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We study the chiral properties of anSU(3) gauge theory withNf massless Dirac fermions in the fun-
damental representation whenNf is increased from2 to 6. ForNf = 2, our lattice simulations lead to a
value of〈ψ̄ψ〉/F 3, whereF is the Nambu-Goldstone-boson decay constant and〈ψ̄ψ〉 is the chiral conden-
sate, which agrees with the measured QCD value. ForNf = 6, this ratio shows significant enhancement,
presaging an even larger enhancement anticipated asNf increases further, toward the critical value for
transition from confinement to infrared conformality.

PACS numbers: 11.10.Hi, 11.15.Ha, 11.25.Hf, 12.60.Nz, 11.30.Qc

Introduction Theories with an approximate conformal
symmetry could play a role in describing new physics at
the TeV scale and beyond. While a non-supersymmetric,
vector-like gauge theory exhibits confinement and sponta-
neous chiral symmetry breaking with a small numberNf

of massless fermions, it becomes conformal in the infrared,
governed by a weak infrared fixed point ifNf is larger, but
just below the value for which which asymptotic freedom
sets in [1]. There is evidence from lattice simulations [2–
7] that this infrared conformality persists down through a
“conformal window” ofNf -values where the fixed point
can become strong, and that a transition to the confining
and chirally broken phase takes place at some valueN c

f .
Even forNf < N c

f there can remain an approximate in-
frared fixed point providing that0 < N c

f − Nf ≪ N c
f .

The scaleF of chiral symmetry breaking is then small rel-
ative to the intrinsic scales of the theory, and the fixed point
approximately governs the theory from the breaking scale
out to some higher scale.

This “walking” phenomenon can play an important
phenomenological role in a technicolor theory of elec-
troweak symmetry breaking. Flavor-changing neutral cur-
rents (FCNC’s), which are present when the technicolor
theory is extended to provide for the generation of quark
masses, can be too large unless the associated scaleΛETC

is high enough. But then the first- and second-generation
quark masses are typically much too small. They are pro-
portional to the quantity〈ψψ〉/Λ2

ETC , whereψ is a tech-
nifermion field and〈ψψ〉 is the bilinear fermion conden-
sate defined (cut off) atΛETC . Walking can lift the quark
masses by enhancing the condensate〈ψψ〉 significantly
above its value (O(4πF 3)) in a QCD-like theory [8–10],
while keepingΛ2

ETC large enough to suppress FCNC’s.

The enhancement of〈ψψ〉/F 3 asNf → N c
f from be-

low has been indicated by Feynman-graph-based studies.
But it is important also to use non-perturbative methods
since the couplings involved are strong. This letter de-
scribes a first step in this program. We focus on anSU(3)
gauge theory withNf massless Dirac fermions in the fun-
damental representation. Lattice studies have shown that
theNf = 8 theory is chirally broken, with no evidence
for even an approximate infrared fixed point [2, 4, 7];
while there is lattice evidence for conformal behavior at
Nf = 12, indicating that8 < N c

f < 12 [2–6].

We present results here for the valuesNf = 2 and
Nf = 6, drawing on newly available computational re-
sources, including 150 million core-hours on the Blue-
Gene/L supercomputer at Lawrence Livermore National
Laboratory (LLNL). Starting withNf = 2 allows us to
check the reliability of our methods by comparison with the
phenomenological value of〈ψψ〉/F 3 for QCD. Proceed-
ing carefully towardN c

f is prudent since the emergence
of widely separated scales associated with the approximate
infrared fixed point of walking is problematic for lattice
methods.

Methods For a range of small fermion massesm, we
compute the Nambu-Goldstone-boson (NGB) massMm,
the NGB decay constantFm, and the chiral condensate per
fermion 〈ψψ〉m. To set a physical scale, we also com-
pute the massMρ,m of the analogue of theρ meson and
the Sommer scaler0,m at which r2dV (r)/dr = 1.65,
whereV (r) is the static potential [11]. Since our goal is
to search for the enhancement of〈ψψ〉/F 3 asNf → N c

f ,
from the emergence of walking between the physical length
scale and the ultraviolet cutoff, taken here to be the lat-
tice spacing, it is important to keep the lattice spacing fixed
(and small) in physical units. We first choose a value for
β ≡ 6/g2

0
atNf = 6, giving a physical scale of several
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lattice units. ForNf = 2, we then tuneβ to match the
same physical scale in lattice units.

For small enough fermion mass (and yet large enough
to insure that finite-volume effects are small), the extrap-
olationm → 0 can be carried out by fitting the results
for M2

m, Fm and〈ψψ〉m to continuumχPT. The next-to-
leading-order (NLO) expressions are [12]

M2

m =
2m〈ψψ〉

F 2

{

1 + zm

[

αM +
1

Nf

log(zm)

]}

,

(1)

Fm = F

{

1 + zm

[

αF −
Nf

2
log(zm)

]}

, (2)

〈ψψ〉m = 〈ψψ〉

{

1 + zm

[

αC −
N 2

f − 1

Nf

log(zm)

]}

,

(3)
where z = 2〈ψψ〉/(4π)2F 4. The leading terms in-
corporate the Gell-Mann-Oakes-Renner (GMOR) relation.
These expressions will be directly useful forNf = 2, but
because of the growth withNf of the chiral log terms, not
for Nf = 6.

Simulation Details We use domain wall fermions with
the Iwasaki improved gauge action, as used by the RBC-
UKQCD collaboration [13]. Lattice fermion discretiza-
tion typically breaks chiral symmetry, but in the domain
wall formulation the breaking is exponentially suppressed
(with flavor symmetry preserved), making it ideal for the
study of chiral dynamics. Gauge configurations are gener-
ated using the hybrid Monte Carlo method as implemented
in the USQCD application libraries, in particularCPS, via
a multi-level symplectic integrator, and using Hasenbusch
preconditioning and chronological inversion. Autocorrela-
tion is reduced by blocking over sets of 50 trajectories.

The lattice volume is set to323 × 64, with the length of
the fifth dimensionLs = 16 and the domain-wall height
m0 = 1.8. All quantities are given in lattice units. For
Nf = 6 we chooseβ = 2.10. ForNf = 2 the choice
β = 2.70 then leads to nearly the same physical scale in
lattice units. Simulations are performed for fermion masses
mf = 0.005 to 0.03. At finite lattice spacing, even with
mf = 0, the chiral symmetry is not exact, with the vi-
olation captured in a residual massmres ≪ mf . For
Nf = 2, mres = 2.60 × 10−5, while for ForNf = 6,
mres = 8.23 × 10−4. The total fermion massm is then
m ≡ mf +mres.

Although global topological charge,Q, is an irrelevant
quantity with infinite volume, in a finite volume it becomes
relevant [14]. On a discretized lattice,Q is not conserved,
with the system evolving between sectors, an evolution cru-
cial for the correct sampling of the path integral at finite
volume. With very light fermions, the evolution ofQ slows
dramatically using current Monte Carlo methods [15]. We
find thatQ evolves sufficiently formf ≥ 0.01 for both
Nf = 2 and 6. Atmf = 0.005 it does not, leading to sys-
tematic shifts in〈ψψ〉m andFm, which we will explore in

a future paper. Here, we present results formf = 0.005,
but do not include them in our analysis. This also ensures
that for eachm, MmL > 4, keeping the NGB Compton
wavelength well inside the lattice (the p regime). Results
formf = 0.025, 0.03 are likewise not used in our analysis.

Results We first report our results for the extrapolated
values of the physical scalesMρ,m and1/r0,m, with β =
2.10 at Nf = 6 andβ = 2.70 at Nf = 2. For small
enoughm, they can be extrapolated tom = 0 usingχPT
[16], where the NLO terms are now linear inm (there is
no m log(m) term). This and the small change in these
quantities in the rangem = 0.01 – 0.02, indicate that a
linear extrapolation should suffice for bothNf = 2 and
Nf = 6. The extrapolated values in lattice units arer−1

0
=

0.111(4) (Nf = 2) and0.100(6) (Nf = 6), andMρ =
0.198(14) (Nf = 2) and0.207(15) (Nf = 6). Thus,
to within the10% accuracy of this paper, bothr−1

0
andMρ

remain fixed going fromNf = 2 (with β = 2.70) toNf =
6 (with β = 2.10). We note finally that for QCD,r0 =
0.378(9) GeV−1 [17], giving 1/Mρr0 = 0.488(12), in
reasonable agreement with ourNf = 2 value1/Mρr0 =
0.561(44).

We now turn toM2

m, Fm, and 〈ψψ〉m, noting first
that M2

m/2mFm extrapolates to〈ψψ〉/F 3 (the GMOR
relation) in the chiral limit. We can get an estimate of
the enhancement of this ratio by comparingM2

m/2mFm

for Nf = 6 to that for Nf = 2, at finite mf .
We do this by plotting the ratio of ratiosRm ≡
[M2

m/2mFm]6f/[M
2

m/2mFm]2f in Fig. 1. We use the
ratio M2

m/2mFm here, but we could also use the ratios
〈ψψ〉m/F

3

m or (M2

m/2m)3/2/〈ψψ〉1/2

m , which also ex-
trapolate to〈ψψ〉/F 3, and which show the same trend.
The evident trend in Fig. 1 is thatRm increases asmf

decreases. Even disregarding the point atmf = 0.005,
this suggests that the extrapolated value will be well above
unity. A linear extrapolation of the data form = 0.01 −
0.02 gives1.58(19) for m = 0, implying an enhancement
in this range or above unless there is a downturn inRm.
This would require either special values of theχPT param-
eters given the natural upturn of the combined chiral-log
terms in Eqs. 1 and 2, or a significant downturn before
χPT turns the curve up again asm→ 0.

The separate simulation results forM2

m/2m, Fm, and
〈ψψ〉m are shown in Figs. 2 – 4. We discuss first the evi-
dence that forNf = 2, NLO χPT (Eqs. (1) – (3)) can be
used for the extrapolation tom = 0. We note that for the
rangemf = 0.01 − 0.02, for whichMmL > 4, we have
FmL = O(1), raising another concern about the appli-
cability of NLO χPT. Nevertheless, it has been observed
that for QCD studies with similarFmL values, the finite
volume corrections are no more than a few percent [13].
We will examine these finite volume corrections in a fu-
ture paper [18], relying here on the smallness of the RBC
finite-volume corrections .

From Figs. 2 and 3, we see that forNf = 2, M2

m/2m
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FIG. 1: Rm ≡ [M2
m/2mFm]6f/[M

2
m/2mFm]2f , versusm ≡

(m(2f) + m(6f))/2, indicating enhancement of〈ψψ〉/F 3 at
Nf = 6 relative toNf = 2.

andFm change little in the rangemf = 0.01 − 0.02, in-
dicating along with theNf dependence in Eq. 3 that NLO
χPT should provide a reliable fit. Our results for〈ψψ〉m
show the expected dominance of the large linear contact
term (which does not preclude the use ofχPT). We there-
fore carry out theNf = 2 extrapolation tom = 0 using
the combined NLO chiral expansions of Eqs. (1) – (3). The
five-parameter fit, shown in Figs. 2 - 4, leads to extrapo-
lated valuesF = 0.0209(41) and〈ψψ〉/F 2 = 0.99(17),
giving the NLOχPT result

Nf = 2 :
〈ψψ〉

F 3
= 47.1(17.6). (4)

The other fit parameters areαM = 0.31(62), αF =
0.64(47) andαC = 83(29). The values of the fit param-
eters excludingαC indicate that we are near the limit of
applicability ofχPT. We note also thatχ2/d.o.f. = 6.50
with an uncorrelated fit and4 degrees of freedom.

We next compare ourNf = 2 results for〈ψψ〉/F 3

andMρ/F to the QCD quantities〈qq〉/f 3

π andmρ/fπ,
a reasonable comparison since the light-quark massesmq

are so small. Withfπ = 92.4(0.3) MeV andmρ =
775 MeV, we havemρ/fπ = 8.39(0.04), compared
to our valueMρ/F = 9.4(2.5). The condensate〈qq〉
is renormalization-scheme dependent, as ismq. In the
MS scheme at2 GeV (≃ 2.6mρ), Ref. [19] finds
〈qq〉2 GeV/f

3

π = 24.1(4.3). In our case,〈ψψ〉 is defined
by lattice regularization witha−1 ≃ 5Mρ (equivalent to
3.85 GeV). The increase in〈qq〉 going to this higher scale
can be estimated perturbatively from the anomalous dimen-
sion of the mass operator [20]. We find〈qq〉3.85 GeV/f

3

π =

29.5(5.3). There is also a renormalization factorZMS,
which converts theMS condensate to the lattice-cutoff
scheme. Using Ref. [21], we findZMS(3.85 GeV) =
1.227(11), and therefore〈qq〉3.85 GeV,lat/f

3

π = 36.2(6.5),
which agrees with Eq. 4 within errors.
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FIG. 2: The slope of the pseudoscalar mass squaredM2
m/2m in

lattice units, as a function of fermion mass. The fit forNf = 2

is a joint fit toM2
m, Fm and〈ψψ〉m, using the (solid) points at

mf = 0.01 − 0.02, constrained to match NLOχPT.
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FIG. 3: The Goldstone-boson decay constantFm in lattice units,
as a function of fermion mass. The fit forNf = 2 is a joint
fit to M2

m, Fm and 〈ψψ〉m, using the (solid) points atmf =
0.01 − 0.02, constrained to match NLOχPT.
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FIG. 4: The chiral condensate per fermion〈ψψ〉m in lattice units,
as a function of fermion mass. The fit forNf = 2 is a joint
fit to M2

m, Fm and 〈ψψ〉m, using the (solid) points atmf =
0.01 − 0.02, constrained to match NLOχPT.
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Finally, we discuss ourNf = 6 results, where both the
simulation data and theNf dependence of the NLO-χPT
expressions indicate that them values are not yet small
enough, and the volume not yet large enough, to validate
the use of NLOχPT. (We nevertheless note that a sim-
ple polynomial fit to the solid points forM2

m/2m, Fm,
and 〈ψψ〉m leads to extrapolated values that satisfy the
GMOR relation at1.3σ.) We argue, though, that a conser-
vative lower bound can be indirectly placed on〈ψψ〉/F 3

for Nf = 6 by boundingF from above and〈ψψ〉/F 2

from below.
ForFm (Fig. 3), theNf = 6 points atmf = 0.01−0.02

decline steeply with decreasingm. The eventual reliabil-
ity of χPT (Eq. 2) at lower masses will, because of the
negative curvature in the chiral log term, bend the points
down even more rapidly. An upper bound on the extrap-
olated valueF should therefore emerge from a linear fit
through the three points. This givesF ≤ 0.0208(26), es-
sentially the same as thevalue of F in theNf = 2 case.
For M2

m/2m (Fig. 2), theNf = 6 points in the range
mf = 0.01−0.02 are nearly flat as a function ofm. Since
χPT behavior (Eq.1), with its positive curvature, sets in ei-
ther in this mass range or lower, bending the points up as
m is decreased, a lower bound on the extrapolated value
〈ψψ〉/F 2 should emerge from a linear fit through these
three points. This gives〈ψψ〉/F 2 ≥ 1.25(5).

Together, these give the conservative lower bound

Nf = 6 :
〈ψψ〉

F 3
≥ 60.0 (8.0). (5)

The central value of even this conservative bound shows
roughly a30% enhancement relative to theNf = 2 central
value (Eq.4). A comparison to the more preciseNf = 2
ratio from QCD phenomenology (36.2 (6.5)), leads to an
increase of at least30% at 1σ. And we note that these
bounds are well below the enhancement indicated by in-
spection of Fig. 1.

Conclusion The ratio 〈ψψ〉/F 3 in an SU(3) gauge
theory withNf massless Dirac fermions in the fundamen-
tal representation, with simulations carried out with a small
lattice cutoff fixed in physical units, is enhanced whenNf

is increased from2 to 6 – by 40% or more from inspec-
tion of the simulation results (Fig. 1). An enhancement of
less than40% would require a significant downturn inRm

(Fig. 1) before the eventual applicability of NLOχPT very
likely bends it up again. Even the conservative lower bound
of Eq. 5 indicates a substantial increase. This enhancement
of 〈ψψ〉/F 3 atNf = 6 relative toNf = 2, arising from
distance scales between the confinement scale (∼ 1/Mρ)
and the lattice scale (∼ (5Mρ)

−1), appears even though
theNf = 6 theory is not yet walking. (The running cou-
pling at the lattice scale forNf = 6 is still rather weak –
not much stronger than forNf = 2.)

For comparison, a perturbativeMS computation of the
enhancement of〈ψψ〉/F 3 atNf = 6 relative toNf = 2,

based on the anomalous dimension of〈ψψ〉, gives an en-
hancement on the order of1.05 to 1.1, depending on the
order of perturbation theory [18]. This can be converted to
the lattice scheme using the results of Ref. [21] by multi-
plying by the ratioZMS

6f /Z
MS
2f = 1.449(29)/1.227(11) =

1.18(3). The result is a perturbative enhancement on the
order of20 − 30%.

It will be helpful to obtain results for smallerm (with a
larger lattice volume) and perhaps study the chiral extrap-
olations at NNLO. We are now exploring larger values of
Nf (→ N c

f ) and other gauge groups, and we will study the
consequences of walking for quark and lepton mass gener-
ation and electroweak precision measurements.
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