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Abstract10

This paper investigates the role of dynamic stress concentrations, and of fracture mechanics-driven

growth of critical clusters of fibres, on the longitudinal tensile failure of fibre-reinforced composites.

For this purpose, we developed a semi-analytical fibre bundle model to simulate the longitudinal

tensile failure of large composite bundles of continuous fibres. The model uses shear-lag to calculate

the stress recovery along broken fibres, and an efficient field superposition method to calculate the15

stress concentration on the intact fibres, which has been validated against analytical and Finite

Element (FE) results from the literature.

The baseline version of the model uses static equilibrium stress states, and considers fibre failure

driven by strength of materials (stress overload) as the only damage theory which can drive bundle

failure. Like other models in the literature, the baseline model fails to capture the correct size effect20

(decreasing composite strength with bundle size) shown by experimental results.

Two model variants have been developed which include dynamics stress concentrations and a frac-

ture mechanics failure criterion respectively. To the knowledge of the authors, it is the first attempt

in the literature to investigate these two effects in a fibre bundle model by direct simulation of

large composite bundles. It is shown that, although the dynamic stress concentration significantly

decreases the predicted bundle strength, it does not allow to predict the correct trend of the size

effect. Finally, the results suggest that fracture mechanics may be the physical mechanism which is

necessary to include to correctly predict the decreasing composite strength with bundle size shown

by experimental results.
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Nomenclature25

Roman Symbols

asjcr equivalent crack critical size

Cijsl shear-lag boundary

E1 composite tensile modulus

eX̄ maximum accepted error on mean strength30

GL energy release rate due to longitudinal crack propagation

GLc critical energy release rates longitudinal crack propagation

GT energy release rate due to translaminar crack propagation

GTc critical energy release rates for translaminar crack propagation

Isjcl cluster criticality index35

i index across fibres

j index across bundle sections

k ndex across time steps

lel fibre element length

l
(ij)fa

rl recovery length associated with the failed fibre element (ij)fa40

ls bundle length

m shape parameters of Weibull strength distribution

N number of Monte Carlo simulations
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Nfa set of failed elements in the bundle

Njin set of intact elements in section j45

Njst set of elements that have reached the strain limit in section j

Njst set of the saturated elements in section j

Njin set of the intact elements in section j

Nscl set of fibre elements in cluster s

Nsjcl set of neighbouring fibre elements associated with the cluster s in section j50

ncl number of clusters in the bundle

n
(ij)scl
el,in number of intact neighbours of each element (ij)scl of the cluster

nijel,in number of intact neighbours of the element ij

nel total number of fibre elements in the bundle

nf total number of fibres in the bundle55

nsec total number of bundle cross-sections

r(ij)in(ij)st distance between fibre elements in the cross section

Rij(tk) reserve factor used to calculate stress increase during failure simulation process

SL longitudinal finite width correction factor

ST translaminar finite width correction factor60

s index across the number of clusters in the bundle

SDb standard deviation of Normal strength distribution for bundle strength

tk time variable

Vf fibre volume fraction

w95%
CI confidence interval at 95%65
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X lel
0 scale parameter of Weibull strength distribution for a fibre element of length lel

X lr
0 scale parameter of Weibull strength distribution for a fibre with reference length lr

Xb bundle strength for each Monte Carlo simulation

Xij fibre element strength threshold assigned at the beginning of each Monte Carlo simulation

X̄b mean of the Normal strength distribution for bundle strength70

x, y and z coordinate reference system aligned with the bundle cross section and axis respectively

Greek Symbols

γ parameter that controls the shape of the stress redistribution function

∆tkdyn transient interval for dynamic wave propagation

∆σ(ij)in(ij)st stress transferred from failed fibres to intact fibres75

ε∞ asymptotic strain

λdyn dynamic magnification factor

λfm proportionality factor in cluster criticality

µ12 composite in plane shear modulus

σ∞ asymptotic stress80

σdyn dynamic stress field

σsjeq Equivalent stress for crack propagation

σsjpo average pull-out stress

σijsl shear-lag stress limit

σ(ij) longitudinal stress in fibre element ij85

τfr friction stress

τsl yielding stress
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φf fibre diameter

Acronyms

FE Finite Element90

FRP Fibre Reinforced Plastic

GLS Global Load Sharing

LLS Local Load Sharing

Model BA Baseline model version

Model DE Model including Dynamic Effects95

Model FM Model including Fracture Mechanics effects

UC Unit Cells

UD Uni-Directional

WLT Weakest Link Theory

WOW Weibull of Weibull100

1. Introduction

The strength and stiffness of Fibre Reinforced Plastic (FRP) laminates is controlled, to a great

extent, by the fibres in the load-aligned plies, thus fibre-dominated tensile failures (also known as

translaminar failures) can lead to a significant drop in local stiffness, and can trigger catastrophic

failure of an entire composite structure. Consequently, being able to accurately characterise and105

predict the longitudinal tensile strength of Uni-Directional (UD) FRP plies is of great importance.

The longitudinal tensile strength of UD composites is characterised by strong size effects connected

to both the length of the specimens and the total number of fibres [1–4]. Although manufactur-

ing and testing artefacts may influence the results and interfere with measured size effects, most

researchers agree that size effects in composites are due to the intrinsic properties and failure mech-110

anisms of the material [1].
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(a) (b)

Figure 1: Size effects in the longitudinal tensile strength of UD carbon-epoxy composites. (a) Size effect in the strength
of composite bundles of constant length but different filament counts [5]. (b) Size effect in the strength of scaled UD
composites measured in tapered specimens especially designed to fail in the gauge section and avoid gripping effects
[6].

The final failure of FRPs under longitudinal tensile stress is governed by the formation of clusters of

broken fibres which, once reaching a critical size, can evolve catastrophically. Since the nucleation

of these clusters is usually triggered by the presence of defects in the fibres (weak fibres), a larger

composite structure (with more and/or longer fibres than a smaller one) will be more likely to115

have more and larger defects, which will make the formation of a critical cluster of broken fibres

more likely. Fig. 1 shows two examples of size effects on the longitudinal tensile failure of UD

carbon-epoxy specimens [5, 6].

Size effects pose a challenge for the design of large composite structures based on experimental

data measured from small coupons, and quantifying them through predictive models has been the120

subject of a recent blind benchmark exercise [7] where most models failed to predict size effects and

formation of clusters of broken fibres accurately.

A UD FRP bundle is typically composed of millions of individual fibres all aligned in the same

direction and bound together by the matrix. The longitudinal tensile failure process is governed at

least in part by the stochastic variability of the single fibre strength, and by the stress redistribution125

that occurs around broken fibres [8–14]. Predicting the tensile strength accurately at the macro-

scale requires the ability to take into account at least both these micro-mechanical effects. To this

end, several Fibre Bundle Models (FBMs) have been developed in the literature.

FBMs typically consider a parallel array of fibres with stochastic strength, loaded remotely under
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tension (bundle stress σ∞ and strain ε∞) [5, 15–29]. Once the weakest fibre fails, this generates a130

stress concentration in the neighbouring intact fibres, potentially leading to their failure. Remote

tensile stresses or strains are progressively increased until all fibres are broken, or until the composite

cannot withstand further load increments. In general, the ultimate strength of the bundle is a

stochastic variable which has to be characterised statistically by the modelling results.

The problem of calculating the probability distributions of bundle strength can be approached an-135

alytically, or through Monte Carlo simulations. Analytical FBMs are typically classified depending

on the load sharing in the neighbourhood of a fibre break: Global (or Equal) Load Sharing (GLS

or ELS) models consider the same stress concentration on all non-broken fibres [15–17]; Local Load

Sharing (LLS) models assume that the closest neighbours to the broken fibre undergo higher stress

concentrations than the more distant ones [18–20]. Pimenta and Pinho [29] recently proposed an140

analytical hierarchical scaling law for the strength of composite fibre bundles which has been exten-

sively validated against experimental results [7], and predicts full strength distributions of bundles

with millions of fibres in less than 1 second.

Monte Carlo FBMs proposed in the literature can be broadly classified into two categories depending

on the method used to calculate the stress field around broken fibres [8]:145

• Finite Element (FE) methods, which use full-field FE solvers [19–25] or simplified spring-based

models [5, 26, 27, 30] to calculate the stress field in the bundle. Full-field FE models can be

further subdivided in single-scale models, which simulate the stress field in the entire bundle

at each step of the Monte Carlo simulations process [19–22]; and two-scales models, which use

FE to calculate the deterministic response of Unit Cells (UCs) with different numbers of fibre150

breaks, and then use those responses in Monte Carlo simulations [23–25]. A main drawback

with FE Monte Carlo simulations is computational efficiency, as a very fine mesh of fibre

elements and a large number of simulations are required to achieve representative results.

• Combined field-superposition methods, which calculate deterministic stress fields near single-

fibre breaks at a first stage, and then use a superposition method to include those fields in155

the failure simulations of fibre bundles with multiple breaks. The literature on this type of

simulation is extensive, and most of the earlier models [10–14] considered analytical solutions

for stress fields. More recently, Swolfs et al. [28] used FE simulations of UD composites
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(with realistic fibre packing) to calibrate an analytical stress redistribution function. For

combined field-superposition methods, it is challenging to capture how stress concentrations160

and recovery lengths are affected by interacting clusters of broken fibres [22].

Despite attempting to simulate the micro-mechanical evolution of damage during the composite

tensile failure, most Monte Carlo FBMs in the literature tend to overestimate the final bundle

strength when compared with experimental data, and to underestimate the decrease in strength

with the increasing number of fibres in the bundle (size effect) [5, 26–28].165

Bazant [31] has shown that final failure of a composite structure is governed by the composite

strength for small-scale components, and by the composite fracture toughness for large-scale com-

ponents. Pimenta et al. and Henry et al. [32, 33] applied this concept to predict tensile failure of

aligned discontinuous composites using a non-linear fracture mechanics criterion, which combines

strength-dominated and toughness-dominated failure modes. However, most FBMs which use high-170

fidelity representation of the failure process only consider fibre stress overload (i.e. a strength of

materials approach) as the bundle failure criterion, and do not include fracture mechanics based

failure criteria for the growth of larger clusters of broken fibres. This is an important observation

as there is growing experimental evidence that unstable failure of a carbon fibre/polymer matrix

bundle occurs when a cluster of approximately 14 or more broken fibres is formed [34, 35] (Fig. 2).175

Furthermore, fibre failure is a dynamic process, resulting in a change in the stress field over time,

before it finally dampens out to the static level. Dynamic stress concentrations can be significantly

higher than static ones, as shown by modelling results [18, 36–39]. Nevertheless, this effect is

typically ignored and only static equilibrium stress states are considered in all state-of-the-art

FBMs [9].180

In this work, we aim to investigate the role of dynamic effects, and of fracture mechanics-driven

growth of clusters of broken fibres, in longitudinal failure. To this end, we developed an efficient

Monte Carlo FBM with a semi-analytical field superposition method to calculate stress concentra-

tions around clusters of broken fibres. The stress redistribution for single broken fibres and clusters

has been validated against analytical and FE results from the literature [22]; the method is also185

able to capture analytically the dependency of the stress recovery length on the cluster size.

The Monte Carlo simulation process was optimised using statistical analysis to allow the direct

8



(a) (b)

Figure 2: Computer tomography image of a co-planar cluster of 14 fibre breaks [35]. (a) Side view. (b) Top view.

simulations of large bundle sizes. Using this technique, it was possible to explore the size effects

for large composite bundles by direct simulation, without relying on analytical extrapolation of the

simulated results. Finally, this allowed us to investigate for the first time the effects of dynamic190

stress concentration and toughness dominated failure on the composite strength distribution and

on the related size effects for large composite bundles. The code-base for the implementation of the

model in a MATLAB® environment, along with the most important simulation results discussed

in this paper, can be found in a publicly available repository on GitHub.com [40].

This document is organised as follows. Section 2 explains the baseline model and its variants195

(including the model geometry, how damage is simulated and the post-processing of the data). The

algorithms required for the numerical implementation are listed in Section 2.5. Section 3 contains

an overview of the numerical results and a comparison between experimental and predicted strength

distributions both in micro and macro-bundles. Finally, Section 4 draws the main conclusions.

2. Model development200

2.1. Introduction

This section describes in detail the development of the baseline version of the model (referred to as

model BA) which considers static equilibrium stress states, and uses strength of materials as the

only failure theory. Two model variants including dynamic effects and fracture mechanics effects

are presented in Sections 2.3 and 2.4 respectively. To achieve a reliable comparison of the results,205

all models share the same common structure described once for model BA in Section 2.2.
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2.2. Baseline model

Model BA simulates the failure of a bundle of parallel fibres under longitudinal tensile loading and

provides the statistical distribution for the ultimate bundle strength. The simulation strategy can

be broken down into three main components:210

• Model definition: the numerical, geometrical and mechanical properties need to be defined,

and a stochastic strength distribution needs to be assigned to the fibres. This is described in

Section 2.2.1.

• Failure simulation: an asymptotic stress σ∞(tk), which is a function of the time variable

tk, is applied to the bundle to drive the failure process. When a fibre element breaks/fails215

as a consequence of this load, the broken fibre element is unable to carry the asymptotic

stress, which needs to be redistributed on the surrounding fibres. The stress redistribution

is computed in three steps: (i) calculation of the stress transferred by shear-lag along the

broken fibre, (ii) redistribution of the load on the surviving intact fibres, and (iii) verifying

whether new fibre elements break due to stress overload and updating σ∞(tk) to advance the220

simulation. Steps (i), (ii) and (iii) are discussed in Sections 2.2.2, 2.2.3 and 2.2.4, respectively.

This procedure is repeated until final failure of the bundle.

• Post-processing: at the end of the failure simulation, the final value of the bundle strength

Xb is obtained, being equal to the maximum of σ∞(tk) recorded during the simulation. Then,

the process is repeated over different realisations of the initial stochastic assignment of the225

fibre strength in a Monte Carlo simulation, and the parameters of the bundle strength dis-

tribution are extracted. This simulation is optimised as described in Section 2.2.5 to achieve

computational efficiency for very large bundles while ensuring the reliability and validity of

the results.

2.2.1. Bundle geometry and fibre strength230

Fig. 3 shows a bundle of nf fibres of length ls and diameter φf , with fibre volume fraction Vf and

inter-fibre spacing s in the x and y directions. Each fibre in the bundle is subdivided into smaller

fibre elements of size lel, therefore creating nsec cross sections j with j = 1, ..., nsec in the bundle
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along the direction z, each one containing fibre elements i with i = 1, ..., nf . The indices i, j therefore

define each of the nel = nf × nsec fibre elements in the bundle.235

The bundle is loaded in tension by the asymptotic stress σ∞(tk) applied to the fibres extremities.

The current version of the model assumes that the fibres are packed in a square arrangement, as

it has been established that the differences in strength predictions due to fibre arrangements are

remarkably small [13, 41].

To model the stochastic variability of the fibre strength, a strength value Xij is assigned to each

fibre element following a Weibull distribution [42] with failure probability Fel:

Fel(X
ij) = 1− exp

(
−X

ij

X lel
0

)m
, (1)

where X lel
0 is the scale parameter of the strength distribution for a fibre element of length lel, and

can be determined using the Weakest Link Theory (WLT) [8, 43]:

X lel
0 = X lr

0

(
lr
lel

)1/m

, (2)

where X lr
0 and m are the scale and shape parameters respectively for a single fibre with reference240

length lr. The Weibull distribution is widely adopted in the literature [22, 26–29, 44–49], considering

the generally good correlation with single fibre tests [50, 51]. However, other authors have proposed

alternative distributions, e.g. Bimodal Weibull or Weibull of Weibull distributions [5, 52–54].

Figure 3: Description of the model geometry.
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2.2.2. Shear-lag stress limit and recovery length

At each step tk of the simulation1, it is possible to define the set Nfa of failed elements in the bundle.245

For each broken fibre i with a failed element (ij)fa, the longitudinal stress in that element goes to

zero (σ(ij)fa = 0), but it is progressively recovered in the rest of the fibre due to the shear stress

transmitted by the matrix via a shear-lag mechanism [15, 29, 55, 56].

Assuming that the axial load is only carried by the fibres, and that the matrix is loaded in shear to

the yielding stress τsl (perfectly plastic behaviour), the shear-lag stress limit σ
(ij)(ij)fa

sl (maximum

stress level allowed by the shear-lag stress recovery) for each element ij in fibre i due to the failed

element (ij)fa can be calculated applying force equilibrium:

σ
(ij)(ij)fa

sl =
∑

N(ij)(ij)fa
sl

Cijsl ·
τsl

Af
· lel , (3)

where N(ij)(ij)fa

sl is the set of fibre elements in fibre i contained between ij and (ij)fa, and Cijsl is the

shear-lag boundary, which is the contour over which the shear stress is transmitted for each fibre250

element. The calculation of the shear-lag boundaries is detailed in Appendix A.1.

In the case of two or more failed elements in the same fibre, the shear-lag stress limit for each

element in the fibre is the smallest one of those relative to the different breaks, hence:

σijsl =


∞ if @ (ij)fa ∈ fibre i;

min
(ij)fa

(
σ

(ij)(ij)fa

sl

)
if ∃ (ij)fa ∈ fibre i.

(4)

The portion of the broken fibre i where σijsl ≤ σ∞ defines the recovery length l
(ij)fa

rl associated with

the failed fibre element (ij)fa (Fig. 4). The elements (ij)st within a recovery length are considered

to be saturated elements, since they reached the shear-lag limit. The remaining elements are intact

elements.255

When the recovery lengths associated with two or more failed elements belonging to neighbouring

fibres overlap, the load transmission between the fibres is impeded along the overlapped length, thus

the saturated elements within this length are considered to be part of the same cluster (Fig. 4a).

1for the brevity and clarity of notation, the dependency on the time variable tk will be omitted through Sections
2.2.2 and 2.2.3
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This consideration modifies the shear-lag boundary Cijsl for the involved elements and in consequence

the shear-lag stress limit and the recovery length varies as well (Fig. 4b).260

Therefore, the calculation of the shear-lag stress limit needs to be performed iteratively, as described

in Appendix A.2. A functional description of the iterative steps to calculate the shear-lag stress

limit is explained below:

(i) Eqs. (3)-(4) are applied considering that all the elements in the bundle are intact to obtain an

initial condition for the shear-lag stress limit (hereafter initial solution) to start the iterative265

process.

(ii) The recovery lengths are calculated and the shear-lag boundaries are updated for the saturated

elements.

(iii) Eqs. (3)-(4) are applied again to obtain a first solution for the shear-lag stress limit (hereafter

simplified shear-lag stress limit).270

(iv) Steps (ii) and (iii) are performed iteratively until convergence to determine the exact solution

(hereafter exact shear-lag stress limit).

In order to understand the effect of the different proposed approaches of calculating the recovery

length for clusters of broken fibres on the model results, three different versions of model BA are

implemented and compared in this paper:275

(i) model BA.1: the iterative process to calculate the shear-lag stress limit is stopped at the first

step, thus the effect of clusters is not captured, the shear-lag boundaries are equal to the fibre

circumference for each fibre element and the solution is the initial solution for the shear-lag

stress limit;

(ii) model BA.2: the iterative process to calculate the shear-lag stress limit is stopped at the280

second step, thus the effect of clusters is captured in an approximate form and the solution is

the simplified shear-lag stress limit.

(iii) model BA.3: the iterative process to calculate the shear-lag stress limit is carried out until

converge, thus capturing the full effect of the clusters and the solution is the exact shear-lag

stress limit.285
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The results of three models are presented and discussed in Section 3.1.1.

2.2.3. Stress redistribution

Once the shear-lag stress limit is defined for each fibre, the final stress state in the bundle is

computed by redistributing the loss of stress from the broken fibres to the remaining intact fibres

in the same cross section. At each bundle cross section j, it is possible to define the set Njst of290

the saturated elements (ij)st that reached the shear-lag limit (σ
(ij)st

sl ≤ σ∞), and the set Njin of the

intact elements (ij)in, for which σ
(ij)in

sl > σ∞.

An analytical power law is used to efficiently compute the stress redistribution [22, 57]. The ad-

ditional stress ∆σ(ij)in(ij)st redistributed on the intact element (ij)in ∈ Njin as a result of the stress

loss on element (ij)st ∈ Njst has the following expression:

∆σ(ij)in(ij)st = Φ(ij)st ·

(
r(ij)in(ij)st

s

)−γ
, (5)

where r(ij)in(ij)st is the distance between fibre elements in the cross section and is normalised by

fibre spacing s (hereafter indicated with r̄(ij)in(ij)st), and γ is a parameter which controls the shape

of the stress redistribution function. The variable Φ(ij)st is calculated by imposing force equilibrium

to the bundle cross section j:

σ∞ − σ(ij)st

sl =
∑
Nj

in

Φ(ij)st ·
(
r̄(ij)in(ij)st

)−γ
⇒ Φ(ij)st =

σ∞ − σ(ij)st

sl∑
Nj

in

(
r̄(ij)in(ij)st

)−γ . (6)

The final stress field at each bundle cross section is computed applying the principle of superposition

of effects to the stress concentration generated by each saturated element:

σij =


σijsl if ij ∈ Njst;

σ∞ +
∑
Nj

st

∆σ(ij)in(ij)st if ij ∈ Njin.
(7)

As a consequence of the stress concentration, it may happen that new elements in the cross section

reach their shear-lag limit (σ∞ +
∑
Nj

st

∆σ(ij)in(ij)st > σijsl ), and the excess stress has to be further

redistributed. This is achieved by re-calculating the stress field using Eqs. (5) to (7) iteratively,295
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(a)

(b)

Figure 4: Shear-lag mechanism and shear-lag stress limit. (a) Shear-lag mechanism and different cases of interaction
between three breaks in a 16-fibre bundle, depending on the position z: overlap region recovery lengths and cluster of
broken fibres (cross section 1), non-overlap region (2), single broken fibre (3). (b) Shear-lag stress limit for fibres 1-4,
with nel = 40. The shadowed triangle in the third chart is included to show the change in the slope in the overlap
region due to the cluster.
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but starting each iteration with the field σij calculated at the previous step instead of σ∞.

The stress field for fibres 1-4 of Fig. 4 is displayed in Fig. 5, using γ = 2. The appropriate value

for this parameter was determined via a comparison with data of stress concentrations in bundles

with clusters of broken fibres generated via FE simulations from St-Pierre et al. [22] (Fig. 6). The

value of γ = 2 is shown in [22] to capture very well the stress concentration factor for clusters of300

various sizes and is used in all the simulations throughout the document.

Figure 5: Stress redistribution for the fibres 1-4 of Fig. 4.

2.2.4. Failure simulation process

The bundle is loaded by imposing successive values of σ∞(tk) until final failure. As initial condition

to start the simulation
(
tk = 0

)
, the bundle is loaded to σ∞(tk = 0) ← min(Xij) to break the

weakest fibre element.305

The stress dropped by the failed elements is redistributed over the intact elements following the

procedure described in Sections 2.2.2 and 2.2.3, and the new stress state in the bundle is calculated
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(a) (b)

Figure 6: Distribution of the stress concentration factor in the cross section of a bundle of nf = 900 fibres with
a cluster of broken fibres in the centre. Geometry of the bundle and material properties are defined in Table 1 of
St-Pierre et al. [22]. (a) Stress concentration factor as a function of the normalised distance r̄ to an individual broken
fibre, calculated by the current model for different values of the parameter γ, and the corresponding analytical solution
from St-Pierre et al. with α = 2 (see [22]). (b) Stress concentration factor as a function of the normalised distance r̄
to the centre of a cluster of nelcl broken fibres calculated by the current model with γ = 2 and validated against FE
results from [22].

while keeping the value of the asymptotic stress constant. At this point, a reserve factor Rij(tk) is

calculated for each fibre element in the bundle:

Rij(tk) =
Xij

σij(tk)
. (8)

Two different scenarios are possible depending on whether all elements are able to withstand the

current stress level (Rij(tk) > 1 ∀ (ij) ), or whether some elements are experiencing a stress level

over their assigned strength (∃ (ij) : Rij(tk) ≤ 1). In the first scenario, the asymptotic stress is

increased to break a new element in the bundle:

σ∞(tk+1)← Rmin(tk) · σ∞(tk), (9)

where Rmin(tk) = min{Rij(tk)} is the minimum reserve factor of all the elements in the bundle.

In the second scenario, one or more fibre elements are due to fail under the current stress state.

Two different approaches have been considered:

(i) the first is a single break approach, where the stress level is updated according to Eq. (9) thus

failing only the element with the lowest reserve factor. Fig. 7a shows the variation of σ∞(tk)310
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during the damage simulation for a square bundle with 16 fibres using this approach. The blue

bands indicate the steps with fibre elements failing under the stress concentration; in these

cases, σ∞ decreases from step tk to step tk+1.

(ii) The alternative is a multiple breaks approach, where all elements which have Rij ≤ 1 are failed

in the same time step, while the asymptotic stress is maintained constant σ∞(tk+1)← σ∞(tk).315

The stress is redistributed again in the subsequent step of the simulation, potentially causing

more breaks. The process is repeated until all elements in the bundle can withstand the

current level of stress, then the asymptotic stress is increased again following Eq. (9); or the

final failure of the bundle is reached (Fig. 7b). In this approach, σ∞ never decreases.

In both cases, the simulation process ends when an entire cross section becomes saturated ((ij) ∈320

Njst ∀ (ij) ∈ cross section j), thus the force equilibrium is not possible. For the single break approach,

the simulation is also stopped if σ∞(tk+1) decreases to 70% of the maximum asymptotic stress. The

bundle strength is assumed to be Xb = max{σ∞(tk)}.

No strong evidence was found to decide a priori which approach is the most suitable between (i)

and (ii). On the one hand, the single break approach is appealing because it can account for the325

fact that, in reality, no two elements fail exactly at the same time, and each failed element changes

the state of stress in the bundle. On the other hand, the multiple breaks approach is widely used

for other statistical strength models in the literature [5, 14, 22–24, 26–29, 44–49], and allows for

significantly faster simulations given that the stress state does not have to be re-computed for each

failed element.330

In order to compare both approaches, a model BA.4 was implemented, which shares the same

algorithm as model BA.3 but implementing a single break approach; while models BA.1 to BA.3

use a multiple breaks approach. The differences they introduce in the simulations will be discussed

in Section 3.1. To the knowledge of the authors, it is the first systematic comparison of single and

multiple breaking approach in a fibre bundle model.335

2.2.5. Monte Carlo stopping criterion

The selection of an appropriate number of Monte Carlo simulations is critical to ensure the accuracy

of the model predictions. Most models in the literature use a fixed number of simulations for all
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(a) (b)

Figure 7: Damage simulation and evolution of σ∞(tk) in a 16-fibre bundle; geometrical and material properties are
detailed in Table 2. (a) Single breaking approach; (b) Multiple breaking approach. The two approaches are coincident
when Rmin ≥ 1 but diverge when Rmin < 1 (these steps are highlighted with blue bands).

bundles sizes, despite the fact that both experiments and models show a decrease in the bundle

strength variability when increasing the number of fibres in the bundle [29, 50, 51]. In this work, a340

bundle-size variable number of simulations was implemented as a way of increasing computational

efficiency, while keeping the accuracy of the results constant.

Given a sample with N simulations, and following the Central Value Theorem, it is possible to

calculate the confidence interval at 95% as

w95%
CI =

[
X̄b − t(N − 1, 0.025) · SDb√

N
, X̄b + t(N − 1, 0.025) · SDb√

N

]
, (10)

where t(N −1, 0.025) is the value of the Student's-t distribution with N −1 degrees of freedom for a

cumulative probability of 97.5%. The mean X̄b and standard deviation SDb of the bundle strength

from the sample are used as estimators of the equivalent normal distribution parameters.345

Fig. 8 shows the flowchart of the implementation of this criterion in the model. The number of

Monte Carlo simulations performed is the minimum that assures that the width of the confidence

interval predicts the mean strength with a maximum accepted error ±eX̄. A value of eX̄ = 1% is

used for all the simulations in the document (see Appendix C for more details on the choice of the

maximum accepted error). Additionally, a minimum number of Monte Carlo simulations Nmin = 12350

is set to ensure that the initial estimation of the mean and standard deviation are statistically
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meaningful.

Figure 8: Flowchart of the Monte Carlo stopping criterion.

2.3. Dynamic effects model

In this section, the first model variant (hereafter referred to as model DE) is implemented to

investigate the effects of dynamic stress concentrations on the bundle failure process and final355

strength.

The baseline model BA, as almost the totality of the FBMs in the literature, only considers the static

equilibrium stress field when simulating damage. In reality, when a fibre fails, the stored elastic

energy is released in form of a dynamic stress wave. This wave propagates throughout the intact

fibres during a short time interval of duration ∆tkdyn (hereafter designated as transient interval),360

causing a dynamic stress concentration, before it is dampened by the material and the stress field

reverts to the static equilibrium one (Fig. 9).

When incorporating dynamic effects, the model definition and post-processing are the same used

for the baseline model as described in Sections 2.2.1 and 2.2.5, whereas the failure simulation

procedure is modified. The damage in the bundle can progress either through (i) fibre failure due to365

the dynamic stress concentration during the transient interval ∆tkdyn, or (ii) fibre failure due to an

increase of the (quasi-static) asymptotic stress σ∞(tk). Since the characteristic time for dampening

the dynamic effects (transient interval) is much shorter that the time-scale required for varying the

asymptotic stress, it is assumed that dynamic failure occurs under constant remote stress.

In the first time scale (dynamic time scale), associated with the damage created during the dynamic370

wave propagation, an upper bound for the effect of the dynamic stress field is obtained as described
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in Section 2.3.1 with the damage simulation approach described in Section 2.3.2. In the second time

scale (static time scale), the dynamic effects have already disappeared and the stress field reverts

to the static solution described in Section 2.2.3.

2.3.1. Dynamic stress field375

Fig. 9 shows schematically the stress evolution in a fibre during the transient interval. In this

model, we do not seek to simulate the stress evolution during the entire transient. Instead, we will

estimate an upper-bound of the dynamic stress for each fibre, and use this for the implementation.

In this way, comparing our static and dynamic predictions will reveal an upper-bound for the role

of dynamic effects.380

Considering that dynamic effects act by increasing the stress concentration on the intact fibres

during the transient interval, it is assumed that the dynamic stress field σdyn can be computed

using an expression similar to the static one in Eq. (7):

σijdyn =


σijsl if ij ∈ Njst;

σ∞ + λdyn ·
∑
Nj

st

∆σ(ij)in(ij)st if ij ∈ Njin.
(11)

where λdyn is the dynamic magnification factor.

Dynamic stress concentrations have been reported to range between 160% and 200% of the corre-

sponding static ones depending on the material properties and fibre packing [9, 18, 36–39]. The

theoretical maximum dynamic magnification factor for a spring-mass system without damping sub-

ject to a step load is λdyn = 2. We will use this value for all fibre elements in this work, so as to385

obtain an upper-bound for the role of dynamic effects.

2.3.2. Damage simulation process

In model DE, the simulation is also initiated by making σ∞(tk = 0)← min
(
Xij
)
. The static stress

field is computed using the same procedure as described in the baseline model; then, the dynamic

stress field is calculated with Eq. (11).390

If the dynamic stress concentration causes some elements in the bundle to experience a stress over

their assigned strength (∃ (ij) : σijdyn ≥ Xij), the first fibre element in the wave path (the closest

element to the previous point of failure) is the first one to fail, and it releases another dynamic wave
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Figure 9: Schematic representation of the stress evolution during a dynamic transient.

which, in turn, can cause more element failures.

Since each fibre failure causes a variation of the dynamic stress levels, a single break approach is

adopted and the dynamic stress field is re-calculated after each step. This process happens in the

dynamic time scale, thus the asymptotic stress remains constant:

σ∞(tk+1)← σ∞(tk). (12)

When the dynamic stress concentration does not cause any new fibre element failure (σijdyn <

Xij ∀ i, j), the algorithm reverts to the static time scale, the stress state reverts to the static

one and the reserve factor is calculated following Eq. (8). The simulation continues raising the

asymptotic stress to break a new element:

σ∞(tk+1)← Rmin(tk) · σ∞(tk). (13)

2.4. Fracture mechanics model395

During the failure process of the bundle, clusters of broken fibres may form due to initial fibre failures

driven by strength-of-materials (stress overload), and may start acting as cracks in the material.

If the energy release rate associated with these clusters/cracks is higher than the corresponding

fracture toughness, they may trigger catastrophic failure. In this section, we propose a model that

accounts for fracture mechanics driven failure from clusters of broken fibres, and will hereafter refer400
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to it as model FM.

The structure of model FM is similar to that one of the baseline model BA: the calculation of the

shear-lag stress limit, the stress redistribution and the damage simulation process are carried out

in the same fashion, accordingly to Sections 2.2.2, 2.2.3 and 2.2.4 respectively. However, the size

of each equivalent crack is monitored during the failure simulation, introducing an additional step405

at each iteration. Hence, if at any step of the simulation tk a cluster of broken fibres reaches the

critical cluster size for the applied remote load (which is determined using the fracture mechanics

criterion described in Section 2.4.1), it is assumed to cause catastrophic failure of the bundle and

σ∞(tk) is taken as the bundle strength (Section 2.4.1). If no cluster ever reaches critical conditions,

the simulation follows the same procedure as in the baseline model.410

2.4.1. Critical cluster size

When the recovery lengths associated with two or more failed elements belonging to neighbouring

fibres overlap, all the fibre elements inside the overlapping regions are considered to be part of the

same cluster (Section 2.2.2). Thus, it is possible to define ncl sets Nscl of fibre elements in the bundle

(with s = 1, ..., ncl) which correspond to each cluster.415

Additionally, in each bundle cross section j, it is possible to define different sets Nsjcl of neighbouring

fibre elements associated with the cluster s in section j. Each set Nsjcl contains nsjelcl
elements (ij)scl

and can be idealised as an equivalent translaminar crack with equivalent characteristic crack size

(see Fig. 10):

asjeq =

√
4 · nsjelcl

·Af

π · Vf
. (14)

As shown in Fig. 10, the equivalent crack is formed by failed fibre elements in neighbouring fibres

which are included in the respective recovery lengths, but not necessary laying on the same bundle

cross section. When the equivalent crack reaches critical conditions, the matrix interface between

to neighbouring failed elements has already passed its yielding point and is considered to be failed.

However, stress transfer between neighbouring fibres inside the cluster is still possible via friction

stress. The average pull-out stress σsjpo due to the friction between the fibre pull-outs is

σsjpo =

∑
Nsj

cl

τfr · Cf · |z(ij)scl − z(ij)fa |

nsjelcl
·Af

, (15)
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where τfr is the friction stress acting on the lateral surface of each fibre pull-out (Fig. 10b) and

|z(ij)scl − z(ij)fa | is the pull-out length (i.e. distance between the element belonging to the equivalent

crack in cross section j and the closest failed element along the same fibre i belonging to the cluster).

The pull-out stress decreases the energy available for crack propagation, and reflects the fact that

clusters of broken fibres which are almost co-planar are more likely to become critical than clusters420

which are more dispersed.

Therefore, an equivalent stress σsjeq which drives the propagation of the equivalent crack can be

calculated considering that (i) the fundamental driving force for crack propagation is the asymptotic

stress σ∞, (ii) there is a pull-out stress components due to the friction between fibre pull-outs inside

the equivalent crack thus stress can still be transferred between the two faces of the equivalent

crack, and (iii) the axial load is not carried by the entire cross section but only by the fibres:

σsjeq = Vf ·
(
σ∞ − σsjpo

)
. (16)

In order to determine the conditions for critical propagation of this equivalent crack, the analytical

solution developed in [58] for the energy release rate of a flat penny-shaped crack in a fibre composite

is used (Appendix B). The critical cluster size for the equivalent crack will be inversely proportional

to the square of the equivalent stress σeq:

asjcr =
λfm

(σsjeq)2
, (17)

where λfm is a proportionality factor (with units [m ·MPa2]) which allows to distinguish between

the clusters becoming critical due to translaminar cluster growth (Eq. A9 in Appendix B)

λT
fm =

2 ·
√
E1 · µ12 ·GTc

ST
, (18)

or due to longitudinal splitting (Eq. A10 in Appendix B)

λL
fm =

4 · E1 ·GLc

SL
, (19)

where a is the crack length, E1 is the composite tensile modulus, µ12 is the composite in plane shear
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modulus and GTc and GLc are the critical energy release rates for translaminar and longitudinal

crack propagation respectively. ST and SL are the finite width corrections factors (the methods for

calculating them are detailed in [58]) and they both tend to π for large bundles. Therefore, we are425

considering ST = SL = π for the scope of this model.

Note that in both cases (splitting and cluster growth), Eq. (17) predicts that the critical cluster size

should be inversely proportional to (σsjeq)2, but with a different proportionality constant. Because

of this, of the idealisation involved with the analogy with the penny-shaped crack problem, and of

uncertainty in the measurement of the property in Eq. (18) and Eq. (19), in this work we will430

obtain predictions for a wide range of values of λfm and then relate this to values of the critical

energy release rate for translaminar and longitudinal crack propagation (GTc and GLc) that can be

obtained using Eq. (A9) and Eq. (A10) in Appendix B.

The fracture toughness failure criterion described above is implemented in the bundle failure sim-

ulation as follows. At each step of the simulation, the equivalent cracks for each cluster of broken

fibres are identified at each bundle cross section and the cluster criticality index is calculated as

Isjcl =
asjeq

asjcr

. (20)

If during the failure simulation Isjcl ≥ 1 for any equivalent crack, the bundle is considered failed and

the remote stress at that step is taken as the final bundle strength (Xb = σ∞(tk)).435

2.5. Models flowcharts

In order to analyse all the features described above, six different models were created (see Table

1). Four correspond to different versions of model BA, implementing different strategies for the

damage simulation or the calculation of the shear-lag stress limit. Models DE and FM are the

model variants implementing dynamic effects and fracture mechanics, respectively.440

The flowcharts corresponding to one Monte Carlo simulation of each model are presented in Figs.

11-13, with the most important differences highlighted in yellow. Models BA and DE consider

strength of materials as the only failure theory, so the end of the simulation is subject to fibre stress

overload. Model FM introduces the fracture mechanics driven failure, so simulations can also end

when any cluster becomes critical.445
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Figure 10: Fracture mechanics in the model. (a) Composite bundle loaded in tension with a cluster of broken fibres
(highlighted in orange). (b) Detail of the pull-out phenomenon: to create the crack on the equivalent cross section
j, apart from breaking the fibres it is necessary to pull a certain fibre length (red cylinders) out of the matrix,
acting against τfr. (c) Equivalent crack and definition of the equivalent crack size. For a better understanding of the
nomenclature and phenomena involved see Appendix B.

Additionally, all the models implement the Monte Carlo stopping criterion described in Section

2.2.5 to improve their computational efficiency.

Table 1: Models developed and key algorithm differences between them.

Ref. Model family Failure simulation Shear-lag stress limit

BA.1 Baseline Multiple breaks Initial solution
BA.2 Baseline Multiple breaks Simplified
BA.3 Baseline Multiple breaks Exact
BA.4 Baseline Single break Exact
DE Dynamic effects Single break Simplified
FM Fracture mechanics Multiple breaks Simplified
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Figure 11: Flowchart of the model BA and its versions.
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Figure 12: Flowchart of the model DE.
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Figure 13: Flowchart of the model FM.
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3. Results and discussion

This section compares the results provided by all the model variants described in Section 2 and

validates the predicted strength distributions with respect to other modelling approaches from the450

literature and experimental data. Prior to the comparison, a numerical convergence study was

carried out to select the appropriate numerical parameters, as discussed in Appendix C.

When presenting results for long bundles, a model with a representative simulation length ls is

firstly simulated and then the results are scaled to the desired bundle length lb using the Weakest

Link Theory (see details in Appendix D). This strategy is used to reduce the computational time455

of the simulations. No scaling is applied to the number of fibres in the bundle, which means that

the actually desired number of fibres is simulated directly to obtain all the results.

3.1. Baseline model

3.1.1. Comparison of baseline model versions

Fig. 14 shows the comparison between the statistical bundle parameters predicted by the four460

versions of the baseline model. Bundle sizes up to 1600 fibres have been simulated and the results

are presented for lb = 10 mm. The nominal input properties for the fibres and resin are listed in

Table 2.

In general, all the model versions predict an increasing bundle strength with the number of fibres.

Also, the variability decreases substantially with bundle size; thus the selection of a bundle-size465

variable number of Monte Carlo realisations is proven to be a very effective approach. The number

of required simulations to keep the same confidence level decreases with the bundle size, allowing

for significant savings in total computational time.

Fig. 14a compares the predicted bundle strength and variability for models BA.3 and BA.4. Both

models perform the calculations with the exact shear-lag stress limit, but implementing a multiple470

breaks approach and a single break approach respectively. The two solutions are in almost exact

agreement, suggesting that both approaches are equivalent with respect to the predicted bundle

strength. However, Fig. 14b shows that the multiple breaks approach allows a slight improvement

in terms of computational efficiency because the number of steps necessary for the simulations

decreases as more fibre elements fail at each step.475
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Fig. 14c compares strength predictions with different estimations of the shear-lag stress limit:

model BA.1 (initial solution for the shear-lag stress limit), model BA.2 (simplified shear-lag stress

limit) and model BA.3 (exact shear-lag stress limit). Models BA.1 and BA.2 overestimate the mean

strength and slightly reduce variability with respect to model BA.3. This result is expected because

the non-exact solutions for the shear-lag stress limit may underestimate the recovery lengths, thus480

reducing the region of influence of the stress concentration. Although the difference between models

BA.1 and BA.3 is significant (in general, larger than 10% for the mean strength), model BA.2

captures most of the effect of clusters on the recovery length, with a comparatively small error in

the strength predictions.

Model BA.2, which uses the simplified shear-lag stress profile with a multiple breaks approach,485

allows a strong improvement of the computational cost (Fig. 14d), with a reduction of the average

time per simulation by more than one order of magnitude in comparison with models BA.3 and

BA.4. Given this consideration, and the small error in the prediction of the bundle strength, model

BA.2 appears to be the most appropriate to conduct simulations on large bundle sizes, and will be

used hereafter as the baseline model.490

Table 2: Nominal input properties. Geometrical and mechanical properties are obtained from [5] and correspond to
UD T800H/3631 composites (Toray).

Bundle geometry Numerical parameters Mechanical properties

φf lb Packing Vf lel nel ls γ eX̄ Nmin X lr
0 m lr τsl

[µm] [mm] [-] [mm] [-] [mm] [-] [%] [-] [MPa] [-] [mm] [MPa]

5 10 Square 0.6 0.005 200 1 2.0 1.0 12 3570 3.8 50 52.4

3.1.2. Validation of modelling approach for large bundles

This section compares strength predictions from model BA.2 and from the 3D shear-lag model

developed by Okabe et al. [26], which uses a shear and tension springs lattice to calculate the

stress state in a fibre bundle with broken fibres. The 3D shear-lag model considers arrays of parallel

fibres, each subdivided in smaller fibre elements, and uses a Weibull of Weibull (WOW) distribution495

to assign strength values to the individual fibre elements [5]; Monte Carlo simulations are used to

generate statistical strength distributions for the bundle strength. In order to obtain a meaningful
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(a) (b)

(c) (d)

Figure 14: Simulation results for model BA variants. Results presented for a bundle length lb = 10 mm. (a)
Comparison of mean strength and coefficient of variation for models BA.3 (multiple breaks approach) and BA.4
(single break approach). (b) Comparison of computational cost for models BA.3 and BA.4. (c) Comparison of mean
strength and coefficient of variation for models BA.1 (initial solution for the shear-lag stress limit), BA.2 (simplified
shear-lag stress limit) and BA.3 (exact shear-lag stress limit) (d) Comparison of computational cost for models BA.1,
BA.2 and BA.3.

comparison, we also implemented WOW in model BA.2 using the same formulation given in Okabe

et al. [5] as described in Appendix E.

Fig. 15a-b compares the strength distributions predicted by model BA.2 and the 3D shear-lag model500

[26] for two different bundle sizes: nf = 324 and nf = 1024. The bundle length is lb = 0.8 mm in

both cases. The input parameters used for model BA.2 are given in Table 2, with the exception

of the simulation length (which is ls = lb = 0.8 mm in this case) and the input properties for the

WOW distribution, which are the same given in [5]: X̄ lr
0 = 3740 MPa, ρ1 = 5.7 and ρ2 = 5.4 for
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lr = 50 mm.505

The results of model BA.2 exhibit an excellent correlation with 3D shear-lag model results; the

differences in the average bundle strengths for bundles of 324 and 1024 fibres are −2.9% and a

−2.1%, respectively. This good agreement validates the use of the analytical stress redistribution,

and the failure algorithm used in this work. However, the analytical stress redistribution proposed

is computationally inexpensive in comparison to solving numerically a large system of equations.510

This should allow the current modelling approach to be used for larger bundles, as will be shown

in Section 3.5.

Finally, note that both models show an increase in strength with the number of fibres in the bundle,

which is the opposite of the size effect expected (Fig. 15c). Therefore, both models, which are based

exclusively on a strength of materials approach, do not appear to be able to predict the expected515

size effects, at least in this case.

3.2. Dynamic effects

This section compares the predictions given by model DE with model BA.2. The nominal input

properties from Table 2 were used, and for model DE the simulations were carried out with λdyn = 2.

This case represents an upper-bound for the maximum intensity of the dynamic effects, and is520

meant to provide a theoretical lower-bound for the strength predictions. All results are presented

for lb = 10 mm.

Fig. 16a shows the strength predictions given by models DE and BA.2. The difference in the

predicted bundle strength is around 10%, but the increase in strength with the number of fibres

remains. Also, variability is higher in model DE, thus increasing the number of Monte Carlo525

realisations and the computational time, as presented in Fig. 16b.

Considering dynamic stress concentrations does not vary the failure mechanism, so final failure is

driven by strength of materials in both models. However, the average distance between consecutive

breaks during the failure simulation is significantly smaller in model DE (Fig. 16d), suggesting that

dynamic effects lead to clusters that are more co-planar. The formation of co-planar clusters during530

tensile tests is confirmed by computer tomography experiments [9] (see also Fig. 2), and is a feature

that may eventually be related to dynamic effects. Therefore, the lower bundle strength predicted

with including dynamic effects appears to be the result of the higher stress concentration and easier
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(a) (b)

(c)

Figure 15: Simulation results for model BA.2 and the 3D shear-lag model from Okabe et al. [26]. Results are presented
for lb = 0.8 mm. (a) Predicted strength distributions for a bundle with nf = 324. (b) Predicted strength distributions
for a bundle with nf = 1024. (c) Predicted mean strength and size effect for the bundles with nf = 324 and nf = 1024.

damage localisation around clusters of broken fibres introduced by the dynamic effects.

3.3. Fracture mechanics535

In this section, we present the strength predictions for model FM, which features a fracture me-

chanics failure criterion. A parametric study was carried out analysing different values of λfm as a

free parameter of the model so that its influence on the results may be investigated in detail. The

nominal input properties (Table 2) were used, with τfr = 10 MPa, E1 = 120 GPa, µ12 = 4 GPa and

ν = 0.28 to compute Eqs. (15), (18) and (19). All results are presented for lb = 10 mm.540

Fig. 17a compares the predicted strength and variability between model FM and model BA.2, for

different values of λfm. It is observed that, when a fracture mechanics failure criterion is considered,
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(a) (b)

(c)

Figure 16: Simulation results for model DE. Results presented for a bundle length lb = 10 mm. (a) Comparison of
mean strength and coefficient of variation for models DE and BA.2. (b) Comparison of computational cost for models
DE and BA.2. (c) Average distance (normalised with the fibre spacing s) between consecutive breaks during the
simulation process for models DE and BA.2. In this case, the bundle length is lb = 1 mm.

the predicted bundle strength decreases significantly. Furthermore, considering fracture mechanics

can change the overall size effects for bundles with low values of λfm: strength presents a maximum

for medium-size bundles (under 100 fibres) and then decreases with the bundle size. For higher545

values of λfm, the bundle strength tends to converge to model BA.2. Finally, the introduction of

fracture mechanics does not cause significant change in the bundle variability, thus the number of

Monte Carlo simulations is similar to that for model BA.2.

Fig. 17b shows the average critical cluster size as a function of the number of fibres for different

values of λfm in model FM. These predictions are significantly smaller than nf for large bundles.550
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Additionally, the critical cluster size appears to reach an horizontal asymptote. Although direct

comparison with experimental results is not possible at this point, this result is in line with experi-

mental evidence, which has not reported clusters greater than 14 fibres, even for large bundles [7, 9].

Other simulation models in the literature which do not consider fracture mechanics, also tend to

severely overestimate the critical cluster size [7].555

(a) (b)

Figure 17: Simulation results for model FM. Results presented for a bundle length lb = 10 mm.(a) Comparison of
mean strength and coefficient of variation for models FM (with different values of λfm) and BA.2. (b) Average critical
cluster sizes predicted by model FM (with different values of λfm).

It should be noted that, as the size of a cluster of broken fibres grows, it starts resembling a notch

and the stress concentration at its edges tend to rise. As such, it is reasonable to expect that a

strength of materials approach should be able to capture the destabilising effect of this severe stress

concentration in a brittle material. However, by the addition of the fracture mechanics effects to

the model, it is possible to capture the dissipative effect of friction during the pullout process as560

this is embedded in the fracture toughness values for the material. Such an effect would be more

difficult to include in the basic strength of materials models. Eventually, enhanced approaches still

based on strength of materials (e.g. using average stresses over a certain region [59–61]) could be

able to capture this effect.

3.4. Validation against experimental results for micro-bundles565

Fig. 18 shows a comparison between experimental strength data for composite micro-bundles and

the strength distributions predicted by models BA.2 and DE. Model FM is not included in this

comparison because the effect of fracture mechanics starts only to become significant for large
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bundles (Fig. 17a). When applicable, strength predictions for the same material system obtained

via Monte Carlo simulation of a full FE bundle model from St-Pierre et al. [22] are included for570

comparison.

Fibre properties were taken from the experiments of Beyerlein and Phoenix [50] and Kazanci [51]

and are listed in Table 3. Two different matrices were used in the experiments: matrix (I) is a low

modulus epoxy, consisting of a blend of 50% DER 221 and 50% DER 732 with DEH 26 as curing

agent; while matrix (II) is a high modulus epoxy, with a 100% of resin DER 331 with the same575

curing agent. The matrix yield stresses were obtained from Netravali et al. [62]; they are τsl = 3.96

MPa and τsl = 41.67 MPa for matrices (I) and (II), respectively.

Fig. 18a-d shows the comparison with four-fibre bundles and with two different lengths: 10 mm and

200 mm. All results were obtained using ls = 10 mm in the model, which allowed direct comparison

with experiments for bundles of lb = 10 mm; while the comparison with bundles of lb = 200 mm580

was performed scaling the modelling results using WLT (see Appendix D). For the low-strength

matrix (I) the bundle strength distributions correlate very well and the predicted mean values do

not deviate more than a 3.3% (Fig. 19).

For the higher-strength matrix (II), predictions with models BA.2 and DE appear to overestimate

slightly the experimental strength, and are very close to the results of the FE simulations from585

St-Pierre et al. [22] which assumes shear lag with perfectly plastic behaviour of the matrix and no

debonding with the fibres. It should be noted that Netravali et al. [62] have reported the occurrence

of debonding at the fibre matrix interface during single fibre fragmentation tests with epoxy (I),

while no debonding was observed for the flexible epoxy (II). Debonding at the fibre matrix interface

results in a longer recovery length and this may lower the bundle strength (see Fig. 14c). This590

consideration may explain why both simulations tend to overestimate the experimental results.

Fig. 18e-f shows the comparison with experimental results for lb = 10 mm micro-bundles with

7 fibres. The result were obtained by linear interpolation from square bundles of 4 and 9 fibres.

In this case, predicted strength distributions for matrix (I) deviate slightly from the experimental

data, while the agreement with matrix (II) is better.595
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(a) (b)

(c) (d)

(e) (f)

Figure 18: Validation of models BA and DE with experimental data of micro-bundles and numerical modelling results
from Okabe et al. and . (a) 4 fibres, epoxy (I), lb = 10 mm. (b) 4 fibres, epoxy (II), lb = 10 mm. (c) 4 fibres, epoxy
(I), lb = 200 mm. (d) 4 fibres, epoxy (II), lb = 200 mm. (e) 7 fibres, epoxy (I), lb = 10 mm. (f) 7 fibres, epoxy (II),
lb = 10 mm.
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Table 3: Fibre properties and bundle geometry for the comparison with experimental data in micro-bundles. Obtained
from [50, 51].

Fibre properties Bundle geometry

Reference Type Cf X lr
0 m lr lb Packing Vf

[µm] [MPa] [-] [mm] [mm] [-]

Beyerlein and Phoenix (1997) AS4 6.85 4493 4.8 10 10/200 Square 0.70
Kazanci (2004) IM6 5.63 5283 5.4 10 10 Hexagonal 0.56

3.5. Comparison with macro-bundles

Fig. 20 compares experimental data for the bundle mean strength of composite bundles ranging

from one thousand up to one million fibres obtained from Okabe and Takeda [5] with the predictions

of the current models. Results were obtained with properties defined in Table 2 by simulating ls = 1

mm bundles and scaling the results to lb = 10 mm using WLT.600

Fig. 20a shows the results predicted by models BA.2 and DE. Both models significantly overestimate

the strength of large bundles. Furthermore, the size effect observed in the range of the experiments

(decrease in strength with the number of fibres in the bundle) cannot be reproduced by any of the

two models. These results suggest that the strength of large composite bundles, and in particular

Figure 19: Statistical mean values predicted by models BA.2 and DE and compared with experimental data in Fig.
18. Deviation with respect to experiments is indicated in the chart.
The plotted values for each case are the following ones:
Experimental data [MPa]: 3553 (18a), 3868 (18b), 2587 (18c), 3049 (18d), 4661 (18e), 5193 (18f)
Model BA.2 [MPa]: 3605 (18a), 4359 (18b), 2710 (18c), 3422 (18d), 4220 (18e), 5169 (18f)
Model DE [MPa]: 3495 (18a), 4087 (18b), 2503 (18c), 3137 (18d), 4054 (18e), 4763 (18f)
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the size effects, cannot be correctly predicted considering only strength of materials (even with605

dynamic stress concentrations) as a failure theory.

Fig. 20b compares the predicted bundle mean strength from Model FM with the experimental

data. A parametric study was carried out by varying the value of λfm from 30 to 70 m ·MPa2. The

strength predictions from model FM are in the same range as the experimental results. Furthermore,

the reduction in the predicted mean strength with the bundle size is compatible with the trend of610

the experimental data. Note that, although the predictions depend on λfm, the model predicts

the correct size effect (reduction of strength with increase in the number of fibres) for all values

of λfm considered. This suggest that failure in large composite bundles may be driven by fracture

mechanics, and that size effects may not be reproducible via direct simulation only considering

strength of materials.615

The best fit in Fig. 20b occurs when λfm ∼ 50 m ·MPa2. Substituting this value with the input

properties in Eq. (18) and solving for the energy release rate, it is possible to obtain the cor-

responding value of critical energy release rate for translaminar crack propagation: GTc = 3.66

kJ/m2. Carrying out the same procedure for Eq. (19) leads to the value of critical energy release

for longitudinal crack propagation: GLc = 0.33 kJ/m2. Both values of critical energy release rate620

are compatible with the respective properties of common fibre matrix systems [63–66] (although on

the low end of the range), thus validating the hypothesis that final failure of a composite bundle

can indeed be triggered by unstable propagation of critical clusters of broken fibres. However, from

the present data it is not possible to determine weather the dominant crack propagation mode is

longitudinal or translaminar.625

4. Conclusions

A family of semi-analytical fibre bundle models was developed to efficiently simulate the longitudinal

tensile failure of large composite bundles. A field superposition method was used by all the models

to calculate the stress concentration around clusters of broken fibres, and has been validated against

analytical and FE results from the literature. To the knowledge of the authors, this is the first time630

that a field superposition method was shown to be able to capture the effect of clusters of broken

fibres on the stress recovery length. Additionally, a method with a bundle-size dependent variable

number of Monte Carlo simulations was implemented to improve the computational efficiency, hence
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(a) (b)

Figure 20: Validation of models BA, DE and FM with experimental data of macro-bundles. Results presented for
lb = 10 mm. (a) Results for models BA.2 and DE. (b) Results for model FM (with different values of λfm).

allowing the direct simulation of bundle sizes up to thousands of fibres.

A baseline model (model BA) was developed to reproduce the key features involved in the bundle635

tensile failure process: variability of single fibre strength and stress concentration around broken

fibres. Four sub-variants of the baseline model were created to investigate different aspects of the

simulation algorithm (see Table 1). Model BA.1 completely neglects the effect of the cluster size on

the fibres recovery length and uses a multiple breaks approach for the simulation algorithm. Model

BA.2 still uses the multiple breaks approach but implements an approximate calculation of the stress640

recovery length for clusters of broken fibres, while model BA.3 implements an exact calculation for

the recovery length keeping the multiple breaks approach. Model BA.4 features an exact calculation

of the stress recovery length for clusters of broken fibres, but uses a non-simultaneous single fibre

failure simulation algorithm (single break approach).

All model BA variants assume strength of materials as the only bundle failure theory, and only645

consider static stress equilibrium during the simulation. Model DE was developed in order to

investigate the effects of dynamic stress concentration on the bundle failure process, while model

FM was developed to investigative the effects of including fracture mechanics in the simulation

process. To the authors knowledge, it is the first time in the literature that dynamic effects and

fracture mechanics are investigated through direct simulation of large composite bundles.650

The following conclusions have been reached during the present study:
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a) On model BA variants:

• the non-simultaneous fibre failure simulation strategy implemented in Model BA.3 and

the multiple fibre failure simulation strategy implemented in model BA.4 are essentially

equivalent with regards to the strength prediction, although the multiple breaks approach655

allows a slight reduction in computational time. To the knowledge of the authors, it is

the first systematic comparison of single and multiple breaking approach in a fibre bundle

model;

• the comparison between model BA.1, BA.2 and BA.3 demonstrates that the influence of

clusters of broken fibres on the stress recovery length has an important effect on the final660

bundle strength. This effect is captured fully by model BA.3 and with a 5% error by model

BA.2. Considering the strong advantage of model BA.2 in terms of computational efficiency,

it appears the most appropriate to conduct simulations on large bundle sizes.

b) Models BA.2 and DE show in general a good correlation with experimental strength distributions

for micro-bundles of 4 and 7 fibres with two different resin types. Model BA.2 also shows good665

agreement with Monte Carlo simulations carried out using a full FE bundle model.

c) Model DE, which shares the algorithm of the baseline models but includes the effects of dynamic

stress concentrations, shows a maximum reduction possible of about 10% in the predicted bundle

strength when compared with model BA.2.

d) Both models BA and DE predict an increase in strength with the bundle size and severely670

overestimate experimental results, even considering the extreme case scenario for dynamic effects

in model DE. These results suggest that there are important aspects of the physics of the problem

that are not considered in models BA and DE.

e) Model FM, which shares the same basic algorithm as model BA.2 but includes a fracture mechan-

ics failure criterion, predicts lower bundle strengths and, most importantly, a negative trend for675

the strength of large bundles in agreement with experimental results. It also predicts a smaller

critical cluster size which stays rather constant even for large bundles, in agreement with exper-

imental evidence. These results suggest that fracture mechanics may be the physical mechanism

missing in models BA and DE, and that it is necessary to reproduce the size effect in large
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composite bundles. This is arguably the most important outcome of the work presented in this680

document.
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Appendix A Calculation of the shear-lag stress limit

A.1 Calculation of the shear-lag boundary

At each bundle cross section j, the shear-lag boundary Cijsl is defined for each fibre element ij as

the contour over which the load can be transferred. For the set of intact elements Njin (those with

σijsl > σ∞), C
(ij)in

sl is calculated computing the number of interfaces between ij and other intact

elements in the same cross section:

C
(ij)in

sl =
Cf

4
· nijel,in, (A1)

where nijel,in is the number of intact neighbours of the element ij, with a maximum of 4. Fig. A1a

illustrates how the shear-lag boundary varies with the available interfaces and the position of the690

element in the arrangement.

For the set of saturated elements Njst (those with σijsl ≤ σ∞), the shear-lag boundary may vary

if the elements belong to a cluster. Following the definition given in Section 2.2.2, two or more

consecutive elements form a cluster in the cross section j if they are saturated, which means that

the cross section j is contained into the region of overlap of the recovery lengths corresponding to

the fibres to which they belong. The shear-lag boundary for each cluster s in the cross section j

containing a set Nsjcl of nsjelcl
elements is

Csjcl =
Cf

4
·
∑
Nsj

cl

n
(ij)scl
el,in , (A2)

where n
(ij)scl
el,in is the number of intact neighbours of each element (ij)scl of the cluster (Fig. A1b).

With this formulation, single saturated elements are treated as clusters of size 1.

Since clusters act as stress-lacking regions, all the elements in the same cluster share the same

shear-lag boundary. Hence, the individual C
(ij)scl
sl are calculated:

C
(ij)scl
sl =

Csjcl

nsjelcl

. (A3)

A.2 Iterative calculation of the shear-lag stress limit

The calculation of the shear-lag stress limit σijsl needs to be performed iteratively, since the interac-695

tion between the recovery lengths associated with the different failed elements modifies the shear-lag
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(a) (b)

Figure A1: Calculation of shear-lag boundaries in a generic cross section j. (a) Calculation of the shear-lag boundary
in three different intact elements. (b) Calculation of the shear-lag boundary in the two clusters with different size.

boundaries Cijsl , and in turn the modification of the boundaries varies the recovery lengths.

To start the iterative process, an initial condition (initial solution) for the shear-lag stress limit is

firstly calculated. This initial solution does not consider the existence of clusters of broken fibres

nor the influence they have in the shear-lag recovery, and it is calculated applying Eqs. (3)-(4) with700

Eq. (A1) to calculate the shear-lag boundaries. The initial solution is represented with a black line

in Fig. A2a. Finally, the set Nst of saturated elements with σijsl ≤ σ∞ is defined, by computing the

individual Njst for each cross section j.

At each step, the shear-lag boundary is updated for the set of saturated elements following Eq.

(A2)-(A3), and the shear-lag stress limit is re-calculated. Then, the set Nst is updated to include705

new saturated elements. The variation of Cijsl in some fibre elements belonging to clusters changes

the slope of the shear-lag stress limit profile along the broken fibres, then the recovery lengths change

(this effect is highlighted with auxiliary lines in Fig. A2). The solution after the first iterative step

is the simplified shear-lag stress limit, and it is represented with a red line in Fig. A2a.

When the re-calculation of the shear-lag stress limit does not vary the elements in Nst, the process710

ends. The solution after completing the iterative process is the exact shear-lag stress limit (Fig.

A2b).

Appendix B Critical crack size in a unidirectional composite with a centre notch

Composite materials are anisotropic and heterogeneous in nature, and any fracture mechanics anal-

ysis should take these factors into account. The problem of predicting the composite failure can
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(a) (b)

Figure A2: Calculation of the shear-lag stress limit. (a) First two steps in the calculation of the shear-lag stress limit.
The initial solution, which neglects the effect of the cluster, is shown in black and the corresponding set Nst of the
elements included in the recovery lengths is shown in blue. The simplified shear-lag stress limit, which gives a first
approximation of the effects of the cluster, and the corresponding set Nst are shown in red. (b) Converged solution
for the calculation of the shear-lag stress limit. The exact solution for shear-lag stress limit and the corresponding
set Nst are shown in blue. In both images, dotted lines are used to highlight the changes in the slope of the shear-lag
stress limit when varying Cij

sl .

be approached using a critical energy release rate criterion which could describe each specific mi-

crostructural failure event. Nairn [58, 67] developed a shear-lag model to find an approximate solu-

tion for the stress concentrations around crack tips and around longitudinal splits in unidirectional

composites, and used it to calculate the energy release rate due to self-similar crack propagation

through the fibres (translaminar crack propagation):

GT =
σ2
∞ · a

2 ·
√
E1 · µ12

· ST

( a
W

)
, (A4)

and the energy release rate due to longitudinal crack propagation:

GL =
σ2
∞ · a

4 · E1
· SL

(
a

W
,

∆

W
,

√
µ12

E1

)
. (A5)

In these expressions, a is the crack length, ∆ is the longitudinal split length (∆ = 0 for the case

of longitudinal splitting from the tip of a crack), E1 is the composite tensile modulus, µ12 is the715
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composite in plane shear modulus, σ∞ is the asymptotic stress, and L and W are defined in Fig.

A3. The functions ST( a
W ) and SL( a

W , ∆
W ,

√
µ12

E1
) are the finite width corrections factors and tend

to π for infinite samples (the methods for calculating them are detailed in [58]).

The energy release rate expressions in Eqs. (A4) and (A5) can be combined and re-arranged to

calculate the critical crack length acr:

acr = min

(
2 ·
√
E1 · µ12 ·GTc

σ2
∞ · ST

,
4 · E1 ·GLc

σ2
∞ · SL

)
, (A6)

where GTc and GLc are the critical energy release rates for translaminar and longitudinal crack

propagation respectively.720

The fracture mechanics failure criterion expressed in Eq. (A6) can be further synthesized in the

form:

acr =
λfm

σ2
∞
, (A7)

where λfm is a proportionality factor which includes geometric effects as well as materials properties

information and is given by:

λfm = min
(
λT

fm, λ
L
fm

)
, with (A8)

λT
fm =

2 ·
√
E1 · µ12 ·GTc

ST
, and (A9)

λL
fm =

4 · E1 ·GLc

SL
. (A10)

Appendix C Numerical convergence study

This section summarizes the convergence study conducted to select the appropriate numerical pa-

rameters for the simulations. The study was performed using the model BA.4 with a bundle length

ls = lb = 1 mm and the nominal geometrical and mechanical properties listed in Table 2.

Fig. A4a shows the predicted mean strength and variability for different levels of bundle discretiza-725

tion (varying the element length lel), with a constant size for the confidence interval of the mean

strength (with eX̄ = ±1%). The model appears to reach convergence for the range of element sizes

simulated, although both the strength and variability curves show small residual fluctuations. This

effect is attributed to the stochastic nature of the simulation, rather than to the discretization level,
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Figure A3: Centre notch crack in a unidirectional composite sample.

and therefore is more likely to be affected by the required precision of the Monte Carlo simulation,730

which is discussed below.

Fig. A4b shows that the number of Monte Carlo simulations was roughly the same for all the

element sizes, and the computational cost is a direct function of the average time per simulation,

which increases by 20 times when decreasing lel from 0.05 mm to lel = 0.001 mm. An element size

lel = 0.005 mm is used for all the simulations in Section 3 to ensure a good compromise between735

precision and computational efficiency.

Fig. A4c-d show the results of varying the size of the confidence interval for the mean strength X̄b

in Eq. (10), while keeping the level of discretization constant (lel = 0.005 mm). Decreasing the

size of the confidence interval decreases the random fluctuation in the results, particularly for the

coefficient of variation, but also produces a strong increase in the required number of Monte Carlo740

simulations (Fig. A4d). A maximum accepted error eX̄ = ±1% (see Section 2.2.5) produces reliable

results with good performances regarding computational time, and is used for all the simulations in

Section 3.
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(a) (b)

(c) (d)

Figure A4: Numerical convergence study. (a) Comparison of mean strength and coefficient of variation for different
discretization levels (variation of lel). (b) Computational cost for different discretization levels. (c) Comparison of
mean strength and coefficient of variation for different sizes of the confidence interval for X̄b (variation of EX̄). (d)
Computational cost for different sizes of the confidence interval for X̄b.

Appendix D Length scaling

To improve computational efficiency, strength results for large fibre bundles (with true length lb)

are obtained by simulating a bundle model with the same number of fibres and a representative

bundle length ls < lb. The simulation results are then scaled to the true bundle length applying the

Weakest Link Theory (WLT) [8, 43], which states that a chain of length ln composed by n elements

of length l0 survives under a remote stress σ∞ only if each of the elements survives under σ∞.

Hence, the failure probability Fb(σ∞) (or strength cumulative distribution function) for a bundle
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of length lb is

Fb(σ∞) = 1− [1− Fs(σ∞)]lb/ls , (A11)

where Fs(σ∞) is the failure probability for a bundle of length ls under the remote stress σ∞, which745

can be obtained directly from the simulation.

Two different scaling methods are implemented: (i) scaling the strength distribution directly, or

(ii) scaling the statistical parameters of the distribution. In case (i), being X1
b ≤ X2

b ≤ ... ≤

XN
b ... ≤ X

NMC
b the predicted bundle strengths corresponding to each one of the NMC Monte Carlo

simulations for a bundle of length ls, the value of the failure probability is assigned to each strength

value following

FNs = (N − 1)/NMC, (A12)

and then FNMC
b is calculated applying Eq. (A11).

In case (ii), the predicted strength distribution for each simulated bundle with length ls is fitted using

a Weibull distribution with parameters ms and Xs
0 that correspond to the mean bundle strength

X̄s
b and standard deviation SDs

b. These parameters are then scaled to lb using WLT:

mb = ms

Xb
0 =Xs

0

(
ls
lb

)1/ms (A13)

Since, in general, the accuracy of the Monte Carlo simulation tends to converge much faster for the

mean strength than for the standard deviation, using the latter (option (ii)) to perform the scaling

may introduce artificial noise in the scaled results for the mean strength. For these reasons the750

curve SDs
b(nf) is fitted with a power law c1 · (nf)

c2 before applying the scaling to smooth random

fluctuations related to the convergence of the Monte Carlo simulations.

Fig. A5 shows an overview of the different scaling approaches. The model BA.4 was used with

the nominal inputs from Table 2. Fig. A5a presents the mean strength and variability for different

simulation lengths ls, while Fig. A5b-c show the same results scaled to lb = 5 mm using methods755

(i), and (ii) respectively, and compare them with the non-scaled solution (ls = lb).

Scaling the entire distribution (Fig. A5b) may overestimate slightly the strength; this is because

Eq. (A11) causes loss of accuracy in the lower tail of the distribution. On the contrary, scaling the
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statistical parameters leads to a better prediction of the mean strength, especially if the standard

deviation is fitted (Fig. A5c). Therefore, scaling technique (ii) with fitting the standard deviation760

has been mainly used throughout this document.

Finally, it is important to observe that, for bundles with length lb = 5 mm, both the simulated

results and the scaled results predict an upward trend of the mean bundle strength with the bundle

size. Thus, this is not an artefact of the scaling technique but an actual result of the model.

(a) (b)

(c)

Figure A5: Length scaling. (a) Comparison of mean strength and coefficient of variation for different simulations
lengths. (b) Results for lb = 5 mm scaling the entire distribution. (c) Results for lb = 5 mm scaling the statistical
parameters with fitting the standard deviation.
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Appendix E Implementation of Weibull of Weibull distribution for the fibre elements765

strength

To model the stochastic variability of the fibre strength following a Weibull of Weibull distribution

[5], a random strength Xij is assigned to each fibre element in the bundle following

Fel(X
ij) = 1− exp

(
− Xij

X lel,i
0

)ρ1

, (A14)

where ρ1 and X lel,i
0 are the shape and scale parameters, respectively, for the strength distribution

of an element of length lel which belongs to fibre i. The scale parameter X lel,i
0 changes from fibre

to fibre in the bundle following a second Weibull distribution

Fel(X
lel,i
0 ) = 1− exp

[
− lel

lr

(
X lel,i

0

X̄ lr
0

)ρ2 ]
, (A15)

where X̄ lr
0 and ρ2 are the scale and shape parameters, respectively, for a fibre of reference length lr.
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