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Abstract: 
The ability of cells to communicate and synchronise their activity is essential for the maintenance of 

tissue structure, integrity and function. A family of membrane-bound proteins called connexins are 

largely responsible for mediating the local transfer of information between cells. Assembled in the cell 

membrane as a hexameric connexon, they function either as a conduit for paracrine signalling, 

forming a trans-membrane hemi-channel or, if aligned with connexons on neighbouring cells, form a 

continuous aqueous pore, or gap junction, which allows for the direct transmission of metabolic and 

electrical signals. Regulation of connexin synthesis and activity is critical to cellular function and a 

number of diseases are attributed to changes in the expression and/or function of these important 

proteins. A link between hyperglycaemia, connexin expression, altered nucleotide concentrations and 

impaired function, highlights a potential role for connexin-mediated cell communication in 

complications of diabetes. In the diabetic kidney, glycaemic injury is the leading cause of end stage 

renal failure, reflecting multiple aetiologies including glomerular hyperfiltration, albuminuria, increased 

deposition of extracellular matrix, and tubulointerstitial fibrosis. Loss of connexin-mediated cell-to-cell 

communication in diabetic nephropathy may represent an early sign of disease progression, however, 

our understanding of the process remains severely limited. This review focusses on recent evidence 

demonstrating that glucose-evoked changes in connexin mediated cell communication and 

associated purinergic signalling, may contribute to the pathogenesis of kidney disease in diabetes, 

highlighting the tantalising potential of targeting these proteins as a novel therapeutic intervention. 
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Introduction: 
Renal function depends on a high level of co-operativity between cells of the nephron. For cells to 

function efficiently and adapt appropriately in times of stress, they must not only interact with each 

other, but also with their immediate environment. Most cells communicate with their neighbours via 

gap junctions, or paracrine signalling [1-3]. Hemi-channels form as a result of hexameric clustering of 

membrane-bound proteins called connexins, which together form a trans-membrane pore more 

commonly termed a connexon [1]. When hemi-channels align with those on adjacent cells they ‘dock’ 

to form a gap junction. This junction facilitates the transmission of metabolic and electrical signals 

directly between cells, enabling cells to entrain their activity and synchronise tissue function. In the 

absence of neighbouring partners, uncoupled hemi-channels permit local paracrine release of 

nucleotides, including adenosine triphosphate (ATP) and its metabolites (adenosine diphosphate, 

ADP; adenosine monophosphate, AMP; and adenosine) (Figure 1) [2, 4]. 

 

Hemi-channel mediated release of nucleotides has multiple functions in the kidney, including 

regulation of renal blood flow, glomerular filtration rate and the regulation of renal tubular transport 

[reviewed in 3]. Derived from purinergic-mediated signals and activated in response to nucleotide 

binding to membrane-bound G-protein coupled purino-receptors (P1/adenosine and P2/ATP and 

ADP) on adjacent cells [4], increased hemi-channel activity and high levels of extracellular ATP have 

recently been linked to inflammation and fibrosis [5-7]. Aberrant connexin expression and the 

subsequent loss of cell function has been suggested to underpin the pathophysiology of multiple 

disease states, including diabetes, where glycaemic injury has been shown to decrease gap junction 

conductance and hemi-channel activity [8-10]. In light of this, connexins have received considerable 

attention in recent years, with suggestions that these proteins may represent a promising future 

therapeutic target for treatment of disease [11], including diabetic kidney disease; the leading cause 

of End Stage Renal Failure. 

 

Chronic kidney disease has been described as a global pandemic, with an estimated 850 million 

people worldwide thought to be affected by some form of kidney malfunction [12]. Diabetes is the 

biggest contributor to this statistic [12] with renal complications of the disease accounting for 

approximately 21% of deaths in patients with type1 diabetes, and approximately 11% in those with 

type2. Categorised into five stages and associated with a number of complex metabolic and 

inflammatory changes, diabetic nephropathy develops in response to defects at the molecular, cellular 

and tissue level in the vasculature, glomerulus and tubulointerstitium [13]. Whilst regulating blood 

sugar and blood pressure slow disease progression, many patients still develop renal failure even in 

the face of good glycaemic control. Consequently, as the incidence of diabetes continues to increase, 

there is a desperate need to improve therapeutic intervention to combat the long-term complications 
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of this lifelong metabolic disease. Changes in the expression profile of proteins involved in cell 

communication and associated downstream, purinergic signalling, may contribute to the development 

and progression of renal disease and thus represent a viable future target for intervention. In the 

current article, we review the expression, localisation and function of connexins, purinergic receptors 

and purinergic signalling in the diabetic kidney, and explore their underlying role as linked to the 

pathology of renal complications of diabetes. 

 

Connexins: The building blocks of cell-cell communication 
A family of trans-membrane proteins, connexins (CX) are designated by a numerical suffix that refers 

to their molecular weight. Expression may be ubiquitous, e.g. CX32 is expressed on various cell types 

including cardiac tissue, kidney and hepatocytes, or tissue specific, e.g. CX62 is only expressed in 

retinal tissue [14]. With a short half-life of only a few hours, connexins are continually synthesised and 

degraded, with biosynthesis and export to the cell membrane synonymous to that of other membrane-

bound proteins [15], ultimately allowing for acute regulation of channel activity and intercellular 

communication [15]. 

 

All connexins share common structural features and are composed of four trans-membrane helices, 

interconnected by two extracellular loops and one intracellular loop, a cytoplasmic -NH2 and a -COOH 

terminal region [16]. The highly conserved amino terminal tail incorporates a putative calmodulin-

binding motif necessary for both membrane insertion and, together with the -COOH terminal region, 

regulation of channel conductance, the latter of which is controlled by post-translational modification 

and phosphorylation of either serine/threonine or tyrosine residues [17-18]. When connexins combine, 

they oligomerise into hexameric channels. Comprised of six individual connexins, these trans-

membrane aqueous pores, 1-2nm in diameter, are permeable to a variety of small ions and molecules, 

including Ca2+, and IP3 and ATP [19]. 

 

Local release of ATP from hemi-channels was first identified by Gordan et al, who proposed that 

cellular efflux of the nucleoside triphosphate occurred in response to altered plasma membrane 

topography [20]. Further studies supported the notion that extrusion of ATP into the extracellular 

environment is a consequence of pore formation in the plasma membrane, pores later identified as 

“hemi-channels” [21]. Numerous connexins have since been implicated in the release of ATP, 

including CX26, CX32, and CX43 [reviewed in 22], and it is now widely accepted that hemi-channel 

release of purines, including ATP, adenosine and pyrimidine, can serve as paracrine signals for 

intercellular communication. These locally released purinergic signals bind one of three classes of 

receptor (metabotropic P1 receptors, P2Y metabotropic and P2X ionotropic receptors), activation of 

which initiates downstream signals linked to regulation of renal function [3]. More recently, a role for 
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extracellular nucleotides and paracrine signalling in organ fibrosis has been highlighted [5-7]. Not 

surprisingly, strict control of connexin activity is imperative in maintaining cellular function and is 

further supported by the observation that there are a large number of diseases where mutations 

and/or single nucleotide polymorphisms result in inflammation [23-24], ischaemia [25] and essential- 

[26] or renin-induced hypertension [27]. Consequently, hemi-channel gating is regulated in response 

to various stimuli including changes in cell proliferation, intracellular calcium, increased apoptosis, 

post-translational modification, changes in pH and in cell volume [reviewed in 1]. 

 
Connexin-mediated cell communication in the diabetic kidney 
With the incidence of diabetic nephropathy doubling over the last decade, it now accounts for 

approximately 50% of patients presenting with end stage renal failure [28-29]. Although the aetiology 

of type1 and type2 diabetes are notably distinct, glucose-evoked changes in the kidney are almost 

indistinguishable and often lead to a loss of renal function prompting the need for dialysis or 

transplantation. Diabetic nephropathy is characterised by structural and functional changes, 

specifically in the glomerulus, tubulointerstitium and vasculature, where glycaemic injury 

encompasses structural abnormalities ranging from hypertrophy, thickening of the glomerular 

basement membrane, tubular atrophy and interstitial fibrosis [30]. Ultimately, these changes 

contribute to increased glomerular filtration rate, proteinuria, systemic hypertension and overall, loss 

of renal function [30]. 

 

Our knowledge of connexin-mediated cell-to-cell communication in the kidney is limited. Whilst studies 

on renal vasculature have attributed a role for connexins in the regulation of blood pressure [31-34], 

we lack a basic understanding of the effects of connexin-mediated cell communication and associated 

purinergic signalling in tubular epithelia. Whilst a link between connexins and renal damage has 

recently emerged, how connexins contribute to the underlying pathology of chronic kidney disease 

remains to be confirmed. Of the known 21 mammalian connexin isoforms, only nine are expressed 

within the human kidney (CX26, CX30.3, CX31, CX32, CX37, CX40, CX43, CX45 and CX46 

[reviewed in 35]). A summary of their physiological functions in the kidney are listed in Table 1. 

 

Of the CX isoforms, high levels of expression of CX37, CX40 and CX43 are found in endothelial cells 

of the rat renal afferent arteriole, whilst post-glomerular endothelial cells of the efferent arteriole 

appear to express only CX43 [35]. The expression and localisation of particular subtypes can change. 

In the streptozotocin (STZ) treated mouse model of type1 diabetes, CX40 expression in smooth 

muscle cells of the afferent arteriole and inside the glomerulus increases, whilst endothelial 

expression of CX43 is decreased in the efferent arterioles [36-37]. These changes probably reflect 

the role of CX40 in regulating renin-dependent hypertension. Located in the juxtaglomerular 
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apparatus of the kidney, and part of the renin-angiotensin-aldosterone system involved in regulating 

blood pressure, renin-secreting cells are highly electrically coupled via CX40 mediated gap junctions 

[38-39]. Chronic changes in blood pressure necessitate recruitment of new renin-secreting cells from 

transformed smooth muscle cells associated with the pre-glomerular arterioles. This transformation 

is accompanied by increased expression of CX40 at the expense of CX45 [40]. Enhanced CX40 

expression is thought to increase cell-to-cell coupling between renin-secreting cells and their 

neighbours, including endothelial, smooth muscle and mesangial cells [40]. Loss of function defects 

in CX40 causes translocation of renin-secreting cells from the media layer of the afferent arteriole into 

the periglomerular interstitium. This translocation is thought to reduce negative feedback control by 

high blood pressure on renin secretion and further exacerbate hypertension. Although apparently 

counter-intuitive, these findings have been elegantly demonstrated in the CX40 knockout mouse 

model (CX40-/-), which develops hypertension [41]. Reasons for the shift of renin-secreting cells in the 

absence of CX40 and the subsequent loss of blood pressure regulation in response to enhanced 

renin secretion are unknown, however the work of Machura K et al. (2015), suggests that re-

localisation of cells probably arises as a consequence of disrupted connexin-mediated cell 

communication rather than enhanced activation of the renin angiotensinogen system [40]. Moreover, 

recent work by Haefliger JA et al. demonstrates that induction of renin-dependent hypertension, 

induced by clipping 1 renal artery in the 2-kidney, 1-clip (2K1C) model, is associated with increased 

aortic expression of CX43 [42]. A follow up study by the same group, was later to reveal that 

replacement of CX43 by CX32 is associated with decreased expression and secretion of renin, 

negating renin-dependent hypertension as previously observed in the wild-type 2K1C model [43]. 

Contrary to these findings, results from mice exhibiting deleted CX43 expression in both the 

endothelium and renin-secreting cells [44] fail to confirm a role for CX43 in either renin secretion or 

expression in mice maintained on a normal, or low salt diet ± an angiotensin I-converting enzyme 

inhibitor [44]. 

 

In addition to a role for CX40 and CX43, connexin 37 has also been shown to be localised to renin-

secreting cells and has also been linked to regulation of blood pressure. Studies using normotensive 

wild-type and CX37-deficient (CX37-/-) mice confirmed that the knockout mice were less hypertensive 

than their wild-type counterparts when infused with Angiotensin II (Ang II) over a 2-4-week period. 

Further clarification using the 2K1C renin-dependent model of hypertension, confirmed that CX37-/- 

mice rapidly recover a normal blood pressure, in spite of increased plasma renin levels. In contrast, 

in the renin-independent model of hypertension, mice remained hypertensive, suggesting that loss of 

CX37 most likely influences expression of proteins implicated in the Ang II pathway, notably the 

Angiotensin II receptor type II (AT2R) [45]. Moreover, studies using Ang II treated mesangial cells and 

an Ang II-induced mouse model of hypertension, confirmed renal damage as induced by activation of 
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several metabolic pathways, including increased CX43 expression which appeared dependent on 

activation of the RhoA/Rho-associated protein kinase (ROCK) pathway. Interestingly, incubation with 

an inhibitor of the RhoA/ROCK pathway; Fasudil, 2 weeks prior to the 4-week treatment time point 

returned CX43 expression levels to near basal and reduced the level of renal damage as observed 

to wild-type mice. However, mice remained hypertensive. Collectively, these data suggest a role for 

CX37 and CX43 in Ang II-induced renal damage [46]. 

 

Nitric oxide (NO) has been linked to the pathogenesis of disease in early diabetes [47-49]. Although 

intra-renal NO production is increased in the early phases of diabetic nephropathy, a progressive 

decline in NO production, specifically NO bioavailability in the kidney, is observed with advanced renal 

failure [50]. To decipher the interplay between connexins and endothelial nitric oxide synthase 

(eNOS), a nitric oxide synthase responsible for NO generation, a recent study by Le Gal L et al. 

utilised CX40-null mice combined with either the 1-Kidney, 1-clip (1K1C) procedure (a model of 

volume dependent hypertension), or the 2-kidney, 1-clip (2K1C) procedure (a model of renin-

dependent hypertension) [26]. In wild-type 1K1C mice, interactions between CX40, CX37 and eNOS 

were enhanced resulting in increased NO release. However, in mice lacking CX40, eNOS levels were 

decreased and an interaction between CX40 and eNOS was absent [26]. These data strongly suggest 

a role for CX40 mediated cell communication in regulation of NO synthesis, the effect of which 

manifests itself through loss of NO-induced vasodilation, and has been observed in other secondary 

complications of diabetes [51]. An additional role for NO in regulation of gap junction mediated 

intercellular communication (GJIC) in the mesangium has also been proposed. Yao et al. recently 

confirmed that increased NO augments CX43 mediated GJIC via protein kinase A [52]. Their 

observations are the first to suggest that diminished NO may, in part, mediate loss of CX43 mediated 

cell communication in the mesangium in diabetic nephropathy. The effects on overall mesangial cell 

function are yet to be clarified, however studies using the Zucker Lean and Zucker Diabetic Fat rat 

model of type2 diabetes, confirm both increased phosphorylation and inactivation of CX43 and 

reduced CX37 expression in renin-secreting cells, changes which were subsequently matched to 

increased glomerular filtration rate (GFR) and impaired auto-regulation [53]. 

 

Secondary to changes in the renal vasculature, an early hallmark of diabetic nephropathy is 

glomerulopathy, an important structural change characterised by thickening of the glomerular 

basement membrane, mesangial expansion, and development of morphological lesions in the 

arterioles, tubules and interstitium. Mesangial expansion is the structural parameter that best 

correlates with GFR and is also closely related to the presence of proteinuria and hypertension [54-

55]. Glomerular mesangial cells are highly coupled by CX43 containing gap junctions and various 

studies have examined a role for glucose in regulation of this protein and associated downstream 
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signalling molecules. The data provide a more detailed insight into how glucose-evoked alterations in 

renal connexins may, in part, contribute to loss of cell function. Furthermore, loss of CX43 expression 

has been linked to the G1 (senescence) phase of the cell cycle, a state of arrested cell growth linked 

to mesangial cell hypertrophy and accumulation of the extracellular matrix [56]. The effect was 

reversed when CX43 was over-expressed and the PTEN/Akt/mTOR pathway activated [57]. These 

data have been corroborated by Ya-Nan-Guo et al, who suggested that AMP-activated protein kinase 

(AMPK) mediated inhibition of mTOR, negates the loss of CX43 mediated signalling [58]. 

 

Knowledge of how connexins mediate their effects through interaction with associated downstream 

signalling molecules is improving, as is our understanding of how connexin expression/function 

becomes compromised in disease. Connexins are multifunctional proteins that contribute to a large 

number of cell functions including, proliferation, cell adhesion and cell migration. Phosphorylated on 

tyrosine residues Tyr265 and Tyr247 by the non-receptor tyrosine kinase c-Src, phosphorylation of 

CX43 inactivates the channel and reduces GJIC [59-60]. Elevated in patients with diabetes, c-Src has 

been linked to the pathogenesis of diabetic nephropathy [61]. Studies by Xie et al. confirm that 

inhibition of c-Src, not only attenuates the up-regulation of glucose-induced intercellular adhesion 

molecule-1 (ICAM-1), transforming growth factor-beta 1 (TGF-β1) and fibronectin expression in 

glomerular mesangial cells, but it also promotes Nuclear Factor-kappa B (NFκB) activation, leading 

to renal inflammation. These effects were negated when CX43 was over-expressed [62]. Whilst NFκB 

is increased in kidneys of STZ-diabetic rats and glucose treated glomerular mesangial cells, the 

mechanisms by which this transcription factor mediates its effects remain elusive. The small GTPase 

RhoA, is a member of the Ras superfamily [63]. Rho-associated protein kinase (ROCK) is a 

serine/threonine kinase and downstream target of RhoA. Signalling via RhoA/ROCK regulates 

multiple cell functions, including cell migration, contraction, adhesion, gene expression and cell cycle 

progression. Furthermore, RhoA/ROCK signalling has been linked to the pathogenesis of diabetic 

nephropathy, with ROCK inhibitors Y27632 and Fasudil negating the accumulation extracellular 

matrix and preventing a loss of renal function [64]. In addition to its role in controlling deposition of 

fibrotic material and up-regulation of pro-fibrotic factors in the kidney, recent studies by Xie et al. 

identified that low levels of CX43 induce NFκB activation in response to high glucose [65]. They 

reported that up-regulation of CX43 inhibited the nuclear translocation of the NFκB p65 subunit, an 

effect attenuated when RhoA/ROCK signalling was blocked. Furthermore, increased F-actin 

accumulation and an enhanced association between CX43 and tight junction protein zona occludens-

1 (ZO-1) in glucose treated cells was observed [65]. Xie et al. concluded that activated RhoA/ROCK 

signalling mediates CX43 degradation and nuclear translocation of NFκB p65, by promoting 

association between ZO-1 and CX43, which ultimately triggers CX43 endocytosis and NFκB activation 

in glucose treated cells, subsequently resulting in inflammation. These studies confirm that high 
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glucose impairs CX43 expression, with subsequent cell cycle arrest, inhibition of proliferation, 

promotion of protein synthesis, hypertrophy of the mesangium and NFκB mediated inflammation. 

Whilst these findings suggest that targeting CX43 may protect against mesangial cell hypertrophy and 

expansion in the diabetic kidney [65], it is important to remember that mesangial cells and their matrix 

constitute the main body of the glomerulus and work closely with both neighbouring podocytes and 

endothelial cells in ensuring appropriate glomerular function is maintained [66]. Consequently, 

alterations to either structural or behavioural characteristics will undoubtedly impinge on the behaviour 

of other cell types and may contribute to initial diagnosis of nephropathy as evidenced by detection 

of albuminuria [67]. 

 

Located within the glomerulus, podocytes have long cytoplasmic processes, which extend from the 

main cell body and divide into individual foot processes (pedicels). In healthy kidneys, the distance 

between these adjacent foot processes varies from 25nm to 60nm, a gap bridged by a thin membrane 

more commonly referred to as the “slit diaphragm”. Initiated in response to podocyte injury, breakdown 

of this selective filtration barrier results in albumin appearing in the urine [68]. Although we lack 

definitive information of how connexins are regulated within podocytes, evidence suggests that these 

trans-membrane proteins may represent viable markers for assessment of early podocyte damage in 

diabetic kidney disease. Connexin 43 is expressed on podocytes in both normal and diseased kidney 

[69-70], and a role for connexins in podocyte injury has been suggested. Studies by Yaoita E et al., 

demonstrated increased expression of CX43 in the early nephrotic stage of puromycine 

aminonucleoside (PAN) induced nephrosis [71], effects mediated, in part, by generation of superoxide 

and NADPH oxidase 4 (NOX4) [71]. Corroboration for the role for CX43 as a marker of podocyte 

damage has been further provided by Sawai et al., who demonstrated that expression of CX43 in 

renal biopsies and podocytes from patients with overt nephropathy, was reduced. This loss of 

expression would impair podocyte cell communication and contribute to the loss of barrier function 

and ultimately albuminuria [72]. Furthermore, they hypothesised that altered association between 

CX43, tight junctions and cytoskeletal proteins, are responsible for disrupting the orientation of slit 

diaphragm components, thus contributing to loss of the selective filtering process. The findings 

support the use of CX43 as a potential marker in assessing both podocyte damage and renal function 

in diabetic nephropathy. 

 

Whilst the structural and functional disturbances discussed above are synonymous with early stages 

of diabetic nephropathy, tubulointerstitial fibrosis represents the final common pathway of chronic 

renal failure and exhibits a positive correlation to the onset of end-stage renal disease and entry onto 

the renal transplantation programme [73]. Recent findings from our laboratory confirm that tubular 

CX43 and CX26 expression are increased in biopsy material from people with diabetic nephropathy 
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[74], and work by Abed A et al. reported that patients with chronic kidney disease (CKD) exhibit 

elevated levels of CX43. Using a mouse model of hypertension-induced CKD, they demonstrated 

decreased expression of cell adhesion markers, reduced monocyte infiltration and interstitial renal 

fibrosis when CX43 expression was reduced by 50%. Functional and histological parameters such as 

glomerulosclerosis and albuminuria were also reduced [75]. Although not a model of glycaemic injury, 

these data, along with our in vitro findings, suggest that aberrant CX43 mediated cell communication 

may have implications for the pathology of multiple forms of CKD via a common pathway. 

 

How aberrant CX mediated communication impacts on cell function forms the basis of our ongoing 

studies. In early tubulointerstitial fibrosis, exposure to glucose and downstream pro-fibrotic cytokines 

initiates a series of events beginning with altered expression of the epithelial adhesion protein E-

cadherin [74][76]. Cadherins help form the multi-protein adherens-junction that links cell-to-cell 

contact to the actin cytoskeleton and associated signalling molecules. It is therefore unsurprising that 

intercellular adhesion is a pre-requisite for connexin oligomerisation and gap junction formation. The 

loss of cell adhesion is the driving force behind morphological and phenotypic changes associated 

with early tubular injury [74], and has been linked to glucose-evoked changes in connexin expression 

and GJIC [74]. Although more than a dozen fibrogenic factors affect renal function, it is widely 

recognised that TGF-β1 and downstream Smad signalling, represent the key pathway orchestrating 

renal fibrosis in diabetic nephropathy [reviewed in 77-78]. Recent studies from our laboratory, confirm 

that TGF-β1 evoked changes in E-cadherin mediated cell adhesion facilitate changes in CX43 

expression in human proximal tubule cells via a Smad dependent signalling [5]. Whilst the functional 

loss in cell tethering was accompanied a loss of CX43 GJIC at both 48hrs and 7days, hemi-channel 

mediated ATP release was increased [5]. 

 

In addition to early changes that initiate injury in the proximal region, one of the hallmarks of 

tubulointerstitial fibrosis is the accumulation of the extracellular matrix (ECM) in the tubular 

interstitium. Under physiological conditions, increased ECM deposition is associated with wound 

healing [79] and thus a tight balance between synthesis and breakdown of matrix proteins ensures 

that once the wound is closed, further ECM production ceases. Loss of this regulation can tip the 

balance from repair to injury, culminating in a build-up of fibrotic material, scar formation and in the 

kidney, a decline in excretory function [80-82]. As a mechanical framework that provides physical 

support for cells, the ECM has a crucial role in regulating cellular behaviour, e.g. gene expression, 

cell adhesion and cell communication [83-84]. Predominantly composed of laminin, collagen, 

fibrinogen and fibronectin, ECM proteins can interact with cell surface receptors called integrins. 

Association not only provides an anchor between the cytoskeleton and the cells immediate 

environment, to enable traction and cell movement, but also directly regulates cell signalling. Whilst 
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connexin mediated cell communication is essential for cell survival and function, cell-ECM interactions 

facilitate the activation of growth factors and cell differentiation. Interestingly, modification and 

remodelling of the ECM in disease can severely impact on function, with recent studies identifying a 

link between high glucose, ECM remodelling and disrupted GJIC in multiple disease states, including 

secondary complications of diabetes [85][86]. Here, remodelling of the ECM occurs in response to 

prolonged alterations in the activity of matrix metalloproteinases (MMPs), zinc-dependent 

endopeptidases that control both synthesis and degradation of ECM components. Recent studies 

have confirmed that increased MMP9 induces ECM remodelling, an event linked to a down-regulation 

of hydrogen sulphide (H2S) [87]. Low H2S is associated with vascular inflammation and renal 

complications in diabetes [88]. It is correlated to decreased expression of CX40 and CX43 in the 

diabetic kidney which, along with ECM remodelling and dysregulated MMP expression, can be 

negated in the Akita mouse treated with NaHS, a soluble source of H2S provided in drinking water 

[89]. Administration of exogenous H2S improves renal function and reduces the degree of ECM 

remodelling [90][91]. Although the link between connexins and ECM remodelling in the diabetic kidney 

is just coming to light, our knowledge of the area in retinopathy, combined with increasing awareness 

of these changes in the kidney, highlights a link between connexins and ECM remodelling in diabetic 

kidney disease. 

 
 
ATP and purinergic signalling in the diabetic kidney. 
 

Adenosine triphosphate is a ubiquitous source of energy found in all cells. Usually present in low 

millimolar concentrations [92], decreases in intracellular ATP are synonymous with cell death and the 

dramatic release of ATP into the extracellular environment is often associated with cell injury triggered 

by stressors including, inflammation, hypoxia or mechanical deformation. In addition to its role as an 

energy supply and marker of cell damage, the controlled release of ATP and associated purines also 

act as autocrine/paracrine extracellular messengers capable of binding to purinoreceptors on 

adjacent cells to help propagate cellular activity. 

 

In the kidney, ATP is released from a variety of sources including, erythrocytes, endothelial cells, 

aggregating platelets and the basolateral and apical membrane of epithelial cells [93]. With a wealth 

of information attributing dysregulated connexin expression to the effects of hyperglycaemia, recent 

studies further highlight  a link between hemi-channel mediated ATP release and the progression and 

development of fibrosis in multiple tissue types, including the diabetic kidney [94-95] where hemi-

channel mediated ATP release may, in part, contribute to the pathology of diabetic nephropathy. 
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Purinergic signals bind to one of 3 receptor subclasses, the metabotropic P1 receptors, the P2Y 

metabotropic receptors or the P2X ionotropic receptors [96]. The P2 class of receptors can be further 

classified into either P2X (P2X 1-7) or P2Y (P2Y1, 2, 4, 6, 11-14). Activated in response to various agonists, 

P2Y receptors couple to either cAMP or inositol triphosphate (IP3) messenger systems, with each 

subtype functionally linked to different G-proteins evoking downstream activation of multiple signalling 

cascades. The precise location of specific receptor subtypes able to respond to these local signals is 

unclear. Some, including the P2X7 receptor, appear up-regulated in various diseases [97-102], 

including diabetic nephropathy, where renal P2X7R expression has been found to be associated with 

severe mesangial expansion, impaired glomerular filtration (≤40ml/min/1.73sq.m.) and increased 

interstitial fibrosis in diabetic patients [103]. Furthermore, activation of P2X7R increased MCP-1 

release in human mesangial cells when cultured under high glucose [103]. 
 

Expression of P2X7 in kidneys from streptozotocin (STZ) induced diabetic rats, is elevated in 

glomerular podocytes, mesangial cells and endothelial cells [104]. High levels of P2X7 mRNA in rat 

glomerulonephritis has been linked to increased IL-1b mRNA and exacerbated glomerular damage 

[105]. More recently, Vieira et al., suggested that P2X7 mediated inflammation and fibrosis in response 

to glycaemic injury in diabetic kidney disease [105]. In this elegant study, they demonstrated that P2X7 

deficient mice (-/-) are resistant to STZ-induced diabetes and fail to exhibit any alterations to blood 

glucose levels or pancreatic islet reduction compared to wild-type C57BL/6 mice. Not surprisingly, 

levels of pro-inflammatory mediators, including IL-1b, IFN-g and NO, were unaltered in P2X7
-/- animals 

following STZ treatment. Using a P2X7 antagonist, wild-type C57BL/6 mice exhibited resistance to 

STZ treatment. Pharmacologically blocking the receptor, or deleting its expression, is linked to a 

reduction in renal macrophage activity and subsequently protects against antibody-mediated 

glomerular inflammation [106, 107]. These data have been supported by Menzies et al. in a mouse 

model of diabetic nephropathy, which when treated with a P2X7R inhibitor (AZ11657312) exhibit 

reduced renal macrophage accrual [108]. 

 

Efficient and effective purinergic signalling is dependent on a balance between ATP release and 

breakdown. Ectonucleotidases are a class of enzymes, which metabolise nucleotides to nucleosides 

[109]. The contribution of ectonucleotidases in the modulation of purinergic signalling depends on the 

availability and preference of substrates and on the cell and tissue distribution. Ectonucleoside 

triphosphate diphosphohydrolase 1 (ENTPD1), otherwise referred to as CD39, is a human 

membrane-bound protein, which hydrolyses ATP and ADP to AMP, thus regulating P2Y ligand 

availability [110]. Studies on the CD39 null mice reveal a large degree of renal damage in the form of 

glomerulosclerosis [111]. The mice present with increased proteinuria, increased GFR and increased 
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expression of monocyte chemo-attractant protein-1 (MCP-1), all of which were more severe than 

changes observed in aged matched diabetic animals. The data suggests a potential protective role 

for the hydrolysing enzyme in glomerular inflammation. Genetic deletions of the adenosine A2B 

receptor and CD73 (an enzyme involved in the extracellular production of adenosine) in mice, was 

found to induce renal nephropathy [78][110]. Studies examining a role for ATP in mesangial cell 

proliferation and expansion, contributory factors in the instigation of glomerulosclerosis, confirmed 

that ATP induced mesangial cell proliferation was mediated by P2Y receptor dependent activation of 

the Ras-Raf-MAPK signal transduction pathway [112] and P2Y4 [113]. Recently, a role for P2X7 in 

modulating the microvasculature response [114] and renal metabolism of extracellular adenine 

nucleotides in diabetic rats [114] has been examined. Findings confirmed, that in kidneys obtained 

from STZ-induced diabetic mice, increased levels of adenosine, ENTDPase and 5’-nucleotidase 

paralleled decreased levels of ATP in the renal interstitial fluid. More importantly, the effects were 

abolished by A438079, a P2X7 receptor antagonist [114]. 

 

In tubulointerstitial fibrosis , early tubular injury occurs in response to changes in adhesion, and cell-

substrate interactions [30]. Adhesiveness between cells and between cells and their surrounding 

substrate/ECM-matrix, allows them to adapt to their immediate environment [reviewed in 115]. Not 

surprisingly in diabetic nephropathy, loss of cell adhesion, increased synthesis of ECM proteins and 

ECM remodelling have all been linked to a loss of epithelial phenotypic stability and increased fibrosis 

in the proximal tubular region of the kidney [30]. Our recent studies identified that a switch in direct 

gap junction intercellular communication accompanies a loss of E-cadherin mediated cell adhesion 

and increased hemi-channel mediated ATP release. Linked to inflammation and fibrosis, incubation 

of proximal tubule epithelial cells with non-hydrolysable ATPgS confirmed an increase in expression 

of the pro-inflammatory and pro-fibrotic mediators interleukin-6 (IL-6) and fibronectin. Similarly, the 

ectonucleotidase apyrase, negated the IL-6 and fibronectin response to TGFb1 at both 48hrs and 

7days [5]. In addition, a direct role for ATP in ECM remodelling has been suggested by studies in rat 

mesangial cells demonstrating increased P2X4 induced activation of the NOD-like receptor 3 (NLRP3) 

inflammasome, increased release of interleukins IL-1β and IL-18 and the development of 

tubulointerstitial inflammation [116, 117]. High glucose increased expression of NLRP3 

inflammasome and interleukin IL-1b in human kidney (HK2) proximal tubular epithelial cells, with 

increased secretion of both interleukins IL-1b and IL-18. The effects were negated when cells were 

co-incubated with apyrase. Confirmation of the purinoreceptor that mediated these effects was 

provided when NLRP3 expression and IL-1β and IL-18 release was attenuated by co-incubating cells 

with the general P2X receptor antagonist TNP-ATP, or the more selective P2X4 antagonist 5-BDBD, 

or through gene silencing of P2X4 [118]. The data suggest that ATP-P2X4 signalling mediates high 
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glucose-induced activation of the NLRP3 inflammasome, regulates IL-1 family cytokine secretion, and 

ultimately instigates tubulointerstitial inflammation in diabetic nephropathy. These are important 

findings since patients with type2 diabetes and nephropathy reportedly exhibit elevated receptor 

expression of P2X4, P2X7 and NLPR3 expression [119]. Links to the P2X7 receptor have also been 

provided in studies using the P2X7 receptor knockout mouse model of unilateral ureteral obstruction 

(UUO), in which animals present with progressive renal fibrosis, marked renal hemodynamic and 

metabolic changes, tubular injury and cell death [118]. These mice exhibit reduced myofibroblast 

number, collagen deposition, tubular apoptosis and macrophage infiltration. Collectively the data 

suggest a role for the P2X7 receptor in progression of inflammation and fibrosis. In a similar study, 

Solini et al. confirmed that rat mesangial cells (RMCs) cultured in high (30mmol/L) glucose exhibit 

increased extracellular ATP [119]. Under both low and high glucose, exogenous application of ATP 

and the P2X7 receptor agonist benzoylbenzoyl ATP, evoked a concentration dependent increase in 

the ECM markers, fibronectin, collagen IV, laminin and TGFβ. The effects were negated when RMCs 

cultured in high glucose were co-incubated with apyrase. Interestingly, extracellular matrix and TGFβ 

production remained unaltered in response to apyrase treatment in cells cultured under low glucose. 

A role for P2X7 in mediating fibrotic changes was suggested by co-incubating with a P2X7 inhibitor, 

which attenuated glucose-induced increases in ECM and TGFb [119]. 

 

Aside to a potential role for hemi-channel mediated ATP release and dysregulated purinergic 

signalling in the early portion of the nephron, recent studies by Ponnusamy et al. suggest a role for 

nucleotides in P2R-mediated cross talk between epithelial cells and fibroblasts [120], whilst studies 

by Wolff et al. suggest a role for P2Y2 receptors in TGF-β1 induced EMT in Madin Darby Kidney Cells 

(MDCK) [121]. 

 

Lastly, whilst a definitive link between aberrant hemi-channel mediated ATP release and the 

underlying pathology of diabetic nephropathy remains to be confirmed, studies utilising models of 

glomerulosclerosis and advanced interstitial inflammation/fibrosis (UUO), pathologies associated with 

diabetic kidney disease, have used pharmacological and genetic strategies to assess the implications 

of aberrant Cx43 mediated communication. In a model of glomerular damage, Kavvadas et al. 

confirmed increased de novo expression of Cx43 in podocytes, which led to cell damage and 

deterioration of renal function, a response which was blunted in heterogenous mice in which Cx43 

expression had been genetically repressed (Cx43+/-). More importantly, pharmacogenetic inhibition of 

Cx43 delayed renal structural and functional damages in mice suffering from severe GN and in 

cultured podocytes treated with TGF-b1 [122]. In addition and in confirming a role for Cx43 in the 

progression of CKD, administration of a Cx43 antisense in a mouse model of UUO attenuated E-
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cadherin down-regulation and phosphorylation of the transcription factor Sp1 by the ERK pathway, 

resulting in decreased transcription of the type I collagen gene. Furthermore, Cx43-hemi-channel 

specific blocking peptide Gap19 inhibited monocyte adhesion in activated endothelium and pro-

fibrotic pathways in tubular cells, thus suggesting that modulation of both connexin-mediated cell 

communication and purinergic signalling may represent a novel approach to preventing or attenuating 

fibrosis in the diabetic kidney. 

 

 
Conclusion 
To ensure efficient renal function is maintained, cells of the nephron synchronise their activity and 

coordinate function within different regions of the nephron through the use of connexins. Cells 

communicate to one another either directly, via gap junction mediated intercellular communication, or 

via a hemi-channel mediated paracrine release of nucleotides in to the immediate extracellular 

environment. In diabetic nephropathy, these small membrane-bound proteins play a vital role in 

orchestrating an integrated functional response against fibrotic, osmotic and metabolic assault. In the 

current article, we review growing evidence to suggest that dysregulated connexin mediated cell 

communication and altered purinergic signalling may be pivotal in the aetiology and pathogenesis of 

diabetic nephropathy. Our understanding of the complex interplay between connexins, nucleotide 

release and downstream purinergic signalling in hyperglycaemia remains rudimentary, however, it is 

clear that connexins offer a viable future target in the therapeutic control and treatment of this chronic 

metabolic condition. 
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Figure legends 

Figure 1. Connexin-mediated intercellular communication. Hemi-channels form the hexameric 

arrangement (connexon) of membrane bound proteins called connexins. Hemi-channels permit the 

efflux of small molecules (e.g. ATP) in to the intercellular micro-environment immediately surrounding 

cells. These local paracrine signals can be detected by receptors on adjacent cells, e.g. P2Y 

receptors, which help propogate and synchronise activity across cell clusters. When aligned with 

similar channels on neighbouring cells, hemi-channels form continuous pores or gap junction that 

facilitate gap-junctional intercellular communication (GJIC) of small molecules and ions.  

 

 

  



	 18 

Cx Isoform Physiological Function 

26 Tubular localisation determined but function still to be determined 

30 Tubular release of ATP to regulate salt and water reabsorption in the 
distal nephron  

37 Vascular-conducted responses, in particular arteriolar vasoconstriction  

Endothelium-derived vasodilation, via production of eNOS or 
hyperpolarisation 

Renal autoregulation, via tubuloglomerular feedback 

Possible tubular function, regulation by salt  

40 Vascular-conducted responses, in particular arteriolar vasodilation 

Endothelium-derived vasodilation via inhibition of endothelium-derived 
hyperpolarising factor, production of eNOS 

Renal autoregulation via tubuloglomerular feedback and myogenic 
responses 

Blood pressure control via regulation of renin secretion 

43 Endothelium-derived vasodilation via inhibition of endothelium-derived 
hyperpolarising factor, possibly via production of eNOS 

Renal autoregulation through tubuloglomerular feedback and myogenic 
responses 

Blood pressure control, although mechanisms are still disputed 

Tubular function, dysregulation of which is associated with fibrosis and 
inflammation  

45 Partial renal autoregulatory function to compensate for loss of Cx40 

 
	
	
Table 1: The physiological role of connexins in the kidney  
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