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The tight binding Hamiltonian for graphene on the hexagonal carbon lattice is believed to provide
an accurate theoretical representation, but with no analytical solution, quantitatively precise pre-
dictions are lacking. We construct the exact field theoretic Lagrangian on the hexagonal lattice and
demonstrate, for the nearest neighbor hopping terms and a long range Coulomb interaction between
the electrons, that standard numerical methods for lattice field theory can be performed with no
sign problem. Consequently we present a method that enables the exact tight binding solution to be
found numerically to arbitrary precision on a finite hexagonal lattice, subject only to the continuum
extrapolation for the discrete Euclidean time. This will allow for the first time quantitatively precise
ab initio predictions to confront the tight binding theory with experiment.
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Introduction Graphene, a single layer of carbon
atoms forming a hexagonal lattice, has remarkable ex-
perimental properties [1, 2] with vast technological po-
tential under intensive investigation. Moreover the tight-
binding Hamiltonian is believed to provide an accurate
theoretical representation [3], with a low energy spec-
trum for the electrons equivalent to Dirac fermions for a
relativistic field in two dimensions. This observation has
prompted some researchers to adapt to graphene lattice
gauge theory techniques [4] which have been profitably
applied to the study of Quantum Chromodynamics and
other relativistic particle systems. This approach [5–8]
replaces the tight binding theory by the effective low en-
ergy Dirac Hamiltonian and then places the Dirac field
on a staggered 4d hypercubic lattice with a static electric
gauge field to induce a long range Coulomb interaction.
Although this approach has led to very interesting and
valuable results [5–8], all contact with the physical car-
bon lattice and experimentally determined lattice con-
stants of the tight-binding model is lost. On the other
hand, it should be possible to apply the hybrid Monte
Carlo technique directly to the hexagonal graphene lat-
tice. The clear advantage of this approach would be a
real understanding of the dependence on microscopic de-
tails. In this letter we show how this can be done.

Graphene is a system of interacting electrons located
at the vertices of a hexagonal lattice. It is convenient to
think of the graphene lattice as consisting of two trian-
gular sublattices, which we denote by A and B, which
together with the centers of the hexagons (sublattice C)
form a finer, underlying triangular lattice (Fig. 1). We
introduce fermionic annihilation and creation operators
ax,s, a

†
x,s for the electrons on the two sublattices, where

x is a site index and s = ±1 is the spin index. The lat-
tice must be made finite in order to perform numerical
simulations. While there is a broad range of boundary
conditions of physical interest, here we consider periodic

FIG. 1: The hexagonal graphene lattice consists of the two
Bravais triangular sublattices A (solid) and B (empty).

systems formed by identifying opposing sides of a hexag-
onal lattice of length L, illustrated in Fig. 1 for L = 4.

The tight-binding Hamiltonian H consists of two
terms. The quadratic kinetic term is

H2 =
∑
〈x,y〉,s

−κ(a†x,say,s + h.c.), (1)

where the sum runs over all pairs 〈x, y〉 of nearest neigh-
bor sites (coupling the A and B sublattices) and the two
values of the spin. The Coulomb interaction term is

HC =
∑
x,y

e2Vx,yqxqy, (2)

where qx = a†x,1ax,1 + a†x,−1ax,−1 − 1 is a local charge
operator and V is the interaction potential. We have
explicitly introduced the charge coupling constant e.

Several comments are in order. First note that in
the kinetic term we have neglected the smaller next-to-
nearest neighbor hopping within each sublattice, which
would introduce a small (probably manageable) complex
phase in the path integral. The charge operator qx has a
−1 to account for the background charge of the carbon
ion: it ensures that the system is neutral at half filling,
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and it will play an important role for our functional in-
tegral formulation. V could be the actual 3d Coulomb
potential, but could be any other interaction potential.
The only constraint is that the matrix Vx,y must be pos-
itive definite. Finally, we note that the Hamiltonian of
Eqs. 1-2 commutes with the angular momentum genera-
tors,

J± = a†x,sσ
ss′

± ax,s′ , J3 = a†x,sσ
ss′

3 ax,s′/2 , (3)

which act on the spin of the electron and play the role
in the tight-binding model of an internal or “isospin”
symmetry.

In order to explore the properties of the system one
would like to calculate expectation values

〈O1(t1)O2(t2) . . . 〉 = Z−1TrT [O1(t1)O2(t2)e−βH ] , (4)

where β can be interpreted as an extent in Euclidean
time, T [. . . ] stands for time ordering of the opera-
tors inside the square bracket with respect to the Eu-
clidean evolution implemented by exp(−βH), and Z =
Tr exp(−βH) is the partition function.
Path integral form Our goal is to provide an equiv-

alent path integral formulation of Eq. 4 conducive to cal-
culation by numerical simulation, following the standard
procedure to convert the Hamiltonian into an exactly
equivalent Lagrangian. We first express the expectation
values and the partition function in terms of an integral
over anticommuting fermionic fields, i.e. elements of a
Grassmann algebra. (The literature on the path integral
formulation of quantum expectation values is very rich.
In our work we followed the very clear and useful for-
mulation given in the first chapters of [10].) This gives
origin to an integrand with an exponential containing a
quadratic form in the fermionic fields, from H2 and the
normal ordering of HC , as well as a quartic expression,
from HC . The quartic expression can be reduced to a
quadratic form by a Hubbard-Stratonovich transforma-
tion [11], through the introduction of a suitable auxiliary
bosonic field (in our case a real field), and now the Gaus-
sian integral over the fermionic variables can be explic-
itly performed, leaving an integral over the bosonic field
only [12]. The problem, however, is to obtain an integral
that can be interpreted as an integration over a well de-
fined probabilistic measure, which can be approximated
by stochastic simulation techniques. We show here how
the symmetries of the system make this possible.

We start by rewriting the expression for the charge as

qx = a†x,1ax,1 − ax,−1a
†
x,−1. (5)

We now introduce hole creation and annihilation opera-
tors for the electrons with spin −1:

b†x = ax,−1, bx = a†x,−1 (6)

so that the charge becomes

qx = a†xax − b†xbx. (7)

Note that we dropped the spin indices since from now on
a, a† and b, b† will always refer to spin 1 and −1, respec-
tively. Finally we change the sign of the b, b† operators
on one of the sublattices. The crucial constraint is that
all redefinitions of the operators respect the anticommu-
tator algebra. Because H2 only couples sites on the two
different sublattices, it takes the form

H2 =
∑
〈x,y〉

−κ(a†xay + b†xby + h.c.). (8)

We introduce fermionic coherent states

|ψ, η〉 = e−
∑

x(ψxa
†
x+ηxb

†
x)|0〉,

〈ψ∗, η∗| = 〈0|e−
∑

x(axψx+bxηx) (9)

where ψx, ψ
∗
x, ηx, η

∗
x are anticommuting fermionic vari-

ables (elements of a Grassmann algebra).
The path integral formulation is obtained by factoring

e−βH = e−H δe−H δ . . . e−H δ (Nt terms) (10)

with δ = β/Nt, and then inserting repeatedly among the
factors the resolution of the identity expressed in terms
of an integral over the fermionic variables. The trace
in Eq. 4 must also be expressed in terms of a similar
integral (see e.g. [10] for details). This leads to inte-
grals over fermionic fields ψx,t, ψ

∗
x,t, ηx,t, η

∗
x,t (the index

t = 0, · · · , Nt− 1 appears because of the multiple resolu-
tions of the identity and can be thought of as an index
labeling Euclidean time), which contain in the integrand
expressions of the type

〈ψ∗x,t, η∗x,t|e−H δ|ψx,t, ηx,t〉. (11)

The last ingredient is the identity

〈ψ∗x,t, η∗x,t|F (a†x, b
†
x, ax, bx)|ψx,t, ηx,t〉

= F (ψ∗x,t, η
∗
x,t, ψx,t, ηx,t)e

∑
x(ψ∗x,tψx,t+η

∗
x,tηx,t)

(12)

which is true of any normal ordered function F of the
operators a†x, b

†
x, ax, bx.

The Hamiltonian is in fact already in normal order
except for the local term e2Vxxqxqx, which can be written
as the sum of two normal-ordered pieces,

e2Vxxqxqx = e2Vxx : qxqx : + e2Vxx(a†xax + b†xbx). (13)

By reassigning the quadratic term in Eq. 13 to H2, the
exponent −H δ in Eq. 11 is normal ordered but the ex-
ponential exp(−H δ) is not. However exp(−H δ) differs
from its normal ordered form by terms O(δ2). So, in the
limit of Nt →∞ one may replace the operator expression
exp(−H δ) with an exponential involving the fermionic
fields, as follows from Eq. 12. This leads to the following
expression for the partition function

Z = lim
Nt→∞

∫ ∏
m

dψ∗mdψmdη
∗
mdηm (14)

× e−
∑

m,n(ψ∗mMm,nψn+η∗mMm,nηn)e−
∑

x,y,t e
2Qx,tVx,yQy,tδ
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where Qx,t = ψ∗x,tψx,t−η∗x,tηx,t and we have used m (and
n) as a shorthand for the indices x, t. M is a matrix
whose components may be deduced from∑
m,n

ψ∗mMm,nψn =
∑
t

[∑
x

ψ∗x,t(ψx,t+1 − ψx,t) (15)

+ e2Vxxψ
∗
x,tψx,t δ − κ

∑
〈x,y〉

(ψ∗x,tψy,t + ψ∗y,tψx,t) δ
]

where ψx,Nt
must be identified with −ψx,0.

We now can perform a Hubbard-Stratonovich transfor-
mation to express the partition function as a Gaussian
integral over c-number real variables φx,t,

Z =

∫
dφdψ∗dψdη∗dη

× e−φV
−1φδ/4−ψ∗(M+ıeΦ)ψ−η∗(M−ıeΦ)η

(16)

where Φx,t;y,τ = (φx,tδ) δx,yδt,τ is a diagonal matrix.
The Gaussian integration over the anticommuting vari-

ables can now be done to obtain

Z =

∫
dφe−φV

−1φδ/4det(M − ıeΦ)det(M + ıeΦ). (17)

Because of the identity, det(M − ıeΦ) det(M + ıeΦ) =
det[(M + ıeΦ)†(M + ıeΦ)] the measure is positive defi-
nite. The down spins are treated as antiparticles (holes)
moving backward in time relative to the up spins, exactly
canceling the phase for each separately. Correlators for
the fermion operators are now obtained by integrating
the appropriate matrix elements of (M ± ıeΦ)−1 with
the measure given by Eq. 17.

Equation 17 is the main result of our work. It estab-
lishes the partition function and expectation values as
integrals over real variables with a positive definite mea-
sure. This is a crucial step for the application of stochas-
tic approximation methods. There remains the problem
of sampling the field φx,t with a measure which contains
the determinant of a large matrix. But, following what is
done in lattice gauge theory, this challenge can be over-
come through the application of the hybrid Monte Carlo
(HMC) technique [9]. In a broad outline, in HMC one
first replaces the determinants in Eq. 17 with a Gaussian
integral over complex pseudofermionic variables ζx,t:

det
[
(M + ıeΦ)†(M + ıeΦ)

]
=

∫
dζ∗dζe−ζ

∗(M+ıeΦ)†−1(M+ıeΦ)−1ζ .
(18)

One then introduces real “momentum variables” πx,t con-
jugate to φx,t and inserts in Eq. 18 unity written as a
Gaussian integral over π. One finally arrives at

Z =

∫
dφdπdζ∗dζ

× e−φV
−1φδ/4−ζ∗(M+ıeΦ)†−1(M+ıeΦ)−1ζ−π2/2.

(19)

The idea of HMC is to consider the simultaneous distri-
bution of the variables φ, π, ζ and ζ∗ determined by the
measure in Eq. 19. The phase space of these variables
is explored by first extracting the π, ζ and ζ∗ according
to their Gaussian measure, and then evolving the φ and
π variables with fixed ζ, ζ∗ according to the evolution
determined by the Hamiltonian

H(π, φ) =
π2

2
+
φV −1φδ

4
+ζ∗(M+ıeΦ)†−1(M+ıeΦ)−1ζ.

Because of Liouville’s theorem, the combined motion
through phase space produces an ensemble of variables
distributed according to the measure in Eq. 19 and, in
particular, of fields φ distributed according to Eq. 17.

Of course, the discussion above assumes that the
Hamiltonian evolution of φ and π is exact, which will
not be the case with a numerical evolution. The HMC
algorithm addresses this shortcoming by: 1) approximat-
ing the evolution with a symplectic integrator which is
reversible and preserves phase space, 2) performing a
Metropolis accept-reject step at the end of the evolution,
based on the variation of the value of the Hamiltonian.
Numerical Tests We tested our method on the two-

site system obtained by taking L = 1, which can be
solved exactly. We label the sites x = 0, 1. With κ = 1/3,
the Hamiltonian H = H2 +HC is now

H2 = −(a†1a0 + a†0a1 + b†1b0 + b†0b1) + µ(a†xax + b†xbx)

HC = 2e2(a†0a0 − b†0b0)(a†1a1 − b†1b1) +
2e2

r0
a†xb
†
xaxbx

where we have taken V0,1 = V1,0 = 1/3 and a local in-
teraction term V0,0 = V1,1 = 1/r0. The radius r0 sets
the physical scale in lattice units for localization of the
net charge at the carbon atom. It must be restricted to
r0 < 1 for stability of the vacuum. Also the normal or-
dering prescription for e2Vxxqxqx in Eq. 13 adds a new
contribution to H2 in the form of an J3 “chemical po-
tential” µa†x,sσ

ss′

3 ax,s′ . It is well known [13, 14] that a
J3 chemical potential µ does not introduce a phase in
the measure. At the correct value, µ = e2/r0, enforces
the exact SU(2) “flavor” symmetry of the tight-binding
graphene Hamiltonian. For the two-site system, the spin
generators of Eq. 3 become

J+ = J†− = (−1)xa†xb
†
x and J3 = [a†xax + b†xbx]/2− 1,

allowing us to unambiguously classify the 16 states as 5
singlets, 4 doublets and one triplet.

We compared HMC results for expectation values of
several products of fermionic operators with the corre-
sponding exact values, finding satisfactory agreement.
For example, the correlation function

Ca(t) = 〈(a0 − a1)(t) (a†0 − a
†
1)(0)〉/2 (20)

is illustrated in Fig. 2, which shows HMC results con-
verging to the exact correlators for both the free theory
with e = 0 and an interacting case with e = 0.5.
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FIG. 2: HMC results for Ca(t) (Eq. 20) with e = 0, 0.5 com-
pared to the exact correlators at r0 = 1/2 and β = Ntδ = 6.4.

FIG. 3: Ca(t) (Eq. 20) and Cb(t) (Eq. 21) with e = 0.5 com-
pared to the exact correlator. Same parameters as in Fig. 2.

A stringent test is to demonstrate the convergence to
exact SU(2) symmetry in the “time” continuum limit.
To this end, consider a second correlation function,

Cb(t) = 〈(b†0 + b†1)(t) (b0 + b1)(0)〉/2 , (21)

related to Ca(t) by an SU(2) rotation. Fig. 3 illustrates
that HMC results for both Ca(t) and Cb(t) converge to
the same continuum limit.

We extract the energies of the doublet states at nonzero
δ = β/Nt by fitting the correlator data in Fig 3 to
single exponentials, C(t) ≈ e−Et for fit range 0.4 <
t < 4. The results in Fig. 4 clearly show linear behav-
ior E ≈ E0 + c1δ, converging to the exact continuum
E0 = e2 +

√
4 + e4 − 1 ≈ 1.266. The continuum limit

is consistent with restoration of the SU(2) symmetry of
the Hamiltonian: a joint linear fit to both sets of energies
gives limδ→0E = 1.262±0.004, with c1 = 1.25±0.07 and
−0.98± 0.04 for correlators Ca and Cb, respectively.

Conclusion We emphasize by taking the time con-
tinuum limit of Eq. 16 that our approach has constructed

FIG. 4: Linear extrapolation (with error band) of the HMC
energies for doublet correlators Ca and Cb as a function of the
“time” lattice spacing δ = 6.4/Nt for Nt = 32, 64, 128 and
256. The dotted horizontal line marks E0 = 1.266.

the exact Lagrangian for the tight binding model,

L(t) = ψ†x(t)(∂t + ieσ3φx(t))ψx(t) + e2Vxxψ
†
x(t)ψx(t)

− κ
∑
〈x,y〉

ψ†x(t)ψy(t) +
1

4
φx(t)V −1

xy φy(t) , (22)

where we have defined two component spinor fields,
(ψ∗x,t, η

∗
x) → ψ†x(t) and (ψx,t, ηx)T → ψx,t(t), in the con-

tinuum. The exact two site solution supports this claim.

Introducing a discrete Euclidean time does not have
a sign problem if we restrict the hopping term to near-
est neighbor lattice sites. We anticipate that the phe-
nomenological next-to-nearest neighbor coupling κ′/κ '
0.05 can be accommodated by reweighting without a pro-
hibitive cost. Our method enables accurate prediction of
the tight binding theory for graphene utilizing the full ar-
senal of computational physics introduced by lattice field
theorists in particle and condensed matter physics. This
opens up a range of new numerical studies of phenomena
relevant to experimental investigations of graphene, such
as those due to finite lattice deformations, interaction
with phonons and external electromagnetic fields. Our
first objective [15] is to accurately determine the critical
charge for the semimetal-insulator transition for a single
layer graphene in the tight binding theory and then to
explore how changing the environment might alter the
transition to allow it to switch phases.
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