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Abstract

We use Monte Carlo simulations to obtain an improved lattice measurement of the critical cou-

pling constant
[
λ/µ2

]
crit

for the continuum (1 + 1)-dimensional (λ/4)φ4 theory. We find that

the critical coupling constant depends logarithmically on the lattice coupling, resulting in a con-

tinuum value of
[
λ/µ2

]
crit

= 10.8+.10
−.05, in considerable disagreement with the previously reported

[
λ/µ2

]
crit

= 10.26+.08
−.04. Although this logarithmic behavior was not observed in earlier lattice

studies, it is consistent with them, and expected analytically.
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I. INTRODUCTION

The two-dimensional φ4
2 field theory specified by the Euclidean Lagrangian

LE =
1

2
(∇φ)2 +

1

2
µ2
0φ

2 +
λ

4
φ4 (1)

exhibits a phase transition between a symmetric phase with 〈φ〉 = 0 and a phase in which

the discrete symmetry of the Lagrangian under φ → −φ is broken [1, 2]. Loinaz and Willey

[3] have used Monte Carlo simulations to calculate the critical value of the coupling constant

that separates the two phases of the theory.

In this work we perform similar calculations, discretizing the Euclidean quantum field

theory (EQFT) of Eqn. 1 in terms of the two dimensionless lattice parameters

λ̂ ≡ λa2 µ̂2
0 ≡ µ2

0a
2, (2)

where a > 0 is the lattice spacing. (In two dimensions, both λ and µ2
0 have mass dimension

[λ] = [µ2
0] = 2.) The lattice action that regularizes Eqn. 1 is

A =
∑

n

[
1

2

d∑

ν=1

(φn+eν − φn)
2 +

1

2
µ̂2
0φ

2
n +

λ̂

4
φ4
n

]
, (3)

where eν is the unit vector in the ν direction. The EQFT is the continuum limit a → 0 of

this lattice model.

In two dimensions, the field strength and self-coupling renormalization factors Zφ and Zλ

are finite, and do not affect the phase structure of the theory. However, there is an infinite

mass renormalization, which requires that the bare mass parameter be tuned to infinity

as the continuum limit is taken, µ2
0 ∼ µ2 ln(1/a), where µ2 is the finite renormalized mass

squared. Since λ is independent of a and µ2
0 diverges only logarithmically as a → 0, both λ̂

and µ̂2
0 vanish in the continuum limit a → 0. Taking the continuum limit therefore reduces

the number of independent dimensionless parameters from two to one, which we take to be

the dimensionless coupling constant f = λ/µ2.

We can parametrize the mass renormalization as

µ2
0 = µ2 − δµ2, (4)

LE =
1

2
(∇φ)2 +

1

2
µ2φ2 +

λ

4
φ4 −

1

2
δµ2φ2, (5)

2



FIG. 1: The only divergent Feynman diagram in φ4
2 theory.

where µ2 and the finite part of δµ2 depend on the choice of renormalization condition.

We want to choose a renormalization scheme in which the effective coupling constant f

distinguishes between the two phases of the theory, which is not the case for several popular

renormalization conditions [3]. We will achieve this by choosing the mass renormalization to

be equivalent to normal-ordering the interaction in the interaction picture in the symmetry

phase.

There is only one divergent Feynman diagram in φ4
2 theory, Fig. 1, which involves the

integral

Aµ2 =
1

N2

N∑

k1=1

N∑

k2=1

1

µ̂2 + 4 sin2(πk1/N) + 4 sin2(πk2/N)

→

∫
d2p

(2π)2
1

p2 + µ2
(6)

in the continuum limit. From Eqns. 1 and 4,

G−1(p2) = p2 + µ2
0 + Σ0(p

2) = p2 + µ2 + Σ(p2), (7)

Σ(p2) = 3λAµ2 − δµ2 + two-loop. (8)

Therefore the renormalization condition

δµ2 = 3λAµ2 (9)

removes all ultraviolet divergence from the perturbation series based on the renormalized

parametrization of Eqn. 4.

Applying this renormalization condition,

LE =
1

2
(∇φ)2 +

1

2
µ2φ2 +

λ

4
φ4 −

3

2
λAµ2φ2

=
1

2
(∇φ)2 +

1

2
µ2φ2 +

λ

4
:φ4:µ2 , (10)

dropping a constant piece in the second line. In terms of f = λ/µ2, the first line of Eqn. 10

can be written as

LE =
1

2
(∇φ)2 +

1

2
µ2(1− 3fAµ2)φ2 +

fµ2

4
φ4. (11)
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On the lattice (a > 0), Aµ2 is finite, so we can argue that for f sufficiently small, the

exact effective potential has a single minimum at 〈φ〉 = 0. The coefficient of φ2 in Eqn. 11

is negative for large f , suggesting a transition to the broken symmetry phase. However, the

effective potential need not be well approximated by its tree-level form at strong coupling.

Chang [1] has shown that this transition does occur, using a duality transformation from the

strong coupling regime of Eqn. 11 to a weakly-coupled theory normal-ordered with respect

to the vacuum of the broken symmetry phase.

We proceed by using Monte Carlo simulations to map the critical line in the (µ̂2
0, λ̂) plane.

We determine critical values of µ̂2
0c(λ̂) for various λ̂, calculating the infinite-lattice-size limit

of Monte Carlo data measured on lattices of finite size. We then impose our renormalization

condition

µ̂2 = µ̂2
0 + 3λ̂Aµ2 (12)

using the integral representation of Aµ2 in the infinite-volume limit,

Aµ2 =

∫ ∞

0

dt exp
[
−µ̂2t

]
(exp(−2t)I0(2t))

2 . (13)

Here I0 is a modified Bessel function of the first kind.

For fixed λ̂ 6= 0, we solve Eqns. 12 and 13 numerically to determine µ̂2
c from µ̂2

0c. We then

extrapolate λ̂ → 0 to obtain the critical coupling constant

[
λ/µ2

]
crit

≡ fc = lim
λ̂,µ̂2→0

[
λ̂/µ̂2

c

]
(14)

in the continuum limit. We will see that this extrapolation has a nonlinear form.

II. SIMULATIONS

We performed Monte Carlo simulations based on the lattice action of Eqn. 3 on N × N

lattices with N = 32, 64, 128, 256, 512, and 1024. For each N , we set λ̂ = 1.0, 0.7, 0.5, 0.25,

0.1, 0.05, 0.03, 0.02, and 0.01, and for each (N, λ̂) scanned in µ̂2
0 beginning in the symmetric

phase and ending in the broken symmetry phase. To further constrain the data at small λ̂,

we performed additional simulations at N = 600 and 1200 for λ̂ = 0.05, 0.03, 0.02, and 0.01.

To reduce critical slowing down, our simulations execute a Wolff cluster algorithm [4] up-

date on the embedded Ising model after every five random sweeps of the lattice with standard
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Metropolis updating, as in [3, 5]. After an initial thermalization of 213-214 Metropolis-Wolff

cycles, we measured lattice quantities following each of an additional 213-214 cycles.

Since these measurements are not independent, we also calculated the autocorrelation

time τ for each (N, λ̂, µ̂2
0) simulation and incorporated it into our analysis. Typical autocor-

relation times are around ten measurements, with maximum autocorrelation times around

100 measurements for λ̂ ≪ 1 on small lattices. In every simulation the thermalization time

exceeded 100τ and we took at least 100 statistically independent measurements. As a result,

our statistical uncertainties are quite small in comparison to systematic uncertainties.

We use three diagnostics to determine the critical value of µ̂2
0c where the phase transition

occurs for fixed λ̂. The first is the familiar peak in the susceptibility χ ∝ 〈φ2〉 − 〈|φ|〉2, with

uncertainty extracted from the full width of the peak at half its maximum value (FWHM).

The second diagnostic is the bimodality B(µ̂2
0), a parameterization of the shape of the

histogram of the values of φ measured during each simulation with fixed (N, λ̂, µ̂2
0) [3].

Fig. 2 illustrates these histograms in the two phases of φ4
2 theory: in the symmetric phase

the histogram has a single peak around 〈φ〉 = 0, while in the broken symmetry phase it has

two peaks, around ±〈|φ|〉 6= 0. Constructing the histogram with an odd number of bins, we

define the bimodality as

B = 1−
n0

nmax

, (15)

where n0 is the number of measurements in the central bin around zero, and nmax is the

largest number in any bin. In the symmetric phase, B ≪ 1, while in the broken symmetry

phase B ≈ 1 (cf. Fig. 2).

Since B depends on the specific evolution of the system, it can vary considerably for

similar values of µ̂2
0, particularly in the symmetric phase. To smooth out this jitter, we

consider the three-point running average B̃(µ̂2
0) of B(µ̂2

0) over µ̂
2
0,

B̃(µ̂2
0) =

[
B(µ̂2

0 −∆µ̂2
0) + B(µ̂2

0) +B(µ̂2
0 +∆µ̂2

0)
]
/3. (16)

Fig. 3 illustrates the benefits of this smoothing procedure. We take as the phase transition

point the value of µ̂2
0 for which B̃(µ̂2

0) is closest to 0.5, with bounds given by the µ̂2
0 most

distant from this critical µ̂2
0c for which 0.1 < B̃ < 0.95 (cf. Fig. 3). These conventions produce

results consistent with those from the susceptibility, with comparable (though generally

smaller) uncertainties, as shown in Table I.
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Φ

Symmetric phase, B=0,

HN, Λ, Μ0
2L=H32, 0.05, -0.075L

Φ

Broken phase, B=0.99,

HN, Λ, Μ0
2L=H32, 0.05, -0.11L

FIG. 2: Histograms of φ for simulations with N = 32 and λ̂ = 0.05, in the symmetric phase (left,

µ̂2
0 = −0.075) and broken symmetry phase (right, µ̂2

0 = −0.11).
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FIG. 3: Bimodality plotted against µ̂2
0 for simulations with N = 64 and λ̂ = 0.5, before (left) and

after (right) smoothing.

To verify that the bimodality is a robust indicator of the phase transition, we checked

its behavior in the well-understood two-dimensional Ising model. Using the conventions

stated above, we found that the critical µ̂2
0c indicated by the bimodality agrees well with

that indicated by the susceptibility in this case as well, with comparable uncertainties. Both

observables agree with the exact analytic result.

Finally, we extract a third estimate of the critical µ̂2
0c using the Binder cumulant [6]

U = 1−
〈φ4〉

3 〈φ2〉2
. (17)

For λ̂ fixed, U has a fixed point at the critical µ̂2
0c for any value of the lattice size N . We take

as the critical µ̂2
0c the value of µ̂2

0 at which U for the three largest N are closest together,
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TABLE I: Critical µ̂2
0c from each phase transition indicator.

λ̂ Susceptibility Bimodality Cumulant

1.00 -1.27233(16) -1.27258(10) -1.27260(45)

0.70 -0.95151(25) -0.95152(7) -0.95180(40)

0.50 -0.72080(11) -0.72131(9) -0.72130(30)

0.25 -0.40346(18) -0.40373(6) -0.40390(20)

0.10 -0.18424(11) -0.18432(9) -0.18430(20)

0.05 -0.10060(5) -0.10071(4) -0.10100(35)

0.03 -0.06410(4) -0.06414(5) -0.06420(15)

0.02 -0.04464(3) -0.04468(5) -0.04500(30)

0.01 -0.02397(6) -0.02399(5) -0.02410(10)

with bounds given by the µ̂2
0 at which all three separate.

This analysis of the cumulant in Eqn. 17 produces a single critical µ̂2
0c for each λ̂, while

we have susceptibility and bimodality data for each (N , λ̂). Performing a linear regression

to find the N → ∞ limit of the susceptibility and bimodality data with λ̂ fixed gives us a

total of three independent indicators of the critical µ̂2
0c for each λ̂.

We find all three values for each λ̂ consistent with each other, with comparable uncertain-

ties (Table I). Combining them produces the second column in Table II. The third column in

Table II holds the corresponding critical renormalized µ̂2
c determined from Eqns. 12 and 13,

while the fourth presents the values of the critical coupling λ̂/µ̂2
c which are to be extrapolated

to the a → 0 continuum limit.

III. ANALYSIS

Fig. 4 plots the values of λ̂/µ̂2
c in the fourth column of Table II and clearly rules out a

linear λ̂ → 0 extrapolation like that performed in [3].

Analytic investigations into the structure of scalar field theories, and super-renormalizable

theories more generally, long ago established that correlation functions in these theories

typically depend on logarithms of the coupling [7, 8, 9, 10, 11]. Jackiw and Templeton

[10] explicitly demonstrated the presence of such logarithmic terms in a simple φ3
4 model,

7



TABLE II: Critical µ̂2
0c, µ̂

2
c and λ̂/µ̂2

c for different λ̂.

λ̂ µ̂2
0c µ̂2

c λ̂/µ̂2
c

1.00 -1.27251(16) 0.097320(46) 10.275(5)

0.70 -0.95153(16) 0.068462(45) 10.225(7)

0.50 -0.72112(11) 0.048884(32) 10.228(7)

0.25 -0.40372(9) 0.024176(26) 10.341(11)

0.10 -0.18429(8) 0.009476(23) 10.553(26)

0.05 -0.10067(12) 0.004679(33) 10.686(76)

0.03 -0.06412(5) 0.002794(15) 10.737(59)

0.02 -0.04466(10) 0.001870(28) 10.695(163)

0.01 -0.02400(4) 0.000931(12) 10.739(138)

0.0 0.2 0.4 0.6 0.8 1.0
Λ10.0

10.2

10.4

10.6

10.8

11.0

Λ�Μ2

FIG. 4: Critical coupling constant λ̂/µ̂2
c plotted against λ̂.

using a truncated Bethe-Salpeter equation. This non-analytic dependence on the coupling

appears generically in more complicated super-renormalizable theories as well, including the

φ4
2 theory we consider here.

We can numerically investigate the effect of such logarithmic dependence by fitting the

data in Table II and Fig. 4 to a function of the form

λ̂/µ̂2
c = c0 + c1λ̂+ c2λ̂ ln λ̂. (18)

The constant c0 is exactly the continuum critical coupling constant fc we wish to determine.

Performing this fit, we find c0 = fc = 10.78(3), with χ2 = 1.21 per degree of freedom (dof).
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TABLE III: λ̂, µ̂2 → 0 extrapolations of λ̂/µ̂2
c vs. λ̂.

Form of λ̂/µ̂2
c fit fc χ2/dof

fc + c1λ̂ 10.31(6) 48

fc + c1λ̂+ c2λ̂
2 10.60(5) 5.8

fc + c1λ̂+ c2λ̂ ln λ̂ 10.78(3) 1.2

fc + c1λ̂+ c2λ̂ ln λ̂+ c3λ̂
2 10.89(2) 0.16

fc + c1λ̂+ c2λ̂ ln λ̂+ c3λ̂
2 ln λ̂ 10.87(2) 0.13

Performing fits with additional terms (c3λ̂
2 or c3λ̂

2 ln λ̂) results in even larger fc ≈ 10.9 with

very small χ2/dof ≈ 0.15 (Table III). Fits that do not include a term logarithmic in λ̂ are

poor, with χ2/dof ≫ 1.

We can check the consistency of these results by fitting µ̂2
c as a function of λ̂ and extracting

fc from the coefficient of the term linear in λ̂,

µ̂2
c = d0 + λ̂/fc +O(λ̂2).

Fitting

µ̂2
c = d0 + λ̂/fc + d1λ̂

2 + d2λ̂
2 ln λ̂, (19)

we find fc = 10.77(4) with χ2/dof = 1.1. As above, including additional terms in the fit

raises fc while dramatically lowering the χ2/dof , while fits without any logarithmic term

have χ2/dof ≫ 1 (Table IV).

Since µ̂2
c → 0 as λ̂ → 0, we should find the constant term d0 ≈ 0 in these fits, and we

can also perform fits with d0 explicitly set to zero as an additional check. Of the fits listed

in Table IV, only that of Eqn. 19 has d0 vanish within uncertainty, although d0 is within 2σ

of zero for the fit form

µ̂2
c = d0 + λ̂/fc + d1λ̂

2 + d2λ̂
3

as well. The value of fc extracted from the fit

µ̂2
c = λ̂/fc + d1λ̂

2 + d2λ̂
2 ln λ̂, (20)

is fc = 10.79(3) with χ2/dof = 1.0, in agreement with the values from Eqns. 18 and 19.

Clearly, systematic errors, particularly the choice of continuum extrapolation form, dom-

inate over statistical errors. Tables III and IV summarize fc for various linear and nonlinear

9



TABLE IV: λ̂ → 0 extrapolations of µ̂2
c vs. λ̂.

Form of µ̂2
c fit fc χ2/dof

d0 + λ̂/fc 10.24(2) 28

d0 + λ̂/fc + d1λ̂
2 10.24(6) 33

d0 + λ̂/fc + d1λ̂
2 + d2λ̂

3 10.55(5) 4.1

d0 + λ̂/fc + d1λ̂
2 + d2λ̂

2 ln λ̂ 10.77(4) 1.1

d0 + λ̂/fc + d1λ̂
2 + d2λ̂

2 ln λ̂+ d3λ̂
3 10.98(2) 0.04

d0 + λ̂/fc + d1λ̂
2 + d2λ̂

2 ln λ̂+ d3λ̂
3 ln λ̂ 10.93(2) 0.05

λ̂/fc 10.27(2) 47

λ̂/fc + d1λ̂
2 10.31(7) 49

λ̂/fc + d1λ̂
2 + d2λ̂

3 10.61(5) 5.5

λ̂/fc + d1λ̂
2 + d2λ̂

2 ln λ̂ 10.79(3) 1.0

λ̂/fc + d1λ̂
2 + d2λ̂

2 ln λ̂+ d3λ̂
3 10.90(2) 0.18

λ̂/fc + d1λ̂
2 + d2λ̂

2 ln λ̂+ d3λ̂
3 ln λ̂ 10.89(2) 0.14

extrapolations, along with the goodness of the fits, χ2/dof . Neglecting fits with χ2/dof ≫ 1,

we adopt a final result of

fc = 10.8+.10
−.05 (21)

to be consistent with the numbers in Tables III and IV.

IV. DISCUSSION

Since our approach closely parallels that of Loinaz and Willey [3], it is distressing that

our final result disagrees so strongly with the fc = 10.26+.08
−.04 reported there. However, our in-

dividual data points are largely consistent with theirs, as shown in Fig. 5. The disagreement

between our final results comes almost entirely from the nonlinear continuum extrapolations

discussed above.

Re-analyzing the data in [3], we find (Tables V and VI) that they are consistent with

all the nonlinear fits considered in our analysis above. Both linear and nonlinear fits all

have χ2/dof ∼ 0.5. While nonlinear extrapolations were not required by the data in [3], by

considering only the linear case Loinaz and Willey overlooked significant systematic effects

10
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FIG. 5: Our data for λ̂/µ̂2
c compared with the results of [3] (empty circles).

TABLE V: λ̂, µ̂2 → 0 extrapolations of λ̂/µ̂2
c vs. λ̂, for [3].

Form of λ̂/µ̂2
c fit fc χ2/dof

fc + c1λ̂ 10.32(5) 0.39

fc + c1λ̂+ c2λ̂
2 10.34(9) 0.49

fc + c1λ̂+ c2λ̂ ln λ̂ 10.34(12) 0.51

fc + c1λ̂+ c2λ̂ ln λ̂+ c3λ̂
2 10.18(25) 0.59

fc + c1λ̂+ c2λ̂ ln λ̂+ c3λ̂
2 ln λ̂ 10.23(22) 0.63

due to fit form. In Tables V and VI, we see 10.2 . fc . 11.9 in fits with χ2/dof < 1,

consistent with our result fc = 10.8+.10
−.05.

Several other authors have also calculated the critical coupling fc in φ4
2 theory using a

variety of methods, numerical schemes, and analytic approximations. These approaches,

summarized in Table VII, produce a large spread of results, of which ours is the largest.

The density matrix renormalization group result fc = 9.982(2) [16] is notable for its ex-

tremely small claimed uncertainty. However, this result relies on linear λ̂ → 0 extrapolations

like those in [3], performed with just two data points at λ̂ = 0.1, 0.25, for fixed lattice size

N = 500 or 1000. A linear 1/N → 0 extrapolation is then performed using the two resulting

values. Thus, we expect this result to suffer from the difficulties discussed above.

The diffusion Monte Carlo result fc = 10 ± 0.8 ± 0.4 [15] agrees with our result within

its relatively large statistical and systematic uncertainties. The Gaussian effective potential

results fc = 10.272 [12], fc = 10.211 [1], and fc = 10.21 [13] (the last of which coincides

11



TABLE VI: λ̂ → 0 extrapolations of µ̂2
c vs. λ̂, for [3].

Form of µ̂2
c fit fc χ2/dof

d0 + λ̂/fc 10.23(3) 0.65

d0 + λ̂/fc + d1λ̂
2 10.37(9) 0.44

d0 + λ̂/fc + d1λ̂
2 + d2λ̂

3 10.57(16) 0.32

d0 + λ̂/fc + d1λ̂
2 + d2λ̂

2 ln λ̂ 10.80(24) 0.23

d0 + λ̂/fc + d1λ̂
2 + d2λ̂

2 ln λ̂+ d3λ̂
3 11.86(23) 0.02

d0 + λ̂/fc + d1λ̂
2 + d2λ̂

2 ln λ̂+ d3λ̂
3 ln λ̂ 11.64(12) 0.01

λ̂/fc 10.24(2) 0.57

λ̂/fc + d1λ̂
2 10.32(5) 0.38

λ̂/fc + d1λ̂
2 + d2λ̂

3 10.35(9) 0.49

λ̂/fc + d1λ̂
2 + d2λ̂

2 ln λ̂ 10.35(12) 0.50

λ̂/fc + d1λ̂
2 + d2λ̂

2 ln λ̂+ d3λ̂
3 10.19(25) 0.59

λ̂/fc + d1λ̂
2 + d2λ̂

2 ln λ̂+ d3λ̂
3 ln λ̂ 10.24(22) 0.63

with the oscillator representation result) are the next closest. Both the Gaussian effective

potential and oscillator representation methods incorrectly predict a first-order phase tran-

sition, in violation of the Simon-Griffiths theorem [24], which requires the φ4
2 theory phase

transition to be second order.

V. CONCLUSIONS

We have used Monte Carlo simulations to obtain an accurate lattice measurement of the

continuum critical coupling constant fc = 10.8+.10
−.05 in φ4

2 theory, improving the previously

reported Monte Carlo result [3].

While our data are consistent with those reported in [3], our improved precision forces

a nonlinear extrapolation to the continuum limit, producing a significantly different contin-

uum result. The older data are compatible with these nonlinear extrapolations, although

such nonlinearity was neither required nor investigated previously. Applying nonlinear ex-

trapolations to the older data, we obtain continuum results consistent with our own.

Significantly, nonlinearity – in particular terms logarithmic in the lattice coupling λ̂ –

12



TABLE VII: Various results for the critical coupling fc.

Method Result Reference

Monte Carlo 10.8+.10
−.05 This work

Gaussian effective potential 10.272 [12]

Gaussian effective potential 10.211 [1]

GEP and oscillator rep. 10.21 [13]

Spherical field theory 10.05 [14]

Diffusion Monte Carlo 10± 0.8± 0.4 [15]

Density matrix RG 9.982(2) [16]

Continuum light-front 9.91 [17]

Connected Green function 9.784 [12]

Coupled cluster expansion 3.80 < fc < 8.60 [18]

Discretized light-front 7.325, 7.71 [19]

Discretized light-front 7.316, 5.500 [20, 21]

Random phase approximation 7.2 [22]

Non-Gaussian variational 6.88 [23]

is expected analytically. This convergence of analytic theory and numerical data provides

additional evidence that our improved result is accurate and reliable, and can be used to

evaluate analytic approximations.
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