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ABSTRACT

The enhancement of noisy speech is important for applications in-
volving human-to-human interactions, such as telecommunications
and hearing aids, as well as human-to-machine interactions, such as
voice-controlled systems and robot audition. In this work, we focus
on reverberant environments. It is shown that, by exploiting the lack
of correlation between speech and the late reflections, further noise
reduction can be achieved. This is verified using simulations involv-
ing actual acoustic impulse responses and noise from the ACE cor-
pus. The simulations show that even without using a noise estimator,
our proposed method simultaneously achieves noise reduction, and
enhancement of speech quality and intelligibility, in reverberant en-
vironments over a wide range of SNRs. Furthermore, informal lis-
tening examples highlight that our approach does not introduce any
significant processing artefacts such as musical noise.

Index Terms— Speech enhancement, polynomial matrix eigen-
value decomposition, microphone array, noise reduction, broadband
signal processing.

1. INTRODUCTION

The degradation of speech by noise is challenging for many appli-
cations, such as telecommunications, hearing aids, voice-controlled
systems and robot audition. To improve the performance of these
systems, both single- and multi-channel speech enhancement meth-
ods have been proposed to reduce noise. However, it is well-known
that such methods typically also distort the speech signal and intro-
duce processing artefacts [1].

Single-channel enhancement approaches include spectral sub-
traction [2], statistical-based and subspace methods. In statistical
methods, the enhancement filter is typically designed based on the
mimimization of the mean square error (MSE) between the clean
and estimated speech spectrum [3] or the log-spectrum (log-MMSE)
in [4]. Because of the intrinsic coupling between noise reduction
and speech distortion in a single-channel system, a parameter can be
introduced in the derivation of the optimal Wiener filter to control
that trade off [5, 6].

Subspace-based speech enhancement [7] used the Karhunen-
Loève transform (KLT) and an optimal solution was derived when
the noise is white. The method was extended in [8] to cope with
coloured noise by approximating the noise covariance matrix in the
KLT domain with a diagonal matrix. This was shown in [9] to be
sub-optimal and a generalized eigenvalue decomposition (GEVD)
was used to jointly diagonalize the speech signal and noise covari-
ance matrices for coloured noise.

The research leading to these results has received funding from the UK
EPSRC Fellowship grant no. EP/P001017/1.

The subspace-based method has also been extended to multi-
channel systems. In [10], the temporal signals at different micro-
phones are stacked into a vector before computing the covariance
matrix for KLT. Like the multi-channel Wiener filter (MWF), this ap-
proach does not fully exploit spatial information to minimize speech
distortion [11]. A different approach was adopted in [12, 13], in
which KLT is applied to the spatial covariance matrix between differ-
ent microphones for different frequency bins. This approach, how-
ever, processes frequency subbands independently and, therefore,
neglects correlations between bands and phase continuities across
band boundaries.

Polynomial matrices are capable of capturing the space, time
and frequency correlations simultaneously. Polynomial eigenvalue
decomposition (PEVD) has been applied to many broadband signal
proccessing applications such as blind source separation [14], source
identification [15] and adaptive beamforming [16]. Our recent con-
tribution in [17] extended the PEVD to the field of audio signal pro-
cessing for the enhancement of speech distorted by additive noise.
The approach in [17] focuses on direct-path propagation only, but
does not incorporate multi-path effects. Direct-path propagation is
relevant for telephony applications where the talker is close to the
microphones, also considered in [6, 18, 19]. However, with tech-
nologies such as voice-controlled systems and robot audition [20]
becoming increasingly important and common, multi-path reverber-
ation must also be considered [21].

In this work, we propose a novel PEVD-based speech enhance-
ment method incorporating a reverberant channel model. It is shown
that the algorithm is able to achieve speech enhancement for a single-
source while suppressing diffused noise without relying on a noise
estimator. The robustness of the new speech enhancement method
against other baseline approaches is demonstrated through simula-
tions using room impulse responses and noise signals measured in
real acoustic environment. Informal listening examples highlight
that our method does not introduce any significant artefacts.

2. SIGNAL MODEL AND PROBLEM FORMULATION

The noisy and reverberant signal, xm(n), at the m-th microphone
for discrete-time sample n = 0, 1, . . . , T − 1, is

xm(n) = hTms0(n) + vm(n) (1)
= sm(n) + vm(n), m = 1, 2, . . . ,M, (2)

where s0(n) = [s0(n), s0(n− 1), . . . , s0(n− J)]T is the anechoic
speech signal, hm = [hm,0, hm,1, . . . , hm,J ]T represents the m-
th channel as a J-th order finite impulse response filter, sm(n) is
the reverberant speech, vm(n) is the additive noise signal and [·]T
denotes the transpose operator. The noise signals are assumed to be
zero-mean, not perfectly coherent with each other and uncorrelated
with the source signal [11]. The channel is also assumed to be time



invariant. The received data vector for M microphones is written
as x(n) = [x1(n), . . . , xM (n)]T with v(n) and s(n), similarly
defined.

The goal is to estimate s0(n) from x(n) while suppressing
v(n). Earlier works such as [6, 17–19] aimed to achieve the same
goal under a direct-path only propagation assumption.

3. PEVD-BASED SPEECH ENHANCEMENT

3.1. Formulation of Polynomial Matrices

The classical subspace methods for speech enhancement do not
fully exploit spatial information, and do not account for correlation
between different frequency bins. For broadband signals such as
speech, different frequency components are affected by different
phase shifts. Each phase shift requires specific temporal alignment
to be corrected for. Therefore, the correlations across different sen-
sors and at different time lags need to be considered. To achieve
this, we use the space-time covariance matrix

Rxx(τ) = E{x(n)xT (n− τ)}, (3)

where the (p, q)th element, rpq(τ) = E{xp(n)xq(n−τ)}. Concate-
nating the covariance matrix, Rxx(τ), for all choices of τ ∈ {−T +
1, . . . , T − 1}, results in a tensor of dimension M ×M × (2T − 1).
In order to explicitly capture the spectral correlations, speech signals
are typically processed in the short-time Fourier transform (STFT)
domain. Therefore, the covariance needs to be further expanded to a
M×M×(2T−1)×K tensor, whereK is the number of frequency
bins in the STFT.

A more compact representation of the speech signals, that cap-
tures the correlations in space, time and frequency, can be obtained
by representing the speech signals using z-transform, rather than the
STFT. The z-transform of (3) is a para-Hermitian polynomial ma-
trix [22, 23]

Rxx(z) =

∞∑
τ=−∞

Rxx(τ)z−τ . (4)

The polynomial matrix can be interpreted as a matrix with poly-
nomial elements or, equivalently, a polynomial with matrix coeffi-
cients.

3.2. Polynomial Matrix Eigenvalue Decomposition

The polynomial eigenvalue decomposition (PEVD) of a para-
Hermitian matrix [22] is given by

Rxx(z) ≈ UP (z)Λ(z)U(z), (5)

where the rows of U(z) corresponds to the eigenvectors with their
associated eigenvalues on the diagonal polynomial matrix, Λ(z).
The decomposition is computed using an iterative algorithm [22,24–
26] based on similarity transforms involving L para-unitary polyno-
mial matrices, U(z) = UL(z). . .U1(z). The polynomial matrix at
the `-th iteration, U`(z), satisfies the para-unitary condition [23],

UP
` (z)U`(z) = U`(z)UP

` (z) = I, (6)

where I is the identity matrix and [·]P denotes the para-Hermitian
operator such that UP

` (z) = UH
` (z−1). At each iteration, the

PEVD algorithm [22] first searches for the largest off-diagonal el-
ement (column norm) before applying a delay matrix to bring the
dominant element (column) to the principal plane, the plane of z0,

if it exceeds a predefined threshold, δ. The dominant element (col-
umn) is then zeroed out using a unitary matrix computed based on
the principal plane but applied to the entire polynomial matrix. To
keep the polynomial order compact, a fraction of the total Frobenius-
norm squared, µ, is truncated as detailed in [22]. After L iterations,
Rxx(z) is approximately diagonalized according to

Λ(z) ≈ U(z)Rxx(z)UP (z) = U(z)E{x(z)xP (z)}UP (z), (7)

where x(z) is the z-transform of x(n) based on (4). The zeroing
unitary matrix computed at each iteration can take the form of a
Givens rotation in second-order sequential best rotation (SBR2) [22],
that targets the dominant element, or Householder-like optimization
procedure as in [26]. A combination of Householder reflection and
Givens rotation matrices is used in [25] and the sequential matrix di-
agonalization (SMD) algorithm [24], that targets the dominant col-
umn, uses the eigenvector matrix.

3.3. Proposed PEVD-based Algorithm

We now consider the case when hm in (1) is an arbitrary acoustic
impulse response. The m-th channel impulse response, hm, can be
separated into [21]

hm = h̃m,dp + h̃m,er + h̃m,lr, (8)

where h̃m,dp, h̃m,er, h̃m,lr are the direct-path, early reflections and
late reflections components respectively. We note that, in contrast
to [17], (8) incorporates explicitly the responses corresponding to
the early reflections and late reverberation.

Since the late reflections comprise randomly distributed small
amplitude components which makes the third term in (8) uncorre-
lated with the first two, it can be treated as an additive, uncorrelated
noise component. The early reflections, on the other hand, represents
closely spaced echoes which have a direct-path strengthening effect
and may improve speech intelligibility in some conditions. Apply-
ing (8) in (1), the signal model can be divided into the signal and
noise components such that

x(n) = s̃(n) + ṽ(n), (9)

where s̃(n) = [s1(n), . . . , sM (n)]T with sm(n) = h̃Tm,dps0(n) +

h̃Tm,ers0(n) and ṽ(n) = [v1(n), . . . , vM (n)]T with vm(n) =

h̃Tm,lrs0(n) + vm(n). Applying (9) to (3), the space-time covari-
ance matrix of the microphone signals is given by

Rxx(z) = Rs̃s̃(z) + Rṽṽ(z), (10)

where the speech and noise space-time covariance matrices are
Rs̃s̃(z) and Rṽṽ(z) respectively, assuming stationarity within each
processing frame. By filtering x(z) through the filterbank U(z), the
channel outputs, y(z) = U(z)x(z), are strongly decorrelated [22]
according to

E{y(z)yP (z)} = E{U(z)x(z)xP (z)UP (z)} ≈ Λ(z). (11)

Since noise and speech are assumed uncorrelated, the PEVD gives

Rxx(z) ≈
[
UP
s̃ (z) UP

ṽ (z)
] [ Λs̃(z) 0

0 Λṽ(z)

] [
U s̃(z)
U ṽ(z)

]
,

where {.}s̃ and {.}ṽ represent the orthogonal signal and noise sub-
space components. The speech subspace comprises anechoic speech
convolved with the direct path and early reflection components while



the noise subspace contains ambient noise and the late reflections in
the reverberant channel.

PEVD algorithms sort Λ(z) in descending order which tends to
result in the spectrally majorized property [22]. Consequently, noise
reduction in the output channels is achieved by combining compo-
nents in the signal subspace and nulling components in the noise
subspace. Unlike previous subspace-based methods and even many
non-subspace methods, the proposed method does not rely on a noise
estimation since the strong decorrelation property of PEVD implic-
itly separates the noise and signal components if they are uncorre-
lated. The PEVD-based speech enhancement algorithm is summa-
rized in Algorithm 1.

Algorithm 1 PEVD-based speech enhancement.

Inputs: x(n) ∈ RM , n ∈ {0, . . . , T − 1},W, δ, µ, L.
Rxx(τ)← E{x(n)xT (n− τ)} // see (3)
Rxx(z)← Z{Rxx(τ)} // see (4)
U(z),Λ(z) ← PEVD {Rxx(z), δ, µ, L} // use any PEVD
algorithm [22, 24–26]
x(z)← x(n) // see (4)
y(z)← U(z)x(z) // speech enhancement
return y(z).

4. SIMULATIONS AND RESULTS

4.1. Experiment Setup

To evaluate the proposed approach, speech signals, sampled at
16 kHz, from the TIMIT corpus [27] and room impulse responses
and noise measurements from the 3-channel mobile recordings in
the ACE corpus [28] are used. The room impulses used are Office 1
and Lecture Room 2 with measured T60 of 0.332 s and 1.22 s
respectively. To highlight the insights gain from incorporating re-
verberation, we also include a direct-path only propagation. The
propagation delays are drawn from the discrete uniform distribution,
U(1, 1000) and ordered such that τ1 < τ2 < τ3.

Monte-Carlo simulations involving 50 trials are conducted. In
each trial, sentences from a randomly selected speaker are concate-
nated to a signal length between 8 to 10 s. The anechoic speech
signal is then convolved with the impulse response at each micro-
phone channel before being corrupted by additive noise using [29].
The noise condition used in the simulations is babble noise ranging
from -10 dB to 30 dB signal to noise ratio (SNR).

The PEVD parameters, adapted from [22], are δ =
√
N1/3 ×

10−2 where N1 is the square of the trace-norm of Rxx(0), µ =
10−3 and L = 500. To estimate Rxx(z) in (4), Rxx(τ) in (3) is
first computed based on the sample mean given by

R̂xx(τ) ≈ 1

T

T−1∑
n=0

x(n)xT (n− τ), (12)

and τ = ±W , where W is the truncation window that reflects the
temporal correlation of speech signals. In the experiments, we found
a good choice to be T = W = 1600 samples so that R̂xx(z) is
recursively estimated every 100 ms.

The proposed PEVD method is compared against the log-
MMSE method with published parameters in [3], two subspace
methods and two versions of the multi-channel Wiener filter (MWF),
which are based on the concatenation of a minimum variance dis-
tortionless response (MVDR) followed by a single-channel Wiener

filter [30]. The first MWF uses a speech estimator that exploits the
relative transfer function and a noise estimator based on the param-
eters used in [31]. The second is the Oracle-MWF (O-MWF) which
will approximate the ideal performance bound since it uses com-
plete prior knowledge of the clean speech signal. The parameters
are based on the batch version in [5] where the filter length is 80.
The two subspace methods are single-channel method for coloured
noise by [9] (COLSUB) and multi-channel subspace (MCSUB)
methods [10, 11].

4.2. Performance Measures

For evaluation, the segmental signal to noise ratio (SegSNR),
frequency-weighted SegSNR (FwSegSNR) [32], short-time objec-
tive intelligibility (STOI) [33] and perceptual evaluation of speech
quality (PESQ) [34] scores are used. These measures are computed
for the signals before and after enhancement using the proposed
and baseline algorithms. We then compute the improvement, ∆, by
taking the difference in the scores between the enhanced and noisy
signals. Higher ∆SegSNR and ∆FwSegSNR indicate greater noise
reduction while higher ∆STOI and ∆STOI indicate improvement in
speech intelligibility and quality.

4.3. Results and Discussions

Fig. 1 shows the results for reverberant speech corrupted by bab-
ble noise in the highly reverberant Lecture Room 2 of the ACE cor-
pus. At the lower range of SNR from -10 dB to 10 dB, in terms of
noise reduction, the subspace-based methods, COLSUB and MC-
SUB outperform the other methods and were able to provide an
improvement in SegSNR of up to 7 dB. COLSUB also performs
well in FwSegSNR but this is different for MCSUB, which does
not seem to improve even though it performs well for SegSNR. At
SNRs above 15 dB, log-MMSE outperforms the other methods in
both SegSNR and FwSegSNR. At SNRs above -5 dB, PEVD im-
proves both SegSNR and FwSegSNR. OMWF offers noise reduction
at lower SNRs up to 5 dB before beginning to introduce more noise
into the noisy received signal at SNRs above that.

Even with the knowledge of the clean speech, OMWF does not
necessarily improve both SegSNR and FwSegSNR. This is expected
because the OMWF attempts to reduce noise while minimizing
speech distortion. This is reflected in both STOI and PESQ, where
OMWF is shown to outperform the other algorithms. PEVD is
always able to improve STOI over the entire range of SNR from
-10 dB to 30 dB and, in fact, it performs better than OMWF at SNRs
above 10 dB. The subspace methods, COLSUB and MCSUB, on
the other hand, worsen STOI at lower SNR values and offer no im-
provement at higher SNRs. Log-MMSE always worsens the STOI
after enhancement.

In terms of PESQ, OMWF outperforms the rest across all SNRs
with PEVD being competitively close. At SNRs above 5 dB, the al-
gorithms perform comparatively. Both subspace methods, COLSUB
and MCSUB perform the worst at SNRs below 0 dB.

From these examples, we observe a trade-off between noise re-
duction and speech intelligibility, as indicated by the STOI measure.
The noise reduction offered by MMSE and subspace-based methods,
COLSUB and MCSUB, is achieved at the expense of speech intel-
ligibility. At the other extreme, OMWF, which has knowledge of
the clean speech, performs the best in terms of speech intelligibility
and quality. This also reflects the fact that speech intelligibility may
not necessarily be affected by noise levels, up to some limit, com-
pared to speech. PEVD, on the other hand, is able to simultaneously



suppress the noise while improving intelligibility.
Similar results are observed in the mildly reverberant Office 1

environment as shown in Fig 2. PEVD was able to approach the
performance of OMWF in STOI while reducing the noise level as
demonstrated by both SegSNR and fwSegSNR. It is able to approach
the performance of subspace-based methods, which are capable of
suppressing noise to a greater level, but at the expense of distorting
the speech signal.

For anechoic environments, where only the direct-path response
is simulated, OMWF offers the highest SegSNR and FwSegSNR im-
provement. This, however, is not observed when the environment is
reverberant. Hence, the direct-path only model is insufficient for
noise reduction using the OMWF method when the environment is
reverberant. The performance of PEVD approaches that of OMWF
in terms of STOI. While OMWF gives the best performance in all
metrics, it relies on prior knowledge of the clean speech signal com-
pared to PEVD, that is a completely blind method and does not rely
on noise estimation.

Furthermore, the listening examples, which can be found on
https://www.commsp.ee.ic.ac.uk/%7esap/pevdr/,
have indicated that our approach does not introduce any processing
artefacts such as musical noise into the enhanced signal.

5. CONCLUSION

A PEVD-based speech enhancement algorithm designed for a rever-
berant signal model has been proposed. By decomposing the im-
pulse response of the reverberant channel into the direct path, early
and late reflections, the new method is shown to be able to exploit
the lack of correlation between the source and the late reflections
to provide further noise reduction. It has been demonstrated that
even without a noise estimator, the proposed method is robust to re-
verberation and is able to simultaneously reduce noise and improve
speech intelligibility and quality. This is in strong contrast to the
other methods that require a trade-off between both quantities. Fur-
thermore, informal listening examples highlighted that the approach
does not introduce any processing artefacts such as musical noise.
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Fig. 1. Simulations for babble noise in Lecture Room 2.
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Fig. 2. Simulations for babble noise in Office 1.
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Fig. 3. Simulations for babble noise in direct-path only propagation.
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