
Statistics in Biosciences manuscript No.
(will be inserted by the editor)

Comparison of HIV prevalence among antenatal clinic attendees
estimated from routine testing and unlinked anonymous testing

Ben Sheng · Jeffrey W Eaton · Mary Mahy · Le Bao

Received: March 11, 2019 / Accepted: date

Abstract In 2015, WHO and UNAIDS released new guidance recommending that countries transition
from conducting antenatal clinic (ANC) unlinked anonymous testing (ANC-UAT) for tracking HIV
prevalence trends among pregnant women to using ANC routine testing (ANC-RT) data, which are
more consistent and economic to collect. This transition could pose challenges for distinguishing whether
changes in observed prevalence are due to a change in underlying population prevalence or due to a
change in the testing approach. We compared the HIV prevalence measured from ANC-UAT and ANC-
RT in 15 countries that had both data sources in overlapping years. We used linear mixed-effects model
(LMM) to estimate the RT-to-UAT calibration parameter as well as other unobserved quantities. We
summarized the results at different levels of aggregation (e.g., country, urban, rural, and province). Based
on our analysis, the HIV prevalence measured by ANC-UAT and ANC-RT data are consistent in most
countries. Therefore, if large discrepancy is observed between ANC-UAT and ANC-RT at the same
location, we recommend that people should be cautious and investigate the reason. For countries that
lack information to estimate the calibration parameter, we propose an informative prior distribution of
mean 0 and standard deviation 0.2 for the RT-to-UAT calibration parameter.
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1 Introduction

Monitoring trends in HIV prevalence is the cornerstone of HIV surveillance. Monitoring prevalence al-
lows countries to estimate incidence trends and track progress toward reducing new HIV infections and
ending the AIDS epidemic. To monitor trends in HIV prevalence, nearly all high HIV prevalence coun-
tries established HIV sentinel surveillance surveys at antenatal clinics (ANC) in the early 1990s, and
repeated those surveys every one or two years. HIV prevalence data were collected from sentinel ANC
sites chosen to provide a large enough sample size to monitor trends over time. The surveillance was
based on unlinked anonymous testing (UAT) of women attending these selected ANCs (UNAIDS/WHO
Working Group on Global HIV/AIDS and STI Surveillance (2003)).

In recent years, many countries have transitioned from conducting UAT sentinel surveillance surveys
in favor of more efficient use of the routine testing (RT) done at ANCs (Dee et al. (2017)), and the
data in the Spectrum files is evidence of this. The Spectrum software (Avenir Health, Glastonbury, CT,
USA) provides trend estimates and values of key HIV indicators, and is used by UNAIDS and national
programs for 161 countries. Within Spectrum, the Estimation and Projection Package (EPP) provides
estimates of population HIV prevalence and incidence trends (Bao and Raftery (2010); Bao (2012); Bao
et al. (2012); Brown et al. (2006); Brown et al. (2010); Brown et al. (2014); Ghys et al. (2004); Hogan and
Salomon (2012); Sheng et al. (2017); Stover et al. (2012)). Since most high prevalence countries test all
women attending ANC, the data from these routine tests were available to monitor the epidemic. There
were numerous benefits in shifting to RT data for surveillance (Gourlay et al. (2015)). The use of UAT
meant that women were not given the results of those tests (they were being tested a second time and
those results were provided to them), and because the tests were anonymous, women were not given the
option to opt out of the surveillance effort. On the other hand, for RT, the women receive their testing
results, and the tests are voluntary. Many of the ANC-UAT sentinel sites had been selected because they
were high volume sites, and were not representative of pregnant women in the country. In contrast, RT
data includes all sites with available data, and generally does not have this site selection bias. Also, the
number of women tested at routine ANC are much larger than the UAT sentinel surveillance, reducing
sampling error and improving geographic specificity of the results. Finally, the financial and personnel
resources previously spent on UAT sentinel surveys could now be directed to improve RT data.

Although both UAT and RT data allow countries to monitor the HIV prevalence among pregnant
women, there could be systematic bias between them. The laboratory procedures for the UAT sentinel
surveillance had more critical review due to careful protocol development and oversight by outside fun-
ders; as a result, the testing procedures might be more rigorous (Gonese et al. (2016)). During the course
of UAT sentinel surveillance, the sites were provided testing kits to avoid stock outs. In RT, there might
be stockouts during which health providers test women at increased risk of HIV infection, biasing preva-
lence estimates. Other biases might occur based on the management of the data from RT versus the
lower volume and more rigorous UAT sentinel surveillance systems (Sirengo et al. (2016)). Therefore, it
is of great interest to understand how the estimates of HIV prevalence would differ between the two data
sources at different levels of aggregation (e.g., country, urban, rural, and province).

We also note that the switch from ANC-UAT to ANC-RT data leads to an extremely imbalanced
sampling design; ANC-UAT were replaced by ANC-RT data around 2013. It challenges the estimation
of HIV epidemics especially during the transition period. For instance, it could be difficult to distinguish
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whether a change in observed prevalence is due to a change in underlying population prevalence or due
to the systematic difference between two data sources. Therefore, the guideline encourages countries to
explore the difference between ANC-UAT and ANC-RT data. In this manuscript, we focus on countries
where both ANC-UAT and ANC-RT data are available with overlapping years, and aim to quantify the
difference of HIV prevalence estimates inferred by those two surveillance systems.

2 Methods

We investigated countries in which both ANC-UAT and ANC-RT data were available from the same
sites in the same years. We used linear mixed-effects model (LMM) to estimate the systematic bias in
HIV prevalence from ANC-RT compared to ANC-UAT.

2.1 Prevalence Data from Antenatal Clinic (ANC) Sites

Several countries have collected UAT and RT data in the same years and at the same antenatal clinic
(ANC) sites. Such datasets provide the opportunity to directly compare HIV prevalence rates estimated
by the two data sources. For each country region, we only keep sites with “overlap” (UAT and RT in the
same year) for analysis.

For this paper, we use the ANC prevalences given in the Spectrum files, and we explain the calculation
procedures. (These prevalences were already calculated when we received the data, so we did not actually
perform these calculations for our analyses. Nonetheless, we decide to provide the explanation.) To
compute prevalence for ANC-UAT data, the number of pregnant women who tested positive for HIV
was divided by the total number who had an HIV test (UNAIDS/WHO Working Group on Global
HIV/AIDS and STI Surveillance (2003)). To compute prevalence for ANC-RT data, there needed to be
data on (1) the number of pregnant women who already know their HIV positive status; (2) the number
who had an HIV test, and (3) the number who tested positive for HIV. (In some cases, there may have
been data on the number of women who are “previously known HIV-negative”; if this happened, the
ANC-RT prevalence computation was changed accordingly.) (1) does rely on the accurate self-reporting
of HIV status; however, excluding (1) would bias the ANC-RT prevalence estimate. ANC-RT prevalence
was computed as (Sheng et al. (2017)):

[(1) known HIV positive] + [(3) tested HIV positive]

[(1) known HIV positive] + [(2) total HIV tested]
(1)

For ESA (Eastern and Southern Africa), there are 7 countries that have subnational areas with
overlapping sites, including Ethiopia (Rural, Urban, 4 geographic regions), Lesotho (Urban), Namibia
(14 geographic regions), Rwanda (Rural and Urban), Tanzania (17 geographic regions in total), Uganda
(Rural and Urban), and Zimbabwe (7 geographic regions). For WCA (Western and Central Africa), there
are 8 countries that have regions with overlapping sites, including Benin (12 geographic regions), Burkina
Faso (Rural and Urban), Burundi (Rural and Urban), Cameroon (Rural and Urban), Ghana (Rural and
Urban), Guinea Bissau (Rural and Urban), Senegal (1 general region), and Togo (Rural/Urban or 6
geographic regions). Togo sites are divided in two ways: 6 geographic regions (Centrale, Kara, Lome,
Maritime, Plateaux, Savanes), and Rural/Urban split. Appendix A5 presents the data availability for
each country region. The HIV epidemics are estimated at either the national level or the regional level
(Brown et al., 2010, 2014; Stover et al., 2012). Therefore, we focus on investigating the difference between
UAT prevalence and RT prevalence at the national level and the regional level.
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2.2 Linear Mixed-Effects Model (LMM)

We adjust HIV prevalence from ANC data by [# of HIV positive]+0.5
[sample size]+1 ; this adjustment prevents negative

infinities at the probit scale, and enables the probit-transformed prevalences to follow an approximately
Normal distribution. Let WUAT

st and WRT
st be ANC-UAT and ANC-RT observed prevalences at probit

scale for Site s and Year t, and ρt be the true UAT prevalence at probit scale in Year t. We use
the probit transformation, so it is consistent with the transformation used in previous models for ANC
prevalence (Alkema et al. (2007); Brown et al. (2014); Sheng et al. (2017)). The RT calibration parameter
β represents the mean probit difference between UAT prevalence and RT prevalence, and is the main
parameter of interest. bs is the site effect for Site s, modeled as a random effect with variance ξ2. εUAT

st

and εRT
st are random errors for UAT and RT, and σ2 and τ2 are the corresponding UAT and RT residual

variance parameters. We use the following model to obtain the national estimates of β.

WUAT
st = ρt + bs + εUAT

st (2)

εUAT
st ∼ N(0, σ2) (3)

WRT
st = β + ρt + bs + εRT

st (4)

εRT
st ∼ N(0, τ2) (5)

bs ∼ N(0, ξ2) (6)

To obtain sub-national estimates of β, we apply the stratified model below to countries with multiple
regions (all countries except Lesotho and Senegal), where i stands for a particular region. The stratified
model adds region-level fixed effects for RT calibration βi and UAT true prevalence ρit. For both the
country-level and stratified region models, we fit the LMM using the “nlme” R package, and present the
runtimes in Appendix A6.

WUAT
ist = ρit + bs + εUAT

ist (7)

εUAT
ist ∼ N(0, σ2) (8)

WRT
ist = βi + ρit + bs + εRT

ist (9)

εRT
ist ∼ N(0, τ2) (10)

The model assumes that site-level probit scale prevalence trends only differ by a site effect bs, which
is a constant over time. This assumption might be too strong over a long time period because different
sites might experience different rates of prevalence change (e.g., sites with higher prevalence might have
greater prevalence declines). Therefore, we truncate the early years of historical UAT data, and only
keep the UAT data years that overlap with RT data years; it leads to a range of 3-8 years of data. See
Appendix A5 for more details. We also run the full data analysis without truncating the early years. If
the results between truncated data analysis and full data analysis are significantly different, we would
recommend using the truncated data results because parameters are more likely to be constant over a
shorter time period.

In addition to constant site effect, the model also assumes a constant RT calibration parameter; we
discuss this assumption in Section 2.3. We assume conditional independence between the UAT residuals
(εUAT

st or εUAT
ist ) and the RT residuals (εRT

st or εRT
ist ); this assumption is discussed in Section 2.4.
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2.3 Assumption of Constant RT Calibration

In this section, we investigate the assumption of constant RT calibration parameter β on truncated data.
For countries (and country regions) with multiple years of overlap between UAT and RT, we split the
truncated data years into two parts (each part must contain both UAT data and RT data), and fit the
following model that allows the RT calibration parameter to differ between two parts.

WUAT
st = ρt + bs + εUAT

st (11)

εUAT
st ∼ N(0, σ2) (12)

WRT
st = β{t≤T} + β{t>T} + ρt + bs + εRT

st (13)

εRT
st ∼ N(0, τ2) (14)

bs ∼ N(0, ξ2) (15)

As a comparison, we also fit the “base” model that assumes the constant RT calibration:

WRT
st = β + ρt + bs + εRT

st (16)

For each country (and country region), we use BIC to select the best model among all possible “split”
models and the “base” model. We can estimate the “split” RT model in 49 cases with multiple years of
overlap. In 44 out of 49 cases, the “base” model has lowest BIC; in the remaining cases, the maximum
difference between β{t≤T} and β{t>T} are less than 0.5. Thus, the assumption of constant RT calibration
parameter is reasonable for most truncated cases. We present the detailed results in Appendix A3.

2.4 Assumption of Independence between UAT and RT Residuals

Since UAT is anonymous, there is no empirical evidence about whether the same woman may participate
in both UAT and RT. However, it can potentially introduce correlation between UAT and RT if a large
portion of women are involved in both UAT and RT testing. In this section, we examine the assumption
of conditional independence between UAT residuals (εUAT

st or εUAT
ist ) and RT residuals (εRT

st or εRT
ist ) on

truncated data.
For each country (and country region), on truncated data, we fit the “correlated” model below, and

test whether the UAT/RT correlation parameter ρ significantly differs from 0.

WUAT
st = ρt + bs + εUAT

st (17)

εUAT
st ∼ N(0, σ2) (18)

WRT
st = β + ρt + bs + εRT

st (19)

εRT
st ∼ N(0, τ2) (20)

Corr(εUAT
st , εRT

st ) = ρ (21)

bs ∼ N(0, ξ2) (22)

Note that we do not fit a stratified region model for this analysis. Instead, we subset the data by
region to avoid information sharing across regions when computing correlation.

We present the results in Appendix A4. There is sufficient data to estimate the UAT/RT correlation
parameter and its standard error in 72 cases, and in most cases (59 out of 72), there is no significant
UAT/RT correlation at significance level 0.05. Furthermore, the “correlated” models and the correspond-
ing “independent” models produce similar point estimates of the RT calibration parameter. Thus, we do
not think this potential correlation will be an issue when estimating RT calibration on truncated data.
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2.5 Maximum Likelihood Estimation (MLE)

As an alternative approach to LMM, we use maximum likelihood estimation (MLE) to estimate model
parameters, and present the MLE results in Appendix A2. The difference in statistical model is the
site-effect; for MLE, we replace the random effects of LMM with centered fixed effects, where M is the
number of sites.

M∑
s=1

bs = 0 (23)

We derive closed formed solutions for the maximum likelihood estimators, and show the derivations
in Appendix A2.

β̂ =
1

|RT |
∑

(s,t)∈RT

(WRT
st − ρ̂t − b̂s) (24)

σ̂2 =
1

|UAT |
∑

(s,t)∈UAT

(WUAT
st − ρ̂t − b̂s)2 (25)

τ̂2 =
1

|RT |
∑

(s,t)∈RT

(WRT
st − ρ̂t − b̂s − β̂)2 (26)

ρ̂t =
I(t ∈ UAT ) ∗ τ̂2 ∗

∑
s∈UATt

(WUAT
st − b̂s) + I(t ∈ RT ) ∗ σ̂2 ∗

∑
s∈RTt

(WRT
st − b̂s − β̂)

τ̂2 ∗ |UATt|+ σ̂2 ∗ |RTt|
(27)

For s = 1, ...,M − 1,

b̂s =
τ̂2 ∗As + σ̂2 ∗Bs

τ̂2 ∗ (|UATs|+ |UATM |) + σ̂2 ∗ (|RTs|+ |RTM |)
(28)

As =
∑

t∈UATs

(WUAT
st − ρ̂t)−

∑
t∈UATM

(WUAT
Mt − ρ̂t)− |UATM | ∗

∑
i/∈(s,M)

b̂i (29)

Bs =
∑

t∈RTs

(WRT
st − ρ̂t − β̂)−

∑
t∈RTM

(WRT
Mt − ρ̂t − β̂)− |RTM | ∗

∑
i/∈(s,M)

b̂i (30)

For each country (or country region), we subset the data by country (or country region), and compute
the MLE in the following iterative fashion.

1. Set initial values for ρ̂t and b̂s.
(a) ρ̂t = 1

|UATt|
∑

s∈UATt
WUAT

st for each Year t.

(b) b̂s = 0 for each Site s.

2. Compute β̂.
3. Compute σ̂2, τ̂2.
4. Compute ρ̂t for each Year t.
5. Compute b̂s for each Site s.

(a) Compute b̂1, ..., ˆbM−1 using the MLE formula.

(b) Compute ˆbM = −
∑M−1

s=1 b̂s.

(c) Repeat (a) and (b) until b̂s changes less than .001 for 10 consecutive iterations for all sites.

6. Repeat Steps 2-5 until β̂ changes less than .001 for 10 consecutive iterations.
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To obtain standard errors (SE) of model parameters, we compute the information matrix based on
the Hessian matrix, and then compute the inverse of the information matrix. The diagonal of the inverse
matrix represents the variance of each parameter, and its square root is the SE (Lehmann (2004)).

As shown in the aggregation summaries, the main conclusions between MLE and LMM are essentially
the same. However, the LMM results include more country regions; in particular, 6 regions in Tanzania
(Arusha, Dodmoa, Kagera, Morogoro, Mwanza, Tabora) could be fit using LMM but not MLE. Also,
LMM includes standard error for all countries and country regions, while MLE sometimes encounters
problems with the information matrix.

3 Results

In this section, we first present the complete results for Uganda Rural; this includes the estimates for RT
calibration, UAT prevalence, variances (UAT residual, RT residual, site effect), and site effects. Then,
the estimates of RT calibration are presented for 7 countries in ESA (Eastern and Southern Africa) and
8 countries in WCA (Western and Central Africa).

The remaining results are not presented in this section. Appendix A7 presents estimated variances
(UAT residual, RT residual, site effect) for country-level and shared stratified. We also estimated site-
effects at country-level and shared stratified, and UAT prevalence for each country and country region;
however, we do not present these.

3.1 Complete Results for Uganda Rural

This subsection visualizes results for a particular stratified country region. In the stratified model, the
RT calibration and UAT prevalences are estimated at the regional level, while the variance parameters
and site effects are estimated at the country level. We present the results based on full data (1989-2017
for Uganda Rural and 1986-2017 for Uganda country) and truncated data (2012-2017 for Uganda).

For RT calibration of Uganda Rural, full data gives estimate 0.009 and standard error (SE) 0.044,
while truncated data gives estimate 0.007 and SE 0.039; full data and truncated data estimates are
not significantly different. For UAT prevalence of Uganda Rural, we first compute the 95% confidence
intervals (CI) (Estimate ± 1.96*SE) on the probit scale, and then convert to the probability scale. The
UAT prevalence estimates from full and truncated data also appear to be similar according to Figure 1.

The stratified variance parameters (UAT residual variance σ2, RT residual variance τ2, and site effect
variance ξ2) are shared across all regions within a particular country, and Table 1 presents the estimates
for Uganda. The estimated variance parameters are also not significantly different between full data and
truncated data. The estimated Uganda site effects are mostly similar between the truncated and full
data analyses, and they are presented in Figure 2 (sorted by site effects for truncated data).

Parameter
Full Data Truncated Data

Estimate 95% CI Estimate 95% CI

σ2 0.045 (0.038,0.054) 0.036 (0.024,0.055)
τ2 0.026 (0.020,0.033) 0.020 (0.016,0.026)
ξ2 0.050 (0.028,0.088) 0.057 (0.032,0.100)

Table 1: Estimated shared variance parameters for Uganda regions.
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Fig. 1: Estimated UAT prevalence for Uganda Rural.

Fig. 2: Estimated Uganda site effects (sorted by site effects for truncated data).
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3.2 RT Calibration for 15 African Countries

In the tables and figures of this section, we present the RT calibration results for 7 countries in ESA
(Eastern and Southern Africa), including Ethiopia, Lesotho, Namibia, Rwanda, Tanzania, Uganda, and
Zimbabwe, and 8 countries in WCA (Western and Central Africa), including Benin, Burkina Faso, Bu-
rundi, Cameroon, Ghana, Guinea Bissau, Senegal, and Togo.

We present results by full/truncated data. In general, we believe that the truncated analysis is more
robust than the full analysis because we only need to assume the RT calibration and site effects are
constant in a short time window. Nonetheless, as the figures and tables of this section show, the RT
calibration results are similar from full data and truncated data.

Table 2 presents the RT calibration results for countries, by full/truncated data. The full data anal-
ysis could have a higher SE than the truncated data analysis; while the full data analysis has more data
points, it also involves more parameters (from additional prevalence years), which might increase SE.
We present the stratified country region results in Appendix A1.

Global Area Country
Full Data Truncated Data

Estimate SE Estimate SE

Eastern and Southern Africa

Ethiopia -0.084 0.026 -0.090 0.027
Lesotho 0.107 0.061 0.107 0.039
Namibia -0.026 0.022 -0.027 0.021
Rwanda 0.016 0.027 0.016 0.023
Tanzania -0.084 0.043 -0.082 0.040
Uganda 0.046 0.036 0.041 0.032

Zimbabwe -0.063 0.030 -0.063 0.019

Western and Central Africa

Benin -0.125 0.022 -0.125 0.022
Burkina Faso -0.084 0.030 -0.083 0.038

Burundi -0.214 0.164 -0.214 0.174
Cameroon 0.147 0.059 0.147 0.063
Ghana -0.154 0.028 -0.154 0.027

Guinea Bissau -0.041 0.056 -0.044 0.058
Senegal -0.237 0.073 -0.237 0.077
Togo -0.118 0.066 -0.118 0.060

Table 2: RT calibration results at country level.

Figure 3 presents the RT calibration estimate with 95% CI for the total country files of ESA and
WCA. The full and truncated data analyses have overlapping 95% CI for all countries, suggesting no
significant difference. We present the stratified country region results in Appendix A1.

3.3 Summary of RT Calibration Estimates

Table 3 summarizes the point estimates of RT calibration parameters from Section 3.2 and Appendix
A1, by level of aggregation and by full/truncated data. From Table 3, we conclude that the aggregation
means are not significantly different from 0. Also, the unadjusted standard deviations (SD) (assuming
means listed in Table 3) are all less than .200, and the adjusted standard deviations (adj-SD) (assuming
mean 0) are less than .205.

Senegal has only 1 general region, so it is counted in ”Country” but not in the other aggregation
levels. Lesotho has only 1 region with overlapping UAT/RT (Urban), so it is counted in both ”Country”
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Fig. 3: RT calibration estimates for ESA and WCA total country files.

and ”Urban” aggregations. However, since Lesotho Total and Lesotho Urban are the same, it only counts
once in ”All Levels”; thus, the count for “All Levels” is 1 less than the sum of the counts from “Country”,
“Rural”, “Urban”, and “Province”.

4 Discussion

We compared observed HIV prevalence data from unlinked anonymous testing (UAT) and routine testing
(RT), and assessed the difference between UAT and RT at different levels of aggregation. It leads to an
informative prior distribution for the calibration parameter between UAT and RT for models that would
jointly use both data sources.

For instance, the Estimation and Projection Package (EPP) has been used by many countries to
generate HIV epidemic estimates that determine their policy and resource allocation. Currently, the
EPP model uses a standard normal distribution for the RT calibration parameter (Sheng et al. (2017)).
Based on our analysis, the mean of the RT calibration parameter should remain at 0. However, our results
suggest the standard deviation could be reduced from 1.0 to 0.2, which suggests the ANC-RT prevalence
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Level of Aggregation Statistic Full Data Truncated Data

All Levels

Count 93 93
Mean -0.079 -0.080
SD 0.134 0.133

adj-SD 0.156 0.156
Min -0.540 -0.540
Max 0.403 0.403

Country

Count 15 15
Mean -0.061 -0.062
SD 0.108 0.107

adj-SD 0.125 0.125
Min -0.237 -0.237
Max 0.147 0.147

Rural

Count 9 9
Mean -0.030 -0.031
SD 0.133 0.133

adj-SD 0.137 0.137
Min -0.285 -0.285
Max 0.151 0.151

Urban

Count 10 10
Mean -0.059 -0.061
SD 0.193 0.191

adj-SD 0.202 0.201
Min -0.426 -0.426
Max 0.197 0.197

Province

Count 60 60
Mean -0.091 -0.091
SD 0.131 0.130

adj-SD 0.160 0.160
Min -0.540 -0.540
Max 0.403 0.403

Table 3: Summary of RT calibration point estimates by level of aggregation.

is more consistent with ANC-UAT prevalence than encapsulated by the current non-informative prior
distribution.

We used a relatively simple approach to investigate the difference between ANC-UAT and ANC-RT
data. We did not use the EPP itself to produce estimates in our analysis; EPP is built on a susceptible
infected model, which imposes a certain structure on the epidemic trends and could interact with the
estimate of the RT calibration parameter (Bao and Raftery (2010); Bao (2012); Bao et al. (2012); Brown
et al. (2006); Brown et al. (2010); Brown et al. (2014); Ghys et al. (2004); Hogan and Salomon (2012);
Sheng et al. (2017); Stover et al. (2012)). Instead, we decided to use the linear mixed-effects model, for
parameter estimation; one benefit is the computation speed, as it can fit all regions in a country (full
data or truncated data) in less than 10 seconds.

The constant site effect assumption has less impact in our analysis based on truncated years because
we only need to assume the site effects are constant in a short time window. Therefore, we decide to draw
the final conclusion on RT calibration by using the truncated years analysis. However, as the figures and
tables show, the RT calibration results are similar from full data and truncated data.

In this analysis, we assume that each woman will only be tested once per year. For UAT, this is
the case. For RT, the guidance is that only the first test during a pregnancy for each woman should
be reported. There is concern that this is not (able to be) followed, and they report all tests. This is
potentially a source of bias because HIV positive women would not need to be tested again, but the
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guidelines are that HIV negative women are tested again later during pregnancy, so selectively re-testing
HIV negative women. In the future, we could investigate the case where multiple tests per year are
reported for some women.

The model utilizes several conditional independence assumptions. Section 2.4 tested the independence
of UAT residuals and RT residuals. Conditional independence is also assumed across sites for UAT
residuals, RT residuals, and site effects (bs); we believe relatively few women would be tested at multiple
sites. Also, we assume conditional independence across years for UAT residuals and RT residuals. Our
main conclusion is based on the truncated data analysis, and we do not expect a large fraction of women
to have done multiple tests across 3-8 years (also, some HIV negative women would become HIV positive
over time, which would reduce potential time correlation); thus, we do not believe that correlation across
years would be large enough to change our conclusion. Finally, we assume conditional independence
between UAT/RT residuals and the site effects. While we believe these assumptions should not be
a major problem in our analysis, future studies could test the conditional independence assumptions
across sites, across years, and between UAT/RT residuals and site effects.

For future work, we could incorporate the proposed informative prior distribution into EPP, and
evaluate the effect on the estimates and also the efficiency of convergence. Also, we should continually
update the analysis using newly collected data, as there could be additional years of overlap within
regions already analyzed, and regions previously without overlap might now have overlap.
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