(15)
6 0.015 0.9729 0.0377(5) 0.0498(10) 0.0459(22)
6 0.020 1.3487 0.0414(8) 0.0555(13) 0.0543(28)
6 0.025 1.7190 0.0451(11) 0.0598(16) 0.0500(34)
6 0.030 2.1191 0.0513(9) 0.0686(28) 0.0709(58)

summarize our analysis and results, which for Nf = 2 and Nf = 6 were first presented in

Ref. [3].

4.2.1 Formulation

We introduced the S parameter in Section 2.2.3 as the difference between the vector and

axial vacuum polarization functions due to new physics. Let us reformulate Eqn. 2.43 as

S = 4πNDΠ′
V−A(0) − ∆SSM(M2

P ), (4.6)

where ΠV−A(Q2) ≡ ΠV V (Q2) − ΠAAQ
2 and we define Π′(Q2) through [18]

Π(Q2) ≡ Π(0) +Q2Π′(Q2), (4.7)

so that only at Q2 = 0

Π′(Q2) =
dΠ(Q2)

dQ2

∣∣∣∣
Q2=0

. (4.8)

Because the lattice measurement of Π as a current correlation function on a given gauge

configuration involves only a single pair of fermions, we include in Eqn. 4.6 the kinematic

factor ND, the number of electroweak doublets in the theory 1 ≤ ND ≤ Nf/2. We empha-

size that the gauge configurations on which these measurements are performed account for
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the dynamics of all Nf flavors of fermions. Finally, ∆SSM(M2
P ) is the contribution of the

standard model (SM) Higgs sector, subtracted so that S = 0 in the SM. This subtraction

will also take into account the effects of working at non-zero fermion mass on the lattice,

M2
P > 0; we discuss it further in Section 4.2.2 below.

In our lattice calculation, we use current correlators composed of a conserved domain

wall current and a local current (cf. Section 3.3.3),

Πµν
V V (x) = Z

〈
Tr
[
Vaµ(x)V bν(0)

]〉

=
Z

2

〈
Ls−1∑

s=0

{(
D−1
Ls−1−s(x)

)†
γ5

1 − γµ

2
Ux,µD

−1
s (x+ µ̂)γνγ5

−
(
D−1
Ls−1−s(x+ µ̂)

)†
γ5

1 + γµ

2
U †
x,µD

−1
s (x)γνγ5

}〉
(4.9)

Πµν
AA(x) = Z

〈
Tr
[
Aaµ(x)Abν(0)

]〉

=
Z

2

〈
Ls−1∑

s=0

Γ5(s)

{(
D−1
Ls−1−s(x)

)†
γ5

1 − γµ

2
Ux,µD

−1
s (x+ µ̂)γν

−
(
D−1
Ls−1−s(x+ µ̂)

)†
γ5

1 + γµ

2
U †
x,µD

−1
s (x)γν

}〉
,

(4.10)

where Γ5(s) = sign [s− (Ls − 1)/2], and the overall factors of 1
2

come from the normal-

ization of the flavor matrices Tr
[
T aT b

]
= 1

2
δab. (Translation invariance lets us label

the generic source point as the origin, for notational convenience.) D−1
s (x) is the five-

dimensional domain wall propagator from the domain walls to fifth-dimensional index s.

We determine the common renormalization factor Z non-perturbatively as described in

Section 4.1.2 above.

Ref. [142] emphasizes that using at least one conserved current in the correlators en-

sures that lattice artifacts cancel in the V –A difference, which we will verify in Section 4.2.2

below. Correlators built from two conserved currents would not require renormalization,

making determination of Z unnecessary for this calculation. However, because the con-

served currents are involve sums over the fifth dimension, the resulting correlators would

require calculating propagators from every fifth-dimensional index s to every other s′, in-
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creasing computational costs by a factor of Ls ∼ O(10).

Because the conserved currents are point-split, the appropriate Fourier transform is

Πµν
V V (Q) =

∑

x

eiQ·(x+bµ/2)Πµν
V V (x) = δµνΠV V (Q2) − Q̂µQ̂ν

Q̂2
[ΠV V (Q2) + ΠL

ij(Q
2)], (4.11)

and similarly for ΠAA, where Q̂µ = 2 sin(Qµ/2) is the lattice momentum corresponding to

Qµ = 2πnµ/L with nµ an integer four-vector labelling each lattice site. Note that we take

the transverse and longitudinal correlators themselves to be functions of Q2 even though

we use Q̂µ to define the decomposition of Πµν(Q),

ΠL(Q2) = −Q̂
µQ̂ν

Q̂2
Πµν(Q) Π(Q2) =

1

3

[
Πµµ(Q) + ΠL(Q2)

]
. (4.12)

At small momenta, Qµ ≈ Q̂µ.

We now have all the necessary ingredients to calculate S. Before doing so, we refor-

mulate the calculation in terms of a dispersive integral over the vector and axial spectral

functions RV and RA. Thinking in terms of RV and RA can provide more opportunities

to apply physical intuition, and it will also allow us to see a concrete form of the stan-

dard model subtraction (in the chiral limit ∆SSM(M2
P = 0)). The connection between the

current correlators and the spectral functions is

R(s) = 12πImΠ′(s) (4.13)

so that

ΠV−A(Q2) = Q2Π′
V−A(Q2) − ΠAA(0) =

Q2

12π

∞∫

0

ds

π

[
RV (s) −RA(s)

s+Q2

]
− F 2

P (4.14)

(again in the chiral limit M2
P = 0). For an asymptotically free theory, ΠV−A(Q2) ∼ 1/Q4
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as Q2 → ∞, which produces the first and second Weinberg sum rules [326]

1

3π

∞∫

0

ds [RV (s) −RA(s)] = 4πF 2
P (4.15)

1

3π

∞∫

0

ds [sRV (s) − sRA(s)] = 0. (4.16)

To obtain the S parameter, we take the derivative with respect to Q2, in the limit Q→ 0,

S =
1

3π

∞∫

0

ds

s



ND [RV (s) −RA(s)] − 1

4


1 −

[
1 − (M

(ref)
H )2

s

]3

θ(s− (M
(ref)
H )2)





 ,

(4.17)

where the last term is the SM subtraction ∆SSM(0). Without the standard model sub-

traction, this “zeroth” Weinberg sum rule has the form of the Das–Mathur–Okubo sum

rule [327]. On the lattice, M2
P > 0 implies a non-zero infrared cutoff on these spectral in-

tegrals, and changes the asymptotic behavior of ΠV−A(Q2) to ΠV−A(Q2) ∼ 1/Q2 at large

Q2 [328, 329].

4.2.2 Results

We now discuss our results for the S parameter calculated from Eqn. 4.6, considering

in turn the conserved–local current correlators ΠV−A(Q2), the Padé fits used to extract

Π′
V−A(0), and the standard model subtraction ∆SSM(MP ). After discussing the systematic

uncertainties entering our final analyses, we relate our results for S to the vector and axial

spectra discussed above.

Current correlators

Because the conserved–local current correlators we use were implemented specifically for

this calculation, the first order of business is to confirm that the currents we calculate are

actually conserved. We verify the conservation of Vaµ by checking the Ward identity

Q̂µΠ
µν
V V (Q) = 0, (4.18)
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which is illustrated in the top panel of Fig. 4·12.4 Note that the conserved current al-

ways corresponds to the index µ in the correlator, so Eqn. 4.18 is the Fourier transform

of Eqn. 3.62. This figure also shows the corresponding quantity Q̂µΠ
µν
AA(Q) for the ax-

ial correlator, which is consistent with partial conservation of the axial current (PCAC),

Eqn. 3.63.

The bottom panel of Fig. 4·12 confirms that these results are nontrivial tests of current

conservation, by contrasting them with the corresponding quantities from correlators that

use only local currents,

Π̃µν
V V (Q) = Z2

∑

x

eiQ·x
〈
Tr
[
V aµ(x)V bν(0)

]〉
. (4.19)

Next, we confirm the claim made in Section 4.2.1 above, that using at least one con-

served domain wall current in the correlators ensures that lattice artifacts cancel in the

V –A difference ΠV−A(Q2). The quantity Πµν
V V (Q)Q̂ν is just such a lattice artifact: the

local current corresponding to the index ν in the correlator is not conserved at non-zero

lattice spacing (even though it is proportional to the conserved current in the continuum).

The top panel of Fig. 4·13 shows that even though Πµν
V V (Q)Q̂ν 6= 0 and Πµν

AA(Q)Q̂ν 6= 0,

these lattice artifacts cancel in the difference

[
Πµν
V V (Q) − Πµν

AA(Q)
]
Q̂ν ≈ 0. (4.20)

Again, this does not hold if we use only local currents in the correlators, shown in the

bottom panel of Fig. 4·13.

We now discuss our extraction of the S parameter from the transverse conserved–local

correlator ΠV−A(Q2). First, we note from Fig. 4·14 that the magnitude of ΠV−A(Q2) for

Q2 ≤ 0.2 is comparable to the magnitude of the lattice artifacts in the local–local V –A

correlator shown in the bottom panel of Fig. 4·13. The use of conserved–local correlators

appears crucial to the success of our calculation.

4Here we average all bQ · Π(Q) that involve Qµ with the same magnitude Q2. The product is therefore
a function of Q2, which is the horizontal axis of all plots in this section.
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Figure 4·12: Top panel: vector Ward identity (V) and PCAC (A) for
conserved–local correlators Πµν(Q) measured on a Nf = 2 lattice with
mf = 0.02. Bottom panel: the corresponding quantities for correlators

Π̃µν(Q) that use only local currents (note the vertical scale). The horizontal
displacements around each Q2 value distinguish different components ν.
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Figure 4·13: Lattice artifacts ΠµνQ̂ν 6= 0 cancel in the V –A difference
for conserved–local correlators Πµν(Q) (top panel), but not for correlators
Π̃µν(Q) using only local currents (bottom panel). The horizontal displace-
ments around each Q2 value distinguish different components µ.



96

Padé fits

To analyze the V –A current correlator, Refs. [141, 142] perform fits to chiral perturba-

tion theory expressions for the low-energy constant L10 (or equivalently ℓ5) discussed in

Section 3.2.3. These authors find that they are only able to include in the chiral fits the

single ΠV−A(Q2) data point with the smallest Q2 in each of their ensembles. Due to the

larger scale a−1, the larger input fermion mass mf , and (for Nf > 2) the enhanced chi-

ral condensate
〈
ψψ
〉

characterizing LSD Collaboration simulations compared to those of

Refs. [141, 142], such χPT fits are not viable a viable option.

Instead we fit ΠV−A(Q2) to a four-parameter Padé approximant of the form

ΠV−A(Q2) =
a0 + a1Q

2

1 + b1Q2 + b2Q4
. (4.21)

This functional form has the correct asymptotic behavior ΠV−A(Q2) ∼ Q−2 at large Q2

(since M2
P > 0, as discussed below Eqn. 4.17). We can further motivate Eqn. 4.21 by

considering the dispersion relation Eqn. 4.14. If we suppose that the vector and axial spec-

tral functions RV,A are each saturated by the lightest state in the corresponding channel,

approximated as δ functions

RV (s) = 12π2F 2
V δ(s −M2

V ) RA(s) = 12π2F 2
Aδ(s −M2

A), (4.22)

then the dispersion relation becomes

Π
(pole)
V−A (Q2) = −F 2

P +
Q2F 2

V

M2
V +Q2

− Q2F 2
A

M2
A +Q2

(4.23)

=
−F 2

PM
2
VM

2
A −Q2(F 2

P (M2
V +M2

A) − F 2
VM

2
A + F 2

AM
2
V ) −Q4(F 2

P − F 2
V + F 2

A)

M2
VM

2
A +Q2(M2

V +M2
A) +Q4

.

Applying the first Weinberg sum rule (Eqn. 4.15) with this approximation for RV,A,

F 2
P = F 2

V − F 2
A, (4.24)

immediately reproduces the form of Eqn. 4.21.
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We perform an independent fit for each value of Nf and mf listed above in Table 4.2,

using the fit range Q2 < 0.4. We include in this analysis the jackknife estimate of the

covariance matrix Cαβ discussed in Section 3.2.3 above. Fit results describe the data well

throughout the entire range of Q2, as shown in Figs. 4·14, 4·15 and 4·16 for Nf = 2, Nf = 6

and Nf = 10, respectively. Fit results and statistical errors for the slope 4πΠ′
V −A(0) are

plotted versus M2
P /M

2
V 0 in Fig. 4·17, and tabulated in Table 4.6. Adding more parameters

to the rational function in Eqn. 4.21 (such as an a2Q
4 term in the numerator or a b3Q

6

term in the denominator) does not significantly affect results.

Figure 4·14: ΠV−A(Q2) data and Padé fits for Nf = 2 ensembles with
mf = 0.005, . . . , 0.03 from top to bottom.

Our fits are stable as the Q2 fit range is varied somewhat, which we illustrate in

Figs. 4·18 and 4·19 for the case of Nf = 2 simulations with mf = 0.01. Fig. 4·18 plots fit

results for 4πΠ′
V −A(0) versus the largest Q2

Max included in the fit range Q2 ≤ Q2
Max, while

Fig. 4·19 shows the corresponding χ2 per degree of freedom (averaged over the fits for all

jackknife samples). The steady upward trend in Π′
V−A(0) as Q2

Max increases is small, and

all results match those from our chosen fit range Q2 < 0.4 within uncertainties. Because

the data are strongly correlated in Q2, the χ2 per degree of freedom is not a reliable mea-

sure of the goodness of fit. We can only require χ2/dof ≪ 1, which is satisfied by all the

fits as the Q2 fit range varies.
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Figure 4·15: ΠV−A(Q2) data and Padé fits for Nf = 6 ensembles with
mf = 0.005, . . . , 0.03 from top to bottom.

Figure 4·16: Preliminary ΠV−A(Q2) data and Padé fits for Nf = 10 en-
sembles with mf = 0.005, . . . , 0.025 from top to bottom.
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Figure 4·17: 4πΠ′
V −A(0) for Nf = 2, Nf = 6 and (preliminary) Nf = 10.

Because the empty point has MPL < 4, it may suffer from non-negligible
finite-volume effects.

Figure 4·18: Q2 fit range dependence of Padé fit results for 4πΠ′
V −A(0),

for Nf = 2 ensembles with mf = 0.01.
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Figure 4·19: Q2 fit range dependence of χ2 per degree of freedom from
Padé fits for Nf = 2 ensembles with mf = 0.01.

Because the standard model subtraction ∆SSM(M2
P ) has no explicit dependence on Nf ,

our 4πΠ′
V −A(0) data already suggest that for M2

P . M2
V 0, our results for the S parameter

in the Nf = 6 and Nf = 10 theories will be significantly smaller than what we would

get by scaling up the Nf = 2 values by a factor of Nf/2. In the heavy-fermion limit

M2
P ≫ M2

V 0, the theories should all be effectively quenched. That is, the effects of the

very massive technihadrons should become negligible, and the results for all Nf should

approach a common value. This is consistent with our results for 4πΠ′
V −A(0), which all

appear to be approaching a common limit of approximately 0.25 for M2
P > M2

V 0.

S parameter

Now that we have in hand results for 4πΠ′
V −A(0), the last remaining piece of the S param-

eter calculation from Eqn. 4.6 is the standard model subtraction ∆SSM(MP ). We begin

with the spectral integral of Eqn. 4.17, using 4M2
P > 0 as the infrared cutoff. Further, we

take the reference mass to be our usual technihadronic scale, M
(ref)
H = MV 0 ∼ 1 TeV. This
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gives

∆SSM(MP ) =
1

12π

∞∫

4M2
P

ds

s

[
1 −

(
1 − M2

V 0

s

)3

θ(s−M2
V 0)

]
(4.25)

=





1

12π

(
11

6
+ log

[
M2
V 0

4M2
P

])
for 4M2

P < M2
V 0,

1

12π

(
3M2

V 0

4M2
P

− 3M4
V 0

32M4
P

+
M6
V 0

192M6
P

)
for 4M2

P ≥M2
V 0.

(4.26)

Our results for ∆SSM(MP ) as well as the S parameter itself (with ND = Nf/2) are

tabulated in Table 4.6, for Nf = 2, Nf = 6 and (preliminary) Nf = 10. We see that in

all cases ∆SSM(MP ) is small compared to 4πΠ′
V −A(0), with ∆SSM (MP ) . 0.04 for all

ensembles with MPL > 4.

Because ∆SSM(MP ) is so small, the behavior of the S parameter itself is determined

primarily by the results for Π′
V−A(0) discussed in the previous section. In the heavy-fermion

limit M2
P ≫ M2

V 0, we see the expected scaling S ∝ ND, where we take ND = Nf/2. For

M2
P . M2

V 0, however, our Nf = 6 and Nf = 10 results for the S parameter are well below

Nf/2 times the Nf = 2 value.

For chirally-broken theories with 2 < Nf < N c
f below the conformal window, S diverges

logarithmically in M2
P /M

2
V 0 as M2

P → 0 and the N2
f −4 uneaten pseudo-Nambu–Goldstone

bosons become massless. (For an IR-conformal theory, MV 0 ∼ 1/L vanishes in the contin-

uum limit, and it would not make sense to plot our results against M2
P /M

2
V 0.) We illustrate

the chiral divergence in Fig. 4·20 by including fits to the simple linear form accounting for

the chiral logarithms,

Sfit = A+BM2
P +

1

12π

(
N2
f

4
− 1

)
log

[
M2
V 0

M2
P

]
. (4.27)

For each Nf , we include in the fit only the three lightest data points that satisfy MPL > 4;

this limits the fit range to M2
P . M2

V 0. This fit allows us to estimate the value of M2
P /M

2
V 0

at which this chiral effect should become visible in our results. For Nf = 6, this occurs at a
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PNGB mass too low to simulate while satisfying the condition MPL > 4 with L = 32. It is

possible that the lightest Nf = 10 point shows signs of chiral effects from the 96 expected

PNGBs, but these results are preliminary and may change prior to publication.

Figure 4·20: S parameter for Nf = 2, Nf = 6 and (preliminary) Nf = 10.
The empty point has MPL < 4. The independent linear fits use the three
lightest solid points for each Nf , and account for expected chiral logarithmic
divergences as described in the text.

In a realistic context, the N2
f − 4 PNGBs receive mass from standard model and other

interactions not included here, even as the technifermions become massless, m→ 0. These

PNGB masses determine the value of M2
P/M

2
V 0 > 0 at which the S parameter for Nf > 2

should be compared to the M2
P → 0 limit of the Nf = 2 theory, which possesses no

additional PNGBs. Our result for Nf = 2 is S = 0.311(21), in close agreement with

the initial estimate S = 0.32(3) made by scaling up experimental QCD spectrum data to

the electroweak scale [18]. Two recent lattice studies performed similar QCD calculations,

determining the chiral perturbation theory low energy constant Lr10(µ) at a renormalization
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Table 4.6: 4πΠ′
V −A(0), ∆SSM and S forNf = 2, Nf = 6 and (preliminary)

Nf = 10. The linear M2
P → 0 extrapolation for Nf = 2 uses the three

lightest points with MPL > 4, which are 0.01 ≤ mf ≤ 0.02. All errors
included here are statistical; systematic errors are discussed in the text.

Nf mf M2
P /M

2
V 0 4πΠ′

V−A(0) ∆SSM S

2 0.005 0.2615 0.349(18) 0.047 0.302(16)
2 0.010 0.4053 0.323(11) 0.036 0.287(11)
2 0.015 0.5950 0.306(11) 0.027 0.279(11)
2 0.020 0.8771 0.280(11) 0.020 0.260(12)
2 0.025 1.0427 0.252(9) 0.017 0.235(10)
2 0.030 1.2877 0.250(9) 0.014 0.236(10)

2 – → 0 – – 0.311(21)

6 0.005 0.4729 0.149(10) 0.032 0.415(30)
6 0.010 0.6546 0.218(9) 0.025 0.628(26)
6 0.015 0.9729 0.252(11) 0.018 0.738(35)
6 0.020 1.3487 0.251(9) 0.013 0.740(32)
6 0.025 1.7190 0.236(9) 0.011 0.699(34)
6 0.030 2.1191 0.253(12) 0.009 0.750(46)

10 0.005 0.570 0.138(12) 0.028 0.664(60)
10 0.010 0.783 0.136(12) 0.022 0.658(60)
10 0.015 1.107 0.203(13) 0.016 0.999(70)
10 0.020 1.473 0.223(9) 0.012 1.100(52)
10 0.025 1.856 0.235(7) 0.010 1.170(54)
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scale of µ = mρ = 770 MeV. They report

Lr10(mρ) = −0.0052(2)(+0
−3)(

+5
−0) (Ref. [141])

Lr10(mρ) = −0.0057(11)(7) (Ref. [142]),

where in both cases the first error is statistical and the others systematic. Both results are

consistent with the experimental QCD value of Lr10(mρ) = −0.00509(57) [330]. Ref. [142]

then scales mρ by a factor of v/fπ to find S = 0.42(7) at M
(ref)
H = 120 GeV from Eqn. 3.40.

Shifting the reference mass to 1 TeV via ∆S = log
(
M

(1)
H /M

(2)
H

)
/(6π) in order to compare

with our result, we find agreement,

Ref. [141] → S = 0.27(3) Ref. [142] → S = 0.31(7).

Formally, as discussed in Section 3.2.3, two of the Nf flavors of strongly-interacting

fermions must be extrapolated to the chiral limit in order to obtain the three exactly

massless NGBs that are eaten by the W± and Z. Such a procedure is too elaborate

to carry out consistently in our simulations, which take all of the Nf fermions to be

degenerate. However, we expect that the systematic errors introduced by our approach are

minor, and are accounted for by the MP -dependence that we introduce to the standard

model subtraction ∆SSM(MP ). The main point of this subtraction is to remove from the

spectrum the three NGBs that are eaten in the course of electroweak symmetry breaking.

As M2
P → 0 for the three NGBs, this cancellation continues to function, as illustrated by

the smooth extrapolation we observe for Nf = 2.

Although our Nf = 6 (10) results for S with ND = Nf/2 are always larger than the

Nf = 2 value S = 0.311(21), these results are well below the S ≈ 0.9 (1.6) that would

be obtained from näıve Nf -scaling. In a model where only a single pair of the strongly-

interacting fermions transformed as an electroweak doublet, ND = 1, the resulting values

of S would be well below that of the Nf = 2 theory. However, even these results would still

be positive, S > 0, and in 2–3σ disagreement with the experimental S ≈ −0.15(10) [13].
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Systematics

As discussed above, our calculations are exploratory, not aimed at achieving very high

precision. Rather, our goal is to search for significant deviations from conventional wisdom

based on QCD, and for this purpose it is sufficient to achieve combined statistical and

systematic errors of roughly 10%–20% in our results for the S parameter. From Table 4.6,

we see that statistical uncertainties in S are typically around 5%, leaving enough room

in our error budget for the systematic effects we now summarize. The list below closely

follows the more general discussions in Section 3.2.3.

Discretization errors: Although we use only a single lattice spacing, it is small

(a ≈ (5MV 0)
−1), and our Iwasaki+DWF lattice action suffers only from O(a2) artifacts.

More concretely, we argued in Section 4.1.2 above that by comparing chiral extrapolations

of the different renormalization factors ZA, ZV and Z
(i)
A , we could estimate discretization

errors to be below the percent level. While different observables may be affected differently

by discretization, we use the same conserved–local current correlators to calculate ZV and

Z
(i)
A that we use to determine S. Finally, our procedure of matching scales across all

simulations also ensures that results for different Nf can be compared directly with little

systematic error.

Finite volume effects: On the other hand, small lattice spacings lead to small phys-

ical volumes. By a combination of large (323×64) lattices and fairly large pseudoscalar

masses M2
P , we are able to satisfy the conventional lattice QCD condition MPL > 4 for

all ensembles included in our analyses. However, we mentioned above that finite volume

effects tend to become more severe as Nf increases [265, 292]. We are therefore in the

process of carrying out direct numerical studies of finite volume effects, to ensure that they

are under control.

Chiral extrapolation: The downside of working at large pseudoscalar masses M2
P is

that long extrapolations are required to reach the chiral limit, with the related problem that

chiral perturbation theory cannot yet be applied to our simulations with Nf > 2. There

are also systematic effects from our procedure of taking all Nf fermions to be degenerate,
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rather than extrapolating two of them to the chiral limit to more closely reproduce EWSB

phenomenology. We argued in the previous section that these effects should be minor as a

result of our standard model subtraction procedure.

Finally, we expect issues due to autocorrelations, frozen topology and limited

statistics to be most significant. As discussed in Section 4.1.2 above, our use of a small

lattice spacing leads to slow topological evolution, with insufficient topological sampling for

most Nf = 10 simulations, and all simulations with mf = 0.005. The short, exploratory

runs summarized in Table 4.2 suggest that the effects of these and other autocorrelations

may be significant. These systematic effects related to these issues are being actively

studied, but at present remain poorly known.

Comparison to vector and axial spectra

In Secs. 2.2.4 and 2.3 we suggested that parity doubling associated with the proximity of

the conformal window might reduce the S parameter in walking theories. We have now seen

direct evidence of such a reduction in S for Nf = 6 and Nf = 10 compared to QCD-based

expectations. Earlier, in Section 4.1.2, we observed from the masses and decay constants of

the Nf = 6 theory that it is more parity doubled than Nf = 2. In this section, we explore

the potential relation between these two results, considering only the Nf = 2 and Nf = 6

theories where analyses of the masses and decay constants have been completed.

Of necessity, we adopt the single-pole approximation of the vector and axial spectral

functions, Eqn. 4.22. Although this approximation transforms the M2
P = 0 dispersion

relation Eqn. 4.14 into an expression (Eqn. 4.23) with the same Q2 dependence as the

Padé form of Eqn. 4.21, our Padé fits account for a complicated time-like structure with

cuts and multiple poles. We must therefore be wary of associating Padé fit parameters with

the values we would obtain from inserting the independently measured MV,A and FP,V,A

into Eqn. 4.23. Figs. 4·21 and 4·22 compare direct Padé fit results for
√

−ΠV−A(0) and
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4πΠ′
V−A(0) (respectively) against the corresponding single-pole dominance predictions

√
−Π

(pole)
V−A (0) = FP (4.28)

4π
d

dQ2
ΠV−A(Q2)

∣∣∣∣
Q2=0

= 4π

[
F 2
V

M2
V

− F 2
A

M2
A

]
. (4.29)

These data are also tabulated in Table 4.7 (even though 4πΠ′
V −A(0) and FP data appeared

above in Tables 4.6 and 4.5, respectively, we reproduce them here for more convenient

comparison).

Figure 4·21:
√
−ΠV−A(0) from Padé fits (filled) compared to indepen-

dently measured FP (empty), for Nf = 2 and Nf = 6.

While
√

−ΠV−A(0) = FP in the chiral limit M2
P → 0, away from the chiral limit

there is a statistically significant difference between
√

−ΠV−A(0) and FP , which increases

with M2
P . The single-pole dominance results for 4πΠ′

V−A(0) are in less disagreement with

our direct determination; although systematically lower, they show a similar decrease for

Nf = 6 compared to Nf = 2. We expect that excited states in the vector and axial channels

are likely to provide additional positive contributions to Π′
V−A(0), which will help reconcile

these approximate results with the direct fits.

We thus identify two likely sources of discrepancies between our direct results and
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Figure 4·22: 4πΠ′
V−A(0) from Padé fits (filled) compared to Eqn. 4.29

(empty), for Nf = 2 and Nf = 6.

Table 4.7: Comparing 4πΠ′(0) with Eqn. 4.29, and
√
−ΠV−A(0) with FP ,

for Nf = 2 and Nf = 6.

Nf mf M2
P /M

2
V 0 4πΠ′

V−A(0) Eqn. 4.29
√

−ΠV−A(0) FP
2 0.005 0.2615 0.349(18) 0.188(24) 0.0270(4) 0.0258(5)
2 0.010 0.4053 0.323(11) 0.225(27) 0.0324(3) 0.0299(4)
2 0.015 0.5950 0.306(11) 0.222(47) 0.0373(3) 0.0328(9)
2 0.020 0.8771 0.280(11) 0.231(34) 0.0415(3) 0.0358(5)
2 0.025 1.0427 0.252(9) 0.206(33) 0.0446(3) 0.0373(5)
2 0.030 1.2877 0.250(9) 0.204(37) 0.0481(4) 0.0381(5)

6 0.005 0.4729 0.149(10) 0.117(24) 0.0233(5) 0.0208(7)
6 0.010 0.6546 0.218(9) 0.172(26) 0.0339(3) 0.0306(8)
6 0.015 0.9729 0.252(11) 0.179(12) 0.0416(4) 0.0377(5)
6 0.020 1.3487 0.251(9) 0.164(17) 0.0484(5) 0.0414(8)
6 0.025 1.7190 0.236(9) 0.194(21) 0.0532(6) 0.0451(11)
6 0.030 2.1191 0.253(12) 0.175(36) 0.0594(6) 0.0513(9)
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Eqns. 4.28, 4.29: the effects of working at M2
P > 0, and the effects of approximating the

vector and axial spectral functions by single poles. To further explore the interplay of these

two effects, we can consider the single-pole dominance relations resulting from the first and

second Weinberg sum rules, Eqns. 4.15 and 4.16,

F 2
P − F 2

V + F 2
A = 0 (4.30)

M2
V F

2
V −M2

AF
2
A = 0. (4.31)

We plot data for these expressions in Figs. 4·23 and 4·24, and tabulate it in Table 4.8.

Although these relations are not well satisfied at any non-zero M2
P > 0, we see signs that

they may describe our data well in the chiral limit. These single-pole dominance relations

may even work better in the chiral limit for Nf = 6 than for Nf = 2.

Figure 4·23: Deviations from the single-pole relation F 2
P − F 2

V + F 2
A = 0

following from the first Weinberg sum rule, plotted versus M2
P /M

2
V 0 for

Nf = 2 and Nf = 6.

4.2.3 Future directions

We have already mentioned ongoing work to improve and extend our investigations of the

S parameter on the lattice. These include both finalizing calculations for Nf = 10 as well
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Figure 4·24: Deviations from the single-pole relation M2
V F

2
V −M2

AF
2
A = 0

following from the second Weinberg sum rule, plotted versus M2
P /M

2
V 0 for

Nf = 2 and Nf = 6.

Table 4.8: Deviations from the single-pole relations following from the first
and second Weinberg sum rules, for Nf = 2 and Nf = 6.

Nf mf M2
P /M

2
V 0

(
F 2
P − F 2

V + F 2
A

)
· 103

(
M2
V F

2
V −M2

AF
2
A

)
· 103

2 0.005 0.2615 0.471(35) 0.250(19)
2 0.010 0.4053 0.520(42) 0.299(26)
2 0.015 0.5950 0.658(88) 0.349(48)
2 0.020 0.8771 0.562(41) 0.466(50)
2 0.025 1.0427 0.562(79) 0.465(69)
2 0.030 1.2877 0.422(68) 0.531(92)

6 0.005 0.4729 0.133(15) 0.193(22)
6 0.010 0.6546 0.418(46) 0.269(30)
6 0.015 0.9729 1.048(112) 0.620(66)
6 0.020 1.3487 1.582(189) 1.017(121)
6 0.025 1.7190 0.958(148) 1.118(169)
6 0.030 2.1191 2.953(550) 2.472(485)
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as continuing to explore and constrain systematic effects. In particular, we are analyzing

163×32 and 243×32 lattices (with both fixed β and with a coarser lattice spacing tuned to

produce the same physical volume) in order to numerically assess finite volume effects for

various Nf . The 163×32 lattices may be too small to obtain much reliable information, but

we are taking advantage of their small size to use them as testbeds for the development of

GPU code for domain wall fermions. Determining the effects of fixed topology is of similar

concern, though here the best course of action is not as clear.

Even from the calculations we have already performed, there may be further physics

that we can investigate with our data on the vacuum polarization function ΠV−A(Q2).

Ref. [331], for example, extracts the strong coupling constant and estimates some four-

quark condensates by applying of the operator product expansion [328, 329] for lattice

QCD with Nf = 2 overlap quarks. We are also working on extending our current results

by using partially twisted boundary conditions [332, 333]. This technique would allow

ΠV−A(Q2) to be measured at smaller Q2 values, potentially allowing us to supplement

Padé fits with analyses based on chiral perturbation theory.

Farther in the future, we will measure the S parameter as part of the LSD Collab-

oration’s studies of SU(2) gauge theories. In addition, the USQCD Collaboration has

initiated an investigation of SU(3) gauge theory with Nf = 8 fermions in the fundamental

representation, generating 633×128 gauge configurations with highly-improved staggered

fermions [334]. We plan to measure the S parameter on these lattices, through a mixed-

action calculation that uses domain wall fermions for these measurements even though

staggered fermions are used by the HMC evolution.

The high level of activity by the many groups applying lattice techniques to study dy-

namical electroweak symmetry breaking promise an interesting future for this field. Possi-

bilities for future studies are endless, but new results on physics beyond the standard model

coming from experiments at the LHC will soon guide the course of these investigations.
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Conclusion

In this dissertation we discussed the application of lattice gauge theory to models of elec-

troweak symmetry breaking that involve new strong dynamics. Such technicolor theories

are natural and viable scenarios, in which strong interactions at the TeV scale lead to chiral

symmetry breaking that drives EWSB. While the most direct means of extending techni-

color to communicate EWSB to fermions produces tension between fermion masses and

flavor-changing neutral currents, the most stringent constraints on technicolor itself come

from precision electroweak observables, in particular the S parameter. These difficulties

may be addressed if the theory possesses approximately conformal (walking) dynamics,

as opposed to QCD-like behavior. Walking is characterized by a large mass anomalous

dimension γm(µ) ≃ 1 over a large range of scales µ, and is most likely to occur near the

lower (strongly-coupled) end of the conformal window.

To test such proposals, we turn to lattice gauge theory, the premier method for obtaining

quantitatively-reliable, non-perturbative predictions from strongly-interacting theories. We

formulate theories on the lattice by discretizing euclidean spacetime, in such a way that

the original theory is recovered in the infinite-volume, continuum limit. We carry out

numerical lattice simulations through Monte Carlo importance sampling, using the hybrid

Monte Carlo algorithm to generate ensembles of gauge configurations. Both configuration

generation and measurement of observables involving valence fermions requires inverting

the lattice Dirac operator, which is the main computational cost of the simulations.

Systematic effects due to autocorrelations and due to working in a finite, discrete space-

time are understood and under control in the case of lattice QCD, but are less certain in

other theories beyond QCD. In addition, lattice discretization of fermionic fields introduces

112
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spurious doubler modes, and the most straightforward ways of removing doublers explicitly

break chiral symmetry. Although chiral lattice fermion formulations have been developed,

these are much more computationally expensive than other lattice actions. The domain

wall fermions we use introduce a fifth dimension of length Ls, and possess exact chiral sym-

metry in the limit Ls → ∞. At finite Ls, we absorb the effects of residual chiral symmetry

breaking into a small additive renormalization of the input fermion mass.

In order to gain the greatest possible control over systematic effects, we ground our in-

vestigations on lattice QCD (Nf = 2), proceeding systematically from this case toward the

conformal window (N c
f > 8). Our initial investigations find an enhanced chiral condensate

〈
ψψ
〉

in the Nf = 6 theory relative to lattice QCD, and the final focus of this dissertation

is our calculation of the S parameter in both of these theories, along with some preliminary

results for Nf = 10.

On the lattice, we extract S from ΠV−A(Q2), the difference of vector and axial current

correlators (Eqn. 4.6). It is important to use at least one conserved current in these

correlators, to ensure that lattice artifacts cancel in the V –A difference. S is defined to

vanish in the standard model, so we use a dispersive integral to calculate and remove the

standard model contribution at non-zero PNGB mass M2
P > 0. Although we work only

with all Nf fermions degenerate, we argue that this subtraction adequately approximates

the phenomenologically relevant limit where two flavors are exactly massless while the rest

remain massive.

For Nf = 2 we can perform the M2
P → 0 extrapolation to obtain S = 0.311(21), in

agreement with both QCD-based estimates as well as recent lattice QCD calculations. For

Nf = 6 and Nf = 10, we observe the expected näıve scaling S ∝ ND in the heavy-fermion

limit M2
P ≫ M2

V 0, but we discover a substantial suppression for M2
P . M2

V 0. We also

find signs of parity-doubling in the masses and decay constants of the lightest vector and

axial mesons, which may be related to a smaller S parameter. Fig. 4·20 presents our

results the most pessimistic scenarios with ND = Nf/2. With ND = 1, the Nf = 6 and

Nf = 10 models would possess S & 0.1, much closer to (although still in tension with) the
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experimental S ≈ −0.15(10). We repeat that Nf = 10 analyses are preliminary, and in

particular include only disordered-start simulations.

These results are encouraging for the very active field that has begun applying lattice

techniques to strongly-interacting gauge theories beyond QCD. Even though such explo-

rations are broadly valuable to improving our understanding of quantum field theory itself,

they are currently motivated in large part by the possibility that new strong dynamics may

explain EWSB. This hypothesis is being tested by the LHC, and is likely to be either con-

firmed or ruled out within the next few years. Although most lattice studies are focusing

on the question of whether or not theories lie within the conformal window, phenomeno-

logical results like the calculation of the S parameter are of particular importance in this

context. Our finding that S can be significantly reduced compared to the conventional

wisdom reinforces the continued viability of these theories.

Our calculation of the S parameter is exploratory, and I am working on improving

our understanding of and control over the relevant systematic effects. Additional Nf = 2

and Nf = 6 simulations with mf = 0.0075 are underway, as are ordered-start runs for

all Nf = 10 mass points. Calculations on smaller 163×32 and 243×32 lattices will allow

direct estimation of finite-volume effects, and are being used as testbeds to develop efficient

GPU code for domain wall fermions. Partially twisted boundary conditions may allow us

to measure ΠV−A(Q2) at smaller Q2 values, and we are exploring prospects for extracting

additional physics from this polarization function.

I am also working on studies of other theories, where our investigations are still in

their early stages. Measuring the S parameter on Nf = 8 lattices generated with stag-

gered fermions will require testing mixed-action methods, while determining vector and

axial current correlators in SU(2) gauge theories may require even more significant modi-

fications. The S parameter is only one observable among many being considered in these

investigations, but may be one of the most interesting pieces of information we can obtain

from applying lattice gauge theory to models of electroweak symmetry breaking through

new strong dynamics.
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