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Abstract: We introduce a non-perturbative improvement for the renormalization group

step scaling function based on the gradient flow running coupling, which may be applied

to any lattice gauge theory of interest. Considering first SU(3) gauge theory with Nf = 4

massless staggered fermions, we demonstrate that this improvement can remove O(a2) lat-

tice artifacts, and thereby increases our control over the continuum extrapolation. Turning

to the 12-flavor system, we observe an infrared fixed point in the infinite-volume contin-

uum limit. Applying our proposed improvement reinforces this conclusion by removing

all observable O(a2) effects. For the finite-volume gradient flow renormalization scheme

defined by c =
√

8t/L = 0.2, we find the continuum conformal fixed point to be located at

g2? = 6.2(2).
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1 Introduction

Asymptotically-free SU(N) gauge theories coupled to Nf massless fundamental fermions

are conformal in the infrared if Nf is sufficiently large, Nf ≥ N
(c)
f . Their renormalization

group (RG) β functions possess a non-trivial infrared fixed point (IRFP) where the gauge

coupling is an irrelevant operator. Although this IRFP can be studied perturbatively for

large Nf near the value at which asymptotic freedom is lost [1, 2], as Nf decreases the

fixed point becomes strongly coupled. Systems around Nf ≈ N
(c)
f are particularly inter-

esting strongly-coupled quantum field theories, with non-perturbative conformal or near-

conformal dynamics. Their most exciting phenomenological application is the possibility

of a light composite Higgs boson from dynamical electroweak symmetry breaking [3–7].

Due to the strongly-coupled nature of these systems, lattice gauge theory calculations are

a crucial non-perturbative tool with which to investigate them from first principles. Many

lattice studies of potentially IR-conformal theories have been carried out in recent years

(cf. the recent reviews [8, 9] and references therein). While direct analysis of the RG β

function may appear an obvious way to determine whether or not a given system flows to

a conformal fixed point in the infrared, in practice this is a difficult question to address

with lattice techniques. In particular, extrapolation to the infinite-volume continuum limit

is an essential part of such calculations.

In the case of SU(3) gauge theory with Nf = 12 fundamental fermions, several lattice

groups have investigated the step scaling function, the discretized form of the β function.

To date, these studies either did not reach a definite conclusion [10, 11] or may be criticized

for not properly taking the infinite-volume continuum limit [10, 12–16]. At the same time,

complementary numerical investigations have been carried out, considering for example the

spectrum, or bulk and finite-temperature phase transitions [17–27]. The different groups

performing these studies have not yet reached consensus regarding the infrared behavior

of the 12-flavor system.
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Our own Nf = 12 results favor the existence of a conformal IRFP, which we observe

in Monte Carlo RG studies [14, 16]. Our zero- and finite-temperature studies of the lattice

phase diagram show a bulk transition consistent with conformal dynamics [28, 29]. From

the Dirac eigenvalue spectrum [22], and from finite-size scaling of mesonic observables [30],

we obtain consistent predictions for a relatively small fermion mass anomalous dimension:

γ?m = 0.32(3) and 0.235(15), respectively. While this conclusion, if correct, would render the

12-flavor system unsuitable for composite Higgs phenomenology, we consider Nf = 12 to

remain an important case to study. Considerable time and effort has already been invested

to obtain high-quality lattice data for the 12-flavor system. Until different methods of

analyzing and interpreting these data can be reconciled – or the causes of any remaining

disagreements can be clarified – it will not be clear which approaches are most reliable and

most efficient to use in other contexts.

The recent development of new running coupling schemes based on the gradient flow [31–

35] provides a promising opportunity to make progress. In this work we investigate

step scaling using the gradient flow running coupling.1 We begin by introducing a non-

perturbative improvement to this technique, which increases our control over the contin-

uum extrapolation by reducing the leading-order cut-off effects. While this improvement

is phenomenological in the sense that we have not derived it systematically through a full

improvement program, it is generally applicable to any lattice gauge theory of interest and

can remove all O(a2) cut-off effects. We illustrate it first for 4-flavor SU(3) gauge theory,

a system where the running coupling has previously been studied with both Wilson [36]

and staggered [33, 34, 37] fermions. We then turn to Nf = 12, where we show that the

infinite-volume continuum limit is well defined and predicts an IRFP. In both the 4- and

12-flavor systems, our improvement can remove all observable O(a2) effects, despite the

dramatically different IR dynamics. We conclude with some comments on other systems

where improved gradient flow step scaling may profitably be applied.

2 Improving gradient flow step scaling

The gradient flow is a continuous invertible smearing transformation that systematically

removes short-distance lattice cut-off effects [31, 32]. At flow time t = a2tlat it can be used

to define a renormalized coupling at scale µ = 1/
√

8t

g2GF(µ = 1/
√

8t) =
1

N
〈
t2E(t)

〉
, (2.1)

where “a” is the lattice spacing, tlat is dimensionless, and the energy density E(t) =

−1
2ReTr [Gµν(t)Gµν(t)] is calculated at flow time t with an appropriate lattice operator.

We evolve the gradient flow with the Wilson plaquette term and use the usual “clover”

or “symmetric” definition of Gµν(t). The normalization N is set such that g2GF(µ) agrees

with the continuum MS coupling at tree level.

If the flow time is fixed relative to the lattice size,
√

8t = cL with c constant, the scale of

the corresponding coupling g2c (L) is set by the lattice size. Like the well-known Schrödinger

1We are aware of two other ongoing investigations of the Nf = 12 gradient flow step scaling function,

by the authors of ref. [33] and ref. [11].
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functional (SF) coupling, g2c (L) can be used to compute a step scaling function [33–35].

The greater flexibility of the gradient flow running coupling is a significant advantage over

the more traditional SF coupling. A single measurement of the gradient flow will provide

g2c for a range of c. In our study we obtain g2c for all 0 ≤ c ≤ 0.5 separated by δtlat = 0.01.

Each choice of c corresponds to a different renormalization scheme, which can be explored

simultaneously on the same set of configurations [35].

The normalization factor N in finite volume has been calculated for anti-periodic

boundary conditions (BCs) in refs. [33, 34], and for SF BCs in ref. [35]. In this work we

use anti-periodic BCs, for which

1

N
=

128π2

3(N2 − 1)(1 + δ(c))
δ(c) = ϑ4

(
e−1/c

2
)
− 1− c4π2

3
, (2.2)

where ϑ(x) =
∑∞

n=−∞ x
n2

is the Jacobi elliptic function. For 0 ≤ c ≤ 0.3 the finite-volume

correction δ(c) computed in ref. [33] is small, |δ(c)| ≤ 0.03. As explained in refs. [33, 34],

the RG β function of g2GF is two-loop universal with SF BCs, but only one-loop universal

with anti-periodic BCs.

At non-zero lattice spacing g2GF has cut-off corrections. These corrections could beO(a)

for unimproved actions, and even O(a)-improved actions could have large O(a2[log a]n)-

type corrections [38, 39]. In existing numerical studies of staggered or O(a)-improved

Wilson fermions the leading lattice corrections appear to be O(a2) [35, 40],

g2GF(µ; a) = g2GF(µ; a = 0) + a2C +O(a4[log a]n, a4). (2.3)

It is possible to remove, or at least greatly reduce, the O(a2) corrections in eq. 2.3 by

defining

g̃2GF(µ; a) =
1

N
〈
t2E(t+ τ0a

2)
〉
, (2.4)

where τ0 � t/a2 is a small shift in the flow time. In the continuum limit τ0a
2 → 0 and

g̃2GF(µ) = g2GF(µ).

There are several possible interpretations of the t-shift in eq. 2.4. The gradient flow is

an invertible smearing transformation, so one can consider τ0 as an initial flow that does

not change the IR properties of the system but leads to a new action. The gradient flow

coupling g̃2GF in eq. 2.4 is calculated for this new action. Alternatively one can consider

the replacement of
〈
t2E(t)

〉
with

〈
t2E(t+ τ0a

2)
〉

as an improved operator for the energy

density. In either case the t-shift changes the O(a2) term of g2GF(µ; a). If we expand g̃2GF(µ)

in τ0a
2,

g̃2GF(µ; a) =
1

N
〈
t2E(t)

〉
+
a2τ0
N

〈
t2
∂E(t)

∂t

〉
, (2.5)

and choose τ0 such that the second term in eq. 2.5 cancels the a2C term in eq. 2.3, we

remove the leading lattice artifacts

g̃2opt(µ; a) = g2GF(µ; a = 0) +O(a4[log a]n, a4). (2.6)

Full O(a2) improvement through a systematic improvement program would require adding

terms to improve the flow equation, the action, the boundary conditions, and the energy
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Figure 1. Continuum extrapolations of the discrete βlat function of the Nf = 4 system at

g̃2c (L) = 2.2 with several different values of the t-shift coefficient τ0. The dotted lines are independent

linear fits at each τ0, which predict a consistent continuum value.

density operator
〈
t2E(t)

〉
[40]. Since our proposed improvement involves only a single pa-

rameter τ0, this τ0 itself must depend on other parameters, most importantly on g̃2GF(µ)

and on the bare coupling through the lattice spacing dependence of the term
〈
t2 ∂E(t)

∂t

〉
in eq. 2.5. Optimizing τ0 both in the renormalized and bare couplings could remove the

predictive power of the method. Fortunately, as we will see in the next section, our numer-

ical tests indicate that it is sufficient to choose τ0 to be a constant or only weakly g̃2GF(µ)

dependent to remove most O(a2) lattice artifacts.

Since the gradient flow is evaluated through numerical integration, the replacement

g2GF → g̃2GF can be done by a simple shift of t without incurring any additional compu-

tational cost. The optimal t-shift τopt can be identified by a simple procedure when the

gradient flow is used for scale setting, which we will consider in a future publication. In

this paper we concentrate on the step scaling function and find the τopt that removes the

O(a2) terms of the discrete β function corresponding to scale change s,

βlat(g
2
c ; s; a) =

g̃2c (L; a)− g̃2c (sL; a)

log(s2)
. (2.7)

3 Testing improvement with 4-flavor SU(3) gauge theory

We illustrate the t-shift improvement with the Nf = 4 SU(3) system. This theory was

recently studied by refs. [33, 34] using gradient flow step scaling with staggered fermions.

The 4-flavor SF running coupling was previously considered in ref. [36] usingO(a)-improved

Wilson fermions, and in ref. [37] using staggered fermions. In our calculations we use
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Figure 2. Continuum extrapolations of the discrete βlat function of the Nf = 4 system for several

different g̃2c (L) values. For g̃2c (L) = 1.8, 2.2 and 2.6 τ0 = −0.02 is near-optimal, while the larger

couplings g̃2c (L) = 3.0 and 3.4 require τ0 = −0.01 to remove most O(a2) effects. The colored points

at (a/L)2 = 0 are the continuum extrapolated results, while the black crosses at (a/L)2 = 0 show

the corresponding two-loop perturbative predictions.

nHYP-smeared [41, 42] staggered fermions and a gauge action that includes an adjoint

plaquette term in order to move farther away from a well-known spurious fixed point in

the adjoint–fundamental plaquette plane [21]. As in ref. [33] we impose anti-periodic BCs

in all four directions, which allows us to carry out computations with exactly vanishing

fermion mass, m = 0. For the discrete β function we consider the scale change s = 3/2

and compare lattice volumes 124 → 184, 164 → 244 and 204 → 304. We accumulated 500–

600 measurements of the gradient flow coupling, with each measurement separated by 10

molecular dynamics time units (MDTU), at 7–8 values of the bare gauge coupling on each

volume. We consider the c = 0.25 scheme, as opposed to c = 0.3 used in ref. [33], because

smaller c gives better statistics at the expense of larger lattice artifacts. As discussed

above, we aim to reduce these lattice artifacts through the non-perturbative improvement

we have introduced. We follow the fitting procedure described in ref. [36].

Full details of this study will be presented in ref. [43]. Here we provide a representative

illustration of the t-shift optimization. Figure 1 shows the dependence of the discrete β

function on (a/L)2 when g̃2c (L) = 2.2 with several values of the t-shift parameter τ0. The

red triangles correspond to no improvement, τ0 = 0. The data are consistent with linear

dependence on a2 and extrapolate to 0.262(17), about 2σ below the two-loop perturbative

value of 0.301. The slope of the extrapolation is already rather small, b = 11(3). By adding

a small shift this slope can be increased or decreased. With τ0 = −0.02 no O(a2) effects can

be observed – the corresponding slope is b = 1.5(3.1) – and we identify this value as near the
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optimal τopt. The data at different τ0 extrapolate to the same continuum value, even when

the slope b is larger than that for τ0 = 0. This is consistent with the expectation that the

t-shift changes the O(a2) behavior of the system but does not affect the continuum limit.

Since our action produces relatively small O(a2) corrections even without improvement, the

t-shift optimization has little effect on the continuum extrapolation, though the consistency

between different values of τ0 is reassuring.

It is interesting that the cut-off effects in our unimproved results, characterized by the

slope b of the red triangles in figure 1, are more than three times smaller than those shown

in fig. 4 of ref. [33]. This difference grows to about a factor of four when we consider the

larger c = 0.3 used in that study, suggesting that the t-shift optimization could have a

more pronounced effect with the action used in ref. [33]. The cause of the reduced lattice

artifacts with our action is not obvious. Both our action and that used by ref. [33] are based

on smeared staggered fermions, though we use different smearing schemes. The different

smearing might have an effect, as might the inclusion of the adjoint plaquette term in our

gauge action. This question is worth investigating in the future.

In principle τopt could be different at different g2c couplings but in practice we found

little variation. Figure 2 shows near-optimal continuum extrapolations of the discrete

β function at several values of g̃2c (L). At each g̃2c (L) the continuum extrapolated result

is consistent within ∼2σ with the two-loop perturbative prediction, denoted by a black

cross in figure 2. Comparable consistency with perturbation theory was found in previous

studies [33, 34, 36, 37].

4 Infrared fixed point in 12-flavor SU(3) gauge theory

We use the same lattice action with Nf = 12 as with Nf = 4 and consider six different

volumes: 124, 164, 184, 244, 324 and 364. This range of volumes allows us to carry out

step scaling analyses with scale changes s = 4/3, 3/2 and 2. As for Nf = 4 we performed

simulations in the m = 0 chiral limit with anti-periodic BCs in all four directions. Depend-

ing on the volume and bare coupling βF we accumulated 300–1000 measurements of the

gradient flow coupling g2c for 0 ≤ c ≤ 0.5, with 10 MDTU separating subsequent measure-

ments. Here we will consider only c = 0.2. Full details of our ensembles and measurements,

studies of their auto-correlations, and additional analyses for c = 0.25 and 0.3 will appear

in ref. [43]. The choice of c = 0.2 minimizes the statistical errors, and we find the IRFP

in this scheme to be at a weaker coupling than for larger c, which is numerically easier

to reach. The typical trade-off for these smaller statistical errors would be larger cut-off

effects, but as discussed in previous sections these cut-off effects can be reduced by our

non-perturbative improvement.

Figure 3 shows the running coupling g2c (L) as the function of the bare gauge coupling

βF for different volumes. The interpolating curves are from fits similar to those in ref. [36].

The curves from different volumes cross in the range 6.0 ≤ βF ≤ 6.5. The crossing from

lattices with linear size L and sL defines the finite-volume IRFP coupling g2?(L; s):

g2c (L) = g2c (sL) =⇒ g2?(L; s) = g2c (L). (4.1)

– 6 –



4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

β

3

4

5

6

7

8

9

g
2 c

(L
)

364

324

244

184

164

124

Figure 3. The Nf = 12 running coupling g2c (L) versus the bare coupling βF on several volumes, for

c = 0.2. Crossings between results from different volumes predict the finite volume IRFP coupling

g2?(L) in this scheme.

If the IRFP exists in the continuum limit then the extrapolation

lim
(a/L)2→0

g2?(L; s) ≡ g2? (4.2)

has to be finite and independent of s.2 Figure 4 illustrates the continuum extrapolation

of g2?(L) with scale change s = 2 for various choices of the t-shift parameter τ0. The

red triangles correspond to no shift, τ0 = 0. Their (a/L)2 → 0 continuum extrapolation

has a negative slope, and the leading lattice cut-off effects are removed with a positive

t-shift, τopt ≈ 0.04. A joint linear extrapolation of the τ0 = 0, 0.02, 0.04 and 0.06 results,

constrained to have the same continuum limit at (a/L)2 = 0, predicts g2? = 6.21(25).

However, these results all come from the same measurements, and are therefore quite

correlated. While it is an important consistency check that the continuum limit does not

change with τopt, just as for Nf = 4, the uncertainty in the continuum-extrapolated g2?
from this joint fit is not reliable.

Instead, we should consider only the results with the near-optimal τopt ≈ 0.04. As we

show in figure 5, τopt ≈ 0.04 is also near-optimal for scale changes s = 3/2 and 4/3. None of

these results have any observable O(a2) effect, making the extrapolation to the continuum

very stable. Each scale change predicts a continuum IRFP for Nf = 12. The three sets

of results in figure 5 come from matching different volumes, making a joint fit legitimate.

This continuum extrapolation predicts that the IR fixed point is located at renormalized

coupling g2? = 6.18(20) in the c = 0.2 scheme.

2We thank D. Nógrádi for useful discussions of the continuum limit.
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constrained to have the same (a/L)2 = 0 intercept, which gives g2? = 6.18(20).
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5 Conclusion and summary

We have considered step scaling based on the gradient flow renormalized coupling, intro-

ducing a non-perturbative O(a2) improvement that removes, or at least greatly reduces,

leading-order cut-off effects. This phenomenological improvement increases our control

over the extrapolation to the infinite-volume continuum limit, as we demonstrated first

for the case of SU(3) gauge theory with Nf = 4 massless staggered fermions. Turning to

Nf = 12, we found that the continuum limit was well defined and predicted an infrared

fixed point even without improvement. Applying our proposed improvement reinforced

this conclusion by removing all observable O(a2) effects. For the finite-volume gradient

flow renormalization scheme defined by c = 0.2, we find the continuum conformal fixed

point to be located at g2? = 6.18(20).

The 12-flavor system has been under investigation for some time, and other groups have

studied its step scaling function [11–13, 15]. However, this work is the first to observe an

IRFP in the infinite-volume continuum limit. There are likely several factors contributing

to this progress. While we did not invest more computer time than other groups, we have

employed a well-designed lattice action. The adjoint plaquette term in our gauge action

moves us farther away from a well-known spurious fixed point, while nHYP smearing allows

us to simulate at relatively strong couplings. The gradient flow coupling itself appears to

be a significant improvement over other schemes,3 and our non-perturbative improvement

also contributes to obtaining more reliable continuum extrapolations.

Our non-perturbative improvement is general and easy to use in other systems. It

does not rely on the lattice action or fermion discretization, though we suspect that the

improvement may not be effective if there are O(a) artifacts, e.g. for unimproved Wilson

fermions. Since O(a)-improved lattice actions are standard, this does not appear to be a

practical limitation. We look forward to seeing our proposal applied both to QCD and to

other conformal or near-conformal systems.
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