
Lattice Simulations of Nonperturbative Quantum Field Theories 1

David A. Schaich
Prof. William Loinaz, Faculty Advisor

12 May 2006

1Submitted to the Department of Physics of Amherst College in partial fulfillment of the requirements
for the degree of Bachelor of Arts with Distinction.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/288395158?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

First I thank my parents, without whose continuous assistance, encouragement
and moral and material support over the past twenty-odd years I would not have been
able to undertake this work, let alone complete it.

My advisor, Prof. Will Loinaz also has my deep gratitude – for his assistance,
encouragement, deep knowledge, and for his willingness and ability to assist his students
in any way necessary.

I also thank Prof. Kaplan of the Department of Mathematics and Computer Science
for his work building and maintaining Amherst’s computing cluster, as well as promptly
and competently assisting with the related questions and problems.

Finally, I would like to acknowledge the rest of the Amherst College Department
of Physics, my teachers, friends, and constant companions over the past four years.

Software used extensively in this work includes Condor cluster management soft-
ware, Mathematica, ROOT, and the GNU Scientific Library.

This work was supported by National Science Foundation grant 0521169 and a
Faculty Research Award Program grant from Amherst College.

ii

Abstract

We give a brief pedagogical introduction to Markov chain Monte Carlo simulations
of statistical systems and the basics of the φ4 quantum field theory. We show how to treat
φ4 theory as a statistical system in Euclidean space and perform lattice simulations using
both local and cluster Monte Carlo algorithms. We then present the details and results
of simulations of φ4 theory on the lattice in which we chart the phase transition line of
the theory in two and four dimensions and calculate an accurate value of the continuum
critical coupling constant in two dimensions. Finally we discuss lattice simulations that
calculate the masses of φ4 solitons in two dimensions, nonperturbative phenomena that
result from the nonlinearity of the theory.

The two-dimensional critical coupling constant we obtain is [λ/µ2]crit = 10.85+.03
−.08,

which disagrees by over 7σ with the value of [λ/µ2]crit = 10.26+.08
−.04 reported by Loinaz

and Willey [32]. We show that this disagreement is the result of higher-order dependence
of [λ/µ2]crit on λ, which is only revealed by our more extensive calculations and resulting
increase in precision; our data is actually largely consistent with theirs. Our calculations
of φ4 soliton masses improve upon the previous study by Ciria and Tarancón [15]; al-
though our simulation data appears to agree with theirs we note and correct an error in
their analysis.

iii

Contents

Acknowledgements ii

Abstract iii

Table of Contents iv

List of Figures vii

List of Tables x

List of Code Snippets xi

1 Introduction 1

1.1 The Purposes of This Work . 2

1.2 Outline . 2

1.3 Note on Units . 3

2 Statistical Background 4

2.1 Familiar Concepts . 4

2.2 Complications: Weights and Correlations 5

2.3 Bootstrap and Jackknife Methods . 8

3 Basics of Computer Simulations 9

3.1 Pseudorandom Numbers and Generators 9

3.2 Random Walks . 10

3.2.1 Basic Random Walk . 10

3.2.2 Constrained Random Walks . 11

3.2.3 Comparison to Others’ Results 14

3.3 Lattices and Boundary Conditions . 14

4 Markov Chain Monte Carlo 18

4.1 Motivation . 18

4.2 Importance Sampling . 19

4.3 Markov Chains . 20

iv

5 The Ising Model and Monte Carlo Algorithms 22

5.1 The Ising Model . 22

5.2 Phases, Phase Transitions, and Spontaneous Symmetry Breaking 24

5.3 Metropolis Algorithm . 30

5.4 Critical Slowing Down . 31

5.5 Wolff Cluster Algorithm . 32

5.6 Related Statistical Systems . 36

5.6.1 Potts Model . 36

5.6.2 XY Model . 37

5.6.3 Heisenberg Model . 38

5.7 Other Noteworthy Algorithms . 39

5.7.1 Invaded Cluster Algorithms . 39

5.7.2 Heat Bath Algorithm . 41

5.7.3 Multigrid Methods . 42

5.7.4 Worm Algorithms . 43

6 φ4 Theory 44

6.1 The Klein-Gordon Equation . 45

6.2 The Meaning of φ . 46

6.3 Lagrangian, Hamiltonian and Equation of Motion 50

6.4 Constant and Soliton Solutions . 53

6.5 Feynman Diagrams . 56

6.6 Renormalization . 61

6.6.1 A Divergent Diagram in φ4 Theory 62

6.6.2 Superficial Degree of Divergence 65

6.6.3 Dimensional Regularization of φ4 Theory 66

6.6.4 Renormalization of φ4 Theory . 68

6.6.5 Complications in the Broken Phase 70

6.6.6 Further reading . 71

7 φ4 Theory on the Lattice 73

7.1 From Quantum Field Theory to Classical Statistical System 73

7.2 The Discretization Procedure . 75

7.3 φ4 Monte Carlo Algorithms . 78

7.4 Phase Transition Indicators . 80

7.4.1 Susceptibility . 81

7.4.2 Bimodality . 82

7.4.3 Fourth-order Cumulant . 85

7.5 The Phase Transition Line and the Critical Coupling Constant 87

7.5.1 Simulations and Results in Two Dimensions 87

7.5.2 Simulations and Results in Four Dimensions 94

7.6 Soliton Mass Results . 97

v

8 Conclusions and Directions for Future Research 106

Appendix A: Experimental Apparatus 108

A.1 Amherst College’s Interdisciplinary Scientific Computing Cluster 108

A.1.1 Hardware . 109

A.1.2 Software . 109

A.2 A Brief Guide to Working on the Cluster 111

A.3 Parallel Processing . 113

Appendix B: Effective and Efficient Programming 115

B.1 Potentially Useful Tools . 115

B.1.1 Code Profiling . 116

B.1.2 Debugging . 119

B.1.3 Version Control Systems . 120

B.1.4 Automated Builds . 121

B.1.5 Integrated Development Environments 122

B.2 Programming Languages . 123

B.3 Data Structures . 124

B.4 Efficiency Tricks . 128

Appendix C: Sample Code 131

C.1 Random Walks . 131

C.2 Ising Model . 135

C.3 φ4 Theory . 143

C.4 Solitons . 153

C.5 Mathematica Analysis Code . 166

Appendix D: Mathematica Regressions 172

Bibliography 179

vi

List of Figures

2.1 Scaled autocorrelation function over time (for Ising model on a 322 lattice
at kT = 2.2) . 6

3.1 Basic random walks in two, three and four dimensions 11

3.2 Nonreversal random walks in two, three and four dimensions 12

3.3 Self-avoiding random walks in two, three and four dimensions 13

3.4 Periodic (left) and helical (right) boundary conditions 15

3.5 Helical boundary conditions on a seven-site lattice 16

3.6 Energy of φ4 simulations using periodic (left) and helical (right) boundary
conditions at λ = .1 and L = 128 . 16

3.7 Schematic illustration of antiperiodic boundary conditions 16

5.1 Energy vs. temperature for Ising model simulations on a 322 lattice. . . . 24

5.2 Magnetization vs. temperature for Ising model simulations on a 322 lattice 25

5.3 Specific heat vs. temperature for Ising model simulations on a 322 lattice 25

5.4 Susceptibility vs. temperature for Ising model simulations on a 322 lattice 26

5.5 Sample Ising model states in the symmetric phase on a 1282 lattice. In
this and following figures, black and white pixels represent spins aligned
in opposite directions. 26

5.6 Sample Ising model states in the broken phase on a 1282 lattice. (Frame
added to the left-hand system for clarity.) 27

5.7 Sample metastable states of the Ising model on a 1282 lattice. (Frames
added for clarity.) . 27

5.8 Susceptibility vs. µ2
l for φ4 theory simulated at λ = 1 on square lattices

of size L = 32, 64, 128 and 256 . 28

5.9 Susceptibility vs. µ2
l for φ4 theory simulated at λ = 1 and L = 32, 64,

128, 256, 512 and 1024 . 28

5.10 Critical slowing down for Metropolis algorithm simulation of the φ4 model
(Chapter 6) on a 322 lattice at λ = 1 . 31

5.11 Critical slowing down for mixed Metropolis/Wolff simulation of the φ4

model (Chapter 6) on a 322 lattice at λ = 1 35

6.1 Metastable φ4 potential: µ2
0 > 0, λ < 0; V = 1

2
µ2

0φ
2 + λ

4
φ4 51

6.2 φ4 potential in the symmetric phase: µ2
0 > 0, λ > 0; V = 1

2
µ2

0φ
2 + λ

4
φ4 . . 52

6.3 φ4 potential in the broken phase: µ2
0 < 0, λ > 0; V = 1

2
µ2

0φ
2 + λ

4
φ4 52

vii

6.4 Kink solution of φ4 equation of motion 54

6.5 Kink solution of Sine-Gordon equation 55

6.6 The Sine-Gordon soliton as an infinite line of interacting pegs, from Ry-
der [51] . 55

6.7 Feynman diagram for four-point tree-level interaction 58

6.8 Feynman diagram for two-point single-loop “leaf” interaction 59

6.9 “Figure-8” contour from Klaus and Griffiths [28] 63

6.10 Subgraphs of Feynman diagrams from Kraus and Griffiths [28] 66

6.11 Mass renormalization of the leaf diagram in φ4 theory 69

6.12 One-point “tadpole” diagram in the φ4 broken phase 70

6.13 Two-point tadpole diagram in the φ4 broken phase (not divergent in two
dimensions) . 70

6.14 Tadpole renormalization in the φ4 broken phase 71

7.1 Energy for φ4 simulations at λ = 0.1 and L = 128 using only Metropolis
(left) and mixed Metropolis/Wolff (right) 80

7.2 Susceptibility vs. temperature for φ4 theory simulations on a 2562 lattice
at λ = 1 . 81

7.3 φ̄ histograms in symmetric and broken phases L = 32, λ = .05, µ2
L = −.075

(left) and µ2
L = −.11 (right) . 83

7.4 φ̄ histograms around the phase transition: L = 32, λ = .05, µ2
L = −.0928

(left) and µ2
L = −.0957 (right) . 83

7.5 Bimodality vs. µ2
L for L = 32 and λ = .5 83

7.6 Critical µ2
L determined from susceptibility (left) and bimodality (right) for

λ = .7 . 84

7.7 Smoothed bimodality vs. µ2 for L = 32 and λ = .5 85

7.8 Binder cumulant vs. µ2 for λ = .5 and L = 32, 64, 128, 256, 512 and 1024 86

7.9 Binder cumulant vs. µ2 for λ = .5 and L = 32 (left) and 1024 (right) . . 86

7.10 Binder cumulant vs. µ2 for λ = .5 and L = 32 (left) and 1024 (right),
with the same scale . 86

7.11 Binder cumulant vs. µ2 for λ = .5 and L = 256, 512 and 1024 87

7.12 Two-dimensional critical coupling results from Loinaz and Willey [32] . . 88

7.13 Preliminary two-dimensional critical coupling results as of December 2005 89

7.14 Comparison of preliminary results (solid points) to those of Loinaz and
Willey [32] (hollow pentagons) . 89

7.15 The bare φ4 phase transition line in two dimensions: critical µ2
L vs. λ with

nonlinear regression including terms up to λ2 log[λ] 92

7.16 λ/µ2 vs. λ with linear regression . 92

7.17 λ/µ2 vs. λ with nonlinear regressions including c3λ log[λ] (left) and c4λ
2 log[λ]

(right) . 93

7.18 µ2 vs. λ with nonlinear regression including c4λ
2 log[λ] 94

7.19 A comparison of our results (solid points) to those of Loinaz and Willey [32]
(hollow pentagons) . 94

viii

7.20 4D critical µ2
L determined from susceptibility (left) and bimodality (right)

for λ = .7 . 97

7.21 The bare φ4 phase transition line in four dimensions: critical µ2
L vs. λ

with linear regression . 98

7.22 Unconstrained (left) and constrained (right) lattice solitons on a 482 lattice
with r = 1 and λ = 0.5 (f = r/

√
λ =

√
2), at one measurement 100

7.23 Soliton masses calculated at r = 4 on unconstrained (left) and constrained
(right) lattices . 100

7.24 Results from Ciria and Tarancón [15] . 102

7.25 Our attempts to reproduce Fig. 7.24 using unconstrained lattices and two
versions of Eqn. 7.26 . 102

7.26 Soliton masses calculated on constrained lattices for r = 1, 2.2 and 4 . . . 103

7.27 Soliton masses calculated on unconstrained lattices for r = 1, 2.2 and 4 . 104

A.1 Amherst College’s interdisciplinary scientific computing cluster, April 2006 110

D.1 Linear regression – Mathematica 5.0 – Linux 173

D.2 Linear regression – Mathematica 5.2 – Windows 174

D.3 λ log[λ] regression – Mathematica 5.0 – Linux 175

D.4 λ log[λ] regression – Mathematica 5.2 – Windows 176

D.5 λ2 log[λ] regression – Mathematica 5.0 – Linux 177

D.6 λ2 log[λ] regression – Mathematica 5.2 – Windows 178

ix

List of Tables

3.1 Predictions and results for basic random walks 11

3.2 Predictions and results for nonreversal random walks 12

3.3 Results for self-avoiding random walks 13

7.1 Critical points determined from each phase transition indicator 91

7.2 Points on the two-dimensional phase transition line for various λL 91

7.3 Continuum coupling constants from various fits of the two-dimensional data 93

7.4 Points on the four-dimensional bare phase transition line for various λL . 97

7.5 Critical βc calculated using the data from Section 7.5 101

x

List of Code Snippets

A.1 Sample submit description file for condor cluster 111

A.2 Automated script for submitting jobs to the cluster 112

B.1 Excerpts from sample code profile produced by gprof 117

B.2 Sample Makefile . 121

B.3 Header file for basic hash table . 126

B.4 Implementation of basic hash table . 127

C.1 Basic random walk . 131

C.2 Nonreversal random walk . 132

C.3 Self-avoiding random walk . 133

C.4 Header file for Ising model lattice . 135

C.5 Implementation of Ising model lattice . 137

C.6 Ising model simulation code . 141

C.7 Header file for φ4 theory lattice . 144

C.8 Implementation of φ4 theory lattice . 145

C.9 φ4 theory simulation code . 149

C.10 Header file for φ4 soliton lattice . 154

C.11 Implementation of φ4 soliton lattice . 156

C.12 φ4 soliton simulation code . 161

C.13 Mathematica script to analyze the susceptibility and bimodality 167

C.14 Mathematica script to analyze the Binder cumulant 168

C.15 Mathematica script to analyze the soliton mass 170

xi

xii

Chapter 1

Introduction

The basic goal of elementary particle physics is to determine the nature of funda-
mental particles and their interactions. This is easier said than done.

As far as physicists have been able to determine, particles and interactions are
best described by quantum field theory, which combines quantum mechanics and special
relativity. Quantum field theories are often studied perturbatively: the particles (such
as photons and electrons) are first considered by themselves and then the interactions
are added in, beginning with the strongest interactions and continuing with weaker ones
until a point is reached at which adding further interactions won’t significantly affect the
result and can be neglected.

This approach is not always valid, particularly when the system under consideration
cannot be described by applying a small perturbation to a simpler, solvable system. For
example, this is the case for low-energy quantum chromodynamics, collective phenomena
such as solitons, and indeed for nonlinear quantum field theories. Performing numerical
simulations on computers is a powerful tool for studying such nonperturbative quantum
field theories. This approach, lattice quantum field theory, has made major strides as
computing power has increased in recent years.

In this work we use lattice simulations to investigate nonperturbative features of
the relatively simple φ4 quantum field theory. After a brief pedagogical introduction
to Markov chain Monte Carlo simulations of statistical systems and the basics of the
φ4 quantum field theory, we show how to treat the φ4 theory as a statistical system
in Euclidean space and perform lattice simulations using both local and cluster Monte
Carlo algorithms. We then present the details and results of simulations of φ4 theory
on the lattice in which we chart the phase transition line of the theory in two and four
dimensions and calculate an accurate value of the continuum critical coupling constant
in two dimensions. Finally we discuss lattice simulations that calculate the masses of φ4

solitons in two dimensions, nonperturbative phenomena that result from the nonlinearity
of the theory.

The two-dimensional critical coupling constant we obtain is [λ/µ2]crit = 10.85+.03
−.08,

which disagrees by over 7σ with the value of [λ/µ2]crit = 10.26+.08
−.04 reported by Loinaz

1

and Willey [32]. We show that this disagreement is the result of higher-order dependence
of [λ/µ2]crit on λ, which is only revealed by our more extensive calculations and resulting
increase in precision; our data is actually largely consistent with theirs. Our calculations
of the φ4 soliton mass improve upon the previous study by Ciria and Tarancón [15];
although our simulation data appears to agree with theirs we note and correct an error
in their analysis.

1.1 The Purposes of This Work

This document has two chief purposes. First, it is a report on the work we have
done for Physics 77 and Physics 78D on lattice simulations of nonperturbative features of
simple quantum field theories and related topics. However, it is designed in large part as
a pedagogical introduction to these subjects (including lattice simulations, Monte Carlo
methods, simple scalar quantum field theory and solitons). Our discussions are targeted
at intermediate to advanced undergraduates, especially those who may conduct similar
thesis projects in coming years. As a result, calculations and derivations are generally
worked out in more detail than would otherwise be expected.

We assume the reader has taken introductory courses on statistical mechanics or
thermodynamics, classical mechanics and quantum mechanics, and has some knowledge
of related mathematics, including aspects of complex analysis such as contour integration
and the residue calculus. We will also assume some basic familiarity with programming,
though useful tools such as gdb and gprof as well as data structures such as hash tables
will be introduced in an appendix.

1.2 Outline

We begin with a brief review of relevant statistical concepts and formulae in Chap-
ter 2 before introducing in Chapter 3 basic concepts of computer simulations such as
pseudorandom number generators as well as simple applications such as simulations of
random walks. This introduction is followed in Chapter 4 by a more rigorous consider-
ation of Markov chain Monte Carlo methods. We then explore in Chapter 5 particular
Monte Carlo algorithms such as the Metropolis algorithm and Wolff cluster algorithm in
the context of the Ising model of a ferromagnet. We also use the Ising model to introduce
phases, phase transitions, and spontaneous symmetry breaking.

We then turn to quantum field theory in Chapter 6, in particular the simple self-
interacting scalar theory known as φ4 theory. While a full introduction to quantum field
theory is far beyond the scope of this work, we briefly explore some of the central issues
in the context of φ4 theory, including the interpretation of φ in terms of particle creation
and annihilation; the existence of φ4 solitons as a result of the nonlinearity of the theory;
Feynman rules and perturbation expansions in terms of Feynman diagrams; as well as
the resulting divergences and ways to address them through renormalization.

2

In Chapter 7 we show how this quantum field theory can be treated as a statistical
system and discretized for simulation on the lattice. We discuss the details and results
of our lattice simulations of φ4 theory, including analyses of the phase transitions of the
two- and four-dimensional theory and determination of the continuum critical coupling
constant in two dimensions. We also present the results of our calculations of φ4 soliton
masses in two dimensions.

The qualified reader may wish to turn directly to Chapter 7, which focuses most
directly on our simulations and their results. We recommend that those interested in
our investigation of phase transitions in the φ4 theory be familiar with the contents of
Sections 5.1 through 5.5, which in turn depend on the ideas developed in Chapter 4.
Those interested in our simulations of solitons would do well to review the material in
Sections 6.3 and 6.4 as well. The information in the other chapters may be neglected to
a first approximation.

We also include some appendices discussing more distantly related matters: Amherst
College’s scientific computing cluster, on which our computations were performed (Ap-
pendix A); habits, tricks and tools helpful for efficient programming (Appendix B); the
full C++ code of some of our simulations (Appendix C); and the full results of the
regressions used to obtain our final critical coupling constant results (Appendix D).

1.3 Note on Units

Following the standard conventions of current research, we will work exclusively
in ‘natural units’ (where c = 1 and h̄ = 1) when discussing quantum field theory in the
context of high energy physics and ‘energy units’ (where the Boltzmann factor kB = 1)
when considering thermodynamics and condensed matter physics more generally. In
natural units, energy, momentum and mass all have the same dimension mass, and
length and time both have dimension mass−1. These ‘mass dimensions’ (or ‘energy
dimensions’ or ‘canonical dimensions’) will be expressed in the convenient shorthand
[x] = k, signifying that quantity x has mass dimension massk.

3

Chapter 2

Statistical Background

Analyses of statistical systems and simulations obviously rely on statistics and
considerations of statistical uncertainty in addition to systematic effects. In this chapter
we will briefly review basic concept of statistics and error analysis that should be famil-
iar (variance, standard deviation, error propagation), introduce some more specialized
methods, and address complications introduced by correlated measurements. Taylor [60]
is a useful reference.

2.1 Familiar Concepts

The central concepts are the mean and standard deviation of a series of measure-
ments of some observable Q. For N uncorrelated measurements of equal weight, the
mean and standard deviation take the familiar forms

〈Q〉 =
1

N

N∑
i

Qi, (2.1)

σ =

√√√√ 1

N − 1

1

N

N∑
i

(Qi − 〈Q〉)2 =

√
1

N − 1
(〈Q2〉 − 〈Q〉2). (2.2)

Slightly more generally, if measurement Qi has weight wi, the mean becomes

〈Q〉 =

∑N
i wiQi∑N

i wi

, (2.3)

which reduces to Eqn. 2.1 when all measurements have equal weight wi = 1/N . The
denominator is required for normalization; it is often set to

∑N
i wi = 1, but this is not

necessary. The proper form of weights for measurements with a given uncertainty is a
complication that will be addressed in the next section.

Another familiar result is the propagation of uncertainties. For a function F of
independent variables x1, x2 . . . xN , each with independent uncertainty δx1, δx2 . . . δxN ,

4

the overall uncertainty δF in F is given by

δF =

√(
∂F

∂x1

δx1

)2

+

(
∂F

∂x2

δx2

)2

+ · · ·+
(
∂F

∂xN

δxN

)2

. (2.4)

For example, the uncertainty in the critical coupling constant [λ/µ2], where λ is fixed
and µ2 has uncertainty δµ2 is given by

δ
λ

µ2
=

∣∣∣∣ ddµ2

λ

µ2

∣∣∣∣ δµ2 =
λδµ2

(µ2)2
. (2.5)

The inverse dependence on (µ2)2 makes it difficult to keep the uncertainty from increasing
dramatically as we consider the continuum limit µ2 → 0. This is unfortunate, since the
simulations with the smallest µ2 are the most useful for determining the continuum limit.

2.2 Complications: Weights and Correlations

As we will see in later sections, measurements of systems being simulated with
Monte Carlo methods are generally partially correlated and not completely independent.
This means that the familiar formula for the standard deviation, Eqn. 2.2, cannot be
directly applied since it assumes uncorrelated measurements. Newman and Barkema [40,
Chap. 3] present the following result for the standard deviation of N correlated measure-
ments:

σ =

√
1 + 2τ

N − 1
(〈Q2〉 − 〈Q〉2). (2.6)

τ is the autocorrelation time and is a measurement of how long (how many measurements)
it takes for the system to produce a state which is statistically independent of the initial
state. Eqn. 2.6 clearly approaches Eqn. 2.2 as τ → 0. Typically in our work, however,
both N � 1 and τ � 1, in which case we have

σ ≈
√

2τ

N − 1
(〈Q2〉 − 〈Q〉2) ≈

√
2τ

N
(〈Q2〉 − 〈Q〉2) (2.7)

As Eqn. 2.7 suggests, measurements are typically held to be fully independent if τ ≤ 1
2
,

that is, if each measurement is taken two or more autocorrelation times after the previous
one.

The autocorrelation time is more rigorously defined as the typical time-scale on
which the time-displaced autocorrelation function χ(t) falls off. The “time-displaced”
autocorrelation function measures correlation across a series of measurements, in contrast
to “spatially”-displaced autocorrelation functions, which measure correlation between
different observables or features of the system at a single measurement and produce
autocorrelation lengths ξ corresponding to the typical length-scale on which they fall off.
χ(t) is defined as

χ(t) =
1

tmax − t

[
tmax−t∑

t′=0

Q(t′)Q(t′ + t)

]
− 〈Q〉2. (2.8)

5

‘Time’ in this context refers to a series of measurements of some observable Q (typically
the magnetization or vacuum expectation value of the system being studied), with each
instant in time a separate partly-correlated measurement. tmax is the total number of
measurements made over the course of the simulation. Now let us show a simple way
to extract τ from χ(t). We explicitly assume that correlation (and thus χ(t)) decreases
exponentially as t increases, χ(t) ∝ e−t/τ . If the system being simulated is in equilibrium,
this is a reasonable assumption that has been empirically verified in our work as well as
that of many others. Such exponential dependence is clear in Fig. 2.1, which plots the
scaled autocorrelation function χ(t)/χ(0) over time for one of our Ising model simulations
on a 322 lattice at kT = 2.2 with each measurement t representing five sweeps of the lattice
with the Metropolis algorithm – see Chapter 5 for more information. Nonequilibrium
simulations require different methods, and will not be considered in this thesis despite
being an active field of research.

Figure 2.1: Scaled autocorrelation function over time (for Ising model on a 322 lattice at
kT = 2.2)

We can extract the autocorrelation time τ from χ(t) = Ae−t/τ by scaling the
function by χ(0) = A. We then have

χ(t)

χ(0)
= e−t/τ → τ =

−t

log
(

χ(t)
χ(0)

) . (2.9)

C++ code performing this calculation in the context of lattice simulations of φ4 theory
can be found in Code Snippet C.9 in Appendix C. We proceeded by calculating χ(t)
until it deviated from exponential decay, either flattening out such that χ(t) > χ(t− 1)
or dropping below zero χ(t) < 0. We then calculated the autocorrelation time τ by
extracting a τt from each of the χ(t) values for t > 0 and taking the average.

Simply taking the average suffices for calculating the autocorrelation time τ from
the various τt values since we give them all the same weight. How would we determine
the appropriate weights to give to measurements if we didn’t have them beforehand? For

6

example, suppose we had several measurements of the same observable with different
uncertainties. These uncertainties reflect our beliefs in the precision of the various mea-
surements, and we want to take them into account when determining the best estimate.
There is a straightforward way to determine the proper relationship between uncertain-
ties and the weights, which we sketch out below. Taylor [60, Chap. 7] presents a more
detailed derivation.

If we make the reasonable assumption that the uncertainties σ on the measurements
are governed by a normal (Gaussian) distribution, we have

P (x) ∝ 1

σ
exp

(
−(x−X)2

2σ2

)
, (2.10)

where X is the unknown “true” value and x is the value measured. If we have two
measurements of the same value X, xa and xb, the probability of measuring both values
is the product of the probabilities of measuring each value individually,

P (xa, xb) = P (xa)P (xb) ∝
1

σaσb

exp

(
−χ2

2

)
;

χ2 =

(
xa −X

σa

)2

+

(
xb −X

σb

)2

.

The best estimate is the value ofX which minimizes χ2, maximizing the probability.
We can find the best estimate by setting the derivative of P (xa, xb) with respect to X
equal to zero:

2
xa − xbest

σ2
a

+ 2
xb − xbest

σ2
b

= 0. (2.11)

(We replace X with xbest since we are determining only the best estimate based on our
measurements, not the unknown true value itself.) Eqn. 2.11 can easily be solved for
xbest to give

xbest =
xa/σ

2
a + xb/σ

2
b

1/σ2
a + 1/σ2

b

.

Note that if we define wi = 1/σ2
i , this becomes

xbest =
waxa + wbxb

wa + wb

, (2.12)

which is simply a special case of Eqn. 2.3. Since this derivation can easily be generalized
to N estimates, we see that all we need to do to determine the best estimate is set the
weights wi equal to the inverse square of the corresponding uncertainties σi.

As discussed in Baird [2], this is also the case for weighted regressions such as least
squares fits: the weight to assign to each data point is the inverse square of its uncertainty.
Programs such as Mathematica can handle this easily. It is worth noting that since the
weights are proportional to the inverse square of the uncertainties (as opposed to, say,
the inverse or inverse square root), data with relatively large uncertainties will have very
small effects on the final result; the best estimates will be dominated by the most precise
data.

7

2.3 Bootstrap and Jackknife Methods

Unfortunately, we can’t easily apply the statistical methods developed above to
certain quantities, in particular those that aren’t repeatedly measured many times over
the course of the simulation but rather depend on the measured quantities in some more
complicated way. For instance, the specific heat is proportional to the variation in the
energy over all the measurements, C ∝ 〈E2〉 − 〈E〉2. The uncertainties in 〈E2〉 and 〈E〉2
are correlated, so we can’t just glibly propagate them using Eqn. 2.4. So what is to be
done?

One intuitive approach would be to separate our measurements of E and E2 into
several groups, calculate 〈E2〉i and 〈E〉2i for each group i, and use the standard deviation
of those values as the statistical uncertainty in C. This method is generally reasonable,
but the results it gives depend on the number of groups used, which should not be the
case: statistical uncertainty should depend on the data, not the analysis. There are two
related but more rigorous methods – known as the bootstrap and jackknife methods –
that are more reliable than this simple approach.

Suppose we have N measurements of the energy and want to determine the specific
heat. The bootstrap method orders us to selectN of these measurements at random (note
that the same measurement can be selected twice!) and calculate the specific heat using
them. It has been shown that after this process has been repeated several (say, n) times,
the total uncertainty in the specific heat is given by

σ =
√
〈C2〉 − 〈C〉2 (2.13)

with 〈C2〉 and 〈C〉2 calculated from the n different samples taken. Note that there is
no factor of 1/(n − 1) in this expression, since that would imply that σ could be made
arbitrarily small simply by resampling the data enough times. Also, σ doesn’t depend on
the autocorrelation time τ , since under the bootstrap scheme correlated measurements
can effectively be considered duplicates.

The bootstrap method generally gives good estimates of the uncertainty, which
become exact as the amount of data available increases. The similar jackknife method
is even more reliable, though it is not independent of the autocorrelation time. It works
by first calculating an estimate for the specific heat C based on all N measurements. It
then ignores the first measurement and recomputes C1 based on the remaining N − 1,
repeating this process to calculate all possible Ci with the single ith measurement ignored.
The uncertainty in C itself is then given by

σ =

√√√√2τ
N∑

i=1

(Ci − C)2. (2.14)

If the measurements are all independent, τ ≤ 1
2
, this becomes simply

σ =

√√√√ N∑
i=1

(Ci − C)2. (2.15)

8

Chapter 3

Basics of Computer Simulations

In this chapter we will introduce some of the basic issues underlying computer
simulations, such as random number generation, lattices, and boundary conditions. In
addition, we will explore random walks as simple applications of computational methods
that will introduce concepts of algorithms and data structures.

3.1 Pseudorandom Numbers and Generators

Pseudorandom numbers produced by pseudorandom number generators (PRNGs)
are used heavily in Monte Carlo simulations. PRNGs are deterministic programs that
that produce sequences of numbers that are ‘random enough’ for the purposes of the
simulation in a sense that will be clarified below. These generators are generally periodic,
but this is not a major problem since the periods of modern PRNGs are large enough that
programming in nonperiodicity is unnecessary in practice.3.1 For example, the period of
the Mersenne Twister algorithm used in this work is 219937− 1 (about 106000). Beginning
with an initial ‘seed’ state, each number in the sequence is generated from the previous
‘state’, which could depend on multiple preceding numbers. This allows for the sequence
of numbers generated to be reproduced by running the same algorithm with the same
seed. This reproducibility is important in scientific programming and simulations.

The sequences of numbers produced by PRNGs should “look random” by being
uniformly distributed over the available range, and should have a long period and minimal
correlation between subsequent values. If a PRNG obeys these properties, it is difficult
(perhaps impossible) to distinguish its output from perfect random noise without knowing
the seed. In the future, I will refer simply to “random numbers”, omitting the implicit
“pseudo”.

This work uses exclusively the Mersenne Twister algorithm invented by Matsumoto
and Nishimura [37] and implemented in the GNU Scientific Library (GSL) [20]. This

3.1Nonperiodic PRNGs have the disadvantage that the memory required to keep track of the preceding
sequence and prevent repetition grows over time.

9

algorithm was designed specifically for Monte Carlo simulations, has a long period of
219937 − 1 and is equi-distributed in 623 dimensions. It is also very fast (in some ar-
chitectures faster than the basic generators in system libraries, which are unsuitable for
serious simulations) and has a very small memory footprint (requiring only 624 words of
memory).

3.2 Random Walks

Random walks are a familiar concept from statistical mechanics with applications
in diffusion, Brownian motion, protein folding, electrical networks, population genetics,
and even mathematical analysis (see for instance Spitzer [56]). They can easily be im-
plemented by simple algorithms, providing a gentle introduction to computer simulation.
In this section we’ll explore the basic random walk as well as some simple variants that
produce interesting effects. We’ll walk through a limited theoretical discussion, present
the results of our simulations, and compare them to results obtained by other researchers.

3.2.1 Basic Random Walk

The basic random walk pictures a walker taking a single step in a randomly cho-
sen direction (restricted for simplicity to the 2d Cartesian directions in d dimensions –
left/right, up/down, etc.). The process then repeats. This is a simple example of an
algorithm, a step-by-step procedure that is often, though not necessarily, repetitive or
recursive.

An interesting feature of the basic random walk is the simple relationship between
the number of steps N (of length l) taken by the walker and her average squared distance
from the walk’s origin: 〈x2〉 = Nl2. The one-dimensional case is (as one would expect)
especially easy to analyze. After N steps si = ±l have been taken in the two possible
directions, the squared distance is

x2 =

(
N∑
i

si

)2

= (s1 + s2 + . . . sN) (s1 + s2 + . . . sN)

x2 =
(
s2
1 + s2

2 + . . . s2
N

)
+ s1 (s2 + s3 + . . . sN) + · · ·+ sN (s1 + s2 + . . . sN−1)

x2 =
N∑
1

s2
i +

N∑
i6=j

sisj.

Since sisj = ±l with equal probability, the second sum averages out to zero, while the
first is simply Nl2. Thus in one dimension

〈x2〉 = Nl2. (3.1)

In fact, this relationship holds for arbitrary dimensions, though the summations
become steadily more cumbersome as the dimensionality of the walk increases. Table 3.1

10

Table 3.1: Predictions and results for basic random walks

Dimension Predicted Relationship Results
2 〈x2〉 = N 〈x2〉 = 0.9998(5)N
3 〈x2〉 = N 〈x2〉 = 1.0010(4)N
4 〈x2〉 = N 〈x2〉 = 0.9994(4)N

and Fig. 3.1 present the results of simulations (using code included in Code Snippet C.1)
of basic random walks in two, three and four dimensions. The walks used step length
l = 1 and performed 105 walks of lengths N = 1 . . . 150. For simplicity, we will set l = 1
from now on.

Figure 3.1: Basic random walks in two, three and four dimensions

3.2.2 Constrained Random Walks

Adding some simple constraints to the basic random walk can produce interesting
effects. In a nonreversal random walk, the walker cannot reverse course and immediately
return to the site just vacated. In a self-avoiding random walk, the walker can never
return to any site she has already visited. If all the sites accessible from the walker’s
current position have already been visited, the walk is aborted and restarted (with a
different sequence of random numbers determining the steps taken) and no data is col-
lected. Clearly in one dimension 〈x2〉 = N2 for both of these algorithms – once the walker
takes one step in a particular direction, she can never turn around and must continue
travelling in that direction for all N steps.

A simple heuristic argument suggests that in higher dimensions the distance trav-
eled by nonreversal random walks should be slightly more than that travelled in basic
random walks, but still proportional to N . When a random walker reverses a step
(which will happen with probability (2d)−1), the two steps effectively cancel out: the
walker ends up the same distance away from her starting point, with two fewer steps left
to take. Forbidding reversal would prevent this from occurring, and thus should produce
a basic random walk of

N +N
∑

i

(
2

2d

)i

= N

(
1 +

∑
i

1

di

)

11

Table 3.2: Predictions and results for nonreversal random walks

Dimension Predicted Relationship Results
2 〈x2〉 = 2N 〈x2〉 = 1.9993(10)N
3 〈x2〉 = (3/2)N 〈x2〉 = 1.5018(6)N
4 〈x2〉 = (4/3)N 〈x2〉 = 1.3331(5)N

steps.3.2 So the average squared distance would simply be

〈x2〉 = N

(
1 +

∑
i

1

di

)
. (3.2)

Results presented in Table 3.2 verify this prediction in two, three and four dimensions.
Though the three-dimensional result is a few σ from the prediction, they are generally
in excellent agreement.

Figure 3.2: Nonreversal random walks in two, three and four dimensions

The most interesting complication presented by self-avoiding random walk simu-
lations is the chance that the walk might have to be aborted and restarted should the
walker ‘paint herself into a corner’. This is most common in two dimensions, since the
line traced out by the walk divides the plane and severely constrains the future path of
the walk. Such dead-end walks can still occur in three- and four-dimensional simulations
as well, though they are much less common since it is generally possible to go around lines
in three or four dimensions – the walker would need to be boxed in across all dimensions.

Self-avoiding random walks also pose an interesting programming problem, since
at each potential step the history of the walk must be consulted to ensure the walker
avoids her past path. There are two näıve ways to do this, both of which perform poorly.
The actual history of the walk can be stored in an array or vector and searched for
each potential step, but this scheme has the obvious drawback that all these searches
would waste a lot of time, especially as the length of the walk increases. Alternately, a
d-dimensional lattice of Boolean values could record whether or not a site has already
been visited. This seems more reasonable, but starting or restarting a walk requires
initializing or clearing the lattice, which can take a significant amount of time, especially
as the dimensionality of the lattice increases (the number of sites in the lattice increases
like (2N)d). A better solution is to use a hash table, which allows for constant-time
operations on average. Using this hash table in place of a Boolean lattice decreased the

3.2It might seem that only N/d additional steps would be required. Note, however, that each of these
additional steps has a (2d)−1 chance of being a reversal, so more steps need to be added, producing the
sum.

12

Table 3.3: Results for self-avoiding random walks

Dimension 〈x2〉 = Na model Variance 〈x2〉 = aN b model Variance

2 〈x2〉 = N1.3201(2) 17.10 〈x2〉 = 0.853(7)N1.3535(16) 4.35
3 〈x2〉 = N1.1259(4) 16.40 〈x2〉 = 1.461(6)N1.0456(9) 0.29
4 〈x2〉 = N1.0774(4) 6.44 〈x2〉 = 1.338(4)N1.0157(7) 0.11

running time of our four-dimensional self-avoiding random walk simulation by nearly four
orders of magnitude. Source code for the hash table and a more detailed discussion of
the issue can be found in Section B.3, below.

An additional technical consideration is whether or not to select a direction and
check it or to check all potential steps and choose randomly only among those that do
not violate the self-avoidance requirement. As shown below in Code Snippet C.3, we
proceeded by checking all the potential destinations of a step from the current site, and
then randomly selecting only among those that had not been visited previously. Even
though it investigates every neighboring site, this approach is on average much more
efficient than the alternative. This is because it avoids repeatedly visiting sites that
may be forbidden and also makes it immediately apparent whether or not the walk has
reached a dead-end.

The average squared distance travelled by an N -step self-avoiding random walk is
more difficult to determine analytically than in the basic and non-reversal cases, since the
whole history of the walk affects its future development. In general, the results presented
in Table 3.3 and Figure 3.3 show that there is a nonlinear relationship 〈x2〉 ∼ N b that
becomes less pronounced as the dimensionality of the walk increases. In fact, as the
number of dimensions increases, the self-avoiding walk approaches the linear relation
characteristic of the basic and nonreversal walks. This is sensible: as the number of
dimensions increases, the chances that the walker will get trapped in a ‘corner’ (or even
stumble across her past path) decrease, and the relation should gradually approach that
of the nonreversal random walk. This suggests that there should be a multiplicative
factor (so 〈x2〉 ∼ aN b) that will gradually approach that of the nonreversal random
walk,

(
1 + 1

d

)
, as d increases. As shown in Table 3.3, adding this multiplicative factor

dramatically reduces the variance per degree of freedom, though it remains quite high in
the two-dimensional case.

Figure 3.3: Self-avoiding random walks in two, three and four dimensions

13

3.2.3 Comparison to Others’ Results

A massive amount of research has been performed on random walks of all sorts
and their applications to various systems and disciplines. Although we only derived the
relationship between N and 〈x2〉 in one dimension and presented a heuristic argument for
those of nonreversal walks in arbitrary dimensions, analytical results have been derived
and other simulations performed for all of these scenarios (and many others besides). For
basic random walks, the generalization that 〈x2〉 = N in higher dimensions is well-known.
A proof for the two dimensional case is performed by Weisstein [67]. It is similar to that
in one dimension, only with si represented as a phasor instead of ±1.

Constrained random walks are considerably more complex. The general expression

〈x2〉 = AN ν
(
1 +BN−∆ + CN−1 + · · ·

)
(3.3)

appears to be generally accepted (∆ is the leading correction-to-scaling exponent), though
Caracciolo et al. [10] present somewhat more complicated expressions. Shannon, Choy
and Fleming [53] claim ν = 3

2
and ∆ = −1

2
in two dimensions, and Sokal [55] as well

as Izyumov and Samokhin [25] report ν ≈ 1.18 in three dimensions. The older paper
by Lawler [30], which predates Eqn. 3.3, lists ν = 3

2
in two dimensions, ν = 6

5
in three

dimensions and actually claims 〈x2〉 = AN logN in four dimensions. While these values
for ν don’t agree particularly well with our numerical results3.3, they are all of the same
order and the qualitative features of power-law scaling with exponents decreasing as the
dimensionality of the walk increases are the same. Since our analysis did not attempt to
take into account correction-to-scaling or fit to a series of multiple terms, we would not
necessarily expect to duplicate these more detailed results.

In addition, Chris Bednarzyk ‘01 studied random walks in two dimensions as part
of his thesis, [5]. He presents analytical results (without citation or explanation) for
all three varieties, predicting 〈x2〉 = N4/3 for two-dimensional self-avoiding walks, and
〈x2〉 = 3N for two-dimensional nonreversal walks. While the former result is not too
far off from our results (and Chris’s own simulations found 〈x2〉 = N1.314, which he
judges consistent with the prediction), the latter disagrees by a factor of 2 with both our
simulations and heuristic argument.

3.3 Lattices and Boundary Conditions

In our later simulations, we will typically study statistical systems or field theories
by simulating them on discrete lattices on the computer. Each site in these lattices will
represent a point in spacetime identified with either a field value or a component of the
thermodynamic system. The site will interact with neighboring sites through dynamics
determined by the Lagrangian of the theory and (if applicable) the discretization process
used to convert from the continuum theory to the discrete version simulated on the
lattice.

3.3And a fit of our data to Lawler’s prediction of 〈x2〉 = AN log N produces a variance per degree of
freedom of over 68.

14

These issues will all be discussed in greater detail in later chapters. However,
before the lattice can be glibly manipulated, certain of its basic features need to be
clarified. In particular, since all our simulations are carried out on finite lattices, the
boundary conditions applied to the lattice take on considerable importance. In the
interest of treating all lattice sites the same and creating the illusion that the lattice
doesn’t actually have an edge, periodic boundary conditions are commonly used. Periodic
boundary conditions identify opposing sides of the lattice (in two dimensions creating a
torus, for example), as illustrated in Fig. 3.4.3.4 In the figure, only one nine-site lattice
in one 3x3 corner of the illustrated array actually exists in the computer’s memory, but
the boundary conditions make it seem as though the lattice periodically stretches off
arbitrarily far in all directions.

Figure 3.4: Periodic (left) and helical (right) boundary conditions

An alternate scheme is the “helical” setup proposed by Newman and Barkema [40]
and compared to periodic boundary conditions in Fig. 3.4. In this arrangement, the left-
and right-hand neighbors of a given site n are n ± 1 (modulo the size of the lattice),
even if this involves wrapping around the last element on one row to be the neighbor of
the first element on the next row. Although this is slightly more complex to visualize
than simple periodic boundary conditions (especially in higher dimensions), it has the
compensating virtues of being both more general and easier to implement.

The increased generality is due to the fact that the total number of sites in the
lattice no longer has to be equal to the product of the dimensions of the lattice – that is,
the lattice no longer needs to be rectangular. Fig. 3.5 shows a lattice with a prime number
of sites using helical boundary conditions. In practice, lattices are usually chosen to be
squares, cubes and four-cubes, but the added generality does not hurt. Helical boundary
conditions are slightly simpler to implement since neighboring sites to the left and right
are always separated by 1 (modulo the size of the lattice), and those above and below
separated by the width of the lattice modulo its size. For periodic boundary conditions,
on the other hand, these relationships depend on the position of the site within the lattice
(specifically, whether or not it’s on an edge).

Even though helical boundary conditions thus offer some advantages and were the
scheme we used for most of our simulations, periodic boundary conditions are so widely
used that it makes sense to adopt them nonetheless. After all, in our simulations we used
square lattices and set up data structures containing all the neighbors of all the lattice

3.4Fig. 3.4 shows a two-dimensional lattice stored in a one-dimensional array, the same scheme we used
in our simulations. (The figure counts from 1 for purely aesthetic reasons.) It is also possible to use a
multi-dimensional array, but this introduces the unnecessary complication of having to generate multiple
random numbers to identify a site.

15

Figure 3.5: Helical boundary conditions on a seven-site lattice

sites while initializing the lattice (see the code in Appendix C, below), making the choice
of boundary condition essentially irrelevant to the overall running time of the program.
Under these conditions, it is best to adopt the boundary conditions most widely known
and trusted, regardless of their relative simplicity or efficiency. Since we used helical
boundary conditions for many of our programs, we felt it advisable to verify (at least for
small lattices up to 1282) that our φ4 theory simulations give the same results regardless
of which boundary conditions we used. This is indeed the case; typical results are shown
in Fig. 3.6, in which all data points agree well within uncertainty (Fig. 3.6 includes error
bars, but they are too small to be readily visible).

Figure 3.6: Energy of φ4 simulations using periodic (left) and helical (right) boundary
conditions at λ = .1 and L = 128

Figure 3.7: Schematic illustration of antiperiodic boundary conditions

Simulations for measuring the mass of the soliton need to use both periodic and ‘an-
tiperiodic’ boundary conditions, as described below in Section 7.6. Antiperiodic boundary
conditions identify the same points as periodic boundary conditions, but negate the value
of the lattice site being wrapped around. Fig. 3.7 illustrates this concept for a lattice
using periodic boundary conditions on its vertical (time) axis and antiperiodic bound-
ary conditions on its horizontal (space) axis. For simplicity, the figure shows only the
apparent signs of the lattice values as seen by neighboring sites that have been wrapped
around. The actual sign of the lattice value does not change. In addition, the patterns

16

of identification do not change – the underlying topology is still that of a torus, but one
in which the field values are negated after each complete circuit of the spatial axis. See
Section C.4 for details of the implementation.

17

Chapter 4

Markov Chain Monte Carlo

Monte Carlo methods are stochastic processes that use random numbers to simu-
late the behavior of physical systems. Monte Carlo simulations are performed using the
importance sampling technique of Markov processes (or Markov chains). As we will see,
Markov chains allow for the simulation to efficiently reproduce the Boltzmann distribu-
tion that characterize the physical systems under consideration.

After briefly illustrating why stochastic processes must be used to perform efficient
simulations, we will introduce the concept of importance sampling and show how to
reproduce the Boltzmann distribution using Markov chains.

4.1 Motivation

You will pay the price for your lack of vision. – Emperor Palpatine

Suppose we wanted to simulate a statistical mechanical system in equilibrium on
a computer. How would we? Well, the simplest thing to do would be to set up each
possible state of the system, measure the quantities of interest for that state, weighted
by the state’s Boltzmann factor (the probability of the system being in the state):

〈Q〉 =

∑
µQµe

−Eµ/kT∑
µ e

−Eµ/kT
=

∑
µQµe

−βEµ∑
µ e

−βEµ
(4.1)

This is simply the definition of the expectation value 〈Q〉.

Although this approach is simple, it pays the price for its lack of vision, since inter-
esting systems typically have a large number of states that would need to be simulated.
Consider, for example, a 16x16 lattice of points, each of which can take one of only two
values. This tiny system has roughly 2256 ∼ 1077 configurations which would need around
1066 years to fully simulate.4.1 A 512x512 lattice would take more like 1078,900 years.

4.1Though the number can be reduced slightly by symmetry considerations – the system possesses
reflection symmetries, inversion symmetry, and four-fold rotation symmetry.

18

The situation gets even worse for small thermodynamic systems. For instance,
a mole of gas room temperature and atmospheric pressure has roughly 1023 molecules,
each with a de Broglie wavelength of roughly 10−10m. Fully simulating every state of
this system will require roughly 101023

years, which will take around 101023
times the age

of the Universe.

Since that’s a bit longer than most of us are willing to wait for results, we have to
conclude that this straightforward approach is unacceptable. Equally unsuitable would be
just randomly sampling the few states that could be simulated in a reasonable amount
of time. Perhaps 109 states of the 16x16 two-value lattice could be considered in a
reasonable time by a modern computer, representing a minuscule 10−68th of the total
number of states, almost all with vanishingly small Boltzmann factors. Any results
calculated from such a small random subset of states would be meaningless.

4.2 Importance Sampling

The resolution to this dilemma is easy to see with a little vision: instead of sampling
states randomly, only sample the ‘important’ states with relatively large Boltzmann
factors. This is known as importance sampling and is a key principle of Monte Carlo
simulations. In a sense, this is obvious: it is well-known that in statistical systems
generally only a very small proportion of states actually matter, due to the exponential
nature of the Boltzmann factor. Physically, systems will only ever inhabit a few of their
possible configurations, so it is entirely reasonable to simulate such systems by sampling
only this very small but actually important set of states.

In fact, looking at Eqn. 4.1, we see that a clever thing to do would be to try to
select states with a probability proportional to their Boltzmann factors, pµ = Z−1e−βEµ ,
where Z =

∑
µ e

−βEµ is the system’s partition function. If this is done then the estimator
for observable Q becomes

QM =

∑M
i Qµipµ

−1
i e−βEµi∑M

i pµ
−1
i e−βEµi

=

∑M
i QµiZ∑M

i Z
=

1

M

M∑
i

Qµi. (4.2)

The estimator QM is an approximation to the expectation value 〈Q〉 based on sampling
M states. Clearly QM → 〈Q〉 as M increases.

The question is how to reproduce the Boltzmann distribution – in effect, to find
out which states actually do matter – without determining the whole partition function
Z, which would require simulating all the states to calculate their Boltzmann factors,
a plan we have already considered and abandoned. It turns out that by requiring a
stochastic process to obey a simple set of conditions, the Boltzmann distribution can be
rapidly and faithfully reproduced. Processes that obey these conditions are known as
Markov processes (after Russian mathematician Andrey Markov, 1856–1922), of which
discrete-time Markov chains are the simplest and most common type.

19

4.3 Markov Chains

A Markov chain is a process in which the probability P (µ → ν) of making a
transition from state µ to state ν depends only on those two states (hence the idea of
a ‘chain’ of states). In particular, P (µ → ν) must therefore remain constant over time.
Since each transition has to end up in some state,

∑
ν P (µ→ ν) = 1. In addition, there

can be a nonzero probability of not altering the state, P (µ→ µ) 6= 0. Clearly the basic
random walk discussed above satisfies this condition, as does the nonreversal random
walk (if its ‘states’ are defined to include the previous as well as the current site) and
self-avoiding random walk (whose ‘states’ need to include information about the entire
history of the walk).

In addition to the requirement that P (µ→ ν) depend only on µ and ν, two further
conditions are required to guarantee that the Markov chain reproduces the Boltzmann
distribution.

First, it must be possible to reach any state from any other state through a finite
number of transitions. This condition is known as ergodicity and clearly must be
satisfied by any attempt to reproduce the Boltzmann distribution: Boltzmann factors,
due to their exponential dependence on the energy of the system, may be very small but
are always nonzero. It is theoretically possible to reach all physical states in the original
system, so this must also be the case in the simulation hoping to model that system.

Note that ergodicity does not require a nonzero transition probability from any
particular state to all other states. In practice, the vast majority of transition probabil-
ities are set to zero by any efficient Monte Carlo simulation. In a d-dimensional basic
random walk, for instance, all but the 2d transition probabilities for taking a step to a
neighboring site are zero. However, it is easily possible to get from any one site to any
other through the appropriate series of steps. Thus the basic random walk fulfills the
requirement of ergodicity (as does the nonreversal random walk, but not the self-avoiding
random walk).

The final condition, detailed balance, is both the most subtle and the most
important, since it actually guarantees that the Boltzmann distribution – as opposed to
any other probability distribution – will be the one produced by the simulation after it
has come to equilibrium. If the system is in equilibrium, then this means that the rate
at which the system transitions into any particular state must equal the rate at which it
transitions out of that state. Mathematically,∑

ν

pµP (µ→ ν) =
∑

ν

pνP (ν → µ). (4.3)

Eqn. 4.3 is the condition of balance.4.2 However, this condition is not quite rigid
enough to guarantee a static equilibrium. Dynamic equilibrium, in which the probability
distribution circles through a limit cycle, is also possible. Thus even though the system

4.2Since
∑

ν P (µ → ν) = 1, Eqn. 4.3 can simplified slightly to pµ =
∑

ν pνP (ν → µ).

20

obeys Eqn. 4.3, it need not necessarily reach a stable, static probability distribution and
thus may not reproduce the Boltzmann distribution.

Instead a slightly more stringent condition is required to eliminate the possibility
of limit cycles. This is the condition of detailed balance, which requires that the rate at
which the system transitions into any particular state µ from state ν must equal the rate
at which it transitions out of µ and back to ν. That is,

pµP (µ→ ν) = pνP (ν → µ), (4.4)

which clearly will satisfy Eqn. 4.3. If detailed balance is satisfied, the ratio of transition
probabilities P equals the ratio of the probabilities p of actually being in any particular
state, which we require be set by the Boltzmann distribution:

P (µ→ ν)

P (ν → µ)
=
pν

pµ

= e−β(Eν−Eµ) (4.5)

Now, our goal is to make our importance sampling as efficient as possible. To
assist in this effort, it is useful to break up the transition probability P (µ→ ν) into the
product of a ‘generation probability’ g(µ→ ν) of producing any particular state ν from
the current state µ and an ‘acceptance probability’ A(µ→ ν) of adopting the new state
after it has been generated.

P (µ→ ν)

P (ν → µ)
=
g(µ→ ν)A(µ→ ν)

g(ν → µ)A(ν → µ)
(4.6)

We want to avoid wasting computing time by generating and then rejecting large numbers
of potential new states. Our goal should be to make the acceptance probabilities A as
large as possible – ideally unity. We can attempt this by putting as much information as
possible about P (µ→ ν) into g(µ→ ν), and also by appropriately scaling the As – since
it is their ratio that matters in Eqn. 4.6, we can set the larger of the two to one and scale
the other so that it satisfies Eqn. 4.5 for the particular generation probabilities used.

In the next chapter, we will give concrete examples of these issues by exploring some
popular Markov chain Monte Carlo algorithms – in particular the well-known Metropolis
algorithm and the Wolff cluster algorithm – in the context of the Ising model, a simple
model of a ferromagnet.

21

Chapter 5

The Ising Model and Monte Carlo
Algorithms

The Ising model is a simple and well-known statistical system, introduced by
Ernst Ising as a model of ferromagnetic materials in 1925 [24] and studied extensively
since then.5.1 Ising defined the model and analytically solved the one-dimensional case in
his 1924 doctoral thesis; the two-dimensional case was solved twenty years later by Lars
Onsager [41]. Despite the model’s simplicity, it was recently proven to be NP-complete
in higher (d ≥ 3) dimensions – see Cipra [14] for more details. No analytic solution has
yet been found and it may not be possible to find one.

Because the Ising model has been the subject of so much study, there exists a
large body of knowledge (both theoretical and computational) against which simulations
can be checked. This makes the model an attractive one to study in order to gain some
experience with Monte Carlo simulations. In addition, the Ising model is also related to
the statistical formulation of the φ4 quantum field theory. The Ising model and φ4 theory
are in the same universality class (see De et al. [16]) and the Ising model corresponds to
the infinite-coupling limit of the φ4 theory.

In this chapter we will introduce the Ising model and discuss how to simulate it on
the lattice using Monte Carlo algorithms such as the Metropolis algorithm and the Wolff
cluster algorithm.

5.1 The Ising Model

The Ising model pictures a magnet as a lattice of ‘spins’, each of which can take
one of the values ±1 (which can be thought of as up-pointing or down-pointing magnetic

5.1Ising’s initial work was actually wrong, but his errors were quickly corrected in the ensuing flurry of
study: over 12,000 papers involving the Ising model were published between 1969 and 1997 alone.

22

dipoles of unit magnitude). The Hamiltonian for the model is

H = −
∑
〈ij〉

Jijsisj −
∑

i

Bisi, (5.1)

where
∑

〈ij〉 indicates a summation over all pairs of neighboring spins, Jij is the strength
of the interaction between those neighboring spins, and B is an external magnetic field
that may vary from site to site. Since the model is being used as an introduction to Monte
Carlo simulations, we can gain some traction by making J and B constant throughout
the lattice. The simplest case is to set B = 0 and J = 1. For B = 0 and J constant, the
Hamiltonian becomes

H = −J
∑
〈ij〉

sisj. (5.2)

If J > 0, the model describes a ferromagnet, in which it is energetically favorable for the
spins to align (i.e., all have the same value). J < 0 models an antiferromagnet, in which
antiparallel spins are favored.

At temperature T the Ising model has a partition function

Z =
∑

ν

e−βHν , (5.3)

where β = (kT)−1 = T−1 since we work in energy units with k = 1, and the sum is taken
over all possible configurations ν of the lattice. As a thermodynamic system, the Ising
model is governed by Boltzmann statistics, which decree that the probability P (µ) that
the system is in a state µ with energy Hµ is

P (µ) =
e−βHµ∑
ν e

−βHν
=

1

Z
e−βHµ , (5.4)

At high temperatures, β is small, so the lattice can be in many different states with
roughly equal probability. In this situation, considerations of entropy tell us that the
lattice will tend to be in a disordered state with spins pointing in different directions
almost randomly, since the multiplicity of such states is greater than that of ordered states
in which all the spins are aligned. However, we saw above that the ordered states are
actually energetically favored, so at low temperatures where β is large, ordered or nearly-
ordered states will be the only states the lattice can inhabit with significant probability.

Observables of interest in the Ising model include the energy of the lattice of spins
(given by Eqn. 5.2), the magnetization of the lattice (that is, the average spin across it),
and the specific heat and susceptibility, quantities proportional to the variances of the
energy and magnetization, respectively. We will typically deal with the volume-average
energy, magnetization, specific heat and susceptibility per lattice site (e, m, c and χ)
as opposed to their total values over the entire N -site lattice (E, M , C and X, where
E = Ne, etc.). Expressions for the energy and magnetization are very simple,

〈e〉 =

〈
−
∑

〈ij〉 sisj

〉
N

〈m〉 =
〈
∑

i si〉
N

, (5.5)

23

and those for specific heat and susceptibility take the expected form of variances:

c = Nβ2
(〈
e2
〉
− 〈e〉2

)
χ = Nβ

(〈
m2
〉
− 〈m〉2

)
. (5.6)

Measurements of these four observables on a square 322 lattice over a range of temper-
atures are shown in Figs. 5.1 through 5.4. These figures confirm our above discussion
about behavior of the Ising model at various temperatures. At low temperatures we see
that the energy is low and magnetization high, indicating that the system is in an ordered
state; at high temperatures the energy is relatively high and magnetization is near zero,
signifying that the system is in a disordered state. A profitable approach to studying
such behavior is the concept of phases and phase transitions.

Figure 5.1: Energy vs. temperature for Ising model simulations on a 322 lattice.

5.2 Phases, Phase Transitions, and Spontaneous Sym-

metry Breaking

We can describe Figs. 5.1 through 5.4 by saying that the Ising model possesses
two phases – a disordered high-temperature phase characterized by high energy and low
magnetization along with an ordered low-temperature phase characterized by low energy
and high magnetization. The disordered phase is known as the symmetric phase, since it
possesses a simple up-down symmetry. That is, an Ising system in the symmetric phase
looks the same if all the spins are flipped to point in the opposite direction. This is
illustrated in Fig. 5.5, in which black and white pixels represent spins aligned in opposite
directions. The system on the right in Fig. 5.5 was created by flipping every single spin

24

Figure 5.2: Magnetization vs. temperature for Ising model simulations on a 322 lattice

Figure 5.3: Specific heat vs. temperature for Ising model simulations on a 322 lattice

25

Figure 5.4: Susceptibility vs. temperature for Ising model simulations on a 322 lattice

in the system on the left (up → down and vice versa); the two are in that sense opposites
but nevertheless look much alike.

Figure 5.5: Sample Ising model states in the symmetric phase on a 1282 lattice. In this
and following figures, black and white pixels represent spins aligned in opposite directions.

In contrast, at low temperatures the ordered phase no longer has up-down symme-
try. The two systems in Fig. 5.6 are mirror images, just like those in Fig. 5.5; however,
it is now very easy to tell the two states apart. The ordered phase that exists at low
temperatures is therefore known as the broken symmetry (or simply “broken”) phase,
since the alignment of the spins along a single direction “breaks” the high-temperature
symmetry.

The Ising model can also exist temporarily in metastable states such as those
illustrated in Fig. 5.7. It is easy to see that although the energy of horizontal-band

26

Figure 5.6: Sample Ising model states in the broken phase on a 1282 lattice. (Frame
added to the left-hand system for clarity.)

metastable state is higher than that of the completely-aligned ground state, if any single
spin were to reverse direction the energy of the system would increase since the spin
would now have three or four oppositely-aligned neighbors. Similarly, the energy of the
diagonal-stripe metastable state is higher than that of the ground state, but the energy
cannot be lowered by flipping a single spin. Such metastable states can only exist until
thermal fluctuations cause them to tunnel through the energy barrier and fall into the
ground state. Since they are thus only temporary, though perhaps long-lasting, they are
not technically considered phases.

Figure 5.7: Sample metastable states of the Ising model on a 1282 lattice. (Frames added
for clarity.)

Since the Ising model inhabits a symmetric phase at high temperatures and a
broken phase at low temperatures, there clearly must be some sort of transition from
one phase to the other as the temperature changes. This can clearly been seen from the
graphs of Ising model observables over temperature, especially Figs. 5.3 and 5.4, which
show peaks in the specific heat and susceptibility around the region where the transition
occurs. This transition becomes sharper if the system is simulated on larger lattices,
by which we mean that the peaks become narrower and their maxima increase. This is
illustrated for the susceptibility of φ4 theory (Chapter 6) by Figs. 5.8 and 5.9; since φ4

theory and the Ising model are in the same universality class, the Ising model’s behavior
will be the same. We have presented this data in two charts since the change in the
heights of the peaks from 322 to 10242 lattices is so dramatic that the peaks for smaller
lattices simply look like flat lines in Fig. 5.9.

27

Figure 5.8: Susceptibility vs. µ2
l for φ4 theory simulated at λ = 1 on square lattices of

size L = 32, 64, 128 and 256

Figure 5.9: Susceptibility vs. µ2
l for φ4 theory simulated at λ = 1 and L = 32, 64, 128,

256, 512 and 1024

28

In the infinite-volume limit, the specific heat and susceptibility of the Ising model
actually diverge at a point known as the critical temperature. Since the two-dimensional
Ising model has been solved analytically, we know that its critical temperature is exactly

Tc =
2J

log
(
1 +

√
2
) ≈ 2.269J → βc ≈

0.4407

J
. (5.7)

We call a transition such as that of the Ising model in which the energy and magnetization
are continuous but their variances diverge “second-order”; in a “first-order” transition
the magnetization itself is discontinuous. It is also possible to define higher-order phase
transitions, but since this classification scheme runs into some difficulties, all phase tran-
sitions that are not first-order are often called simply “continuous”.

Researchers are typically most interested in the critical regions and phase transi-
tions of thermodynamics systems. In part this is because there’s simply more going on
in those regions of the phase space: at low temperatures the spins are all aligned into a
boring ordered state, and at high temperatures they’re more or less randomly distributed,
but in between the system somehow needs to get from one uninteresting extreme to the
other, a potentially interesting process. Even more important, however, is the fact that
the quantities of interest of the Ising model and other systems – magnetization, specific
heat and susceptibility among others – are characterized by ‘critical exponents’ near the
critical point. Values for the critical exponents for the Ising model are

m ∼ |t|β β =
1

8
(5.8)

c ∼ |t|α α = 0 (5.9)

χ ∼ |t|−γ γ =
7

4
, (5.10)

where t is the reduced temperature, t = T−Tc

Tc
. (α = 0 simply means the specific heat

diverges logarithmically, not as a power of |t|.)

The critical exponents are important because they are believed to be properties
of the most basic features of the Ising model, independent of such details as the value
of J or the geometry of the lattice. Even more remarkably, different system often have
the same critical exponents, a property known as universality. Systems with the same
critical exponents are said to be in the same universality class, and behave similarly in
their critical regions. This is the case for the two-dimensional Ising model and φ4 theory,
the focus of our work.

We studied the Ising model and its phase transition using computer programs to
simulate it on rectangular lattices, which can be found below in the Section C.2. These
programs use two different Monte Carlo algorithms, the Metropolis algorithm and the
Wolff cluster algorithm, to which we now turn.

29

5.3 Metropolis Algorithm

The Metropolis algorithm, first described by Nicholas Metropolis et al. [38] in
1953, is one of the simplest, best-known, and widely-used Monte Carlo algorithms in
existence. It works by making a random change to the lattice and then accepting the
newly generated state with a probability based on the resulting change in the energy of the
system. Note that this explicitly breaks up the transition probability into the product of
a generation probability and an acceptance probability, P (µ→ ν) = g(µ→ ν)A(µ→ ν),
as discussed above in Section 4.3

For simplicity, we will consider only single-site Metropolis, in which only one spin
is flipped at a time in order to generate the new state. Although this is the most common
approach (and the one used in all our programs), single-site updating is not a necessary
feature of the Metropolis algorithm. However, it greatly simplifies the verification of
detailed balance, since when the algorithm is performed on an N -site lattice there are
only N possible new states than can be (randomly) generated. So for each of the N
possible destination states, g(µ→ ν) = 1/N = g(ν → µ).

Looking back to Eqn. 4.5, we have

P (µ→ ν)

P (ν → µ)
=
g(µ→ ν)A(µ→ ν)

g(ν → µ)A(ν → µ)
=
A(µ→ ν)

A(ν → µ)
= e−β(Eν−Eµ). (5.11)

The relative transition probabilities are now determined by the acceptance ratios. Our
goal is to maximize the acceptance probability in order to keep from repeatedly generating
and then rejecting new states. Since the Boltzmann distribution favors states with lower
energies, we should always accept any transition that brings the lattice into a lower energy
state. Since the acceptance ratio must obey Eqn. 5.11, we see that the probabilities should
be given by

A(µ→ ν) =

{
1 if Eν ≤ Eµ,
e−β(Eν−Eµ) = e−β∆E if Eν > Eµ,

(5.12)

That is, we always accept any state that doesn’t increase the energy of the system, and
conditionally accept states that increase the energy with probability e−β∆E < 1.5.2 Note
that the transition probabilities depend only on the current state µ and the newly gener-
ated state ν, and that they have been chosen to reproduce the Boltzmann distribution.
Eqn. 5.12 defines the Metropolis algorithm, even in cases where multiple spins are flipped
at once.

However, using single-site updating makes it easy to verify that the algorithm is
ergodic. In order to get from one state to another, it is only necessary to flip, one-by-
one, all of the sites at which the two states differ. Since the transition probabilities for
each individual change are all greater than zero, so is the total product. In addition,
using single-site updating means that (in models such as the Ising model and φ4 theory
that do not involve long-distance interactions) ∆E can be calculated very efficiently by
considering only the nearest neighbors of the affected site.

5.2The alternative A(µ → ν) = e−
1
2 β(Eν−Eµ) may seem logical but is actually far less efficient, as made

clear by Newman and Barkema [40, Section 3.1].

30

Finally, since the condition of detailed balance (Eqn. 4.5) was used to generate
Eqn. 5.12, it is almost trivially satisfied, as can be verified by substituting the probabilities
back into the detailed balance condition. Thus the Metropolis algorithm is a Markov
chain Monte Carlo algorithm, and we can rely on its ability to reproduce the Boltzmann
distribution.

5.4 Critical Slowing Down

Although the Metropolis algorithm is widely used and trusted, it has the disadvan-
tage of producing relatively large autocorrelation times (defined above in Section 2.2),
especially near the critical point. This is illustrated in Fig. 5.10, which shows how the
autocorrelation time τ for φ4 theory (measured in units of five sweeps of the lattice with
the Metropolis algorithm) peaks near the critical point. As discussed in Chapter 2, this
means that in the critical region we must either run our simulations for longer times or
accept larger uncertainties in our measurements. Both of these alternatives are unattrac-
tive, especially since the critical region is often the very portion of phase space we’re
most interested in studying, both to look at phase transitions as well as calculate the
critical exponents discussed in Section 5.1. In order to address the problem of critical
slowing down, it will be helpful to gain at least a qualitative understanding of its cause.

Figure 5.10: Critical slowing down for Metropolis algorithm simulation of the φ4 model
(Chapter 6) on a 322 lattice at λ = 1

Consider what must happen as the system cools from the symmetric phase into
the broken phase. As the temperature decreases, the spins start to align, at first in small
groups that we’ll call ‘clusters’ of correlated spins. These clusters must expand as the
temperature decreases, eventually encompassing the whole system and growing to infinite
size as the system reaches the critical point. Thus we can define another critical exponent
governing the behavior of the autocorrelation length ξ of clusters of aligned spins near
the critical point,

ξ ∼ |t|−ν . (5.13)

On finite lattices of size L, the autocorrelation length cannot be longer than L, and so is
cut off at ξ ∼ L near the critical point.

31

The reason we introduce the autocorrelation length is that the Metropolis algorithm
has a difficult time dealing with multiple clusters, and the larger the autocorrelation
length, the greater the difficulty. This is because the Metropolis algorithm is a local
algorithm. Any site fully enclosed within a cluster sees only spins in a particular direction,
and so there would be a significant gain in the energy of the system if it were flipped.
The Metropolis algorithm will thus tend to leave spins within clusters unflipped, and take
action only on boundaries between clusters. Therefore if we’re using a local algorithm
like the Metropolis algorithm, the degree of correlation between subsequent measurements
depends on the size of the clusters (that is, the autocorrelation length), and therefore
diverges at the critical point. We can now express the autocorrelation time for the
Metropolis algorithm as a power of reduced temperature |t|. Since the exponent is specific
to the Metropolis algorithm, it is not a critical exponent. Instead we note the dependence
of the autocorrelation time on the autocorrelation length and write,

τ ∼ |t|−zν ∼ ξz, (5.14)

where ν is the critical exponent of the autocorrelation length and z is called the ‘dynamic’
exponent. All the algorithm-specific properties of the divergence of τ have been placed
into z.

Now the most pernicious aspect of critical slowing down is clear: since we have
ξ ∼ L for finite lattices,

τ ∼ Lz. (5.15)

Unless z is small, the autocorrelation time will increase intolerably as the lattice gets
larger. For the Metropolis algorithm applied to the Ising model, z has been measured to
be z = 2.167(1), so the accuracy of the algorithm will decrease dramatically as lattice
size increases. This is doubly unfortunate, since larger lattices not only take more com-
puting resources to simulate in the first place, but are of special interest since they more
accurately model the continuum behavior of the system.

Fortunately, there are other algorithms that specifically address and reduce the
problem of critical slowing down. In our simulations, we used the Wolff cluster algorithm,
which has z = 0.25(1), an order of magnitude smaller than that of the Ising model. Let’s
see how it works.

5.5 Wolff Cluster Algorithm

Since we have seen that critical slowing down is an effect of the division of the
lattice into clusters near the critical point, we suspect that it could be addressed by
somehow incorporating these clusters into the algorithm used to generate the Boltzmann
distribution. A class of Monte Carlo algorithms known as cluster algorithms takes just
this approach. The most popular cluster algorithm at the moment is the Wolff cluster
algorithm, which we used extensively in our simulations and will explain in this section.

Ulli Wolff introduced the algorithm that bears his name in 1989 [69], as an im-
proved version of the earlier Swendsen-Wang cluster algorithm [59]. The Swendsen-Wang

32

algorithm partitions the entire lattice into a number of disjoint (non-overlapping) clus-
ters, each cluster containing only spins aligned in a particular direction. Each of these
clusters is then individually flipped with probability 1

2
. The Wolff algorithm, in contrast,

creates only a single cluster of aligned spins that generally does not include the whole
lattice.5.3

The algorithm proceeds by randomly selecting a single initial ‘seed’ spin that forms
the kernel of the cluster, then probabilistically adding to the cluster all of the seed spin’s
neighbors that have the same spin, recursively considering all of their neighbors, and so
on until all the properly-aligned neighboring sites have been tested. The cluster is then
flipped to create the new state; in contrast to the Metropolis algorithm, this new state
is always accepted. The Wolff cluster algorithm thus moves the probabilistic aspects of
the Monte Carlo simulation from the acceptance probability to the selection probability,
specifically, to the act of adding sites to the cluster. Let us now determine how this act
must be performed in order to guarantee that the Wolff cluster algorithm is a proper
Markov chain Monte Carlo method that can be trusted to reproduce the Boltzmann
distribution.

Consider again the condition of detailed balance, Eqn. 4.5. Since A(µ→ ν) = 1 =
A(ν → µ), we have

P (µ→ ν)

P (ν → µ)
=
g(µ→ ν)A(µ→ ν)

g(ν → µ)A(ν → µ)
=
g(µ→ ν)

g(ν → µ)
= e−β(Eν−Eµ). (5.16)

Let’s think about what happens when a cluster is flipped. All the spins in the cluster will
be aligned both before and after it is flipped, so the only change in energy will come from
the sites neighboring the cluster. The n neighboring spins that are currently aligned with
the cluster will point opposite to it after it is flipped, while the m neighboring spins that
are currently pointing opposite to the cluster will be aligned with it.5.4 Now, each of the
n neighboring spins with the same alignment as the cluster could have been added to the
cluster when it was being formed, as described above. Suppose each independently had
the same probability Padd of being added to the cluster, 1 − Padd of being left out. The
total probability of these n sites being left out is then clearly (1− Padd)

n. But since the
selection probability is entirely dependent on which sites are added to the cluster and
which are left out, it must be proportional to this value,

g(µ→ ν) ∝ (1− Padd)
n .

Similarly, g(ν → µ) ∝ (1− Padd)
m, since going in the ‘reverse direction’ from ν to

µ will simply reverse the definitions of m and n. Therefore

g(µ→ ν)

g(ν → µ)
= (1− Padd)

n−m = e−β(Eν−Eµ).

Finally, we can express ∆E = Eν − Eµ in terms of n and m. For the Ising model with
constant coupling J and no external field, the energy will rise by 2J for each of the n

5.3Adding every site in the lattice to the cluster is possible only in the broken phase, when all the spins
are aligned.

5.4When counting m and n, we need to count the same site multiple times if it has multiple neighbors
in the cluster.

33

sites that used to be aligned with the cluster but no longer are, while it will fall by the
same amount for each of the other m that are now aligned with the cluster in the new
state. So ∆E = 2J(n−m) and we have

(1− Padd)
n−m =

(
e−2βJ

)n−m → Padd = 1− e−2βJ (5.17)

So just using this simple, constant probability Padd = 1−e−2βJ to determine which
(appropriately-aligned) sites are added to the cluster guarantees that the Wolff cluster
algorithm will satisfy detailed balance. It is also easy to see that it will satisfy ergodicity,
using the simple trick of noting that for any finite βJ there is a nonzero chance of creating
a single-site cluster. Thus there is also a nonzero probability of forming and flipping such
a single-site cluster at each site where any two potential states differ, making it possible
to reach any state from any other in a finite number of steps. Since the Wolff cluster
algorithm clearly does not rely on any memory of previous states, it is a bona fide Markov
chain Monte Carlo algorithm that will reproduce the Boltzmann distribution, just like
the better-known Metropolis algorithm.

But does the Wolff cluster algorithm help with the critical slowing down problem,
the reason we started thinking about it in the first place? Clearly we wouldn’t have
bothered to write all this if it didn’t. A large number of studies have verified that cluster
algorithms greatly reduce critical slowing down when compared to local algorithms such
as the Metropolis algorithm. Of particular interest for our later work are papers by
Brower and Tamayo [9], De et al. [16], and Loinaz and Willey [32], which use mixtures
of the Metropolis and Wolff algorithms (actually, Brower and Tamayo use the Swendsen-
Wang cluster algorithm, but the general idea is the same). Specifically, they sweep the
lattice several (generally 5-10) times with the Metropolis algorithm before performing a
single Wolff cluster flip to deal with any clusters that may have formed.5.5

This approach is especially useful for theories such as φ4 theory that have more
complicated structures than the simple spin-up/spin-down on the Ising model on which
the Wolff cluster algorithm operates. It is often possible to embed Wolff clusters into these
system, but typically simply performing the Wolff cluster algorithm on these embedded
clusters does not satisfy ergodicity. Sweeping the lattice with the Metropolis algorithm in
between Wolff cluster flips is a way around this problem for φ4 theory, as we will explain
in more detail in Section 7.5, after introducing φ4 theory itself.

We ourselves were able to verify that mixing the Wolff cluster algorithm and
Metropolis algorithm in this fashion reduces critical slowing down. We performed our
small-lattice (L ≤ 128) φ4 simulations twice, once using just the Metropolis algorithm
and once using this Metropolis/Wolff mixture. Although our motivation for doing so
was to verify that the mixture gives the same results as the tried-and-true Metropolis
algorithm by itself (it does – see Section 7.5), our data could also be used to explore the
effects of the Wolff cluster algorithm on critical slowing down and autocorrelation times.

Fig. 5.11 shows that although the autocorrelation time τ (now measured in units
of five sweeps of the lattice with the Metropolis algorithm followed by one Wolff cluster

5.5It might be an interesting exercise to see how critical slowing down and autocorrelation times depend
on the ratio of Metropolis sweeps to Wolff cluster flips. We did not perform such an analysis.

34

flip) still peaks around the critical point, it is roughly an order of magnitude less than
it was when the same simulation was performed using only the Metropolis algorithm
(Fig. 5.10). This order of magnitude reduction in τ is typical for the two-dimensional φ4

model on these small lattices – given the relation between lattice size and autocorrelation
length, Eqn. 5.15, we suspect the benefits are even greater for simulations using larger
lattices. These results also provide some empirical support for our earlier explanation of
critical slowing down through clusters; by operating in terms of clusters, the Wolff cluster
algorithm and other similar cluster algorithms are better able to address this issue and
reduce critical slowing down.

Figure 5.11: Critical slowing down for mixed Metropolis/Wolff simulation of the φ4 model
(Chapter 6) on a 322 lattice at λ = 1

We should emphasize that using cluster algorithms doesn’t eliminate critical slow-
ing down entirely – the autocorrelation time still peaks near the critical point in Fig. 5.11.
However, they do make the problem more manageable and the simulations much more
efficient – at least around the critical point, the region in which we’re generally most
interested (and all that’s shown in Figs. 5.10 and 5.11). A little thought will show that
the Wolff cluster algorithm is often very inefficient in other regimes, particularly very
high and very low temperatures. At very high temperatures, few spins will be aligned, so
there will be few sizable clusters that can be formed in the first place. Moreover, as the
temperature increases, β decreases, so Padd = 1− e−2βJ → 0. This means that few if any
sites will be added to the cluster, and the “cluster flip” will consist of the useless flipping
back and forth of randomly chosen sites. The Metropolis algorithm performs much more
efficiently in this regime.

The Metropolis algorithm is also much more efficient at low temperatures. At high
β, all the spins tend to be aligned and Padd → 1, so many sites will be added to the
cluster. Often at very low temperatures all spins are aligned (the lattice is ‘frozen’) and
all are added to the cluster. So in this regime, the Wolff cluster algorithm simply flips
the entire lattice, accomplishing nothing. The Metropolis algorithm will not have much
effect in this regime either, but at least it won’t visit every site on the lattice during
each iteration. The moral is that cluster algorithms such as the Wolff cluster algorithm
are most useful when there are several sizable clusters for them to work with, a state of
affairs most common around the critical point.

35

5.6 Related Statistical Systems

The Ising model, though by far the best-known statistical model of ferromagnetic
phase transitions (and other analogous phenomena), is far from the only one. There are
several generalizations to the Ising model that allow the ‘spins’ to move beyond simple
spin-up/spin-down and take on more values, or even vary continuously. In the following
subsections we will briefly introduce some of the most important of them, the Potts model
and O(n) σ models where n = 2 (the XY model) and n = 3 (the Heisenberg model).5.6

More extensive discussions of all three models (and more besides) can be found in
Berg [6] and Newman and Barkema [40].

5.6.1 Potts Model

The q-state Potts model is a simple generalization of the Ising model, introduced in
1952 by R. B. Potts [46]. Like the Ising model, it consists of sites containing ‘spins’ of unit
length that interact only with their nearest neighbors. However, instead of pointing either
up or down, each Potts site can be in one of q states 1, ..., q. The general Hamiltonian
for the Potts model on a 2-dimensional lattice is

H = −
∑
〈ij〉

Jijδ(qi, qj)−
∑

i

Bisi. (5.18)

∑
〈ij〉, Jij and Bi are all the same as in the Ising model discussed above in Section 5.1.

Note that in contrast to the Ising model, the δ-function ensures that neighboring spins
only directly interact if they are in the same state.

However, it is still possible to reproduce the Ising model from this more general
scenario. Again setting B = 0 and J = 1 to gain some traction, the Hamiltonian becomes

H = −J
∑
〈ij〉

δ(qi, qj) = −1

2
J
∑
〈ij〉

2

(
δ(qi, qj)−

1

2

)
−
∑
〈ij〉

1

2
J. (5.19)

In the case q = 2, this is equivalent (up to an additive constant) to the Ising model with
J → 1

2
J , which accounts for the Ising interaction between oppositely-aligned spins. Like

the Ising model, the Potts model has been analytically solved in two dimensions, and
has a broken symmetry ground state in which all the spins spontaneously fall into the
same qi. As suggested by Eqn. 5.19, the critical temperature for the q = 2 Potts model
is simply half that of the Ising model,

T Potts
c =

Tc

2
=

J

log
(
1 +

√
2
) ≈ 1.135J → βc ≈

0.8814

J
.

The generalization to the q-state Potts model is (perhaps surprisingly) simple:

T Potts
c =

J

log
(
1 +

√
q
) → βc =

log
(
1 +

√
q
)

J
.

5.6The O(1) σ model is actually the Ising model itself.

36

The phase transition is known to be second order for q ≤ 4 and first order for q ≥ 5.

The Metropolis and Wolff algorithms can both be applied to the Potts model. The
Wolff algorithm now builds its cluster out of sites all having the same value of qi, and
both algorithms need to change the value of qcurrent at the site(s) under consideration into
a new, randomly-chosen qnew. In general, qnew can be the same as qcurrent. Though we
wrote some q = 10 Potts model simulations using the Metropolis and Wolff algorithms
early in the course of our work, we then moved on to other topics without obtaining
noteworthy results.

5.6.2 XY Model

The Potts model is peculiar in that neighboring sites only directly interact if they
are in the same state qi. This makes the Potts model difficult to describe physically
– the noninteracting neighboring sites can’t easily be visualized as spins pointing in
different directions, except in the q = 2 model that reproduces the Ising model. A
further generalization known as the XY model produces precisely these kinds of spins,
which can point in any direction in a plane; unlike the Ising and Potts models, the XY
model is a continuous spin model. Like those models, however, XY spins are all set to
unit length, so they can be written ~s = (s1, s2), where s2

1 + s2
2 = 1.

Technically, the XY model is the O(2) σ model, so named because its spins are con-
fined to the unit circle in the two-dimensional plane, which the mathematically-inclined
reader will recognize as corresponding to the two-parameter special orthogonal (or rota-
tion) group SO(2), the group of rotations in two dimensions that preserve distance from
the origin. It’s intuitively obvious that the two-component spins (s1, s2) can be specified
with a single parameter, namely the angle θ at which the spin is aligned relative to some
fixed axis. This observation is a reflection of the well-known mapping between SO(2)
and the unitary (‘circle’) group U(1).

The Hamiltonian for the XY model is similar to that of the Ising model, though
now that the spins have multiple components we need to take their dot products instead
of simply multiplying them:

H = −J
∑
〈ij〉

~si · ~sj (5.20)

(As we did above, we are setting all external fields B to zero and requiring constant
interaction strength J .) The ground state of the system is, like that of the Ising and
Potts models, one in which all the spins are aligned. However, now the spins can align
in any direction in the plane, giving the system a continuous broken symmetry, rotation
around the plane. In quantum field theory, such spontaneous breaking of a continuous
symmetry entails the existence of massless particles known as Goldstone bosons – see
Ryder [51, Chap. 8].

Since the XY model is a continuous spin model, we need to generalize the partition

37

function and Boltzmann distribution from the discrete case; we now have

Z =

∫
e−βEρ(E)dE

p(E)dE =

∫
e−βEρ(E)dE

Z

where p(E)dE is the probability of finding the system in a state with energy between E
and E + dE and ρ(E) is the density of states, defined such that p(E)dE is the number
of states in the interval E to E + dE. The question of how a system with a continuous
spectrum of states could have a particular number of states in an energy interval is
difficult to address classically.

5.6.3 Heisenberg Model

The Heisenberg model, the final statistical model we will introduce, is quite similar
to the XY model – a simple extension that nevertheless features some striking new
phenomena. The Heisenberg model is the O(3) σ model, which involves three-component
normalized vectors ~s = (s1, s2, s3), s

2
1 + s2

2 + s2
3 = 1. The Hamiltonian for the Heisenberg

model is precisely that of the XY model, Eqn. 5.20, with the spins ~si ·~sj now understood
to possess three components.

The Heisenberg model is of special interest because it is one of the simplest possible
‘nonabelian’ statistical systems. Nonabelian theories or models are simply those with
nonabelian symmetry groups. The Heisenberg model’s symmetry group is SO(3) (which
corresponds to U(2) just as SO(2) corresponds to U(1)), which is clearly nonabelian –
all that signifies is that rotations in three dimensions do not commute, a well-known and
easily verifiable fact.

Nonabelian groups are especially important in quantum field theory, since they
include gauge theories such as quantum chromodynamics (QCD). Yang-Mills theories
are an important class of gauge theories, and were actually the first nonabelian gauge
theories to be developed, in the 1950s. One of the most remarkable features of four-
dimensional Yang-Mills theory, and the reason we mention it here, is that it possesses
strong analogies to the two-dimensional Heisenberg model. Thus the Heisenberg model
can serve as a relatively gentle introduction to the world of gauge theory and QCD.

It is possible to simulate continuous spin models such as the XY and Heisenberg
models using the Metropolis algorithm and Wolff cluster algorithm, though in forms
slightly modified from those introduced above in the context of the Ising model. However,
it is generally considerably more efficient to use other algorithms, such as the heat bath
algorithm, that are better suited to continuous models. We’ll now take a quick look at
the heat bath algorithm along with some other noteworthy algorithms.

38

5.7 Other Noteworthy Algorithms

Just as the Ising model is not the only interesting model we could consider, the
Metropolis and Wolff algorithms are not the only methods we could use to simulate them.
For example, we have already introduced the Swendsen-Wang cluster algorithm, off of
which the Wolff cluster algorithm was based.

In the following subsections, we will briefly explore some other algorithms that are
of particular interest. First we will consider in some detail the invaded cluster algorithm,
which uses an interesting method to efficiently determine the critical point of the Ising
model and related systems. Next we will turn to the heat bath algorithm designed to
increase the efficiency of simulations of Potts and σ models in which each spin can take
on many potential values. Finally we will briefly introduce multigrid methods and worm
algorithms, both of which attempt to reduce critical slowing to a lower level than that
attained by standard cluster algorithms, but use quite different approaches.

5.7.1 Invaded Cluster Algorithms

The invaded cluster algorithm, relatively recently developed by Machta and oth-
ers [17, 35, 36], is the most interesting algorithm that we encountered but did not use in
our work. It is applicable to the Ising model and possibly other systems, but works quite
differently than both the Metropolis and Wolff algorithms. Instead of reproducing the
Boltzmann distribution for a given temperature, the invaded cluster algorithm modifies
the temperature in order to directly find the critical point. Should we be interested in
determining the critical point (and we are), we can do so much more efficiently by using
the invaded cluster algorithm than by manually analyzing observables such as the sus-
ceptibility. The invaded cluster algorithm can also be used for other purposes (such as
determining critical exponents mentioned above), but we need to keep in mind that the
states it generates do not obey Boltzmann statistics.

The invaded cluster algorithm for the Ising model takes advantage of the pattern of
cluster formation that characterizes the phase transition. As we noted above, the clusters
that form as the temperature is cooled from the symmetric phase to the broken phase
reach the size of the lattice at the critical point. We define a “percolating cluster” as a
cluster that spans the lattice. That is, its length in at least one direction is equal to the
dimension L of the lattice in that direction, or it runs into itself as a result of periodic
boundary conditions. Each iteration of the invaded cluster algorithm attempts to create
a percolating cluster on the lattice. It then adjusts the temperature of the simulation in
order to find the maximum possible temperature at which a percolating cluster forms –
clearly this maximum temperature is the critical temperature.

We can accomplish this by assigning a random number between zero and one to
every pair of neighboring spins on the lattice that are aligned in the same direction. We
can think of each number as sitting on a potential link between the two spins. We sort
the random numbers and run through them from smallest to largest, establishing links

39

between the corresponding pairs of spins. A set of spins which are all linked in this
manner can be considered a cluster. We continue making links until a percolating cluster
is formed, or all parallel-spin pairs have been linked, whichever comes first. Each cluster
is separately flipped with probability 1

2
, just as in the Swendsen-Wang algorithm.

Next we calculate the fraction of all possible links that had to be established in order
to form the percolating cluster. This fraction is equal to the minimum possible Padd that
would have created a percolating cluster under the Swendsen-Wang algorithm (if Padd = 1
then no percolating cluster could have been created). However, for the Swendsen-Wang
algorithm, exactly like the Wolff algorithm, Padd has to depend on temperature to satisfy
detailed balance. That is,

Padd = 1− e−2βJ = 1− exp

[
−2J

T

]
→ T =

−2J

log(1− Padd)
. (5.21)

So by flipping the clusters as they existed when the percolating cluster was formed, we
effectively carried out an iteration of the Swendsen-Wang algorithm at this temperature.

Now, let’s see how to extract the critical temperature from that. If the system
is in the broken phase, then more sites will be aligned in clusters than would be the
case precisely at the critical temperature, so in order to form a percolating cluster Padd

does not need to be as large as it would have to be at the critical temperature. But
this means that the temperature from Eqn. 5.21 is greater than the critical temperature.
In the extreme case where every single spin in the cluster is aligned, Padd = 1

2
, which

corresponds to T = 2.89 > 2.269 = Tc. Conversely, if the system is in the symmetric
phase, then fewer sites will be aligned than would be the case precisely at the critical
temperature, so in order to form a percolating cluster Padd needs to be larger than it
would have to be at the critical temperature. Eqn. 5.21 then produces a temperature
less than the critical temperature. In the extreme case where the lattice is so disordered
no percolating cluster can be formed, Padd = 1 (its maximum), which corresponds to
T = 0 < Tc.

So we see that when the system has a temperature T0 < Tc, the invaded cluster
algorithm will perform Monte Carlo steps at a temperature T > Tc, effectively raising
the temperature of the system, and vice versa. Thus the algorithm drives the cluster
toward the critical temperature, which can be measured directly. Empirical studies have
shown that the invaded cluster algorithm is very efficient, reaching equilibrium times 20
or more times faster than the Swendsen-Wang algorithm at the critical point.

Although Dukovski, Machta and Chayes [17] have used the invaded cluster algo-
rithm to study the XY model in addition to the Ising model, it has not yet been applied
to φ4 theory, the primary focus of this work. If it is possible to apply the invaded cluster
algorithm to φ4 theory, our results could have been obtained much more quickly. How-
ever, it is not clear that this is possible. We will show in Chapter 7 that when the Wolff
cluster algorithm is applied to φ4 theory, Padd is not constant over the whole lattice, and,
moreover, doesn’t even directly depend on µ2

0, the variable whose critical value we want
to determine. However, we have not yet shown that it is impossible to apply the invaded
cluster algorithm to φ4 theory. The fact that the algorithm can be made to work for the
XY model, which has variable Padd, gives us some encouragement.

40

5.7.2 Heat Bath Algorithm

The heat bath algorithm is a very popular and widely-used algorithm designed for
systems such as the Potts model in which a spin can take on more than two values. To
motivate the algorithm, we can consider the extreme case of the q = 100 Potts model.
Suppose we are using the Metropolis method to update a single site whose neighbors
all have different qi. Since the new state for the site is chosen randomly, the site has a
4% chance of ending up in one of the energetically-favored states. If it already in one of
those four states, then if the temperature is low it could have a rejection rate of up to
96%. That is, when the Metropolis algorithm is applied to the Potts model it wastes a
lot of time selecting and rejecting states, even for more reasonable numbers of states qi.

The logical way to approach this problem is to bias the generation of states, so
that they are no longer all selected with exactly the same probability. Instead we want to
select the energetically-favored states with greater probability. Thus the selected state is
more likely to be accepted, so less time is wasted rejecting large numbers of energetically-
unfavorable updates.

This is precisely what the heat bath algorithm does. For the q-state Potts model
it generates states according to the Boltzmann distribution, selecting state 1 ≤ n ≤ q
with normalized probability

pn =
e−βEn∑q

m=1 e
−βEm

, (5.22)

values drawn from the “heat bath”. The new state generated in this manner is always
accepted. Note that unlike the Metropolis algorithm these probabilities depend only on
the final state, not the current one.

It is clear that the heat bath algorithm satisfies ergodicity, since there is a nonzero
probability of each site in the system being assigned each possible state. The proof that
the system satisfies detailed balance is also simple. From Eqn. 4.5 we have

P (µ→ ν)

P (ν → µ)
=
g(µ→ ν)A(ν → µ)

g(ν → µ)A(ν → µ)
=
g(µ→ ν)

g(ν → µ)
= e−β(Eν−Eµ),

since A(µ→ ν) = 1 = A(ν → µ). But g(µ→ ν) is simply pn, giving

P (µ→ ν)

P (ν → µ)
=

(
e−βEν∑q

κ=1 e
−βEκ

)(∑q
κ=1 e

−βEκ

e−βEµ

)
= e−β(Eν−Eµ),

as required.

Though we did not do so ourselves, the heat bath algorithm can be applied to φ4

theory with little difficulty. For instance, Sun [58] uses it to study aspects of φ4 theory
related to Bose-Einstein condensation phase transitions.

41

5.7.3 Multigrid Methods

The class of Monte Carlo algorithms collectively known as multigrid methods are
of interest because they reduce critical slowing down to an even greater extent than
do cluster algorithms. For example, the simplest multigrid method, which we consider
below, has a dynamic exponent of z ≈ 0.2 for the two-dimensional Ising model, slightly
lower than that of the Wolff cluster algorithm.

However, multigrid methods are considerably more complicated to implement than
cluster algorithms (to say nothing of proving ergodicity and detailed balance). Since their
dynamic exponents are only slightly smaller than that of the Wolff cluster algorithm,
multigrid methods will only present an appreciable advantage on very large lattices. As
a result of this fact and their overall complexity, multigrid methods have not been widely
used, though Sun [58] applies them to aspects of φ4 theory related to Bose-Einstein
condensation phase transitions.

We’ll briefly outline the simplest multigrid method for the two-dimensional Ising
model, which is presented in more detail by Newman and Barkema [40, Chap. 4]. We
pick a spin on the lattice and look at all of its neighbors in turn. If a pair of spins are
pointing in opposite directions, we erase the Ising interaction between them, so that their
relative orientations can change with no effect on the energy. Otherwise the two spins
are pointing in the same direction, in which case they are frozen together with the same
probability Padd = 1 − e−2βJ used by the Wolff and Swendsen-Wang cluster algorithms.
Spins that are frozen together must remain aligned. Those spins that are not frozen but
whose interactions have not been erased interact with the normal Ising interaction.

We repeat the process for all the other spins in the lattice, with the complication
that if two spins are frozen, we no longer look at their neighbors – they retain the Ising
interaction regardless of what direction they’re pointing in, unless we have already erased
the interaction in a previous step. Similarly, if two parallel spins were not frozen when the
second was considered as a neighbor of the first, they must retain the Ising interaction;
they cannot be locked together if the first is ever considered as a neighbor of the second.

After we have determined the interaction between every pair of spins on the lattice
– whether it is erased, frozen, or retained as the standard Ising interaction – we have
effectively divided the lattice into clusters consisting of either one or two spins. We then
treat each cluster as an individual spin and perform a few sweeps of the lattice with the
Metropolis algorithm.

Next we repeat the whole process, treating the clusters as spins and joining them
together into larger clusters of up to four of the original spins, using the same rules as
given above. We perform a few more Metropolis sweeps (again with the new clusters
treated as individual spins). This process of merging spins and sweeping the resulting
lattice is repeated until the clusters reach the size of the lattice. Then we reverse the
process by taking the composite clusters apart into the spins (really, lower-level clus-
ters) which made them and sweeping the lattice with the Metropolis algorithm, until all
clusters have been dismantled. Alternately, iterations of constructing and dismantling
clusters could be intermixed. Either way, the algorithm has the effect of flipping blocks

42

of spins of all sizes, from single spins to the size of the whole lattice.

As might be expected, the proof that this algorithm and other more complicated
multigrid methods obey detailed balance and ergodicity is nontrivial. We will not include
it here.

5.7.4 Worm Algorithms

Worm algorithms are another recent innovation, developed primarily by Prokof’ev
and Svistunov [47, 48]. The goal of worm algorithms is to reduce critical slowing down
to the levels obtained by cluster algorithms while remaining essentially local. They
accomplish this by working with bond states, in which several bonds are formed between
the various sites of the lattice. They consider the configuration space consisting of all
bond states which have either an even number of bonds attached to every site or exactly
two sites with an odd number of bonds attached. In the first case, all the paths (connected
series of bonds) must be closed; in the second case the two special sites form the endpoints
of the only open path.

The algorithms then update the bond states by moving the endpoints of the open
path to neighboring sites – if there is no open path, then the endpoints can be taken to
intersect at any site in any of the closed paths in the state. Note that these are local
updates. Using a relatively technical high-temperature series expansion of the partition
function and general state, which we will not reproduce here, Prokof’ev and Svistunov
are able to show that their algorithms are ergodic and satisfy detailed balance.

Perhaps more importantly, they present results showing Z ≈ 0.25 for the two-
dimensional Ising model. Thus worm algorithms, though analytically complicated, are
local-update algorithms that reduce critical slowing down to the same level as the Wolff
cluster algorithm. It should also be possible to apply them to φ4 theory. Although
Prokof’ev and Svistunov do not explicitly discuss φ4 theory, they do test their algorithms
on a number of different systems, including two- and three-dimensional Ising and XY
models, as well as the three-dimensional Gaussian model and the q = 3 Potts model.
Moreover, they also partially apply them to the |ψ|4 model, whose Hamiltonian,

−H =
∑
〈ij〉

(
ψiψ

∗
j

)
+
∑

i

[
µ|ψi|2 − U |ψi|4

]
, (5.23)

very closely resembles that of the discretized φ4 model, Eqn. 7.14.

43

Chapter 6

φ4 Theory

φ4 theory is one of the simplest possible nonlinear field theories. It describes a
scalar field whose self-interactions make possible nonperturbative phenomena such as
solitons. Despite this, its phase structure resembles that of the Ising model (they are
in fact in the same universality class – see De et al. [16]), also exhibiting spontaneous
symmetry breaking during a critical transition from a symmetric to a broken phase.

In this chapter we will introduce φ4 theory as a quantum field theory, treating φ
as an operator related to the creation and annihilation of interacting scalar particles. We
will briefly survey relevant topics such as Feynman rules and renormalization, and will
present a renormalization calculation in two dimensions. We will assume some qualitative
knowledge of the path-integral formulation of nonrelativistic quantum mechanics, an
introduction to which can be found in Townsend [62, Chap. 8].

In the next chapter we will show how to transform the φ4 quantum field theory into
an equivalent Euclidean statistical system, discretize it, and simulate it on the lattice.
We will also wait until the next chapter to discuss the specific calculations we performed
and present our results.

We begin our study of φ4 theory by considering some more general aspects of
relativistic quantum field theory. We’ll briefly discuss the relatively simple Klein-Gordon
equation, the relativistic analog of Schrödinger’s equation, and show that it only really
makes sense if it is held to operate on a scalar field as opposed to the probability amplitude
of a single particle. We’ll call this field φ(x), where x is a point in Minkowski space,
and show how we can quantize it by treating it as a (Hermitian) quantum-mechanical
operator. The resulting theory leads to the interpretation of φ as an operator that creates
and annihilates scalar particles.

44

6.1 The Klein-Gordon Equation

The Schrödinger equation for a free particle can be obtained by treating the energy
and momentum in the relation E = p2

2m
as operators, E → i ∂

∂t
and p→ i~∇:

E =
p2

2m
→ i

∂

∂t
|ψ〉 = − 1

2m
~∇2|ψ〉.

Applying the same procedure to the relativistic generalization E2 − p2 = m2 produces
the free-particle Klein-Gordon equation,

− ∂2

∂t2
φ+

1

2m
~∇2φ = m2φ→

(
∂2 +m2

)
φ = 0, (6.1)

where ∂2 = ∂2

∂t2
− ~∇2 and φ must be a Lorentz scalar in order for the equation to be

Lorentz covariant.

Although the Klein-Gordon equation is a simple and elegant extension of the
Schrödinger equation, it is second-order in the time variable, which causes some diffi-
culties. First of all, since it is E2 and not E itself that appears in Eqn. 6.1, there will

be a negative-energy solution for each positive-energy solution. exp
[
i(~k · ~x+ ωt)

]
is a

simple example with energy E = −
√
~k2 +m2. This presents some obvious interpretive

difficulties, but even beyond that, we see that if the particle were to interact with its
environment, it would be able to emit an infinite amount of energy by continually tran-
sitioning to ever-lower energy levels. Fortunately (for us, if not for the Klein-Gordon
equation), this does not occur in nature. If we tried to get around this by redefining
the Klein-Gordon equation as the operator form of positive square root of the energy
E =

√
p2 +m2, we would either have to define the square root of a differential operator

or use a series expansion, which wipes out locality. Both options are unattractive and
unacceptable.

Perhaps even more seriously, the fact that the Klein-Gordon equation is second-
order in the time variable makes it possible for φ to have negative probability density when
interpreted as a probability amplitude for a single particle. We can define the conserved
probability current of the Klein-Gordon equation as the Minkowski-space extension of

the nonrelativistic probability current ~j = − i
2m

(
ψ∗~∇ψ − ψ~∇ψ∗

)
:

jµ = − i

2m
(φ∗∂µφ− φ∂µφ

∗) (6.2)

The first component is the probability density ρ = − i
2m

(
φ∗ ∂

∂t
φ− φ ∂

∂t
φ∗
)
. Since the

Klein-Gordon equation is second-order in the time variable, both φ and ∂
∂t
φ can be

arbitrarily fixed at a particular time so as to produce ρ < 0. For instance, the negative-

energy solution mentioned above, exp
[
i(~k · ~x+ ωt)

]
, also results in a negative probability

density ρ = − 1
m

√
~k2 +m2. This is nonsense, of course, and means that if we were to

take the Klein-Gordon equation seriously as a single-particle equation, we would have to
abandon the interpretation of ρ as a probability density.

45

The solution to these problems is to treat φ as a field (postponing considerations
of the physical meaning of m in this context). A standard result is that the energy of
a field φ is given by H =

∫
Θ00d3x, where Θµν is the energy-momentum tensor, defined

as Θµ
ν = (∂∂µφL)∂νφ − δµ

νL, analogous to the more familiar H = piq̇i − L.6.1 For the
Lagrangian6.2 L, we use

L =
1

2

[
(∂µφ) (∂µφ)−m2φ2

]
, (6.3)

since the Euler-Lagrange equation for φ resulting from this Lagrangian is exactly the
Klein-Gordon equation. Plugging this into our expressions for Θ and H, we find

H =
1

2

∫ [
(∂0φ

∗) (∂0φ) +
(
~∇φ∗

)(
~∇φ
)

+m2φ∗φ
]
d3x, (6.4)

which can never be negative.

The above result holds even if φ is treated as a classical field. The relationship be-
tween φ and probability, however, is entirely quantum-mechanical, so in order to address
it, we need to quantize φ itself, a nontrivial task to which we devote the next subsection.

6.2 The Meaning of φ

Suppose we have a scalar field φ(x) in Minkowski space that obeys the Klein-
Gordon equation. We can quantize it by treating φ(x) as a (Hermitian) quantum-
mechanical operator, which can be written as a Fourier transform of momentum-space
operators a(k) and a†(k):

φ(x) =

∫
d4k

(2π)4

[
a(k)e−ik·x + a†(k)eik·x] , (6.5)

where k ·x = k0x0−~k · ~x. We can apply a couple of conditions to ensure that the energy
k0 is positive and to satisfy the ‘mass-shell’ condition k2 = k2

0 − ~k2 = m2 imposed by
the Klein-Gordon equation. The first condition can be applied using the Heaviside step
function

θ(k0) =

{
1 if k0 > 0,
0 if k0 < 0

and the second by adding a (normalized) factor of 2πδ(k2−m2). So our actual measure,
with those conditions explicitly stated, is∫

d4k

(2π)4
2πδ(k2 −m2)θ(k0).

6.1This is shown, for example, in Physics 52 at Amherst, which typically uses either or both of Jack-
son [26] and Landau [29] as texts.

6.2Technically Eqn. 6.3 describes the Lagrangian density ; the actual Lagrangian or Hamiltonian (‘en-
ergy’) is the integral over spatial dimensions of the corresponding density. However, the “density” is
almost universally omitted, a convention we adopt despite its initial potential for confusion.

46

We can simplify this somewhat by defining ωk =
√
~k2 +m2 > 0, which means δ(k2 −

m2) = δ(k2
0 − ω2

k). Using the identity

δ(f(x)) =
∑

i

δ(x− xi)
df
dx

(where the sum is taken over all the roots of f(x)) to break up the δ-function gives

δ(k2
0 − ω2

k) =
k0 − ωk

2k0

+
k0 + ωk

2k0

since k0 = ±ωk are the two roots of f(k0) = k2
0 − ω2

k.

So we have∫
d4k

(2π)4
2πδ(k2 −m2)θ(k0) =

∫
d4k

(2π)3

1

2k0

(δ(k0 − ωk) + δ(k0 + ωk))θ(k0). (6.6)

θ(k0) ensures that k0 + ωk > 0, so δ(k0 + ωk) = 0. Integrating over k0 plucks out the
ωk from the remaining δ-function (the only effect it has on the exponentials is to replace
k0 → ωk) and we are left with∫

d4k

(2π)4
2πδ(k2 −m2)θ(k0) =

∫
d3k

(2π)32ωk

. (6.7)

So we can write Eqn. 6.5 as

φ(x) =

∫
d3k

(2π)32ωk

[
a(k)e−ik·x + a†(k)eik·x] , (6.8)

which is simpler for some calculations.

We have introduced the Fourier transform, Eqn. 6.8, because we wish to show that
a(k) and a†(k) are analogous to the standard creation and annihilation operators familiar
from nonrelativistic quantum mechanics (see Townsend [62] for an introduction). The
derivation is similar to that used in the context of the harmonic potential and can be
found in more detail in Hatfield [23, Chap. 3] and with more rigor in Ryder [51, Chap. 4].

First we define the momentum field π(~x, t) conjugate to φ(~x, t) in the intuitive
way:

π(~x, t) =
∂L

∂φ̇(~x, t)
, (6.9)

where φ̇(~x, t) = ∂
∂t
φ(~x, t). φ(~x, t) and π(~x, t) obey the same equal-time commutation

relations (ETCRs) as the nonrelativistic position and momentum operators:

[φ(~x, t), φ(~x′, t)] = 0 = [π(~x, t), π(~x′, t)] (6.10)

[φ(~x, t), π(~x′, t)] = iδ (~x− ~x′) . (6.11)

Since we can write the Lagrangian L (Eqn. 6.26) as

L =
1

2

(
φ̇2 −

(
~∇φ
)2

− µ2
0φ

2 − 1

2
λφ4

)
47

we see that Eqn. 6.9 reduces to

π(~x, t) = φ̇(~x, t) =

∫
d3k

(2π)3

1

2ωk

[
−iωka(k)e

−ik·x + iωka
†(k)eik·x] . (6.12)

We can now invert Eqns. 6.8 and 6.12 to express a(k) and a†(k) in terms of φ(x) and
π(x):∫

d3xe−i~k′·~x [ωk′φ(~x, t) + iπ(~x, t)]

=

∫
d3xd3k

(2π)32ωk

[
a(k) (ωk′ + ωk) e

−i~x·(~k′−~k)e−iωkt + a†(k) (ωk′ − ωk) e
−i~x·(~k′+~k)eiωkt

]
.

Integrating over x replaces the exponentials with δ-functions,
∫
dxeix = 2πδ(x), giving

=

∫
d3k

2ωk

[
a(k)δ

(
~k − ~k′

)
(ωk′ + ωk) e

−iωkt + a†(k)δ
(
~k + ~k′

)
(ωk′ − ωk) e

−iωkt
]
,

whose second term vanishes since ~k′ = −~k → ωk′ − ωk =
√
~k′2 +m2 −

√
~k2 +m2 = 0.

Similarly, the δ-function in the first term extracts ~k = ~k′ and hence ωk = ωk′ , so the final
result is ∫

d3xe−i~k′·~x [ωk′φ(~x, t) + iπ(~x, t)] = a(k′)e−iωk′ t

→ a(k) =

∫
d3xeik·x [ωk′φ(~x, t) + iπ(~x, t)] (6.13)

→ a†(k) =

∫
d3xe−ik·x [ωk′φ(~x, t)− iπ(~x, t)] . (6.14)

So now we can quickly derive the ETCRs for a(k) and a†(k) by using those for
φ(~x, t) and π(~x, t) (Eqn. 6.10):[

a(k), a†(k′)
]

=

∫
d3xd3x′eik·xe−ik′·x′ [ωkφ(~x, t) + iπ(~x, t), ωk′φ(~x′, t)− iπ(~x′, t)]

=

∫
d3xd3x′eik·xe−ik′·x′ (−iωk [φ(~x, t), π(~x′, t)] + iωk′ [π(~x, t), φ(~x′, t)])

=

∫
d3xd3x′eik·xe−ik′·x′ (ωk + ωk′) δ(~x− ~x′)

=

∫
d3xeix(k−k′) (ωk + ωk′) = (2π)3 (ωk + ωk′) δ(k − k′).

We can use the first coordinate in the δ-function to require ωk = ωk′ (due to the mass-shell
condition k0 = ωk), leaving as a final result[

a(k), a†(k′)
]

= (2π)32ωkδ
3(~k − ~k′). (6.15)

A similar calculation quickly gives[
a(k), a†(k′)

]
=

∫
d3xd3x′eik·xeik′·x′ [ωkφ(~x, t) + iπ(~x, t), ωk′φ(~x′, t) + iπ(~x′, t)]

=

∫
d3xd3x′eik·xeik′·x′ (ωk′ − ωk) δ(~x− ~x′),

48

so
[a(k), a(k′)] = 0 =

[
a†(k), a†(k′)

]
. (6.16)

We can now construct the suggestively-named operator

N(k) = a†(k)a(k) (6.17)

and derive its ETCRs:

[N(k), N(k′)] = a†(k)
[
a(k), a†(k′)

]
a(k′) + a†(k′)

[
a†(k), a(k′)

]
a(k)

∝
(
a†(k)a(k′)− a†(k′)a(k)

)
δ(~k − ~k′)

[N(k), N (k′)] = 0. (6.18)

This means that we can form a basis out of the eigenstates |n(k)〉 of N(k), where
N(k)|n(k)〉 = n(k)|n(k)〉. To consider the action of a(k) and a†(k) on |n(k)〉, we write
down the simple commutation relations[

N(k), a†(k)
]

= a†(k)
[
a(k), a†(k)

]
+ a(k)

[
a†(k), a†(k)

]
= a†(k), (6.19)

[N(k), a(k)] = a†(k) [a(k), a(k)] + a(k)
[
a†(k), a(k)

]
= −a(k), (6.20)

and consider

N(k)a†(k)|n(k)〉 = a†(k)N(k)|n(k)〉+ a†(k)|n(k)〉 = (n(k) + 1)a†(k)|n(k)〉 (6.21)

N(k)a(k)|n(k)〉 = a(k)N(k)|n(k)〉 − a(k)|n(k)〉 = (n(k)− 1)a(k)|n(k)〉. (6.22)

That is, a†(k) and a(k) are creation and annihilation operators, analogous to
their familiar counterparts from the simple harmonic oscillator (SHO) in nonrelativistic
quantum mechanics. a†(k) creates a scalar particle of four-momentum k, transforming an
n-particle state into an (n+1)-particle state. Similarly, a(k) transforms an n-particle state
into an (n− 1)-particle state by destroying a pre-existing particle of four-momentum k.
Should no such particle exist, we have a(k)|0(k)〉 = 0 → N(k)|0(k)〉 = a†a(k)|0(k)〉 = 0.
The derivation that a(k)|n(k)〉 =

√
n|(n − 1)(k)〉 and a†(k)|n(k)〉 =

√
n+ 1|(n + 1)(k)〉

is the same as in the case of the SHO.

N(k) may be interpreted as the number operator for particles with momentum k,
so long as its eigenvalues are all non-negative integers. It is straightforward to see that
this is the case, first by considering the norm of a(k)|n(k)〉, which must be non-negative.

(a(k)|n(k)〉)†(a(k)|n(k)〉) = 〈n(k)|a†(k)a(k)|n(k)〉 = n(k)〈n(k)|n(k)〉 ≥ 0, (6.23)

so n(k) ≥ 0 since the norm 〈n(k)|n(k)〉 is positive. To establish that n(k) is an integer,
we simply note that states are generated by repeated applications of a† to the ground
state n(k) = 0, each of which increases its value by 1.

With some rather tedious manipulation, we can substitute Eqn. 6.8 into Eqn. 6.4
to show that the Hamiltonian takes the same form as that of the SHO,

H = k0

(
N(k) +

1

2

)
. (6.24)

49

Actually, since H is really the Hamiltonian density, we see that the total Hamiltonian H
is equivalent to an infinite sum of harmonic oscillators:

H =

∫
d3k

(2π)32k0

k0

(
N(k) +

1

2

)
. (6.25)

This presents the slight complication that the nonzero ground state energies of these
infinitely-many oscillators makes H infinite. Fortunately, since experiments measure only
energy differences, we can remove this constant term from our theory with no observable
effects (at least, so far as we can tell – cf. Peskin and Schroeder [43, Chap. 22]).

6.3 Lagrangian, Hamiltonian and Equation of Mo-

tion

The φ4 theory is described by the Lagrangian (in Minkowski space),

L =
1

2
∂µφ∂

µφ− 1

2
µ2

0φ
2 − λ

4
φ4. (6.26)

The corresponding Hamiltonian is clearly

H =
1

2
∂µφ∂

µφ+
1

2
µ2

0φ
2 +

λ

4
φ4. (6.27)

Note that both these equations are invariant under reflection symmetry φ→ −φ. They
can be parameterized in several different ways, as long as they include two independent
parameters. We choose this µ2

0–λ formulation because it allows us to qualitatively inter-
pret µ2

0 as related to the mass of the scalar particles described by the theory and λ as
the strength of the self-coupling interaction. See Balog et al. [3, 4] and Parsa [42] for
examples of alternate parameterizations.

To gain some traction, we’ll work in only two dimensions, one spatial dimension
and one time dimension. We’ll note any important features of the four-dimensional (three
space + 1 time) case, though typically derivations will be analogous, simply replacing x

with ~x, ∂
∂x

with ~∇, and so on.

It is easy to see that in two dimensions our independent parameters µ2
0 and λ

both need to have dimension mass2 (that is, [µ2
0] = [λ] = 2 – see Section 1.3). Since

the action S =
∫
d2xL appears as the argument of an exponential in the path-integral

formulation, eiS, it must be dimensionless.6.3 Therefore, [L] = 2 in order to cancel out
the two factors of mass−1 that come from d2x. The partial derivatives ∂µ in the first term
of the Lagrangian, Eqn. 6.26, each have [∂] = 1, meaning that φ must be dimensionless.
Therefore, in order for all three terms to have the same dimensions, [µ2

0] = [λ] = 2. The
four-dimensional case (analyzed in Zee [70, Chap. III.2]) is completely analogous: we

6.3See Townsend [62, Chap. 8] for a brief introduction to path integrals. It is also worth consulting the
volume their inventor wrote with Hibbs [19].

50

simply have [L] = 4, which requires [φ] = 1, [µ2
0] = 2 and [λ] = 0 (i.e., a dimensionless

coupling).

The equation of motion for the φ4 theory is given by the Euler-Lagrange equation,
which works out in a straightforward manner:

∂µ

(
∂L

∂(∂µφ)

)
=
∂L
∂φ

∂2φ =
∂2φ

∂t2
− ∂2φ

∂x2
= −

(
µ2

0φ+ λφ3
)
. (6.28)

We can rearrange Eqn. 6.28 into a form reminiscent of the Klein-Gordon equation,
Eqn. 6.1: (

∂2 + µ2
0

)
φ = −λφ3. (6.29)

Note that the self-interaction λ term makes the equation of motion nonlinear, which
allows for the appearance of nonperturbative phenomena such as solitons.

Like the Ising model, the φ4 potential V = 1
2
µ2

0φ
2 + λ

4
φ4 possesses two distinct

phases if λ > 0. If λ < 0, the theory has no stable minima, though a metastable
state is possible if µ2

0 > 0 (Fig. 6.1) – the state can persist until it tunnels through the
energy barrier and falls off to negative infinite energy. The two stable phases with λ > 0
correspond to positive µ2

0 (a symmetric phase with 〈φ〉 = 0) and negative µ2
0 (a broken

symmetry phase with minima at ±
√

−µ2
0

λ
), shown below in Figs. 6.2 and 6.3, respectively.

Figure 6.1: Metastable φ4 potential: µ2
0 > 0, λ < 0; V = 1

2
µ2

0φ
2 + λ

4
φ4

As we expect from our study of the Ising model, the existence of symmetric and
broken phases implies that φ4 theory exhibits a spontaneous symmetry-breaking phase
transition. As a matter of fact, the parallel with the Ising model is much deeper. As
first shown thirty years ago by Chang [13], the φ4 phase transition in two dimensions is
second order, as is that of the Ising model. In fact, φ4 theory in two dimensions is in
the same universality class as the two-dimensional Ising model, which means that both
systems have the same critical exponents governing their behavior near their respective
critical points.

Calculating the critical points of φ4 theory on two- and four-dimensional lattices
was one of our main projects, which we will discuss in detail in Section 7.5. Before we
begin that discussion, however, we will introduce solitons, another focus of our work.

51

Figure 6.2: φ4 potential in the symmetric phase: µ2
0 > 0, λ > 0; V = 1

2
µ2

0φ
2 + λ

4
φ4

Figure 6.3: φ4 potential in the broken phase: µ2
0 < 0, λ > 0; V = 1

2
µ2

0φ
2 + λ

4
φ4

52

6.4 Constant and Soliton Solutions

We can easily see from Eqn. 6.28 and Figs. 6.3 and 6.2 that the φ4 theory equation
of motion has constant solutions (∂

∂t
φ = 0 = ∂

∂x
φ)6.4 in both the symmetric (φ(x, t) = 0)

and broken phases (φ(x, t) = ±
√
−µ2

0/λ). Although the existence in the broken phase of
two degenerate vacua that transform into one another under reflection φ→ −φ is worth
mentioning, none of these constant solutions themselves are particularly interesting. The
energy density of φ(x, t) = 0 is simply flat zero, and since the energy density of φ(x, t) =
±
√
−µ2

0/λ is constant and finite, it could be legitimately set to zero simply by adding a
constant to the Lagrangian, Eqn. 6.26. This is done, for example, by Parsa [42].

Fortunately, there exist somewhat more interesting solutions to Eqn. 6.28, known
as kink solutions. To gain some traction, we’ll consider the static (time-independent)
kink given by

φ±(x, t) = ±
√
−µ2

0

λ
tanh

[√
−µ2

0

2
x

]
. (6.30)

Technically, the positive solution is the kink solution, and the negative is called the
‘antikink’ (since they clearly interfere destructively through trivial cancellation). To
obtain a time-dependent kink, a Lorentz transformation can be applied to Eqn. 6.30.
The kink can also be localized around some point x0 by replacing x → x − x0 in the
argument of the hyperbolic tangent.

It is a straightforward calculation to verify that Eqn. 6.30 satisfies the equation of
motion Eqn. 6.28:

∂φ

∂x
= ±−µ

2
0√

2λ
sech2

[√
−µ2

0

2
x

]
∂2φ

∂t2
− ∂2φ

∂x2
= −∂

2φ

∂x2
= ∓µ2

0

√
−µ2

0

λ
sech2

[√
−µ2

0

2
x

]
tanh

[√
−µ2

0

2
x

]
,

and

µ2
0φ+ λφ3 = φ

(
µ2

0 + λ
−µ2

0

λ
tanh2

[√
−µ2

0

2
x

])
= φµ2

0sech
2

[√
−µ2

0

2
x

]

−
(
µ2

0φ+ λφ3
)

= ∓µ2
0

√
−µ2

0

λ
sech2

[√
−µ2

0

2
x

]
tanh

[√
−µ2

0

2
x

]
,

as needed. What the kink solution does, qualitatively, is continuously connect the two
degenerate vacua. As shown in Fig. 6.4, the solution starts in one well of the potential
corresponding to one of φ(x, t) = ±

√
−µ2

0/λ (Fig. 6.3) as x → −∞ and crosses over to
the other (φ→ −φ) as x→∞.

The kink solution is commonly called a soliton, a term that has evolved somewhat
over time, as outlined by Parsa [42]. Originally, “soliton” denoted special solutions to

6.4We continue to work in only two dimensions.

53

Figure 6.4: Kink solution of φ4 equation of motion

nonlinear wave equations with the property that when two solitons interacted or scattered
with each other, they would retain their initial shapes and velocities. This is not actually
the case with the φ4 kink introduced above. Instead, the kink obeys a less stringent
condition that has largely replaced the original definition of a soliton. Now a solution
to nonlinear field equations is considered a soliton if it has finite nonzero energy and is
confined to a finite region – that is, it doesn’t dissipate. Let’s check these conditions for
the φ4 kink, starting by analogy with a more familiar soliton.

The standard example of a soliton is the kink solution to the Sine-Gordon equation,
a nonlinear cousin of the Klein-Gordon equation:

∂2φ = sin(φ), (6.31)

which is the Euler-Lagrange equation corresponding to the Lagrangian

L =
1

2
∂µφ∂

µφ− cos(φ). (6.32)

The simplest soliton (and antisoliton) solution to the Sine-Gordon equation is

ψ±(x, t) = 4 tan−1

{
± exp

[
x− vt√
1− v2

]}
, (6.33)

which describes a soliton in the old-fashioned sense of travelling waves that emerge from
scattering processes with their initial shapes and velocities. The Sine-Gordon soliton is
shown in Fig. 6.5; it clearly resembles the φ4 soliton in Fig. 6.4, though the exponential in
the arctangent keeps ψ positive. In fact, as illustrated by Ramond [50], the φ4 Lagrangian
can actually be considered an approximation to an appropriately-parameterized Sine-
Gordon Lagrangian. Expanding the cosine term in this reparameterized Sine-Gordon
Lagrangian gives

L =
1

2
∂µφ∂

µφ+
µ4

0

λ

(
cos

[
φ
√
λ

µ0

]
− 1

)
=

1

2
∂µφ∂

µφ+
µ4

0

λ

(
−λφ2

2µ2
0

+
λ2φ4

4!µ4
0

)
+O(φ6)

L =
1

2
∂µφ∂

µφ− 1

2
µ2

0φ
2 +

λ

4!
φ4 +O(φ6),

which is precisely the φ4 Lagrangian, up to fourth order in φ and a trivial redefinition of
the parameter λ.

54

Figure 6.5: Kink solution of Sine-Gordon equation

We are interested in the relationship between the φ4 kink and the Sine-Gordon
soliton since it allows us to apply qualitative results for the one to the other. In particular,
Ryder [51, Chap. 10] has shown that the Sine-Gordon soliton can be visualized as an
infinite horizontal string with pegs attached to it at equally spaced intervals, each peg
connected to its neighbor with a small spring and acted upon by gravity. The ground
state corresponds to every peg hanging vertically, while the soliton corresponds to the
situation shown in Fig. 6.6, in which the pegs transition through a kink from pointing
up to pointing down. This demonstrates the stability of the kink: a transition into the
ground state would require turning over a (semi-)infinite number of pegs, requiring a
(semi-)infinite amount of energy.

Figure 6.6: The Sine-Gordon soliton as an infinite line of interacting pegs, from Ryder [51]

The stability of the kink makes it possible to define a conserved integer charge
corresponding to it. Note that this charge is not the result of an invariance in L under
some symmetry transformation; it is not a Noether charge. Instead it is a discrete
topological charge, a result of the fact that φ(∞) = −φ(−∞). In other words, the
stability of the kink is a topological consequence of the boundary conditions.

We have shown by analogy with the Sine-Gordon soliton that the φ4 kink is stable
and so doesn’t dissipate. It is a direct calculation to check that the energy for the φ4

kink (and antikink) is finite and nonzero. We start off with

H =
1

2

(
∂φ

∂t

)2

+
1

2

(
∂φ

∂x

)2

+
1

2
µ2

0φ
2 +

λ

4
φ4 ∂φ

∂x
= ∓ µ2

0√
2λ

sech2(βx)

φ = ±
√
−µ2

0

λ
tanh

[√
−µ2

0

2
x

]
= ±

√
−µ2

0

λ
tanh(βx)

∂φ

∂t
= 0

→ H =
µ4

0

4λ

(
sech4(βx) + tanh4(βx)− 2 tanh2(βx)

)
H =

µ4
0

4λ
(2sech4(βx)− 1) (6.34)

Now to find the energy of the kink itself, we need to subtract the ground state (vacuum)
energy HV from that expression. It’s trivial to show that for either degenerate vacuum

55

HV = −µ4
0/4λ. So the total energy of the kink is just

H =
µ4

0

2λ

∫
sech4(βx) =

µ4
0

2λβ

1

3
[2 + sech2(βx)] tanh(βx)|x→∞

x→−∞

=
µ4

0

2λβ

1

3
(4) =

2
√

2

3

(√
−µ2

0

)3

λ
.

The energy of the φ4 kink is finite and nonzero, establishing that it is indeed a soliton.
Note that classically the soliton’s mass is just this energy,

Mcl =
2
√

2

3

(√
−µ2

0

)3

λ
. (6.35)

We’ll return to solitons when we consider how to simulate them on the lattice in
Section 7.6. Those interested in additional analytic details of solitons would do well to
consult Rajaraman [49], a comprehensive and invaluable resource on solitons and their
cousins instantons.

6.5 Feynman Diagrams

Perturbation theory means Feynman diagrams. – M. Veltman [63]

Feynman diagrams are among the most famous tools of high-energy physics; the
vast majority of physicists and students of physics have seen Feynman diagrams at some
point, even if they don’t necessarily know what they mean. In this section we present a
basic outline of the motivation for and machinery of these common beasts.

Essentially, Feynman diagrams are only tools to visualize and simplify perturba-
tive calculations. The perturbation expansion is carried out in terms of the interaction
Hamiltonian, which we define by separating our original Hamiltonian H (and analogously
for the Lagrangian L) into two pieces – the free-field Hamiltonian H0 and the interaction
Hamiltonian Hint.

H = H0 +Hint (6.36)

All that we have done is to separate the free-particle portion of the Hamiltonian from any
non-quadratic terms. In φ4 theory, for instance, H0 = 1

2
∂µφ∂

µφ+ 1
2
µ2

0φ
2 and Hint = λ

4
φ4

(cf. Eqn. 6.27). Typically Hint depends on some coupling, λ/4 in the case of φ4 theory.
Thus the perturbation expansion in Hint can also be considered an expansion in terms
of the coupling.6.5

By splitting up the Hamiltonian in this manner, we are effectively moving into the
‘interaction picture’ of quantum mechanics. Townsend [62, Chap. 15] presents a basic

6.5Although we’ve set h̄ = 1, Ryder [51, Chap. 9] shows that an expansion in the interaction Hamilto-
nian is equivalent to an expansion in h̄.

56

introduction to the interaction picture and shows that in it the time-evolution operator
U(t, t0) satisfies the equation

i
∂

∂t
U(t, t0) = HintU(t, t0), (6.37)

which can be solved iteratively to give U as a function of Hint =
∫
d3xHint:

U(t, t0) = 1 + (−i)
∫ t

t0

dt1Hint(t1) + (−i)2

∫ t

t0

dt1

∫ t1

t0

dt2Hint(t1)Hint(t2)

+ (−i)3

∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3Hint(t1)Hint(t2)Hint(t3) + · · ·
(6.38)

We can simplify that by using the identity∫ t

t0

dt1 · · ·
∫ tn−1

t0

dtnHint(t1) · · ·Hint(tn)

=
1

n!

∫ t

t0

dt1 · · · dtnT{Hint(t1) · · ·Hint(tn)}
(6.39)

where T is the time-ordering operator,

T{A(t1)B(t2)} =

{
A(t1)B(t2) if t1 > t2,
B(t2)A(t1) if t2 > t1

This result is intuitive in the second-order term, and generalizes to higher powers.∫ t

t0
dt1
∫ t1

t0
dt2 integrates over the triangle in the t1t2-plane that forms the lower half of the

square
∫ t

t0
dt1dt2 (cf. Peskin [43, Chap. 4]). The time-ordering operator guarantees that

the integrand is symmetric around the t1 = t2 line, so only a factor of 1
2

= 1
n!

is needed
to make the integrals equal.

We define the S-matrix by taking t0 → −∞, t→∞ in Eqn. 6.38. An elementM =
〈q|S|p〉 in the S-matrix thus gives the amplitude M for some initial state |p〉 to evolve
into some final state |q〉 through some interaction. Converting from the Hamiltonians
H(t) to the Hamiltonian densities H(t, ~x) = H(x) gives a reasonably simple expression
for the S-matrix:

S = 1 +
∞∑

n=1

(−i)n

n!

∫
d4x1 · · · d4xnT{Hint(x1) · · ·Hint(xn)}. (6.40)

Let’s perform some calculations in φ4 theory to see what this means. We’ll work in four
dimensions in this section, but it will be easy to convert our results to two dimensions
for our later work.

To zeroth order in the interaction Hamiltonian, we simply have 〈q|S|p〉 = 〈q|p〉 =
δ(q− p), which makes intuitive sense: if there is no interaction, the states do not change.
Let’s now add in a first-order interaction that alters the states. For definiteness, suppose
the initial state |p〉 = |p1, p2〉 consists of two φ particles with momenta p1 and p2, while
in the final state |q〉 = |p3, p4〉 the two particles have different momenta p3 and p4.

57

This situation is illustrated diagrammatically in Fig. 6.7, our first Feynman diagram. φ
particles (those created or annihilated by the φ operators) are represented by solid lines.
Interactions are represented by a dot at a vertex where four particles meet. (It must
always be four since there are four factors of φ in the interaction Hamiltonian.) Fig. 6.7
shows two particles coming in from the left, interacting at a vertex at spacetime point x,
and then heading off to the right with different momenta.

Figure 6.7: Feynman diagram for four-point tree-level interaction

The integral corresponding to this diagram is

−i
∫
d4x〈p3, p4|Hint(x)|p1, p2〉 =

−iλ
4

∫
d4x〈p3, p4|φ(x)φ(x)φ(x)φ(x)|p1, p2〉. (6.41)

Recall from Eqn. 6.5 that each φ(x) will either create or annihilate a particle at x. Thus
one of the four φ operators will annihilate the existing p1-momentum particle, one of the
three remaining factors will annihilate p2, while the remaining two will create p3 and p4.
There are 4! = 24 different ways the interaction could occur, so this “symmetry factor”
needs to be included in the result. Each φ has Fourier transform

φ(x) =

∫
d4k

(2π)4

[
a(k)e−ik·x + a†(k)eik·x] ,

where a†(k) and a(k) are the creation and annihilation operators, respectively. So to
create a particle of momentum p, we perform the integration

〈p|φ(x)|0〉 =

∫
d4k

(2π)4
〈p|a(k)|0〉e−ik·x +

∫
d4k

(2π)4
〈p|a†(k)|0〉eik·x

〈p|φ(x)|0〉 =

∫
d4k

(2π)4
eik·xδ(k − p) = eip·x

(n(p) = 0). Similarly, annihilating a particle of momentum p gives a factor of e−ip·x.
Eqn. 6.41 therefore becomes

−iλ4!

4

∫
d4xe−ip1·xe−ip2·xeip3·xeip4·x = −6iλ

∫
d4xe−ix·(p1+p2−p3−p4)

= −6iλ(2π)4δ4(p1 + p2 − p3 − p4).

The overall δ-function simply enforces conservation of momentum, and is commonly
separated from the amplitude itself. In fact, we typically write (cf. Peskin [43, Pg. 112])

iM(2π)4δ4(p1 + p2 − p3 − p4) = −6iλ(2π)4δ4(p1 + p2 − p3 − p4) →M = −6λ. (6.42)

58

This normalization has the advantage that we receive the same result in any number
of dimensions (with the φ integrals normalized appropriately). In two dimensions, for
instance, we would have

iM(2π)2δ2(p1 + p2 − p3 − p4) = −6iλ(2π)2δ2(p1 + p2 − p3 − p4) →M = −6λ. (6.43)

Looking over the above calculation, we see it also seems possible to use two factors
of φ to create and then annihilate a particle at point x. We would initially have only
one particle |p1〉 and would end up with |p2〉, as illustrated in Fig. 6.8, which shows how
creating and annihilating a particle at a single interaction results in a closed loop in the
diagram. The corresponding integral is

−i
∫
d4x〈p2|Hint(x)|p1〉 =

−iλ
4

∫
d4x〈p2|φ(x)φ(x)φ(x)φ(x)|p1〉. (6.44)

Figure 6.8: Feynman diagram for two-point single-loop “leaf” interaction

Eqn. 6.44 will only have a symmetry factor of 4 · 3 = 12 since there are only two
observable particles to be dealt with. The remaining factors of φ will be ‘contracted’
with each other to create and annihilate a particle with momentum q, which raises some
difficulties. First of all, since we only have one factor of the interaction Hamiltonian,
there’s only one interaction, so everything needs to take place at the same point in
spacetime. However, the particle has to be created before it can be annihilated. This
prompts us to have it created and annihilated at two different points, x and y, by having
one of the remaining φ act at point x and the other at point y. We’ll then take the
limit y → x. The final complication is that either of the two remaining φ could create
this particle, just as any one of the four could annihilate |p1〉, so we’ll need to take both
possibilities x0 < y0 and x0 > y0 into account. Finally, note that although the momentum
with which this particle will be created is arbitrary (forcing us to retain the momentum
integration from Eqn. 6.5), the momentum at which it is to be annihilated is completely
determined. These considerations lead us to write

−12iλ

4

∫
d4xeix·(p2−p1)

[
θ(x− y)

∫
d4q

(2π)4
eiq·(x−y) + θ(y − x)

∫
d4q

(2π)4
eiq·(y−x)

]
(6.45)

Although that expression doesn’t appear particularly tractable, the term in square
brackets is a common beast (cf. Peskin and Schroeder [43], Veltman [63, Chap. 3] and
Ryder [51, Chap. 6]) known as the Feynman propagator ∆F (x − y), which we can

59

define in terms of Wightman functions ∆+ and ∆−:

∆+(x− y) =

∫
d4q

(2π)4
eiq·(x−y)θ(q0)δ(q

2 −m2)

∆−(x− y) =

∫
d4q

(2π)4
eiq·(y−x)θ(q0)δ(q

2 −m2)

∆F (x− y) = θ(x− y)∆+(x− y) + θ(y − x)∆−(x− y).

(As discussed in Section 6.2, the factor of θ(q0)δ(q
2 + m2) is implicit in all of our four-

momentum integrals. We explicitly note it here to make our definitions more rigorous.)
It is a nontrivial and not particularly interesting exercise to simplify the expression into
the standard form

∆F (x− y) =

∫
d4q

(2π)4

ie−iq·(x−y)

q2 − µ2
0 + iε

, (6.46)

where ε is infinitesimal and will be taken to zero after it has served its purpose of sim-
plifying later calculations. As we can see by recalling the steps that brought us to this
point, the Feynman propagator is a quantity that describes the creation, propagation,
and annihilation of a particle. To substitute Eqn. 6.46 back into Eqn. 6.45, we first take
the limit y → x, which gives us

∆F (0) =

∫
d4q

(2π)4

i

q2 − µ2
0 + iε

→3λ

∫
d4xeix·(p2−p1)

∫
d4q

(2π)4

1

q2 − µ2
0 + iε

.

Since the momentum integral is now independent of x, we can evaluate the position
integral very easily,

3λ(2π)4δ4(p1 − p2)

∫
d4q

(2π)4

1

q2 − µ2
0 + iε

.

Setting that equal to iM(2π)4δ4(p1 − p2) we find

M = −3iλ

∫
d4q

(2π)4

1

q2 − µ2
0 + iε

. (6.47)

So far we’ve just mentioned in passing the Feynman diagrams corresponding to
these interactions. They don’t seem to have had any role to play. So why are they so
famous? What is their purpose?

The key that makes Feynman diagrams so useful is that the results of calculations
like those above can be generated by applying a small set of Feynman rules to the
Feynman diagram corresponding to the given situation. Our calculations above certainly
suggest that some things will come out the same for every diagram – vertices will result in
factors of λ, loops in propagators ∆F . While two examples may seem a small base from
which to establish general rules that hold for every conceivable situation in φ4 theory, we
will proceed nonetheless; the reader is welcome to perform more calculations.

Here are our Feynman rules for φ4 theory diagrams in a D-dimensional space:

60

• Add a factor of −iλ/4 for each vertex.

• Add a factor of (2π)Dδ(p1 + · · ·+ p4) to conserve momentum at each vertex.

• Add a factor of i(q2 − µ2
0 + iε)−1 for each “internal” line with momentum q

• Integrate
∫
dDq(2π)−D over each “internal” momentum q that is not determined by

conservation of momentum.

• Multiply by the symmetry factor.

We claim that by applying these simple rules to any Feynman diagram, we’ll obtain the
final result of the corresponding integral, equal to iM(2π)4δ(p1 + · · · + pn), where this
delta function describes overall momentum-conservation.

It’s easy to apply these rules to the two cases worked out above. In the four-point
tree-level diagram, Fig. 6.7, we have D = 4, one vertex (factor of −iλ(2π)4δ(p1 + p2 −
p3 + p4)/4), no internal lines or undetermined momenta, and a symmetry factor of 4!. So
we claim

iM(2π)4δ(p1 + p2 − p3 − p4) = −6iλ(2π)4δ(p1 + p2 − p3 − p4) →M = −6λ, (6.48)

which is exactly what we found above with somewhat more effort. Similarly, for the two-
point leaf diagram, Fig. 6.8, we have D = 4, one vertex (factor of −iλ(2π)4δ(p1− p2)/4),
one internal line (factor of i(q2 − µ2

0 + iε)−1), one undetermined momentum q (integrate
over

∫
d4q(2π)−4) and a symmetry factor of 12. So we claim

iM(2π)4δ(p1 − p2) = −3iλ(2π)4δ(p1 − p2)

∫
d4q

(2π)4

i

q2 − µ2
0 + iε

→M = −3iλ

∫
d4q

(2π)4

1

q2 − µ2
0 + iε

,

(6.49)

which is again precisely our result. Comparing this last paragraph to the preceding
calculations should convince anyone of the value of Feynman diagrams as computational
aids.

6.6 Renormalization

If the doors of perception were cleansed, everything would appear to man as it is,
infinite. – William Blake

Now that we have an efficient means of performing calculations based on Feynman
diagrams, we will quickly find that the results of such calculations are often infinite –
unfortunately unphysical. Renormalization is the process by which we “hide the infini-
ties” and force our calculations to produce meaningful results; it is thus one of the most
important concepts of quantum field theory.6.6 Although renormalization was initially
greeted with a certain amount of skepticism, it is now firmly established as a legitimate
procedure, one that is essential to making sense of quantum field theory.

6.6Renormalization can also be performed in classical field theory to address similar problems, though
this is less common. See Thirring [61, Chap. 8] for an example.

61

The first step of renormalization is to perform a ‘regularization’ procedure that sep-
arates the infinite and finite portions of the result, making it easy to see what is causing
problems and how they can be fixed. Renormalization itself then analogously separates
the Lagrangian itself into renormalized and “counterterm” parts. There are several differ-
ent ways to perform both regularization (e.g., cut-off regularization, Pauli-Villars regular-
ization, dimensional regularization and lattice regularization) and renormalization (e.g.,
minimal subtraction, modified subtraction and recursive subtraction schemes, which can
be interpreted through the equivalent means of counterterms or renormalization factors).

Not all quantum field theories are renormalizable, though renormalizability is nec-
essary for a theory to be physically meaningful. Fortunately φ4 theory is renormalizable
in two and four dimensions. In the following sections, we will go into greater depth
about the problem of divergences in quantum field theory and briefly introduce various
regularization schemes before presenting sample calculations in which we use dimensional
regularization and the minimal subtraction scheme to renormalize φ4 theory up to one
loop in two dimensions.

6.6.1 A Divergent Diagram in φ4 Theory

Your theory is getting sicker and sicker. – M. Veltman

Let’s consider the (deceptively) simple leaf diagram introduced in Section 6.5,
Fig. 6.8. Applying our Feynman rules (in two dimensions, this time) results in a symmetry
factor of 12, a factor of −iλ(2π)2δ(p1 − p2)/4 from the single vertex, a factor of i(q2 −
m2 + iε)−1 from the internal line of the loop, and finally an integration

∫
d2q(2π)−2 over

the undetermined momentum q. So

iM(2π)2δ(p1 − p2) = −3iλ(2π)2δ(p1 − p2)

∫
d2q

(2π)2

i

q2 − µ2
0 + iε

→M = −3iλ

∫
d2q

(2π)2

1

q2 − µ2
0 + iε

.

(6.50)

Unfortunately, the integral diverges as q → ∞, not exactly what we would expect from
a physical process.

The easiest way to spot this divergence is to break up d2q up into a radial and
angular part, d2q ∼ qdqdΩ. Unfortunately, this cannot be done in Minkowski space, since
q2 = q2

0 − ~q2 = q2
0 − q2

1 is not the square of the radius. There’s no guarantee it’s even
positive! We can get around this by performing a “Wick rotation”, contour integration
in the complex q0 plane.6.7 This is the reason we have kept the small factor of iε in the
denominator. This factor leads to poles in the complex q0 plane at points

q2 − µ2
0 + iε = q2

0 − ~q2 − µ2
0 + iε = 0 → q0 = ±

√
~q2 + µ2

0 − iε ≈ ±(
√
~q2 + µ2

0 − iδ),

where
δ =

ε

2
√
~q2 + µ2

0

6.7See Gamelin [21, Chap. VII] for an introduction to the residue calculus and contour integration.

62

As shown in Fig. 6.9, the poles are δ away from the real q0 axis, which means that the
“Figure-8” contour shown contains no poles. We see that the role of iε is to shift the poles
slightly off of the real axis to make the contour integration simpler; it is also possible to
construct equivalent contours with the poles on the axis (cf. Peskin [43, Chap. 2]) but
they are considerably more complicated. As R → ∞, the integrand goes like R−2 but
the arc lengths only increases linearly in R, so the contribution of the integral over those
legs is zero. Thus the integral over real q0 from −∞ to ∞ is equal to the integral over
imaginary q0 from −i∞ to i∞,∫ ∞

−∞

dq0
2π

1

q2
0 − ~q2 − µ2

0 + iε
=

∫ i∞

−i∞

dq0
2π

1

q2
0 − ~q2 − µ2

0 + iε
. (6.51)

Figure 6.9: “Figure-8” contour from Klaus and Griffiths [28]

We define q2 = −iq0, which gives∫ i∞

−i∞

dq0
2π

1

q2
0 − ~q2 − µ2

0 + iε
=

∫ ∞

−∞

idq2
2π

1

−q2
2 − ~q2 − µ2

0 + iε
=

∫ ∞

−∞

−idq2
2π

1

q̄2 + µ2
0

,

where in the last step we defined q̄2 = q2
1 + q2

2 = ~q2 + q2 and finally took the limit ε→ 0
since ε has served its purpose of simplifying the contour. Note that we have effectively
“rotated” from Minkowski to Euclidean space. So now the whole integral is

−3iλ

∫
d2q

(2π)2

1

q2 − µ2
0 + iε

= −3λ

∫
d2q̄

(2π)2

1

q̄2 + µ2
0

. (6.52)

Clearly the four-dimensional case will be entirely analogous since all we have altered is
q0.

So now we’re able to break up q̄ into a radial and angular part, d2q̄ = q̄dq̄dΩ.
For high q̄, q̄2 + µ2

0 ≈ q̄2, so the integral itself is proportional to
∫
q̄−1d=̄ log(q̄), which

63

diverges as q̄ → ∞ (ultraviolet divergence).6.8 In four dimensions, there are another
two factors of q̄ in the numerator, so the integral is proportional to q̄2 and diverges
quadratically as q̄ → ∞. In the next subsection we will show how to isolate these
ultraviolet divergences through the method of dimensional regularization, in preparation
for eliminating them through renormalization. First, however, we’ll mention some of the
various ways regularization can be performed.

Essentially, ultraviolet divergence can be considered an effect of our ignorance
of the true short-distance (high-energy) physics. The most direct way to remove the
divergence from this calculation is to restrict it to lower energies where it is valid by
imposing a finite upper bound Λ < ∞ on the integral. A slightly more elegant way
to accomplish the same result is to multiply the integrand by Λ2

Λ2−q̄2 . In either case we
can use the regularized result to identify and remove any terms that diverge as Λ →
∞, obtaining a finite renormalized result. Although this “cut-off regularization” is the
simplest approach, it destroys the gauge invariance of theories to which it is applied.
Pauli-Villars regularization, in which a fictitious field of mass M plays a role analogous
to the cut-off Λ, suffers from this same problem, while lattice regularization (in which
the finite spacing between lattice points imposes a finite upper bound on q̄) interferes
with translational and rotational invariance.

Alternately we could note that the integral in Eqn. 6.50 is just barely divergent
since it goes like

∫
q̄−1dq̄. If we could somehow decrease the power of q̄ in that integral

to −1− ε < −1, then it would be perfectly convergent in the ultraviolet regime. Analytic
regularization does exactly this, replacing q̄−n with q̄−zn, where z ∈ C with Re(z) is
large enough to make the integral converge. (Thus analytic regularization is actually
applicable even in cases where the divergence in the integral is worse than logarithmic.)
The result is then “analytically continued” to near the physical value z = 1 using the
methods of complex analysis, and any divergences that appear as z → 1 can be removed
to complete renormalization.

Dimensional regularization, one of the most common approaches and the primary
one used we used, follows a similar procedure. However, instead of altering the power
of momentum in the denominator, dimensional regularization instead performs the cal-
culation in d = 2 − ε (or d = 4 − ε) dimensions, which reduces the power of dq̄ in the
integral to produce an analytic result.6.9 This result typically contains terms that diverge
as ε→ 0, which can be removed to complete renormalization. The key to the popularity
of dimensional regularization is that it preserves the symmetries of the original theory,
in particular gauge symmetry.6.10 Although the procedure was originally developed for
logarithmic divergence, it is still possible to use it to regularize high-order divergences.

Before carrying out a dimensional regularization of φ4 theory in detail, we will
introduce a simple test that allows us to determine whether or not a given Feynman

6.8Although log(q̄) itself diverges as q̄ → 0 (infrared divergence), the ‘mass’ µ2
0 in the denominator

means that infrared divergences will only be a potential problem for quantum fields describing massless
particles. This is fortunate, since infrared divergences are generally much more difficult to address than
ultraviolet divergences, and will not be considered here.

6.9Technically, ε ∈ C.
6.10Kleinert and Schulte-Frohlinde [27, Chap. 8] discuss some additional technical advantages.

64

diagram actually requires renormalization: calculation of the “superficial degree of diver-
gence”.

6.6.2 Superficial Degree of Divergence

The superficial degree of divergence D is defined as the difference between the
number of factors of momentum in the numerator and denominator of the integral cor-
responding to a Feynman diagram that contains one or more loops. Using the rules for
Feynman diagrams presented above in Section 6.5, the superficial degree of divergence
can easily be expressed in terms of properties of the diagrams. In d dimensions, each
internal line in a diagram contributes two factors of momentum to the denominator of
the integral through the propagator, while each vertex adds d factors to the numerator,
along with a δ function to conserve momentum. Applying the δ functions leads to the
result that the number of independent momenta over which (d-dimensional) integration
takes place is equal to the number of loops in the diagram, L. (If there are no loops, the
δ functions eliminate the integration, so there can be no divergence.) Thus we have

D = dL− 2I,

where I is the number of internal lines.

In φ4 theory this can be reformulated by noting that each vertex involves four
lines, so writing the number of external lines as E and the number of vertices as n, we
have 4n = 2I + E, since internal lines connect two vertices and so need to be counted
twice. In a similar vein, although there are I internal momenta, momentum conservation
imposes n−1 relations between them – there is momentum conservation at each of the n
vertices, but overall momentum conservation makes one of these constraints redundant.
The number of undetermined loop momenta is therefore L = I − n + 1 = n − E

2
+ 1,

giving

D = d−
(
d

2
− 1

)
E + n(d− 4) (6.53)

which reduces to D = 2− 2n in two dimensions and D = 4− E in four.

Clearly the integral will diverge if D ≥ 0. Note that in two dimensions the
superficial degree of divergence of φ4 theory decreases with increasing n, guaranteeing a
small (finite) number of divergent diagrams. Theories that have this feature are known
as “super-renormalizable”, while theories for which the superficial degree of divergence
increases with increasing n (implying infinitely many ever-more divergent diagrams) are
nonrenormalizable. In four dimensional φ4 theory, D doesn’t depend on n at all; the
theory turns out to be renormalizable.

With a bit more manipulation (done in Peskin and Schroeder [43, Chap. 10], for
instance), we can use Eqn. 6.53 to establish a convenient relation between the mass di-
mension of the coupling constant and the renormalizability of the theory. If the coupling
constant has positive mass dimension, then the theory is super-renormalizable. The
theory is precisely renormalizable if the coupling constant is dimensionless and nonrenor-
malizable if the mass dimension of the coupling constant is negative. This result holds

65

for a number of quantum field theories, including quantum electrodynamics (QED) and
φ4 theory. Recall that for φ4 theory the dimension of the coupling constant is [λ] = 2
in the super-renormalizable two-dimensional theory and [λ] = 0 in the renormalizable
four-dimensional theory, in agreement with this result.

For the leaf diagram above, we have D = 0 in two dimensions (logarithmic diver-
gence) and D = 2 in four dimensions (quadratic divergence), as expected. Conveniently,
it turns out that not only does D ≥ 0 imply divergence, but the converse is almost
true as well. Specifically, the Weinberg-Dyson convergence theorem (proposed in 1949
by Dyson [18] and fully proven by Weinberg [66] in 1960) establishes that a Feynman
diagram converges if its superficial degree of divergence and those of all its subgraphs are
negative. A subgraph of a diagram is just a portion of it that can be cleanly cut from its
parent diagram to produce a sensible loop diagram of its own. In Figure 6.10, subgraphs
of a number of Feynman diagrams (clearly of a different quantum field theory than φ4)
have been boxed off: 6.10.a has two subgraphs, while 6.10.b and 6.10.c each have one
and 6.10.d has none. We will not attempt to prove Weinberg’s Theorem here.

Figure 6.10: Subgraphs of Feynman diagrams from Kraus and Griffiths [28]

6.6.3 Dimensional Regularization of φ4 Theory

So the superficial degree of divergence for φ4 theory in two dimensions isD = 2−2n,
which clearly shows that the leaf diagram is the only divergent diagram, since it is the only
diagram with one vertex and D ≥ 0. Thus the only integral which requires regularization
is Eqn. 6.50, which we rewrite here in Euclidean form (for convenience, we have dropped
the ¯ from q̄):

−3λ

∫
d2q

(2π)2

1

q2 + µ2
0

. (6.54)

We’ll use dimensional regulation to separate the finite and infinite parts of that integral.
As we will see, dimensional regulation is typically the most computationally tedious step

66

of renormalization. Recall that the general idea is to evaluate this integral in 2 − ε
dimensions to see what portions of the result diverge as ε → 0. Varying the dimension
will change the dimensionality of the coupling λ; to keep track of this we separate it into
a dimensionless coupling constant λ0 multiplied by a dimensionful M2−ε. Moving from
2 to 2− ε dimensions thus entails

d2q

(2π)2
=
qdqdΩ

(2π)2
→ d2−εq

(2π)2−ε
=
q1−εdqd1−εΩ

(2π)2−ε

−3λ→ −3λ0M
2−ε.

The integral becomes

−3λ0

(
M

2π

)2−ε ∫ ∞

0

q1−εdq

q2 + µ2
0

∫
d1−εΩ. (6.55)

General expressions for each of those two integrals are well-known:∫
dn−1Ω =

2πn/2

Γ(n/2)∫ ∞

0

xkdx

(xn + an)r
=

(−1)r−1πak+1−nrΓ
(

k+1
n

)
n sin

(
k+1
n
π
)
Γ
(

k+1
n
− r + 1

)
(r − 1)!

.

Setting n = 2− ε in the first equation gives∫
d1−εΩ =

2π1−ε/2

Γ(1− ε/2)
, (6.56)

while setting k = 1 − ε, n = 2, a = µ0 and r = 1 makes the Γ-functions in the second
equation cancel out, leaving ∫ ∞

0

q1−εdq

q2 + µ2
0

=
πm−ε

2 sin
(

2−ε
2
π
) . (6.57)

Putting everything together produces

−3λ0

(
M

2π

)2−ε
2π1−ε/2

Γ(1− ε/2)

π

2µε
0 sin

(
2−ε
2
π
) . (6.58)

This can be simplified considerably through the identity

π

sin(pπ)
= Γ(p)Γ(1− p) → π

sin
(

2−ε
2
π
) = Γ(ε/2)Γ(1− ε/2).

Plugging that in, cancelling out the Γ(1− ε/2) and collecting everything raised to the ε
power produces

−3λ0M
2

4π
Γ(ε/2)

(
2
√
π

Mµ0

)ε

. (6.59)

Finally we apply two more identities:

Γ(2/ε) = 2/ε− γ +O(ε)

zε = 1 + ε log z +O(ε2),

67

where γ = 0.577216 . . . is the Euler-Mascheroni constant. Our final result is

−3λ0M
2

4π

(
2

ε
− γ + log

(
4π

M2µ2
0

)
+O(ε)

)
. (6.60)

There is only one term in that result that will diverge as ε→ 0:

−3λ0M
2

2πε
+ finite.

So there is only one term we have to remove through renormalization.

6.6.4 Renormalization of φ4 Theory

Now that the divergent portion of the result has been separated from the finite
quantities, we need to see how to reconfigure the Lagrangian in order to eliminate the
divergent part without altering the convergent terms. There are two ways to proceed.
First we could scale each of the variables in the Lagrangian by some ‘renormalization
factor’ Z. An alternate approach more suited to diagrammatic analysis is to use ‘coun-
terterms’, extra terms added to the Lagrangian to produce additional diagrams that
cancel out the divergences in the original diagram(s). We will show how to move from
renormalization factors to counterterms. There are various ‘schemes’ one could use to
construct these counterterms. We illustrate the principle here with the simplest, the
“minimal-subtraction scheme”.

First of all, we rewrite our Lagrangian explicitly in terms of the “bare” field and
parameters, φ0, µ

2
0 and λ0:

L =
1

2
(∂µφ0) (∂µφ0)−

1

2
µ2

0φ
2
0 −

λ0

4
φ4

0. (6.61)

We now express the bare quantities as products of the renormalized quantities and cor-
responding renormalization factors,

φ0 =
√
ZφφR µ2

0 = Zµ2µ2
R λ0 = ZλλR,

which turns the Lagrangian into

L =
1

2
Zφ (∂µφR) (∂µφR)− 1

2
Zµ2Zφµ

2
Rφ

2
R − Z2

φZλ
λR

4
φ4

R.

Next we rewrite all of the renormalization factors in the following form

Zφ = 1 + δZφ Zµ2 = 1 + δZµ2 Zλ = 1 + δZλ. (6.62)

Though we use “δ”, we are not implying that any of the δZ are small quantities; indeed,
they may be infinitely large. Inserting those expansions into the Lagrangian and retaining
only terms to first order is δZ produces

L = LR +
1

2
δZφ (∂µφ) (∂µφ)− 1

2
(δZµ2 + δZφ)µ

2φ2 − (δZλ + 2δZφ)
λ

4
φ4. (6.63)

68

(We have dropped the subscripts on φR, µ2
R and λR.) The first term has exactly the same

form as the original Lagrangian, but with the bare field and bare parameters replaced by
their renormalized counterparts.

We can interpret the other terms as additional diagrams, or ‘counterterms’. There
seem to be quite a few of them. However, it turns out that we can renormalize the leaf
diagram even if we set δZφ = 0 and δZλ = 0.6.11 This is the simplest approach and the
one we adopt, giving

L = LR −
1

2
δZµ2µ2φ2 = LR −

1

2
δµ2φ2,

L =
1

2
(∂µφ) (∂µφ)− 1

2
(µ2 + δµ2)φ2 − λ

4
φ4. (6.64)

The Lagrangian now looks exactly the same as the original, except that µ2
0 has been

written as µ2 + δµ2.

We want to choose δµ2 to make this expression finite. Loinaz and Willey [32] show
that the final result is δµ2 = 3λAµ2 , where

Aµ2 =

∫
d2p

(2π)2

1

p2 + µ2
=

∫ ∞

0

e−µ2t
[
e−2tI0(2t)

]2
dt,

and I0 is a modified Bessel function of the first kind. Loinaz and Willey actually use
lattice regularization on a two-dimensional rectangular lattice to calculate their result,
not dimensional regularization. Considering how we will apply this renormalization to
two-dimensional lattice simulations in the next chapter, this is perhaps appropriate.

In sum, we find that in two dimensions neither φ nor λ need to be renormalized,
while the renormalized µ2 is given by

µ2 = µ2
0 + 3λ

∫ ∞

0

e−µ2t
[
e−2tI0(2t)

]2
dt. (6.65)

There is only one “mass counterterm” δµ2 to cancel out the infinite part of the leaf
diagram, which we illustrate in Fig. 6.11.

Figure 6.11: Mass renormalization of the leaf diagram in φ4 theory

6.11This is the reason we have previously used µ2
0 but not λ0 or φ0. We’ll just show this result is

consistent; to derive it from first principles we would have to introduce Σ(pn) functions, sums of the
amplitudes of all “n-particle irreducible” diagrams.

69

6.6.5 Complications in the Broken Phase

Complicated as the calculations in the past few sections may have seemed, we
actually made an unstated assumption to simplify things.6.12 We assumed that the
value of φ corresponding to the minimum-energy ground state (the “vacuum expectation
value”) was zero, V = 〈φ〉 = 0. This assumption let up perform the perturbation
expansion around zero: φ0 = V + φ̂0 = φ̂0, where 〈φ̂0〉 = 0. This does not hold in the
broken phase, V 6= 0, resulting in extra factors of φ̂3

0:

(V + φ̂0)
4 = φ̂4

0 + 4φ̂3
0V + · · ·+ V4

When V = 0, of course, we just have (V + φ̂0)
4 = φ̂4

0.

The stray φ̂3
0 terms result in diagrams with vertices at which only three lines meet,

as opposed to the four-line vertices we normally have in φ4 theory. Of particular concern
are “tadpole” diagrams like that shown in Fig. 6.12. By a calculation entirely analogous
to that in Section 6.6.2, we can show that the two-dimensional superficial degree of
divergence for φ3 diagrams is still D = 2− 2n (as it is for all φn, in fact), meaning that
the single-vertex tadpole diagram is divergent and needs to be renormalized. The other
terms are less interesting since they are either finite or can be combined with the mass
term. (In four dimensions the two-point tadpole diagram, Fig. 6.13 is also divergent;
we’ll only consider two dimensions for the moment.)

Figure 6.12: One-point “tadpole” diagram in the φ4 broken phase

Figure 6.13: Two-point tadpole diagram in the φ4 broken phase (not divergent in two
dimensions)

Fortunately, now that we’ve seen the idea behind renormalization, this prospect is
not necessarily so daunting. All we need to do, really, is specify an additional renormal-
ization condition, namely that the one-point function vanishes. As illustrated diagram-
matically in Fig. 6.14, this just means we need to add another counterterm that fully
cancels out the tadpole diagram. We’ll start by renormalizing φ0 just as we did in the
previous section,

φ0 =
√
ZφφR =

√
ZφV +

√
Zφφ̂R,

6.12This assumption is (explicitly or silently) made by all of the references cited so far. Bochkarev and
Willey [8] explore broken phase complications in the electroweak theory.

70

which leads to the relations

φ0 =
√
ZφφR φ̂0 =

√
Zφφ̂R V =

√
ZφV

where Zφ = 1 + δZφ, as usual.

Substituting those relations into the Lagrangian, we end up with terms proportional
to V and containing no δZ:

L =
1

2
(1+δZφ)∂µφ̂∂

µφ̂− 1

2
(1+δZµ2 +δZφ)µ

2(V +φ̂)2−λ
4
(1+δZλ+2δZφ)(V +φ̂)4. (6.66)

(V is constant, so ∂µ(V + φ̂) = ∂µφ̂.) Since we’re just working to one loop, our calculation
will be especially simple. We can write the renormalized V = (1 + δξ)v, where v is fixed
by the zeroth order contribution to be simply the classical expectation value in the broken
phase,

v =

√
−µ2

λ
. (6.67)

The additional counterterm proportional to δξ can be made to cancel out the tadpole di-
agram, as illustrated in Fig. 6.14. We won’t actually evaluate the corresponding integrals
to find a definite expression for δξ; we’ll simply note that by using Feynman diagrams
and Feynman rules such a calculation is made reasonably straightforward.

Figure 6.14: Tadpole renormalization in the φ4 broken phase

6.6.6 Further reading

The danger already exists that the mathematicians have made a covenant with the
devil to darken the spirit and to confine man in the bonds of Hell. – St. Augustine

Since renormalization is of such central importance to quantum field theory, many
different authors have attempted to explain it in a variety of ways. Watson’s [64, Pgs. 62–
90] semi-popular account of quantum chromodynamics includes a good qualitative intro-
duction to dimensional regularization and renormalization. Lepage [31] is another qual-
itative account of the essential features of renormalization, addressed to those familiar
with the process but unclear about its physical meaning.

Kraus and Griffiths [28] gently introduce the mathematics of dimensional regu-
larization and renormalization in the context of a simple model quantum field theory
constructed for that purpose. Veltman [63] develops Feynman diagrams in detail using

71

the canonical operator approach and also briefly considers renormalization. Ryder [51,
Chap. 9] is a standard textbook that explores renormalization at considerable depth for
a variety of theories, including φ4 theory, primarily using dimensional regularization and
the functional-integral approach. Kleinert and Schulte-Frohlinde [27, Chap. 8–9] take a
similar approach, but since φ4 theory is the sole topic of the volume, their treatment of
renormalization is more detailed but less general than Ryder’s.

There are also texts that explain and use the other approaches to regularization.
In particular, Zee [70, Chap. III] concentrates on cut-offs, while Hatfield [23, Chap. 17–
18] uses the Pauli-Villars regularization procedure. Books and articles about lattice
quantum field theory often discuss lattice regularization. See for instance Montvay and
Munster [39, Chap. 3], Smit [54, Chap. 2], and Pierro [44, Chap. 2], [45, Chap. 2].

72

Chapter 7

φ4 Theory on the Lattice

In this chapter, we will outline our simulations of φ4 theory on the lattice. We
begin by exploring the parallels between quantum field theories and classical statistical
systems. Following this discussion we will walk through the procedure used to discretize
φ4 theory in order to treat it computationally.

Finally, we will summarize our actual simulations of phase transitions in two- and
four-dimensional φ4 theory and solitons in two dimensions. We will present the results
of our calculations of the critical coupling constant [λ/µ2]crit and soliton masses in two
dimensions and compare them with the current literature.

7.1 From Quantum Field Theory to Classical Statis-

tical System

We have now seen both a detailed discussion of how to efficiently simulate classical
statistical systems on the lattice as well as an introduction to the basics of relativistic
quantum field theory. In this section we will combine the two strands of our earlier
discussions by showing how we can rigorously translate the φ4 quantum field theory into
a statistical system similar to those we introduced above. We will assume only that the
system is in equilibrium; the simple derivation we will present does not hold if this is not
the case.

The easiest way to present this derivation is to use the path-integral formulation
of quantum mechanics. We will not develop path integrals here (they are introduced
in Townsend [62, Chap. 8] and fleshed out in Ryder [51, Chap. 5–6]). Instead we will
simply cite the result that for a field theory governed by a Lagrangian L, the generating
functional of correlation functions (which produces the Green’s functions that actually
describe physical processes) is

Z[J] =

∫
DφeiS =

∫
Dφ exp

[
i

∫
d4x(L+ Jφ)

]
, (7.1)

73

where J(x) is an external source that couples to the field φ and S =
∫
d4x(L+Jφ) is the

resulting action. Z[J] is reminiscent of the partition function from statistical mechanics,
in that it has the general structure of a sum (integral) of an exponential weight over all
possible configurations of the system.

We can make that analogy precise by transforming from Minkowski space to Eu-
clidean space through a Wick rotation similar to that done in Subsection 6.6.1. We define
x4 = ix0, which allows us to define the Euclidean quantities x2

E, d4xE and ∂Eµ as

x2 = x2
0 − ~x2 → −~x2 − x2

4 = −x2
E (7.2)

d4x = dx0d
3x→ −id3xdx4 = −id4xE (7.3)

∂µφ∂
µφ =

(
∂φ

∂x0

)2

−
(
~∇φ
)2

→
(
i
∂φ

∂x4

)2

−
(
~∇φ
)2

= −
(
~∇φ
)2

−
(
∂φ

∂x4

)2

= − (∂Eµφ)2

(7.4)

These quantities are exactly what one would expect to find in a four-dimensional Eu-
clidean space: x2

E = x2
1 + x2

2 + x2
3 + x2

4) and so on. (Clearly the results in two dimensions
are completely analogous.) x4 behaves like a fourth spatial dimension as opposed to a
time dimension. We can apply the Wick rotation to the φ4 Lagrangian to find

L =
1

2
(∂µφ∂

µφ)− 1

2
µ2

0φ
2 − λ

4
φ4 → −1

2
(∂Eµφ)2 − 1

2
µ2

0φ
2 − λ

4
φ4 = −LE,

where we define the Euclidean Lagrangian as

LE =
1

2
(∂Eµφ)2 +

1

2
µ2

0φ
2 +

λ

4
φ4. (7.5)

Note that the Euclidean Lagrangian actually has the form of an energy density (Hamil-
tonian): it is non-negative and becomes large when the field φ has large amplitude or
large gradients.

Now we have all we need to apply the Wick rotation to the generating functional.
For simplicity we’ll turn off the external source J(x) = 0 for the moment.

Z[0] =

∫
Dφ exp

[
i

∫
d4xL

]
→
∫
Dφ exp

[
i

∫ (
−id4xE

)
(−LE)

]
=

∫
Dφ exp

[
−
∫
d4xELE

]
=

∫
Dφe−SE = Z.

(7.6)

Since the Euclidean action SE =
∫
d4xELE has the form of an energy, Z is precisely

the partition function describing the statistical mechanics of some macroscopic system
(approximated by treating its fluctuating variable as a continuous field). We see that J
is analogous to the external magnetic field which we earlier set to zero in the context of
the Ising model.

Thus performing a Wick rotation turns the eiS from the Feynman path integral
into a Boltzmann factor e−SE . We can therefore treat φ4 theory as a statistical theory in

74

four-dimensional Euclidean space with energy given by its Euclidean action

SE =

∫
d4xELE =

∫
d4xE

[
1

2
(∂Eµφ)2 +

1

2
µ2

0φ
2 +

λ

4
φ4

]
. (7.7)

Therefore we can apply the Monte Carlo methods developed in earlier chapters to φ4

theory, once we discretize it so it can be simulated on a lattice.

7.2 The Discretization Procedure

In order to simulate φ4 theory on the lattice, we need to discretize Eqn. 7.7 to turn
it into a “lattice action” (with the form of an energy) on a finite lattice with periodic
boundary conditions. We’ll work in two dimensions for simplicity, and extend our final
result to four dimensions only at the end of our calculation.

First we’ll write Eqn. 7.7 in two dimensions, and in a slightly more transparent
form. Even though we’ll think of our lattice as having one spatial dimension and one
time dimension (i.e., we’ll use notation like

∫
dxdt), we emphasize that we’re working in

a Euclidean space that behaves mathematically like two spatial dimensions. We have

SE =

∫
dxdt

[
1

2

(
∂φ

∂t

)2

+

(
∂φ

∂x

)2

+
1

2
µ2

0φ
2 +

λ

4
φ4

]
. (7.8)

There are three steps to the discretization procedure: the discretization of the field
φ; of the partial derivatives; and of the integral itself. The first is the simplest: instead
of being a continuous function φ(x, t), φn (0 ≤ n ≤ N) is now defined only at N lattice
sites separated by lattice spacing a.

The question of discretizing the partial derivatives is somewhat more vexing. The
simplest approach is to express them in terms of differences between nearest-neighbor
lattice sites:

∂φ

∂x
=
φ(x+ a

2
, t)− φ(x− a

2
, t)

a
(7.9)(

∂φ

∂x

)2

=
φ2(x+ a

2
, t) + φ2(x− a

2
, t)− 2φ(x+ a

2
, t)φ(x− a

2
, t)

a2
. (7.10)

Thus the kinetic term becomes

1

2

∫
dxdt

[(
∂φ

∂t

)2

+

(
∂φ

∂x

)2
]

=
1

2a2

∫
dxdt

[
φ2
(
x, t+

a

2

)
+ φ2

(
x, t− a

2

)
+ φ2

(
x+

a

2
, t
)

+ φ2
(
x− a

2
, t
)
−2φ

(
x+

a

2
, t
)
φ
(
x− a

2
, t
)
− 2φ

(
x, t+

a

2

)
φ
(
x, t− a

2

)]

75

Since we’re integrating over the whole lattice and use periodic boundary conditions, all of
the squared terms will give the same result, so we can rewrite them in a slightly simpler
form,

1

2

∫
dxdt

[(
∂φ

∂t

)2

+

(
∂φ

∂x

)2
]

=
1

2a2

∫
dxdt

[
4φ2(x, t)− 2φ

(
x+

a

2
, t
)
φ
(
x− a

2
, t
)

−2φ
(
x, t+

a

2

)
φ
(
x, t− a

2

)]
.

Though this nearest-neighbors approximation is the simplest discretization approach and
the one used in our programs, it has its disadvantages. In particular, by ignoring more
distant sites, such as the diagonals φ

(
x± a

2
, t± a

2

)
, we introduce systematic errors about

which we will have more to say in Section 7.5. For the moment we assume that the
systematic effects of this approximation are negligible.

The final step is to discretize the integral itself by taking dxdt→ a2 and xi → anx,
giving

1

2

∫
dxdt

[(
∂φ

∂t

)2

+

(
∂φ

∂x

)2
]
→ 1

2

∑
nx,ny

[
4φ2(anx, ant)− 2φ(a(nx + 1), ant)φ(anx, ant)

−2φ(anx, a(nt + 1))φ(anx, ant)] .

We can simplify the notation by summing over lattice sites n instead of worrying about
the lattice spacing a. We’ll also define i and j such that φ(a(nx + 1), ant) → φ(n + i)
and φ(anx, a(nt + 1)) → φ(n+ j):

1

2

∫
dxdt

[(
∂φ

∂t

)2

+

(
∂φ

∂x

)2
]
→
∑

n

1

2

[
4φ2(n)− 2φ(n)φ(n+ i)− 2φ(n)φ(n+ j)

]
.

The final trick is to apply periodic boundary conditions again, writing

4φ2(n) = 2φ2(n) + φ2(n+ i) + φ2(n+ j),

1

2

∫
dxdt

[(
∂φ

∂t

)2

+

(
∂φ

∂x

)2
]

→
∑

n

1

2

[
(φ(n+ i)− φ(n))2 + (φ(n+ j)− φ(n))2] . (7.11)

Note that the two squared terms in Eqn. 7.11 correspond to the two dimensions
of the lattice. It is not hard to see, reviewing the steps in the discretization process that
have led here, that this result can be generalized to d dimensions by writing

1

2

∫
dxdt

[(
∂φ

∂t

)2

+

(
∂φ

∂x

)2
]
→
∑

n

{
1

2

d∑
ν=1

(φ(n+ eν)− φ(n))2

}
, (7.12)

where eν is the unit vector in the ν direction.

76

For the potential term, discretizing the integral is a bit simpler. Taking dxdt→ a2

as before, we have∫
dxdt

[
1

2
µ2

0φ
2 +

λ

4
φ4

]
→
∑

n

[
a2µ2

0

2
φ2(n) +

a2λ

4
φ4(n)

]
.

Note that [a] = −1 since a is a length. For two-dimensional φ4 theory [µ2
0] = [λ] = 2, we

can work with dimensionless “lattice parameters” by defining µ2
L = a2µ2

0 and λL = a2λ.7.1

However, this introduces a problem when we try to go to the continuum limit by taking
the lattice spacing a → 0. Since both µ2

L and λL depend directly on the square of the
lattice spacing a2, as a→ 0, both µ2

L → 0 and λL → 0, which isn’t interesting.

The solution to this problem is to consider the (still dimensionless) ratio [λ/µ2].
This single parameter, the critical coupling constant, characterizes the continuum φ4

theory – taking the continuum limit reduces the number of independent dimensionless
parameters from two to one. In Sections 7.4–7.5, we will discuss how we have used
lattice simulations to calculate the critical coupling constant of continuum φ4 theory in
two dimensions.

In terms of the dimensionless lattice parameters µ2
L and λL, the potential term

becomes
1

2

∫
dxdt

[
φ2

(
µ2

0 +
λ

2
φ2

)]
→
∑

n

[
1

2
µ2

Lφ
2(n) +

λL

4
φ4(n)

]
. (7.13)

Adding the kinetic and potential terms, Eqns. 7.12 and 7.13, we obtain the discretized
lattice action,

SE =
∑

n

{
1

2

d∑
ν=1

(φ(n+ eν)− φn)2 +
1

2
µ2

Lφ
2
n +

λL

4
φ4

n

}
, (7.14)

where we have written φ(n) = φn. For lattice simulations, it is more convenient to
return to one of the intermediate expressions above by expanding the first term. In two
dimensions, d = 2, we’ll write e1 = i and e2 = j, which gives

1

2

2∑
ν=1

(φ(n+ eν)− φn)2 =
1

2

∑
n

(
4φ2

n − 2 [φ(n+ i)φn + φ(n+ j)φn]
)
.

It is easy to see that the second term is simply the same sort of sum over all pairs of
neighboring sites

∑
〈ij〉 that we encountered earlier in the Ising model (Section 5.1):

S
(2)
E = −

∑
〈ij〉

φiφj +
∑

n

[(
2 +

1

2
µ2

0

)
φ2

n +
1

4
λφ4

n

]
(7.15)

in two dimensions. In four dimensions, the sum over nearest neighbors will still exactly
equal the mixed terms in the sum

∑d
ν=1, while there will be twice as many φ2

n. So the
four-dimensional lattice action is

S
(4)
E = −

∑
〈ij〉

φiφj +
∑

n

[(
4 +

1

2
µ2

0

)
φ2

n +
1

4
λφ4

n

]
. (7.16)

7.1We’ll often omit the implicit L subscripts when discussing lattice simulations.

77

7.3 φ4 Monte Carlo Algorithms

Now that we know it is theoretically possible to simulate φ4 theory on the lattice
like a classical statistical system, let’s investigate the practical details of doing so. In our
simulations we use the Metropolis algorithm and the Wolff cluster algorithm, which need
to be modified slightly from the forms presented above in Chapter 5 in order to deal with
the continuous variation of φ (as opposed to the discrete ±1 values of Ising spins). For the
Metropolis algorithm, we cannot change the acceptance probability, Eqn. 5.12, since it is
what defines the algorithm (though the expression for the energy is different). However,
instead of simply reversing the sign of φ at the site under consideration, we randomly
select a new value φnew from the range φcurrent ± 1.5. This allows the magnitude of φ to
vary continually as required by ergodicity. We chose the value 1.5 in an attempt to strike
a balance between allowing φ to change meaningfully but not so much that we would
end up with a large number of extreme changes likely to be rejected by the algorithm.7.2

To use the Wolff cluster algorithm on φ4 theory, we simply applied it to the
embedded Ising model obtained by treating all sites with positive φ as spin-up Ising
spins and all those with negative φ as spin-down. That is, we form clusters of sites
with either positive or negative φ, and then negate the values of φ at all the sites in the
cluster (note that we do not change the magnitude of φ at any of the sites in the lattice).
This technique was introduced (for the Swendsen-Wang cluster algorithm) by Brower ad
Tamayo [9] and used for the Wolff algorithm specifically by Loinaz and Willey [32] as well
as De et al. [16]. Considering only the signs of φ in this manner allows the Wolff cluster
algorithm to proceed almost exactly as it does for the Ising model. However, since the
lattice action of the lattice in φ4 theory is more complex than the Hamiltonian of the
Ising model, we need to alter the probability of adding a site to the cluster in order to
make sure detailed balance is still satisfied.

We need to replay the analysis in Section 5.5 that resulted in Eqn 5.17 for the
probability Padd of adding a site to the cluster. There we introduced m and n, which we
can call the number of the number of “bonds” between parallel-spin pairs that will be
created or broken by the flip, respectively, and therefore the number that will be broken
or created by the reverse process. We denote by xb a site bordering the cluster on the
outside and by xc denote the neighboring site in the cluster. If the sign of φ(xb) is the
same as that of the cluster, then xb was considered for inclusion in the cluster but rejected

with probability
(
1− P

(xb)
add

)
.

We can no longer assume Padd is constant at all sites, so instead of g(µ → ν) ∝
(1− Padd)

n we have g(µ→ ν) ∝
∏n

i=1

(
1− P

(i)
add

)
and

g(µ→ ν)

g(ν → µ)
=

∏n
i=1

(
1− P

(i)
add

)
∏m

j=1

(
1− P

(j)
add

) = e−(Eν−Eµ) = e−∆E.

We have placed the site indices i and j inside parentheses so they are not confused with

7.2It might be an interesting exercise to see how the overall efficiency of the simulation depends on the
magnitude of potential changes allowed. We did not perform such an analysis.

78

exponents.

Although we no longer have the simple Ising expression for the energy difference
∆E = Eν −Eµ, since the magnitude of φ is not changed at any of the sites in the cluster
all the quadratic and quartic terms in the expression for the energy, Eqn. 7.14, cancel
out and we are left with only the contributions from nearest-neighbor interactions. From
Eqn. 7.14, we see the energy will rise by 2φ(x

(i)
b)φ(x

(i)
c) for all n bonds that will be broken

and will fall by 2φ(x
(j)
b)φ(x

(j)
c) for all m bonds that will be created. Thus

∆E =
n∑

i=1

2φ(x
(i)
b)φ(x(i)

c)−
m∑

j=1

2φ(x
(j)
b)φ(x(j)

c)

∏n
i=1

(
1− P

(i)
add

)
∏m

j=1

(
1− P

(j)
add

) = e−∆E = exp

[
−

n∑
i=1

2φ(x
(i)
b)φ(x(i)

c) +
m∑

j=1

2φ(x
(j)
b)φ(x(j)

c)

]
∏n

i=1

(
1− P

(i)
add

)
∏m

j=1

(
1− P

(j)
add

) =

(
n∏

i=1

e−2φ(x
(i)
b)φ(x

(i)
c)

)(
m∏

j=1

e2φ(x
(j)
b)φ(x

(j)
c)

)
n∏

i=1

1− P
(i)
add

e−2φ(x
(i)
b)φ(x

(i)
c)

=
m∏

j=1

1− P
(j)
add

e−2φ(x
(j)
b)φ(x

(j)
c)

It is clear that equality will hold if we set

Padd = 1− e−2φ(xb)φ(xc). (7.17)

Padd now depends on the values of φ at the particular sites under consideration, but its
expression is still pleasingly simple.

Our simulations used a mixture of the Metropolis and Wolff algorithms in these
forms. Specifically, each measurement of the observables was performed after sweeping
through the lattice five times using the Metropolis algorithm and then performing a
single Wolff cluster flip. In all our future discussions we will refer to this combination
of five Metropolis sweeps plus one Wolff cluster flip as an ‘iteration’. By ‘Metropolis
sweep’ we simply mean that the single-spin Metropolis algorithm is performed one time
for each site in the lattice, but not necessarily one time at each site in the lattice. We
run each Metropolis update on a randomly-selected site and do not guarantee that every
site on the lattice is selected at some point during each ‘sweep’. The terminology may
seem slightly deceptive, but is both simple and standard (cf. Newman and Barkema [40,
Chap. 3]).

The ergodicity of this mixture of algorithms is guaranteed by the ability of the
Metropolis algorithm to ‘shake up’ the values of φ at all the sites into any given con-
figuration through enough intermediate steps. The addition of the Wolff cluster helps
reduce the autocorrelation time (cf. Figs. 5.10 and 5.11) and break the system out of any
metastable state it may fall into.7.3

7.3It might be an interesting exercise to see how critical slowing down and the autocorrelation time
depend on the ratio of Metropolis sweeps to Wolff cluster flips. We did not perform such an analysis.

79

Since cluster algorithms are (despite their relatively common use and firm analyti-
cal foundations) not yet as well-trusted as the classic Metropolis algorithm, we performed
our small-lattice (L ≤ 128) φ4 simulations twice, once using just the Metropolis algorithm
and once using this Metropolis/Wolff mixture. We found that the results of both simu-
lations agreed very well, though the autocorrelation times of those not using the Wolff
cluster algorithm were typically at least an order of magnitude greater than those using
the mixture (see Section 5.5). In Fig. 7.1 we show typical results from these small-lattice
simulations, illustrating the agreement between them. All data points agree well within
uncertainty, though it is clear that using the Wolff algorithm dramatically decreases the
uncertainty; error bars on the mixed Metropolis/Wolff results are barely visible.

Figure 7.1: Energy for φ4 simulations at λ = 0.1 and L = 128 using only Metropolis
(left) and mixed Metropolis/Wolff (right)

Additionally, in all of our work exploring the φ4 phase space and calculating the
critical coupling constant, we used helical boundary conditions, for reasons discussed in
Section 3.3. Since helical boundary conditions are not as standard as periodic boundary
conditions, we also re-ran our small-lattice (L ≤ 128) φ4 simulations using periodic
boundary conditions and verified that the results obtained with both schemes agreed, as
shown above in Fig. 3.6.

7.4 Phase Transition Indicators

Our first lattice simulations of φ4 theory investigated its phase transitions, which
are similar to those of the previously-studied Ising model. The goal of these calculations
was to verify the value of the critical coupling constant [λ/µ2]crit for two-dimensional
continuum φ4 theory published by Loinaz and Willey [32] several years ago. We used three
indicators to identify the phase transition and critical point: the peak in the susceptibility
mentioned above in the context of the Ising model; the bimodality, a measure of the
brokenness of the system; and the fourth-order cumulant defined by Binder [7]. We will
discuss each of these indicators in turn in the following three subsections.

80

7.4.1 Susceptibility

For one of our indicators, we use the susceptibility peak introduced in Section 5.1
above. The susceptibility of φ4 theory behaves much like that of the Ising model, as
expected since they are members of the same universality class with second-order phase
transitions. As shown in Fig. 7.2, the φ4 susceptibility has a peak at the critical point,
which gets sharper as the size of the lattice on which the simulation takes place increases
(Figs. 5.8 and 5.9). The specific heat also exhibits a similar peak, but since it diverges
logarithmically (cf. Section 5.2) its peak is not as sharp as that of the susceptibility, so
we did not use it as a phase transition indicator.

Figure 7.2: Susceptibility vs. temperature for φ4 theory simulations on a 2562 lattice at
λ = 1

Such peaks are familiar beasts statistically. They can be modeled as Gaussians,

χ ∝ exp

[
−(x−X)2

2σ2

]
(7.18)

where X is the central value and σ is the standard deviation. It is trivial to find the
maximum using a Mathematica script or similar means. σ can be extracted by considering
the half-maxima y± of the peak, where

χ(y)

χ(X)
= exp

[
−(y± −X)2

2σ2

]
exp

[
(X −X)2

2σ2

]
= exp

[
−(y± −X)2

2σ2

]
.

Simple rearrangement gives y± = X ± σ
√

2 log(2). We define the full width at half-
maximum FWHM as

FWHM = y+ − y− = 2σ
√

2 log(2) ≈ 2.35σ. (7.19)

Thus measuring the FWHM of the susceptibility peak immediately results in a measure
of the standard deviation σ.

We actually overestimated a bit and defined our uncertainties on the susceptibility
critical point estimates as exactly half of the FWHM. We also conservatively defined our
half-maximum as one point beyond the point furthest from the peak with value greater
than half the maximum, as opposed to the point closest to the peak with value less than

81

half the maximum. The specific details of our analysis are presented in its Mathematica
implementation in Code Snippet C.13.

There is an additional complication relating to the susceptibility: when we calculate
it, χ = N(〈φ̄2〉−〈φ̄〉2),7.4 we actually need to use the absolute value of the volume-average
of φ in the second term. That is,

χ = N(〈φ̄2〉 − 〈|φ̄|〉2). (7.20)

This is due to the fact that even in the broken phase, the sign of φ may change over
the course of the simulation. In fact, this is almost guaranteed by our use of the Wolff
cluster algorithm, which in the broken phase will generally flip nearly the entire cluster
back and forth. Thus we end up with 〈φ̄〉 = 0, even in the broken phase where we know
〈|φ̄|〉 6= 0.

7.4.2 Bimodality

Bimodality is an intuitive and relatively straightforward quantization of the visual
picture of spontaneous symmetry breaking. We calculate it by binning all the values of φ̄
measured over the course of the simulation (after reaching equilibrium) into a histogram.
The data is sorted into an odd number of bins so that there is a central bin corresponding
to φ̄ ≈ 0. The bimodality is then defined as one minus the ratio of this central bin to the
maximum value of the histogram,

B = 1− n0

nmax

. (7.21)

This definition is designed to make the bimodality a measure of the brokenness of the
system. Simulations in the symmetric phase have a higher ratio and thus a lower bi-
modality (with a minimum of 0), while simulations in the broken phase result in a lower
ratio and a correspondingly higher bimodality (with a maximum of 1).

Figures 7.3 and 7.4 show the φ̄ histograms for four different values of µ2
L. In the

left side of Fig. 7.3, the system is in the symmetric phase and the bimodality is zero,
since the central bin is the maximum of the histogram. In the right side the system
is strongly broken and the central bin is almost empty, leading to a bimodality near 1.
Fig. 7.4 includes histograms for systems near the phase transition.

Although our definition of bimodality is pleasingly intuitive, its very simplicity
presents some analytical difficulties. In particular, it is not immediately obvious what
value of bimodality corresponds to the critical point itself, nor what values can be adopted
as bounds on the uncertainty. There is no convenient central peak or FWHM that can
be extracted from the bimodality curve shown in Fig. 7.5. We adopted the ad hoc rules
that a bimodality of B = 0.5 indicates the critical point, while B > 0.95 and B < 0.1
serve as 2σ (95% confidence level) bounds. Code Snippet C.13 in Appendix C, below,

7.4We use φ̄ to denote the volume-average of φ over all lattice sites at a particular measurement, and 〈φ̄〉
to denote the time-average of φ̄ across all the measurements performed over the course of the simulation.

82

Figure 7.3: φ̄ histograms in symmetric and broken phases L = 32, λ = .05, µ2
L = −.075

(left) and µ2
L = −.11 (right)

Figure 7.4: φ̄ histograms around the phase transition: L = 32, λ = .05, µ2
L = −.0928

(left) and µ2
L = −.0957 (right)

Figure 7.5: Bimodality vs. µ2
L for L = 32 and λ = .5

83

shows the Mathematica script we used to extract these estimates and bounds from our
raw data.

As shown in Fig. 7.6, our rules led to identifications of the critical point that
agreed within uncertainty with those made using the susceptibility peak. Note that the
uncertainties in the points determined using bimodality are significantly smaller than
the corresponding susceptibility uncertainties (the scales of both charts are identical).
However, there is a general trend, not readily observable in Fig. 7.6, that the bimodality
estimate is slightly higher than that of the susceptibility. It is easy to calculate the value
of bimodality that corresponds to the susceptibility peak, and when we do so, we find
out that B = 0.5 does not actually match the peak. Instead, the susceptibility peak
occurs at B = .63± .11 in two dimensions and B = .78± .18 in four dimensions. Fig. 7.4
compares the histograms for two-dimensional systems with B = .63 and B = .5; it is not
immediately obvious which better corresponds to the critical point.

Figure 7.6: Critical µ2
L determined from susceptibility (left) and bimodality (right) for

λ = .7

While we could use this analysis as motivation to change our ad hoc rules, glibly
doing so would raise a difficulty. It would make the bimodality observable dependent
on the susceptibility observable, and no longer an independent indicator of the phase
transition. Since the critical µ2

L values calculated using the bimodality agree with those
calculated using the susceptibility peak – even though the critical bimodality B = 0.5
doesn’t match the location of the susceptibility peak itself – we retained our initial rules.

An additional practical difficulty with the bimodality data is that it generally has
more jitter than the other observables, especially on smaller lattices and especially in the
broken phase. This can be seen clearly in Fig. 7.5, where the bimodality curve broadens
considerably for higher µ2

L, with neighboring data points often jumping from B = 0 as
high as B = 0.2. The larger uncertainty in the value of bimodality corresponding to the
susceptibility peak in four dimensions is likely due to the jitter caused by the smaller
lattices that have to be used when working in four dimensions.

We addressed this problem by considering the running average of the bimodality
instead of the pure data itself. Taking the three-term running average of the data in
Fig. 7.5 produces the curve shown in Fig. 7.7, which has the same qualitative shape but
is noticeably sharper, simplifying its analysis. The data presented above for the values
of bimodality corresponding to the susceptibility peaks uses this smoothed bimodality,
as does Fig. 7.6 and all further work.

84

Figure 7.7: Smoothed bimodality vs. µ2 for L = 32 and λ = .5

7.4.3 Fourth-order Cumulant

The final indicator we use to identify the critical point is the fourth-order cumulant,
commonly known as a ‘Binder cumulant’7.5 due to its definition by Binder [7]:

U = 1− 〈φ̄4〉
3〈φ̄2〉2

, (7.22)

with φ̄ defined as above. Since φ̄2 and φ̄4 are always positive, taking the absolute value
isn’t necessary.

U is useful since it has a fixed point at the critical point, as shown below in Fig. 7.8.
In the broken phase, U asymptotically approaches 2

3
, while for systems in the symmetric

phase, U approaches zero. Fig. 7.9 illustrates this behavior for both small L = 32 and
large L = 1024 lattices at λ = .5. The key is that the cumulants calculated on larger
lattices make a sharper transition, as can be very clearly seen from Fig. 7.10, which plots
the same data as Fig. 7.9, but uses the same scale in each chart. As a result of these
sharper transitions, there is a region on the broken side of the critical point where the
larger lattices all have larger U than the smaller lattices, and a similar region on the
symmetric side where the larger lattices all have smaller U . The symmetric case is easy
to observe in Fig. 7.8; the broken case is obscured by the convergence toward 2

3
but still

holds. The point where all the cumulants cross is the critical point.

To analyze our data, we restricted our attention to the largest three lattices for
simplicity (shown in Fig. 7.11). We defined the lower bound (one σ) on the critical point
as the value of µ2 below which simulations on larger lattices always have larger Binder
cumulants and similarly defined the upper bound as the value above which simulations
on larger lattices always have smaller cumulants (at least until the cumulants are all
randomly fluctuating near zero). We then identified the critical point by selecting the
point between the two bounds at which the separation between the cumulants is smallest.
The fact that the critical point is constrained to be between the bounds is critical,
since as all the cumulants approach 2

3
in the broken phase the separation between them

approaches zero (thus our estimate often ends up near the lower bound). The specific

7.5See for instance Sun [58].

85

Figure 7.8: Binder cumulant vs. µ2 for λ = .5 and L = 32, 64, 128, 256, 512 and 1024

Figure 7.9: Binder cumulant vs. µ2 for λ = .5 and L = 32 (left) and 1024 (right)

Figure 7.10: Binder cumulant vs. µ2 for λ = .5 and L = 32 (left) and 1024 (right), with
the same scale

86

details of this analysis can be found in its Mathematica implementation, included below
as Code Snippet C.14.

Figure 7.11: Binder cumulant vs. µ2 for λ = .5 and L = 256, 512 and 1024

7.5 The Phase Transition Line and the Critical Cou-

pling Constant

We can now discuss the details of our simulations investigating φ4 theory and
present our results. In this section we will explain our analyses of the phase transition
line of the theory in two and four dimensions and our calculation of the two-dimensional
critical coupling constant. In the next section we will turn to solitons and describe
the simulations and analysis performed to calculate their masses in two-dimensional φ4

theory.

7.5.1 Simulations and Results in Two Dimensions

We initially planned to focus our work to solitons in φ4 theory, but before turning
our attention on solitons themselves, we decided to gain familiarity with lattice sim-
ulations of φ4 theory by replaying an earlier analysis found in the literature. To our
surprise, our results, though consistent with those in the literature, revealed a subtlety
that had previously been invisible. Though subtle, this effect had serious repercussions
on our final results. In this subsection we will explain the initial motivation for our study,
early developments that prompted further investigations, and finally the details of our
simulations and results.

Motivation and Early Developments

We decided to investigate phase transitions in φ4 theory mainly to gain familiarity
with the theory itself and with methods for simulating it on the lattice. Our initial goal
was to reproduce (perhaps with slightly increased precision) the results of Loinaz and

87

Willey [32], who used lattice methods to calculate a two-dimensional critical coupling
constant of [λ/µ2]crit = 10.26+.08

−.04 in continuum φ4 theory. Their results are shown below
in Fig. 7.12.

Figure 7.12: Two-dimensional critical coupling results from Loinaz and Willey [32]

Numerical methods are required to calculate the critical coupling constant because
no satisfactory analytic approximations have yet been discovered. Loinaz and Willey
compare their results to those of several potential approximation schemes. The sim-
plest approach, considering the one-loop effective potential, predicts a critical coupling
constant of [λ/µ2]crit = 6.6. More complicated techniques make predictions scattered
throughout the range 3.8 ≤ [λ/µ2]crit ≤ 10.27. Unfortunately, the Gaussian effective po-
tential approach that agrees best with Loinaz and Willey’s numerical result incorrectly
predicts a first-order phase transition.

We imitated Loinaz and Willey by performing simulations at each of λ = 1.0, 0.7,
0.5, 0.25, 0.1 and 0.05 with square lattices of size L = 32, 64, 128, 256 and 512.7.6 In
addition, we expanded the simulations to include an additional data point, λ = 0.01,
and took advantage of our modern computational resources to perform simulations on
lattices of size L = 1024 for all λ. This greater amount of data and precision allowed
us to reduce significantly the uncertainties on the [λ/µ2] data points. Unfortunately, as
shown in Fig. 7.13, this resulted in data that no longer agreed fit well along a linear
regression.

There were a limited number of possibilities: either our simulations were flawed,
the behavior of [λ/µ2] was actually nonlinear in λ, or there was the vain hope that taking
additional data would somehow wrench the data into a linear fit. The first possibility
seemed unlikely. Our simulations had been performed completely independently of Loinaz
and Willey’s, yet still produced results that agreed very well with theirs except at low λ,
as shown in Fig. 7.14. Since we did not have enough data to conclude that a linear model
was completely ruled out, the only solution was to perform more simulations. So our
study of solitons was postponed, and the initial exercise intended merely to familiarize
us with φ4 theory and lattice quantum field theory was no longer so simple.

7.6We will go further into the details of our simulations below.

88

Figure 7.13: Preliminary two-dimensional critical coupling results as of December 2005

Figure 7.14: Comparison of preliminary results (solid points) to those of Loinaz and
Willey [32] (hollow pentagons)

89

Simulations and Results

In order to improve upon these preliminary results, we added two more data
points at λ = 0.03 and λ = 0.02 and performed additional large-lattice (L = 600, 1200)
simulations at λ = 0.05, 0.03, 0.02 and 0.01, small values that have a strong impact on the
continuum limit. In the end, then, our investigations of the φ4 phase transition in two
dimensions involved simulations of the system at nine different values of the coupling
λ = 1.0, 0.7, 0.5, 0.25, 0.1, 0.05, 0.03, 0.02 and 0.01, performed on square lattices of
length L = 32, 64, 128, 256, 512 and 1024, with additional simulations at L = 600, 1200
for λ = 0.05, 0.03, 0.02 and 0.01.

Starting from a random initial state, each simulation performed 16384 iterations
for equilibration and an additional 16384 for statistics, except for the largest L = 1024
and 1200 lattices, on which simulations performed 8192 iterations for equilibration and
an additional 8192 for statistics. We calculated the autocorrelation time τ for each
simulation, using the method discussed above in Section 2.2 and implemented in the
C++ code presented below in Code Snippet C.9. In general, the autocorrelation times
were of order 10 iterations. Curiously, the autocorrelation times were largest for small
lattices with low λ. The maximum autocorrelation times were of order 100 iterations,
for λ = 0.01 on 322 and 642 lattices. Regardless, our simulations always equilibrated for
at least 100 τ and took at least 100 statistically independent measurements. As a result
statistical uncertainties are very small and overall uncertainty is dominated by systematic
effects, in particular the effects of using finite lattices (“finite-size effects”).

For each λ, we scanned through µ2
L in order to find the critical points and uncertain-

ties predicted by both the bimodality and susceptibility, determining them as discussed
above in Section 7.4. We used an iterative procedure to minimize the number of sim-
ulations that needed to be performed to locate the critical value of µ2

L. After a broad
initial scan on small 322 lattices we varied µ2

L on lattices with L = 2n+1 only over the
range given by the critical µ2

L and standard deviation calculated using L = 2n lattices.
Although for some of the largest lattices we needed to perform additional simulations to
locate the bounds on the critical point for either the susceptibility, bimodality or Binder
cumulant, this method worked well for the most part.

After using the three indicators discussed above to determine critical points and
uncertainties for each lattice size L, we performed linear regressions using Mathematica
to determine the L→∞ (L−1 → 0) limit. We did this separately for both the estimates
from the susceptibility data and those from the bimodality data, as shown above in
Fig. 7.6. The results of these regressions are shown in the first two columns of Table 7.1,
with the results of the Binder cumulant calculations in the third column. Note that
the data for the three indicators listed in Table 7.1 all agree within uncertainties, which
were higher for the Binder cumulant since it was calculated with a single measurement
as opposed to a regression to the infinite-volume limit.

The first column of Table 7.2 contains the unrenormalized (“bare”) critical µ2
L for

each value of λ – simply the weighted average of the critical values from Table 7.1. These
values define the phase transition line of the bare theory, shown in Fig. 7.15 (with error

90

Table 7.1: Critical points determined from each phase transition indicator
λ Susceptibility Bimodality Cumulant

1.00 -1.27233(16) -1.27258(10) -1.27260(45)
0.70 -0.95153(25) -0.95152(7) -0.95180(40)
0.50 -0.72080(11) -0.72131(9) -0.72130(30)
0.25 -0.40346(18) -0.40373(6) -0.40390(20)
0.10 -0.18424(11) -0.18432(9) -0.18430(20)
0.05 -0.10060(5) -0.10071(4) -0.10100(35)
0.03 -0.06410(4) -0.06414(5) -0.06420(15)
0.02 -0.04465(3) -0.04468(5) -0.04500(30)
0.01 -0.02397(6) -0.02399(5) -0.02410(10)

bars too small to be visible). We won’t dwell on the bare phase transition line here, since
we have renormalized the theory, as discussed above in Section 6.6. The renormalized
critical µ2 values in the second column of Table 7.2 were calculated using Eqn. 6.65,
which we repeat here for convenience:

µ2 = µ2
0 + 3λ

∫ ∞

0

e−µ2t
[
e−2tI0(2t)

]2
dt, (7.23)

where I0 is the modified Bessel function of the first kind and our lattice parameter µ2
L

plays the role of µ2
0. Eqn. 7.23 was evaluated using Mathematica’s FindRoot command;

we then checked the result by substituting it back into the original expression. Because
Eqn. 7.23 is highly nonlinear, we determined the uncertainties on the renormalized µ2

by calculating the renormalized values corresponding to µ2
L ± σ and treating them as

upper and lower bounds on µ2. Uncertainties on the critical coupling constants in the
final column of Table 7.2 were calculated by simple error propagation.

Table 7.2: Points on the two-dimensional phase transition line for various λL

λ Critical µ2
L Critical µ2 [λ/µ2]crit

1.00 -1.27251(16) 0.097321(46) 10.275(5)
0.70 -0.95152(16) 0.068464(45) 10.224(7)
0.50 -0.72111(11) 0.048887(32) 10.228(7)
0.25 -0.40371(9) 0.024179(26) 10.339(11)
0.10 -0.18428(8) 0.009477(23) 10.552(26)
0.05 -0.10067(12) 0.004679(33) 10.686(76)
0.03 -0.06412(5) 0.002794(15) 10.737(59)
0.02 -0.04466(10) 0.001870(28) 10.695(163)
0.01 -0.02400(4) 0.000931(12) 10.739(138)

Our results (Table 7.2 and Figs. 7.16 through 7.19) make the nonlinear relationship
between [λ/µ2]crit and λ undeniable. Fig. 7.16 includes a clearly unacceptable linear
regression; as shown in Table 7.3, the variance per degree of freedom of this fit is nearly
50.

Motivated by the general pattern in our data points, we performed nonlinear
regressions in Mathematica to fit the data to expressions containing logarithmic terms.

91

Figure 7.15: The bare φ4 phase transition line in two dimensions: critical µ2
L vs. λ with

nonlinear regression including terms up to λ2 log[λ]

Figure 7.16: λ/µ2 vs. λ with linear regression

92

The third column of Table 7.3 shows the results of fits involving a λ log[λ] term in addition
to the constant and linear terms, while the fourth column adds a λ2 log[λ] term, for a total
of four terms. For each model, we performed fits for both the critical coupling constant
[λ/µ2]crit in terms of λ (shown in Fig. 7.17) as well as µ2

crit itself in terms of λ. All the
µ2

crit regressions look identical to the naked eye, so we only present one: Fig. 7.18 is the
four-term regression (its error bars are too small to be visible). Fig. 7.15 also includes a
fit of the bare critical µ2

L to the four-term regression; the nonlinearity in the bare phase
transition line is even more pronounced than that in the renormalized line.

There was a slight complication: we received remarkably different results depend-
ing on whether we were performed the regressions in Mathematica 5.0 on Linux or in
Mathematica 5.2 on Windows. In particular, in Linux the results for the [λ/µ2]crit and
µ2

crit regressions were different, while on Windows, both regressions produced nearly iden-
tical results. As shown in Table 7.3, we have adopted the results from Mathematica 5.2
on Windows. We trust this data more because it is from a newer version of the software
operating under the operating system for which it was designed. We are not certain
whether the difference in version or in operating system (or both) is the cause of this
puzzling behavior. For reference we include the full Mathematica output for all of the
regressions we performed for [λ/µ2]crit in Appendix D below.

Although the three-term regression given by Windows has a reasonable variance
per degree of freedom of 1.26, the fit of the four-term regression is nearly perfect. Unfortu-
nately, the two regressions produce rather different results of 10.774(31) and 10.874(17),
respectively. Accordingly, we have adopted as our final result [λ/µ2]crit = 10.85+.03

−.08,
which is consistent with both regressions.

Table 7.3: Continuum coupling constants from various fits of the two-dimensional data
c1 + c2λ · · ·+ c3λ log[λ] · · ·+ c4λ

2 log[λ]
[λ/µ2]crit vs. λ 10.305(65) 10.774(31) 10.874(17)

(Var = 47.8) (Var = 1.26) (Var = 0.13)
µ2 vs. λ 10.243(19) 10.775(31) 10.874(17)

(Var = 28.3) (Var = 1.27) (Var = 0.13)

Figure 7.17: λ/µ2 vs. λ with nonlinear regressions including c3λ log[λ] (left) and
c4λ

2 log[λ] (right)

In a sense, this logarithmic dependency is not unexpected. Recall that when we
discretized the action in Section 7.2, we neglected the contributions of all but nearest-

93

Figure 7.18: µ2 vs. λ with nonlinear regression including c4λ
2 log[λ]

neighbors to the discretized form of the kinetic term
(

∂φ
∂t

)2
+
(

∂φ
∂x

)2
. We remarked at the

time that this approximation introduced systematic effects, but glibly assumed that they
would be negligible. Our results suggest that this assumption is incorrect.

Unfortunately, it is very difficult to determine analytically these systematic effects.
We are actively attempting such calculations, but we do not yet know whether they will
prove tractable.

As a final coda, we note that even though our data decisively rules out a simple
linear regression to the continuum limit, it is still largely consistent with Loinaz and
Willey’s results. Fig. 7.19 shows that all data points agree within uncertainty except for
those at λ = 0.05, where the points are 2.75σ apart. Their linear fit agrees perfectly with
their data, and it was only our additional data and resulting increase in precision that
allowed us to observe these higher-order effects.

Figure 7.19: A comparison of our results (solid points) to those of Loinaz and Willey [32]
(hollow pentagons)

7.5.2 Simulations and Results in Four Dimensions

Our exploration of the φ4 theory in four dimensions followed a similar trajectory as
our work in two dimensions. We began to study the four-dimensional theory expecting

94

to obtain a relatively straightforward result, but subsequently encountered complications
which forced a reconsideration of our goals and methods. In this subsection we will
explain the initial motivation for our work, early developments that prompted a change
of course, and finally the details of our simulations and results.

Motivation and Early Developments

We were initially motivated to extend our studies of the phase structure of φ4

theory into four dimensions by a recent disagreement in the literature between Balog et
al. [3] and Stevenson [57]. Stevenson disputed Balog et al.’s conclusion that simulation
data of four-dimensional φ4 theory and the Ising model was “in perfect agreement with
the conventional” wisdom obtained through analytic studies, a conclusion that disagrees
with an earlier analysis by Stevenson’s collaborators Cea, Consoli and Cosmai [11] (who
themselves responded separately [12]). In particular, Stevenson claimed that “the change
[‘step’] in the wavefunction-renormalization constant ẐR across the phase transition is
significantly greater than predicted.” ẐR is similar to our field renormalization factor Zφ

introduced above in Section 6.6.4; using the action given in Eqn. 7.24, ẐR = 2κZφ. Our
hope was to resolve the conflict by directing our attention and that of Amherst’s new
scientific computing cluster toward the relatively limited issue under dispute.

We began to take data using the parameterization of the φ4 Lagrangian favored by
Balog et al., which we present here in the form of the corresponding discretized lattice
action:

SE =
∑

x

[
−2κ

4∑
µ=1

φ(x)φ(x+ µ) + φ(x)2 + λ(φ(x)2 − 1)2

]
. (7.24)

The independent parameters are κ and λ, as opposed to µ2
0 and (a differently-scaled) λ.

Eqn. 7.24 also adds a constant λ to the Lagrangian. Unfortunately, our simulations of this
parameterization of the theory tended to exhibit large fluctuations and autocorrelation
times, as well as unrenormalized results for µ2

0 that did not approach the continuum limit
in a linear fashion.

Moreover, in January 2006, Balog, Niedermayer and Weisz [4] submitted another
paper that performed much of the analysis we had planned. This development, coupled
with our difficulties simulating Eqn. 7.24 and the unexpected results in our study of
phase transitions in the two-dimensional theory, prompted a change of course. Instead
of focusing on the disagreement between Stevenson and Balog et al., we returned to our
original Lagrangian, Eqn. 6.26, and set out to chart the phase transition line in four
dimensions.

Simulations and Results

We ended up following a similar procedure in four dimensions as we did in two,
using the same parameterization of the Lagrangian. Of course, we performed the simu-
lations on lattices of different sizes, and the required renormalization was considerably

95

more complicated, but the overall approach was identical. Our lattices were now four-
dimensional cubes with L4 sites, where L = 8, 12, 16, 20, 24 and 36.7.7 Using these
lattice sizes, we again iteratively scanned µ2

L for λ = 1.0, 0.7, 0.5, 0.25, 0.1, 0.05, 0.03,
0.02 and 0.01, extracting the continuum limits of the critical µ2

L in the manner described
above (Table 7.4).

Starting from a random initial state, each simulation performed 8192 iterations for
equilibration and an additional 8192 for statistics, except for the largest L = 36 lattices,
on which simulations performed 4096 iterations for equilibration and an additional 4096
for statistics. We calculated the autocorrelation time τ for each simulation, using the
method discussed above in Section 2.2 and implemented in the C++ code presented
below in Code Snippet C.9. The autocorrelation times depended on both λ and L; they
were of order 10 iterations for large λ on small lattices and of order 100 iterations for
both small λ at all lattice sizes as well as large λ on large lattices. A small number of
autocorrelation times on the largest 364 lattices actually exceeded 1000 iterations. Thus
although most simulations had dozens or hundreds of autocorrelation times in which to
equilibrate and take measurements, a few had only a handful.

As shown in Fig. 7.20 and Table 7.4, although the statistical uncertainties on the
data are small, uncertainties in the regressions to the continuum limit are larger than
in the two-dimensional case, since L−1 is larger. We expect larger systematic influences
from finite-size effects, since we had to use smaller lattices. Although these lattices have
roughly the same number of sites as those used in the two-dimensional simulations, it is
the lattice’s linear length L that matters for purposes of finite size effects since this is the
size at which periodic boundary conditions cause clusters to begin to run into themselves,
demolishing the fiction of an effectively infinite lattice.

Table 7.4 was generated in almost exactly the same way as Table 7.2 above. The
only significant difference is in the renormalization of the theory, which we were not
able to perform. Renormalization appropriate for lattice simulations of φ4 theory in four
dimensions is difficult to calculate. The most noteworthy attempt is that of Lüscher and
Weisz [33, 34], which is not directly applicable to our situation.

Instead we focused on the bare phase transition line, which is shown below in
Fig. 7.21. Unlike in the two-dimensional case, the four-dimensional bare transition line
does not exhibit significant nonlinearity. Fig. 7.21 includes a linear regression that re-

7.7There was, however, one complication. Completing what we thought were our final simulations, we
discovered that our program crashes if asked to simulate φ4 theory with λ = 0.01 on 364 lattices in the
strongly broken regime µ2

L < −.0058. We suspect that the recursive methods we used to construct the
Wolff cluster in this code (see Section C.3) were called so many times that their stack frames overflowed
the available stack space itself. This would explain why the error appeared only for large lattices far in
the broken phase: since many sites were being added to the cluster, the recursive methods were being
called many times. Performing a stack trace with gdb (see Section B.1) confirmed that the segmentation
faults occurred after these recursive methods had been called at least 20,000 times (most likely many
more).

We attempted to get around this problem by varying the seeds given to the random number generators,
but this proved ineffective. Instead, we simply ran the handful of problematic simulations on 324 lattices
instead of the original 364 ones. We believe that doing so introduced negligible systematic error. We plan
to replace the recursive methods with a stack-based approach over the summer of 2006, while rewriting
the code as a whole in Fortran.

96

Figure 7.20: 4D critical µ2
L determined from susceptibility (left) and bimodality (right)

for λ = .7

Table 7.4: Points on the four-dimensional bare phase transition line for various λL

λ Susceptibility Bimodality Cumulant Critical µ2
L

1.00 -0.4432(15) -0.4396(13) -0.4449(25) -0.4411(11)
0.70 -0.3129(19) -0.3088(9) -0.3161(27) -0.3095(11)
0.50 -0.2237(9) -0.2228(11) -0.2259(32) -0.2233(12)
0.25 -0.1109(6) -0.1108(11) -0.1167(16) -0.1109(6)
0.10 -0.0438(7) -0.0438(12) -0.0477(8) -0.0438(5)
0.05 -0.0225(8) -0.0201(9) -0.0241(9) -0.0214(5)
0.03 -0.0125(3) -0.0123(4) -0.0143(7) -0.0125(3)
0.02 -0.0078(8) -0.0080(6) -0.0097(2) -0.0079(3)
0.01 -0.0051(3) -0.0033(7) -0.0059(11) -0.0048(4)

sults in a variance per degree of freedom of 2.01. Adding a λ log[λ] term barely affects
the variance, lowering it to 1.93, while adding a fourth λ2 log[λ] term only reduced the
variance to 1.63.7.8

However, these relationships will not necessarily hold after renormalization. We
are actively attempting to determine the appropriate renormalization, but so far such
calculations have proven intractable. We emphasize that in the our calculation of the
bare phase transition line we have performed all necessary simulations and computations,
a nontrivial contribution; only the analysis remains to be completed.

7.6 Soliton Mass Results

Though the unexpected developments in our investigations of φ4 theory phase
transitions and the two-dimensional critical coupling constant shifted our attention, we
were able to perform an abbreviated foray into φ4 solitons, originally the intended focus
of our work. The first question to address is how to simulate solitons on the lattice; we
are able to do so simply by altering the boundary conditions. Recall from Section 6.4
that soliton solutions continuously connect the two degenerate vacua of the broken phase,

7.8We performed these regressions only on Mathematica 5.2 on Windows, as a result of our earlier
experiences with Mathematica 5.0 on Linux discussed above.

97

Figure 7.21: The bare φ4 phase transition line in four dimensions: critical µ2
L vs. λ with

linear regression

φ(x, t) = ±
√
−µ2

0/λ, with the result that φ(x→∞) = −φ(x→ −∞).

Now, we obviously do not have an infinite lattice, but we can encourage φ(0, t) =
−φ(L − 1, t) on the spatial boundaries of the lattice by using antiperiodic boundary
conditions (APBC), introduced above in Section 3.3. Briefly, APBC identify the same
points as do periodic boundary conditions (PBC), but negate the value of φ at the site
being ‘wrapped around’. By using them on the spatial boundaries (but still using PBC
on the temporal boundaries), we encourage (at all times t) the sites on opposing spatial
boundaries to take on opposite values, since in that situation APBC will make them
think they are aligned with their wrapped-around neighbors. Alignment is, recall, favored
energetically due to the nearest-neighbors interaction in the lattice action, Eqn. 7.14.

Classically, we can calculate the mass (energy) of the soliton by substituting the
soliton solution to the Euler-Lagrange equation back into the Hamiltonian and subtract-
ing off the ground state energy. We did this back in Section 6.4 (Eqn. 6.35), finding

Mcl =
2
√

2

3

r3/2

λ
, (7.25)

where for convenience we define r = −µ2
0, which is positive in the broken phase. Also

for convenience, we will typically square Mcl and scale it by λ2/r3 in the figures below.
When we quantize φ4 theory, quantum corrections to the soliton mass diverge and need
to be renormalized. This calculation is done in detail by Weidig [65] and Rajaraman [49,
Section 5.4], who show that up to one loop (first order quantum corrections) the mass of
the soliton is

Msemi =
2
√

2

3

r3/2

λ
+
√
r

(
1

6

√
2

3
− 3

π
√

2

)
+O(λ). (7.26)

As discussed by Rajaraman, the factor of 1/λ in this “semiclassical” result reveals the
nonperturbative nature of the soliton and suggests this first order (in h̄ and zeroth order
in λ) approximation will only be valid in the classical weak-coupling limit λ/r � 1.

To calculate the soliton mass numerically, we need to perform simulations with
both PBC and APBC. As discussed above, using APBC will produce solitons, while the
simulations with PBC will fall into the ground state. By subtracting the ground state

98

energy from the energy of the simulations involving solitons, we can isolate the soliton
mass. Actually, the situation is somewhat more complicated than this; as shown by Ciria
and Tarancón [15], the mass of the soliton on the lattice is

Msol =
1

T

∫ β

βc

∆S(β′)

β′
=

1

T

∫ β

βc

1

β′
(〈Sa〉 − 〈Sp〉) (7.27)

where Sa is the action calculated using APBC (corresponding to the soliton) while Sp

is the action calculated using PBC (corresponding to the ground state). Both actions
depend on β = 1/λ. βc is the inverse of the critical λc for the fixed r = −µ2

0 at which
the simulations are performed and T is the length of the lattice in the temporal direction
(what we’ve been calling L).

We calculated ∆S(β) through programs similar to those used to investigate the
phase transitions (most of the C++ source code is available in Code Snippets C.10
through C.12). The main difference was that these programs simultaneously simulated
two separate lattices, one using PBC and the other using APBC. For three fixed values of
r = −µ2

0 (1, 2.2 and 4, in imitation of Ardekani and Williams [1]), we scanned λ from near
zero until we approached the phase transition into the symmetric phase, where the soliton
vanishes. In hindsight it would have made more sense to vary β as opposed to λ. Our
approach is still satisfactory but resulted in an excessive number of simulations performed
near βc, visible in the figures below. These excessive simulations were computationally
costly, especially because we were not able to minimize the range of λ to scan as we did
with µ2

0 when investigating phase transitions.

As a result, we were only able to complete full scans of λ for simulations on
lattices of size L = 32, 48, 64, 128 and 256. Each of our simulations again performed
16384 mixed Metropolis/Wolff iterations for equilibration and an additional 16384 for
statistics. Although the PBC lattice was initialized in a random state, we found it
necessary to initialize the APBC lattice in an ordered state mimicking the soliton. This
is because the antiperiodic boundary conditions make it possible for the Wolff cluster
algorithm to add to the cluster sites with opposite signs. In the strongly broken phase,
this means that nearly all sites would be added, reducing the Wolff algorithm’s ability
to cope with metastable states (an APBC variant of the diagonal stripe state in Fig. 5.7
was especially persistent). By starting in an ordered state with lower energy than the
metastable states, we guaranteed that they would not interfere with our calculations.

Even though we were able to eliminate the occurrence of metastable states by
starting the APBC lattice in an ordered state, the autocorrelation times for the APBC
lattices were still significantly longer than those for the PBC lattices. While the PBC
lattices’ autocorrelation times were all less than ten iterations, the APBC lattices’ were
typically two to four orders of magnitude greater, leading to statistical uncertainties on
〈Sa〉 roughly an order of magnitude greater than those on 〈Sp〉. The autocorrelation
time typically decreased as lattice size increased under periodic boundary conditions but
increased with L under antiperiodic boundary conditions.

This problem was noted by Ardekani and Williams, who identified its source as
translational motion of the soliton. To address it, they imposed a constraint on the
soliton, fixing its center to the center of the lattice by setting φ(L/2, t) = 0 for all times

99

t and for the duration of the simulation. This halted the soliton’s translational motion
and made it more clearly defined, as shown in Fig. 7.22, which plots one measurement of
the field value φ averaged over all times t for each “time slice” on a 482 lattice with r = 1
and λ = 0.5 (f = r/

√
λ =

√
2). Adding this constraint also dramatically decreased the

autocorrelation times and uncertainties of the lattices with APBC, to the same level as
the lattices with PBC, less than ten iterations. The decrease in uncertainties is illustrated
by Fig. 7.23, which compares ∆S/T and Msol for simulations using both unconstrained
(left) and constrained (right) APBC lattices at r = 4.

Figure 7.22: Unconstrained (left) and constrained (right) lattice solitons on a 482 lattice
with r = 1 and λ = 0.5 (f = r/

√
λ =

√
2), at one measurement

Figure 7.23: Soliton masses calculated at r = 4 on unconstrained (left) and constrained
(right) lattices

Fig. 7.23 plots (against β) lattice data for ∆S/T (solid points) and Msol (hollow
diamonds) calculated from Eqn. 7.27 as well as Mcl (solid line) and Msemi (dashed line)
from Eqns. 7.25 and 7.26. In each case the quantity being graphed has been squared and
scaled by λ2/r3. We calculated the masses from Eqn. 7.27 through Mathematica, using
its ListInterpolation command to calculate an integrable function from our discrete
∆S/T data points. We obtained the uncertainties in the masses by performing the same
procedure using ∆S/T ± σ∆S/T , with the result that the uncertainty on each value of
Msol(β) is cumulative and includes contributions from the uncertainties of all ∆S/T
points between β and the phase transition at βc.

We constructed our graphs in this manner since our goal was to reproduce Fig. 7.24
from Ciria and Tarancón [15]. Since Ciria and Tarancón use λ/4! in their Lagrangian
instead of our λ/4, the vertical axis of Fig. 7.24 is 36 times what ours will be, while its
horizontal axis is scaled by 1

6
relative to ours. There are several reasons we expect our

100

results to be an improvement on theirs. First, we were able to use our phase transition
results to determine highly accurate values of βc (Table 7.5), which appears in Eqn. 7.27
as the lower bound of the integral. Ciria and Tarancón, in contrast, only report an
estimate of βc = 0.4824(132) (λc = 2.075(58)) for r = 2.2, based solely on the position
of the sharp transition in Fig. 7.24.

Table 7.5: Critical βc calculated using the data from Section 7.5
r = 1 r = 2.2 r = 4

βc 1.34443(6) 1.97597(22) 4.13749(125)
λc 0.74381(3) 0.50634(6) 0.24169(7)

Additionally, Ciria and Tarancón performed their simulations only on 482 lattices.
By using a series of lattices of increasing size L = 32, 48, 64, 128, 256 and taking the
infinite-volume limit, our data should better take into account finite size effects and more
accurately reflect the continuum theory. Finally, we simply took far more data than Ciria
and Tarancón, partly due to our scans through λ as opposed to β. This results in smaller
statistical uncertainties, the ability to extend our charts to β > 2.4, and more fully
fleshed-out lines, especially for lower β.

Unfortunately, our initial results disagreed with Fig. 7.24, in particular regarding
the semiclassical mass prediction. This disagreement remained even if we performed our
calculations on unconstrained APBC lattices (Fig. 7.25, left). We were able to track the
problem to an error made by Ciria and Tarancón in their statement of the semiclassical
soliton mass, Eqn. 7.26, which places the factor of

√
2 in the numerator of the last term.

Initially we assumed this was merely a typo, but we found that adopting their definition
of the semiclassical mass produced results (Fig. 7.25, right) in agreement with theirs,
indicating that they actually used this incorrect expression in their calculations. We are
confident Ciria and Tarancón are incorrect because they do not present a derivation of
the equation; instead they merely cite Rajaraman [49, Section 5.4], who actually places
the

√
2 in the denominator (as does Weidig [65] independently).

Our full results are presented in Figs. 7.26 and 7.27. Each figure includes charts
modeled on Fig. 7.24 for each of the three values of r = −µ2

0 at which we performed
simulations. The charts on the left illustrate the behavior of the (squared and scaled)
mass near the critical point (β < 4), while those on the right reveal its asymptotic
behavior in the classical low-λ (high-β) limit (β < 40).

There are striking differences between the results obtained using the constraint
proposed by Ardekani and Williams (Fig. 7.26) and those obtained without imposing the
constraint (Fig. 7.27). While both sets of data behave similarly near the critical point,
the constrained masses quickly approach (from below) the semiclassical values as either β
or r increases. The perturbative calculation in turn approaches the classical value in the
classical (weak coupling) limit r/λ = rβ � 1. This disagrees with Ciria and Tarancón’s
conclusion that ∆S/T quickly approached the classical limit while Msol slowly decreased
to the perturbative value.

The behavior of the unconstrained masses is more striking. At low r and β it
more closely resembles Ciria and Tarancón’s results in Fig. 7.24, in that ∆S/T quickly

101

Figure 7.24: Results from Ciria and Tarancón [15]

Figure 7.25: Our attempts to reproduce Fig. 7.24 using unconstrained lattices and two
versions of Eqn. 7.26

102

approaches the classical prediction while Msol approaches the semiclassical value more
slowly. However, for higher r, we actually see ∆S/T begin to decrease until it falls
below the perturbative result. The apparent peak in ∆S/T in the higher-r simulations
is exaggerated by the larger error bars caused by critical slowing down; the central
values vary smoothly. Note that although the constrained values of ∆S/T also cross
the semiclassical line, they do so more dramatically at lower r and then approach it
again, from below. The unconstrained masses appear to approach in the classical limit
an asymptotic value significantly below the classical predictions, with the amount of
disagreement seeming to increase as r increases. However, the greater uncertainties in
the unconstrained values for ∆S/T , which result in very large cumulative uncertainties
on the masses, make it difficult to draw strong conclusions about the behavior of the
unconstrained soliton masses in the classical limit.

Figure 7.26: Soliton masses calculated on constrained lattices for r = 1, 2.2 and 4

We are inclined to believe that the results calculated on constrained lattices more
closely reflect the pure soliton masses. As shown in Fig. 7.23, constrained solitons are

103

Figure 7.27: Soliton masses calculated on unconstrained lattices for r = 1, 2.2 and 4

104

more clearly defined than those simulated on unconstrained lattices. Moreover, the con-
strained masses correctly approach the classical and semiclassical predictions in the clas-
sical limit, while the unconstrained masses appear to stabilize at a significantly lower
value (though with such extreme uncertainties for high r that making definite conclu-
sions becomes troublesome).

105

Chapter 8

Conclusions and Directions for
Future Research

In the preceding chapters we gave a brief pedagogical introduction to Markov
chain Monte Carlo simulations of statistical systems and the basics of the φ4 quantum
field theory. We showed how to treat φ4 theory as a statistical system in Euclidean space
and perform lattice simulations using both local and cluster Monte Carlo algorithms.
We then presented the details and results of simulations of φ4 theory on the lattice in
which we charted the phase transition line of the theory in two and four dimensions and
calculated an accurate value of the continuum critical coupling constant in two dimensions
theory. Finally we discussed lattice simulations that calculated the masses of φ4 solitons
in two dimensions, nonperturbative phenomena that resulted from the nonlinearity of
the theory.

We obtained a critical coupling constant of [λ/µ2]crit = 10.85+.03
−.08 in two di-

mensions, which disagrees by over 7σ with that reported by Loinaz and Willey [32],
[λ/µ2]crit = 10.26+.08

−.04. Though we showed that this disagreement is the result of higher-
order dependence of [λ/µ2]crit on λ caused by approximations we made when discretizing
the lattice, we have not yet been able to determine the analytic form of these correc-
tions. Nor were we able to fully renormalize four-dimensional lattice φ4 theory to obtain
a critical coupling constant in four dimensions. Our work on both of these problems is
continuing, however, and they are only two of a wide variety of issues worthy of further
exploration.

While the analytic calculation of the corrections resulting from our nearest-neighbor
approximation is somewhat intractable, there are other approaches that could be taken
to analyze the issue further. For instance, our simulations and analysis could be replayed
using an “improved action” that takes into account certain long-distance interactions,
such as those between diagonal lattice sites, in addition to the nearest neighbors. There
even exist schemes known as “perfect actions”, which claim to largely eliminate such
systematic effects of discretization while remaining effectively local.

There is also productive work to be done exploring algorithms, both those we used

106

in our and those we passed by. Although we suspect that the invaded cluster algorithm
(Subsection 5.7.1) cannot be applied to φ4 theory, its potential benefits to phase transi-
tion studies like ours are so great that it would be very valuable to establish conclusively
whether or not the algorithm can be used. Some other tasks include tuning the algo-
rithms we used in our simulations in order to increase their efficiency. In particular,
we did not perform a systematic study of how the ratio of Metropolis sweeps to Wolff
cluster flips affects critical slowing down and autocorrelation times (Section 5.5), nor did
we investigate how the efficiency of φ4 simulations depends on the amount which the
Metropolis algorithm is allowed to change φ at any particular site during a single up-
date (Section 7.5). While these projects may seem less glamorous than others, they are
straightforward with potentially very valuable results – improving efficiency is critical to
performing the most accurate calculations in the shortest amount of time.

There are also opportunities to extend our study of solitons in φ4 theory. Our
results for the soliton mass, though they are only preliminary, have already revealed
errors in the existing literature. There are thus good reason to expand and refine our
soliton mass calculations and perform more detailed analyses. Ardekani and Williams [1],
for instance, perform an analysis of the zero-mode contribution to the soliton mass that
could be improved by using our methods and data. In addition, there are also other
features of solitons worth investigating on the lattice, such as the topological charge
discussed by De et al. [16].

Finally, there are nearly unlimited possibilities for exploring other quantum field
theories or statistical systems on the lattice. We mentioned a few such statistical systems
in Section 5.6, such as the Potts model, XY model and Heisenberg model. As a nonabelian
model, the Heisenberg model is especially interesting, not least due to its analogies with
Yang-Mills quantum field theories and quantum chromodynamics (QCD). Lattice QCD
in particular is one of the largest focuses of computational effort among professional
researchers. In addition, researchers such as Sandvik [52] are performing active research
modeling spin systems using the Heisenberg model.

107

Appendix A: Experimental
Apparatus

The computations and simulations described above required significant computer
resources. Fortunately, Amherst College recently established an interdisciplinary scien-
tific computing cluster (Fig. A.1), which we used to perform all of our calculations.

In this appendix we will summarize the details of the cluster – its purpose, hardware
and software – as well as present a brief guide to running projects on the cluster designed
to get users off the ground and alert them to some potential pitfalls. We will also address
parallel processing on the cluster and its relation to our work.

A.1 Amherst College’s Interdisciplinary Scientific Com-

puting Cluster

With funding from the National Science Foundation (NSF; grant #0512269) and
Amherst College (a Faculty Research Award Program (FARP) grant), Prof. Kaplan of
the Department of Mathematics and Computer Science has been developing and main-
taining the new interdisciplinary scientific computing cluster at Amherst. Using the new
funds from the NSF, the cluster was expanded considerably over the past year and has
now reached a mature state possessing computing power sufficient to handle the simula-
tions required by our work and the concurrent research pursued by others.

The cluster is interdisciplinary in that it is open to all Five-CollegeA.1 researchers
who need large-scale computing resources, regardless of field. In the year when the cluster
reached full-scale operation, the 2005-2006 academic year, it was used for computational
projects in physics, computer science and biology. In addition, researchers in geology and
economics are developing and considering projects that will make use of the cluster. Since
the cluster was being constructed during this time, it was only available in a mature form
for a few months and suffered from some of the difficulties that inevitably accompany such
large-scale development projects. This suggests that in the near future more researchers
representing an even broader array of fields will have an easier time taking advantage of

A.1The Five Colleges are Amherst College, Hampshire College, Mount Holyoke College, Smith College
and the University of Massachusetts at Amherst.

108

the cluster’s computational resources for their projects.

In the following sections we will briefly introduce the hardware of the cluster as
well as the software that runs on the cluster and manages it before taking a deeper look
at the practical matter of how to use this software to run projects on the cluster.

A.1.1 Hardware

Amherst’s cluster is constructed exclusively from ‘off-the-shelf’ commercial equip-
ment. We’ll briefly state the technical specs of the computers in the cluster, without
explanation, for those who may be interested.

The core of the cluster consists of 26 new HP DL145 G2’s, each with two AMD
Opteron 252 processors, 2 GB RAM, a 60 GB SATA hard disk and a 1 Gb NIC connection.
Each AMD processor is 64-bit and single-core, and clocks at 2.6 GHz using a 1 MB L2
cache. In addition the cluster currently includes five 32-bit computers purchased earlier
through the FRAP grant, each with 3 GHz Pentium 4 chips, 1 GB RAM, a 40 GB IDE
disk and 1 Gb NIC connection. Earlier in the year there were also several other, older 32-
bit computers in the cluster, which were gradually removed as the new HPs came online.
The cluster also originally included the Macs used in Amherst’s public computer labs
when they were idle. OS upgrades have now made use of the public machines impossible,
but we hope to reincorporate them back into the cluster in the future.

In coming years the NSF grant will be used to expand the cluster to at least 150
processors, possibly close to 200, pending resolution of cooling and power issues.

A.1.2 Software

All of the computers on the cluster run the Fedora Core 4 Linux operating system
and are managed by Condor cluster management software, version 6.6.10. The compiler
we used on the cluster is gcc version 4.0.0 20050519 (Red Hat 4.0.0-8). As shown in
our sample Makefile (Code Snippet B.2), our default compiler flags were -Wall and -O3.
-Wall orders the compiler to print all warnings, while -O3 has it optimize the code to
reduce execution time as much as possible (increasing the time and memory needed to
compile).

The most important program running on the cluster is condor, which runs the
cluster. Condor manages and schedules the projects running on the cluster and must be
used to submit (and in some cases, compile) the projects to be run. Since condor is of
such importance, we have written a brief guide to running projects on the cluster using
condor, to which we now turn.

109

Figure A.1: Amherst College’s interdisciplinary scientific computing cluster, April 2006

110

A.2 A Brief Guide to Working on the Cluster

In order to run jobs on the condor cluster, all we have to do is run the command
condor_submit submit_description_file, where the submit description file contains
all the information condor needs to assign, manage, and run the jobs. In particular,
it must specify the name of the program to run by stating executable = <path>, and
must include a queue command after every job to be submitted. Additional options that
are commonly used include

• any arguments = <args> the program needs to run;

• the self-explanatory priority = <int>;

• output = <path>, error = <path> and log = <path>, which tell condor where
to writeA.2 results, error messages, and status information, respectively;

• requirements = <args> to specify any special needs of the program (for instance,
whether it requires a certain operating system or architecture);

• and universe = <arg>, which specifies which universe to use (more about this
shortly).

There are many more options described in the condor submit documentation, which can
be accessed by running man condor_submit on any computer in the cluster. A sample
submit description file, with some explanatory comments added, is shown below in Code
Snippet A.1; running condor_submit on Code Snippet A.1 will submit to the cluster two
four-dimensional φ4 simulations with L = 36, λ = 0.01, 4096 iterations for equilibration
with another 4096 iterations for statistics, and µ2

l = −.01, -.0101.

Code Snippet A.1: Sample submit description file for condor cluster

Global job properties

universe = vanilla # Using the vanilla universe

notification = never # Don’t have condor email when job is done or error occurs

getenv = true # Get user environment -- $PATH, $LD_LIBRARY_PATH, etc

priority = 15

executable = Simulation

image_size = 4036 # Make sure job isn’t submitted to a machine without the resources to run it

requirements = (Arch=="x86_64") && (OpSys=="LINUX")

Task properties

output = /mnt/store/daschaich/current/thesis/code/4DPhi4/results/36-1--100out

error = /mnt/store/daschaich/current/thesis/code/4DPhi4/results/36-1--100err

arguments = -100 1 36 36 36 36 4096 4096

queue

output = /mnt/store/daschaich/current/thesis/code/4DPhi4/results/36-1--101out

error = /mnt/store/daschaich/current/thesis/code/4DPhi4/results/36-1--101err

arguments = -101 1 36 36 36 36 4096 4096

queue

Typically we want to submit many jobs at once, up to hundreds or thousands.
Manually writing the necessary submit description file would be idiotic. Instead we use
scripts to generate an appropriate submit description file and submit it to the cluster.
The script that generated Code Snippet A.1 is shown below in Code Snippet A.2.

A.2It is also possible to have results sent directly to a database, though we did not make use of this
feature.

111

Code Snippet A.2: Automated script for submitting jobs to the cluster

#! /bin/tcsh -f

set taskName = Simulation

set baseDirectory = ‘pwd‘

set resultsDirectory = ${baseDirectory}/results

set commandPathname = ${baseDirectory}/${taskName}.cmd

Create the results directory and make it world-writeable so that

Condor doesn’t complain.

mkdir --parents --mode=3770 ${resultsDirectory}

chgrp condor ${resultsDirectory}

Emit the arguments needed for the condor script. These are for all

tasks in the job.

printf "## Global job properties\n\n" > ${commandPathname}

printf "universe = vanilla\n" >> ${commandPathname}

printf "notification = never\n" >> ${commandPathname}

printf "getenv = true\n" >> ${commandPathname}

printf "initialdir = ${baseDirectory}\n" >> ${commandPathname}

printf "priority = 15\n" >> ${commandPathname}

printf "executable = ${taskName}\n" >> ${commandPathname}

printf "image_size = 4036\n" >> ${commandPathname}

printf "requirements = (Arch==‘../print-quoted-${HOSTTYPE} x86_64‘)

&& (OpSys==‘../print-quoted-${HOSTTYPE} LINUX‘)" >> ${commandPathname}

Loop through the arguments to be passed for each run.

set lambda = 1

set size = 36

set runs = 4096

set temp = -100

set minTemp = -101

while ($temp >= $minTemp)

Emit the arguments for this task.

printf "\n## Task properties\n\n" >> ${commandPathname}

printf "log = ${resultsDirectory}/${temp}-${lambda}log\n" >> ${commandPathname}

printf "output = ${resultsDirectory}/${size}-${lambda}-${temp}out\n" >> ${commandPathname}

printf "error = ${resultsDirectory}/${size}-${lambda}-${temp}err\n" >> ${commandPathname}

printf "arguments = ${temp} ${lambda} ${size} ${size} ${size} ${size} ${runs} ${runs}\n"

>> ${commandPathname}

printf "queue\n" \

set temp = ‘expr $temp - 1‘

end

Submit the job.

condor_submit ${commandPathname}

Clean up.

rm ${commandPathname}

Programs in condor can run in any of several ‘universes’, of which the ‘vanilla
universe’ and ‘standard universe’ are the most commonly used. In addition there is a
‘java universe’ for Java programs, a ‘globus universe’ for jobs using Grid resources on
widely distributed machines, as well as ‘MPI’ (Message Passing Interface) and ‘scheduler’
universes. More details can be found in the condor documentation. The vanilla universe
is the simplest to use. It makes no assumptions about the program – anything that will
run by itself on a computer in the cluster will run in the vanilla universe.

The standard universe includes several helpful features, but requires programs to
be compiled with the condor_compile command, which links in the necessary condor
libraries. It is simple to use condor_compile by adding it to the CC (or equivalent)
field of the Makefile. For example, the sample Makefile shown below in Code Snippet

112

B.2 would read CC = condor_compile g++ instead of CC = g++. The most important
advantage to using the standard universe is that condor can add its own checkpoints to
the program, which allow a running job to be safely stored if it is descheduled to allow
others’ programs to run. If the vanilla universe is used, programs will be aborted when
they are descheduled and restarted when scheduled again, eradicating any computations
that may already have been performed.

This can be a significant burden, especially if programs are being swapped repeat-
edly, continually restarted before they have a chance to finish. We strongly recommend
using condor_compile and the standard universe if possible. Unfortunately, in some
cases this is not possible. In particular, for condor_compile to work, the compiler used
(e.g., gcc) must be the same version that was used to compile condor itself.

We have noticed two other problems in the cluster as of April 2006 and condor
version 6.6.10. First, computers in the cluster occasionally report absurdly high loads,
even though top reveals no programs using significant resources. The problem is that
the machines behave as though they were actually operating under such loads, becoming
unresponsive to all users. On a regular cluster machine, this merely delays the execution
of the job assigned to it by condor. On the gateway machine that manages the cluster,
this problem prevents all users from logging in and submitting new jobs or managing
those already running. The only remedy for this situation is to reboot the machines
claiming high loads. In addition, we have recently observed that some programs that
segfault after running on the cluster for a long time (tens of hours) do not report errors
and are not descheduled. Rather, they just seem to keep running indefinitely. We have
not yet had the opportunity to explore this issue in detail or speculate about its potential
causes and solutions.

A.3 Parallel Processing

Computer clusters are motivated by a desire to perform parallel processing, in
which large computational tasks are split between a number of different processors. Pro-
cessors in clusters often work in close cooperation with each other on their tasks and
thus need to be able to communicate quickly and efficiently. Typically they are therefore
connected by fast local area networks.

Despite using the cluster, we did not perform any ‘massively’ parallel computing
in our work. Instead our simulations were ‘trivially’ (or ‘embarrassingly’) parallel: we
simply split up our tasks (such as sampling a phase space) into a number of completely
independent computations, each of which was then individually tackled by a single pro-
cessor in the cluster. We can imagine performing a lattice simulation using various kinds
of nontrivially parallel algorithms. For instance, if we were using a local algorithm such as
the Metropolis algorithm, the lattice could be broken up into a number of different pieces
(domains), each of which would then be sent to a different processor for simulation. The
boundaries between the different domains present difficulties, however, since any changes
to sites on one side of a boundary would need to be communicated to the machine(s) sim-

113

ulating the neighboring domain(s), making use of the cluster’s internal communications
capabilities. Alternately, we could fix the values of all the boundary sites, and periodi-
cally shift around the domains in order to regain ergodicity (this, of course, also requires
significant intra-cluster communication). This is an example of nontrivial parallelization
through domain decomposition, which (along with parallelization through functional de-
composition) is discussed in more detail in Newman and Barkema [40, Chap. 14].

Although domain decomposition makes it possible for computations on large lat-
tices to be shared across several processors, it is clearly a good deal more complicated
than the trivially parallel approach we took. The choice of whether and how to parallelize
simulations depends on the details of the computations, which determine both the possi-
bility of parallelization and the potential benefits (or lack thereof). Trivial parallelization
was well-suited to our tasks and allowed us to exploit the processing power of the cluster
easily and efficiently.

114

Appendix B: Efficient Programming

A week of hard work can sometimes save you an hour of thought. – G. V. Wilson.

In this and the following appendix we will briefly delve into some of the nuts
and bolts programming issues that came up during our work and that we believe may
be helpful to others planning to do similar work. We begin with a discussion of some
potentially useful tools that can streamline programming and make both the design and
execution of code more efficient. We will then briefly survey some of today’s most popular
programming languages and discuss the reasons we chose to write our code in C++. Some
excerpts of that code will be presented in the next appendix, but before turning to it we
will give a brief introduction to data structures and some tricks for improving efficiency
that we encountered over the course of our work.

Those with significant programming experience will most likely be familiar with all
of the issues addressed in this appendix, but may wish to skim through it nonetheless.

B.1 Potentially Useful Tools

In a recent article [68], computer scientist G. V. Wilson charged that many sci-
entists exhibit extreme “computational illiteracy” that can disastrously obstruct their
research. While there are undoubtedly many scientists with impeccably organized, sys-
tematic and efficient programming practices, both our experiences and those reported
by Wilson suggest that a non-negligible fraction of researchers would benefit from an
introduction to some efficient programming practices.

Wilson has set up an online lecture seriesB.3 to promote programming literacy
among scientists and engineers. In this section we will present our own views on some of
the potentially useful tools recommended by Wilson and his collaborators, as well as one
critical tool they have overlooked. We will not attempt to reproduce Wilson’s lectures,
which include discussions of both more basic issues (e.g. shells and coding style) and
more advanced topics (e.g. security and unit test suites) than we will address.

B.3Available at http://www.third-bit.com/swc2/index.html (last accessed 10 May 2006)

115

B.1.1 Code Profiling

Even professional programmers are notoriously bad at figuring out how to improve
the efficiency of their programs. All generally seem to misjudge where their programs
spend the most time and, consequently, where the greatest gains in efficiency can be
made. There are innumerable stories about skilled programmers who spend days or
weeks fine-tuning code that doesn’t actually affect the overall running times of their
programs. We ourselves contributed to the literature before being introduced to code
profiling by an acquaintance.

Code profiling refers to techniques for measuring the amount of time that a program
spends in each of its methods or subroutines. It lets the programmer know what portions
of their programs are meaningfully contributing to runtime and are worth making more
efficient. We consider code profiling an essential tool for any programmer truly interested
in producing fast code.

The standard code profiling tool on Linux platforms is gprof, which calculates
and displays call graph profile data for C/C++, Pascal and Fortran programs. There
are doubtless analogous programs for other operating systems and other programming
languages such as Java. Some excerpts from a gprof analysis of our φ4 theory simulation
program in two dimensions are shown below in Code Snippet B.1 (explanatory notes
have been cut and some lengthy method names have been truncated for formatting).
Programs to be analyzed by gprof need to be compiled with the “-pg” option – just add
-pg to the CFLAGS (or equivalent) field in your Makefile (see Section B.1.4). The -pg
option will link in the necessary libraries for profiling and cause the program to produce
a (binary) call graph profile file (gmon.out by default) when it runs. When gprof is then
run, it reads the given executable and uses the call graph profile to determine the amount
of time spent in each method.

As shown in Code Snippet B.1, gprof gives rather detailed information about the
absolute and relative amount of time spent in each method (total and per call), the
number of times the method is called, which other methods any particular method calls,
and so on. The information is displayed both in a concise flat profile that lists methods
in order of how much total time was spent in them, and in a more detailed call graph
that traces the paths through which various methods are called and call others. gprof can
also produce an annotated source file, a copy of the program’s source code labeled with
the number of times each line was executed. See the gprof manual pages (man gprof) for
more information and more options.

The particular analysis shown in Code Snippet B.1 alerted us to the fact that
our elaborate (and often ingenious) attempts to make our hash table more efficient were
essentially worthless (from a practical point of view) since hash table methods already
took up only around 3% of total runtime. Code Snippet B.1 is actually an analysis of our
two-dimensional φ4 simulation program, the source code of which can be found below in
Code Snippets C.7 through C.9.B.4

B.4Since the growCluster methods seem to run for an anomalously long time, we should note that they
are recursive methods and that gprof reported the total time of the whole recursion.

116

Code Snippet B.1: Excerpts from sample code profile produced by gprof

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls us/call us/call name

55.50 34.58 34.58 main

35.06 56.43 21.85 167772160 0.13 0.13 Lattice::metropolis(unsigned int)

2.62 58.06 1.63 16394 99.47 153.88 Lattice::growClusterPos(unsigned int)

2.10 59.37 1.31 34694250 0.04 0.04 HashTable::find(unsigned int)

1.90 60.56 1.19 16374 72.40 126.88 Lattice::growClusterNeg(unsigned int)

1.43 61.45 0.89 32768 27.17 27.17 Lattice::flipCluster()

0.76 61.92 0.48 9498749 0.05 0.05 HashTable::insert(unsigned int)

0.40 62.17 0.25 16384 15.26 15.26 Lattice::calcTotalEnergy()

0.11 62.24 0.07 16384 4.27 4.27 Lattice::calcAveragePhi()

0.10 62.31 0.07 HashTable::~HashTable()

0.04 62.33 0.03 Lattice::printLattice()

0.00 62.33 0.00 32768 0.00 167.61 Lattice::wolff(unsigned int)

0.00 62.33 0.00 11 0.00 0.00 std::vector<siteNeighbors*, std::allocator...

0.00 62.33 0.00 11 0.00 0.00 std::vector<double, std::allocator<double> >...

0.00 62.33 0.00 1 0.00 0.00 calcAutocor(unsigned int, double*, double*)

0.00 62.33 0.00 1 0.00 0.00 Lattice::calcSpecificHeat(double, double)

0.00 62.33 0.00 1 0.00 0.00 Lattice::calcSusceptibility(double, double)

0.00 62.33 0.00 1 0.00 0.00 Lattice::Lattice(double, double, unsigned int,...

0.00 62.33 0.00 1 0.00 0.00 Lattice::~Lattice()

0.00 62.33 0.00 1 0.00 0.00 HashTable::HashTable(unsigned int)

0.00 62.33 0.00 1 0.00 0.00 std::vector<node*, std::allocator<node*> >::...

0.00 62.33 0.00 1 0.00 0.00 node** std::fill_n<node**, unsigned int, node*>...

[...]

Call graph

granularity: each sample hit covers 2 byte(s) for 0.02% of 62.33 seconds

index % time self children called name

[1] 99.9 34.58 27.66 main [1]

21.85 0.00 167772160/167772160 Lattice::metropolis(unsigned int) [2]

0.00 5.49 32768/32768 Lattice::wolff(unsigned int) [3]

0.25 0.00 16384/16384 Lattice::calcTotalEnergy() [9]

0.07 0.00 16384/16384 Lattice::calcAveragePhi() [10]

0.00 0.00 1/1 Lattice::Lattice(double, double, unsigned int,...

0.00 0.00 1/1 Lattice::calcSpecificHeat(double, double) [22]

0.00 0.00 1/1 Lattice::calcSusceptibility(double, double) [23]

0.00 0.00 1/1 Lattice::~Lattice() [25]

0.00 0.00 1/1 calcAutocor(unsigned int, double*, double*) [21]

21.85 0.00 167772160/167772160 main [1]

[2] 35.1 21.85 0.00 167772160 Lattice::metropolis(unsigned int) [2]

0.00 5.49 32768/32768 main [1]

[3] 8.8 0.00 5.49 32768 Lattice::wolff(unsigned int) [3]

1.63 0.89 16394/16394 Lattice::growClusterPos(unsigned int) [4]

1.19 0.89 16374/16374 Lattice::growClusterNeg(unsigned int) [5]

0.89 0.00 32768/32768 Lattice::flipCluster() [7]

0.00 0.00 32768/9498749 HashTable::insert(unsigned int) [8]

4732235 Lattice::growClusterPos(unsigned int) [4]

1.63 0.89 16394/16394 Lattice::wolff(unsigned int) [3]

[4] 4.0 1.63 0.89 16394+4732235 Lattice::growClusterPos(unsigned int) [4]

0.66 0.00 17347795/34694250 HashTable::find(unsigned int) [6]

0.24 0.00 4732235/9498749 HashTable::insert(unsigned int) [8]

4732235 Lattice::growClusterPos(unsigned int) [4]

4733746 Lattice::growClusterNeg(unsigned int) [5]

1.19 0.89 16374/16374 Lattice::wolff(unsigned int) [3]

[5] 3.3 1.19 0.89 16374+4733746 Lattice::growClusterNeg(unsigned int) [5]

0.66 0.00 17346455/34694250 HashTable::find(unsigned int) [6]

0.24 0.00 4733746/9498749 HashTable::insert(unsigned int) [8]

4733746 Lattice::growClusterNeg(unsigned int) [5]

117

0.66 0.00 17346455/34694250 Lattice::growClusterNeg(unsigned int) [5]

0.66 0.00 17347795/34694250 Lattice::growClusterPos(unsigned int) [4]

[6] 2.1 1.31 0.00 34694250 HashTable::find(unsigned int) [6]

0.89 0.00 32768/32768 Lattice::wolff(unsigned int) [3]

[7] 1.4 0.89 0.00 32768 Lattice::flipCluster() [7]

0.00 0.00 32768/9498749 Lattice::wolff(unsigned int) [3]

0.24 0.00 4732235/9498749 Lattice::growClusterPos(unsigned int) [4]

0.24 0.00 4733746/9498749 Lattice::growClusterNeg(unsigned int) [5]

[8] 0.8 0.48 0.00 9498749 HashTable::insert(unsigned int) [8]

0.25 0.00 16384/16384 main [1]

[9] 0.4 0.25 0.00 16384 Lattice::calcTotalEnergy() [9]

0.07 0.00 16384/16384 main [1]

[10] 0.1 0.07 0.00 16384 Lattice::calcAveragePhi() [10]

<spontaneous>

[11] 0.1 0.07 0.00 HashTable::~HashTable() [11]

<spontaneous>

[12] 0.0 0.03 0.00 Lattice::printLattice() [12]

0.00 0.00 11/11 Lattice::Lattice(double, double, unsigned int,...

[19] 0.0 0.00 0.00 11 std::vector<siteNeighbors*, std::allocator...

0.00 0.00 11/11 Lattice::Lattice(double, double, unsigned int...

[20] 0.0 0.00 0.00 11 std::vector<double, std::allocator<double> >...

0.00 0.00 1/1 main [1]

[21] 0.0 0.00 0.00 1 calcAutocor(unsigned int, double*, double*) [21]

0.00 0.00 1/1 main [1]

[22] 0.0 0.00 0.00 1 Lattice::calcSpecificHeat(double, double) [22]

0.00 0.00 1/1 main [1]

[23] 0.0 0.00 0.00 1 Lattice::calcSusceptibility(double, double) [23]

0.00 0.00 1/1 main [1]

[24] 0.0 0.00 0.00 1 Lattice::Lattice(double, double, unsigned int...

0.00 0.00 11/11 std::vector<double, std::allocator<double> >...

0.00 0.00 11/11 std::vector<siteNeighbors*, std::allocator...

0.00 0.00 1/1 HashTable::HashTable(unsigned int) [26]

0.00 0.00 1/1 main [1]

[25] 0.0 0.00 0.00 1 Lattice::~Lattice() [25]

0.00 0.00 1/1 Lattice::Lattice(double, double, unsigned int...

[26] 0.0 0.00 0.00 1 HashTable::HashTable(unsigned int) [26]

0.00 0.00 1/1 node** std::fill_n<node**, unsigned int, node*>...

0.00 0.00 1/1 std::vector<node*, std::allocator<node*> >::operator=(...

0.00 0.00 1/1 HashTable::HashTable(unsigned int) [26]

[27] 0.0 0.00 0.00 1 std::vector<node*, std::allocator<node*> >::operator=(...

0.00 0.00 1/1 HashTable::HashTable(unsigned int) [26]

[28] 0.0 0.00 0.00 1 node** std::fill_n<node**, unsigned int, node*>(node**,...

[...]

118

B.1.2 Debugging

Of course, before we worry about the speed at which the code runs, we have to make
it compile and run (correctly) in the first place. Debugging is one of the central aspects
of programming, and potentially one of the most time-consuming. Fortunately, by using
debuggers, programs designed to help us troubleshoot code and track down errors, the
task can be accomplished much more quickly and painlessly. Those already familiar with
debuggers may feel that we are needlessly stressing a relatively trivial point. However, we
have met advanced computer science students at Amherst College (and Wilson reports
meeting professional scientists) who have not heard of gdb and attempt to ‘debug’ their
code by inserting print commands on various lines (an approach which is both horribly
inefficient and also potentially misleading).

The GNU Debugger gdb is the standard debugger used in Unix and Linux en-
vironments. Programs to be debugged with gdb need to be compiled with the -ggdb
option (again, just add it to the CFLAGS (or equivalent) field of the Makefile – see Code
Snippet B.2, below). To debug a program with gdb, run gdb <program_name>. This will
start a special gdb shell in which the following commands will come in handy:

• set args <args> tells gdb what command-line arguments to pass to the program
when it is run.

• run simply starts executing the program.

• break <file:line> sets a breakpoint at the specified line in the specified file (a
method name can be used as well). When the breakpoint is reached, gdb will stop
execution so that the state of the program can be investigated.

• print <options> prints out the requested information on values of variables, point-
ers, and so on.

• n prints out and executes the next line in the source code.

• c continues execution of the program until the next breakpoint is reached.

• bt prints out a backtrace of all the methods that are currently active, so that the
thread of execution can be traced.

• Finally, of course, help <command> can be used to access much more information
about many more commands.

It should be clear how using just these simple capabilities of gdb can simplify the inves-
tigation of errors and dramatically speed up the debugging process.

Another valuable debugging tool (especially for those programming in languages
without automatic garbage collection) is LeakTracer,B.5 which tracks memory allocation
and deallocation to help the programmer identify and correct memory leaks. Memory
leaks occur when memory resources are claimed by the program but not released when no
longer needed. A program with a memory leak can needlessly fills up the available RAM
and force its own data (and that of whatever other programs might also be running)
to be swapped out to the hard disk. Since accessing data on a hard disk is far slower
than reading from RAM, memory leaks can disastrously impact performance. Since

B.5http://www.andreasen.org/LeakTracer/ – last accessed 10 May 2006.

119

LeakTracer is a relatively small tool specific to C++ (there are analogous tools for other
languages), we will not give any details of its operation.

B.1.3 Version Control Systems

Wilson has declared that use of a version control system is the first of the four
characteristics that distinguish professional programmers from amateurs (the other three
being automation of repetitive tasks, systematic testing and the use of debuggers). Ver-
sion control systems are critical to software development projects that involve collabora-
tion between multiple programmers, but they also make it easy to discard changes that
didn’t work out and revert to earlier versions of the code, which can be very helpful even
for single-person projects.

Consider what could go wrong if several collaborators are all developing a program,
as is generally the case in both scientific and commercial software engineering. Several
people working on the project could all try to make changes at the same time, wiping
out each other’s work in the process. Under version control systems, each programmer
receives a local working copy of the code from a central repository, and submits any
changes back to that repository. If multiple programmers then edit the code, the version
control system will do its best to merge all of the changes into the master copy in
the repository, alerting the user to any incompatible conflicts it is unable to reconcile.
Additionally, the version control system will keep information on all older versions of
the code, making it easy to revert to an earlier state should problems arise with newer
versions.

Concurrent Versions System (CVS)B.6 is one of the oldest and most widely used
version control systems around. Subversion,B.7 our software of choice, is a newer devel-
opment that aims to replace CVS and has already had much success doing so. Using
Subversion is easy, especially for users who don’t need to worry about administering the
repository. They only need to know a handful of simple commands, namely

• svn co checks out a working copy of the master files in the repository for local use;

• svn update synchronizes the local working copy with the repository, merging in
any changes that have been made to the master files, so long as they don’t conflict
with changes made to the local copy;

• svn diff <current:old> <file> displays any differences between the specified
current and old versions of the file;

• svn ci -m "<Log message>" commits to the repository the changes made to the
local working copy, unless there is a conflict with other changes already made to
the master copy;

• svn merge -r <current:old> <file> reverts from the current version of the file
to the specified old version, (keeping a copy of the current version in the repository);

• and finally, svn help gives more information about all of the above and more.

B.6http://www.nongnu.org/cvs/ – last accessed 10 May 2006.
B.7http://subversion.tigris.org/ – last accessed 10 May 2006.

120

The only additional commands administrators really need to know are svnadmin create,
which creates a new repository, and svn import, which commits a new, unversioned file
or tree into the repository.

Despite the advantages of version control, we did not make use of it until near
the end of our work, in part because we were initially unfamiliar with the concept, in
part because the collaboration and reversion problems were not especially relevant to our
situation. Since all of our code was developed and maintained by a single individual,
we had no worries of conflicts between collaborators. Additionally, the code base was
relatively small and by making occasional backups and keeping a detailed Changelog we
were generally in a position to revert relatively painlessly, if necessary. However, reverting
through a version control system is still easier than doing so manually, a consideration
that eventually encouraged us to set up subversion repositories for our code.

B.1.4 Automated Builds

Typing gcc -c -Wall -ansi -I/pkg/chempak/include dat2csv.c once is bad
enough. – G. V. Wilson

As a rule, anything worth doing repeatedly on the computer is worth automating.
Compiling and linking code to form working programs is a useful example: not only
will this be done very often during development and production, but it can often be a
complicated process in which certain steps depend on others being correctly performed
in the proper order. Fortunately, a program called MakeB.8 that uses an instruction file
known as a Makefile makes it is easy to fully and automatically compile and link (or
simply ‘build’) programs with a single command.

We’ll be frank with our recommendation: if you aren’t using a Makefile, start
using a Makefile. Although Make has grown into a monster of a program over the more
than thirty years since it was first written, it is simple enough to set up a basic Makefile
such as that in Code Snippet B.2 that will handle building relatively simple programs
like ours. Comprehensive tutorials and introductions to some of Make’s many advanced
features can easily be found online.

Code Snippet B.2: Sample Makefile (for φ4 simulations)

CC = g++

CFLAGS = -O3 -Wall

INCLUDE_FLAGS = -I/home/daschaich/gsl/include

LIBRARY_FLAGS = -L/home/daschaich/gsl/lib -lgsl -lgslcblas -lm

EXECUTABLE = Simulation

OBJECT_FILES = HashTable.o Lattice.o Simulation.o

main: HashTable.o Lattice.o Simulation.o

$(CC) $(CFLAGS) $(INCLUDE_FLAGS) $(LIBRARY_FLAGS) -o $(EXECUTABLE) $(OBJECT_FILES)

clean:

rm -f $(EXECUTABLE) *.o

B.8http://www.gnu.org/software/make/ – last accessed 10 May 2006

121

Simulation.o: Simulation.cpp Lattice.cpp Lattice.hh

$(CC) $(CFLAGS) $(INCLUDE_FLAGS) -c Simulation.cpp

Lattice.o: Lattice.cpp Lattice.hh

$(CC) $(CFLAGS) $(INCLUDE_FLAGS) -c Lattice.cpp

HashTable.o: HashTable.hh HashTable.cpp

$(CC) $(CFLAGS) $(INCLUDE_FLAGS) -c HashTable.cpp

We’ll quickly point out some highlights of Code Snippet B.2. The first few lines are
simply defining variables; the real action begins with the line main:B.9 The word
or file to the left of the colon is known as the target, those to the right are dependencies,
and any indented lines below are commands. Make can run on a particular target (for
example, make clean); if no target is specified, it defaults to main. First Make checks
to see that the all the dependencies exist and are up to date. That is, it verifies that no
dependency’s dependency was modified more recently that the dependency itself. Once
all dependencies have been checked, Make executes (through the shell) all the commands
listed below the target being run.B.10 As mentioned above, it is very easy to change the
compiler flags used (for instance, adding -pg or -ggdb) simply by editing the CFLAGS
field.

The output produced by running make clean && make in a directory containing
the above makefile would be

rm -f Simulation *.o

g++ -O3 -Wall -I/home/daschaich/gsl/include -c HashTable.cpp

g++ -O3 -Wall -I/home/daschaich/gsl/include -c Lattice.cpp

g++ -O3 -Wall -I/home/daschaich/gsl/include -c Simulation.cpp

g++ -O3 -Wall -I/home/daschaich/gsl/include -L/home/daschaich/gsl/lib \

-lgsl -lgslcblas -lm -o Simulation HashTable.o Lattice.o Simulation.o

Try typing that ten times fast!B.11

B.1.5 Integrated Development Environments

Finally, we will very quickly point out an area where we disagree with Wilson. He
remarks both in his article and in his online lectures that serious programmers should use
integrated development environments (IDEs), which are graphical programs that include
a wide variety of bells and whistles such as built-in debuggers and ‘class browsers’ that

B.9It may be worth noting that our include and library flags are simply those needed to use the GNU
Scientific Library in our programs.
B.10Note that while most programs are not concerned with whitespace, Make requires that the indenta-
tion before each command be a tab, not just four spaces.
B.11Line break manually added for formatting purposes.

122

summarize the classes, methods and variables in a particular program. For example,
EclipseB.12 is a popular IDE.

Wilson’s only apparent objection to leaner text editing programs such as Vi and
Emacs is simply that they’re “ancient”. Presumably, he believes that IDEs and the
various services they offer make it more efficient to develop and manage code. We (along
with many others) feel that IDEs present no benefits that cannot be gained by simply
using the tools introduced above – debuggers, Makefiles and version control. Indeed, the
relative simplicity of these basic tools may well make them easier and more efficient to
use than complex and often bloated IDEs.

B.2 Programming Languages

Object Oriented Programming is like teenage sex. Everyone talks about it, nobody’s
actually doing it, and the few who are doing it are doing it badly. (Original author
unknown)

The choice of a programming language obviously plays a major role to the nuts
and bolts of scientific programming. C++ is currently challenging Fortran to become the
dominant programming language of high-energy physics simulations, and is the language
we used in our work.

Some thought went into this choice. In addition to personal matters of prior knowl-
edge, we also considered general questions of programming efficiency and the speed of
the resulting programs. For instance, Fortran, designed long ago specifically for scientific
programming, has the reputation of producing extremely fast-executing programs. On
the other hand, Fortran suffers from antiquated conventions derived from the days of
punch-card computing that can make it difficult and frustrating to use, especially for
complex programs. This is true at least of the classic FORTRAN 77; there are more
modern versions (Fortran 90, Fortran 95 and Fortran 2003) that may be more worthy of
consideration now that decent open-source compilersB.13 are becoming available.

Object-orientation programming (OOP) is a popular programming paradigm that
many (such as Wilson [68]) claim makes it easier to design and write functioning programs
in the first place. Many of the programming languages most widely used today are object-
oriented, including C++, Python, Java and C#. These languages all have their relative
strengths and weaknesses, of course. C++, although it gives the programmer a good deal
of flexibility and has a reputation for producing fast-running programs, is often criticized
for being excessively complex, while Python is commonly singled out as especially friendly
to programmers. Java’s main strength is its portability, which it achieves by running on
a virtual machine, potentially at some cost to execution speed. Java also attempts to
be more programmer-friendly by automatically performing such tasks as array bounds

B.12http://www.eclipse.org/ – last accessed 10 May 2006.
B.13Such as g95 (http://www.g95.org – last accessed 10 May 2006) and gfortrtan
(http://gcc.gnu.org/fortran/ – last accessed 10 May 2006)

123

checking (to prevent attempts to access arrays beyond their bounds, which may cause
segmentation faults) and ‘garbage collection’ (which reduces the need for the programmer
to manually manage memory and can limit the severity of memory leaks). Though these
features can make the programmer’s task easier, they can also reduce flexibility and
possibly impact performance. C# is a relatively recent development that attempts to
simplify and streamline C++ by adopting many of the characteristics of Java.

Unlike Java and C#, C++ supports both procedural and object-oriented program-
ming. This can be beneficial, since OOP adds some overhead that slows down execution.
For the purposes of our work, where the programs were relatively short and straightfor-
ward, and the main concern was speed of execution as opposed to complexity of design,
the advantages of object orientation were not clear. Indeed, earlier programs tended to
involve more OOP features than later ones, which were gradually removed over time to
increase the efficiency of the code.

Early in our work we experimented with C, C++, Java and Python, writing
roughly identical random walk programs in each of them. Although we observed that
the C/C++ versions ran the fastest and the Python versions the slowest (in agreement
with the conventional wisdom), we did not perform systematic tests to seriously compare
efficiency across languages. In coming months we intend to rewrite our code in Fortran
90/95 in order to explore that language and (informally) see how it performs relative to
C++ and the others.

What will the scientific programming language of the next century look like? Nobody
knows, but it will be called ‘Fortran’. (Popular joke circa 1980)

B.3 Data Structures

Lattice simulations rely heavily on data structures used to represent the lattice
and store information. Goodrich and Tamassia [22] is a suitable introductory textbook
that explains many data structures at some length. In this section we will very briefly
survey the types of data structures used for my simulations, discuss some of the results,
and present an implementation of a basic hash table used extensively. The following
discussion will likely not interest those with any knowledge of data structures.

The programs used in the course of my work required only simple data structures,
which needed only three abilities: inserting data into the structure, searching for data
in the structure, and removing data from the structure. Since Monte Carlo simulations
involve a small number of functions running a large number of times, the speed of the
data structures and their methods was of the utmost importance.

To allow a more concrete discussion, let’s consider the specific data structures used
in the self-avoiding random walk programs introduced in Section 3.2. These programs
needed to keep track of all the sites already visited in the course of the walk, and thus
used all three of the functions introduced above: when a new site was visited, it had to
be inserted into the data structure; when a new site was considered, the data structure

124

had to be searched to see if it had already been visited; and once the walk was complete
the structure had to be cleared and prepared for the next run.

Initially we simply used a d-dimensional array to keep track of all the sites visited.
This is unquestionably the simplest option: make an array of all sites that could be
visited (N in each direction) containing Boolean (true/false) values. Both insert and
search take (very short) constant time: when a site is visited, change its value to true;
to search, simply access the value of the site. However, clearing the array after the run
is finished requires scanning through all the sites in the array, which takes time O(Nd),
where N is the number of steps in the walk and d is the number of dimensions in which
the walk takes place.

An alternate approach that increases the speed of the clearing operation is to use
a linked list. In a linked list, values (in this case the identities of sites that have been
visited) are wrapped in ‘nodes’ (or ‘links’) that also include pointers to the next nodes in
the list. To insert, just wrap the value to be inserted into a node and set up the pointers
to add it to the list. This takes constant (O(1)) time, just as with the array. To clear the
list (or remove an element from it), simply trace through it from node to node, deleting
them as we go (and rearranging pointers if necessary). This clearly takes time O(N),
much faster than the array implementation. However, to search we now have to scan
through all the contents in the list, which takes time O(N), much worse than the array
implementation.B.14

The array (or vector, which is essentially an array with certain extra features) and
linked list are two of the most basic and commonly used approaches to data structures.
The strengths of these two implementations are complementary: while vectors are good
at random access, linked lists take up less space and thus require less time to initialize
or reset, but more to search. Of course, what’s desired is a data structure that can
perform all operations as quickly as possible. In the case addressed above, it is easy to
see that a combination of an array and linked list will allow for constant-time searches
and insertions, and clearings that take only O(N). Simply insert visited sites into both
an array and a linked list, search using the array, and use the linked list to determine
which N sites in the array need to be reset at the end of the run. Although this works,
it is inelegant and somewhat inefficient: multiple data structures are required for what
is really a very simple task, and the implementation requires every value to be inserted
into and removed from both structures, even though clearing both is now much more
efficient.

A more elegant solution is to use a hash table, which is essentially an array of linked
lists (see Goodrich and Tamassia [22, Chap. 8] for much more detail). When a site is to
be added to the hash table, it is passed through a hash function that pseudorandomly
assigns it to one of the lists (the purpose of the randomness is to keep all of the lists
roughly the same length). When we search for a site, we can calculate the list into which
it would have been sorted, and only that list (which has average length N/n, where N is

B.14Alternately, we could impose an overall order the list by some criterion, which would allow you to
perform binary searches on insertions and searches, meaning that both would run in time O(log(N))
(where the logarithm is base-2). The choice of whether to use an ordered or an unordered list depends
on the size of N and whether searches or insertions will be more common.

125

the number of elements in the table and n is the number of lists) needs to be scanned.
It can be shown that on average searching a hash table takes constant time, as does
insertion. Removing a single element also takes constant time on average, and clearing
the whole hash table takes only time O(N). Thus the hash table has the same asymptotic
behavior as the array/list combination discussed above, but is simpler and more elegant.

The benefits of using a hash table over a plain array or linked list can be dramatic.
As mentioned above, we initially used an array to keep track of visited sites during
self-avoiding random walks. When that was replaced with an early (and slightly less
efficient) version of the hash table presented below in Code Snippets B.3 and B.4, the
four-dimensional self-avoiding random walk program’s running time decreased by roughly
a factor of 104. In addition, it is a good idea to adjust the number of lists in the hash
table so that the average list is only a few elements long. When we increased the number
of lists in the hash table from 97 to one quarter of the size of the lattice in φ4 simulations,
the programs’ running times decreased by around 20%.B.15

Because the hash table included in the C++ Standard Template Library (STL) is
designed to handle more general requirements, its implementation is much more complex
than we needed for our work. Accordingly, we wrote a simple hash table that handles
only the three functions listed above. In fact, since this hash table uses lists of ‘node’
structs, any value can be removed from the hash table by simply delete-ing its wrapper
node.B.16 Thus only insert and find need to be implemented. gprof analyses shows that
each of these two functions runs in an average time of 40-50 nanoseconds on a modern
processor.

Code Snippet B.3: Header file for basic hash table

// ---

// Phi4/HashTable.hh

// Basic hash table with chaining

// David Schaich -- daschaich@gmail.com

// Created 23 October 2005

// Last modified 25 January 2006

// ---

// ---

// Avoid multiple inclusion in a single executable

#ifndef _HASHTABLE_HH

#define _HASHTABLE_HH

// ---

// ---

// Include directives

#include <vector>

// ---

B.1597 was chosen because having a prime number of lists in the hash table increases the randomness of
the hash function.
B.16Assuming that values are only removed from the hash table when it is cleared following, for example,
the creation and inversion of a Wolff cluster. If only one node is to be removed while keeping all others in
the table, the list structure of pointers from node to node would need to be updated to avoid segmentation
faults. This would be accomplished most easily through the creation of a remove function, which would
run in constant time on average.

126

// ---

// Structs instead of classes - reduce OOP overhead

// Struct of a node in a slot in the hashtable

struct node {

unsigned int value;

node* next;

};

// ---

// ---

// Class declaration for HashTable

class HashTable {

public:

// Constructor, destructor

HashTable(unsigned int tableNumber);

HashTable();

~HashTable();

// Member functions

void insert(unsigned int site);

bool find(unsigned int site);

// Member data

unsigned int size;

unsigned int tableNumber;

unsigned int mod;

std::vector<node*> table; // Vector of lists of nodes

};

// ---

// ---

#endif // _HASHTABLE_HH

// ---

Code Snippet B.4: Implementation of basic hash table

// ---

// Phi4/HashTable.cpp

// Hash table designed for lists of nodes

// David Schaich -- daschaich@gmail.com

// Created 23 October 2005

// Last modified 25 January 2006

// ---

// ---

// Include directives

#include "HashTable.hh"

#include <vector>

// ---

// ---

// Constructors and destructor

HashTable::HashTable(unsigned int numberOfTables) {

size = 0;

tableNumber = numberOfTables;

std::vector<node*>* temp = new std::vector<node*>(tableNumber, NULL);

127

table = *temp;

mod = tableNumber - 1;

}

HashTable::HashTable() {

HashTable(4093);

}

HashTable::~HashTable() {}

// ---

// ---

// Member functions - insertion, searching

void HashTable::insert(unsigned int site) {

size++;

unsigned int index = (17 * site - 97) & mod;

node* toAdd = new node;

toAdd->value = site;

toAdd->next = table[index];

table[index] = toAdd;

}

// ---

// ---

// This returns whether or not site is in cluster

bool HashTable::find(unsigned int site) {

unsigned int index = (17 * site - 97) & mod;

node* temp = table[index];

while (temp != NULL) {

if (site == temp->value)

return true;

temp = temp->next;

}

return false;

}

// ---

B.4 Efficiency Tricks

Over the course of our work, we stumbled across a number of small tricks to
decrease the running time of our programs, many of which had surprisingly large effects.
In this section we’ll briefly list some of them. Even if the specific circumstances in
which we applied these tricks are not present in any particular program, we hope that
this discussion suggests some generally applicable ideas and considerations for producing
faster-running programs.

The most obvious trick is clearly applicable to a wide variety of situations: don’t
calculate anything more often than needed. The Ising model presents a simple example of
this principle. To perform the Metropolis algorithm, we need to calculate the exponential
of a quantity proportional to the change in energy resulting from flipping a single spin.
Calculating this value each time it’s needed would be simple but very inefficient, since
exponentials are typically calculated through a brief power series, a relatively compli-

128

cated operation. The trick to this situation is to recognize that the change in energy can
take one of only five possible values. If we simply calculate each of the five corresponding
exponentials once and store the results in an array, we can reuse them instead of recal-
culating them, saving considerable time. Similarly, the exponential factor e−2βJ used by
the Wolff cluster algorithm is simply constant and so only needs to be calculated once.
We do exactly this in our Ising model simulations, presented below in Code Snippets C.4
through C.6.

Note that even a slight increase in the efficiency of a method can have significant
effects. From the code profile presented above in Code Snippet B.1, we see that the
Metropolis method was called well over one hundred million times in the course of a very
short (60 second) simulation. If a single microsecond were added to the running time of
this method, the runtime of the whole program would nearly quadruple.

A similar procedure can be performed for boundary conditions, and the calculation
of neighboring sites more generally. Recall that back in Section 3.3 we spent some
time discussing the relative merits of helical and periodic boundary conditions. We saw
that implementing periodic boundary conditions in the intuitive way requires performing
many more multiplications than necessary for helical boundary conditions, which may
make them slower since multiplication is a relatively slow operation (though not as slow
as calculating exponentials). Another relatively slow operation is the mod operation %,
which essentially needs to perform divisions in order to calculate remainders. Newman
and Barkema [40, Chap. 13], who recommend helical boundary conditions for the reasons
just discussed, also encourage the use of lattices of size L ∝ 2n, since in this case the mod
function can be replaced by a much simpler and quicker bitwise AND (&) operation.B.17

However, there’s a smarter, more efficient way to go about all of this: calculate all
the neighboring sites and boundary conditions once (and only once) at the beginning of
the simulation and store them in a suitable data structure. All subsequent calculations
of neighbors and boundary conditions can then be performed simply by looking up the
necessary information in the data structure, avoiding repeated multiplications and mod-
ulos. The data structure will take up some extra memory, but we typically have plenty
of that and are much more interested in speed than in memory usage.B.18 Note that
trading space for speed is a common possibility in data structures and algorithms. This
is what we do in our φ4 model simulations, which can be found below in Code Snippets
C.7 through C.9.

Speaking of data structures, one final observation we made is that the number of
lists used in our hash table has a significant impact on the running time of our programs.
If too few lists are used, the chains in them become longer and thus require more time
to search through. If too many are created, some of them may just be unused, wasting
space (and time, as we scan through the hash table to clear it). We eventually arbitrarily
set the number of lists in the hash table equal to one quarter the number of sites in

B.17We actually replaced many mod operations with if–else conditions and observed a significant increase
in the speed of our program as a result.
B.18Though perhaps we should not be quite so glib here, since if RAM is completely filled data has to
be swapped to and from the hard disk, which generally takes a very long time.

129

the lattice, most likely larger than necessary.B.19 It might be an interesting exercise to
explore the relation between the number of lists in the hash table and the speed of the
program. We did not perform such an analysis.

B.19Additionally, hash tables of this size do not have a prime number of lists. Containing a prime number
of lists can increase the efficiency of a hash table, as discussed in Goodrich and Tamassia [22].

130

Appendix C: Sample Code

This chapter includes full C++ code for several of the programs written for our
work. Only full working programs are included, but in the interests of space, not all of our
programs are included, only representative samples. The organization of code within this
appendix parallels that in the thesis – after random walk simulations comes Ising model
code, and finally programs for calculating the critical phase transition line and soliton
masses in φ4 theory. In Section C.5 we include some excerpts from the Mathematica code
used to analyze the data produced by our C++ simulations.

C.1 Random Walks

The following short random walk programs were among the first we created. We
made little use of object-oriented programming. The programs take no command-line
parameters and print results directly to a file. Later we deemed it simpler to print
results to standard output and then pipe them to a file from the shell. For simplicity and
economy of space we present only two-dimensional programs. Analogous random walk
programs were created in three and four dimensions, and the results of those simulations
presented above in Section 3.2.

Code Snippet C.1: Basic random walk

// RandomWalk2D/Basic2D.cpp

// Basic random walk in two dimensions

// Creates file of positions over time

// David Schaich

// Created 15 April 2005

// Last modified 17 February 2006

using namespace std;

#include <iostream> // For cout, fopen, fprintf, etc.

#include <gsl/gsl_rng.h> // Random number generators

int main(int argc, char* argv[]) {

FILE* output;

output = fopen("Basic2D.csv", "w");

int sampleSize = 100000;

int minLength = 1;

int maxLength = 150;

int x = 0;

int y = 0;

131

int stepLength = 1;

int direction = 4; // To be computed randomly

double dist = 0;

double distTotal = 0;

double distAve = 0;

// Mersenne Twister generator

gsl_rng* generator = gsl_rng_alloc (gsl_rng_mt19937);

for (int totalSteps = minLength; totalSteps <= maxLength; totalSteps+=1) {

distTotal = 0;

for (int test = 0; test < sampleSize; test++) {

x = y = 0;

for (int step = 0; step < totalSteps; step++) {

direction = gsl_rng_get(generator) % 4;

if (direction == 0) x += stepLength;

else if (direction == 1) y += stepLength;

else if (direction == 2) x -= stepLength;

else if (direction == 3) y -= stepLength;

}

// Compute distance squared for each test

dist = x*x + y*y;

distTotal += dist;

}

// Compute average distance and print out

distAve = distTotal / sampleSize;

cout << totalSteps << " " << distAve << endl;

fprintf(output, "%i,\t%lf\n", totalSteps, distAve);

}

gsl_rng_free(generator);

fclose(output);

return 0;

}

Code Snippet C.2: Nonreversal random walk

// RandomWalk2D/Nonreversal2D.cpp

// Nonreversal random walk in two dimensions

// Creates file of positions over time

// David Schaich

// Created 24 April 2005

// Last modified 17 February 2006

using namespace std;

#include <iostream> // For cout, fopen, fprintf, etc.

#include <gsl/gsl_rng.h> // Random number generators

int main(int argc, char* argv[]) {

FILE* output;

output = fopen("Nonreversal2D.csv", "w");

int sampleSize = 100000;

int minLength = 1;

int maxLength = 150;

int x = 0;

int y = 0;

int stepLength = 1;

int dir = 4; // (Random) Direction of potential step

int prevDir = 4; // Direction of previous step

132

double dist = 0;

double distTotal = 0;

double distAve = 0;

// Mersenne Twister generator

gsl_rng* generator = gsl_rng_alloc(gsl_rng_mt19937);

for (int totalSteps = minLength; totalSteps <= maxLength; totalSteps+=1) {

distTotal = 0;

for (int test = 0; test < sampleSize; test++) {

x = y = 0;

prevDir = 4;

for (int step = 0; step < totalSteps; step++) {

dir = gsl_rng_get(generator) % 4;

if (dir == 0 && prevDir != 2) x += stepLength;

else if (dir == 1 && prevDir != 3) y += stepLength;

else if (dir == 2 && prevDir != 0) x -= stepLength;

else if (dir == 3 && prevDir != 1) y -= stepLength;

else step--; // Didn’t step, so doesn’t count

prevDir = dir; // Works whether or not step taken

}

// Compute distance squared for each test

dist = x*x + y*y;

distTotal += dist;

}

// Compute average distance and print out

distAve = distTotal / sampleSize;

cout << totalSteps << " " << distAve << endl;

fprintf(output, "%i,\t%lf\n", totalSteps, distAve);

}

gsl_rng_free(generator);

fclose(output);

return 0;

}

The self-avoiding random walk uses a hash table similar to that presented in
Section B.3, above. The main difference is that the hash table used here is more object
oriented (with the corresponding increase in overhead) and designed to contain triplet
points (so that it could be used for both two- and three-dimensional random walks)
instead of plain integers.

Code Snippet C.3: Self-avoiding random walk

// RandomWalk2D/Selfavoiding2D.cpp

// Self-avoiding random walk in two dimensions

// Creates file of positions over time

// David Schaich -- daschaich@gmail.com

// Created 24 April 2005

// Last modified 17 February 2006

using namespace std;

#include <cstdlib>

#include <iostream> // For cout, fopen, fprintf, etc.

#include <gsl/gsl_rng.h> // Random number generators

#include "../HashTable/HashTable.cpp"

int main(int argc, char* argv[]) {

FILE* output;

133

output = fopen("Selfavoiding2D.csv", "w");

int sampleSize = 100000;

int minLength = 1;

int maxLength = 150;

int x = 0;

int y = 0;

int stepLength = 1;

int direction = 4; // To be computed randomly

int aborted = 0;

double dist = 0;

double distTotal = 0;

double distAve = 0;

// Mersenne Twister generator

gsl_rng* generator = gsl_rng_alloc(gsl_rng_mt19937);

// Keeps track of path that has been followed so far

// and data about where the walker can go from the current position

int potSteps[8];

int openPaths = 0;

bool counts = true;

HashTable* temp = new HashTable();

HashTable path = *temp;

for (int totalSteps = minLength; totalSteps <= maxLength; totalSteps++) {

distTotal = 0;

for (int test = 0; test < sampleSize; test++) {

x = y = 0;

path.clear();

path.insert(0, 0, 0);

for (int step = 0; step < totalSteps; step++) {

// Figure out possible steps

openPaths = 0;

if (!path.find(x + 1, y, 0)) {

potSteps[2 * openPaths] = x + 1;

potSteps[2 * openPaths + 1] = y;

openPaths++;

}

if (!path.find(x, y + 1, 0)) {

potSteps[2 * openPaths] = x;

potSteps[2 * openPaths + 1] = y + 1;

openPaths++;

}

if (!path.find(x - 1, y, 0)) {

potSteps[2 * openPaths] = x - 1;

potSteps[2 * openPaths + 1] = y;

openPaths++;

}

if (!path.find(x, y - 1, 0)) {

potSteps[2 * openPaths] = x;

potSteps[2 * openPaths + 1] = y - 1;

openPaths++;

}

// If nowhere to go, abort test and start a new one

if (openPaths == 0) {

// Check to make sure there are no infinite loops

aborted++;

if (aborted > 10000) {

cout << "Aborting test " << test << " of ";

cout << totalSteps << " steps" << endl;

aborted = 0;

}

counts = false; // This iteration didn’t count

break; // Out of step loop into test loop

}

134

direction = gsl_rng_get(generator) % openPaths;

x = potSteps[2 * direction];

y = potSteps[2 * direction + 1];

path.insert(x, y, 0);

}

if (counts) {

// Compute distance squared for each test

dist = x*x + y*y;

distTotal += dist;

}

else {

test--;

counts = true;

}

}

// Compute average distance and print out

distAve = distTotal / sampleSize;

cout << totalSteps << " " << distAve << endl;

fprintf(output, "%i,\t%lf\n", totalSteps, distAve);

}

gsl_rng_free(generator);

fclose(output);

return 0;

}

C.2 Ising Model

In this section we include much of the code used in our Ising model simulations
– a lattice class and header file, along with a basic simulation file. Although both the
Metropolis and Wolff cluster algorithms are implemented in Code Snippet C.5, the simu-
lation program in Code Snippet C.6 uses only the Metropolis algorithm; a nearly identical
program used only the Wolff cluster algorithm. We did this in order to compare the be-
havior of each algorithm on its own. Later, as shown below in Section C.3, we combined
the two algorithms in our φ4 theory simulations in order to maximize efficiency. This
lattice uses the helical boundary conditions described above in Section 3.3.

The program assumes a two-dimensional rectangular lattice and takes five integer
input parameters from the command line: the two dimensions of the lattice, the number
of iterations for equilibration, the number of iterations for statistics, and the temperature
at which to run the simulation.

Code Snippet C.4: Header file for Ising model lattice

// ---

// Ising2D/Lattice.hh

// Lattice of spins for Ising Model simulation

// Header file contains data and method declarations

// David Schaich -- daschaich@gmail.com

// Created 1 July 2005

// Last modified 19 March 2006

// ---

// ---

135

// Frontmatter and include directives

// Avoid multiple inclusion

#ifndef _LATTICE_HH

#define _LATTICE_HH

#include "HashTable/HashTable.hh" // Hash table for searching cluster

#include <vector> // Lattice is vector of vectors

#include <gsl/gsl_rng.h> // Random number generators

#include <gsl/gsl_sf_exp.h> // Exponential functions

// ---

// ---

// Class definition

class Lattice {

public:

// ---

// Data!

// Member data

std::vector<int> lattice; // Values must be 1, -1

unsigned int xDim; // x dimension of lattice

unsigned int yDim; // y dimension of lattice

unsigned int latticeSize; // Number of sites in lattice

float temp; // kT in energy units (k = 1)

float beta; // 1/kT in energy units (k = 1)

double randomU; // Random number in range [0,1)

double probability; // Probability of flipping or adding

// to cluster.

// SHOULD NOT CHANGE FOR WOLFF

double exponentials[2];

double totalEnergy;

// Neighboring lattice sites

unsigned int nextX;

unsigned int prevY;

unsigned int prevX;

unsigned int nextY;

HashTable* cluster;

gsl_rng* generator;

// ---

// ---

// Methods!

// Constructors, destructor

Lattice(unsigned int x, unsigned int y, unsigned int RNSeed);

Lattice();

~Lattice();

// Lattice and cluster print methods

void printLattice();

void printCluster();

// Setup periodic boundary conditions

void getHalfNeighbors(unsigned int site);

void getNeighbors(unsigned int site);

// Calculation methods

int calcHalfEnergy(unsigned int site);

int calcEnergy(unsigned int site);

double calcTotalEnergy();

double calcMagnetization();

double calcSpecificHeat(double average, double squared);

double calcSusceptibility(double average, double squared);

// Simulation methods - metropolis and wolff algorithms

bool metropolis(unsigned int site); // Returns whether or not flipped

136

void growCluster(unsigned int site, int spin);

void flipCluster();

void flipComplement();

unsigned int wolff(unsigned int site);

// ---

};

// ---

// ---

#endif // _LATTICE_HH

// ---

Code Snippet C.5: Implementation of Ising model lattice

// ---

// Ising2D/Lattice.cpp

// Lattice of spins for Ising Model simulations

// Contains implementations of standard methods

// David Schaich -- daschaich@gmail.com

// Created 4 July 2005

// Last modified 20 March 2006

// ---

// ---

// Frontmatter and include directives

#include "Lattice.hh" // Method and variable declarations

// ---

// ---

// Constructors and destructor

Lattice::Lattice(unsigned int x, unsigned int y, unsigned int RNSeed) {

cluster = new HashTable();

generator = gsl_rng_alloc(gsl_rng_mt19937); // Mersenne Twister

gsl_rng_set (generator, RNSeed);

temp = (float)RNSeed / 100;

beta = 1 / temp;

xDim = x;

yDim = y;

latticeSize = x * y;

// Random initial state

for (unsigned int i = 0; i < latticeSize; i++) {

if (gsl_rng_uniform(generator) < 0.5)

lattice.push_back(-1);

else

lattice.push_back(1);

}

// Calculate all exponentials once and for all

exponentials[0] = gsl_sf_exp(-beta * 4);

exponentials[1] = gsl_sf_exp(-beta * 8);

// Initialize common data

randomU = gsl_rng_uniform(generator);

probability = 1 - gsl_sf_exp(-2 * beta);

totalEnergy = calcTotalEnergy();

}

137

Lattice::Lattice() {

Lattice(32, 32, 227);

}

Lattice::~Lattice() {}

// ---

// ---

// Lattice and cluster print methods

void Lattice::printLattice() {

for (unsigned int i = 0; i < latticeSize; i++) {

if (i % xDim == 0)

printf("\n");

if (lattice[i] == -1)

printf("o");

else if (lattice[i] == 1)

printf("x");

else

printf("ERROR");

}

printf("\n");

fflush(stdout);

}

void Lattice::printCluster() {

for (unsigned int i = 0; i < latticeSize; i++) {

if (i % xDim == 0)

printf("\n");

if (cluster->find(i))

printf("x");

else

printf(" ");

}

printf("\n");

fflush(stdout);

}

// ---

// ---

// Set up helical boundary conditions

// Try to avoid the modulo % operation at all costs

void Lattice::getHalfNeighbors(unsigned int site) {

if (site < latticeSize - xDim) {

nextX = site + 1;

nextY = site + xDim;

}

else if (site < latticeSize - 1) {

nextX = site + 1;

nextY = site + xDim - latticeSize;

}

else { // site = latticeSize - 1

nextX = 0;

nextY = xDim;

}

}

void Lattice::getNeighbors(unsigned int site) {

getHalfNeighbors(site);

if (site > xDim) {

prevX = site - 1;

prevY = site - xDim;

}

else if (site > 0) {

prevX = site - 1;

138

prevY = site + latticeSize - xDim;

}

else { // site = 0

prevX = latticeSize - 1;

prevY = latticeSize - xDim;

}

}

// ---

// ---

// Calculation methods

int Lattice::calcHalfEnergy(unsigned int site) {

getHalfNeighbors(site);

return -lattice[site] * (lattice[nextX] + lattice[nextY]);

}

int Lattice::calcEnergy(unsigned int site) {

getNeighbors(site);

return -lattice[site] *

(lattice[nextX] + lattice[nextY] + lattice[prevX] + lattice[prevY]);

}

double Lattice::calcTotalEnergy() {

totalEnergy = 0;

for (unsigned int i = 0; i < latticeSize; i++)

totalEnergy += calcHalfEnergy(i);

return totalEnergy / latticeSize;

}

// Note: does not return absolute value

double Lattice::calcMagnetization() {

int magnet = 0;

for (unsigned int i = 0; i < latticeSize; i++)

magnet += lattice[i];

return (double) magnet / latticeSize;

}

// Uses energy per spin

double Lattice::calcSpecificHeat(double aveEnergy, double squaredEnergy) {

double diff = squaredEnergy - (aveEnergy * aveEnergy);

return beta * beta * diff * latticeSize;

}

// Uses magnetization per spin

double Lattice::calcSusceptibility(double aveMagnet, double squaredMagnet) {

double diff = squaredMagnet - (aveMagnet * aveMagnet);

return beta * diff * latticeSize;

}

// ---

// ---

// Metropolis method

bool Lattice::metropolis(unsigned int site) {

// Only need to consider change in energy at site up for flipping

// This is actually half the change...

int difference = -calcEnergy(site);

if (difference <= 0.0) { // Lower energy (more negative), so flip

lattice[site] *= -1;

return true;

}

else { // Probabilistic acceptance

randomU = gsl_rng_uniform(generator);

probability = exponentials[difference / 2 - 1];

139

if (randomU < probability) {

lattice[site] *= -1;

return true;

}

else

return false;

}

}

// ---

// ---

// Wolff methods for growing cluster and so on

void Lattice::growCluster(unsigned int site, int spin) {

getNeighbors(site);

// If this is not done, they will be overwritten...

unsigned int curNextX = nextX;

unsigned int curNextY = nextY;

unsigned int curPrevX = prevX;

unsigned int curPrevY = prevY;

if (lattice[curPrevX] == spin && !cluster->find(curPrevX)) {

randomU = gsl_rng_uniform(generator);

if (randomU < probability) {

cluster->insert(curPrevX);

growCluster(curPrevX, spin);

}

}

if (lattice[curNextY] == spin && !cluster->find(curNextY)) {

randomU = gsl_rng_uniform(generator);

if (randomU < probability) {

cluster->insert(curNextY);

growCluster(curNextY, spin);

}

}

if (lattice[curNextX] == spin && !cluster->find(curNextX)) {

randomU = gsl_rng_uniform(generator);

if (randomU < probability) {

cluster->insert(curNextX);

growCluster(curNextX, spin);

}

}

if (lattice[curPrevY] == spin && !cluster->find(curPrevY)) {

randomU = gsl_rng_uniform(generator);

if (randomU < probability) {

cluster->insert(curPrevY);

growCluster(curPrevY, spin);

}

}

}

void Lattice::flipCluster() {

Node* temp = cluster->table[0]->head;

for (unsigned int i = 0; i < 97; i++)

if (cluster->table[i]->size != 0) {

temp = cluster->table[i]->head;

for (unsigned int j = 0; j < cluster->table[i]->size; j++) {

lattice[temp->site] *= -1;

temp = temp->next;

}

}

}

void Lattice::flipComplement() {

for (unsigned int i = 0; i < latticeSize; i++)

if (!cluster->find(i)) // Flip if not in cluster

lattice[i] *= -1;

}

140

// Returns size of cluster

unsigned int Lattice::wolff(unsigned int site) {

cluster->insert(site);

growCluster(site, lattice[site]);

if (cluster->size >= latticeSize / 2)

flipComplement();

else

flipCluster();

unsigned int toReturn = cluster->size;

cluster->clear();

return toReturn;

}

// ---

Code Snippet C.6: Ising model simulation code

// ---

// Ising2D/Metropolis.cpp

// Runs Monte Carlo simulation using Metropolis algorithm

// Writes energy, magnetization, specific heat and susceptibility

// David Schaich -- daschaich@gmail.com

// Created 13 July 2005

// Last modified 19 March 2006

// ---

// ---

// Include directives

#include <math.h> // For floor and sqrt

#include <stdio.h> // For printf

#include <stdlib.h> // For string conversion atoi

#include <gsl/gsl_sf_log.h> // For natural log

#include "Lattice.hh" // Lattice on which simulation is run

// ---

// ---

// Main method runs simulation given command line parameters

int main(unsigned int argc, char** const argv) {

if (argc != 6) {

fprintf(stderr, "Usage: %s xDim yDim init sampleSize temp\n", argv[0]);

fflush(stderr);

exit(1);

}

unsigned int xDim = atoi(argv[1]); // Lattice x-dimension

unsigned int yDim = atoi(argv[2]); // Lattice y-dimension

unsigned int init = atoi(argv[3]); // Equilibration sweeps

unsigned int sampleSize = atoi(argv[4]); // Iterations for statistics

unsigned int RNSeed = atoi(argv[5]); // 100x temperature (kT)

float temp = (float)RNSeed / 100;

unsigned int randomSite;

unsigned int latticeSize = xDim * yDim;

double aveEnergy = 0.0;

double aveMagnet = 0.0;

double aveMagnetAbs = 0.0;

double squaredEnergy = 0.0;

double squaredMagnet = 0.0;

double specificHeat = 0.0;

141

double susceptibility = 0.0;

double energyData[sampleSize];

double magnetData[sampleSize];

double autocorrelation[sampleSize]; // Holds function

double scaleFactor = 0.0;

double autocorTime = 0.0; // Holds time

double energyStDev = 0.0;

double magnetStDev = 0.0;

Lattice* theLattice = new Lattice(xDim, yDim, RNSeed);

// Initialize/equilibrate lattice

for (unsigned int i = 0; i < init * latticeSize; i++) {

randomSite = (int) floor(latticeSize *

gsl_rng_uniform(theLattice->generator));

theLattice->metropolis(randomSite);

}

// Take data every 5 sweeps (somewhat arbitrary declaration

// based on checking out autocorrelation times)

unsigned int counter = 0;

for (unsigned int i = 0; i < sampleSize * latticeSize * 5; i++) {

randomSite = (int) floor(latticeSize *

gsl_rng_uniform(theLattice->generator));

theLattice->metropolis(randomSite);

// Every 5 sweeps, record data

if (i % (latticeSize * 5) == 0) {

energyData[counter] = theLattice->calcTotalEnergy();

aveEnergy += energyData[counter];

magnetData[counter] = theLattice->calcMagnetization();

aveMagnet += magnetData[counter];

magnetData[counter] = fabs(magnetData[counter]);

aveMagnetAbs += magnetData[counter];

squaredEnergy += energyData[counter] * energyData[counter];

squaredMagnet += magnetData[counter] * magnetData[counter];

counter++;

}

}

// Take averages

aveEnergy /= sampleSize;

aveMagnet /= sampleSize;

aveMagnetAbs /= sampleSize;

squaredEnergy /= sampleSize;

squaredMagnet /= sampleSize;

// Add bootstrapping here...

specificHeat = theLattice->calcSpecificHeat(aveEnergy, squaredEnergy);

susceptibility =

theLattice->calcSusceptibility(aveMagnetAbs, squaredMagnet);

delete theLattice;

// Now its time for some autocorrelation and standard deviation madness

// Use magnetization for autocorrelation time calculation

// Should be roughly the same for all variables

// Generate Chi[0] for scaling purposes

for (unsigned int i = 0; i < sampleSize; i++)

scaleFactor += (magnetData[i] * magnetData[i]);

scaleFactor /= sampleSize;

scaleFactor -= aveMagnetAbs * aveMagnetAbs;

autocorrelation[0] = 1.0;

// Calculate autocorrelation function, chi[t], t > 0

for (unsigned int t = 1; t < sampleSize; t++) {

142

autocorrelation[t] = 0.0;

for (unsigned int i = 0; i < sampleSize - t; i++)

autocorrelation[t] += (magnetData[i] * magnetData[i + t]);

autocorrelation[t] /= (sampleSize - t);

autocorrelation[t] -= aveMagnetAbs * aveMagnetAbs;

autocorrelation[t] /= scaleFactor; // Scale by Chi[0]

}

// Generate autocorrelation times from autocorrelation function

double tempd;

unsigned int i = 1;

while (autocorrelation[i] > 0

&& autocorrelation[i] < autocorrelation[i - 1]

&& i < sampleSize) {

tempd = -gsl_sf_log (autocorrelation[i]);

tempd = i / tempd;

autocorTime += tempd;

i++;

}

// Use standard formula to generate standard deviations

// from autocorrelation time, average, sampleSize, etc

if (i == 1) { // Assume autocorrelation time zero

autocorTime = 0.0;

energyStDev = 0.0;

magnetStDev = 0.0;

}

else {

autocorTime /= (i - 1);

energyStDev = 2 * autocorTime / sampleSize;

energyStDev *= squaredEnergy - aveEnergy * aveEnergy;

energyStDev = sqrt(energyStDev);

magnetStDev = 2 * autocorTime / sampleSize;

magnetStDev *= squaredMagnet - aveMagnetAbs * aveMagnetAbs;

magnetStDev = sqrt(magnetStDev);

}

printf("%f\t%lf\t", temp, autocorTime);

printf("%lf\t%lf\t", aveEnergy, energyStDev);

printf("%lf\t%lf\t", aveMagnetAbs, magnetStDev);

printf("%lf\t%lf\t", specificHeat, susceptibility);

printf("%lf\t%lf\n", aveMagnet, scaleFactor);

return 0;

}

// ---

C.3 φ4 Theory

In this section we include much of the code used in our two-dimensional φ4 simu-
lations – a lattice class and header file, along with a simulation file including the main
method and a couple of helper methods that calculate bimodality and autocorrelation
times. We do not include the hash table used, which is presented above in Section B.3.
As in the Ising model code above, this simulation uses the helical boundary conditions
described above in Section 3.3.

Although this code is based off of the Ising model code presented above in Sec-
tion C.2, it has enough differences and was used so extensively over the course of the thesis

143

that we present it here. The code for four-dimensional simulations is largely identical to
that presented below, with only the obviously necessary changes made.

The program assumes a two-dimensional rectangular lattice and takes six input
parameters from the command line: the values of µ2

0 and λ, the two dimensions of
the lattice, the number of iterations for equilibration and the number of iterations for
statistics. This input is all integer so that the program to be called repeatedly from loops
in shell scripts; µ2

0 and λ are scaled by 104 and 102 (respectively) in the main method in
order to achieve the desired precision.

Code Snippet C.7: Header file for φ4 theory lattice

// ---

// Phi4/Lattice.hh

// Lattice of spins for phi^4 simulations using mu action

// Header file contains data and method declarations

// David Schaich -- daschaich@gmail.com

// Created 12 October 2005

// Last modified 9 February 2006

// ---

// ---

// Frontmatter and include directives

// Avoid multiple inclusion

#ifndef _LATTICE_HH

#define _LATTICE_HH

#include "HashTable.hh" // Hash table for searching cluster

#include <vector> // Lattice is vector of vectors

#include <gsl/gsl_rng.h> // Random number generators

#include <gsl/gsl_sf_exp.h> // Exponential functions

// ---

// ---

// A simple struct to hold a site’s neighbors

struct siteNeighbors {

unsigned int prevX;

unsigned int nextX;

unsigned int prevY;

unsigned int nextY;

};

// ---

// ---

// Class definition

class Lattice {

public:

// ---

// Data!

// Member data

std::vector<double> lattice; // Continuous values

unsigned int xDim; // x dimension of lattice

unsigned int yDim; // y dimension of lattice

unsigned int latticeSize; // Number of sites in lattice

double muSquared; // Mass of particles

double lambda; // Coupling strength

// Neighboring lattice sites

std::vector<siteNeighbors*> neighbors;

144

HashTable* cluster;

gsl_rng* generator;

// ---

// ---

// Methods!

// Constructors, destructor

Lattice(double m, double l, unsigned int x, unsigned int y);

Lattice();

~Lattice();

// Lattice and cluster print methods

// Replace with png drawing?

void printLattice();

void printSigns();

void printCluster();

// Set up periodic boundary conditions

void getNeighbors(unsigned int site, siteNeighbors* toInit);

// Calculation methods

double calcTotalEnergy();

double calcAveragePhi();

// Simulation methods - metropolis and wolff algorithms

void metropolis(unsigned int site);

bool clusterCheck(unsigned int site, unsigned int toAdd);

// Inelegant but faster

void growClusterPos(unsigned int site);

void growClusterNeg(unsigned int site);

void flipCluster();

unsigned int wolff(unsigned int site); // Returns cluster size

// ---

};

// ---

// ---

#endif // _LATTICE_HH

// ---

Code Snippet C.8: Implementation of φ4 theory lattice

// ---

// Phi4/Lattice.cpp

// Lattice of spins for phi^4 simulations

// Contains implementations of standard methods

// David Schaich -- daschaich@gmail.com

// Created 12 October 2005

// Last modified 15 February 2006

// ---

// ---

// Frontmatter and include directives

#include "Lattice.hh" // Method and variable declarations

// ---

// ---

145

// Constructors and destructor

Lattice::Lattice(double m, double l, unsigned int x, unsigned int y) {

generator = gsl_rng_alloc(gsl_rng_mt19937); // Mersenne Twister

gsl_rng_set (generator, (unsigned int)(100 * m * l));

muSquared = 2 + (m / 2); // Do this to simplify calcs

lambda = l / 4; // Do this to simplify calcs

xDim = x;

yDim = y;

latticeSize = xDim * yDim;

cluster = new HashTable(latticeSize / 4);

// Random initial state in range [-1.5, 1.5)

for (unsigned int i = 0; i < latticeSize; i++)

lattice.push_back(3 * gsl_rng_uniform(generator) - 1.5);

// Set up neighbors... calculate once for all sites

for (unsigned int i = 0; i < latticeSize; i++) {

siteNeighbors* temp = new siteNeighbors;

getNeighbors(i, temp);

neighbors.push_back(temp);

}

}

Lattice::Lattice() {

Lattice(-1.25, 1, 32, 32);

}

Lattice::~Lattice() {}

// ---

// ---

// Lattice and cluster print methods

void Lattice::printLattice() {

for (unsigned int i = 0; i < latticeSize; i++) {

if (i % xDim == 0)

printf("\n");

printf("%lf\t", lattice[i]);

}

printf("\n");

fflush(stdout);

}

void Lattice::printSigns() {

for (unsigned int i = 0; i < latticeSize; i++) {

if (i % xDim == 0)

printf("\n");

if (lattice[i] >= 0)

printf(" ");

else

printf("x ");

}

printf("\n");

fflush(stdout);

}

void Lattice::printCluster() {

for (unsigned int i = 0; i < latticeSize; i++) {

if (i % xDim == 0)

printf("\n");

if (cluster->find(i))

printf("x ");

else

printf(" ");

}

printf("\n");

fflush(stdout);

146

}

// ---

// ---

// Set up helical boundary conditions - only do once

// Try to avoid the modulo % operation

void Lattice::getNeighbors(unsigned int site, siteNeighbors* toInit) {

if (site < latticeSize - xDim) {

toInit->nextX = site + 1;

toInit->nextY = site + xDim;

}

else if (site < latticeSize - 1) {

toInit->nextX = site + 1;

toInit->nextY = site + xDim - latticeSize;

}

else { // site = latticeSize - 1

toInit->nextX = 0;

toInit->nextY = xDim - 1;

}

if (site >= xDim) {

toInit->prevX = site - 1;

toInit->prevY = site - xDim;

}

else if (site > 0) {

toInit->prevX = site - 1;

toInit->prevY = site + latticeSize - xDim;

}

else { // site = 0

toInit->prevX = latticeSize - 1;

toInit->prevY = latticeSize - xDim;

}

}

// ---

// ---

// Calculation methods

// Calculate total energy by looping through lattice

double Lattice::calcTotalEnergy() {

double totalEnergy = 0;

double currentPhi;

for (unsigned int i = 0; i < latticeSize; i++) {

currentPhi = lattice[i];

totalEnergy -= currentPhi * (lattice[neighbors[i]->nextX]

+ lattice[neighbors[i]->nextY]);

currentPhi *= currentPhi;

// Recall muSquared redefined

totalEnergy += muSquared * currentPhi;

currentPhi *= currentPhi;

// Recall lambda redefined

totalEnergy += lambda * currentPhi;

}

return totalEnergy / latticeSize;

}

// Note: does not return absolute value

double Lattice::calcAveragePhi() {

double currentPhi = 0;

for (unsigned int i = 0; i < latticeSize; i++)

currentPhi += lattice[i];

return currentPhi / latticeSize;

}

// ---

147

// ---

// Metropolis method

void Lattice::metropolis(unsigned int site) {

double currentPhi = lattice[site];

// Generate new value

double newValue = currentPhi + (3 * gsl_rng_uniform(generator)

- 1.5);

double temp = newValue;

// Calculate energy difference

double difference = (currentPhi - newValue)

* (lattice[neighbors[site]->nextX]

+ lattice[neighbors[site]->nextY]

+ lattice[neighbors[site]->prevX]

+ lattice[neighbors[site]->prevY]);

newValue *= newValue;

currentPhi *= currentPhi;

// Recall muSquared redefined

difference += muSquared * (newValue - currentPhi);

newValue *= newValue;

currentPhi *= currentPhi;

// Recall lambda redefined

difference += lambda * (newValue - currentPhi);

// Flip if difference <= 0, otherwise probabilistic acceptance

if (difference <= 0)

lattice[site] = temp;

else if (gsl_rng_uniform(generator) < gsl_sf_exp(-difference))

lattice[site] = temp;

}

// ---

// ---

// Wolff methods for growing cluster and so on

// A convenience method that keeps me from having to write these few

// lines over and over again - adds to cluster probabilistically

bool Lattice::clusterCheck(unsigned int site, unsigned int toAdd) {

if (cluster->find(toAdd))

return false; // Already in cluster

// Have already checked that they have the same sign

double probability = 1 - gsl_sf_exp(-2 * lattice[site] * lattice[toAdd]);

if (gsl_rng_uniform(generator) < probability) {

cluster->insert(toAdd);

return true;

}

return false;

}

// Grows cluster from specified site - recursive

void Lattice::growClusterPos(unsigned int site) {

unsigned int toCheck = neighbors[site]->prevX;

if (lattice[toCheck] > 0 && clusterCheck(site, toCheck))

growClusterPos(toCheck);

toCheck = neighbors[site]->nextX;

if (lattice[toCheck] > 0 && clusterCheck(site, toCheck))

growClusterPos(toCheck);

toCheck = neighbors[site]->prevY;

if (lattice[toCheck] > 0 && clusterCheck(site, toCheck))

growClusterPos(toCheck);

toCheck = neighbors[site]->nextY;

148

if (lattice[toCheck] > 0 && clusterCheck(site, toCheck))

growClusterPos(toCheck);

}

void Lattice::growClusterNeg(unsigned int site) {

unsigned int toCheck = neighbors[site]->prevX;

if (lattice[toCheck] <= 0 && clusterCheck(site, toCheck))

growClusterNeg(toCheck);

toCheck = neighbors[site]->nextX;

if (lattice[toCheck] <= 0 && clusterCheck(site, toCheck))

growClusterNeg(toCheck);

toCheck = neighbors[site]->prevY;

if (lattice[toCheck] <= 0 && clusterCheck(site, toCheck))

growClusterNeg(toCheck);

toCheck = neighbors[site]->nextY;

if (lattice[toCheck] <= 0 && clusterCheck(site, toCheck))

growClusterNeg(toCheck);

}

// Since this method trawls through the whole cluster (which has reached

// the end of its usefulness), let’s be efficient and clear it here

void Lattice::flipCluster() {

node* temp1;

node* temp2;

for (unsigned int i = 0; i < cluster->tableNumber; i++) {

temp1 = cluster->table[i];

temp2 = cluster->table[i];

while (temp1 != NULL) {

lattice[temp1->value] *= -1;

temp2 = temp2->next;

delete temp1;

temp1 = temp2;

}

cluster->table[i] = NULL;

}

cluster->size = 0;

}

unsigned int Lattice::wolff(unsigned int site) {

cluster->insert(site);

// Inelegant, but faster than having just one method

if (lattice[site] > 0)

growClusterPos(site);

else

growClusterNeg(site);

unsigned int toReturn = cluster->size;

flipCluster();

return toReturn;

}

// ---

Code Snippet C.9: φ4 theory simulation code

// ---

// Phi4/Simulation.cpp

// Runs Monte Carlo simulation for fixed beta using mix of Metropolis

// and Wolff algorithms

// Prints energy, average phi, specific heat, susceptibility,

// autocorrelation times, errors, etc

// David Schaich -- daschaich@gmail.com

149

// Created 23 October 2005

// Last modified 1 March 2006

// ---

// ---

// Include directives

#include <math.h> // For floor and sqrt

#include <stdio.h> // For printf and fprintf

#include <gsl/gsl_sf_log.h> // For natural log

#include <gsl/gsl_math.h> // For power

#include "Lattice.hh" // Method and data declarations

// ---

// ---

// Declare and zero data!

unsigned int randomSite = 0;

double aveEnergy = 0;

double avePhi = 0;

double avePhiAbs = 0;

double squaredEnergy = 0;

double squaredPhi = 0;

double quartPhi = 0;

double cumulant = 0;

double specificHeat = 0;

double susceptibility = 0;

// Bimodality binning stuff

double maxPhi = 0;

static const unsigned int bins = 21;

unsigned int counts[bins];

double midCounts = 0; // Make these double now

double maxCounts = 0; // to avoid casts later

double bimodality = 0;

double scaleFactor = 0;

double autocorTime = 0;

double energyStDev = 0;

double phiStDev = 0;

// ---

// ---

// Calculate autocorrelation time and necessary points of

// autocorrelation function

unsigned int calcAutocor(unsigned int sampleSize, double* phiDataAbs,

double* autocorrelation) {

// Generate Chi[0] for scaling purposes

for (unsigned int i = 0; i < sampleSize; i++)

scaleFactor += (phiDataAbs[i] * phiDataAbs[i]);

scaleFactor /= sampleSize;

scaleFactor -= avePhiAbs * avePhiAbs;

autocorrelation[0] = 1;

// Only calculate points of autocorrelation function that

// roughly conform to exponential approximation

unsigned int t = 1;

while (t < sampleSize) {

for (unsigned int i = 0; i < sampleSize - t; i++)

autocorrelation[t] += (phiDataAbs[i] * phiDataAbs[i + t]);

autocorrelation[t] /= (sampleSize - t);

autocorrelation[t] -= avePhiAbs * avePhiAbs;

if (autocorrelation[t] < 0) // Not exponential!

150

break;

autocorrelation[t] /= scaleFactor; // Scale by Chi[0]

if (autocorrelation[t] >= autocorrelation[t - 1]) // Not exponential!

break;

double temp = -gsl_sf_log (autocorrelation[t]);

temp = t / temp;

autocorTime += temp;

t++;

}

return t;

}

// ---

// ---

// Bin values of phi and calculate bimodality

// Values of phi range from -maxPhi to +maxPhi

// Bin i of n will contain values greater than maxPhi(2*i/n - 1)

// and less than maxPhi*(2*(i+1)/n - 1) (where i = 0...n - 1)

void calcBimodality(unsigned int sampleSize, double* phiData) {

double lowerBound;

double upperBound;

for (unsigned int i = 0; i < bins; i++)

counts[i] = 0;

for (unsigned int i = 0; i < sampleSize; i++)

for (unsigned int j = 0; j < bins; j++) {

lowerBound = maxPhi * (2 * (double)j / (double)bins - 1);

upperBound = maxPhi * (2 * ((double)j + 1) / (double)bins - 1);

if (phiData[i] >= lowerBound && phiData[i] <= upperBound) {

counts[j]++;

break;

}

}

midCounts = counts[(bins - 1) / 2];

for (unsigned int i = 0; i < bins; i++)

if (counts[i] > maxCounts)

maxCounts = counts[i];

bimodality = 1 - (midCounts / maxCounts);

}

// ---

// ---

// Main method runs simulation using command line parameters

int main(unsigned int argc, char** const argv) {

if (argc != 7) {

fprintf(stderr, "Usage: %s muSquared lambda xDim yDim ", argv[0]);

fprintf(stderr, "init sampleSize\n");

fflush(stderr);

exit(1);

}

// Data that depends on command-line parameters

double muSquared = atof(argv[1]) / 10000; // Particle mass (squared...)

double lambda = atof(argv[2]) / 100; // Coupling strength

unsigned int xDim = atoi(argv[3]); // Lattice x-dimension

unsigned int yDim = atoi(argv[4]); // Lattice y-dimension

unsigned int init = atoi(argv[5]); // Iterations for equilibration

unsigned int sampleSize = atoi(argv[6]); // Iterations for statistics

unsigned int latticeSize = xDim * yDim;

151

double energyData[sampleSize];

double phiData[sampleSize];

double phiDataAbs[sampleSize];

double autocorrelation[sampleSize]; // Autocorrelation function

// Much bigger than necessary

Lattice* theLattice = new Lattice(muSquared, lambda, xDim, yDim);

// Initialize/equilibrate lattice

// Flip cluster and take data after every _gap_ Metropolis sweeps

unsigned int gap = 5;

for (unsigned int i = 0; i < init; i++) {

for (unsigned int j = 0; j < latticeSize * gap; j++) {

randomSite = (unsigned int) floor(latticeSize *

gsl_rng_uniform(theLattice->generator));

theLattice->metropolis(randomSite);

}

randomSite = (unsigned int) floor(latticeSize *

gsl_rng_uniform(theLattice->generator));

theLattice->wolff(randomSite);

}

for (unsigned int i = 0; i < sampleSize; i++) {

for (unsigned int j = 0; j < latticeSize * gap; j++) {

randomSite = (int) floor(latticeSize *

gsl_rng_uniform(theLattice->generator));

theLattice->metropolis(randomSite);

}

randomSite = (unsigned int) floor(latticeSize *

gsl_rng_uniform(theLattice->generator));

theLattice->wolff(randomSite);

energyData[i] = theLattice->calcTotalEnergy();

aveEnergy += energyData[i];

phiData[i] = theLattice->calcAveragePhi();

phiDataAbs[i] = fabs(phiData[i]);

avePhi += phiData[i];

avePhiAbs += phiDataAbs[i];

// Maximum (absolute) value of phi

if (phiDataAbs[i] > maxPhi)

maxPhi = phiDataAbs[i];

squaredEnergy += energyData[i] * energyData[i];

squaredPhi += phiData[i] * phiData[i];

quartPhi += gsl_pow_4(phiData[i]);

}

delete theLattice;

// Take averages

aveEnergy /= sampleSize;

avePhi /= sampleSize;

avePhiAbs /= sampleSize;

squaredEnergy /= sampleSize;

squaredPhi /= sampleSize;

quartPhi /= sampleSize;

// Add bootstrapping here...

specificHeat = squaredEnergy - (aveEnergy * aveEnergy);

specificHeat *= latticeSize;

susceptibility = squaredPhi - (avePhiAbs * avePhiAbs);

susceptibility *= latticeSize;

// Now it’s time for some autocorrelation and standard deviation madness

// Use average phi for autocorrelation time calculation

// Should be roughly the same for all variables

unsigned int t = calcAutocor(sampleSize, phiDataAbs, autocorrelation);

152

// Use standard formula to generate standard deviations

// from autocorrelation time, average, sampleSize, etc

if (t == 1) { // Autocorrelation time zero

autocorTime = 0;

energyStDev = 0;

phiStDev = 0;

}

else {

autocorTime /= (t - 1);

energyStDev = 2 * autocorTime / sampleSize;

energyStDev *= squaredEnergy - (aveEnergy * aveEnergy);

energyStDev = sqrt(energyStDev);

phiStDev = 2 * autocorTime / sampleSize;

phiStDev *= squaredPhi - (avePhiAbs * avePhiAbs);

phiStDev = sqrt(phiStDev);

}

// Calculate binder cumulant

cumulant = 1 - quartPhi / (3 * squaredPhi * squaredPhi);

// Calculate bimodality

calcBimodality(sampleSize, phiData);

printf("%lf,%lf,%lf,", muSquared, lambda, autocorTime);

printf("%lf,%lf,", aveEnergy, energyStDev);

printf("%lf,%lf,", avePhiAbs, phiStDev);

printf("%lf,%lf,", specificHeat, susceptibility);

printf("%lf,%lf,", cumulant, bimodality);

printf("%lf,%lf\n", avePhi, scaleFactor);

return 0;

}

// ---

C.4 Solitons

In this section we present much of the code used in our simulations of φ4 solitons
on the lattice – a lattice class and header file, along with a simulation file including
the main method and a couple of helper methods used to calculate the bimodality and
autocorrelation time. We do not include the hash table used, which is presented above
in Section B.3.

Although this code is based off of the basic φ4 theory code presented above in
Section C.3, it has enough notable features to merit inclusion here. In particular, we no
longer use the helical boundary conditions of the above simulations. Instead, for reasons
discussed in Section 7.6, we use one lattice with standard periodic boundary conditions
and another with antiperiodic boundary conditions.

In addition, this code illustrates one of the main benefits of object-oriented pro-
gramming. Since our two lattices are each objects of a lattice class, they automatically
have their own individual data fields, listed in the lattice header file, Code Snippet C.10.
In order to exploit this feature, we moved much of the data formerly loose in the main
method of Code Snippet C.9 directly into the lattice objects themselves themselves.

The program assumes a two-dimensional rectangular lattice and takes six input
parameters from the command line: the values of µ2

0 and λ, the two dimensions of

153

the lattice, the number of iterations for equilibration and the number of iterations for
statistics. This input is all integer so that the program to be called repeatedly from loops
in shell scripts; µ2

0 and λ are scaled by 10 and 102 (respectively) in the main method in
order to achieve the desired precision.

Code Snippet C.10: Header file for φ4 soliton lattice

// ---

// Soliton/Lattice.hh

// Lattice of spins for phi^4 simulations using mu action

// Header file contains data and method declarations

// David Schaich -- daschaich@gmail.com

// Created 23 January 2006

// Last modified 9 February 2006

// ---

// ---

// Frontmatter and include directives

// Avoid multiple inclusion

#ifndef _LATTICE_HH

#define _LATTICE_HH

#include "HashTable.hh" // Hash table for searching cluster

#include <vector> // Lattice is vector of vectors

#include <gsl/gsl_rng.h> // Random number generators

#include <gsl/gsl_sf_exp.h> // Exponential functions

// ---

// ---

// A simple struct to hold a site’s neighbors

struct siteNeighbors {

unsigned int prevX;

unsigned int nextX;

unsigned int prevY;

unsigned int nextY;

// Boundary conditions

int isLeft; // +/- 1 For periodic/antiperiodic

int isRight; // +/- 1 For periodic/antiperiodic

};

// ---

// ---

// Class definition

class Lattice {

public:

// ---

// Data!

// Member data

std::vector<double> lattice; // Continuous values

unsigned int xDim; // x dimension of lattice

unsigned int yDim; // y dimension of lattice

unsigned int latticeSize; // Number of sites in lattice

double muSquared; // Mass of particles

double lambda; // Coupling strength

bool antiperiodic; // Antiperiodic boundary conditions?

// Neighboring lattice sites

std::vector<siteNeighbors*> neighbors;

HashTable* cluster;

154

gsl_rng* generator;

// Data storage to simplify boundary conditions

double aveEnergy; // <E>

double energyStDev;

double avePhi; // <phi>

double avePhiAbs; // <|phi|>

double phiStDev;

double squaredEnergy; // <E^2>

double squaredPhi; // <phi^2>

double quartPhi; // <phi^4>

double cumulant;

double specificHeat;

double susceptibility;

double maxPhi;

double bimodality;

double scaleFactor;

double autocorTime;

// Need to use vectors to let length of run be command-line input

std::vector<double> energyData;

std::vector<double> phiData;

std::vector<double> phiDataAbs;

std::vector<double> autocor;

// ---

// ---

// Methods!

// Constructors, destructor

Lattice(double m, double l, unsigned int x, unsigned int y,

unsigned int t, bool p);

Lattice();

~Lattice();

// Lattice and cluster print methods, mainly for debugging

// Could replace with png drawing to generate pretty pictures

void printLattice();

void printSigns();

void printCluster();

void printData(); // Convenience method for simulation

// Set up periodic boundary conditions

void getNeighbors(unsigned int site, siteNeighbors* toInit);

// Calculation methods

double calcTotalEnergy();

double calcAveragePhi();

void calcSpecificHeat();

void calcSusceptibility();

// Simulation methods - metropolis and wolff algorithms

void metropolis(unsigned int site);

bool clusterCheck(double site, double value, unsigned int toAdd);

// Inelegant but faster

void growClusterPos(unsigned int site);

void growClusterNeg(unsigned int site);

void flipCluster();

unsigned int wolff(unsigned int site); // Returns cluster size

// ---

};

// ---

155

// ---

#endif // _LATTICE_HH

// ---

Code Snippet C.11: Implementation of φ4 soliton lattice

// ---

// Soliton/Lattice.cpp

// Lattice of spins for phi^4 simulations

// Contains implementations of standard methods

// David Schaich -- daschaich@gmail.com

// Created 23 January 2006

// Last modified 1 March 2006

// ---

// ---

// Frontmatter and include directives

#include "Lattice.hh" // Method and variable declarations

// ---

// ---

// Constructors and destructor

Lattice::Lattice(double m, double l, unsigned int x, unsigned int y,

unsigned int sampleSize, bool anti) {

generator = gsl_rng_alloc(gsl_rng_mt19937); // Mersenne Twister

gsl_rng_set (generator, (unsigned int)(100 * m * l));

muSquared = 2 + (m / 2); // Do this to simplify calcs

lambda = l / 4; // Do this to simplify calcs

antiperiodic = anti;

xDim = x;

yDim = y;

latticeSize = xDim * yDim;

cluster = new HashTable(latticeSize / 4);

// Random initial state in range [-1.5, 1.5)

for (unsigned int i = 0; i < latticeSize; i++)

lattice.push_back(3 * gsl_rng_uniform(generator) - 1.5);

// Set up neighbors... calculate once for all sites

for (unsigned int i = 0; i < latticeSize; i++) {

siteNeighbors* temp = new siteNeighbors;

getNeighbors(i, temp);

neighbors.push_back(temp);

}

// Initialize data to zero

aveEnergy = 0;

energyStDev = 0;

avePhi = 0;

avePhiAbs = 0;

phiStDev = 0;

squaredEnergy = 0;

squaredPhi = 0;

quartPhi = 0;

cumulant = 0;

specificHeat = 0;

susceptibility = 0;

156

maxPhi = 0;

bimodality = 0;

scaleFactor = 0;

autocorTime = 0;

for (unsigned int i = 0; i < sampleSize; i++) {

energyData.push_back(0);

phiData.push_back(0);

phiDataAbs.push_back(0);

autocor.push_back(0);

}

}

Lattice::Lattice() {

Lattice(-1.25, 1, 32, 32, 16384, false);

}

Lattice::~Lattice() {}

// ---

// ---

// Lattice and cluster print methods, mainly for debugging

// Could replace with png drawing to generate pretty pictures

void Lattice::printLattice() {

for (unsigned int i = 0; i < latticeSize; i++) {

if (i % xDim == 0)

printf("\n");

printf("%lf\t", lattice[i]);

}

printf("\n");

fflush(stdout);

}

void Lattice::printSigns() {

for (unsigned int i = 0; i < latticeSize; i++) {

if (i % xDim == 0)

printf("\n");

if (lattice[i] >= 0)

printf(" ");

else

printf("x ");

}

printf("\n");

fflush(stdout);

}

void Lattice::printCluster() {

for (unsigned int i = 0; i < latticeSize; i++) {

if (i % xDim == 0)

printf("\n");

if (cluster->find(i))

printf("x ");

else

printf(" ");

}

printf("\n");

fflush(stdout);

}

// Convenience method

void Lattice::printData() {

printf("%lf,", autocorTime);

printf("%lf,%lf,", aveEnergy, energyStDev);

printf("%lf,%lf,", avePhiAbs, phiStDev);

printf("%lf,%lf,", specificHeat, susceptibility);

printf("%lf,%lf,", cumulant, bimodality);

printf("%lf,%lf,", avePhi, scaleFactor);

157

}

// ---

// ---

// Set up periodic boundary conditions - only do once

void Lattice::getNeighbors(unsigned int site, siteNeighbors* toInit) {

if ((site + 1) % xDim == 0) {

toInit->nextX = site + 1 - xDim;

if (antiperiodic)

toInit->isRight = -1; // Antiperiodic

else

toInit->isRight = 1;

}

else {

toInit->nextX = site + 1;

toInit->isRight = 1;

}

if (site >= latticeSize - xDim)

toInit->nextY = site + xDim - latticeSize;

else

toInit->nextY = site + xDim;

if (site % xDim == 0) {

toInit->prevX = site + xDim - 1;

if (antiperiodic)

toInit->isLeft = -1; // Antiperiodic

else

toInit->isLeft = 1;

}

else {

toInit->prevX = site - 1;

toInit->isLeft = 1;

}

if (site < xDim)

toInit->prevY = site + latticeSize - xDim;

else

toInit->prevY = site - xDim;

}

// ---

// ---

// Calculation methods

// Calculate total energy by looping through lattice

double Lattice::calcTotalEnergy() {

double totalEnergy = 0;

double currentPhi;

for (unsigned int i = 0; i < latticeSize; i++) {

currentPhi = lattice[i];

totalEnergy -= currentPhi

* (lattice[neighbors[i]->nextX] * neighbors[i]->isRight

+ lattice[neighbors[i]->nextY]);

currentPhi *= currentPhi;

// Recall muSquared redefined

totalEnergy += muSquared * currentPhi;

currentPhi *= currentPhi;

// Recall lambda redefined

totalEnergy += lambda * currentPhi;

}

return totalEnergy / latticeSize;

}

// Note: does not return absolute value

double Lattice::calcAveragePhi() {

double currentPhi = 0;

158

for (unsigned int i = 0; i < latticeSize; i++)

currentPhi += lattice[i];

return currentPhi / latticeSize;

}

// Simple specific heat and susceptibility calculations

void Lattice::calcSpecificHeat() {

specificHeat = squaredEnergy - (aveEnergy * aveEnergy);

specificHeat *= latticeSize;

}

void Lattice::calcSusceptibility() {

susceptibility = squaredPhi - (avePhiAbs * avePhiAbs);

susceptibility *= latticeSize;

}

// ---

// ---

// Metropolis method

void Lattice::metropolis(unsigned int site) {

double currentPhi = lattice[site];

// Generate new value

double newValue = currentPhi + (3 * gsl_rng_uniform(generator) - 1.5);

double temp = newValue;

// Calculate energy difference

double difference;

difference = (currentPhi - newValue)

* (lattice[neighbors[site]->nextX] * neighbors[site]->isRight

+ lattice[neighbors[site]->nextY]

+ lattice[neighbors[site]->prevX] * neighbors[site]->isLeft

+ lattice[neighbors[site]->prevY]);

newValue *= newValue;

currentPhi *= currentPhi;

// Recall muSquared redefined

difference += muSquared * (newValue - currentPhi);

newValue *= newValue;

currentPhi *= currentPhi;

// Recall lambda redefined

difference += lambda * (newValue - currentPhi);

// Flip if difference <= 0, otherwise probabilistic acceptance

if (difference <= 0)

lattice[site] = temp;

else if (difference > 500 // Prevent underflow

|| gsl_rng_uniform(generator) < gsl_sf_exp(-difference))

lattice[site] = temp;

}

// ---

// ---

// Wolff methods for growing cluster and so on

// A convenience method that keeps me from having to write these few

// lines over and over again - adds to cluster probabilistically

// Value can be +/-lattice[toAdd] due to antiperiodic

// boundary conditions... need to pass as parameter

bool Lattice::clusterCheck(double site, double value, unsigned int toAdd) {

if (cluster->find(toAdd))

return false;

if (site * value < 0)

printf("%lf\n", site * value);

if (site * value > 250 || // Prevent underflow

gsl_rng_uniform(generator) < 1 - gsl_sf_exp(-2 * site * value)) {

159

cluster->insert(toAdd);

return true;

}

return false;

}

// Grows cluster from specified site - recursive

// Antiperiodic boundary conditions make a little ugly

void Lattice::growClusterPos(unsigned int site) {

unsigned int toCheck;

double current = lattice[site];

double value;

// Previous X

toCheck = neighbors[site]->prevX;

value = lattice[toCheck];

if (neighbors[site]->isLeft == -1 && value <= 0) {

value *= -1;

if (clusterCheck(current, value, toCheck))

growClusterNeg(toCheck);

}

else if (neighbors[site]->isLeft == 1 && value > 0)

if (clusterCheck(current, value, toCheck))

growClusterPos(toCheck);

// Next X

toCheck = neighbors[site]->nextX;

value = lattice[toCheck];

if (neighbors[site]->isRight == -1 && value <= 0) {

value *= -1;

if (clusterCheck(current, value, toCheck))

growClusterNeg(toCheck);

}

else if (neighbors[site]->isRight == 1 && value > 0)

if (clusterCheck(current, value, toCheck))

growClusterPos(toCheck);

// Previous Y

toCheck = neighbors[site]->prevY;

if (lattice[toCheck] > 0

&& clusterCheck(current, lattice[toCheck], toCheck))

growClusterPos(toCheck);

// Next Y

toCheck = neighbors[site]->nextY;

if (lattice[toCheck] > 0

&& clusterCheck(current, lattice[toCheck], toCheck))

growClusterPos(toCheck);

}

void Lattice::growClusterNeg(unsigned int site) {

unsigned int toCheck;

double current = lattice[site];

double value;

// Previous X

toCheck = neighbors[site]->prevX;

value = lattice[toCheck];

if (neighbors[site]->isLeft == -1 && value > 0) {

value *= -1;

if (clusterCheck(current, value, toCheck))

growClusterPos(toCheck);

}

else if (neighbors[site]->isLeft == 1 && value <= 0)

if (clusterCheck(current, value, toCheck))

growClusterNeg(toCheck);

// Next X

toCheck = neighbors[site]->nextX;

value = lattice[toCheck];

if (neighbors[site]->isRight == -1 && value > 0) {

160

value *= -1;

if (clusterCheck(current, value, toCheck))

growClusterPos(toCheck);

}

else if (neighbors[site]->isRight == 1 && value <= 0)

if (clusterCheck(current, value, toCheck))

growClusterNeg(toCheck);

// Previous Y

toCheck = neighbors[site]->prevY;

if (lattice[toCheck] <= 0

&& clusterCheck(current, lattice[toCheck], toCheck))

growClusterNeg(toCheck);

// Next Y

toCheck = neighbors[site]->nextY;

if (lattice[toCheck] <= 0

&& clusterCheck(current, lattice[toCheck], toCheck))

growClusterNeg(toCheck);

}

// Since this method trawls through the whole cluster (which has reached

// the end of its usefulness), let’s be efficient and clear it here

void Lattice::flipCluster() {

node* temp1;

node* temp2;

for (unsigned int i = 0; i < cluster->tableNumber; i++) {

temp1 = cluster->table[i];

temp2 = cluster->table[i];

while (temp1 != NULL) {

lattice[temp1->value] *= -1;

temp2 = temp2->next;

delete temp1;

temp1 = temp2;

}

cluster->table[i] = NULL;

}

cluster->size = 0;

}

unsigned int Lattice::wolff(unsigned int site) {

cluster->insert(site);

// Inelegant, but simpler than having just one method

if (lattice[site] > 0)

growClusterPos(site);

else

growClusterNeg(site);

unsigned int toReturn = cluster->size;

flipCluster();

return toReturn;

}

// ---

Code Snippet C.12: φ4 soliton simulation code

// ---

// Soliton/Simulation.cpp

// Simulation to calculate mass of soliton on lattice

// David Schaich -- daschaich@gmail.com

// Created 23 January 2005

// Last modified 1 March 2006

// ---

161

// ---

// Include directives

#include <math.h> // For floor and sqrt

#include <stdio.h> // For printf and fprintf

#include <gsl/gsl_sf_log.h> // For natural log

#include <gsl/gsl_math.h> // For power

#include "Lattice.hh" // Method and data declarations

// ---

// ---

// Most data moved into lattice class.

unsigned int randomSite = 0;

static const unsigned int bins = 21;

unsigned int counts[bins];

double midCounts = 0; // Make these double now

double maxCounts = 0; // to avoid casts later

// ---

// ---

// Convenience method to set central time slice (vertical) to zero

// This confines the kink to the center of the lattice if called

void zeroCenter(Lattice* toCenter) {

for (unsigned int i = toCenter->xDim / 2; i < toCenter->latticeSize;

i += toCenter->xDim)

toCenter->lattice[i] = 0;

}

// ---

// ---

// Start lattice in ground state to avoid metastable states

void coldStart(Lattice* toStart) {

for (unsigned int i = 0; i < toStart->latticeSize; i++) {

toStart->lattice[i] = (double)(i % toStart->xDim) -

(double)(toStart->xDim / 2);

toStart->lattice[i] /= toStart->xDim;

}

}

// ---

// ---

// Calculate autocorrelation time and necessary points of

// autocorrelation function

// Use average phi (abs) for autocorrelation time calculation

// Should be roughly the same for all variables

unsigned int calcAutocor(Lattice* toCalc, unsigned int sampleSize) {

// Generate Chi[0] for scaling purposes

for (unsigned int i = 0; i < sampleSize; i++)

toCalc->scaleFactor += (toCalc->phiDataAbs[i] * toCalc->phiDataAbs[i]);

toCalc->scaleFactor /= sampleSize;

toCalc->scaleFactor -= toCalc->avePhiAbs * toCalc->avePhiAbs;

toCalc->autocor[0] = 1;

// Only calculate points of autocorrelation function that

// roughly conform to exponential approximation

unsigned int t = 1;

while (t < sampleSize) {

for (unsigned int i = 0; i < sampleSize - t; i++)

toCalc->autocor[t] +=

(toCalc->phiDataAbs[i] * toCalc->phiDataAbs[i + t]);

162

toCalc->autocor[t] /= (sampleSize - t);

toCalc->autocor[t] -= toCalc->avePhiAbs * toCalc->avePhiAbs;

if (toCalc->autocor[t] < 0) // Not exponential!

break;

toCalc->autocor[t] /= toCalc->scaleFactor; // Scale by Chi[0]

if (toCalc->autocor[t] >= toCalc->autocor[t - 1]) // Not exponential!

break;

double temp = -gsl_sf_log (toCalc->autocor[t]);

temp = t / temp;

toCalc->autocorTime += temp;

t++;

}

return t;

}

// ---

// ---

// Bin values of phi and calculate bimodality

// Values of phi range from -maxPhi to +maxPhi

// Bin i of n will contain values greater than maxPhi(2*i/n - 1)

// and less than maxPhi*(2*(i+1)/n - 1) (where i = 0...n - 1)

void calcBimodality(Lattice* toCalc, unsigned int sampleSize) {

double lowerBound;

double upperBound;

for (unsigned int i = 0; i < bins; i++) // Zero histogram

counts[i] = 0;

for (unsigned int i = 0; i < sampleSize; i++)

for (unsigned int j = 0; j < bins; j++) {

lowerBound = toCalc->maxPhi * (2 * (double)j / (double)bins - 1);

upperBound = toCalc->maxPhi

* (2 * ((double)j + 1) / (double)bins - 1);

if (toCalc->phiData[i] >= lowerBound

&& toCalc->phiData[i] <= upperBound) {

counts[j]++;

break;

}

}

midCounts = counts[(bins - 1) / 2];

maxCounts = counts[0];

for (unsigned int i = 1; i < bins; i++)

if (counts[i] > maxCounts)

maxCounts = counts[i];

toCalc->bimodality = 1 - (midCounts / maxCounts);

}

// ---

// ---

// Main method runs simulation using command line parameters

int main(unsigned int argc, char** const argv) {

if (argc != 7) {

fprintf(stderr, "Usage: %s muSquared lambda xDim yDim ", argv[0]);

fprintf(stderr, "init sampleSize\n");

fflush(stderr);

exit(1);

}

// Data that depends on command-line parameters

double muSquared = atof(argv[1]) / 10; // muSquared

163

double lambda = atof(argv[2]) / 100; // Selfcoupling strength

unsigned int xDim = atoi(argv[3]); // Lattice x-dimension

unsigned int yDim = atoi(argv[4]); // Lattice y-dimension

unsigned int init = atoi(argv[5]); // Iterations for equilibration

unsigned int sampleSize = atoi(argv[6]); // Iterations for statistics

unsigned int latticeSize = xDim * yDim;

// Periodic and antiperiodic boundary conditions

// Expanded lattice class contains most data

Lattice* peri = new Lattice(muSquared, lambda, xDim, yDim, sampleSize,

false);

Lattice* anti = new Lattice(muSquared, lambda, xDim, yDim, sampleSize,

true);

// coldStart(anti); // Uncomment to initialize in ordered state

zeroCenter(anti); // Uncomment to constrain kink

// Initialize/equilibrate lattice

// Flip cluster and take data after every _gap_ Metropolis sweeps

unsigned int gap = 5;

for (unsigned int i = 0; i < init; i++) {

for (unsigned int j = 0; j < latticeSize * gap; j++) {

randomSite = (unsigned int) floor(latticeSize *

gsl_rng_uniform(peri->generator));

peri->metropolis(randomSite);

anti->metropolis(randomSite);

zeroCenter(anti); // Uncomment to constrain kink

}

randomSite = (unsigned int) floor(latticeSize *

gsl_rng_uniform(peri->generator));

peri->wolff(randomSite);

anti->wolff(randomSite);

zeroCenter(anti); // Uncomment to constrain kink

}

for (unsigned int i = 0; i < sampleSize; i++) {

for (unsigned int j = 0; j < latticeSize * gap; j++) {

randomSite = (int) floor(latticeSize *

gsl_rng_uniform(peri->generator));

peri->metropolis(randomSite);

anti->metropolis(randomSite);

zeroCenter(anti); // Uncomment to constrain kink

}

randomSite = (unsigned int) floor(latticeSize *

gsl_rng_uniform(peri->generator));

peri->wolff(randomSite);

anti->wolff(randomSite);

zeroCenter(anti); // Uncomment to constrain kink

// Raw data and averages

peri->energyData[i] = peri->calcTotalEnergy();

anti->energyData[i] = anti->calcTotalEnergy();

peri->aveEnergy += peri->energyData[i];

anti->aveEnergy += anti->energyData[i];

peri->phiData[i] = peri->calcAveragePhi();

anti->phiData[i] = anti->calcAveragePhi();

peri->phiDataAbs[i] = fabs(peri->phiData[i]);

anti->phiDataAbs[i] = fabs(anti->phiData[i]);

peri->avePhi += peri->phiData[i];

anti->avePhi += anti->phiData[i];

peri->avePhiAbs += peri->phiDataAbs[i];

anti->avePhiAbs += anti->phiDataAbs[i];

// Maximum (absolute) value of phi

if (peri->phiDataAbs[i] > peri->maxPhi)

peri->maxPhi = peri->phiDataAbs[i];

if (anti->phiDataAbs[i] > anti->maxPhi)

anti->maxPhi = anti->phiDataAbs[i];

164

// Squared and quartic averages

peri->squaredEnergy += peri->energyData[i] * peri->energyData[i];

anti->squaredEnergy += anti->energyData[i] * anti->energyData[i];

peri->squaredPhi += peri->phiData[i] * peri->phiData[i];

anti->squaredPhi += anti->phiData[i] * anti->phiData[i];

peri->quartPhi += gsl_pow_4(peri->phiData[i]);

anti->quartPhi += gsl_pow_4(anti->phiData[i]);

}

// Take averages

peri->aveEnergy /= sampleSize;

anti->aveEnergy /= sampleSize;

peri->avePhi /= sampleSize;

anti->avePhi /= sampleSize;

peri->avePhiAbs /= sampleSize;

anti->avePhiAbs /= sampleSize;

peri->squaredEnergy /= sampleSize;

anti->squaredEnergy /= sampleSize;

peri->squaredPhi /= sampleSize;

anti->squaredPhi /= sampleSize;

peri->quartPhi /= sampleSize;

anti->quartPhi /= sampleSize;

// Calculate specific heat and susceptibility

// Can put bootstrapping/jackknifing in methods

peri->calcSpecificHeat();

anti->calcSpecificHeat();

peri->calcSusceptibility();

anti->calcSusceptibility();

// Now for autocorrelation time and standard deviation calcs

unsigned int t = calcAutocor(peri, sampleSize);

unsigned int tanti = calcAutocor(anti, sampleSize);

// Use standard formula to generate standard deviations

// from autocorrelation time, average, sampleSize, etc

if (t == 1) { // Autocorrelation time zero

peri->autocorTime = 0;

peri->energyStDev = 0;

peri->phiStDev = 0;

}

else {

peri->autocorTime /= (t - 1);

peri->energyStDev = 2 * peri->autocorTime / sampleSize;

peri->energyStDev *= peri->squaredEnergy

- (peri->aveEnergy * peri->aveEnergy);

peri->energyStDev = sqrt(peri->energyStDev);

peri->phiStDev = 2 * peri->autocorTime / sampleSize;

peri->phiStDev *= peri->squaredPhi

- (peri->avePhiAbs * peri->avePhiAbs);

peri->phiStDev = sqrt(peri->phiStDev);

}

if (tanti == 1) { // Autocorrelation time zero

anti->autocorTime = 0;

anti->energyStDev = 0;

anti->phiStDev = 0;

}

else {

anti->autocorTime /= (tanti - 1);

anti->energyStDev = 2 * anti->autocorTime / sampleSize;

anti->energyStDev *= anti->squaredEnergy

- (anti->aveEnergy * anti->aveEnergy);

anti->energyStDev = sqrt(anti->energyStDev);

anti->phiStDev = 2 * anti->autocorTime / sampleSize;

anti->phiStDev *= anti->squaredPhi

- (anti->avePhiAbs * anti->avePhiAbs);

anti->phiStDev = sqrt(anti->phiStDev);

}

165

// Calculate binder cumulant

peri->cumulant = 1 - peri->quartPhi

/ (3 * peri->squaredPhi * peri->squaredPhi);

anti->cumulant = 1 - anti->quartPhi

/ (3 * anti->squaredPhi * anti->squaredPhi);

// Calculate bimodality

calcBimodality(peri, sampleSize);

calcBimodality(anti, sampleSize);

// Quantities for calculation of soliton mass

double bcDiff = anti->aveEnergy - peri->aveEnergy;

bcDiff *= latticeSize; // Total - not per lattice site

// Divide by lattice length in time direction in preparation for integral

double bcDiffLength = bcDiff / yDim;

printf("%lf,%lf,", muSquared, lambda);

printf("%lf,%lf,", bcDiff, bcDiffLength);

peri->printData();

anti->printData();

printf("\n");

return 0;

}

// ---

C.5 Mathematica Analysis Code

In this section we present a few simple Mathematica scripts used to extract esti-
mates for critical points of the φ4 phase transitions, the corresponding uncertainties, and
the masses of φ4 solitons. They are included in large part to illustrate and clarify our
earlier discussions of the methods we used to analyze our data.

Since these code snippets were relatively independent parts of largely uninteresting
programs, we have simply excerpted them to present here, with some editing for length
and readibility. An unfortunate side effect is that our scripts often involve certain vari-
ables defined elsewhere in the Mathematica notebook. To compensate, we will briefly
introduce each code snippet and summarize any variables it uses but are not defined it
its scope.

Code Snippet C.13 locates the peaks of the susceptibilities for all values of λ,
finds the corresponding half-maxima and uncertainty, uncovers the points satisfying the
B ≥ .95 and B ≤ .1 bounds of the (smoothed) bimodality (discussed in Subsection 7.4.2)
and finds the point between those bounds at which the bimodality is closest to B = .5.
All the data it uses is located in the four-dimensional table data[[k, j, i, m]], where
k specifies the size of the lattice, j specifies the value of λ, i specifies the value of µ2

0

and m specifies a field in the output of the simulation defined by the previous three
indices (for example, susceptibility is field 9, bimodality is field 11, and µ2

0 is field 1).
Since Mathematica apparently does not have a convenient way to extract the number of
elements in a table, we use the table length[[i, j]] to specify the number of µ2

0 data
points sampled at each lattice size i and value of λ j.

166

Code Snippet C.13 also uses the two-dimensional tables suscept, susceptErr,
bimod, bimodErr and testBimod, which are used to store (respectively) the estimates of
the critical point calculated using susceptibilities and bimodalities, the uncertainties in
those values, and the bimodalities corresponding to the susceptibility peak for each value
of the lattice size L and value of λ. The infinite-volume limit is later calculated (beyond
the scope of these code snippets) using simple linear regressions. Finally, there are the
simple helper tables sizeList and lambdaList, which simply map the array index to
the corresponding values of L and λ.

Code Snippet C.13: Mathematica script to analyze the susceptibility and
bimodality

For[k = 1, k <= 6, k++, (* Loop over lattice sizes *)

For[j = 1, j <= 9, j++, (* Loop over lambda values *)

susceptIndex = 1;

bimodIndex = 1;

bimodDiff = 2;

bimodLower = 0;

bimodUpper = 0;

For[i = 1, i <= length[[k, j]], i++,

(* Locate maximum of susceptibility *)

If[data[[k, j, i, 9]] >= data[[k, j, susceptIndex, 9]], susceptIndex = i];

(* Bimodality upper bound: last data point under .1 *)

If[data[[k, j, i, 11]] < .1, bimodUpper = i];

(* Bimodality lower bound: first data point above .95 *)

If[bimodLower == 0 && data[[k, j, i, 11]] > .95, bimodLower = i];

(* Bimodality estimate closest te .5 *)

If[Abs[.5 - data[[k, j, i, 11]]] < bimodDiff,

bimodDiff = Abs[.5 - data[[k, j, i ,11]]];

bimodIndex = i;

];

];

(* Make sure bimod bounds in proper order *)

(* Set new lower bound below upper bound if necessary *)

If[bimodLower < bimodUpper,

bimodLower = 0;

(* First data point above .95 below upper bound *)

For[i = bimodUpper, i <= length[[k, j]], i++,

If[bimodLower == 0 && data[[k, j, i, 11]] > .95, bimodLower = i];

];

];

(* Confine bimod value to within bounds *)

(* Only look for estimate (closest to .5) between bounds *)

For[i = bimodLower, i <= bimodUpper, i++,

If[Abs[.5 - data[[k, j, i, 11]]] < bimodDiff,

bimodDiff = Abs[.5 - data[[k, j, i, 11]]];

bimodIndex = i;

];

];

(* Store values calculated so far *)

suscept[[k, j]] = data[[k, j, susceptIndex, 1]];

testBimod[[k, j]] = data[[k, j, susceptIndex, 11]];

bimod[[k, j]] = data[[k, j, bimodIndex, 1]];

(* Find susceptibility half-maxima *)

susceptMax = data[[k, j, susceptIndex, 9]];

susceptLower = 1;

susceptUpper = 1;

167

(* Find first data point above half-max *)

For[i = susceptIndex, i >= 1, i--,

If[data[[k, j, i, 9]] > .5 * susceptMax, susceptUpper=i];

];

(* Find last data point below half-max *)

For[i = susceptIndex, i <= length[[k, j]], i++,

If[data[[k, j, i, 9]] > .5 * susceptMax, susceptLower = i];

];

(* Upper bound is last point before first above half-max *)

(* Lower bound is first point after last above half-max *)

If[susceptUpper != 1, susceptUpper = susceptUpper - 1];

If[susceptLower != length[[k,j]] && susceptLower != 1, susceptLower = susceptLower + 1];

(* Do we have enough data for clear bounds? *)

If[susceptLower == 1 || susceptLower == length[[k, j]], Print["Warning: lower half-max not

found: ", sizeList[[k]], "-", lambdaList[[j]]]];

If[susceptUpper == 1, Print["Warning: upper half-max not found: ", sizeList[[k]], "-",

lambdaList[[j]]]];

If[bimodLower == 0, Print["Warning: lower bimod bound not found: ", sizeList[[k]], "-",

lambdaList[[j]]];

bimodLower = 1];

If[bimodUpper == 0, Print["Warning: upper bimod bound not found: ", sizeList[[k]], "-",

lambdaList[[j]]];

bimodUpper = 1];

(* Store uncertainties *)

susceptErr[[k, j]] = (data[[k, j, susceptUpper, 1]] - data[[k, j, susceptLower, 1]]) / 2;

bimodErr[[k,j]] = (data[[k, j, bimodUpper, 1]] - data[[k, j, bimodLower, 1]]) / 4;

];

];

Code Snippet C.14 locates the stationary point of the Binder cumulant, considering
for simplicity only the largest three lattice sizes (in this case L = 20, 24 and 36, since this
particular code originally analyzed data from four-dimensional simulations). It operates
by first finding the value of µ2

0 below which simulations on larger lattices always have
larger Binder cumulants and the value above which simulations on larger lattices always
have smaller cumulants (at least until the cumulants are all randomly fluctuating around
zero). This calculation is simplified somewhat by considering the differences between
the Binder cumulants for the different lattice sizes, defined below as sepX, X = 1, 2, 3.
These two values correspond to the lower and upper bounds on the estimate of the critical
point, which is then identified by selecting the point between the two bounds at which
the separation between the cumulants is smallest. See Subsection 7.4.3 for background
and additional details.

Code Snippet C.14 uses several of the tables introduced in Code Snippet C.13 and
described above, namely data, length, sizeList and lambdaList (the Binder cumulant
is the tenth field in the final index of data). In addition, it also uses the one-dimensional
tables binder and binderErr, which store the estimates of the critical point and corre-
sponding uncertainties (respectively) for each value of λ.

Code Snippet C.14: Mathematica script to analyze the Binder cumulant

upperLimit = Table[0, {9}];

lowerLimit = Table[0, {9}];

168

binder = Table[0, {9}];

binderErr = Table[0, {9}];

For[j = 1, j <= 9, j++,

(* Only look at the points calculated for three largest lattice sizes*)

sep1 = Table[0, {length[[6, j]]}];

sep2 = Table[0, {length[[6, j]]}];

sep3 = Table[0, {length[[6, j]]}];

(* Sync 20^4 and 24^4 data with 36^4 data *)

iter24 = 0;

While[data[[5, j, 1 + iter24, 1]] != data[[6, j, 1, 1]], iter24++;];

iter20 = 0;

While[data[[4, j, 1 + iter20, 1]] != data[[6, j, 1, 1]], iter20++;];

(* Calculate differences between Binder cumulants for different lattice sizes *)

For[i = 1, i <= length[[6, j]], i++,

sep1[[i]] = data[[6, j, i, 10]] - data[[5, j, i + iter24, 10]];

sep2[[i]] = data[[6, j, i, 10]] - data[[4, j, i + iter20, 10]];

sep3[[i]] = data[[5, j, i + iter24, 10]] - data[[4, j, i + iter20, 10]];

];

(* Now go through and look at signs of differences *)

(* "Neg" (upper) limit when all preceding differences negative *)

(* "Pos" (lower) limit when all following differences positive *)

Neg = 0;

For[i = 1, i <= length[[6, j]], i++,

(* Need to ignore random fluctuations at very low values: require average > 0.25 *)

If[sep1[[i]] < 0 && sep2[[i]] < 0 && sep3[[i]] < 0 && Neg == i - 1

|| (data[[6, j, i, 10]] + data[[5, j, i + iter24, 10]] + data[[4, j, i + iter20, 10]])

/ 3 < .25,

Neg = i;

];

];

upperLimit[[j]] = data[[6, j, Neg, 1]];

Pos = length[[6, j]] + 1;

For[i = length[[6, j]], i > 0, i--,

If[sep1[[i]] > 0 && sep2[[i]] > 0 && sep3[[i]] > 0 && Pos == i + 1, Pos = i;];

];

(* Do we have enough data for clear bounds? *)

If[Pos == length[[6, j]] + 1,

Print[j, ": Warning: Binder cumulant never fully positive. Setting to max."]; Pos--;];

lowerLimit[[j]] = data[[6, j, Pos, 1]

];

(* Extract uncertainties from limits *)

binderErr[[j]] = (upperLimit[[j]] - lowerLimit[[j]]) / 2;

(* Extract fixed point (critical point) looking only at data between limits *)

(* Define smallest sum of differences as fixed point *)

min = 10;

index = 0;

For[i = Neg, i <= Pos, i++,

temp = Abs[sep1[[i]] + sep2[[i]] + sep3[[i]]];

If[temp < min, min = temp; index = i;];

binder[[j]] = data[[6, j, index, 1]];

];

];

Finally, Code Snippet C.15 analyzes the mass of the φ4 solitons by extract-
ing the difference in action (per time slice) between simulations run with periodic and
antiperiodic boundary conditions (field 4 in the fourth index of data) and propagating

169

the uncertainties in the actions. As described above in Section 7.6, we calculated these
values for lattices of five increasing sizes, L = 32, 48, 64, 128 and 256. After extracting
this data, we make a linear regression to the infinite-volume limit. The final section of
code plugs the continuum limit regressions into the integral, Eqn 7.27, used to calculate
the mass of the soliton. Since identical procedures are performed for µ2

0 = -1, -2.2 and
-4, we have cut the calculations for µ2

0 = -2.2 and -4.

In addition to data introduced from above, Code Snippet C.15 uses lambdaFit,
a equation for critical bare µ2

0 in terms of λ obtained through a nonlinear regression
involving terms up to and including order λ2 log[λ] (see Section 7.6). It also uses the
table beta, which maps the array index to the corresponding value of 1/λ.

Code Snippet C.15: Mathematica script to analyze the soliton mass

(* Mu^2 = -1 *)

actionData = Table[0, {100}];

massData = Table[0, {100}];

regressData = Table[0, {100}];

regressHighData = Table[0, {100}];

regressLowData = Table[0, {100}];

For[i = 1, i <= 100, i++,

(* Take continuum limit from different-sized lattices *)

(* Simple error propagation -- recall dividing by T *)

For[j = 1, j <= 5, j++,

tempData[[j]] = data[[i,j,i,4]];

tempWeights[[j]] = Abs[tempData[[j]] * Sqrt[(data[[i,j,i,7] / data[[i,j,i,6])^2

+ (data[[i,j,i,18] / data[[i,j,i,17])^2] / (2 * sizeData[[j]]);

];

regress = Regress[tempData, {i, x}, x, Weights -> tempWeights];

regressData[[i]] = regress[[1, 2, 1, 1, 1]] * data[[1, 5, i, 2]]; (* (Delta S / T) * Lambda *)

(* High estimate from errors *)

regressHighData[[i]] = (regress[[1, 2, 1, 1, 1]] + regress[[1, 2, 1, 1, 2]]) * data[[1, 5, i, 2]];

(* Low estimate from errors *)

regressLowData[[i]] = (regress[[1, 2, 1, 1, 1]] - regress[[1, 2, 1, 1, 2]]) * data[[1, 5, i, 2]];

(* We’re going to square this, so remove negative values by hand *)

If[regress[[1, 2, 1, 1, 1]] > 0

actionData[[i]] = {{1 / data[[1, 5, i, 2]], (regress[[1, 2, 1, 1, 1]] * data[[1, 5, i, 2]])^2},

ErrorBar[2 * regress[[1, 2, 1, 1, 2]] * data[[1, 5, i, 2]]},

actionData[[i]] = {1 / data[[1, 5, i, 2]], 0}, ErrorBar[0]};

];

(* ListInterpolation to get integrable functions from data *)

Integrand = ListInterpolation[regressData, {beta}];

IntegrandHigh = ListInterpolation[regressHighData, {beta}];

IntegrandLow = ListInterpolation[regressLowData, {beta}];

(* Find critical beta *)

betaC = FindRoot[lambdaFit[[1, 2, 1, 2]] + lambdaFit[[1, 2, 2, 2]] * x

+ lambdaFit[[1, 2, 3, 2]] * x * Log[x]

+ lambdaFit[[1, 2, 4, 2]] * x^2 * Log[x] == -1, {x, .1}];

betaC = 1 / betaC[[1, 2]]

(* Calculate masses -- again set negatives to zero *)

(* Uncertainties from high and low estimates (need absolute value) *)

For[i = 1, i <= 100, i++,

massData[[i]] = {{1 / data[[1, 5, i, 2]], (Integrate[Integrand[x], {x, betaC,

1/data[[1, 5, i, 2]]}])^2 * (data[[1, 5, i, 2]])^2},

ErrorBar[Abs[(Integrate[IntegrandHigh[x], {x, betaC, 1 / data[[1, 5, i, 2]]}]

- Integrate[IntegrandLow[x], {x, betaC, 1 / data[[1, 5, i, 2]]}])] / 2]};

If[Integrate[Integrand[x], {x, betaC, 1/data[[1, 5, i, 2]]}] < 0,

170

massData[[i]] = {{1/data[[1, 5, i, 2]], 0}, ErrorBar[0]};

];

];

];

(* Mu^2 = -2.2 *)

[...]

(* Mu^2 = -4 *)

[...]

171

Appendix D: Mathematica
Regressions

In this final appendix we present the output of the nonlinear regressions we used to
determine the continuum limit of the two-dimensional critical coupling constant [λ/µ2]crit

as a function of λ, as described above in Section 7.5. These regressions were originally
performed using Mathematica 5.0 running on Linux. When we later happened to run
the same program on a Windows machine running Mathematica 5.2, we were surprised
to notice striking disagreements with our earlier results. In this section we present the
output of regressions performed on both platforms, for each of the following three models:

Linear :
[
λ/µ2

]
= c1 + c2λ (D.1)

λ log[λ] :
[
λ/µ2

]
= c1 + c2λ+ c3λ log[λ] (D.2)

λ2 log[λ] :
[
λ/µ2

]
= c1 + c2λ+ c3λ log[λ] + c4λ

2 log[λ] (D.3)

Although Mathematica is capable of converting its ‘notebook’ documents into
LATEX, the output produced in this manner does not play nicely with the other children.
Accordingly, we have converted the relevant information into images, which we include
below. Figs. D.1 and D.2 show that linear regressions performed on both platforms
agree perfectly, while Figs. D.3 through D.6 show serious disagreements in the results of
nonlinear regressions between the two platforms. As we mentioned above in Section 7.5,
we adopted the results from Mathematica 5.2 on Windows, since that is a newer version
of the software operating in its natural habitat.

172

Figure D.1: Linear regression – Mathematica 5.0 – Linux

173

Figure D.2: Linear regression – Mathematica 5.2 – Windows

174

Figure D.3: λ log[λ] regression – Mathematica 5.0 – Linux

175

Figure D.4: λ log[λ] regression – Mathematica 5.2 – Windows

176

Figure D.5: λ2 log[λ] regression – Mathematica 5.0 – Linux

177

Figure D.6: λ2 log[λ] regression – Mathematica 5.2 – Windows

178

Bibliography

[1] A. Ardekani and A. G. Williams. Lattice Study of the Kink Soliton and the
Zero-mode Problem for φ4 in Two Dimensions. arXiv:hep-lat/9811002, Nov. 1998.

[2] D. C. Baird. Experimentation: An Introduction to Measurement Theory and
Experiment Design. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1995.

[3] J. Balog, A. Duncan, R. Willey, F. Niedermayer, and P. Weisz. The 4d One
Component Lattice φ4 Model in the Broken Phase Revisited. Nucl. Phys. B,
714:256, May 2005.

[4] J. Balog, F. Niedermayer, and P. Weisz. Repairing Stevenson’s Step in the 4d Ising
Model. arXiv:hep-lat/0601016, Jan. 2006.

[5] C. J. Bednarzyk. Monte Carlo Simulations of φ4 Theory. Honors Thesis: Amherst
College, May 2001.

[6] B. A. Berg. Markov Chain Monte Carlo Simulations and Their Statistical
Analysis. World Scientific, Singapore, 2004.

[7] K. Binder and D. W. Heermann. Monte Carlo Simulation in Statistical Physics:
An Introduction. Springer, Berlin, fourth edition, 2005.

[8] A. I. Bochkarev and R. S. Willey. Electroweak Parameters in the M̄S-Scheme.
arXiv:hep-ph/9607240, July 1996.

[9] R. C. Brower and P. Tamayo. Embedded Dynamics for φ4 Theory. Phys. Rev.
Lett., 62:1087, 1989.

[10] S. Caracciolo, A. J. Guttmann, I. Jensen, A. Pelissetto, A. N. Rogers, and A. D.
Sokal. Correction-to-Scaling Exponents for Two-Dimensional Self-Avoiding Walks.
arXiv:cond-mat/0409355, Sep. 2004.

[11] P. Cea, M. Consoli, and L. Cosmai. Large Logarithmic Rescaling of the Scalar
Condensate: New Lattice Evidences. arXiv:hep-lat/0407024, July 2004.

[12] P. Cea, M. Consoli, and L. Cosmai. Large Logarithmic Rescaling of the Scalar
Condensate: A Subtlety with Substantial Phenomenological Implications.
arXiv:hep-lat/0501013, Jan. 2005.

[13] S.-J. Chang. Existence of a Second-Order Phase Transition in a Two-Dimensional
φ4 Field Theory. Phys. Rev. D., 13(6):2778, 1976.

[14] B. A. Cipra. The Ising Model Is NP-Complete. SIAM News, 33(6), July 2000.
http://www.siam.org/pdf/news/654.pdf (last accessed 10 May 2006).

179

[15] J. C. Ciria and A. Tarancón. Renormalization Group Study of the Soliton Mass in
the (1 + 1)-Dimensional λφ4 Lattice Model. Phys. Rev. D., 49(2):1020, Jan. 1994.

[16] A. K. De, A. Harindranath, J. Maiti, and T. Sinha. Topological Charge in 1 + 1
Dimensional Lattice φ4 Theory. Phys. Rev. D., 72(9):094504, Nov. 2005.

[17] I. Dukovski, J. Machta, and L. V. Chayes. Invaded Cluster Simulations of the XY
Model in Two and Three Dimensions. Phys. Rev. E., 65:026702, Jan. 2002.

[18] F. J. Dyson. The S Matrix in Quantum Electrodynamics. Phys. Rev., 75(11):1736,
June 1949.

[19] R. P. Feynman and A. R. Hibbs. Quantum Mechanics and Path Integrals.
McGraw-Hill, New York, 1965.

[20] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, M. Booth, and F. Rossi.
GNU Scientific Library: Reference Manual. Network Theory Ltd., Bristol, second
edition, 2003. http://www.gnu.org/software/gsl/ (last accessed 10 May 2006).

[21] T. W. Gamelin. Complex Analysis. Undergraduate Texts in Mathematics.
Springer, New York, 2001.

[22] M. T. Goodrich and R. Tamassia. Data Structures and Algorithms in Java. John
Wiley & Sons, Hoboken, third edition, 2004. http://www.datastructures.net (last
accessed 10 May 2006).

[23] B. Hatfield. Quantum Field Theory of Point Particles and Strings, volume 75 of
Frontiers in Physics. Westview Press, Boulder, Colorado, 1998.

[24] E. Ising. Beitrag zur Theorie des Ferromagnetizmus. Z. Phys., 31:253, 1925.

[25] A. V. Izyumov and K. V. Samokhin. Field Theory of Self-Avoiding Walks in
Random Media. arXiv:cond-mat/9909407, Sep. 1999.

[26] J. D. Jackson. Classical Electrodynamics. John Wiley & Sons, Inc., New York,
third edition, 1999.

[27] H. Kleinert and V. Schulte-Frohlinde. Critical Properties of φ4-Theories. World
Scientific, Singapore, 2001.

[28] P. Kraus and D. Griffiths. Renormalization of a Model Quantum Field Theory.
Am. J. Phys., 60(11):1013, Nov. 1992.

[29] L. D. Landau and E. M. Lifshitz. The Classical Theory of Fields, volume 2 of
Course of Theoretical Physics. Butterworth-Heinemann, Oxford, fourth edition,
2000.

[30] G. F. Lawler. A Self-Avoiding Random Walk. Duke Math. J., 47(3):655–693, Sep.
1980.

[31] G. P. Lepage. What is Renormalization? arXiv:hep-ph/0506330, June 1989.

[32] W. Loinaz and R. S. Willey. Monte Carlo Simulation Calculation of Critical
Coupling Constant for Continuum φ4 Theory. Phys. Rev. D, 58:076003, Sep. 1998.

[33] M. Lüscher and P. Weisz. Scaling Laws and Triviality Bounds in the Lattice φ4

Theory: (I). One-Component Model in the Symmetric Phase. Nuc. Phys. B,
290:25–60, 1987.

180

[34] M. Lüscher and P. Weisz. Scaling Laws and Triviality Bounds in the Lattice φ4

Theory: (II). One-Component Model in the Phase with Spontaneous Symmetry
Breaking. Nuc. Phys. B, 295:65–92, 1988.

[35] J. Machta, Y. S. Choi, A. Lucke, T. Schweizer, and L. V. Chayes. Invaded Cluster
Algorithm for Equilibrium Critical Points. Phys. Rev. Lett., 75:2792–2795, Oct.
1995.

[36] J. Machta, Y. S. Choi, A. Lucke, T. Schweizer, and L. V. Chayes. Invaded Cluster
Algorithm for Potts Models. Phys. Rev. E., 54:1332–1345, Aug. 1996.

[37] M. Matsumoto and T. Nishimura. A 623-Dimensionally Equidistributed Uniform
Pseudorandom Number Generator. ACM Transactions on Modeling and Computer
Simulation, 8:3, Jan. 1998.
http://www.math.sci.hiroshima-u.ac.jp/∼m-mat/MT/emt.html (last accessed 10
May 2006).

[38] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.
Equations of State Calculations by Fast Computing Machines. J. Chem. Phys.,
21(6):1087–1092, June 1953.

[39] I. Montvay and G. Münster. Quantum Fields on a Lattice. Cambridge Monographs
on Mathematical Physics. Cambridge University Press, Cambridge, 1994.

[40] M. E. J. Newman and G. T. Barkema. Monte Carlo Methods in Statistical Physics.
Oxford University Press, Oxford, 1999.

[41] L. Onsager. Crystal Statistics I. A Two-Dimensional Model with an
Order-Disorder Transition. Phys. Rev., 65:117, 1944.

[42] Z. Parsa. Topological Solitons in Physics. Am. J. Phys., 47:56, Jan. 1978.

[43] M. E. Peskin and D. V. Schroeder. An Introduction to Quantum Field Theory.
Addison-Wesley Publishing Co., Reading, MA, 1995.

[44] M. Di Pierro. From Monte Carlo Integration to Lattice Quantum Chromo
Dynamics. arXiv:hep-lat/0009001, Oct. 2001.

[45] M. Di Pierro. An Algorithmic Approach to Quantum Field Theory.
arXiv:hep-lat/0509013, Sep. 2005.

[46] R. B. Potts. Some Generalized Order-Disorder Transformations. Proc. Cambridge
Philos. Soc., 48:106, 1952.

[47] N. Prokof’ev and B. Svistunov. Worm Algorithms for Classical Statistical Models.
Phys. Rev. Lett., 87(16):160601, Oct. 2001.

[48] N. V. Prokof’ev, B. V. Svistunov, and I. S. Tupitsyn. “Worm” Algorithm in
Quantum Monte Carlo Simulations. Phys. Lett. A, 238:253, Feb. 1998.

[49] R. Rajaraman. Solitons and Instantons. North Holland, Amsterdam, 1987.

[50] P. Ramond. Field Theory: A Modern Primer, volume 51 of Frontiers in Physics.
The Benjamin/Cummings Publishing Co., Inc., Reading, MA, first edition, 1981.

[51] L. H. Ryder. Quantum Field Theory. Cambridge University Press, Cambridge,
second edition, 1996.

181

[52] A. W. Sandvik. Ground State Projection of Quantum Spin Systems.
arXiv:cond-mat/0509558, Sep. 2005. To appear in Phys. Rev. Lett.

[53] S. R. Shannon, T. C. Choy, and R. J. Fleming. An Improved Perturbation
Approach to the 2D Edwards Polymer. arXiv:cond-mat/9511010, Nov. 1995.

[54] J. Smit. Introduction to Quantum Fields on a Lattice, volume 15 of Cambridge
Lecture Notes in Physics. Cambridge University Press, Cambridge, 2002.

[55] A. D. Sokal. Monte Carlo Methods for the Self-Avoiding Walk.
arXiv:hep-lat/9405016, May 1994.

[56] F. Spitzer. Principles of Random Walk, volume 34 of Graduate Texts in
Mathematics. Springer-Verlag, New York, second edition, 2001.

[57] P. M. Stevenson. Comparison of Conventional RG Theory with Lattice Data for
the 4d Ising Model. arXiv:hep-lat/0507038, July 2005.

[58] X. Sun. Monte Carlo Studies of Three-Dimensional O(1) and O(4) φ4 Theory
Related to Bose-Einstein Condensation Phase Transition Temperatures. Phys.
Rev. E., 67(6):066702, June 2003.

[59] R. H. Swendsen and J.-S. Wang. Nonuniversal Critical Dynamics in Monte Carlo
Simulations. Phys. Rev. Lett., 58:86, 1987.

[60] J. R. Taylor. An Introduction to Error Analysis. A Series of Books in Physics.
University Science Books, Mill Valley, CA, 1982.

[61] W. Thirring. Classical Mathematical Physics: Dynamical Systems and Field
Theories. Springer, New York, third edition, 2003.

[62] J. S. Townsend. A Modern Approach to Quantum Mechanics. University Science
Books, Sausalito, CA, 2000.

[63] M. Veltman. Diagrammatica. Cambridge Lecture Notes in Physics. Cambridge
University Press, Cambdridge, 1994.

[64] A. Watson. The Quantum Quark. Cambridge University Press, Cambridge, 2004.

[65] T. Weidig. Quantum Mass Correction of Solitons in (1 + 1)D via Numerical
Methods. arXiv:hep-th/9912005, Dec. 1999.

[66] S. Weinberg. High-Energy Behavior in Quantum Field Theory. Phys. Rev.,
118(3):838, May 1960.

[67] E. W. Weisstein. Random walk – 2 dimensional. MathWorld – A Wolfram Web
Resource, 2006. http://mathworld.wolfram.com/RandomWalk2-Dimensional.html
(last accessed 10 May 2006).

[68] G. V. Wilson. Where’s the Real Bottleneck in Scientific Computing? Am.
Scientist, 94(1):5, Jan. 2006.
http://www.americanscientist.org/template/AssetDetail/assetid/48548 (last
accessed 24 April 2006).

[69] U. Wolff. Collective Monte Carlo Updating for Spin Systems. Phys. Rev. Lett.,
62(4):361, Jan. 1989.

[70] A. Zee. Quantum Field Theory in a Nutshell. Princeton University Press,
Princeton, 2003.

182

