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Abstract

We study the effect on stock volatility and turnover of coverage by traditional

news media and social media. We find that coverage by traditional news media pre-

dicts decreases in subsequent volatility and turnover, but coverage by social media

predicts increases in volatility and turnover. We show that these patters are consis-

tent with a model of “echo chambers”, where social networks repeat news, but some

investors interpret repeated signals as genuinely new information.
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1 Introduction

A survey by the Reuters Institute (2016) finds that 51% of respondents use social media

to access news every week, and 12% cite it as their main source of news. Moreover,

a significant share of social media content relates to stock markets, as witnessed by an

emerging industry that extracts and sells market-relevant indicators from social media.1

An active literature studies the relationship between social media, news media and

the stock market.2 However, most existing studies focus on one source of news at a

time. Therefore, an open question is whether stock markets react to social media and

news media in a systematically different way. In this paper, we directly compare social

and news media coverage, and thus provide new stylized facts on their relationship with

stock markets. We use a unique panel dataset on media coverage from the Thomson

Reuters MarketPsych Indices (TRMI) database. Our data aggregate a broad spectrum of

news media sources and most popular social media into indicators of coverage (“buzz”),

which facilitate a like-for-like comparison between social and news media. We merge

these data with stock prices, turnover, and stock-specific characteristics.

Our main result is that coverage in social and news media are associated with markedly

different patterns of subsequent return volatility and trading volume per share (or turnover).

High social media buzz around a given stock predicts a statistically significant increase

in idiosyncratic return volatility and trading activity over the following month. High

news media buzz predicts a significant decrease in volatility and trading activity. These

empirical patterns are robust to the inclusion of stock and time fixed effects, time-

varying stock characteristics and measures of disagreement about asset value (the dis-

persion in financial analysts’ opinions). Our results on volatility also apply at the market

1See, for example: http://www.wsj.com/articles/tweets-give-birds-eye-view-of-stocks-1436128047
2For example, sentiments in news and online searches predict stock returns and turnover (Tetlock,

2007), stocks with low coverage have higher returns (Fang and Peress, 2009), and press coverage reduces
information asymmetries (Bushee et al., 2010). Beyond traditional news media, noise levels in trading
pits predict high volatility (Coval and Shumway, 2001), activity in specialist chat rooms (e.g. RagingBull)
predicts high volatility and turnover (Antweiler and Frank, 2004), and sentiment indicators extracted from
online forums and searches can predict returns (Chen et al., 2014; Da et al., 2015).
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level: high social media buzz around the stock market as a whole predicts higher return

volatility, while news media buzz predicts the opposite.

We further evaluate the mechanisms at play, using a stock-level panel VAR which

includes news media buzz, social media buzz, volatility, and turnover as endogenous

variables. We find that an increase in news media buzz predicts an increase in subse-

quent social media buzz in the sense of Granger causality. The converse is not true:

increases in social media buzz do not predict changes in subsequent news buzz.

The core contribution of this paper is to establish these robust stylized facts. To-

gether, they suggest that stock markets interact with social media and news media in

different ways. Moreover, it appears that news media is a leading indicator for social

media. This is consistent with the view that social media contents are generated by re-

peating and discussing (e.g. re-tweeting) existing news. However, our findings do not

have a causal interpretation (we do not observe exogenous variations in either social or

news media coverage). Further work is needed to pin down the exact mechanisms at

play.

As a complementary exercise, we propose a theoretical model consistent both with

our evidence and with existing work. We analyze our findings through the lens of asset

pricing models with imperfect information. We present a model where the processing

of social media signals is subject to a “correlation neglect” or “echo chamber” effect (e.g.

DeMarzo et al., 2003; Gentzkow and Shapiro, 2011; Tetlock, 2011). Social media repeat

existing news media signals, and a subset of “behavioral” traders interpret these repeti-

tions as genuinely new information. In this setting, social media and news media cov-

erage have opposite effects on subsequent volatility and turnover. News media contain

genuine information and therefore dampen disagreement about asset value. Periods

where an asset experiences high coverage by news media are followed by lower return

volatility and turnover. Higher coverage by social media, by contrast, increases disagree-

ment and boosts the confidence of behavioral traders. Periods of high coverage by social
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media are followed by higher return volatility and turnover. We also show that the same

patterns cannot be generated by other cognitive biases that could apply to social media

such as overconfidence, conservatism, rational inattention, and confirmation bias.

Our data do not allow us to rule out all alternative mechanisms. For instance, it is

possible that unobserved shocks increase both social media buzz and subsequent trad-

ing activity. However, we note that the “echo chamber” model is not only consistent with

our stylized facts, but also with existing evidence showing that financial markets react

to repeated signals (Huberman and Regev, 2001; Tetlock, 2011), as well as psychological

evidence on repetition-induced learning (Hawkins and Hoch, 1992).

The remainder of the paper is structured as follows. In Section 2, we describe our

data and present summary statistics. In Section 3, we show our main empirical results

and robustness checks. Section 4 contains our theoretical framework. Section 5 con-

cludes. Figures and Tables appear after the main text. All proofs are presented in the

appendix.

2 Data

We now describe the data we use. First, we describe how we measure coverage (“buzz”)

and sentiment for each stock in social and news media. Second, we describe the finan-

cial data we use to measure stock prices, volatility, trading activity and stock character-

istics. Then, we present summary statistics. For a summary of all variable definitions,

see Table 1 in the appendix.

2.1 Measuring ‘Buzz’ and Sentiment

We use the Thompson Reuters MarketPsych Index (TRMI) database, which extracts mea-

sures of buzz (defined below) and sentiment from English-language news and social

media content using a proprietary machine learning lexical analysis algorithm. Me-
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dia contents measures in the same database have been used in several studies (e.g.

Michaelides et al., 2015; Sun et al., 2016; Michaelides et al., Forthcoming). For consis-

tency, we focus on the period between January 2009 and December 2014, since several

waves of major news source additions occurred before 2009.

During this time, the main sources of traditional news media content are (i) Reuters

News, (ii) a host of mainstream news sources collected by MarketPsych Data, and (iii)

online content collected by Moreover Technologies from about 50,000 internet news

sites that include top international and business news sources, top regional new sources,

and leading industry sources. The online news content includes many finance-specific

sites such as Forbes and SeekingAlpha.

The main sources of social media content are (i) content collected by MarketPsych

Data from internet forums and finance-specific tweets, and (ii) a social media feed con-

structed by Moreover Technologies, which captures the top 30% of social media con-

tent, as ranked by popularity using incoming links, collected from around 4 million so-

cial media sources such as chat rooms (including stock-market specific chats), public

Facebook posts, blogs, micro-blogs and tweets.

From these sources, the TRMI algorithm extracts high-frequency measures of media

coverage (“buzz”), sentiment, and events surrounding each of about 3000 US stocks.

The TRMI indicators update every five minutes. We rely on a dataset which reports

them at the daily frequency.

The total buzz of a stock on a given day counts the number of words and phrases

referring to the stock in the above sources. This number is obtained by first identify-

ing references about a specific stock in news articles and social media posts, and then

counting the total number of phrases and words referring to sentiments (for instance,

fear, joy or trust) and/or events (for instance, litigation, mergers or layoffs) related to

this stock. Therefore, total buzz captures not only which stocks are being mentioned,

but also the intensity of discussion of a particular stock, as captured by the quantity
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of phrases and words. This measure is more informative than the length of the article,

since meaningless words (‘the’, ‘are’, ‘in’, etc.) are not included. For our main analysis,

we use a monthly measure of total buzz, which is obtained by summing across days.

Figure 1 shows total buzz at the market level for social and news media.

The relative buzz of a stock is defined as the total buzz of a stock in a given month,

divided by the total buzz of all stocks mentioned in that month. This calculation is done

separately for social and news media content, yielding our key measures of coverage:

Social media relative buzz (BuzzS) and news media relative buzz (BuzzN), both of which

are continuous variables between zero and one.

Total buzz appears to contain significant time effects and potential structural breaks

(see Figure 1). We therefore focus our analysis on relative buzz.3 This amounts to using

a non-linear control for total buzz in the market, and gives a stationary measure of each

stock’s individual coverage. Using such a measure in our main analysis assumes that

investors allocate attention horizontally across stocks at each point in time.4

We will also include, as control variables, measures of “sentiment” from the TRMI

database. In calculating the TRMI sentiment indices, the sentiment scores of words are

calculated by first splitting the articles and sentences into phrases and words, then let-

ting human annotators evaluate their sentiments with the consensus value taken, and

using these labels to train a machine learning classification algorithm. Sentiment on

news and social media (SentN and SentS) is the difference between the number of “pos-

itive” and “negative” references to a stock, divided by the stock’s total buzz, so that their

values range from −1 to 1. To account for the potential asymmetric effects of positive

and negative sentiment, we also include the number of negative references in isolation

(SentN(-) and SentS(-)). SentN(-) and SentS(-), are equal to 0 when sentiment is posi-

3However, as total buzz, rather than relative buzz, corresponds to our model specification more closely.
We also conducted robustness tests of our results with total buzz. This will be explained in Section 3.3.

4This corresponds well to our model in Section 4. We also tried an alternative specification that as-
sumes investors allocate attention vertically for a particular company over time. Our findings are still
robust. These results are reported in Table 18 of Appendix C.
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tive, and equal to the original sentiment value when they are negative. Our sentiment

controls serve as a proxy for potential unobserved stock-specific events.

2.2 Measuring Volatility

We merge our measures of buzz with monthly financial data from the Center for Re-

search in Securities Prices (CRSP) and the Compustat database. The main variables of

interest are trading activity and the realized idiosyncratic return volatility of each stock.

In our main analyses, we construct the parametric measure of realized idiosyncratic

volatility (“iVolp”) in two steps. First, for every month m in the sample, we estimate

a three-factor model of daily returns on each stock by fitting the following regression

equation:

(Rit −Rft) = β
(m)
0 + β

(m)
1 (Rmt −Rft) + β

(m)
2 SMBt + β

(m)
3 HMLt + ε

(m)
t .

Rit is the return to stock i on day t; Rft is the one-month treasury bill rate; Rmt is the

return to the value-weighted market portfolio; SMBt is the average return on the three

Fama and French (1993) small-cap portfolios minus the average return on the three big-

cap portfolios; and HMLt is the average return on the two value stock portfolios minus

the average return on the two growth stock portfolios. Second, we define the idiosyn-

cratic volatility of stock i in monthm as the sum of squared errors over all days in month

m from this monthly regression.

We check the robustness of our results by considering an alternative, non-parametric,

measure of idiosyncratic volatility (“iVoln”), which is obtained by taking the variance of

daily returns of each stock within a month at the monthly frequency (see Table 10).
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2.3 Other Financial Data

Our measure of trading activity is turnover (“Turn”), which is the share trading volume

of a stock divided by the number of shares outstanding. We also include in our anal-

ysis a set of financial variables which have been shown to have predictive power for

volatility and trading activity. We take from CRSP the size of a firm (“Size”) measured by

its market capitalization, monthly stock price returns (“Return”) and absolute value of

return (“AbsReturn”), and we calculate the standard deviation of the last 60 monthly re-

turns (“TotalSD”). Using Compustat data, we calculate each firm’s leverage (“Leverage”),

and its degree of focus as measured by the Herfindahl-Hirschman index of segment rev-

enue (“HHI”). We include the fraction of institutional ownership (“InstOwn”) from the

Thomson Reuters Stock Ownership Summary.5 We further obtain the dispersion of an-

alyst opinions (“AnalystDisp”) from the I/B/E/S summary files. Notice that all variables

(HHI, InstOwn, etc) are allowed to vary over time for each stock at the monthly level.

2.4 Sample Selection and Summary Statistics

We focus on stocks which are traded on NYSE, AMEX and NASDAQ. We follow the liter-

ature in excluding regulated utilities (SIC codes 4910-4949), depository institutions (SIC

6000-6099) and holding and investment companies (SIC 6700-6799). The panel is un-

balanced due to the entry and exit of stocks, so we restrict attention to a balanced panel

in our main analysis. Our balanced panel includes 1848 stocks observed for 72 months

(January 2009 to December 2014).

Table 2 shows sample means and standard deviations for (relative) buzz, volatility

and turnover, for all stocks and disaggregated by industry.6 Buzz is measured in per-

5The literature on stock market volatility demonstrates the predictive power of size (Cheung and Ng,
1992), returns (Duffee, 1995), institutional ownership (Dennis and Strickland, 2002) and trading volume
(Schwert, 1989). Trading activity is commonly associated with the absolute value of returns (Karpoff,
1987; Schwert, 1989), institutional ownership (Tkac, 1999) and size (Tkac, 1999; Lo and Wang, 2000).

6Industries are classified according to Thomson Reuters Business Classfication (TRBC) 10 economic
sectors.
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centage points. We winsorize all financial data and the buzz measures at 1% to ensure

that our estimates are not driven by outliers.

The average of relative buzz is about 0.03% per stock. Values of buzz range from zero,

for stocks which are not covered (not mentioned in any news source) in a given month,

to 0.53% for the stocks with most coverage in news media and 0.65% for the stocks with

most coverage in social media.7 The standard deviation of buzz is slightly higher for so-

cial media than for news media. Figure 2 illustrates the heterogeneity across industries.

For instance, buzz is relatively high in the trade, services, manufacturing and finance

industries, and relatively low in agriculture and mining/construction. Moreover, news

buzz is relatively more prominent than social media buzz in industrials, but the oppo-

site is true in healthcare. In our main analysis, we will control for firm fixed effects which

absorb time-invariant variation across industries. We will also conduct robustness tests

which ensure that our results are not driven by any particular industry.

Table 3 reports sample averages and standard deviations for our financial control

variables. Table 5 decomposes variation in our panel data into between and within stock

variation. For both news and social media, the majority of variation occurs between

stocks.

Table 4 shows contemporaneous correlations, with p-values in parentheses. Social

and news media buzz are strongly correlated for a given stock within the same period.

Buzz also correlates with size, and this correlation is stronger for news than for social

media. There is also a strong correlation between buzz and turnover, especially for so-

cial media. The contemporaneous correlation between volatility and buzz is positive

for social media, and negative (but close to zero) for news media.

Figure 1 shows 30-day moving averages of the total news and social media buzz of

all stocks in our sample. At the market level, both types of buzz go through noticeable

swings, and they are positively but not perfectly correlated. Figure 2 shows a moving av-

7Before we winsorize, we observe stocks which have relative buzz close to 10% on individual days.
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erage of relative buzz for two industries (technology and utilities), while Figure 3 shows

the same timelines for two individual firms (Walmart and Apple).

3 Empirical Results

3.1 Volatility

We run a panel regression of each stock i’s volatility next month (t + 1) on this month’s

(t) buzz in social and news media, BuzzSi,t and BuzzNi,t, stock-level control variables

Xi,t (described above in Sub-section 2.3), and this month’s volatility iV olpi,t. We control

for stock and time fixed effects αi and µt:

iV olpi,t+1 = αi + µt + βSBuzzSi,t + βNBuzzNi,t + γXi,t + δ × iV olpi,t + εi,t+1. (1)

Table 6 reports the results from estimating Equation (1). The most complete specifica-

tion is presented in column (4).

High news media buzz predicts lower subsequent volatility and this is statistically

significant at the 1% level. The effect is robust to the inclusion of time and stock fixed

effects, as well as our other controls. Social media buzz predicts higher future volatility,

and this relationship becomes statistically significant once we control for stock char-

acteristics. These results are robust to the inclusion of sentiment controls and the dis-

persion of analyst opinions (AnalystDisp), a common measure of disagreement among

investors.8 The variables are normalized for the ease of interpretation: an increase in

news media buzz in month t by 1 standard deviation decreases volatility in month t + 1

by about 0.05 of a standard deviation; an increase in social media buzz in month t by 1

standard deviation increases volatility in month t+ 1 by about 0.04 of a standard devia-

tion.
8The number of observations drops as we include our controls due to missing observations.
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To further interpret the economic significance of buzz on volatility, suppose that a

stock goes from having no buzz in social media to being one of the most talked-about

stocks, with a relative buzz of 0.5%. Then, according to our preferred specification, our

measure of the stock’s subsequent idiosyncratic volatility rises on average by 0.31 of a

standard deviation or 54% of average volatility. For an equivalent change in news me-

dia buzz, the stock’s subsequent volatility falls by 0.39 of a standard deviation or 68% of

average volatility.

A potential concern is that our estimated coefficients, with opposite signs on news

and social media, are driven by the strong positive contemporaneous correlation be-

tween news and social media buzz.9 To check whether this is the case, we introduce the

two measures separately in the last two columns. This does not significantly affect the

sign, magnitude or significance of the coefficients, which suggests that contemporane-

ous correlation is not driving our results.

3.2 Turnover

For trading activity, as measured by turnover, we estimate the analogous panel regres-

sion:

Turni,t+1 = αi + µt + βSBuzzSi,t + βNBuzzNi,t + γXi,t + δ · Turni,t + εi,t+1. (2)

Table 7 reports our estimates.

High social media buzz predicts high subsequent turnover, and high news media

buzz predicts low subsequent turnover. This effect is statistically significant at the 1%

level, and does not change significantly when we include stock, sentiment and dis-

agreement controls. Introducing social and news media buzz separately in the last two

columns affects our estimates only marginally, suggesting that they are not driven by

9Intuitively, if Corr [BuzzNi,t, BuzzSi,t] ≈ 1, then estimating Equation 1 may yield βS = −βN > 0, even
if the true coefficients were βS = βN = 0.
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the contemporaneous correlation between social and news media. Our preferred spec-

ification (column (4)) suggests that a 1 standard deviation increase in news media buzz

decreases turnover by 0.065 standard deviations, while a 1 standard deviation increase

in social media buzz increases turnover by 0.04 standard deviations.

To interpret the economic effects of buzz on turnover, suppose again that relative

social media buzz around a stock rises from zero to the level of the most talked-about

stocks at 0.5%. Then according to our preferred specification in column (4), the stock’s

subsequent turnover increases on average by 0.32 of a standard deviation or 30% of aver-

age turnover. For an equivalent rise in news media buzz, turnover decreases on average

by 0.51 of a standard deviation or 47% of average turnover.

3.3 Robustness Checks

Tables 8 and 9 show the results of estimating Equations (1) and (2) on an unbalanced

panel of data (i.e., including stocks which are not present during our balanced-panel

sample). The estimated effects of buzz are quantitatively similar to the baseline model,

and significant at the 1% level. Table 10 shows the results using the non-parametric

measure of volatility (“iVoln”, described in Section 2.2). Again, the estimates are quan-

titatively similar to the baseline model, and significant at the 1% level. Tables 11 and

12 repeat the estimation of our preferred specification in sub-samples where each in-

dustry (healthcare, technology, etc.) is removed in turn. Tables 13 and 14 perform the

same exercise, but this time excluding stocks in each quartile of market capitalization.

In both exercises, the estimated coefficients remain significant and stable, showing that

the results are not being driven by any particular industry or by stocks with particularly

large or small market capitalization.

We also conducted additional robustness checks by including variables that control

for market conditions, including the S&P500 return and VIX index. These are reported

in Table 20 of Appendix C.
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Since our model was derived using the number of signals, or the absolute amount of

information, instead of relative, we also conducted additional regressions using abso-

lute buzz, and find that our results still hold. These are reported in Table 21 of Appendix

C.

3.4 Vector Autoregression

To further evaluate the dynamic interaction between buzz and market outcomes, we es-

timate a panel vector autoregression (VAR) which includes four endogenous variables:

news and social media buzz, return volatility and turnover. This will allow us to test for

Granger causality between these endogenous variables. We use a balanced panel, in-

clude two lags of the endogenous variables, a set of exogenous control variables, and

month and stock fixed effects.10 The model also includes Size, InstOwn, Return and

SentN as exogenous variables and stock-specific controls. Other controls were also in-

cluded but were insignificant and did not change our main results. Standard deviations

are clustered at the stock level.

Table 15 shows the estimated panel VAR coefficients. The results are easier to visu-

alize via the impulse response functions in Figure 4. The estimated effects are similar

to our baseline panel regressions: An increase in social media buzz (shown in the right

two panels of the Figure) is associated with a significant increase in subsequent volatil-

ity and turnover which declines over time. An increase in news media buzz (in the left

panels) is associated with a significant decrease in volatility. The effect of news media

buzz on turnover has a negative point estimate but is imprecisely estimated.

10To control for fixed effects in a computationally feasible manner, we time-demean the endogenous
variables to account for time fixed effects, and apply a Helmert transformation to create forward mean
differenced forms which remove stock fixed effects. For a vector of endogenous variables ẑi,t, in a panel
of time periods t = 1, ..., T , the Helmert-transformed endogenous variables are

zi,t =
√

T − t
T − t+ 1(ẑit −

1
T − t

T∑
n=t+1

ẑin).
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Based on our estimates, we test for Granger causality among the endogenous vari-

ables. The results are presented in Table 16. The null hypothesis is that for two endoge-

nous variables i and j, a contemporaneous increase in i does not predict a significant

subsequent change in j. We reject this hypothesis for all pairs (i, j) at the 1% level, with

two exceptions: a shock to social media buzz does not predict a significant change in

news media buzz (p-value 0.054), and the impact of turnover on social media buzz is

significant only at the 5% level (p-value 0.039).

3.5 Market-level Effects

Our analysis so far has focused on stock-level news and social media buzz, stock-level

trading activity and idiosyncratic volatility. We now examine whether the same effects

are present at the market level, i.e. whether the total buzz surrounding all stocks, in

either social or news media, has predictive power for aggregate volatility and trading

activity.

To study the effect of media buzz on market return volatility, we obtain a daily time

series of market return volatility from a generalized autoregressive conditional heteroskedas-

ticity (ARCH) models. We use the GJR-GARCH model to capture the potential leverage

effect, i.e. the asymmetry in the effect of positive and negative returns on volatility (see,

for example, Duffee, 1995).

We use two alternative series for market return: the value-weighted return from

CRSP (VWRet), and the return on the S&P 500 (SPRet). We construct market-level mea-

sures of buzz in news media (MktBuzzN) and social media (MktBuzzS) by summing up

the total buzz for all individual stocks on each day. For analyzing SPRet, we generate

measures of buzz (SPBuzzN and SPBuzzS) which aggregate total buzz only for S&P 500

stocks.

We report the results in Table 17. The negative effect of news buzz and the positive

effect of social buzz on volatility can also be found at the market level, using both all
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stocks or only S&P 500 stocks. Our analysis of turnover, by contrast, did not yield signif-

icant results at the market level.

4 Asset Pricing Model

We now present a theoretical model of asset pricing with imperfect information, which

rationalizes the empirical patterns we find. As a baseline, one might consider a model

where all traders are symmetric and rational, and news media and social media both

provide informative, public signals to investors. It is immediate that such a model would

be inconsistent with our results. Indeed, we have shown that social and news media

buzz predict opposite developments in stock turnover and return volatility.

In this section, we propose an alternative model where social media acts as an “echo

chamber”. In section 4.3, we discuss alternative explanations, including models which

view social media as private information, which feature other behavioral biases, and in

which buzz is endogenously determined.

Consider an economy with three dates t ∈ {0, 1, 2} and two generations of traders,

which are born at dates 0 and 1 respectively, and who we call generation 0 and 1.11 There

is a unit mass of traders indexed by i. Trader i of generation t lives for one period and

maximizes the expected utility of future wealth, Eit[u(Wt+1)], where utility u(.) is CARA

with risk tolerance 1. The risk-free interest rate is 1 and the future is not discounted.

There is one risky asset, in zero net supply, which yields a final payoff θ at date 2. At date

0 all traders have a common prior θ ∼ N (m0,
1
ρ0

).12

At date 1 there are N public signals from traditional news media, of the form sn =
11In principle, the arguments below extend to an economy with T trading dates, which could be solved

using recursive methods as in He and Wang (1995). Since the key effects arise as long as there is an inter-
mediate date at which information can arrive, we focus on a three-period setting.

12There are no noise traders who trade for purely exogenous reasons. While noise traders affect the
overall volume of trade and return volatility, they do not affect the changes in these measures when the
number of social and news media signals changes. Since these derivatives are the subject of our empirical
analysis, we omit noise traders from the baseline model.
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θ + εn, n = 1, ..., N , where εn ∼ N (0, 1
ρe

). There are also K signals from social media:

ek = θ + εk, with k = 1, ..., K, where εk ∼ N (0, 1
ρe

). Our measures of news and social

media buzz are N and K. Let the average values of news and social media signals be

s̄ = 1
N

∑
n sn and ē = 1

K

∑
k ek respectively. For ease of exposition, we restrict attention to

a single stock and consider the total number of social and news media signals (N and

K) about that stock.13

To analyze “echo chamber” effects, we make two assumptions. First, the K social

media signals are repetitions of the N true signals, so they do not contain new infor-

mation. Because they are repetitions, we will assume that ē = s̄.14 Second, traders in

generation 1 are heterogeneous in how they process information: There is a mass λ of

behavioral traders and 1 − λ rational traders. Rational traders ignore social media sig-

nals, but behavioral traders treat them as genuinely new information with precision ρe.

In other words, behavioral traders misinterpret the data-generating process, and act as

if the social media errors εk were independent of the news media errors εn.

Under these assumptions, rational traders’ posterior mean at date 1 is

m1 = m0 + w (s̄−m0) ,

where w = Nρe
ρ0+Nρe is the rational updating weight on news media. Thus, rational traders

update based only on the average news media signal s̄. By contrast, behavioral traders

further update based on the average social media signal ē, for the posterior mean

m̂1 = m1 + ŵ (ē−m1) ,

where ŵ = Kρε
ρ1+Kρε is the behavioral updating weight on social media. Due to their in-

terpretation of social media as new information, behavioral traders also have tighter

13Controlling for total market-level buzz (or for time fixed effects), N and K have a one-for-one map-
ping into the relative buzz of a given stock i, which we included in our regressions.

14For instance, we suppose that each signal n is repeated ψ times, for a total of K = ψN echoes.
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posteriors than rational ones. In particular, the posterior precision is ρ1 = ρ0 + Nρe for

rational traders and ρ̂1 = ρ1 +Kρe for behavioral traders.

4.1 Equilibrium Prices

The price at date 0 is p0 = E0[p1] = m0, and the price at date 2 equals the final payoff

p2 = θ. At date 1, the demands of each of the rational and behavioral traders respectively

are x1 = ρ1(m1− p1) and x̂1 = ρ̂1(m̂1− p1). The equilibrium price at date 1 must clear the

market, so it solves (1− λ)x1 + λx̂1 = 0, or

p1 = m1 + η(ē−m1),

η = λKρe
ρ1 + λKρe

.

The term η(ē − m1) is the distortion introduced by behavioral traders. Without social

media echoes, K = η = 0. This disagreement occurs to the extent that the average echo

(ē) disagrees with the rational posterior (m1). Intuitively, when ē > m1, or equivalently

when the average signal s̄ exceeds the prior meanm0, behavioral traders generate excess

demand due to their response to social media, and the price rises above fundamental

values. The distortion in price is smaller when the rational posterior is precise (large ρ1),

since this implies that behavioral traders update relatively little beyond what rational

traders do. The distortion is naturally increasing in the share of behavioral traders λ and

social media buzz K.

4.2 Empirical Predictions

Our empirical analysis focuses on the behavior of average stock turnover and the volatil-

ity of stock returns following the arrival of information (“buzz”) from social and news

media. In the model, information in the model arrives at date 1. The subsequent stock
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turnover15 is

T2 = (1− λ)|x1|.

The subsequent return is

R2 = p2 − p1,

and return volatility is measured by its variance.16 We show that the comparative statics

of the model match our empirical findings:

Proposition 1. Expected turnover between dates 1 and 2

E [T2] = (1− λ)ηρ1E [|ē−m1|] (3)

is increasing in K and decreasing in N . The subsequent volatility of returns

V [R2] = V[p2 − p1] = V [θ − s̄w − ēη (1− w)] (4)

is increasing in K and decreasing in N .

These results have intuitive interpretations. For turnover, note that T2 is driven by

confidence and disagreement. In the absence of social media echoes (η = 0), all traders

would have the same posterior beliefs so there would be no trade. More generally, pos-

terior means will differ because the average echo (ē) differs from the posterior mean

of rational individuals (m1), hence the term E [|ē−m1|]. Similarly, turnover vanishes

when λ = 0 or λ = 1 since disagreement vanishes at these extreme points (notice that

η = λKρe
ρ1+λKρe ). Finally, turnover increases with confidence: if posterior beliefs are tighter

(high ρ1), trade will be more aggressive. Regarding the volatility of subsequent returns

V [R2] = V[p2−p1], note that p2−p1 is volatile whenever the time 1 price p1 is not aligned

15Since we may normalize the number of outstanding shares without loss of generality, T2 also captures
the stock’s “turnover” which we will measure in the data.

16As is standard in the asset pricing literature based on CARA-Gaussian setups, we consider the per-
unit-of-stock return pt+1−pt instead of the per-dollar return pt+1/pt (e.g. He and Wang (1995)). Our results
on volatility remain valid up to a first-order approximation when the per-dollar return is considered.
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with the true fundamental value p2 = θ which is revealed at date 2. More social media

buzz K drives a wedge between p1 and θ because behavioral traders grow in confidence

and are willing to buy and sell at prices that are misaligned with true fundamentals.

Thus, the variance of subsequent returns increases in K. By contrast, more news media

signals N offset this effect and therefore lead to a reduction in the variance of subse-

quent returns.17

These predictions are robust to our assumptions about behavioral traders’ attention

to news media. So far, we have assumed that behavioral traders pay attention to news

as well as social media. Similar conclusions arise in a model where behavioral traders

consider only social media signals, which we analyze in Appendix B.5.

Since our model has only one trading period, we cannot make predictions about the

persistence of these effects. The intuition for a multi-period model would be clear: on

one hand, if the underlying data generating process is stationary, traders’ beliefs will

tend to converge again in the long run, so that there is reversal. On the other hand, if

social media generates disagreement in the short run, this disagreement will persist for

a few periods. Our vector autoregression analysis suggests that the data is consistent

with both of these effects. Indeed, the impulse responses shown in Figure 4 appear to

revert towards zero over time. For example, the strongest effect of social media buzz is

felt after about one period for volatility, and after five periods for turnover.

17The model’s predictions regarding the contemporaneous return volatility V [R1] = V[p1 − p0] are less
clear-cut. More social media buzz K increase disagreement and the confidence of behavioral traders,
both of which increase the volatility of prices p1 and, hence, the volatility of contemporaneous returns.
More news media signals N create two competing effects. First, since all traders agree about the distri-
bution of news signals, a higher ratio N/K reduces the relative disagreement in the economy and damp-
ens price volatility. Second, as in standard models, more genuine information raises the variance of all
traders’ posterior beliefs m1 because prices respond to information, which increases price volatility. The
first effect runs into diminishing returns when N/K is large, in which case the second effect dominates.
A formal analysis is available on request.
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4.3 Alternative Mechanisms

We have argued in this section that a model of social media as an “echo chamber” is

consistent with our empirical findings. In this section we discuss possible alternative

explanations. We present a formal analysis in the Appendix B.

First, it is possible that social media conveys genuine information (unlike in the

“echo chamber” model), but that its interpretation by behavioral traders is subject to

other types of behavioral biases. Our linear-Gaussian setup can be adapted to allow for

some common biases in the behavioral finance literature. The cases we consider in the

appendix are as follows:

1. Overconfidence: Behavioral investors overstate the precision of their signals as in

Scheinkman and Xiong (2003). In this case, the precision of social media signals

is ρε but behavioral investors perceive the precision to be (1 + a) ρe, where a > 0

measures overconfidence.

2. Conservatism: Behavioral investors overstate the precision of their prior beliefs as

in Barberis et al. (1998). In this case, behavioral investors attach precision (1 + b) ρ0

to their prior, with b > 0 measuring conservatism.

3. Rational inattention: Behavioral investors observe signals with cognitive noise,

which must satisfy a constraint on entropy reduction as in Peng and Xiong (2006)

and Kacperczyk et al. (2016).

4. Confirmation bias: Behavioral investors ignore signals that do not conform with

their prior sentiment as in Rabin and Schrag (1999). Specifically, behavioral traders

with an optimistic predisposition process negative signals si < m0 as if they were

equal to the prior mean m0.

We show in the appendix that, for all of these biases, an increase in the number of social

media signals tends to reduce volatility, because social media buzz is truly informative
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in this class of models. Turnover, however, is increased in most cases because social me-

dia signals increases the confidence of investors who bet on perceived disagreements.

This is not consistent with our empirical results on volatility. Hence, although we are un-

able to rule out all possible alternative behavioral theories, our empirical results seem to

favor our model over a subclass of behavioral models where social media is informative

but wrongly interpreted.

Second, heightened social or news media activity could arise endogenously in re-

sponse to increases in prior uncertainty (decreases in ρ0) or increases in prior disagree-

ment (increased dispersion in traders’ prior mean µ0) about a stock’s payoff. A rigorous

treatment of endogenous buzz is beyond the scope of this paper, but these effects are

possibly consistent with our results. For example, more disagreement is associated in

standard models with higher volatility and turnover. Hence, one can imagine our re-

sults being generated by a mechanism where disagreement shocks cause both social

media (but not news media) activity in period t, and then subsequent high volatility

and turnover in period t + 1. To test the “echo chamber” model against this alternative,

once would require quasi-experimental variation in social and news media coverage,

which our dataset does not permit.

While some of the models described above are falsified by our empirical findings,

the variation in our data do not allow us to pinpoint the causal mechanism behind the

patterns we find. It is therefore possible that the patterns we find are the outcomes of a

different mechanism. We now briefly explore other potential mechanisms, although a

deeper treatment of these is deferred to future research.

First, it is possible that all individuals are rational, but those who pay attention to

social media have different preferences from others. A sufficiently rich form of hetero-

geneity, and its correlation with attention to different news sources, could in princi-

ple generate the empirical patterns we observe. While our empirical results are robust

to controlling for a number of observable stock characteristics, we do not observe any
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trader characteristics, and therefore cannot analyze which agents pay attention to one

or the other news source. For instance, individuals who pay attention to social media

might be risk seeking while those who pay attention to news media might be risk averse.

Individuals could also differ in liquidity constraints or trading horizons as in Kondor

(2012).

Second, the empirical patterns we observe could be due to heterogeneity in prior

beliefs. Heterogeneity in the mean and variance of beliefs in a simple CARA-Gaussian

framework is unlikely to rationalize the data, but we cannot eliminate this possibility in

richer models where higher moments of beliefs matter for agent decisions.

Third, it is possible that news and social media broadcast different types of sig-

nals. For instance, social media might conveys only extreme signals (realizations greatly

above or below the mean θ0), whereas news media conveys only moderate signals. In-

deed, Figures 5 and 6 in Appendix D shows that there are some systematic differences

between the two media sources. For instance, news media is more likely to contain facts,

while social media is more likely to contain emotions.

Finally, the formalism of our model could be given a slightly different economic in-

terpretation: One could think of a model where social media signals are repetitions of

news media signals, but behavioral traders have a bias that leads them to overreact to

this particular source of information. This would lead to similar qualitative predictions

to our model, where behavioral traders also effectively overreact to social media.

5 Conclusions

We have analyzed a large dataset collecting coverage of stocks in traditional news media

and social media. We find the following robust stylized facts: High social media cov-

erage at the stock level predicts high subsequent return volatility and trading activity,

while high news media coverage predicts the opposite. It further appears that news me-
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dia activity around a stock is a leading indicator of social media coverage. This paper is

among the first to directly compare news and social media. The main contribution is to

demonstrate that social and news media have different relationships with stock prices.

This insight motivates the development of new theories of social and news media cov-

erage that can explain our findings.

We have briefly discussed one such theory. We augment a standard model of trad-

ing to view social media is an “echo chamber”, where boundedly rational agents fail to

account correctly for the repetition of information. This model is consistent with our

empirical findings. Moreover, it is consistent with a growing literature in finance which

demonstrates that investors react to “stale news”. We have also argued that alterna-

tive behavioral biases cannot easily generate the same price patterns. Due to a lack of

quasi-experimental variation in media coverage in our data, we cannot conclude with

certainty that this mechanism is at play. Rather, we believe that this model provides a

reasonable starting point for future empirical work.
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Figure 1: Moving average of total news and social media buzz at the market level, mea-
sured in thousands.
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Figure 2: Moving average of relative buzz by industry. On the left, technology. On the
right, utilities.
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Figure 3: Moving average of relative buzz for two individual stocks. On the left, Walmart.
On the right, Apple.

 

Figure 4: Impulse response functions. Top left: effect of BuzzN on volatility; Top right:
effect of BuzzS on volatility Bottom left: effect of BuzzN on turnover; Bottom right: effect
of BuzzS on turnover
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Tables

Table 1: Variable definitions.

Variable Definition Calculation
iVolp idiosyncratic volatility

(parametric measure)
sum of squared residuals in Fama-French regres-
sion using daily data within a month

iVoln idiosyncratic volatility
(nonparametric mea-
sure)

variance of daily returns within a month

Turn turnover share trading volume divided by number of out-
standing shares

Size market value of equity absolute value of share price multiplied by number
of outstanding shares

InstOwn institutional owner-
ship

the fraction of shares held by 13F institutional in-
vestors

HHI Herfindahl-
Hirschman index

the Herfindahl-Hirschman index of sales at the
Fama-French 48 industry level at an annual fre-
quency

Leverage leverage the ratio of total long-term debt and debt in cur-
rent liabilities over the sum of the numerator and
shareholders’ equity

Return return the change in the total value of an investment in
a common stock over a month per dollar of ini-
tial investment, calculated using the closing price
of each month

AbsReturn absolute return absolute value of Return
TotalSD total standard devia-

tion
standard deviation of monthly return in the last 60
months

AnalystDisp analyst forecast dis-
persion

the natural log of one plus the standard devia-
tion of analyst earnings-per-share forecasts, nor-
malized by the absolute value of mean forecast in
a given month

SentN news media sentiment relative positive sentiment net of negative senti-
ment in news media

SentN(-) news media sentiment
(negative)

relative positive sentiment net of negative senti-
ment in news media (only negative values)

SentS social media senti-
ment

relative positive sentiment net of negative senti-
ment in social media

SentS(-) social media senti-
ment (negative)

relative positive sentiment net of negative senti-
ment in social media (only negative values)
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Table 2: Summary statistics for buzz, volatility and turnover by industry.
Industry BuzzN BuzzS iVolp Turn Industry BuzzN BuzzS iVolp Turn
CYC 0.04 0.03 0.01 2.33 MAT 0.02 0.02 0.01 2.20 Mean

0.08 0.08 0.02 1.97 0.06 0.06 0.01 2.06 SD
0.53 0.65 0.13 11.01 0.53 0.65 0.13 11.01 Max
0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.11 Min

24747 24747 24747 24747 8309 8309 8309 8309 N
ENE 0.02 0.03 0.01 3.01 NCY 0.03 0.02 0.01 1.83 Mean

0.05 0.07 0.02 2.36 0.05 0.06 0.01 1.65 SD
0.53 0.65 0.13 11.01 0.53 0.65 0.13 11.01 Max
0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.11 Min

8725 8725 8725 8725 8512 8512 8512 8512 N
FIN 0.03 0.02 0.01 1.51 TEC 0.04 0.05 0.01 2.18 Mean

0.05 0.07 0.01 1.49 0.09 0.12 0.02 1.87 SD
0.53 0.65 0.13 11.01 0.53 0.65 0.13 11.01 Max
0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.11 Min

10219 10219 10219 10219 21478 21478 21478 21478 N
HLC 0.02 0.05 0.01 2.05 TEL 0.06 0.05 0.01 1.49 Mean

0.04 0.11 0.02 1.82 0.15 0.10 0.02 1.20 SD
0.53 0.65 0.13 11.01 0.53 0.65 0.13 11.01 Max
0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.13 Min

19275 19275 19275 19275 1590 1590 1590 1590 N
IND 0.03 0.02 0.01 1.60 UTL 0.00 0.00 0.02 0.95 Mean

0.07 0.05 0.01 1.26 0.00 0.01 0.03 1.34 SD
0.53 0.65 0.13 11.01 0.01 0.03 0.13 11.01 Max
0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.21 Min

24297 24297 24297 24297 76 76 76 76 N
Total 0.03 0.03 0.01 2.05 Mean

0.07 0.09 0.02 1.83 SD
0.53 0.65 0.13 11.01 Max
0.00 0.00 0.00 0.11 Min

133056 133056 133056 133056 N

Notes: This table reports summary statistics of BuzzN, BuzzS, iVolp and Turn for each industry and for the whole sam-

ple. Industries are classified according to the Thomson Reuters Business Classification (TRBC) 10 economic sectors.

Table 3: Summary statistics for financial control variables.

Size InstOwn Ret HHI Leverage TotalSD AnalystDisp
Mean 13.8058 0.6972 0.0196 0.7389 0.0258 0.1430 0.2932
SD 1.7366 0.2438 0.1274 0.2923 0.0546 0.0632 0.1287
Max 18.3953 1.0000 0.4822 1.0000 0.3417 0.3791 0.5336
Min 10.1016 0.0597 -0.3136 0.0000 0.0000 0.0489 0.0000
N 159358 162268 161526 141532 151185 162220 142005
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Table 4: Contemporaneous correlations.
Variables BuzzN BuzzS iVolp Turn Size InstOwn Ret HHI Leverage TotalSD
BuzzN 1.000

BuzzS 0.554 1.000
(0.000)

iVolp -0.032 0.100 1.000
(0.000) (0.000)

Turn 0.133 0.307 0.258 1.000
(0.000) (0.000) (0.000)

Size 0.409 0.230 -0.386 0.176 1.000
(0.000) (0.000) (0.000) (0.000)

InstOwn 0.012 -0.085 -0.174 0.235 0.339 1.000
(0.000) (0.000) (0.000) (0.000) (0.000)

Ret -0.001 -0.010 0.120 0.023 -0.042 -0.010 1.000
(0.691) (0.000) (0.000) (0.000) (0.000) (0.000)

HHI -0.076 -0.008 0.076 0.049 -0.173 -0.052 0.003 1.000
(0.000) (0.005) (0.000) (0.000) (0.000) (0.000) (0.242)

Leverage 0.059 0.051 0.065 -0.008 -0.027 -0.044 0.007 -0.026 1.000
(0.000) (0.000) (0.000) (0.002) (0.000) (0.000) (0.006) (0.000)

TotalSD -0.132 0.077 0.331 0.185 -0.470 -0.166 0.020 0.109 0.077 1.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Table 5: Summary statistics between and within stocks.

Variable Mean Std. Dev. Min Max Observations
BuzzN overall 0.030 0.069 0 0.532 N = 133056

between 0.063 0 0.532 n = 1848
within 0.028 -0.258 0.517 T = 72

BuzzS overall 0.030 0.087 0 0.650 N = 133056
between 0.075 0 0.650 n = 1848
within 0.043 -0.452 0.667 T = 72

iVolp overall 0.010 0.018 0.000 0.131 N = 133056
between 0.009 0.001 0.066 n = 1848
within 0.015 -0.052 0.138 T = 72

Turn overall 2.035 1.832 0.106 11.006 N = 133056
between 1.397 0.113 10.616 n = 1848
within 1.186 -4.206 12.273 T = 72
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Table 6: Volatility with a balanced panel.

(1) (2) (3) (4) (5) (6)
iVolp(+1) iVolp(+1) iVolp(+1) iVolp(+1) iVolp(+1) iVolp(+1)

iVolp 0.256∗∗∗ 0.212∗∗∗ 0.213∗∗∗ 0.181∗∗∗ 0.182∗∗∗ 0.179∗∗∗

(26.53) (21.36) (21.40) (15.96) (16.16) (15.79)

BuzzN -0.0679∗∗∗ -0.0612∗∗∗ -0.0578∗∗∗ -0.0517∗∗∗ -0.0445∗∗∗

(-7.55) (-6.75) (-6.49) (-6.34) (-5.42)

BuzzS 0.00607 0.0503∗∗∗ 0.0514∗∗∗ 0.0374∗∗∗ 0.0296∗∗∗

(0.58) (4.34) (4.43) (3.53) (2.85)
Stock FE Yes Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes Yes
Stock Controls No Yes Yes Yes Yes Yes
Sentiments No No Yes Yes Yes Yes
AnalystDisp No No No Yes Yes Yes
N 131208 112515 112515 99558 99558 99558
R2 0.184 0.197 0.198 0.176 0.176 0.176

t statistics in parentheses. Standard errors clustered by stocks.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table reports panel regression results with iVolp(+1) as the dependent variable, using a bal-

anced panel. All regressions include month fixed effects, stock fixed effects and standard errors clustered

by stocks. The following variables are normalised: iVolp, Turn, BuzzN, BuzzS. Stock controls include iVolp,

Turn, Size, InstOwn, HHI, Leverage, Return, TotalSD. Sentiment controls include SentN, SentN(-), SentS

and SentS(-). Dispersion in the analyst opinions is AnalystDisp.
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Table 7: Turnover with a balanced panel.

(1) (2) (3) (4) (5) (6)
Turn(+1) Turn(+1) Turn(+1) Turn(+1) Turn(+1) Turn(+1)

Turn 0.614∗∗∗ 0.619∗∗∗ 0.620∗∗∗ 0.610∗∗∗ 0.620∗∗∗ 0.606∗∗∗

(83.46) (73.07) (73.17) (68.50) (65.40) (67.41)

BuzzN -0.0739∗∗∗ -0.0663∗∗∗ -0.0649∗∗∗ -0.0649∗∗∗ -0.0567∗∗∗

(-8.45) (-6.71) (-6.60) (-7.00) (-6.08)

BuzzS 0.0339∗∗∗ 0.0403∗∗∗ 0.0407∗∗∗ 0.0424∗∗∗ 0.0326∗∗∗

(4.28) (4.36) (4.41) (4.31) (3.39)
Stock FE Yes Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes Yes
Stock Controls No Yes Yes Yes Yes Yes
Sentiments No No Yes Yes Yes Yes
AnalystDisp No No No Yes Yes Yes
N 131208 112515 112515 99558 99558 99558
R2 0.416 0.415 0.415 0.417 0.416 0.415

t statistics in parentheses. Standard errors clustered by stocks.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table reports panel regression results with Turn(+1) as the dependent variable, using a bal-

anced panel. All regressions include month fixed effects, stock fixed effects and standard errors clustered

by stocks. The following variables are normalised: iVolp, Turn, BuzzN, BuzzS. Stock controls include iVolp,

Turn, Size, InstOwn, HHI, Leverage, Return, TotalSD. Sentiment controls include SentN, SentN(-), SentS

and SentS(-). Dispersion in the analyst opinions is AnalystDisp.
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Table 8: Main results for volatility (Unbalanced panel)

(1) (2)
iVolp(+1) iVolp(+1)

iVolp 0.225∗∗∗ 0.155∗∗∗

(27.52) (15.66)

BuzzN -0.0668∗∗∗ -0.0505∗∗∗

(-8.19) (-6.35)

BuzzS 0.00249 0.0411∗∗∗

(0.24) (4.29)
Stock FE Yes Yes
Month FE Yes Yes
Stock Controls No Yes
Sentiments No Yes
AnalystDisp No Yes
N 159549 116491
R2 0.159 0.157

t statistics in parentheses. Standard errors clustered by stocks.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table reports panel regression results with iVolp(+1)

as the dependent variable, using an unbalanced panel. All regres-

sions include month fixed effects, stock fixed effects and stan-

dard errors clustered by stocks. The following variables are nor-

malized: iVolp, Turn, BuzzN, BuzzS. Stock controls include iVolp,

Turn, Size, InstOwn, HHI, Leverage, Return, TotalSD. Sentiment

controls include SentN, SentN(-), SentS and SentS(-). Dispersion

in the analyst opinions is AnalystDisp.
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Table 9: Main results for turnover (Unbalanced panel)

(1) (2)
Turn(+1) Turn(+1)

Turn 0.590∗∗∗ 0.583∗∗∗

(88.03) (69.20)

BuzzN -0.0722∗∗∗ -0.0617∗∗∗

(-7.71) (-6.29)

BuzzS 0.0388∗∗∗ 0.0481∗∗∗

(5.21) (5.13)
Stock FE Yes Yes
Month FE Yes Yes
Stock Controls No Yes
Sentiments No Yes
AnalystDisp No Yes
N 159613 116504
R2 0.384 0.378

t statistics in parentheses. Standard errors clustered by stocks.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table reports panel regression results with Turn(+1)

as the dependent variable, using an unbalanced panel. All regres-

sions include month fixed effects, stock fixed effects and stan-

dard errors clustered by stocks. The following variables are nor-

malized: iVolp, Turn, BuzzN, BuzzS. Stock controls include iVolp,

Turn, Size, InstOwn, HHI, Leverage, Return, TotalSD. Sentiment

controls include SentN, SentN(-), SentS and SentS(-). Dispersion

in the analyst opinions is AnalystDisp.
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Table 10: Non-parametric volatility.

(1) (2)
iVoln(+1) iVoln(+1)

iVoln 0.314∗∗∗ 0.261∗∗∗

(34.43) (25.90)

BuzzN -0.0617∗∗∗ -0.0525∗∗∗

(-7.67) (-6.73)

BuzzS 0.00741 0.0296∗∗∗

(0.83) (3.00)
Stock FE Yes Yes
Month FE Yes Yes
Stock Controls No Yes
Sentiments No Yes
AnalystDisp No Yes
N 131208 99558
R2 0.348 0.358

t statistics in parentheses. Standard errors clustered by stocks.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table reports panel regression results with iVoln(+1)

as the dependent variable, using a balanced panel. All regres-

sions include month fixed effects, stock fixed effects and stan-

dard errors clustered by stocks. The following variables are nor-

malized: iVoln, Turn, BuzzN, BuzzS. Stock controls include iVolp,

Turn, Size, InstOwn, HHI, Leverage, Return, TotalSD. Sentiment

controls include SentN, SentN(-), SentS and SentS(-). Dispersion

in the analyst opinions is AnalystDisp.
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Table 13: Volatility: exclusion by size quartile. Balanced Panel.

(1) (2) (3) (4)
Excluded Q1 Q2 Q3 Q4
iVolp 0.0533∗∗∗ 0.196∗∗∗ 0.183∗∗∗ 0.164∗∗∗

(4.06) (14.89) (15.42) (14.29)

BuzzN -0.0288∗∗∗ -0.0405∗∗∗ -0.0553∗∗∗ -0.113∗∗∗

(-4.25) (-5.04) (-6.93) (-5.32)

BuzzS 0.0284∗∗∗ 0.0506∗∗∗ 0.0334∗∗∗ 0.0280
(3.17) (4.83) (2.68) (1.59)

Stock FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
Stock Controls Yes Yes Yes Yes
Sentiments Yes Yes Yes Yes
AnalystDisp Yes Yes Yes Yes
N 80179 73394 72669 72432
R2 0.082 0.198 0.193 0.187

t statistics in parentheses. Standard errors clustered by stocks.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table reports panel regression results with iVolp(+1) as the de-

pendent variable, using a balanced panel. Each regression excludes one Size

quartile. All regressions include month fixed effects, stock fixed effects and

standard errors clustered by stocks. The following variables are normalized:

iVolp, Turn, BuzzN, BuzzS. Stock controls include iVolp, Turn, Size, InstOwn,

HHI, Leverage, Return, TotalSD. Sentiment controls include SentN, SentN(-),

SentS and SentS(-). Dispersion in the analyst opinions is AnalystDisp.

39



Table 14: Turnover: exclusion by size quartile. Balanced Panel.

(1) (2) (3) (4)
Excluded Q1 Q2 Q3 Q4
Turn 0.603∗∗∗ 0.586∗∗∗ 0.603∗∗∗ 0.602∗∗∗

(58.38) (63.09) (58.35) (57.44)

BuzzN -0.0577∗∗∗ -0.0612∗∗∗ -0.0643∗∗∗ -0.0851∗∗∗

(-6.16) (-6.25) (-7.80) (-4.19)

BuzzS 0.0419∗∗∗ 0.0545∗∗∗ 0.0332∗∗∗ 0.0389∗∗∗

(3.47) (4.69) (3.37) (3.41)
Stock FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
Stock Controls Yes Yes Yes Yes
Sentiments Yes Yes Yes Yes
AnalystDisp Yes Yes Yes Yes
N 80179 73394 72669 72432
R2 0.415 0.402 0.400 0.398

t statistics in parentheses. Standard errors clustered by stocks.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table reports panel regression results with Turn(+1) as the depen-

dent variable, using a balanced panel. Each regression excludes one Size quar-

tile. All regressions include month fixed effects, stock fixed effects and stan-

dard errors clustered by stocks. The following variables are normalized: iVolp,

Turn, BuzzN, BuzzS. Stock controls include iVolp, Turn, Size, InstOwn, HHI,

Leverage, Return, TotalSD. Sentiment controls include SentN, SentN(-), SentS

and SentS(-). Dispersion in the analyst opinions is AnalystDisp.
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Table 15: Panel vector autoregression model.

(1) (2) (3) (4)
iVolp(t) Turn(t) BuzzN(t) BuzzS(t)

iVolp(t-1) 0.256*** 3.103*** 0.136*** 0.0338*
(23.81) (5.47) (9.84) (1.84)

iVolp(t-2) 0.0914*** -11.269*** -0.125*** -0.123***
(11.82) (-22.88) (-11.76) (-9.35)

Turn(t-1) -0.00109*** 0.459*** -0.00162*** -0.00155***
(-9.07) (51.09) (-6.78) (-4.77)

Turn(t-2) 0.000343*** 0.247*** 0.00117*** 0.000543**
(3.40) (31.60) (6.05) (2.18)

BuzzN(t-1) -0.0137*** -1.333*** 0.177*** -0.0800***
(-6.14) (-5.70) (4.76) (-5.81)

BuzzN(t-2) -0.00463** -0.173 0.0968*** -0.0260**
(-2.43) (-0.96) (3.32) (-2.53)

BuzzS(t-1) 0.00402 0.546** -0.0109 0.596***
(1.26) (2.21) (-0.95) (31.36)

BuzzS(t-2) 0.00118 -0.420* -0.00510 0.217***
(0.43) (-1.92) (-0.61) (13.82)

Controls Yes
N 123659

t statistics in parentheses. Standard errors clustered by stocks.

* p < 0.10, ** p < 0.05, *** p < 0.01

Notes: This table reports panel vector autoregression results with iVolp, Turn,

BuzzN and BuzzS as endogenous variable, and 2 lags of the endogenous vari-

ables. Standard errors clustered by stocks. Exogenous control variables include:

Size, InstOwn, Return and SentN. We also try to include other control variables,

and find their coefficients insignificant and their influence on the main coeffi-

cients of interest limited.
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Table 16: Panel VAR Granger causality tests.

Equation: iVolp Chi2 DF P-Value
Turn does not Granger cause iVolp 94.10 2 < 0.001
BuzzN does not Granger cause iVolp 20.34 2 < 0.001
BuzzS does not Granger cause iVolp 11.38 2 0.003
Equation: Turn
iVolp does not Granger cause Turn 178.55 2 < 0.001
BuzzN does not Granger cause Turn 19.29 2 < 0.001
BuzzS does not Granger cause Turn 32.51 2 < 0.001
Equation: BuzzN
iVolp does not Granger cause BuzzN 45.41 2 < 0.001
Turn does not Granger cause BuzzN 22.75 2 < 0.001
BuzzS does not Granger cause BuzzN 5.85 2 0.054
Equation: BuzzS
iVolp does not Granger cause BuzzS 26.52 2 < 0.001
Turn does not Granger cause BuzzS 6.47 2 0.039
BuzzN does not Granger cause BuzzS 16.09 2 < 0.001
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Table 17: Market-Level GJR-GARCH models.
(1) (2) (3) (4) (5)

VWRet VWRet SPRet SPRet SPRet
Main
Constant 0.000687∗∗∗ 0.000885∗∗∗ 0.000573∗∗ 0.000780∗∗∗ 0.000728∗∗

(2.84) (3.00) (2.41) (2.71) (2.50)
ARCH
ARCH(-1) 0.206∗∗∗ 0.271∗∗∗ 0.211∗∗∗ 0.309∗∗∗ 0.310∗∗∗

(6.03) (5.01) (5.80) (4.95) (5.06)

TARCH(-1) -0.0611∗∗ -0.146∗∗∗ -0.0756∗∗ -0.179∗∗∗ -0.207∗∗∗

(-1.98) (-2.59) (-2.32) (-2.82) (-3.36)

GARCH(-1) 1.163∗∗∗ 0.540∗∗∗ 1.165∗∗∗ 0.544∗∗∗ 0.572∗∗∗

(12.49) (8.52) (11.90) (8.48) (11.33)

Constant -0.0000462∗∗∗ -0.0000435∗∗∗

(-4.77) (-4.41)
HET
MktBuzzN(-1) -0.0000185∗∗∗ -0.0000179∗∗∗

(-4.31) (-4.16)

MktBuzzS(-1) 0.00000921∗∗∗ 0.00000876∗∗∗

(3.23) (3.08)

SPBuzzN(-1) -0.0000305∗∗∗

(-5.20)

SPBuzzS(-1) 0.0000270∗∗∗

(4.61)

Constant -8.596∗∗∗ -8.711∗∗∗ -9.056∗∗∗

(-34.40) (-35.35) (-34.61)
N 1510 1183 1510 1183 1183
ll 4665.3 3704.0 4693.1 3721.2 3727.4

t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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A Proof of Proposition 1

First, we establish that s̄ is Gaussian with mean and variance

E [s̄] = 1
N
E
[∑
n

θ + εn

]
= m0

V [s̄] = 1
N2V

[
Nθ +

∑
n

εn

]
= 1
ρ0

+ 1
Nρε

.

Then, since the εn are white noise,

Cov [θ, s̄] = Cov

[
θ, θ + 1

N

∑
n

εn

]
= V [θ] = 1

ρ0
,

Also, ē = s̄, then

ē ∼ N
(
m0,

1
ρ0

+ 1
Nρε

)
.

This also implies that Cov [ē, s̄] = V [s̄] and Cov [θ, ē] = 1
ρ0
.

Finally, notice that

∂η

∂K
= λρeρ1

(ρ1 + λKρe)2 > 0

∂w

∂N
= ρeρ0

(ρ0 +Nρe)2 > 0

A.1 Turnover

We are interested in the expected turnover

E [T2] = E [|(1− λ)x1|] = (1− λ)ηρ1E [|ē−m1|]
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Notice that, if there are no echo chambers (η = 0), then T2 = 0 because there is no

disagreement and therefore no trade.18

Since K affects only η, then

∂E [T2]
∂K

= (1− λ)ρ1E [|ē−m1|]
∂η

∂K
> 0.

To determine ∂E[T2]
∂N

, we first describe the distribution of ē−m1:

E [ē−m1] = m0 −m0 = 0.

V [m1] = V [m0 + w (s̄−m0)] = w2V [s̄]

Cov [ē, m1] = Cov [ē, ws̄] = wV [s̄]

V [ē−m1] = V [ē] + V [m1]− 2Cov [ē, m1]

= V [s̄] + w2V [s̄]− 2wV [s̄]

= (1− w)2 V [s̄]

Therefore |ē−m1| is a folded normal with mean

E [|ē−m1|] =
√

2
π

(1− w)2 V [s̄] ∝ (1− w)
√
V [s̄]

Since ∂w
∂N

> 0, and V [s̄] is decreasing in N , then

18In what follows, we emphasize that we consider N and K to be independent. If K are interpreted to
be “echoes” of the original signals, we implicitly assume that the number of repetitions adjusts when K
changes. This is because we observe only the empirical analogues of N and K.
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∂E [T2]
∂N

< 0

A.2 Subsequent Volatility

We begin by computing.

V [R2] = V [θ −m1 − η (ē−m1)]

= V [θ − s̄ (w + η (1− w))]

= 1
ρ0

+ (w + η (1− w))2 V [s̄]− 2 (w + η (1− w)) Cov [θ, s̄]

= 1
ρ0

+ (w + η (1− w))2 V [s̄]− 2 (w + η (1− w)) 1
ρ0

Then, the effect of K is characterized by

∂V [R2]
∂K

= 2 (w + η (1− w)) (1− w)V [s̄] ∂η
∂K
− 2 (1− w) 1

ρ0

∂η

∂K
.

By factoring 2 (1− w) ∂η
∂K

> 0, we see that the effect has the sign of

(w + η (1− w))V[s̄]− 1
ρ0

= (w + η (1− w))
(

1
ρ0

+ 1
Nρe

)
− 1
ρ0

= w
1

Nρe
− (1− w) 1

ρ0
+ η(1− w)

(
1
ρ0

+ 1
Nρe

)

= Nρe
ρ0 +Nρe

1
Nρe

− ρ0

ρ0 +Nρe

1
ρ0

+ η
ρ0

ρ0 +Nρe

ρ0 +Nρe
ρ0Nρe

= η

Nρe
> 0

where the third line uses w = Nρe
ρ0+Nρe . Hence

∂V [R2]
∂K

> 0.
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We now turn to ∂V[R2]
∂N

and compute it explicitly. The numerator is positive and the

denominator is

−ρe
(
ρeK

3λ3 + 3ρeK2λ2N + ρ0K
2λ2 + 3ρeKLN2 + ρeN

3 + ρ0N
2
)

which is always negative. Therefore,

∂V [R2]
∂N

< 0.

B Alternative Behavioral Biases

Throughout this Appendix, we focus on predictions on trading volume T2 and returns

R2 after the arrival of information at date 1. For simplicity, we omit time subscripts and

write T2 = T , R2 = R. We present models in which social media is informative, but

the interpretation of its content is subject to behavioral biases. Our goal is to capture

some of the most common biases studied in behavioral finance. We restrict ourselves

to models where “behavioral investors” have Gaussian posteriors, so their demand is

linear as in the standard CARA-Gaussian model. We summarize the testable predictions

of these models in the text. Unless otherwise specified, we continue to use the notation

of Section 4.

Investors have a common prior belief that θ ∼ N (θ0, ρ
−1
0 ). There are K social media

signals s = (s1, ..., sK), each with precision ρe. We assume that news media signals, if

present, are processed in line with Bayes’ law by all investors, and are therefore implicit

in the common prior. Rational investors form the Bayesian posterior θ ∼ N
(
θR, ρ

−1
R

)
,

where

θR =
K∑
i=1

wisi +
(

1−
K∑
i=1

wi

)
θ0, (5)

ρR = ρ0 +Kρε. (6)
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The Bayesian updating weights are wi = ρe/ρB. Generically, behavioral investors will

have posterior beliefs θ|s ∼ N (θB, ρ−1
R ), where

θB =
∑
i

ŵi(si + ηi) +
(

1−
∑
i

ŵi

)
θ0, (7)

ρB = ρ̂0 +
∑
i

ρ̂i. (8)

The updating rules of behavioral investors shown above can exhibit three deviations

from Bayes’ rule. First, the weight attributed to signals by behavioral investors (ŵi) may

differ from the rational weights wi. Second, the precision attributed to priors (ρ̂0) and

each signal i (ρ̂i) when deriving the posterior precision can differ from the true ρ0 and

ρe. Finally, the perception of the levels of the signals can differ from the truth by a (po-

tentially stochastic) term ηi.

Note that Equations (4) and (3) in the main text remain valid for equilibrium prices,

the (approximate) volatility of returns V [R], and turnover E [T ]. We now characterize

these quantities as a function of social media buzz K under various behavioral biases.

If behavioral biases are absent (λ = 0), trading activity is zero by the “no trade theorem”

(Milgrom and Stokey, 1982), and volatility is simply the posterior variance of rational

traders ρ−1
R , which is decreasing in buzz K.

B.1 Alternative Biases: Overconfidence

We model overconfidence by assuming that individuals perceive the correct signals (xi =

0) and prior variance (ρ̂0 = ρ0), but believe that social media signals have precision ρ̂i =

(1 + a)ρε, where a > 0 measures overconfidence. Thus they use the overconfident up-

dating weights ŵi = ρ̂i/ρB > wi.

The disagreement between behavioral and rational investors is θB − θR = K(ŵi −

wi) (θ0 − s̄), where s̄ = N−1∑
i si is the average signal. The disagreement is normally dis-

tributed with mean zero and varianceV [θB − θR] = K2(ŵi−wi)2V [s̄] .The absolute value
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of disagreement ‖θB − θR‖ has a folded normal distribution with mean E [‖θB − θR‖] =

(2V [θB − θR] /π)1/2. Substituting into (4) and (3) and differentiating yields

∂V[R]
∂K

sign
= aλ− (1 + aλ)2Kρe

ρ0
− 1

∂E[T ]
∂K

sign
= (1− aλ)Kρe

ρ0
+ 1.

Therefore, K decreases volatility and increases turnover.

B.2 Alternative Biases: Conservatism

We capture conservatism by assuming that behavioral investors correctly perceive sig-

nals (xi = 0) and their precision (ρ̂i = ρe), but believe the precision of their prior to

be ρ̂0 = (1 + b)ρ0 for b > 0. Now, behavioral investors use the conservative weights

ŵi = ρe/ρB < wi. The analysis is analogous to the case of overconfidence, and we find

that buzz unambiguously decreases volatility but increases turnover:

∂V[R]
∂K

< 0,

∂E[T ]
∂K

> 0.

B.3 Alternative Biases: Rational Inattention

We model rationally inattentive traders who observe social media signal si with cogni-

tive noise ηi ∼ N
(
0, ρ−1

η,i

)
, but optimally choose the ρη,i subject to an upper bound on

entropy reduction. Letting ci = ρe−
(
ρe + ρ−1

η,i

)−1
be the decline in the precision of signal

i due to inattention, the entropy reduction achieved by behavioral traders is determined

by and increasing in the signal-to-noise ratio
(
Kρe −

∑K
i=1 ci

)
/ρ0, so the attention con-

straint is
∑
i ci ≥ c for an appropriate c. To ensure that the attention constraint is mean-
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ingful, we assume that behavioral investors cannot infer information from prices for

free.19

By Theorem 1 in Peng and Xiong (2006), behavioral traders wish to maximize the

posterior precisionKρe−
∑K
i=1 ci, and are therefore indifferent between all choices which

satisfy the binding attention constraint
∑
i ci = c. For the simplest possible exposition,

we assume here that behavioral traders observe the first k < K signals perfectly, but do

not pay attention to the remaining K − k signals (ρη,i = +∞ for i ≤ k, and ρη,i = 0 for

i > k). This is exactly optimal when c̄/ρe is an integer, and a convenient approximation

otherwise. Rational investors process all K signals.

Let s̄1 = k−1∑
i≤k si denote the average signal observed by behavioral investors, and

s̄2 = (K − k)−1∑
i>k si the average of the remaining signals. The weights placed on

each signal by behavioral and rational investors are, respectively, ŵi = ρe/(ρ0 + kρe) and

wi = ρe/(ρ0 +Kρe). Using these weights in (5) and (7) we obtain posterior means:

θR = wi (ks̄1 + (K − k) s̄2) + (1−Kwi)θ0

θB = ŵiks̄1 + (1− ŵik)θ0.

The disagreement θB − θR has mean zero and variance V [θB − θR] = ρ−1
B − ρ−1

R , implying

E [‖θB − θR‖] = (2V [θB − θR] /π)1/2. Substituting into (4) and (3) and differentiating, we

find that buzz decreases the variance of returns, but increases turnover:

19Generally, the reduction in entropy from observing a Gaussian signal with precision ρ is I =
1
2 log2

(
1 + ρ

ρ0

)
. Here behavioral traders observe signals (si + ηi)Ni=1, with respective precision ρe − ci. By

the linearity of posteriors, this is equivalent to observing one signal with precision ρ =
∑
i (ρe − ci), and

so entropy reduction I is determined by the proposed ratio:

ρ

ρ0
=
Kρe −

∑K
i=1 ci

ρ0

The attention constraint is I ≤ Ī, which holding ρ0 and ρe fixed, can be written equivalently as
∑
ci ≥ c.
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∂V[R]
∂K

< 0,

∂E[T ]
∂K

> 0.

B.4 Alternative Biases: Confirmation Bias

We model confirmation bias by assuming that behavioral traders use the rational pre-

cisions (ρ̂i = ρe and ρ̂0 = ρ0) and rational weights wi = ρe/ρR for updating, but have

an optimistic predisposition (the pessimistic case is analogous). Thus they interpret

positive signals si > θ0 correctly, but take negative signals si < θ0 to be equal to their

prior θ0. The perceived signal is therefore si + ηi where ηi = max{0, θ0 − si} ≥ 0 is the

misperception due to confirmation bias. The misperception has a censored Gaussian

distribution, and it is possible to show, extending the argument of Muthen (1990), that

the joint moments of any two misperceptions (ηi, ηj) satisfy

E [ηi] =
√

1
2πV [θ0 − si] =

√√√√ 1
2π

(
1
ρ0

+ 1
ρe

)
,

V[ηi] =
(

1
ρ0

+ 1
ρe

)(1
2 −

1
2π

)
,

Cov[ηi, ηj] =
(

1
ρ0

+ 1
ρe

) [
ζ(r)r − 1

2π
(
1−
√

1− r2
)]
,

where r = ρe/(ρ0 + ρe) is the correlation between two signals si and sj , and

ζ(r) = 1
4 + 1

2πArcSin(r)

denotes the probability that two signals both lie below the prior. The disagreement be-

tween behavioral and rational traders is θB − θR = Nwiη̄, where η̄ = K−1∑
i ηi is the
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average misperception, and has moments

E [θB − θR] = KwiE [ηi] = Kwi

√√√√ 1
2π

(
1
ρ0

+ 1
ρe

)
,

V [θB − θR] = K2w2
i

{ 1
K

V [ηi] +
(

1− 1
K

)
Cov [ηi, ηj]

}
.

Note further that E [θB − θR] = E [‖θB − θR‖] since behavioral traders are weakly more

optimistic than rational ones. Substituting into (4) and (3) and differentiating, we can

sign the effect of buzz on volatility turnover in general, and the effect of buzz on volatility

in the limiting case with a large number of signals:

lim
K→∞

∂V[R]
∂K

sign
= 2− r

r

[
ζ(r)r − 1

2π
(
1−
√

1− r2
)]
−
(1

2 −
1

2π

)
− (1− r). (9)

∂E[T ]
∂K

> 0.

To check the sign in (9), we note that the right-hand side is negative for all r ∈ (0, 1) as

long as

1− r ≥ 2− r
r

[
ζ(r)r − 1

2π
(
1−
√

1− r2
)]
−
(1

2 −
1

2π

)
≡ τ (r) .

We have τ (1) = 0 and limr→0 τ (r) = 1/2π < 1, so the above holds at both boundaries of

the set (0, 1). It is sufficient to show that τ ′ (r) ≥ −1, which rules out any crossings with

τ (r) = 1− r on the interior of the set. We have

τ ′ (r) = 1−
√

1− r2

πr2 − 1
4π (π + 2ArcSin (r))

≥ 1
2π −

1
2 > −1,

where the second line uses the facts that the term 1−
√

1−r2

πr2 is strictly increasing in r and

that ArcSin (r) ≤ π/2. Thus, for large enough K, social media buzz decreases volatility

and increases turnover.
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B.5 Behavioral traders ignore news media

In our baseline model, behavioral traders pay attention toN news media signals, as well

as to K repetitions of these signals in social media. Therefore, they effectively respond

to N +K signals.

An alternative assumption would be one where behavioral traders pay attention only

to social media. However, the initial signal updating equation is the same for a trader

who responds to N true news media signals, as for a trader who (wrongly) responds to

the first K repetitions of those signals. Effectively, the alternative assumption therefore

reduces the number of repetitions that behavioral traders respond to by N .

From this logic, it follows easily that the equilibrium in the alternative setup is the

same as the equilibrium in our baseline model where the number of social media signals

is reduced to K − N . Formally, T base2 (K,N) and Rbase
2 (K,N) be turnover and returns in

the baseline model. Then in the alternative model we have

T2 = T base2 (K −N,N)

R2 = Rbase
2 (K −N,N)

It follows that the effect of social media on turnover and volatility are:

dE[T2]
dK

=
∂E

[
T base2

]
∂K

> 0

dE[R2]
dK

=
∂E

[
Rbase

2

]
∂K

> 0;

and effects of news media are:

dE[T2]
dN

= −
∂E

[
T base2

]
∂K

+
∂E

[
T base2

]
∂N

< 0

dE[R2]
dK

= −
∂E

[
Rbase

2

]
∂K

+
∂E

[
Rbase

2

]
∂N

< 0,
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where the inequalities follow from Proposition 1.
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C Alternative Specifications

This section reports regression results from alternative specifications. Table 18 uses ab-

normal buzz (BuzzN.ab and BuzzS.ab) calculated as the relative buzz of a month minus

the mean buzz of previous 6 months divided by the standard deviation. Table 19 tests

whether there is sample selection bias in Tables 6 and 7.
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Table 18: Regressions using abnormal buzz.

(1) (2) (3) (4)
iVolp(+1) iVolp(+1) Turn(+1) Turn(+1)

iVolp 0.0903∗∗∗ 0.0862∗∗∗ -7.440∗∗∗ -7.917∗∗∗

(7.38) (7.05) (-10.00) (-10.74)

Turn 0.000581∗∗∗ 0.000524∗∗∗ 0.600∗∗∗ 0.591∗∗∗

(7.13) (6.30) (56.46) (58.12)

BuzzN.ab -0.000171∗∗∗ -0.0208∗∗∗

(-5.59) (-5.15)

BuzzS.ab 2.59e-10∗∗∗ 7.30e-08∗∗∗

(4.51) (15.88)

BuzzN -0.0111∗∗∗ -1.738∗∗∗

(-5.78) (-6.59)

BuzzS 0.00565∗∗ 0.951∗∗∗

(2.58) (4.47)
Stock FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
Stock Controls Yes Yes Yes Yes
Sentiments Yes Yes Yes Yes
AnalystDisp Yes Yes Yes Yes
N 81248 81248 81248 81248
R2 0.053 0.053 0.382 0.383

t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table reports panel regression results with iVolp(+1) or Turn(+1) as

the dependent variable, using a balanced panel. All regressions include month

fixed effects, stock fixed effects and standard errors clustered by stocks. Stock con-

trols include iVolp, Turn, Size, InstOwn, HHI, Leverage, Return, TotalSD. Sentiment

controls include SentN, SentN(-), SentS and SentS(-). Dispersion in the analyst

opinions is AnalystDisp. Regressions 1 and 3 use abnormal buzz (BuzzN.ab and

BuzzS.ab) calculated as the relative buzz of a month minus the mean buzz of previ-

ous 6 months divided by the standard deviation. Regressions 2 and 4 use our main

regressors BuzzN and BuzzS, but on a restricted sample consistent with regressions

1 and 3, because the calculation of abnormal buzz cannot use the first 6 months of

each stock.

56



Table 19: Regressions testing for sample selection bias.

(1) (2) (3) (4) (5) (6)
iVolp(+1) iVolp(+1) iVolp(+1) Turn(+1) Turn(+1) Turn(+1)

iVolp 0.212∗∗∗ 0.180∗∗∗ 0.181∗∗∗ -6.395∗∗∗ -6.311∗∗∗

(17.10) (15.90) (15.98) (-11.51) (-11.35)

Turn -0.000113 -0.0000986 0.600∗∗∗ 0.608∗∗∗ 0.610∗∗∗

(-1.24) (-1.09) (70.48) (68.24) (68.53)

BuzzN -0.0153∗∗∗ -0.0142∗∗∗ -0.0134∗∗∗ -1.935∗∗∗ -1.767∗∗∗ -1.718∗∗∗

(-6.65) (-6.62) (-6.38) (-7.56) (-7.14) (-6.99)

BuzzS -0.000829 0.00760∗∗∗ 0.00780∗∗∗ 0.751∗∗∗ 0.888∗∗∗ 0.896∗∗∗

(-0.37) (3.47) (3.55) (3.61) (4.26) (4.31)
Stock FE Yes Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes Yes
Stock Controls Yes Yes Yes Yes Yes Yes
Sentiments Yes Yes Yes Yes Yes Yes
AnalystDisp Yes Yes Yes Yes Yes Yes
N 99558 99558 99558 99558 99558 99558
R2 0.146 0.176 0.176 0.409 0.416 0.417

t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table reports panel regression results with iVolp(+1) or Turn(+1) as the dependent variable,

using a balanced panel. All regressions include month fixed effects, stock fixed effects and standard errors

clustered by stocks. Stock controls include iVolp, Turn, Size, InstOwn, HHI, Leverage, Return, TotalSD.

Sentiment controls include SentN, SentN(-), SentS and SentS(-). Dispersion in the analyst opinions is

AnalystDisp. These are regressions 1-3 in Tables 6 and 7 but using the restricted sample consistent with

regression 4 in those tables.
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Table 20: Volatility and Volume Regressions with Market Controls.

(1) (2)
iVolp(+1) Turn(+1)

iVolp 0.181∗∗∗ -6.310∗∗∗

(15.96) (-11.36)

BuzzN -0.0134∗∗∗ -1.718∗∗∗

(-6.34) (-7.00)

BuzzS 0.00772∗∗∗ 0.896∗∗∗

(3.53) (4.31)
Stock FE Yes Yes
Month FE Yes Yes
Stock Controls Yes Yes
Market Controls Yes Yes
Sentiments Yes Yes
AnalystDisp Yes Yes
N 99558 99558
R2 0.176 0.417

t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table reports panel regression results

with iVolp(+1) or Turn(+1) as the dependent vari-

able, using a balanced panel. All regressions in-

clude month fixed effects, stock fixed effects and

standard errors clustered by stocks. Stock controls

include iVolp, Turn, Size, InstOwn, HHI, Leverage,

Return, TotalSD. Market Controls include S&P500

return and VIX index. Sentiment controls include

SentN, SentN(-), SentS and SentS(-). Dispersion in

the analyst opinions is AnalystDisp. These regres-

sions are based on the specification in Regression

(4) of Table 6, adding Market Controls.
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Table 21: Volatility and Volume Regressions Using Absolute Buzz.

(1) (2) (3) (4)
iVolp(+1) iVolp(+1) Turn(+1) Turn(+1)

iVolp 0.161∗∗∗ 0.161∗∗∗ -6.661∗∗∗ -6.661∗∗∗

(13.17) (13.17) (-10.83) (-10.83)

ABuzzN -0.000000133∗∗∗ -0.000000133∗∗∗ -0.0000367∗∗∗ -0.0000367∗∗∗

(-3.93) (-3.93) (-6.79) (-6.79)

ABuzzS 0.000000158∗∗∗ 0.000000158∗∗∗ 0.0000162∗∗∗ 0.0000162∗∗∗

(3.46) (3.46) (3.88) (3.88)
Stock FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
Stock Controls Yes Yes Yes Yes
Market Controls No Yes No Yes
Sentiments Yes Yes Yes Yes
AnalystDisp Yes Yes Yes Yes
N 87364 87364 87364 87364
R2 0.155 0.155 0.413 0.413

t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table reports panel regression results with iVolp(+1) or Turn(+1) as the dependent variable,

using a balanced panel. All regressions include month fixed effects, stock fixed effects and standard

errors clustered by stocks. Stock controls include iVolp, Turn, Size, InstOwn, HHI, Leverage, Return,

TotalSD. Market Controls include S&P500 return and VIX index. Sentiment controls include SentN,

SentN(-), SentS and SentS(-). Dispersion in the analyst opinions is AnalystDisp. The main explanatory

variables are ABuzzN and ABuzzS, which represent the absolute amount of buzz in news and social

media respectively.
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D Differences between the Two Media Sources

In this section, we visually show that there are some systematic differences between the

two media sources in terms of their contents. For instance, news media is more likely to

contain facts, while social media is more likely to contain emotions.
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Figure 5: DIFFERENCES BETWEEN THE TWO MEDIA SOURCES BY INDUSTRY
Note: This figure demonstrates the differences between news and social media coverages across indus-
tries. In each panel, we subtract social media value from news media value. Panels (a) to (e) are repsec-
tively media coverage of emotions net of fact, layoffs, litigation, management change, and mergers.
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(d) Mentioning of Management Change
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Figure 6: DIFFERENCES BETWEEN THE TWO MEDIA SOURCES BY YEAR
Note: This figure demonstrates the differences between news and social media coverages over the years.
In each panel, we subtract social media value from news media value. Panels (a) to (e) are repsectively
media coverage of emotions net of fact, layoffs, litigation, management change, and mergers.
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Dear Referee,

Thank you so much for your additional suggestions. We have revised our paper ac-

cordingly and added some additional analyses.

1. We agree with you that absolute buzz is more closely connected to our model

than relative buzz, and that S&P500 return and VIX index would provide good controls

for fluctuations in the market. Using absolute buzz is an important issue, so we added

footnote 3 in Section 2.1 to prepare the reader for this. Then we added a discussion in

Section 3.3, showing the regression results in Table 21 of Appendix C. On the other hand,

we also tested the effect of buzz after controlling for market fluctuations in both Table

20 and Table 21 of Appendix C. All of these tests reveal that our main conclusions are

robust.

2. We have corrected the errors in referencing tables. Thank you for your careful

reading.

We are really grateful for your thoughtful comments and suggestions. Thank you so

much!
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