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ABSTRACT 20 

 21 

 Background: Hinge-bending movements in proteins comprising two or more 22 

domains form a large class of functional movements. Hinge-bending regions 23 

demarcate protein domains and collectively control the domain movement. 24 

Consequently, the ability to recognise sequence features of hinge-bending regions 25 

and to be able to predict them from sequence alone would benefit various areas of 26 

protein research. For example, an understanding of how the sequence features of 27 

these regions relate to dynamic properties in multi-domain proteins would aid in the 28 

rational design of linkers in therapeutic fusion proteins.  29 

 Results: The DynDom database of protein domain movements comprises sequences 30 

annotated to indicate whether the amino acid residue is located within a hinge-31 

bending region or within an intradomain region. Using statistical methods and Kernel 32 

Logistic Regression (KLR) models, this data was used to determine sequence features 33 

that favour or disfavour hinge-bending regions. This is a difficult classification 34 

problem as the number of negative cases (intradomain residues) is much larger than 35 

the number of positive cases (hinge residues). The statistical methods and the KLR 36 

models both show that cysteine has the lowest propensity for hinge-bending regions 37 

and proline has the highest, even though it is the most rigid amino acid. As hinge-38 

bending regions have been previously shown to occur frequently at the terminal 39 

regions of the secondary structures, the propensity for proline at these regions is 40 

likely due to its tendency to break secondary structures. The KLR models also 41 

indicate that isoleucine may act as a domain-capping residue. We have found that a 42 

quadratic KLR model outperforms a linear KLR model and that improvement in 43 
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performance occurs up to very long window lengths (eighty residues) indicating long-44 

range correlations.  45 

 Conclusion: In contrast to the only other approach that focused solely on 46 

interdomain hinge-bending regions, the method provides a modest and statistically 47 

significant improvement over a random classifier. An explanation of the KLR results is 48 

that in the prediction of hinge-bending regions a long-range correlation is at play 49 

between a small number amino acids that either favour or disfavour hinge-bending 50 

regions.  The resulting sequence-based prediction tool, HingeSeek, is available to run 51 

through a webserver at hingeseek.cmp.uea.ac.uk. 52 

 53 

KEYWORDS: protein conformational change; domain closure; hinge axis; linker region 54 

 55 

BACKGROUND 56 

Protein domains have various definitions within Biochemistry (1). From a structural 57 

perspective a domain is characterised as a globular, spatially separate part of a protein and 58 

methods have been developed to recognise them from this property (2). They are 59 

considered to be able to fold independently of other parts of the protein and are associated 60 

with a distinct function. This lends them the ability to act as a fundamental component of 61 

evolutionary change. For protein structure databases such as SCOP (3), SCOP2 (4) and CATH 62 

(5) they form the basic element of classification. They can be identified from sequence 63 

homology using methods such as Pfam (6) where multiple-sequence alignments of family 64 

members of a domain are encoded as hidden Markov models. 65 

hingeseek.cmp.uea.ac.uk
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It is now an established fact that conformational change is integral to protein 66 

function (7, 8). A common class of movement is a domain movement in proteins comprising 67 

more than one domain (9-12). Several methods have been developed to identify domains 68 

from the movement itself (13-18) and in this context they have been called “dynamic 69 

domains”. The relative movement of dynamic domains is controlled by so-called hinge-70 

bending regions located between the domains. These normally comparatively short regions 71 

collectively control the domain movement (10) as has been demonstrated using inverse-72 

kinematics Monte Carlo in glutamine binding protein where the known domain movement 73 

was reproduced almost perfectly when only 11 of the 226 residues situated at the two 74 

hinge-bending regions were allowed to flex (19). In an early application of the DynDom 75 

method it was found that hinge-bending regions are often situated at the termini of β-76 

sheets and α-helices (10).  77 

To date very little work has been carried out to determine whether hinge-site 78 

features are reflected in the sequence. Flores et al. (20) annotated hinge-bending regions 79 

from the Database of Macromolecular Motion (DBMM) (21) to form their “Hinge Atlas” 80 

dataset and performed statistical analyses to create a predictor for hinge sites from 81 

sequence alone. Hinge sites were identified using the FlexProt program(22). They calculated 82 

log-odds frequencies scores for a 17-residue-long sliding window, assigning the central 83 

residue to a hinge-bending region if the resulting accumulated score was above a threshold. 84 

The results achieved did not appear to be significantly different to a random assignment. 85 

They incorporated information about secondary structure and active site location into the 86 

predictor, “HingeSeq”, which improved predictive power. They did not quote the area under 87 

the ROC curve (AUROC) but we estimated it from their figure to be approximately 0.65.  88 
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Kuznetsov (23) reports using support vector machines (SVM) to predict 89 

“conformational switches” from sequence, which were described as areas of flexibility that 90 

drive conformational change. The basic data used also came from the DBMM but the sites 91 

identified, based on changes in main-chain dihedral angles, were not exclusively located at 92 

hinge-bending regions. Using a window length of 11 residues, an AUROC of 0.64 was found, 93 

which increased to 0.69 when profiles were used. The method has been implemented at the 94 

Figure 1: DynDom result for glutamine binding protein.  DynDom result for the movement 

that occurs upon binding glutamine (PDB: 1GGG, chain A to PDB: 1WDN, chain A) showing 

the open, ligand-free conformation (see DynDom website at www.cmp.uea.ac.uk/dyndom 

for more details on this and other domain movements). The arrow represents the hinge axis. 

Red and blue are the dynamic domains, green the hinge-bending regions. Red and blue 

amino acids in the sequence at the bottom of the figure are intradomain and green amino 

acids are hinge-bending. Such annotated sequences are the basic data of this study. This is a 

typical member of Group 1 (see Methods). 

http://www.cmp.uea.ac.uk/dyndom
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webserver FlexPred(24). Bodén and Bailey (25) presented a method, also based on the 95 

DBMM, which predicted “conformational variability” based on secondary structure 96 

prediction uncertainty for which a neural network was used. A window length of 15 was 97 

used and an AUROC of 0.64 was reported.   98 

This work relates also to the study of linker regions; polypeptide regions that link 99 

two domains (26, 27). The difference between these linker region studies and hinge-bending 100 

region/conformational-switch region studies, is that the latter were identified from 101 

conformational change, whereas the former were identified purely on structural features. 102 

There is an increasing interest in the dynamic properties of linker regions as their rational 103 

design would benefit the efficacy of therapeutic fusion proteins constructed using  104 

recombinant DNA technology(28). 105 

A feature of the DynDom program is that it determines not only dynamic domains 106 

but also hinge-bending regions, as can be seen in the example of glutamine binding protein 107 

in Figure 1. Dynamic domains are determined based on their rotational properties and 108 

hinge-bending regions are those regions within which a rotational transition occurs in going 109 

from one dynamic domain to another. This connects directly with what “bending” really 110 

means. The exact method for assigning bending regions is described in detail by Hayward 111 

and Lee (29). This precise definition of a bending region lends itself to the aim of this study. 112 

Here we trained a range of Kernel Logistic Regression (KLR) models on protein sequences 113 

with hinge-site annotation from examples that showed a clear hinge-bending movement in 114 

the two main DynDom databases in order to understand sequence properties of hinge-115 

bending regions and to produce a hinge site predictor from sequence.   116 

 117 
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RESULTS 118 

Hinge Statistics 119 

 120 

 121 

Figure 2: Propensities (Hinge Index, 𝑯𝑰) of amino acids and p-values. 
The 𝐻𝐼 and p-value of each amino acid for the following datasets (the 
percentage sets the filtering level according to sequence identity; see 
Methods section for definitions):  (a) Group1_90% (b) Group1_40% (c) 
Group1_20%. The amino acids have been sorted according to their 𝐻𝐼 
values (blue lines). A negative 𝐻𝐼 value indicates an amino acid that 
disfavours hinge-bending regions and a positive value indicates an amino 
acid that favours them. The horizontal black broken line at 𝐻𝐼 = 0 
indicates those with no preference. The light-brown bars indicate the p 
values.  
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 122 

The Hinge Index, 𝐻𝐼(𝑎), for each amino acid, 𝑎, is shown in Figure 2 for all three 123 

Group 1 datasets, that is Group1_90%, Group1_40% and Group1_20%. A negative 𝐻𝐼(𝑎) 124 

would indicate an amino acid that is unfavourable to hinge regions, a value of zero, an amino 125 

acid that has no preference, and a positive value an amino acid favourable to hinge regions. 126 

Although the results are generally supportive of those found by Flores et al., they are 127 

statistically significant only for a few amino acids in both studies. For Flores et al. Ser and Gly 128 

had the highest significant 𝐻𝐼 values. Here, Pro has the highest significant 𝐻𝐼 value at all 129 

three levels of filtering.  We also found Ser to have a high significant 𝐻𝐼 value at 90% and 130 

40% filtering, but contrary to expectation, Gly was not in the top four at any level of filtering.  131 

At all levels of filtering, Cys received the most negative significant 𝐻𝐼 value and by a 132 

large margin. Phe and Met also disfavour hinge regions, Phe being the amino acid with the 133 

most negative 𝐻𝐼 value for Flores et al.. The β-branched amino acids Ile, Val and Thr all 134 

seem to weakly disfavour hinge regions although the results are not statistically significant. 135 

The equivalent analysis on the Group2_90% is shown in Additional_Figure1. The 136 

results broadly agree with the Group1_90% results. 137 

 138 

KLR on 90% sequence identity set  139 

Group 1 140 

We trained KLR models with linear, quadratic, cubic, and RBF kernels on the training 141 

subset from Group1_90% (see Table 1). Each KLR model was constructed across a range of 142 

window lengths, 𝑤 = [1,101], and tested on the test set comprising 10% of the whole set 143 
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selected at random. ROC curves were created for each window length and each kernel, 144 

plotting the rate of true positive outcomes against the rate of false positive outcomes. The 145 

AUROCs were calculated, giving a measure of performance for each combination of window 146 

length and kernel, as a number between zero and one, where higher numbers represent 147 

better performance. Figure 3(a) shows how these AUROCs change across window lengths 148 

for each kernel in Group1_90%. A classifier with an AUROC of 0.5 would be equivalent to 149 

assigning samples to the “hinge-bending region” or “not hinge-bending region” classes at 150 

random. There are two main things to notice about these results. First is that there is 151 

improvement in AUROC up until very long window lengths. This result is in contrast to 152 

Figure 3: The performance of KLR models. Results show differences between the 

linear, quadratic, cubic and RBF models trained across a range of window lengths. (a) 

Group1_90% (b) Group2_90%. 
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previous studies on hinge-bending/conformationally-variable regions where windows of 153 

length less than 25 residues were used by Kuznetsov (23), a window of 17 residues by Flores 154 

et al. (20), and a window of 15 residues by Bodén and Bailey  (25). Here we see an 155 

improvement in AUROC with window lengths up to 80-90 residues. This suggests that if the 156 

window spans from one hinge-bending region to the next it can help prediction. The other 157 

noticeable feature is that the quadratic, cubic, and RBF kernels all seem to outperform the 158 

linear approach. Additional_Table1 shows a matrix of p-values for the pairwise comparisons 159 

of the AUROC for the four different models for window length 99 residues using Sun and 160 

Xu’s implementation (30) of the method by DeLong et al. (31). The DeLong et al method 161 

tests the null hypothesis that the difference in the empirical AUROCs can be adequately 162 

explained by the variance of the estimator. The null hypothesis is rejected when p<0.05. 163 

This shows that all non-linear models significantly outperform the linear model, but that the 164 

non-linear models do not all significantly outperform each other. That the cubic model and 165 

RBF models do not improve performance over the quadratic model suggests that the 166 

quadratic terms are mainly where the improvement lies. This implies that there exists a 167 

correlation between certain pairs of residues at different positions within the window.  The 168 

maximum value for the AUROC of 0.75 occurred for the quadratic model with a window 169 

length of 87 residues. The maximum value of the AUROC for the linear model was 0.69 with 170 

a window length of 99 residues. 171 

 As stated in the Methods section, the ratio of positive to negative cases was 172 

adjusted to 1:9 for the training set, but in the test set the proportion of residues that are in 173 

hinge regions is only 0.0294 indicating a large class imbalance. In Additional Figure2(A) we 174 

show a set of ROC curves and their AUROCs from the quadratic model with a window length 175 

81 that uses different proportions of positive to negative cases in the training sets. We also 176 
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show in Additional Figure 2(B), plots of how the AUROC varies with this proportion for 177 

different window lengths. These results confirm that KLR is reasonably robust to class 178 

imbalance as there is little change in the AUROCs with change in this proportion. 179 

In Additional_Figure3 we show the Precision-Recall plot for window length 81. Such 180 

a plot emphasises the classification of positive examples. The area under the Precision-181 

Recall plot (AUPRC), which is dependent on the class imbalance ratio, is 0.1785. A random 182 

classifier would give an AUPRC of 0.0294, the proportion of hinge residues in the test set. 183 

Additional_Figure4 shows the AUPRC’s plotted against window length for the four different 184 

KLR models. The result mirrors the equivalent plot for the AUROC’s.   185 

 186 

Group 2 187 

The Group2_90% was used for the same set of experiments as Group1_90%, 188 

although due to the greatly increased computational expense resulting from the use of this 189 

larger training set, fewer window lengths were tried although they spanned the same range 190 

(Figure 3(b)). Again we found the same increase in performance with window length and the 191 

same improvement of the non-linear models over the linear model. The matrix of p-values 192 

in Additional_Table2 determined with DeLong et al.’s method, shows that the difference 193 

between the non-linear models and the linear model was statistically significant.  In 194 

comparison with Group1_90%, each model performed worse at most window lengths 195 

indicating the negative influence of the less strict selection criteria for Group2_90%. 196 

 197 

KLR on 40% sequence identity set  198 
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We considered whether the 90% sequence identity might permit similar sequences to be 199 

present in both training and test sets. The Group1 dataset contains 48 chains from 200 

immunoglobulins; pairwise comparisons between these sequences resulting in sequence 201 

identities ranging between 19.2% and 88.9%. We repeated the experiment for linear and 202 

quadratic models on the Group1_40% dataset, within which pairs of structures are less likely 203 

to be homologous (32). This reduced the number of immunoglobulins included to 3 of 171 204 

proteins. As this reduced the size of the dataset (see Table 1), we performed 10-fold cross 205 

validation (nested cross-validation was used in order to obtain an unbiased performance 206 

estimate (33)). Figure 4(a) shows the mean AUROC of the folds across windows of length 3 207 

to 41 in increments of 2, and 41 to 101 in increments of 10. The results for both linear and 208 

quadratic kernels were poorer than the Group1_90% results, which is expected as there is 209 

less data in the training set. The models both improved at longer window lengths: the mean 210 

AUROC for the quadratic kernel was 0.61 achieved at window length 81, and the linear 211 

Figure 4: The mean AUROCs for linear and quadratic kernels. (a) Group1_40%. (b) 

Group1_20%. 



13 
 

kernel peaked at a mean AUROC of 0.57 at 61 residues. p-values for paired t-tests across the 212 

folds for different window lengths is shown in Additional_Figure5. Additional_Figure5 shows 213 

that the longer the window, the lower the p-value becomes for the difference between the 214 

quadratic and linear model. At a window length 81 the p-value is 0.004 indicating a 215 

statistically significant improvement of the quadratic model over the linear model at long 216 

window lengths. Across the folds the AUPRC has a value mean value of 0.0415 compared to 217 

a mean ratio of hinge residues to all residues of 0.0232. 218 

 219 

KLR on 20% sequence identity set  220 

We repeated these experiments using the Group1_20% dataset. As our original 221 

dataset is relatively small, filtering at the 20% level reduces the amount of data to an even 222 

lower level (see Table 1). Again we performed 10-fold cross validation. Figure 4(b) shows the 223 

mean AUROC of the folds across the same range of window lengths used for 40% and 90% 224 

filtering. As expected the results for both linear and quadratic kernels were poorer than the 225 

90% and 40% results. Although the difference between the linear and quadratic models was 226 

not found to be significant using the paired t-test (which is likely due to the small amount of 227 

data), we do see the same trend as seen for the 90% and 40% results; that is an 228 

improvement in the AUROC of the quadratic model over the linear model at longer window 229 

lengths.  230 

Across the folds the AUPRC has a value mean value of 0.0390 compared to a mean 231 

ratio of hinge residues to all residues of 0.0213. 232 

 233 
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 234 

Analysis of Model Weights 235 

In this section, we analyse the weights from the quadratic and linear kernels, at their 236 

optimal window lengths: 87 for Group1_90%, 81 for Group1_40%, and 87 for Group1_20%. 237 

The primal weight vector can be computed for finite feature spaces such as that of the 238 

linear and quadratic kernels, using Eqn 8. 239 

 240 

Linear Terms 241 

Figure 5 shows example plots of the linear weight distribution for given amino acids 242 

across the window. The scale of the weights differed between the linear and quadratic 243 

models, so each weight is represented as a proportion of the strongest weight applied by 244 

the model to the amino acid.  245 

While there is some disagreement between the models, strong peaks and troughs 246 

can be observed at the same points for all three models. Pro was associated with strong 247 

positive weights in and around the central position, with negative weights 40 residues at 248 

either end of the window. Pro has the highest positive weight of any amino acid at the 249 

central window position confirming the Hinge Index result. The weights in the Cys plots are 250 

mostly negative. It has the lowest valued weights at the central window position out of all 251 



15 
 

amino acids. Interestingly it has pronounced positive weights around 20 residues before and 252 

Figure 5: The linear weights assigned to Pro, Cys, Ile, and Trp. From top to bottom: Pro, 

Cys, Ile, and Trp by the linear KLR model at 90% filtering, and from the quadratic KLR 

models at 40% and 20% filtering. Window lengths were 87 for those trained using 

Group1_90% , 81 for those trained using Group1_40% , and 87 for those trained using 

Group1_20%.  
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after the central position. The weights in the Ile plot fluctuate but all three models show 253 

strong positive weights around 5 residues on the N-terminal side of the central position and 254 

a smaller peak 5 residues after. These charts are not all approximately symmetrical; the Trp 255 

plot shows a strong positive peak around the end of the window, with no corresponding 256 

peak at the start. 257 

 258 

Product Terms 259 

The feature space for the quadratic kernel includes features corresponding to the 260 

pairwise products of the original input attributes. The weights associated with product 261 

Figure 6: The weights assigned to combinations of Cys and Pro.  Product term weights 

from quadratic kernel models with window length 81 trained using Group1_40%. 
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terms in the feature vectors give an indication of the strength of the importance of pairs of 262 

residues at different positions within the sliding window.  These can be visualised for each 263 

amino acid pair by plotting them as a heat map, where each axis represents a position 264 

within the sliding window at which a residue occurs. 265 

The heat map in Figure 6 shows the weights associated with combinations of Cys and 266 

Pro residues according to the quadratic model trained for the Group1_40% dataset. A patch 267 

of positive weights at position (20-25, 0-10) may indicate that such a combination is 268 

favoured. Structurally this would suggest a pair of domains with Pro located at an hinge-269 

bending region and Cys located at an intradomain region on the C-terminal side. At this 270 

current time we cannot rule out the possibility that these correlations are an artefact of the 271 

small sample we have of non-homologous proteins with clear domain movements.   272 

As optimal AUROC’s predominantly occurred at window lengths of either 81 or 87, 273 

we include in Additional Table 3, AUROC’s at both these window lengths (although AUROC’s 274 

are not available for window length 87 on Group1_40% as we did not perform computations 275 

at this window length). The results show there is little or no difference between the 276 

AUROC’s at these two window lengths. 277 

  278 

 HingeSeek Web Server 279 

 We have produced a tool, called “HingeSeek”, which is available to run from a web 280 

server at hingeseek.cmp.uea.ac.uk. The server offers sequence-only hinge predictions, 281 

converting input sequences into windowed one-of-n encoded feature vectors and classifying 282 

each residue as hinge or non-hinge based on a selected threshold. The sequence is then 283 

coloured according to the classification, and labelled with the confidence level. 284 
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 HingeSeek was created by bootstrapping the training data from Group1_90%. 100 285 

models were trained using the quadratic KLR model with the optimal window length of 87. 286 

Data was sampled with replacement creating training sets the same size as the original 287 

Group1_90% set. To allow unbiased assessment of the model’s predictions, there is a 288 

sequence identity threshold parameter. When a sequence is entered by the user, an 289 

ensemble is created such that no members of the ensemble were trained on any sequences 290 

having a greater sequence identity than the threshold with the input sequence.  The weights 291 

are extracted from the selected models and averaged to create an aggregated model. This 292 

enables the tool to be used as a fair benchmark for comparison with competing approaches. 293 

In addition to allowing users to predict hinge-bending regions, the web server also includes 294 

an interactive weight explorer, which allows users to investigate the weights that the model 295 

assigned to amino acid pairings, by dynamically generating charts like Figure 6. 296 

 297 

DISCUSSION 298 

We trained a range of KLR models on sequences taken from the DynDom database in 299 

order to understand sequence features of hinge-bending regions and to predict their 300 

locations from sequence alone.  301 

With Group1_90%, a maximum AUROC of 0.75 was achieved. This contrasts 302 

favourably with Flores et al. (20) who could not achieve any predictive value using just Hinge 303 

Index information using the DBMM dataset also filtered at 90% sequence identity. With 304 

Group 1_40% and Group1_20%, the AUROC of the best KLR model decreased, probably due 305 

to the small amount of data available at these levels of sequence identity.  306 
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Beyond producing a sequence-based predictor for hinge regions, this work provides 307 

insight into what kinds of residue favour or disfavour hinge regions and hints at possible 308 

relationships between them. Broadly the residues found to favour hinge sites are those with 309 

small side chains confirming the finding by Flores et al. (20). Ser strongly favours a hinge site 310 

even more so than Gly which, in contrast to Flores et al., we find to only to weakly favour 311 

hinge regions. Both for Group 1 and Group2, the Hinge Index analysis shows that Pro is the 312 

most favourable residue to be located at a hinge region and Cys the least favourable. This 313 

result is supported by an analysis of the weights of the linear-terms in the KLR models. The 314 

fact that Pro favours hinge-bending regions is unexpected as in contrast to all other amino 315 

acids rotation about its  dihedral is severely restricted which one would think would inhibit 316 

its ability to act as a hinge-bending residue. This result concurs with studies on linker regions 317 

(26, 27)  identified on structural features only. Such regions were intentionally omitted from 318 

our datasets as positive cases in order to be certain that those included were confined to 319 

those that demonstrably facilitate hinge bending.  We believe the reason for Pro being 320 

located in these regions is that it often acts as a terminator for secondary structure 321 

elements and therefore appears at hinge regions because they are also often located at the 322 

terminal regions of secondary structures (10). Cys is highly disfavoured at bending regions 323 

which can be explained by the fact that many Cys residues form disulphide bonds helping to 324 

rigidify the local backbone. Positive weights for Cys at the ± ~20 positions probably indicate 325 

the role it plays in stabilising a domain via cross-linking. Interestingly Ile appears to act as a 326 

domain-capping residue. The preference of some residues to be situated in bending regions 327 

and the preference of others for being located within a globular domain may explain why 328 

we see improvement in prediction up to comparatively long window lengths.  329 
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The consistently higher performance of the quadratic kernel over the linear kernel at 330 

very long window lengths implies a correlation between amino acid locations which we 331 

believe occurs between a small number of amino acids, such as Pro and Cys, that 332 

particularly favour or disfavour hinge bending regions. 333 

 334 

CONCLUSIONS 335 

We have used statistical methods and machine learning methods to investigate 336 

sequence features of hinge-bending regions. This presents an example of an attempt to 337 

analyse sequence features involved in the structure-dynamic relationship. There is an 338 

increased interest in these regions particularly in their role as linkers in therapeutic fusion 339 

proteins. First, we revisited the Hinge Index measure introduced by Flores et al. (20) The 340 

results broadly confirm their findings for the propensities of particular amino acids to occur 341 

in hinge-bending regions.  However, there are some differences, most notably the finding 342 

that proline is the amino acid that has the highest propensity to occur in a hinge-bending 343 

region. This is thought to be due to its secondary-structure breaking tendency as it is at the 344 

termini of secondary structures that hinge bending often occurs. Flores et al. found that the 345 

Hinge Index alone could not be used to produce a reliable predictor and so here we have 346 

used KLR.  Although we have produced a tool with useful predictive power it has not 347 

achieved the same level of predictive power as when machine learning methods are applied 348 

to secondary structure prediction from sequence(34). This problem represents a case where 349 

there is a large class imbalance with the number of intradomain residues vastly outweighing 350 

the number of hinge-bending residues. This means that with a limited amount of data, and 351 

as our results indicated, only a few of the 20 amino acids having expressed any strong 352 
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preference for or aversion of hinge regions, the number of false positives is likely to be high. 353 

Using KLR models of increasing complexity we have found an interesting and quite unusual 354 

feature for the prediction of hinge-bending regions, namely that the quadratic model 355 

outperforms the linear model particularly at very long window lengths (in comparison to 356 

other methods that have been applied to the prediction of hinge-bending/conformationally-357 

variable regions). This result points to prediction performance being enhanced by the 358 

correlation between those residues that strongly favour or disfavour hinge-bending regions 359 

at a considerable distances apart along the chain. Understanding the role that particular 360 

amino acids play in the formation of hinge regions will be of interest to those who practise 361 

protein engineering, particularly those who design linker regions in therapeutic fusion 362 

proteins. 363 

 364 

METHODS 365 

Dataset 366 

The primary data comprised 5,248 domain movements from unique pairs of 367 

structures analysed by the DynDom program. These are deposited in both the user-created 368 

database (35) and the non-redundant database (36). We selected only those that were 369 

clearly domain movements based on filtering criteria. We created two datasets, “Group 1” a 370 

strictly filtered group, and “Group 2” filtered based on more permissive criteria. Table 1 371 

shows the filtering criteria for these two groups. We take the sequence of the Conformer 1 372 

structure (the two structures submitted are assigned as “Conformer 1” and “Conformer 2” 373 

at the DynDom webserver by the expert user) with the residues annotated as hinge-bending 374 

or intradomain. Figure 1 shows glutamine binding protein, a typical member of Group 1. In 375 



22 
 

the user-created set there is a great deal of redundancy. We follow Flores et al. (20) initially 376 

by filtering at 90% sequence identity on each group to ensure that no two sequences are 377 

selected for the same group if they have a sequence identity of 90% or higher. To achieve 378 

this we used the program CD-Hit (37). The total counts for the data sets were 241 sequences 379 

in Group 1 and 372 sequences in Group 2. Group 1 can be regarded as containing clear 380 

hinge regions whereas Group 2 may comprise some less hinge-like regions. Lists of the PDB 381 

structures in Groups 1 and 2 at 90% filtering are given in the Additional_Data1. These pairs 382 

identify the domain movement which can be viewed at the DynDom website.    383 

We also filtered the datasets at 40% and 20% sequence identity thresholds using CD-384 

Hit to assess the effect of removing homologous proteins. In the Results section we refer to 385 

the different datasets as Group1_90%, Group2_90%, Group1_40% and Group1_20%. 386 

 387 

Hinge Index 388 

Flores et al. (20) proposed the Hinge Index, 𝐻𝐼(𝑎), for a given amino acid, 𝑎, as: 389 

𝐻𝐼(𝑎) = log (
𝑝(𝑎|ℎ)

𝑝(𝑎)
) ,       (1) 390 

which, is the log-likelihood ratio for the occurrence of amino acid 𝑎 in a hinge region to its 391 

occurrence in the population as a whole. It is a measure of the propensity of an amino acid 392 

for a hinge region. 𝑝(𝑎) is the probability of amino acid 𝑎 irrespective of region and 𝑝(𝑎|ℎ) 393 

is the probability of amino acid 𝑎 given it is in a hinge region, ℎ. These probabilities were 394 

estimated from frequencies calculated using the annotated sequence data. Significance 395 

testing of 𝐻𝐼(𝑎) is performed using the hypergeometric distribution as outlined in detail by 396 

Flores et al. pages 6-7. The null hypothesis is that the observed number of occurrences of an 397 
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amino acid of a particular type in hinge regions is the result of the random assignment of 398 

that amino acid to hinge regions according to its probability of occurrence in any region 399 

derived from its overall frequency. The alternative hypothesis is that it is not a random 400 

assignment with probabilities derived from their overall frequencies. Following Flores et al., 401 

the null hypothesis is rejected when p<0.05. 402 

Kernel Logistic Regression 403 

To build the training and test data sets from the sequence and bending region data, 404 

a sliding window of length w residues was placed over each sequence, resulting in 405 

subsequences of length w residues. If w is odd then the central residue of the window can 406 

either be in an intradomain region or a hinge-bending region. To get from our windowed 407 

sequence to a suitable input vector we employ “one-of-n-encoding”. For each window i the 408 

sequence is encoded as a 24w component input vector, xi, where for each position in the 409 

window, 24 rows are assigned, each of which corresponds to the one of the 24 “characters” 410 

in our alphabet: one character for each of the 20 standard amino acids plus “B”, “X” and “Z”, 411 

standing for ambiguous amino acids and “-” as a dummy character for those positions in the 412 

window that are beyond a terminus. The value of each of the 24 rows is set to 0 for each 413 

residue apart from the row of the residue at the corresponding window position which is set 414 

to 1.  415 

Those windows with the central residue in an intradomain region were negatively 416 

labelled and have a target value for KLR of ti = 0, and those with the central residue in a 417 

hinge-bending region were positively labelled and given a target value of ti = 1. The number 418 

of negatively labelled records in the training set greatly outnumbered the number of 419 

positively labelled records, so this ratio in the training set was altered by randomly 420 
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discarding negatively labelled examples. We elected to use a 1:9 proportion for the positive 421 

to negative cases for all training sets. In the Results section we show that variation of the 422 

proportion of positive to negative cases in the training set did not affect the AUROC. 423 

KLR was applied to the data using UEA's MATLAB Generalized Kernel Machine 424 

toolbox (38). KLR (39) constructs a model of the form: 425 

logit{𝑦(x)} = w ∙ 𝝓(x) + 𝑏, where logit{𝑝} = log {
𝑝

1−𝑝
},  (2) 426 

where b is a scalar bias parameter, w is a vector of primal model parameters, and 𝝓(x) is 427 

the representation of x in a fixed feature space. The logit link function constrains the output 428 

of the model to lie between zero and one. Viewing this output as an a-posteriori probability 429 

of belonging to the “hinge” class, we classify test residues as part of a hinge-bending region 430 

if the output is above a threshold, and below the threshold classify the residue as not part of 431 

a hinge. 432 

Rather than define the non-linear transformation, 𝝓(x), directly, it is implicitly 433 

defined by a kernel function, 𝒦, giving the inner product between vectors in the feature 434 

space,   435 

𝒦(x, x′) = 𝝓(x) ∙ 𝝓(x′),      (3) 436 

where x and x′ are arbitrary vectors in the input space.  A valid kernel function is one that 437 

obeys Mercer’s conditions; i.e. the resulting kernel matrix, K, is positive semi-definite for 438 

any set of points in the input space.  We used three kernels starting with the linear kernel 439 

function, a straightforward scalar product of the input vectors: 440 

𝒦(x, x′) = x ∙ x′.       (4) 441 
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The polynomial kernel, which maps the input vector into a higher dimensional feature space 442 

where new features are created from all monomials of order d or less of the original 443 

features, allows non-linear separations of the data without requiring an enumeration of the 444 

possible combinations. 445 

𝒦(x, x′) = (x ∙ x′ + 𝑐)𝑑.      (5) 446 

In this study, the kernel parameter 𝑑 was set at two (for a quadratic kernel) or three (for a 447 

cubic kernel), and 𝑐 is a hyper-parameter.  The final kernel function used was the radial basis 448 

function (RBF) kernel: 449 

𝒦(x, x′) = exp {−𝜃‖x − x′‖2},     (6) 450 

where 𝜃 is a hyper-parameter controlling the sensitivity of the kernel. 451 

Assume we are given a training set of ℓ examples, where x𝑖 represents an input vector and ti 452 

and yi are, respectively, the expected and predicted outcome for the ith training example.  453 

The optimal values of the primal model parameters, w, and bias, b, are found using the 454 

iteratively reweighted least squares training procedure (40) to minimise a regularised 455 

“cross-entropy” cost function: 456 

𝐸 =
1

2
‖w‖2 −

𝛾

2
∑ [𝑡𝑖 log{𝑦𝑖} + (1 − 𝑡𝑖) log {1 − 𝑦𝑖}]ℓ

𝑖=1 .  (7) 457 

This optimisation problem is more conveniently solved in the dual representation, where 458 

the primal parameters are expressed in terms of the dual parameters: 459 

w = ∑ 𝛼𝑖𝝓(x𝑖)
ℓ
𝑖=1   and  ‖w‖2 = 𝜶TK𝜶,    (8) 460 

where α is vector of dual model parameters. From Eqn 2, Eqn 3 and Eqn 8, the equation 461 

used to calculate an expected outcome from an input vector is: 462 
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logit{𝑦(x)} = ∑ 𝛼𝑖𝒦(x𝑖,x) + 𝑏ℓ
𝑖=1  .     (9) 463 

The regularization parameter, 𝛾, in Eqn 7 along with other hyper-parameters such as the 464 

kernel parameter 𝜃 in Eqn 6 and the polynomial kernel’s hyper-parameter 𝑐 in Eqn 5, are 465 

tuned using the Nelder-Mead simplex algorithm (41) to minimise an approximate leave-one-466 

out cross-validation estimate of the cross-entropy loss (40), which can be computed 467 

efficiently as a by-product of the training procedure, i.e. the leave-one-out cross-validation 468 

is performed on the training set. 469 
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Additional_Figure2; pdf; (A) ROC curves for the quadratic model with window length 81 on 589 

Group1_90% with various proportions of positive to negative training examples. (B) Plots of 590 

the AUROC against proportion of positive to negative training examples for different 591 

window lengths.  592 

Additional_Figure3; pdf; Precision-Recall curve for Group1_90%. 593 

Additional_Figure4; pdf; Area under Precision-Recall curves for different KLR models at 594 

different window lengths for Group1_90% dataset. 595 

Additional_Figure5; pdf; p-values at different window lengths for the Group1_40% dataset 596 

determined by doing a paired t-test of the AUROC between the linear and quadratic KLR 597 

models. 598 
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 601 

TABLES 602 

Table 1 Selection criteria for Groups 1 and 2 and number of examples. 603 

Criterion Group 1 Group 2 

No of domains 2 2 

Min no of residues in 

domain 
80 80 

Min angle of rotation  20 15 

Max intradomain backbone 

RMSD 
2.5 Å 3.0 Å 

Max no of bending regions 3 5 

Max no of residues in a 

bending region 
10 15 

Number of domain 

movements before CD-Hit 

filtering (90%) 

910 1389 

Number of domain 

movements after CD-Hit 

filtering (90%)* 

241 372 

Number of domain 

movements after CD Hit 

filtering (40%) 

171 268 
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Number of domain 

movements after CD-Hit 

filtering (20%) 

136 222 

* See Additional_Data_1 for list of pairs of structures by protein name and PDB codes.  604 
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