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We present a brief overview of our recent lattice studies of SU(3) gauge theory with

Nf = 8 and 12 fundamental fermions, including some new and yet-unpublished results.

To explore relatively unfamiliar systems beyond lattice QCD, we carry out a wide variety
of investigations with the goal of synthesizing the results to better understand the non-

perturbative dynamics of these systems. All our findings are consistent with conformal

infrared dynamics in the 12-flavor system, but with 8 flavors we observe puzzling behavior
that requires further investigation.

Our new Monte Carlo renormalization group technique exploits the Wilson flow

to obtain more direct predictions of a 12-flavor IR fixed point. Studies of Nf = 12
bulk and finite-temperature transitions also indicate IR conformality, while our current

results for the 8-flavor phase diagram do not yet provide clear signs of spontaneous chiral
symmetry breaking. From the Dirac eigenvalue spectrum we extract the mass anomalous

dimension γm, and predict γ?m = 0.32(3) at the 12-flavor fixed point. The Nf = 8 system

again shows interesting behavior, with a large anomalous dimension across a wide range
of energy scales. We use the eigenvalue density to predict the chiral condensate, and

compare this approach with direct and partially-quenched
〈
ψψ

〉
measurements.

1. Introduction and overview

The Higgs boson discovered at the Large Hadron Collider in 2012 remains consistent

with the minimal standard model.1 Models of new strong dynamics in which the

Higgs is a composite must describe this light scalar in order to remain phenomeno-

logically viable. Such strongly-coupled systems require non-perturbative analysis,

which has inspired several recent large-scale lattice studies. Lattice investigations

beyond QCD not only need to identify promising models to consider, we also need

to determine the best approaches to use; in many cases the most effective methods

differ from the familiar techniques of lattice QCD. Our group has recently focused

on two models, Nf = 8 and 12 fundamental fermions interacting with SU(3) gauge

fields.2–17 We have developed several improved methods to explore these and other

models, focusing on systems likely to exhibit conformal or approximately-conformal

dynamics in the infrared.

In these proceedings we briefly present some methods we developed and results

we obtained for the 8- and 12-flavor models, including some new and preliminary

findings that will be published in the future. All our 12-flavor results are consistent

with IR conformality, while with Nf = 8 we observe some puzzling behavior that we
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Fig. 1. Bulk and finite-temperature transitions for Nf = 8 (left) and Nf = 12 (right).8 The ��S4

phase is shaded and the��S4 bulk transitions are shown in black. The colored points indicate finite-

temperature transitions determined primarily from the RG-blocked Polyakov loop and eigenvalue

density.

continue to investigate. After reviewing the lattice phase diagrams for these models

in Section 2, we present our new Wilson-flowed Monte Carlo renormalization group

(MCRG) method in Section 3. In Section 4 we summarize our recent studies of the

Dirac eigenvalue spectrum, finally considering the chiral condensate in Section 5.

Our studies use a plaquette gauge action that includes an adjoint term with

coefficient βA = −0.25βF , and nHYP-smeared staggered fermions with smearing

parameters α = (0.5, 0.5, 0.4). In earlier work3,8 we showed that both the 8- and 12-

flavor systems possess an unusual phase where the single-site shift symmetry of the

staggered action is spontaneously broken (“��S4”). This strong-coupling lattice phase

is quite generic and has been observed by all Nf = 12 investigations using improved

staggered actions.9,11 First-order transitions separate the ��S4 phase from the weak-

coupling phase where the continuum limit is defined. This prevents simulations from

investigating stronger couplings. For Nf = 12 we can still access a large coupling

range, but in the 8-flavor case the presence of the��S4 phase prevents, at least for now,

resolution of the puzzles we encounter in our studies. In the following we present

results up to the ��S4 phase, but our focus is on the weak-coupling side.

2. The finite temperature phase structure

We begin by showing in Fig. 1 both finite-temperature transitions (colored points)

as well as the first-order bulk transitions (black lines) that separate the ��S4 phase

from the weak-coupling phase. The bulk transitions are determined from the ��S4

order parameters.3 We also use the Dirac eigenvalue density ρ(λ) to identify both

bulk and finite-temperature transitions. In addition, we discovered that by measur-

ing observables such as the Polyakov loop on RG-blocked lattices, we can greatly

enhance signals of the finite-temperature transition, without distorting the physics.8

For Nf = 12 in the right panel of Fig. 1, the finite-temperature transitions

occur at the same βF as the ��S4 bulk transitions. That is, we move directly from

the ��S4 phase into a chirally symmetric weak-coupling phase, as expected for an

IR-conformal system.
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Fig. 2. Preliminary results for the Nf = 12 bare step-scaling function sb from Wilson-flowed

MCRG two-lattice matching, illustrating the existence of an IR fixed point. We match 243×48
to 123×24 lattice volumes using three different renormalization schemes corresponding to HYP

smearing parameters α = (0.6, 0.2, 0.2), α = (0.6, 0.3, 0.2) and α = (0.65, 0.3, 0.2), respectively.
The dashed line is the perturbative prediction for asymptotically weak coupling.

For Nf = 8, at sufficiently large fermion mass m there is a region in between the

��S4 phase and the chirally symmetric weak-coupling phase, where the lattice systems

are confined and chirally broken. For these m, the locations of the finite-temperature

transitions change with Nt as expected for QCD-like systems. However, as we ap-

proach the chiral limit (which is required to explore IR-conformal or approximately-

conformal dynamics), this scaling is lost and all the finite-temperature transitions

run into the ��S4 phase, with no clear sign of spontaneous chiral symmetry breaking.

At very small mass the finite spatial volume of the lattice can distort the finite-

temperature phase diagram. We are currently comparing 243×12 and 363×12 simula-

tions to study these effects, with preliminary results indicating complete consistency

for m ≥ 0.005. It is interesting to note that we are able to simulate directly in the

chiral limit on 243×48 volumes everywhere in the weak-coupling and ��S4 phases,

and on 323×64 volumes for all couplings that we have tested so far (βF ≥ 4.8).

This is very different from the usual QCD-like behavior, which we have checked

with Nf = 4 simulations. A lattice action where stronger couplings can be reached,

before encountering a bulk transition, would help resolve this puzzle.

3. The step scaling function with Wilson-flowed MCRG

Running coupling studies can connect the well-understood perturbative regime to

the strong-coupling region where chiral symmetry breaking or IR-conformal dy-

namics emerges. We use Monte Carlo renormalization group (MCRG) methods to

determine the bare step scaling function sb.
2,12 In the past we used an MCRG two-

lattice matching approach that required independent optimization of the RG block-

ing transformation at every gauge coupling. This predicted a step scaling function

that was a composite, probing a different renormalization scheme at every coupling.

Recently we developed a new technique that combines Wilson-flow smearing with
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Fig. 3. Eigenmode scaling predictions for the scale-dependent mass anomalous dimension γm
for Nf = 4.14 In the right panel we rescale λ to a common lattice spacing.

MCRG two-lattice matching.12 Our new method starts with a short Wilson flow

integration before the RG blocking steps. The Wilson flow moves the configurations

in the action-space without changing their infrared properties. We use the flow time

as the optimization parameter to approach the renormalized trajectory of any fixed

RG blocking transformation. This way we determine a step scaling function that

corresponds to a unique RG β function.

By changing the blocking transformation we can predict the β function in differ-

ent renormalization schemes. Fig. 2 shows our preliminary results for the Nf = 12

system using three blocking transformations. Each blocking transformation involves

two sequential HYP smearings, with different smearing parameters specified in the

caption. All three renormalization schemes show an infrared fixed point (IRFP),

and we observe the location of the IRFP to depend on the scheme.

The Wilson-flowed MCRG method is fully non-perturbative and can be applied

to any other model, even at strong coupling. There is no need for special boundary

conditions, allowing configurations to be reused. The ability to compare different

renormalization schemes is also valuable, and we can gain additional numerical

control by choosing a scheme that moves the IRFP to a convenient coupling.

4. Dirac eigenmodes and the anomalous dimension

Our studies of the Dirac eigenvalue spectrum turned out to be particularly fruitful.

We have shown how to extract the energy-dependent mass anomalous dimension

γm(λ) from the RG-invariant eigenmode number ν(λ),7 and found that combining

multiple lattice volumes and gauge couplings provides robust predictions across a

wide range of energy scales.14 We tested our procedure with the 4-flavor system,

illustrated in Fig. 3. The left panel shows γm vs. λ for several values of βF ; in the

right panel we rescale λ to a common lattice spacing a7.4 corresponding to βF = 7.4.

We obtain a universal scaling curve that connects the one-loop asymptotic behavior

at large λ to the onset of chiral symmetry breaking at small λ. These results give

us great confidence in our method.

Fig. 4 illustrates our results for the 12- and 8-flavor systems. The behavior of
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Fig. 4. Eigenmode scaling predictions for the scale-dependent mass anomalous dimension γm
for Nf = 12 (left) and Nf = 8 (right).14

Nf = 12 in the left panel is very different from the 4-flavor case. At the stronger

couplings βF = 3.0 and 4.0 the anomalous dimension increases with the energy scale,

which can be considered a sort of backward flow. We start seeing asymptotically-

free dynamics only for βF > 6.0. The data are consistent with an IRFP around

βF = 5.0, and contradict a chirally broken scenario. By extrapolating the predictions

at different βF to the limit λ → 0 we predict a common value γ?m = 0.32(3) that

we identify as the scheme-independent mass anomalous dimension at the IR fixed

point. A prominent feature of our 12-flavor results is the strong dependence on

the irrelevant, but apparently slowly-running, gauge coupling. With 243×48 and

323×64 lattice volumes, we can only access λ & 0.1 before encountering finite-volume

effects. The wide variation 0.2 . γm . 0.6 predicted by different βF in this range

of λ demonstrates the importance of considering several gauge coupling values, and

may be relevant to other analyses.

The right panel of Fig. 4 shows our results for Nf = 8. Here the appearance of

the ��S4 phase around βF ≈ 4.6 restricts us to a much smaller range of βF than for

Nf = 12. Since none of our 8-flavor calculations show spontaneous chiral symmetry

breaking (even on volumes as large as 243×48 and 323×64), we carried out this

analysis with m = 0. For fixed βF we find hardly any energy dependence in our

results for γm. At the same time, we observe significant changes as we vary the

coupling. These results suggest that the Nf = 8 system is very close to the edge of

the conformal window.

If our Nf = 8 simulations probe the ε-regime of a chirally broken system, then

the distribution of the lowest eigenmodes could be compared with random matrix

theory to predict the chiral condensate Σ. However, our data are not consistent with

ε-regime scaling; the low-lying eigenmodes do not scale linearly with the volume,

but rather with an exponent consistent with the anomalous dimension predicted by

the mode number analysis. With our present 8-flavor data we cannot distinguish

walking dynamics from IR conformality.
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Fig. 5. Direct measurements of
〈
ψψ

〉
with mv = ms (red) compared to Σ ≡ πρ(0) (blue) and

ΣPQ (green). Left: Nf = 12 at βF = 2.8, with the line a quadratic fit to
〈
ψψ

〉
for 0.01 ≤ ms ≤

0.02. Data with m ≥ 0.01 have negligible finite-volume effects. Right: Nf = 8 at βF = 4.8, with

the line a quadratic fit to
〈
ψψ

〉
for 0.005 ≤ ms ≤ 0.02 where finite-volume effects are negligible.

5. Chiral condensate

We typically calculate
〈
ψψ

〉
with equal sea and valence fermion masses, m = ms =

mv. In the m = 0 chiral limit,
〈
ψψ

〉
is the order parameter of spontaneous chiral

symmetry breaking. At non-zero fermion mass, however,
〈
ψψ

〉
is dominated by a

UV-divergent term ∝ mv/a
2 (Fig. 5), which complicates the m→ 0 chiral extrapo-

lation. We are investigating two alternative ways of reducing this sensitivity to the

fermion mass. The first approach is to determine the chiral condensate from the

low-lying eigenvalue density of the massless Dirac operator, Σ ≡ πρ(0) based on the

Banks–Casher relation. Second, we carry out partially-quenched calculations with

several mv 6= ms, and define ΣPQ ≡ limmv→0

〈
ψψ

〉
PQ

with fixed ms.

These two approaches give consistent results that are significantly different from

direct measurements of
〈
ψψ

〉
with mv = ms, as shown in Fig. 5. For the 12-flavor

system at the rather strong coupling βF = 2.8 (left panel), polynomial extrap-

olations of
〈
ψψ

〉
predict a non-zero value in the limit ms → 0, but this result

is inconsistent with the data for Σ. Since Σ is free of ultraviolet divergences and

therefore a more reliable observable, we consider this additional evidence that the

12-flavor system is IR conformal, with vanishing chiral condensate.

Our preliminary results for Nf = 8 at βF = 4.8 are shown in the right panel of

Fig. 5. At this coupling, the chiral condensate obtained from extrapolating
〈
ψψ

〉
is very small, and could be consistent with the prediction from Σ. Even so, we are

cautious of such an extrapolation over at least an order of magnitude, which is

caused by non-zero valence mass contributions dominating
〈
ψψ

〉
.

6. Conclusion

These proceedings briefly overviewed our ongoing work to synthesize results from

wide-ranging lattice investigations of SU(3) gauge theories with Nf = 8 and 12.

We presented a new Wilson-flowed MCRG method as well as a new technique to

extract the mass anomalous dimension γm from the Dirac eigenvalue spectrum.
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Both of these approaches indicate the presence of an IR fixed point for Nf = 12,

and the Dirac spectrum predicts the scheme-independent γ?m = 0.32(3) at the IRFP.

The 12-flavor lattice phase diagram and chiral condensate are also consistent with

IR conformality. For Nf = 8 our results are more puzzling and require further

investigation. The finite-temperature transitions run into the ��S4 lattice phase, with

no clear signs of spontaneous chiral symmetry breaking, while the Dirac spectrum

predicts a large anomalous dimension across a wide range of energy scales.
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