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We present the spectrum of baryons in a new SU(4) gauge theory with fundamental fermion
constituents. The spectrum of these bosonic baryons is of significant interest for composite dark
matter theories. Here, we compare the spectrum and properties of SU(3) and SU(4) baryons, and
then compute the dark-matter direct detection cross section via Higgs boson exchange for TeV-
scale composite dark matter arising from a confining SU(4) gauge sector. Comparison with the
latest LUX results leads to tight bounds on the fraction of the constituent-fermion mass that may
arise from electroweak symmetry breaking. Lattice calculations of the dark matter mass spectrum
and the Higgs-dark matter coupling are performed on quenched 16% x 32, 32% x 64, 48% x 96, and
64> x 128 lattices with three different lattice spacings, using Wilson fermions with moderate to heavy
pseudoscalar meson masses. Our results lay a foundation for future analytic and numerical study

of composite baryonic dark matter.

PACS numbers: 11.10.Hi, 11.15.Ha, 95.35.+d

I. INTRODUCTION

Weakly-interacting massive particles provide an in-
triguing but increasingly constrained model for dark mat-
ter. Weak interactions play an essential role in obtain-
ing a thermal relic abundance and may play a signifi-
cant role in obtaining an asymmetric abundance [1H4] of
dark matter. However, electrically-neutral particles with
standard model strength couplings to the weak neutral
current (e.g., a Dirac fermion with the quantum numbers
of a neutrino) have been ruled out for over two decades.
Now that a particle consistent with the Higgs boson has
been observed [B] [6], recent bounds from direct detection
experiments [7THI] significantly constrain the coupling of
dark matter to standard model particles via exchange of
a Higgs boson.

Models of electroweak-neutral dark matter whose con-
stituents carry electroweak charges are much less con-
strained by direct detection experiments, since the
neutral composite has only higher-dimensional interac-
tions suppressed by the confinement scale. These sup-
pressed interactions—magnetic and electric dipole mo-
ments (dimension-5), charge radius (dimension-6), po-
larizability and anapole (dimension-7), etc.— are famil-
iar from known composite systems and have been stud-
ied with respect to dark matter interactions in [I0H2T].

The bound from direct detection experiments are already
sufficient to significantly constrain some of these interac-
tions, such as the magnetic dipole moment interaction
for fermionic dark matter [I8-20] 22]. For example, in
the composite SU(3) baryonic dark matter model stud-
ied in Ref. [23], the mass of the dark matter must exceed
~ 10 TeV to be safe from XENON100 constraints [7, [9].
Dimension-6 interactions, for example corresponding to
an electromagnetic charge radius, also appear to be sig-
nificantly constrained [1T], 12} 16}, [18].

There are simple composite dark matter theories, how-
ever, that do not have dimension-5 (or dimension-6) in-
teractions with the standard model. Composite bosonic
dark matter theories, such as the baryons from an
SU(N,) with even N, strongly-coupled theory, do not
have dipole moment interactions if the dark matter can-
didate is spin-zero. The dimension-6 charge radius inter-
action is also not generated in composite theories that,
for example, preserve a custodial SU(2) symmetry. The
leading interactions that remain include Higgs exchange,
whose strength depends on the constituent fermion-Higgs
couplings, and the dimension-7 electromagnetic polariz-
ability interaction studied in [12, [T6], 21].

Dark matter stability, for at least the age of the Uni-
verse, can also be an automatic consequence of global
symmetries of the low energy effective theory. Within



even-N, gauge theories, we consider an SU(4) dark sec-
tor with fermions in the fundamental representation of
the gauge group, where baryonic dark matter stability
is an automatic consequence of baryon number conser-
vation. This is as opposed to SU(2), where there is no
dynamical distinction between mesons and baryons, and
therefore requires imposing an additional global or dis-
crete symmetry [16], [24] [25].

Aside from the implications for dark matter direct de-
tection, another strong motivation for composite dark
matter with constituents that transform under the elec-
troweak group is the possibility of obtaining the cosmo-
logical abundance of dark matter through an asymme-
try. The observational relation of densities, ppm ~ 5ps,
strongly hints at an asymmetric origin of dark matter,
which was recognized long ago in the context of tech-
nibaryon dark matter [IH4] and more recently in other
models, e.g. [16], 26H45]. There are proposals to obtain
asymmetric dark matter through electroweak sphalerons
[3, 16, [36] as well as various other particle physics mod-
els (for reviews, see [44] [45]). One of the principal dif-
ficulties in realizing asymmetric dark matter in elemen-
tary dark matter theories is to suppress the thermal relic
abundance [30]. This happens automatically in models of
strongly-coupled composite dark matter, e.g. [3] 14, [16].

While naive dimensional analysis can give crude esti-
mates of the effective couplings of composite dark mat-
ter, confronting experiment requires much better preci-
sion to determine the viability of models. In some special
cases, e.g. [15] [I6] 406], the effective couplings can be es-
timated using non-relativistic effective theory. When the
fermion masses and the confinement scale are compara-
ble, lattice calculations are perfectly suited to determine
the non-perturbative spectrum and observables. Unlike
lattice gauge theory applied to QCD, where one goal is to
extrapolate to small (light) fermion masses, here lattice
calculations at relatively heavy fermion masses provide
exactly the computations we are interested in, without
the need for mass extrapolations. In this way, study-
ing strongly-coupled composite dark matter on the lat-
tice provides access to interesting regimes in dark matter
“theory space.”

We present here the results of lattice simulations of
SU(4) gauge theory, with particular focus on the spec-
trum of baryons and on the baryonic matrix element
of the scalar current, a necessary input to calculate the
Higgs-exchange scattering cross section for comparison
to direct-detection experiment. To date, there have been
only a handful of other lattice calculations with focus on
applications in composite dark matter [23] 24, [47, [4§].
This work also represents the first calculation on the lat-
tice of the SU(4) baryon spectrum, and one of the first
calculations of baryon properties for any N, > 3 (the
baryon spectrum for N, = 3,5,7 was explored recently
in [49, 60).) Separate from the application to composite
dark matter, in this work we will place our simulation
results into the larger context of large-NN. calculations,
both analytic and numerical.

Our lattice calculations span four different volumes
(163, 323, 483, and 643) with aspect ratio of 2, and three
different lattice spacings. In principle a wide range of
fermion masses is interesting, though in this paper we
concentrate on moderate to heavy fermion masses corre-
sponding to meson mass ratios of 0.5 < mpg/my < 0.9.
Unimproved Wilson fermion propagators are calculated
on quenched lattices (an approximation that should be
reasonable due to a larger N, value with moderate to
large fermion masses). We present results for the spin-
0, spin-1, and spin-2 baryon masses, as well as pseu-
doscalar and vector masses as reference scales, and the
spin-0 baryon scalar matrix element (also known as the
“sigma term”). Once the spectrum and matrix elements
are determined in units of the inverse lattice spacing, we
set the scale by choosing an appropriate physical mass
for the spin-0 baryon, our dark matter candidate. This
allows us to consider a range of dark matter masses.

The paper is organized as follows. In Sec. [T} we clas-
sify the general features of interesting composite models
and detail all the pieces in calculating the Higgs exchange
cross-section from these composite theories. In Sec. [[TI}
we discuss the properties of SU(4) baryons and the in-
terpolating operators used to calculate the baryon two
point function on the lattice. Sec.[[V] and Sec. [V] high-
light the primary results of this work. In Sec.[[V] three
and four color baryons are compared using the standard
large N, framework. In Sec. [V} cross-sections from di-
rect Higgs exchange are presented along with robust re-
strictions on allowed values in model space. Sec. [VI and
Sec. [VII] discuss lattice simulation and fitting details, re-
spectively, while the detailed presentations of the baryon
spectra and baryon matrix element for all lattice spacings
are contained in Sec[VIIIl and Sec. [Xl The final section
before the concluding, Sec. [X] examines the systematic
effects from lattice artifacts, namely lattice spacing and
finite volume errors.

II. GENERAL OVERVIEW OF MODELS

The “theory space” of possible composite dark mat-
ter models is quite large, even when limited to SU(N,)
gauge theories with Ny fermions in the fundamental rep-
resentation. In order to carry out a lattice calculation,
we must specify a particular theory to simulate. As dis-
cussed in the introduction, we choose SU(4) as a minimal
example of a composite model with bosonic dark mat-
ter candidates (the case of SU(2) is more complicated,
due to the presence of an enhanced chiral symmetry; see
[16, 24, 25]). We require that the constituent fermions
carry electroweak charges of some sort, allowing the ex-
istence of various interactions between the dark sector
and the Standard Model relevant for direct and indirect
detection dark matter experiments, as well as for giving
the observed dark matter relic density.

There are three regimes for the relative scales between
the fermion mass m; and the confinement scale, A4,



of SU(4): “QCD-like” my < A4; “comparable scales”
my ~ Ay; and “quarkonia-like” my¢ > Ay. We focus on
the “comparable scales” regime in this paper, for which
lattice calculation is necessary to make progress. Because
my is relatively heavy in this regime along with a large N,
value of 4, the effects of fermion loops will be suppressed,
justifying the use of the quenched approximation in our
lattice simulations.

If the baryonic dark matter is composed of an even
number of constituent fermions whose electric charge is
plus-minus pairs of equal magnitude, a discrete symme-
try of the model forbids the existence of a dimension-6
charge radius operator [I6]. Assuming the dark matter is
also spin-zero, then it does not carry a magnetic moment
either, and the leading interaction relevant for scattering
off of ordinary matter mediated by electroweak bosons
is the dimension-7 electromagnetic polarizability. Using
naive dimensional analysis, we estimate that the dark
matter mass must be greater than ~ tens of GeV [10] in
order to avoid existing direct-detection constraints. In
a future publication we will return to this topic and use
lattice simulations to make precise predictions for the
spin-independent scattering rate through the polarizabil-
ity interaction.

An important experimental constraint is the non-
observation of the mesons of this theory. Strongly-
coupled theories with constituent fermions transforming
non-trivially under the electroweak group are expected
to have electrically charged mesons, just like the pi-
ons of QCD. While the precise constraints are model-
dependent, we require that the lightest (pseudoscalar)
meson masses satisfy mpg > 100 GeV. At energies acces-
sible by LEP, the Drell-Yan production cross-section me-
diated by a photon would otherwise be quite substantial,
and the decay modes are expected to be predominantly
to the heaviest standard-model states kinematically al-
lowed [25], at LEP energies charm-strange and 7 + v,
pairs. Existing LEP searches for 7+7~ plus missing en-
ergy, targeted at pair-production of scalar tau partners
in supersymmetric models, place the limit mz > 86 GeV
[6IH54]. We anticipate this limit applies to the charged
pseudoscalars from this dark matter model as well, but
we have not attempted detailed collider simulations, and
so we have chosen mpg > 100 GeV. Additional collider
constraints on meson production and decay could be used
to place more stringent constraints on specific models.

If the fermions were to acquire masses purely through
the Higgs mechanism, then the Higgs coupling to the
dark matter baryon would be substantial. We will show
that this case is ruled out by existing direct detection
bounds and LEP exclusion bounds on charged particles.
A viable model has fermions transforming in vector-like
representations of the electroweak group. This means
“vector-like” fermion masses are possible without elec-
troweak symmetry breaking. Depending on the par-
ticular model, the fermions can also acquire additional
masses through electroweak symmetry breaking. This is
unlike the quarks and charged leptons of the Standard

Model that acquire masses solely from electroweak sym-
metry breaking. We will calculate the bounds on the
Higgs couplings to these fermions in this paper. The
mixed nature of the fermion masses also implies the dy-
namical breaking of electroweak symmetry by the strong
dynamics can be controllably suppressed, as well as the
contributions to the electroweak precision observables.
Detailing these effects will be reserved for future work.

A. Higgs exchange cross-section

The calculation of the spin-independent scattering
cross section of the composite dark matter baryon scalar
B with a nucleus N through Higgs exchange is given by
[55-59]

o(B,N) = M(

ZMP+ (AiZ)Mn)Q’ (1)
where A and Z are the total number of nucleons and
protons in the target nucleus, respectively, p(mi, ms) =
mima/(my + mz) is the reduced mass, and entirety of
the interactions with the protons and neutrons within the
nucleus are contained in M, and M, respectively. In
order to compare the spin-independent scattering cross
section between experiments, this is conventionally re-
written as

:u(va ma)2

B =o0(B,N)—/————————
o0(B,a) = o(5, )M(??”HB’JHJV)ZA2

(2)
where 0¢(B, a) is the scattering cross section per nucleon,
a, at zero momentum transfer.

In the high energy theory, matrix elements are deter-
mined from the scattering of the Higgs boson between
a fermion within the dark matter baryon and a quark
within the nucleon:

Ma= 5L 3 S (BIFSIB) Y (alagla). ()
f q

where the baryonic matrix elements use the non-
relativistic normalization of one-particle states,
(B(p)|B(a)) = (a(p)la(@)) = (21)*6®(p — q) (for
a nice discussion of the matching, see Ref. [60]) and the
label a = p,n for the proton and neutron. It should
be noted that M, has units of length squared. Here
ys,yq are the effective (Yukawa) couplings of the Higgs
with the fermions and quarks, respectively. Our normal-
ization for the quark Yukawa coupling is y, = \@mq /v,
where v ~ 246 GeV is the Higgs vacuum expectation
value.

The matrix elements of the light quarks (u,d,s) in the
neutron and proton are defined by

<a|quYQ|a> = maféa) (4)
while the heavy quarks contribute [61]

(almgddla) = coma (1= 32 79} )

q=u,d,s



Again, label a = p, n represents the proton and neutron,
respectively. Chiral perturbation theory as well as lat-
tice techniques allow the extraction of the nucleon sigma
(pn) —

g =

terms o p, n|mqqq|p, n) that provide the numeri-

cal values for the f{"™. We use the values obtained in
Ref. [62].

For the composite scalar baryon considered here, by
analogy with nucleons we write

(Blmyff1B) = mpfi” | (6)

that are, like the strange quark content in ordinary
baryons, determined on the lattice through the analo-
gous sigma term. The subtlety is that the fermion mass
for the composite dark matter is assumed not to be solely
EW breaking, and thus my # yfv/\@. To determine the
Higgs coupling, we write the constituent fermion masses
as an implicit function of the Higgs, ms(h). The Yukawa
coupling is thus expressed as an effective Higgs coupling
given by

=T g

(The 1/4/2 normalization implies a fermion with a mass
solely from electroweak symmetry breaking has a Higgs
coupling of y;/v/2 = my/v.)

Putting all of this together, we obtain

9pn9B
My, = (8)
D, m2
where
My.n n 6 "
gp’n:# Z ftgp, )_|_277 1— Z fé}x )
q=u,d,s q=u,d,s
(9)
mp g~ v 9my(h) (B)
= — _— 10
9B U : my  Oh |,_, ff (10)

The expression for gp is determined by three factors. The
first, mp /v is completely analogous to the m,, , /v factor
that occurs for the proton and neutron. The baryon mass
itself is extracted from the lattice. The second,

v dmyg(h)
—_—— 11
is determined completely from the microscopic model.

Specific models have specific interactions of the Higgs
with the constituent fermions. The third factor,

s _ (Blmgff1B) _
S o mp _mB 6mf

ﬁamB (12)

is extracted from the lattice. In this way, we have
factorized the Higgs couplings into a model-dependent
part (the second factor) and two dimensionless non-
perturbative parts to be extracted from the lattice. This
is the main focus of the lattice calculation in this paper.
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FIG. 1. Young-tableau representation of SU(4) baryon group
theory.

FIG. 2. Contraction for 4-color baryons.

III. SU(4) BARYONS

For a four-color theory with a generic number of fla-
vors, there are 5 irreducible representations that emerge
(corresponding Young-tableau diagrams are shown in
Fig. . When there are four or more degenerate flavors,
there exists a totally antisymmetric flavor combination
(leftmost Young-tableau in Fig. [1)), a totally symmetric
flavor combination (rightmost Young-tableau in Fig. ,
and a variety of mixed symmetric-antisymmetric repre-
sentations in between. If there are only three degen-
erate flavors, the totally antisymmetric flavor combina-
tion no longer exists (leaving only the other 4 representa-
tions). When there are only two degenerate flavors, only
the symmetric and pair-wise antisymmetric states re-
main (the three rightmost Young-tableau in Fig. |1} which
would correspond to spin-0, spin-1, and spin-2 baryons
from left to right). Lastly, when there is only one flavor,
only the totally symmetric spin-2 state exists.

As in QCD, one would expect the lightest state to be
the lowest spin state with the most pairwise antisym-
metric combinations. Here, that would be the middle
Young-tableau in Fig. [1| for all number of flavors of 2
or greater. This state is the primary focus for our dark
matter search. The relative mass differences between the
spin-0 state and the first spin-1 and spin-2 states are
also of interest as they give a sense as to the maximum
isospin splitting allowed before inverting the hierarchy.
These mass differences can also play a significant role in
determining the remaining thermal relic.

On the lattice, rotational symmetry is broken by the
discretization, and states of definite spin get mixed.
What the lattice does preserve is a set of the hypercu-
bic groups, a Clebsch-Gordon decomposition of which is
the most optimal way to extract multiple states and dis-



entangle mixing of states of definite spin. To increase
computational efficiency at extracting the ground state
in each spin-channel, more simplified operators were em-
ployed,

Op = (] X192) (¢35 Xaths) (13)
where
Spin-0 : =Cy° =Cy°
Spin-1 : = (Yt X2 Cys i=1,2,3
Spin-2: X1 =04 Xo=0Cy i#].

Again, these operators allow for mixing with higher
angular-momentum baryons (spin-3 and above), but the
ground state extracted should nevertheless correspond to
the lowest spin state.

The 1; notation is used to denote the possibility of dif-
ferent flavors of fermions. In the degenerate mass limit,
for one-flavor (v; = U), there is one unique combination

O~ = (UT X1 U)(UTX,V), (14)

for two flavors (v; = U, D) there are four unique combi-
nations

O35=2 = (U X U)(UT X, D),
Op5~2 = (U X1 D)(UTX,U),
O35~ = (U"X,1U)(D" X, D),
ONE=2 = (UT X, D)(UT X, D), (15)

for three flavors (v; = U, D, S), there are three unique
combinations

OF5~% = (U X1U)(DT X,S9),
ONF =3 = (UTX,D)(UT X,5),
O35~ = (D" X1 8)(UT X,U) (16)

and for four flavors (¢; = U, D, S, C), there is only one
unique combination

O~ = (U"X1D)(S" X20). (17)
Since these combinations span over the entirety of the
flavor space, one would expect to have overlap with the
ground state in each (lattice) spin channel.

IV. COMPARISON OF 3 AND 4 COLOR
BARYONS

Our study of SU(4) baryous fits into a larger framework
of large- N, lattice calculations. Much of the large- N, lat-
tice effort has focused on gluonic observables and spectra
[63H65], whose calculations on fermion-quenched lattices
yield complete calculations of pure Yang-Mills theories.
However, since fermion loops in the sea are suppressed
at large-N., the quenched approximation is reasonable

for fermionic observables as well. It should be noted,
however, that these observables are significantly more
expensive to compute than gluonic since fermion oper-
ators need to be inverted. Nonetheless, there have been
multiple calculations of meson spectra [66, [67], with the
most complete and comprehensive calculation occurring
recently [68] (for a complete review of large N, lattice
calculations, see Ref. [69]).

While there has been a wealth of literature discussing
large N, baryons for over 30 years [T0HT7T], the first large
N, lattice calculations of baryons have only occurred in
the last couple of years. This is mostly due to the fact
that baryon contractions are significantly more involved
than mesons and grow in computational cost as N.!. In
Ref. [49], the baryon spectrum is calculated for N, =
3,5,7 on quenched configurations for degenerate fermion
masses and in Ref. [50], these results are generalized to
splitting a third fermion mass akin to the strange quark
in QCD. These results show strong agreement with the
large N, predictions.

At a fixed scale (normalized by some physical quantity
such as the mass of the lightest baryon in the chiral limit),
the meson and baryon spectra are expected to have signif-
icantly different behavior at different values of N.. Low-
lying meson states are not expected to change apprecia-
bly as N, increases (O(1) in N,-scaling), while baryons,
which contain N, fermions in a color-antisymmetric com-
bination, are expected to have masses that scale linearly
with N, at leading order. For large N, baryons made
from degenerate-mass fermions, the behavior of the spec-
trum is contained in a simple relation based on the rotor
spectrum [49] [7T], [75]

J(J+1)

M(N.,J) N

= N.mg + B+ O(1/N?), (18)

where J is the baryon spin and my and B are constants
that need to be extracted from two initial input values.
These kinds of large- N, relations have been seen to work
remarkably well for phenomenological extractions of the
baryon spectrum and splitting (including strange-light
quark mass splittings) [75], in lattice 3-color calculations
with a variety of light and strange quark masses [78], and
this rotor spectrum itself has been shown to work to high
precision for odd N, baryons with three, five, and seven
colors [49] [50]; well better than one would naively expect
up to O(1/N?2) corrections. One common theme among
previous spectrum comparisons of this kind is that all the
baryons were fermionic as in QCD. This raises the ques-
tion of how the large N, relations fare when comparing
fermionic baryons in odd N, theories to bosonic baryons
in even N,.

One point that was emphasized in Ref. [50] is the fact
that each coefficient in Eq. (| . has corrections that go
as N1, N2 etc. With that in mind, in the formal large
N. hmlt Eq . ) should be written as [50]

J(J+1)

. B+ 0O(1/N?), (19)

M(N,,J) = Neom{” + C +
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FIG. 3. Comparison of SU(3) (square, dashed) and SU(4)
(circle, solid) spectrum for the pseudoscalar (red), vector
(orange), 3-color spin-1/2 baryon (purple), 3-color spin-3/2
baryon (green), 4-color spin-0 baryon (brown), 4-color spin-1
baryon (blue), and 4-color spin-2 baryon (black). All calcula-
tions shown were for 32° x 64 lattices.

where méo) is the leading O(1) contribution to mg and

C' is the subleading O(1/N,) correction to mg. With
two degenerate flavors, 3-color QCD can only provide
two points of input for these formulas (the spin-1/2 and
spin-3/2 baryon mass). For that reason, Eq. with
two free parameters is completely determined by 3-color
QCD input, while Eq. requires one more state from
a different N, to fix its three free parameters.

In Fig. [3] 3-color (dashed squares) and 4-color (solid
circles) results are compared for § values in Ref. [68].
Also, fermion masses between these two theories were
chosen in Ref. [68] to match the pseudoscalar meson
mass. As a result, the vector mass, which is not expected
to have any appreciable scaling at different N, matches
quite well between the two theories. Also, as expected,
the baryon masses for the 4-color theory are all signifi-
cantly larger than the 3-color theory. Fig. 4] shows the
comparisons of the baryon spectrum to the large N, rotor
spectrum prediction. What is worth noting here is that
the two-parameter rotor spectrum predictions (top fig-
ure, black asterisks) from Eq. for the 4-color baryons
using the 3-color baryon input do not align with the
lattice 4-color results, while the three-parameter rotor-
spectrum (bottom figure, black diamonds) in Eq. is
consistent with the lattice values for the spin-1 and spin-2
baryons. Inherently, fermionic and bosonic baryons have
different wave functions, which can shift the scale mg.
However, when this O(1) term is included, the spectra
appear to match well within the expected O(1/N2) cor-
rection. Also, it is worth noting that the numerical values
of méo) and C' are consistent within 15%, indicating that
this C' term really is a subleading correction to mg, as
expected from a systematic large N, expansion of my.
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FIG. 4. Comparison of SU(3) and SU(4) baryons to the large
N, rotor spectra predictions. In the top plot, the asterisks
represent the two-parameter rotor spectrum predictions for
SU(4) baryons, Eq. , which uses the SU(3) baryon spec-
trum as input. Similarly, in the bottom plot, the diamonds
represent the three-parameter rotor spectrum predictions for
SU(4) baryons, Eq. , which uses the 3-color baryon spec-
trum and 4-color spin-0 baryon mass as input.

mpg myf Omp
my mp Omy

0.1554 |0.767(3)|0.338(17)
0.15625(0.695(4) |0.262(13)
0.1572 |0.549(5)| 0.153(8)

K

TABLE I. Normalized sigma parameter results for § = 11.028
on 32° x 64 lattices.

V. BOUNDS FROM THE EFFECTIVE HIGGS
COUPLING

The dark baryon is comprised of fermions that acquire
some of their mass from the interactions with the Higgs
field. This means there is a model-dependent Higgs inter-
action with the dark baryon that we can constrain using
the non-perturbative information extracted from the lat-
tice. The crucial input from our lattice simulations is the
zero-momentum scalar form factor, o¢. While the entire
momenta dependent form factor can be extracted on the
lattice directly through an expensive three-point calcula-
tion with disconnected diagrams, oy is more straightfor-
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FIG. 5. The spin-independent dark matter direct detection
scattering cross section per nucleon through Higgs exchange is
shown. The solid blue curve is the upper bound set by LUX
[9]. The three plots correspond to three different fermion
masses: mps/my ~ 0.77 (top), mps/my =~ 0.70 (middle),
and mps/my =~ 0.55 (bottom). Each thin line represents
the spin-independent scattering cross section predicted for
a particular effective Higgs coupling, given by « [defined in
Eq. } The dark shaded region has pseudoscalar mesons
with masses below 100 GeV, which we anticipate are excluded
by LEP II bounds. Notice that the corresponding bound on
the baryon mass (slightly) increases as mps/my is lowered,
from top to bottom.

ward to extract via the Feynman-Hellmann theorem,

8mB

Uf':mf<B|ff|B> :memv (20)

where amp and amy are dimensionless numbers for the
baryon mass and fermion mass extracted from the lat-
tice calculation, and a is the dimensionful lattice spac-
ing, whose inverse represents the UV cutoff of the theory.
In lattice simulations, my is the standard (renormalized)
fermion mass in the mass-diagonalized basis, which is de-
fined in the Wilson fermion action used here in terms of
the lattice input k,

amg=3(2-2), (21)

K Ke

where k. is the critical value where the fermion mass van-
ishes. Unlike the Higgs coupling to the nucleons in QCD,
the effective coupling of the Higgs to the dark baryons is
parameterized by

v 9my(h)

(22)

mf Oh

h=v

For a given o and mpg/my, we can calculate the spin-
independent scattering cross section off nucleons and
compare directly to bounds from dark matter direct de-
tection experiments. In principle, there is an « for
each fermion f. However, since we assumed degener-
ate fermions in the quenched approximation, the lightest
baryon is made of identical mass fermions with the iden-
tical Higgs coupling, and so no flavor label is necessary.
To illustrate how the constraints on « impact the
model-dependent fermion-Higgs couplings, we can pa-
rameterize the Higgs field-dependent mass as,

yh

\/Q )

that, for example, would arise from a model with
both vector-like masses as well as electroweak symmetry
breaking masses for the constituent fermions [79]. The
expression for a, Eq. (22)), is then

mf(h) =m+ (23)

yv
a=—"—"-———<1. 24
Vom4yv T (24)

In the limit that y — 0, the fermion masses become
purely vector-like, corresponding to @ = 0; no bound can
be placed on these models from Higgs exchange. On the
other hand, if m — 0 at fixed y, then the fermion masses
are purely from electroweak symmetry breaking, and the
effective Higgs coupling is maximized, o = 1. For a fixed
mp, the resulting bounds from direct-detection experi-
ments are therefore quite strong.

The fact that the baryon mass is roughly linear in
the fermion mass is universally observed in lattice QCD
data [80]. This trend helps us calculate oy without
many fermion mass values. In other words, Ompg/0my
is roughly constant. We have extracted Omp/0m; from
our lattice data,

om
0.153 < (B) = My 9B < ) 338 25
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FIG. 6. The maximum allowed effective Higgs coupling, «
[defined in Eq. (22)] to the dark baryon is shown. The
green (upper three) contours correspond to mps/my ~ 0.55
(top, solid), mps/my =~ 0.70 (upper middle, dashed), and
mps/my =~ 0.77 (lower middle, dot-dashed), obtained by
finding the largest « allowed by the LUX bounds as a func-
tion of the dark matter mass for the three values of mps/mv
simulated on the lattice in this paper. The red (lower dotted)
line is the maximum « in heavy fermion limit, mpg/my = 1.
The dark shaded region has pseudoscalar mesons with masses
below 100 GeV, which we anticipate are excluded by LEP II
bounds.

for

055 S —25 < 0.77. (26)

my

We emphasize that the sum over valance fermions is im-
plicitly done in our lattice extraction of oy /mp, and thus

> i }B) < 1. The values for the coarsest lattice spac-

ing/largest volume calculations (which have the least lat-
tice artifacts as detailed in subsequent sections) are given
in Table [l

Using the lattice results for the baryon masses and
oy, we employ Eq. and the definitions in Eq. to
calculate the spin-independent Higgs-mediated cross sec-
tion off nucleons for several values of « in the standard
(mp,00) plane. These results are shown in Fig. [5l Addi-
tionally, the strongest limit to date from LUX [9] is also
displayed. In addition to the LUX exclusions, we also
show the lower bound on mp resulting from requiring the
lightest pseudoscalar meson satisfy the anticipated LEP
IT bound of mpg > 100 GeV. The corresponding bound
on mp is obtained using our lattice result for the ratio
mp/mpg, given in Table These excluded regions are
depicted by the dark, shaded region in Fig.

These results, when combined with the LUX exclusion
curves, allow for an extraction of the maximum allowed
« values as a function of dark matter mass and are pre-
sented in Fig. [(] The shape of the maximum « curve
can be understood in the large mp limit: The cross sec-
tion g, Eq. , scales parametrically as a?m% while the
LUX bound on oy is weakening proportional to mpg. This
implies that the maximum « decreases roughly propor-
tional to 1/\/mp. The plots are robust for any composite

SU(4) model with the particular fermion mass range cor-
responding to Eq. (26). Any such model with « above
the green curves would be excluded for this class of theo-
ries. Also, depicted on this figure is the result one would
expect from the heavy fermion limit, where the fermion
mass is much larger than the confinement scale.

A. Qualitative expectations at low fermion mass

One limit not depicted in Fig. or Fig. [f is
mpg/my — 0. In this case, the sigma term should ap-
proach a constant (which can only be extracted with very
low mass lattice simulations not explored in the work),
but the allowed values will be greatly restricted by the
bounds on the lightest mesons, since mpg/mpg — oo in
this limit. What this would imply for Fig. [f]is that each
of the thin lines would move to smaller cross-sections as
the fermion mass decreases (thus less excluded) at a per-
petually slower rate, while the shaded excluded region
would push to the right with a rapidly increasing rate.
For Fig. [0 the top green curve would move upward at
a slower rate (thus allowing a higher allowed values of
«), while the shaded excluded section would push more
and more to the right. To answer this question quan-
titatively, additional fully-dynamical lattice calculations
would need to be performed at smaller mass. However,
we do expect an “ultimate” bound for each dark matter
mass from the combination of the sigma parameter and
LEP bound. In future lattice calculations, we hope to
address this region.

VI. SIMULATION DETAILS

The 4-color calculations were performed on quenched
lattices (10,000 trajectories each; configurations sepa-
rated every 50 trajectories with thermalization cuts of
500 heatbath trajectories) at three different lattice spac-
ings (8 = 11.028,11.5,12.0) at four different volumes
(163 x 32, 323 x 64, 483 x 96, 643 x 128). Autocor-
relations were found to be smaller than statistical er-
rors when measurements were taken every 50 trajecto-
ries. The 3-color quenched calculations were performed
on 3 = 6.0175, 323 x 64 lattices to compare three and
four colors using the scale matching in Ref. [67]. All heat
bath gauge generation (Wilson gauge action) and inver-
sions were performed using Chroma [81]. For 4-colors,
three fermion mass values were explored for 8 = 11.028,
five mass values for § = 11.5, and six mass values were
explored for 8 = 12.0. All the data and number of mea-
surements are presented in Table [[I]

VII. CALCULATION AND FITTING

The masses of the baryons are extracted from the long
Euclidean time behavior of the baryon two point function



N.| B8 K N2 x Ny |# Meas.
4 111.028| 0.1554 | 163 x 32 | 4878
323 x 64| 1126
0.15625| 163 x 32 | 4765
323 x 64 | 1146
483 x 96 | 1091
0.1572 | 323 x 64 | 1075
11.5 | 0.1515 | 163 x 32 | 2975
323 x 64 | 1057
0.1520 | 163 x 32 | 2872
323 x 64 | 1052
0.1523 | 163 x 32 | 2976
323 x 64| 914
483 x 96 | 637
643 x 128| 489
0.1524 | 163 x 32 | 2970
323 x 64| 863
0.1527 | 323 x 64 | 1011
12.0 | 0.1475 | 323 x 64 | 1125
0.1480 | 323 x 64 | 1189
0.1486 | 323 x 64 | 1055
0.1491 | 163 x 32 | 411
0.1491 | 323 x 64 | 1050
0.1491 | 483 x 96 | 1150
0.1491 |64% x 128| 928
0.1495 | 323 x 64 | 1043
0.1496 | 323 x 64 | 1009
3 16.0175] 0.1537 | 323 x 64 | 1000
0.1547 | 323 x 64 | 1000

TABLE II. Ensembles and number of measurements.

K ampg amy aMggo aMgy aMgo
0.1554 |0.3477(6)|0.4549(18) [0.9828(33)|1.0119(39) | 1.0668(45)
0.15625|0.2886(7)|0.4170(20)|0.8831(55)|0.9183(55) |0.9883(79)
0.1572 |0.2066(8) [0.3783(26) |0.7687(92) | 0.8129(74) | 0.898(19)

TABLE III. Spectrum results for # = 11.028 on 323 x 64
lattices.

projected onto zero momentum

Cpp(r) = Z(OB(X»T)@B((),O»

X

— Ae™™BT 4 Be BT (27)

where M7 is the baryon mass of the first excited state
with the same quantum numbers as the ground state. In
principle, one could remove this excited state by going to
very long Euclidean time. In practice, the long Euclidean
time limit is marred by the exponential degradation of
baryon signal to lattice noise (known as the Signal-to-
Noise problem [82]). As a result, only a small region of
the correlator as a function of 7 can be used to extract
the desired signal. However, this region can be greatly
improved if one were to use a method to “subtract off”
the first excited state’s effects.

To remove the excited state effects, we calculate two
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FIG. 7. Example of folded 4-color baryon effective mass for
32% x 64, B = 11.028, k = 0.15625 lattices. Plotted on the
figure are the effective mass for the spin-0 (bottom), spin-1
(middle), and spin-2 (top) baryons.

sets of correlation functions for each observable. Each
measurement uses Gaussian smearing (shell) for the
source and each sink has either no smearing (point) or
Gaussian smearing (shell). The long Euclidean time be-
havior for the ground and first excited states is given by

’
ng(T) _>ASPe—mBT+BSPe—MBT

C53(r) — ASSemme™ 4 BS%e=Mp7  (28)

By subtracting these correlators with appropriate coef-
ficients, one can cancel off the excited state exponential
and is left with a systematically improved plateau for the
ground state at the cost of larger statistical errors.

One unique feature of baryons with even number of
colors is that they are bosons. As a result, bosonic effec-
tive masses, like meson effective masses, are symmetric
about the lattice midpoint. Hence, these correlators can
be “folded” about the midpoint and averaged, a common
procedure for mesons in lattice QCD. Examples of these
effective mass plots are in Fig. [7]

VIII. BARYON SPECTRUM LATTICE

RESULTS

The primary lattice results in this work are the 4-color
baryon spectrum, the baryon sigma term, and a determi-
nation of volume and lattice spacing effects. In particu-
lar, for each lattice spacing, we determine which lattice
volume is required to keep the finite volume systematic
smaller than the statistical errors, and then proceed to
use the large volume results to quantify a systematic lat-
tice spacing effect using a line of constant physics (LCP)
defined by the meson mass ratio, mpg/my. Moreover,
the slope of the baryon mass as a function of fermion
mass is related to the strength of the Higgs coupling.
This Higgs exchange prediction along with a direct com-
parison of 3-color and 4-color baryon spectrum results
was discussed in previous sections.
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FIG. 8. Lattice spectrum results for the coarse lattice spacing
(B = 11.028) on 32° x 64 lattices for three input quark masses.
(top) Masses in lattice units of the pseudoscalar meson (red),
vector meson (orange), spin-0 baryon (brown), spin-1 baryon
(blue), and spin-2 baryon (black) vs. the meson mass ratio
(pseudoscalar over vector). (bottom) Masses in units of the
spin-0 baryon mass for the spin-0 baryon mass (brown), spin-
1 baryon mass (blue), and spin-2 baryon mass (black) vs. the
meson mass ratio. Vertical error bars of spin-0 baryon mass
represent the error on the scale setting for the dark matter
mass.

For each ensemble, five spectrum quantities are cal-
culated: pseudoscalar meson mass (mpg), vector meson
mass (my ), spin-0 baryon mass (Mgg), spin-1 baryon
mass (Mg1), and spin-2 baryon mass (Mgs). The stan-
dard expectation for degenerate quark masses with two
or more flavors is that the meson hierarchy will be as in
QCD, mps < my, and the lower spin baryon states will
be lighter than the heavier ones, Mgy < Mg1 < Mgs.
This expectation holds for all the data presented in this
work, however, large error bars in some ensembles make
this observation less clear. In this section, we present the
B =11.028,11.5, 12.0 results for the 323 x 64 lattice simu-
lations. Lattice artifacts will be quantified in subsequent
sections.

The cleanest, most statistically controlled results are
the results on the coarsest lattice spacing, 5 = 11.028,
with the largest 323 physical volume. The numerical re-
sults are presented in Table[[TI] In Fig.[8] these results are
presented in two formats; the spectrum measurements in

10

aMg aMso
0.754(9)
0.691(20)
0.672(12)
0.679(10)
0.649(11)

K ampg amy aMggo
0.1515(0.256(2)|0.328(3) |0.700(13) | 0.724(8)
0.15200.216(2) |0.302(6) |0.632(11) | 0.663(10
0.15230.192(2)|0.280(5) |0.590(11) | 0.622(12

)
)

0.1524[0.182(2) |0.283(4)|0.570(15) [0.610(10
0.1527(0.152(2) |0.262(7) | 0.554(12) | 0.589(10

= ===

TABLE IV. Spectrum results for 3 = 11.5 on 323 x 64 lattices.

K ampg amy aMgo aMgq aMgso
0.1475(0.280(1)|0.310(3) | 0.660(6) | 0.672(5) | 0.692(6)
0.14800.247(2)|0.288(3) | 0.607(7) | 0.623(7) | 0.648(7)

0.1486 0.204(2) 0.248(6) | 0.538(7) | 0.543(8) [0.569(11)

0.1491{0.159(4) [0.223(5) [0.481(10) |0.498(10) | 0.528(11)

0.1495(0.114(5) [0.195(9) |0.421(15) |0.443(12) | 0.495(12)
(

0.1496 [0.109(5) [0.192(9) |0.413(18) | 0.434(12) |0.495(12)

TABLE V. Spectrum results for 8 = 12.0 on 323 x 64 lattices.

lattice units vs. mpg/my and the baryon mass ratio to
the (lightest) spin-0 baryon mass vs. mpg/my. Present-
ing the results as a function the meson mass ratio gives
an optimal sense of the relative magnitude of the fermion
mass. In the heavy quark limit, this ratio approaches 1
and in the chiral limit, this ratio approaches 0 (for ref-
erence, this value in QCD is mpgs/my ~ 0.18). On the
second plot in Fig. [8] the baryon masses are given in units
of the Mgg mass, which sets the scale of our dark matter
mass in exclusion plots, Fig. The ratio Mgo/Mgq is
trivially 1, but the associated errors here correspond to
the error on the scale setting. For these coarse lattice
spacing results, the scale setting error is no more than
1.7%. It is clear (from this plot in particular) that the
relative separation is growing as the pseudoscalar me-
son mass is decreased. This is to be expected, as all
three baryon states should have equal mass in the heavy
fermion mass limit (four times the fermion mass), and are
thus expected to separate as fermion mass is decreased.
What is not as predictable a priori is the relative sep-
aration of the states. In particular, the spin-1/spin-0
separation is much smaller than the spin-2/spin-1 sepa-
ration (i.e. the spin-2 state separation grows faster with
decreasing quark mass). These relative separations fol-
low from the large N, rotor spectrum for baryons as was
previously discussed in Sec. [[V] While volume effects on
these lattices are under control, finite lattice spacing ef-
fects will need to be quantified.

The results for the intermediate lattice spacing (8 =
11.5) are presented in Tableand shown in Fig. @ This
lattice spacing (and corresponding volume) is roughly 2/3
the size of the coarse lattice spacing. As a result, for these
323 lattices, larger volume effects are expected. Still, the
baryon mass ratios to the spin-0 masses are consistent
for a given value of mpg/my. The size of the volume
effects (which will be discussed more in a later section)
are within the current statistical errors, but could prove
to be a several percent effect with more statistics.
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FIG. 9. Lattice spectrum results for the intermediate lattice
spacing (8 = 11.5) on 323 x 64 lattices for five input quark
masses. (top) Masses in lattice units of the pseudoscalar me-
son (red), vector meson (orange), spin-0 baryon (brown), spin-
1 baryon (blue), and spin-2 baryon (black) vs. the meson
mass ratio (pseudoscalar over vector). (bottom) Masses in
units of the spin-0 baryon mass for the spin-0 baryon mass
(brown), spin-1 baryon mass (blue), and spin-2 baryon mass
(black) vs. the meson mass ratio. Vertical error bars of spin-0
baryon mass represent the error on the scale setting for the
dark matter mass.

For the finest lattice spacing, the numerical masses in
lattice units are presented in Table[V]and the correspond-
ing plots are in Fig. [I0] More fermion masses have been
explored here with comparable measurements, but due
to the smaller physical volume (by roughly a factor of
24) as compared to the 3 = 11.028, the resulting errors
are larger. For that reason, our results are not as con-
clusive on these lattices. Nevertheless, the usual trends
of the state separation are still observed and the spin-1
state stays close to the spin-0 state (even more than the
B = 11.028 results). However, as will be discussed, the
volume effects are expected to be non-trivial for these
measurements.
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FIG. 10. Lattice spectrum results for the fine lattice spacing
(8 = 12.0) on 32° x 64 lattices for six input quark masses.
(top) Masses in lattice units of the pseudoscalar meson (red),
vector meson (orange), spin-0 baryon (brown), spin-1 baryon
(blue), and spin-2 baryon (black) vs. the meson mass ratio
(pseudoscalar over vector). (bottom) Masses in units of the
spin-0 baryon mass for the spin-0 baryon mass (brown), spin-
1 baryon mass (blue), and spin-2 baryon mass (black) vs. the
meson mass ratio. Vertical error bars of spin-0 baryon mass
represent the error on the scale setting for the dark matter
mass.

mpg myf Omp
my mp Omg

0.1515[0.781(10) |0.372(52
0.1520(0.716(16)
0.1523(0.685(15) |0.249
)
)

K

0.15240.641(11
0.1527(0.577(18

)
)
35)
)
)

TABLE VI. Normalized sigma parameter results for 5 = 11.5
on 323 x 64 lattices.

IX. CALCULATION OF BARYON MASS
DERIVATIVE

From the baryon mass spectrum as function of the
fermion mass, the baryon mass derivative needed for the
sigma term can be extracted. The visual depictions of
these linear fits on the 323 data are shown in Fig[11| and
the results are shown in Table[l] Table [V, and Table [VII
Clearly, the more mass ensembles one has for a given lat-
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FIG. 11. Calculation of Odmp/dmy from baryon spectrum.
Plots of amso vs. amy are displayed for the coarsest lat-
tice spacing (top), intermediate lattice spacing (middle), and
finest lattice spacing (bottom). As seen in lattice QCD cal-
culations, the fermion mass dependence of the baryon mass is
primarily linear.

tice spacing will allow a more complete extraction of the
derivative. However, due to the linear nature of the data,
the derivative can be estimated as linear. For each beta
value, the derivative is given by

9MB _ 583(30) For B — 11.026

8mf

9MB _ 6 55(90) For 8= 11.5

amf

OMB _ 4 92(30) For 8 = 12.0. (29)

8mf
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mps my Omp
my mp Omy

0.1475| 0.891(9) |0.413(25)
0.1480(0.859(13) |0.353(22)
0.1486 |0.826(15)|0.277(17)
0.1491(0.716(24) |0.193(12)
0.1495(0.584(33) | 0.118(8)
0.1496 [0.568(38)| 0.091(6)

K

TABLE VII. Normalized sigma parameter results for 5 = 12.0
on 32% x 64 lattices.

It is worth mentioning that at this stage, there is an over-
all normalization of m; that is left undetermined. How-
ever, ultimately we are going to multiply this derivative
by mys/mp, canceling this normalization. One curiosity
is that the § = 12.0 result is below those of the coarser
lattice spacings. We will argue in subsequent sections
that the 8 = 12.0 results are significantly more sensitive
to lattice artifacts (in particular, volume effects) than the
other two lattice spacings.

Comparisons between the coarse and intermediate lat-
tice spacing can be made for mpg/my =~ 0.69 and
mpg/my =~ 0.77 from Table [I| and Table As ex-
pected, the results are constant within errors. This helps
strengthen the conclusion that lattice artifact systematics
for these masses for these lattice spacings on the 323 x 64
lattices are smaller than the statistical errors.

X. ESTIMATION OF LATTICE ARTIFACTS

As in any calculation in lattice field theory, there are
several sets of unphysical lattice artifacts that need to
be quantified. Since chiral extrapolations to low masses
are not strictly necessary for the applications to compos-
ite dark matter theory, the two primary unphysical con-
tributions are the discretization effects in terms of our
lattice spacing, a, and finite volume “wrap-around” ef-
fects, where the lattice extent is given by number of sites
times the lattice spacing. One systematic error that will
remain uncontrolled in this work is the use of quenched
lattices, which corresponds to unphysically dropping dy-
namical sea fermion loops. This approximation works
better as one goes to larger fermion masses and larger
number of colors, which is the regime we are currently in.
For the QCD calculation of the light quark sigma term,
the quenched results are entirely consistent with state-
of-the-art dynamical simulations (see Fig. 3 in Ref. [83]).
The statistical errors are less than 10% (the largest pos-
sible systematic error), and, again, we would expect our
systematic errors to be smaller than this due to a larger
number of colors and heavier fermions. With that be-
ing said, we hope to produce several unquenched SU(4)
ensembles in the future, to more directly quantify this
effect.
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FIG. 12. Volume scaling of the spin-0 (brown), spin-1 (blue),
and spin-2 (black) baryon masses in lattice units for the
coarse lattice spacing (8 = 11.028) and middle quark mass
(mps/my ~ 0.7) for lattice sizes of 16 x 32, 32 x 64, and
483 x 96. Volume effects between 323 and 48° lattices are
smaller than the statistical error.

A. Volume systematic

One approach often employed when only two volumes
are explored is to assign a systematic error between them.
When one has three or more large volumes, it is useful
to define “nearly infinite volume” points where the fi-
nite volume systematic is below that of the statistical
error. Defining such volumes is also advantageous for
doing comparisons of lattice spacing systematics, so as
to appropriately decouple these two lattice artifacts.

The volume effects are expected to be best behaved for
the coarsest lattice spacing on a given number of lattice
sites. In Fig. the middle fermion mass (x = 0.15625)
is explored for three volumes corresponding to L/a =
16,32,48. Comparing L/a = 16 to L/a = 32, finite vol-
ume effects cause the baryon masses to be roughly 7%
larger for the smaller volume as compared to the larger
volume, well larger than the statistical error bars. Com-
paring L/a = 32 to L/a = 48, the volume are within the
statistical error. This implies that the L/a = 32 results
are suitably at the “nearly infinite volume” point.

The intermediate (8 = 11.5) lattice spacing at its mid-
dle fermion mass (x = 0.1523) is presented in Fig.
for lattices corresponding to L/a = 16,32,48,64. Since
the total spatial extent is roughly two-thirds of the cor-
responding spatial extent at coarse lattice spacing, the
volume effects are expected to be more significant here.
This is clearly the case for L/a = 16, where the ex-
tracted baryon masses are significantly heavier than their
larger volume counterparts. For the statistics considered
here, the L/a = 32 results are constant within uncer-
tainties with the L/a = 48 and L/a = 64 results. A
slight systematic drop could arise between L/a = 32 and
L/a = 48 data sets with a moderate improvement in
statistics. However, such effects cannot be inferred with
the current data set and L/a = 32 should be a sufficiently
large enough volume at this level of statistics.
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FIG. 13. Volume scaling of the spin-0 (brown), spin-1 (blue),
and spin-2 (black) baryon masses in lattice units for the in-
termediate lattice spacing (8 = 11.5) and middle quark mass
(mps/my ~ 0.7) for lattice sizes of 16® x 32, 32° x 64, 48% x 96,
and 64° x 128 (bottom figure zoomed in on the latter three).
Volume effects between 323 and 483 lattices are smaller than
the statistical error.

For the finest lattice spacing (8 = 12.0), the baryon
spectrum is shown for x = 0.1491 in Fig. [I4] for four
volumes, L/a = 16,32,48,64. Comparing L/a = 16
to L/a = 32, there are clearly enormous volume effects
on the order of 100%. For this reason, the L/a = 16
data at this lattice spacing is essentially unusable. The
more informative comparison is between L/a = 32 to
L/a = 48, where the volume effects are much more man-
ageable, but still on the order of 7% and larger than the
statistical uncertainty. For this reason, L/a = 32 can-
not be considered “nearly infinite volume” and L/a = 48
or larger is required. To tell if L/a = 48 is sufficiently
close to infinite volume, a larger L/a = 64 volume is re-
quired. While the volume effects between L/a = 48 and
L/a = 64 are smaller, there is still a clear systematic
decrease due to finite volume of roughly 4%. In other
words, through L/a = 64, all quantifiable volume effects
are non-negligible.

Also, it is useful to examine the data on an Edinburgh-
style plot in Fig. [I5] where quantities of different lattice
spacings can be compared directly. This plot displays
the mass ratio Mgo/my vs. mpg/my for the coarse
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FIG. 14. Volume scaling of the spin-0 (brown), spin-1
(blue), and spin-2 (black) baryon masses in lattice units for
the fine lattice spacing (8 = 12.0) and middle quark mass
(mps/my ~ 0.7) for lattice sizes of 16® x 32, 32% x 64, 48% x 96,
and 64% x 128 (bottom figure zoomed in on the latter three).
Volume effects between 32 and 483 lattices are roughly 7%
for3 the spin-0 baryon mass and larger than 3% from 483 to
64°.
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FIG. 15. Edinburgh-style plot for coarse (8 = 11.028) (red),
intermediate (8 = 11.5) (green) and fine (8 = 12.0) (blue)
lattice spacing for the L/a = 32 lattices. Results in the large
volume limit should decrease in Mgo/myv as mps/my de-
creases.

(8 = 11.028), intermediate (8 = 11.5) and fine (5 = 12.0)
lattice spacings for 323 x 64 lattices. In the absence of
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FIG. 16. Pseudoscalar to vector meson mass ratio vs. [ for
L/a = 48. For these the three chosen kappa values, the ratio
agrees within 3%. Assuming infinite volume, these points can
be used as line-of-constant physics up to 5% systematic error.

lattice volume effects, one would expect these ratios to
decrease as the fermion mass decreases. This behavior is
clearly visible in the coarse lattice results and the heavier
four points on the intermediate lattice spacing. However,
for the fine lattice spacing, the ratio Mgg/my is roughly
independent of fermion mass. This is often an indica-
tion that volume effects are significant. This figure, once
again, supports the hypothesis that 323 lattices are large
enough volumes for the coarse and intermediate lattice
spacing, but not large enough for the fine lattice spacing.

B. Lattice spacing systematic

Before discussing lattice spacing effects, one must first
determine some physics that remains constant between
two different lattice spacings, often referred to as a line
of constant physics (LCP) with minimal volume effects,
and then proceed to compare other quantities directly.
The quantity that we choose as our LCP is the meson
mass ratio mpg/my. In most dark matter models of in-
terest, the vector and the pseudoscalar mesons are not
of direct interest, making them the ideal physical quan-
tity to match in order to see the lattice spacing effects
in the more interesting baryon sector. In Fig. the
meson ratio for three fermion masses is checked to see
how good of a candidate they are for being an LCP. The
error in this quantity sets the lower limit as to what can
be quoted as a lattice spacing systematic. In this figure,
the three quantities compared on the 483 volumes, show
roughly a 5% difference. Thus, any statement on lattice
spacing effects cannot reliably be determined below the
5% level. Since it is an inherently computationally ex-
pensive procedure to vary the valance fermion masses in
lattice calculations, the 5% level is the best that could
be achieved with our current data sets.

With an LCP determined within 5%, it is useful to
roughly understand the relative size of the lattice spac-
ings. To examine this, we compare two common scale set-
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FIG. 17. Vector meson and spin-0 baryon masses in lattice
units vs. B for L/a = 48. This is indicative of lattice spacing
differing by a factor of 2 between 8 = 11.028 and 8 = 12.0,
with 8 = 11.5 having a lattice spacing roughly 30% larger
than 8 = 12.0.

ting quantities, my and Mg, in lattice units in Fig.
It is immediately clear from these comparisons that the
lattice spacing difference is close to a factor of two.

To put a quantitative error on the lattice spacing sys-
tematic, a comparison of ratios of quantities is the most
efficient method. Since the spin-0 baryon will ultimately
set the scale, it is natural to be in the denominator for the
comparison. In Fig. [I8 the baryon ratios of the spin-1
and spin-2 states to the spin-0 state are shown as a func-
tion of 5. In this figure, it is apparent that all of the
baryon mass ratios agree within statistical errors. Since
the LCP matching is roughly 5%, we can say that the
lattice spacing systematic for the baryons should be well
within 5%.

XI. DISCUSSION

We have presented the spectrum and effective Higgs
interaction for a composite dark matter theory based on
the bosonic baryons of an SU(4) confining gauge the-
ory. The constituent fermions acquire both vector-like
and electroweak symmetry breaking masses, leading to
a suppressed effective Higgs interaction characterized by
the parameter 0 < a < 1, defined in Eq. . Our pri-
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FIG. 18. Spin-1 (blue) and spin-2 (black) to spin-0 baryon
mass ratio vs 3. Lattice systematics appear to be small com-
pared to the statistical errors.

mary results extracted from our lattice simulations are
the SU(4) hadron spectrum and the oy terms for the
lightest baryon. This enables us to calculate the spin-
independent scattering cross section in Figs. [5| and com-
pare to the latest results from LUX. Our results are
expressed as bounds on the effective Higgs interaction
strength a, shown in Fig. where we find o S 0.34
throughout the range of fermion masses that were simu-
lated on the lattice in this paper. The least constrained-
in-a theories have pseudoscalar mesons with masses at
the anticipated LEP II bound and scalar baryon dark
matter with a mass of several hundred GeV. The bounds
on the effective Higgs interaction scale approximately as

< <370 GeV>1/2 y { 0.34  mpg/my =0.55

30
mpg 0.05 mpg/my =1, (30)

where the bound on the baryon mass is mp > 370 GeV
(for mpgs/my = 0.55) and mp > 200 GeV (for
mpg/my = 1) given the anticipated LEP II bound on
the pseudoscalar meson masses of mpg > 100 GeV.
We conclude that composite dark matter theories with
fermion masses purely from electroweak symmetry break-
ing (aw = 1) appear to be strongly disfavored.

We compared the hadron spectrum between SU(3) and
SU(4), shown in Fig. and Fig.4l The latter figure shows
that the two-parameter large N, rotor spectrum predic-
tion in Eq. is insufficient to define the 4-color baryon
spectrum, but the three-parameter version in Eq. ,
which appropriately accounts for N ! corrections, does
match the higher spin SU(4) baryon masses well. It
would be interesting to probe baryons in SU(6) to see
if this relation continues with all of its coefficients fixed
by the current data set.

There are several future directions to pursue. We have
assumed custodial SU(2) symmetry of the fermion spec-
tra, causing the charge radius of the lightest baryon to
vanish. It would be interesting to determine the bounds
on custodial SU(2) breaking from the spin-independent
scattering cross section that would be induced through



the charge radius. Even if custodial SU(2) symme-
try is exact and the effective Higgs coupling vanishes
(e = 0), spin-independent dark matter scattering can
occur through the scalar baryon polarizability. As a
prerequisite to attacking this very computationally and
theoretically difficult problem, one must first understand
the lattice systematics at a high precision, all of which
are expected to be challenging for extracted polarizabil-
ities [84] [85]. To that end, we performed an extensive
study of volume and lattice spacing effects on three lat-
tice spacings (8 = 11.028,11.5,12.0) and four volumes
(L/a =16,32,48,64). In particular, we first investigated
the minimum number of sites for volume effects to be
negligible in the baryon spectrum. For the coarsest lat-
tice spacing and intermediate lattice spacing, L/a = 32
was found to be sufficient, but for the finest lattice spac-
ing even L/a = 48 was found to have too small a volume.
With this in mind, the polarizability calculation should
not have volumes below these sizes. The other systematic
that had to be quantified is the lattice spacing system-
atic. The results show at most 5% lattice spacing effects
on the coarsest lattice. For that reason, § = 11.028 and
B = 11.5 will likely prove to be the best ensembles for
polarizabilities as both lattice spacing and volume effects
are effectively controlled within errors.

It should also be emphasized that the polarizability
calculations can benefit from larger volume, as the quan-
tized background fields can be made finer and be better
used to extract the quadratic contribution of the energy
proportional to the polarizability. However, even more
statistics will be required at each background field value
(including zero field) to resolve these differences. Initial
estimates state that the baryon uncertainty will need to
be at least a factor of two smaller than the current val-
ues. For that reason, at least a factor of four increase
of statistics will likely be required for each ensemble to
reliably perform that calculation. Also, the validity of
the quenched approximation is still in question. We plan
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to perform at least one unquenched ensemble to estimate
the size of these effects as well.
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