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Abstract— Temporal logic task planning for robotic systems
suffers from state explosion when specifications involve large
numbers of discrete locations. We provide a novel approach,
particularly suited for tasks specifications with universally
quantified locations, that has constant time with respect to the
number of locations, enabling synthesis of plans for an arbitrary
number of them. We propose a hybrid control framework that
uses an iterator to manage the discretised workspace hiding it
from a plan enacted by a discrete event controller. A downside
of our approach is that it incurs in increased overhead when
executing a synthesised plan. We demonstrate that the overhead
is reasonable for missions of a fixed-wing Unmanned Aerial
Vehicle in simulated and real scenarios for up to 700 000

locations.

I. INTRODUCTION

Discrete event controller synthesis is receiving increased

attention as a means for providing robot applications correct-

by-construction task plans (e.g., [1], [2], [3]). Synthesis from

temporal logic specifications requires a discrete abstraction

of the environment to establish a discrete event model that

can be analysed exhaustively to produce task plans.

Synthesis algorithms are computationally complex

(e.g., [4] is polynomial) with respect to the number of

states of the discrete model. Hence, it is crucial to establish

an abstraction of the environment that is sufficiently fine

grained to allow appropriately capturing task requirements

but coarse enough so as to not making synthesis intractable.

A robot’s workspace may be naturally discretised to

the sensors’ capabilities, e.g., land mapping with a low-

autonomy Unmanned Aerial Vehicle (UAV) can require over

400 discrete locations [5]. The number of discrete locations

can induce a combinatorial growth in the size of the discrete

event model, which in turn can make synthesis intractable.

We provide a novel approach that allows scaling the num-

ber of locations in task planning by exploiting the following

observation: Many robot tasks specifications are, or can be,

expressed as a universal quantification over a set of locations

(e.g., “For all locations in the discrete workspace, if the

location satisfies ... then visit it and do ... if ...”). Examples

include tasks in [1], [6], [7], [8], [9], [10], [11] and [12],

where common robot task are surveyed. The common ground

in these papers is the explicit management of locations, that

makes synthesis intractable when increased. Indeed they do

not report building plans for over 1200 locations.

Our approach uses a hybrid control framework [13], which

can work with any motion planner [14], in which synthesised
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task plans execute over an API that provides an iterator

that manages and hides the discretised workspace, offering

the plan one location at a time. Plans are synthesised from

a specification that includes the task requirements and a

model of iterator that abstracts the number of locations that it

manages. Hence, the synthesis time is constant with respect

to these locations.

The price to be paid for constant synthesis time with

respect to locations managed by the iterator is at runtime:

Plans can only make decisions and act upon the location

currently offered by the iterator and cannot refer to locations

explicitly. That is, a plan cannot request going to a named

location x, rather it must iterate over locations asking for

each one if it is location x (similar to the sensor-based

approach in [6]). Thus, the order in which the iterator selects

locations impacts the overall robot behaviour. A particularly

bad case is if in a scenario with millions of locations, the

iterator offers location x at the very end.

We show that a hybrid control layer in which location

sorting uses shortest trajectory is fast enough to provide

acceptable though sub-optimal flight paths for tasks involving

hundreds of thousands of locations (significantly beyond

what synthesis with explicit location management is capable

of) for a fixed-wing UAV. The design is complementary to

work on motion and trajectory planning [15]. Indeed, more

sophisticated reasoning below the discrete plan layer can

be modularly included into the hybrid controller and could

provide enhanced performance.

In summary, we present a hybrid controller approach

aimed at tasks specifications with universally quantified

locations that does not suffer from synthesis scalability

limitations with respect to the number of locations. Task

plans are synthesised from specifications given as Labelled

Transition Systems and Fluent Linear Temporal Logic. De-

spite using simple location motion planning and trajectory

control approaches, we demonstrate by simulating and flying

four tasks: search and follow [6], search and map [16],

patrol [7], and cover [17], that the approach can scale to

hundreds of thousands of discrete locations.

II. PRELIMINARIES

Labelled Transition System: (LTS) [18] are automata

where transitions are labelled with actions that constitute the

interactions of the modelled system with its environment. We

partition actions into controlled and uncontrolled to specify

assumptions about the environment and safety requirements

for a controller. Figure 2b models the assumption that yes.fire

and no.fire are responses to fire?, and the safety property that

fire? is not issued before the response to a previous fire?.



Fig. 1: System Architecture for Iterator-Based and Explicit location plans. The fixed-wing UAV has a wingspan of 1.6m

Complex models can be constructed by LTS composition.

We use a standard definition of parallel composition (‖) that

models the asynchronous execution of LTS, interleaving non-

shared actions and forcing synchronisation of shared actions.

Fluent Linear Temporal Logic: (FLTL) [19] is also used

to describe environment assumptions and task requirements.

FLTL is a linear-time temporal logic that uses fluents to

describe states over sequences of actions.

A fluent fl is defined by a set of initiating actions, a set

of terminating actions, and an initial value. We may omit set

notation for singletons, e.g., Going = 〈go.next, arrived〉Initially
⊥

We may use an action label ℓ for the fluent defined as fl =
〈ℓ,Act \ {ℓ}〉. Thus, the fluent remove.next is only true just

after the occurrence of the action remove.next.

FLTL is defined similarly to propositional LTL but where

a fluent holds at a position i in a trace π based on the events

occurring in π up to i. Temporal connectives are interpreted

as standard: ♦ϕ, �ϕ, and ϕWψ mean that ϕ eventually

holds, always holds and holds until ψ respectively.

Discrete Event Controller Synthesis is defined as fol-

lows: Given an LTS E with a set of controllable actions L,

assumption A and goal G expressed in FLTL, find an LTS

C such that E‖C) is deadlock free, C does not block any

non-controlled actions, and for every trace of E‖C if the

trace satisfies the assumption A, then the trace satisfies G.

When goals and assumptions are restricted to a GR(1)

form [4] the control problem can solved in polynomial time.

MTSA [20] solves GR(1) control problems expressed with

LTS and FLTL, requiring assumptions and goals in FLTL to

be either i) of the form
∧

n

i=1
�♦ϕi where ϕi are Boolean

combinations of fluents, or ii) safety properties [21].

III. DISCRETE ABSTRACTION

A. Iterator-Based Task Plans

Consider a task for a UAV in which various locations of

a grid-based map must be patrolled and photographs must

be taken if fire is detected. A plan for such a task in a

temporal logic task and motion planning approach (e.g., [8])

might look like the LTS on the top right of Figure 1 (Explicit

Location Controller) where the locations to be patrolled are

P = {C5,A2,B2,. . . } (orange areas in Figure 1). The plan

sequentially visits each location, checks for fire and takes

a picture accordingly. Although the size of the plan grows

linearly with P , the state space over which it is computed

grows exponentially (i.e., 2‖P‖) as it must at least capture

all possible orders in which locations in P could be visited.

A more compact plan for the same task may be synthesised

if a richer execution environment is assumed. Consider an

iterator that abstracts the size of discrete workspace and

which can provide its locations, one at a time. In this case,

a plan (top left of Figure 1) could consist of a loop iterating

over the locations, checking for each location if it requires

patrolling (is.next.inP?) and if so (yes.next.inP) going to the

location (go.next) and upon arrival (arrived) checking if the

current UAV location has fire (fire?) and taking a photo

(take.photo) if needed. As locations are not explicitly treated

in the plan, its size does not depend neither on the total

number of locations nor the size of P . Similarly, the state

space from which the plan can be synthesised is not affected,

achieving constant synthesis time with respect to the number

of locations. In the remainder of this section we report on

how to specify and synthesise iterator plans.

B. Specification of Iterator-Based Task Plans

Three aspects of the system must be abstracted to obtain a

discrete event model from which to synthesise iterator-based

task plans: the iterator, sensors and actuators.

1) Iterator Abstraction: The iterator is an abstract data

type that manages a set of discrete locations L derived though

the discretization of a region. We chose for simplicity to use

grid-based maps as in [2], [9], [17], [22].

An iterator is a triple 〈D,n,R〉 where D and R are sets

of locations representing those that the plan has already

processed (Done) and those that remain (Remaining), and

n is the next location to be processed by the plan. The

iterator is initialised as follows: n is set to one element of

L, R = L\{n}, D = ∅. We define the following operations:

• has.next?: returns true if and only if n is not null.

• remove.next: adds n to D and if R = ∅ sets n to null,

otherwise sets n to a location in R and R = R \{n}.
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Fig. 2: Dashed (non-dashed) lines are controlled (uncontrolled) actions. (a) Iterator Model. (b) Fire sensor for current location.

(c) Patrollable area sensor. (d) Constraint: is.next.inP? only when y.next. (d) Constraint: take.photo and fire? only when arrived.

(e) Simplified UAV capabilities for Fire Patrol task. (f) Constraint: go.next only when y.next.

• reset: the iterator is reinitialised.

In Figure 2a we depict an LTS that models interactions

with an iterator. We model the return values of has.next?

with two different events y.next and n.next. These two events

are defined to be uncontrollable, i.e., it is the iterator and

not the plan that decides whether the response is y.next or

n.next. A requirement such as �♦has.next? ∧ �(y.next ⇒
(¬remove.next W go.next)) will make the robot continuously

visit all the locations with which the iterator was initialised.
2) Sensors: Similarly to [6], we introduce binary sensors

to model interaction with the environment. In this iterator-

based setting, sensors can answer queries regarding the

location that the robot is at and/or for the next location

selected by the iterator. For example, Figure 2b models a

fire sensor that can be queried about the existence of fire at

the current robot location. Figure 2c shows an abstraction of

the sensor that responds if the next location selected by the

iterator is one that must be patrolled.

For sensing over the next location, attribute n must not be

null. An additional LTS is included to constrain the occur-

rence of is.next.inP? queries to between y.next and remove.next

as in Figure 2d.

Additional constraints are typically needed for sensing

over the current location to ensure that the plan is aware

of what the current location is. For example, sensing for fire

(fire?) and taking a photo (take.photo) should occur between

having arrived to a particular location and starting to analyse

the next (has.next?), Figure 2e.
3) Primitive Capabilities: Using a control-driven dis-

cretization [23], we define controllable/uncontrollable pairs

to model the start/end of control modes [24]. For example,

go.next commands the robot to move to the next location

according to the Iterator, and the uncontrollable action arrived

indicates that the target location has been reached. Other

capabilities may be reasonably modelled as instantaneous

such as take.photo.

In Figure 2f, we depict the minimal capability model of

a robot for the Fire Patrol task. We also require that the

go.next command only be issued when the iterator has a next

location to be processed (Figure 2g).

C. Task Specification Example

To help understand how the abstraction described above

works, we elaborate on how the Fire Patrol task can be

specified to obtain the plan shown in top left of Figure 1.

We build an environment model E as a parallel com-

position that describes assumptions and constraints on how

the infrastructure on which the plan will execute. For the

Fire Patrol task the composition includes exactly all the

LTS described above: the iterator, the fire and patrol sensors

with associated constraints and the robot capabilities and

constraints, as depicted in Figure 2. .

We structure the task specification with one property

stating which location should be visited (ϕ1) and another one

for what should be done at visited locations (ϕ2). We also

require ϕ0 = �♦has.next? to ensure that the plan continually

processes locations from the iterator.

For property ϕ1 we need to introduce three fluents:

MustPatrol = 〈yes.next.inP, has.next?〉Initially
⊥

that is true when

the location selected by the iterator has been confirmed

to be in the set of patrollable locations P (yes.next.inP).

PatrolAnwered = 〈{no.next.inP, yes.next.inP}, has.next?〉Initially
⊥

is true when a response to is.next.inP? has been received.

Arrived = 〈arrived, has.next?〉Initially
⊥

is true when the UAV

has arrived to the location selected by the iterator.

The patrol condition VisitCondition = PatrolAnwered ∧
(MustPatrol ⇐⇒ Arrived), is that the is.next.inP? query has

been responded, and the UAV has arrived at that location

if and only if the response was yes.next.inP. Additionally,

ϕ1 = �(y.next ⇒ ¬remove.next W VisitCondition) requires, for

every new location that is selected by the iterator, to not

remove that location from the iterator until the VisitCondition

is achieved.

The specification of what to achieve at each visited

location (ϕ2) follows a similar pattern. We use a fluent

FireDetected = 〈yes.fire, has.next?〉Initially
⊥

to model that fire

has been detected at the current location, fluent PhotoTaken =
〈take.photo, has.next?〉Initially

⊥
to model that a photo has been

taken and FireAnswered = 〈{yes.fire, no.fire}, has.next?〉Initially
⊥

to model reception of a response to fire?.

The condition to be achieved once arrived at a loca-

tion ArrivedCondition = FireAnswered ∧ (FireDetected ⇐⇒
PhotoTaken) is that a response from the fire sensor must

have been received and that a photo should be taken if

and only if the response is positive. Consequently, we have

ϕ2 = �(arrived ⇒ ¬remove.next W ArrivedCondition).
If E, ϕ0, ϕ1, and ϕ2 as defined above are fed to

MTSA [20] then the resulting controller is the one depicted

in the top left of Figure 1 (Iterator-Based Controller).

IV. HYBRID CONTROL LAYER

A hybrid control layer (e.g., [1], [13]) provides an interface

between a discrete controller and the lower level continuous



control of the robot. Figure 1 shows an architecture both for

our iterator-based approach and one that manages locations

explicitly at the discrete layer (e.g., [6], [13]).

In an iterator-based approach the workspace is discretised

independently of the synthesis procedure and fed to the

Iterator module before the start of the mission. For the

Fire Patrol task, the discretization also feeds the Patrollable

Area Sensor with the locations that appear in orange (P =
{C5,A2,B2,. . . }) in the map of Figure 1.

At runtime, has.next?, y.next and n.next are used to loop

over the discretised locations. In Figure 1 the next location

in the Iterator is C3. When the plan executes is.next.inP?, it

produces a call to the Iterator (see red a© in Figure 1) that

then forwards the request Is.InP(C3)? to the Patrollable Area

sensor b©. The sensor confirms that C3 ∈ P c© and the plan

receives event yes.next.inP d©.

Similarly, when go.next is issued e©, the Iterator makes a

go(C3) call to the motion planner f©. The motion planner

generates the control inputs g© h© to reach C3 possibly also

performing static and dynamic obstacle avoidance.

Once the target location is reached, the arrived event is

propagated upwards i© j© to the plan which then queries

the existence of fire? k©. Note that as this query involves

sensing the current robot location (and not the Iterator’s next

location), the event is sent directly through to the Fire Sensor.

In an explicit location approach, synthesis requires infor-

mation of the discretization to determine the order in which

locations are to be visited. In the Fire Patrol example, the

order in which locations in P are to be patrolled is decided

by the synthesis procedure (instead of the Iterator).

Furthermore, the explicit location plan controls the path

that must be followed by the robot, i.e. while the iterator-

based approach set C5 as the first patrol location to visit, the

explicit-location plan sets the path to be followed to reach

C5: B7, C7, C6, C5. This allows some static obstacle avoidance

manoeuvres (e.g., [1], [2]). Nonetheless, the motion plan-

ner must still generate the control inputs between adjacent

discrete locations, deal with fine grained static obstacle

avoidance and also dynamic obstacle avoidance (e.g., [11]).

Location Sorting: The order in which the Iterator offers

locations to the discrete event controller can have significant

impact. Consider a Fire Patrol mission shown on the left side

of Figure 1. The UAV started in location A7 and was offered

B7 as the first location. As it is not an area to be patrolled, it

was removed from the Iterator. This also occurred for C7, B6,

and C6. Only when C5 was selected as the next element did

the UAV go.next to that location. Many more locations that do

not correspond to patrol areas could have been offered thus

delaying the first go.next command. In addition, a much more

distant patrol location (e.g., G1) could have been selected,

forcing possibly a less efficient patrol strategy.

Consequently, an important component of the hybrid layer

is the Sorter. Our hybrid layer design works on the assump-

tion that the best next location to offer is a function of the

distance from the current robot location. This is a challenge

as sorting must be done over a large set of locations regularly.

Sorting is performed while the robot is travelling between

the requested location (go.next) and the moment it reaches it

(arrived). Distances are computed with respect to the location

that the robot will have once arrived occurs.

The sorting criteria must be simple enough to allow fast

computing of each location’s priority but not oversimplified,

in order to produce acceptable overall task trajectories. In the

next section we demonstrate experimentally that sorting over

trajectory length using a simplified robot dynamic behaviour

model allows fast enough sorting while providing reasonable

trajectories for a fixed-wing UAV travelling at 17m/s.

V. VALIDATION

We first show applicability to tasks taken from [6], [12]

and [16], and we analyse scalability. Task specifications and

results are available at [25].

A. Experimental Configuration

All experiments were run on either a simulated or real

fixed-wing battery-powered UAV.

We used the robot in Figure 1, with low-level control

provided by an off-the-shelf Pixhawk autopilot loaded with

Ardupilot firmware [26] ArduPlane, and sensors providing

information of the system’s environment (e.g., Raspberry Pi

Camera Module V2 for capturing ground images).

We built the discrete plan interpreter and hybrid control

layer by extending the Ground Control Station (GCS) soft-

ware MAVProxy [16] with custom Python modules. The

hybrid control is run on an onboard Raspberry Pi 3B+ and

communicates with the autopilot via the telemetry serial port.

We also used an instance of MAVProxy to allow human

monitoring from the ground on a laptop which communicates

with the autopilot via a SiK Telemetry Radio. Note, however,

that mission execution is entirely run on onboard.

For simulations, we replaced the plane and autopilot

with the ArduPilot Software In The Loop (SITL) simulator

that simulates the UAV’s dynamics, autopilot and physical

environment. This allows keeping the exact same onboard

computer and hybrid control software as in the real flights.

In the simulations we feature automatic takeoff and landing,

while for safety reasons in the real flights a remote control

(RC) radio system was connected to the Pixhawk to perform

manual takeoff and landing.

The robot capability model used is an extension of Fig-

ure 2f to support taking-off and landing. Discrete event

controllers were synthesised using MTSA [20] and loaded

onto the onboard computer before starting each mission.

Motion Planning and Iterator Sorting. Although motion

planning has been a greatly researched for both online and

offline computation (e.g., [14], [15]), we implemented a

fairly simple scheme, sufficient for our experimental goals,

that does not consider static or dynamic obstacles.

The motion planner generates sequences of control inputs

for the autopilot based on trajectories that are computed by

concatenating straight paths and turns for a given maximum

turn radius, similar to [27]. The planner finds (assuming

constant speed and a maximum of two turns) a trajectory

for a given arrival direction at location n from the current



Fig. 3: Simulation of the Find Nemo task.

location and velocity vector of the UAV. We force the arrival

direction to be parallel to a given fixed direction (e.g., grid

axis to favour straight orderly grid coverage or perpendicular

to the wind direction to increase flight stability).

The Sorter uses the same trajectory computation. With a

50m × 50m discretization and a UAV that flies at 17m/s,
the minimum flight time between a go.next command and an

arrived event is 2.9 s. In this time, at least 40 000 locations

can be sorted on the onboard Raspberry Pi 3B+.

B. Tasks

1) Find Nemo: The Find Nemo task [6] requires a robot

with a Nemo sensor and camera to search for Nemo in

4 regions of interest out of a total of 12. The task is to

continuously, for all regions of interest, go, sense for Nemo,

and if found stay and photograph.

We synthesised and ran a simulated task for 437 regions of

interest over a total of 102 307 regions. We used as locations

of interest the two islands that can be seen in Figure 3.

We randomised the appearance and disappearance of Nemo.

Figure 3 shows the UAV’s path while searching and finding

Nemo in two locations (one in each island), visiting this

location until Nemo disappears and then resuming the search.

2) Search and Map Target: Inspired on [16], we specified

and flew a task requiring to find a red target in a field and

to map out all locations from which the target is visible and

then land. The task specification can be structured as two

modes. The first is a search, very much like Nemo, using

a target sensor that captures an image and processes it to

search for a red 2m× 2m target. If the target is found, the

location is stored in a shared data structure. The second is a

map mode in which all cells adjacent to one from which the

target was seen must be visited, for which a second sensor

responds y.adjacent.next if the location selected by the Iterator

is adjacent to one in the shared data structure.

We ran our UAV for this task for 29 502 locations. The

estimated flight time of covering all locations optimally

at 17m/s is over 24 hours, significantly over the flight

autonomy of the UAV (40min or ∼800 locations). For this

reason the red target was set relatively close to the launchpad.

The video in [25] shows the flight of the UAV including both

the trajectory as displayed by the monitoring ground station,

the photos taken at locations and the mapped area.

3) Ordered Patrol: In [12], a study of common UAV task

requirements taken from over robotics papers is presented.

One common requirement is that of an ordered patrol which

requires visiting a set of locations in a particular order and

at each one performing some task. In essence, this is the

Fire Patrol task (which is another common pattern [12], the

unordered patrol), but with an order for which the patrol lo-

cations must be visited. This task requires explicit treatment

of locations at the plan level. A sensor for each location is

needed to include in the requirements the sequence in which

these sensors must be used to find the places to visit.

We ran simulated versions of this task which we report on

in Section V-D to analyse the scalability of our approach.

4) Cover: Another requirement referred to in [12] is that

of covering (i.e., visiting) a statically defined region. The

specification of such tasks in an iterator-based fashion does

not differ significantly from the Fire Patrol task. The set of

locations to be covered can be determined at runtime by the

plan by using a sensor like is.next.inP?. We ran simulated

versions of this task which we report on in Section V-D.

C. Synthesis Time Scalability

The synthesis time for the tasks discussed in this paper

was lower than 5 s on a laptop with a Intel i7 3.5GHz

processor and 12GB of RAM. As discussed previously, this

time is independent of the size of the locations over which

the Iterator operates, which means that, except for Ordered

Patrol, the number of locations can be scaled indefinitely.

This includes both total locations and the locations to-patrol,

of-interest, to-cover, and red locations in the Fire Patrol,

Find Nemo, Cover, and Search and Map tasks. However,

our approach is not independent of the number of sensors

required to specify the task. Thus, for the Ordered Patrol

task, although the total number of locations can be scaled, the

number of locations to be patrolled in a specific order cannot.

Indeed, for n locations to be orderly visited, the state space

for synthesis will grow 2n as in any synthesis approach [7].

D. Runtime Overhead

To analyse the overhead (in terms of flight time) of

iterating increasingly large location sets at runtime we se-

lected, based on our understanding of our approach, best

and worst case tasks. To understand the impact of the Sorting

component, we ran these tasks for three sorting strategies: the

one described in Section IV (distance), a highly inefficient

one that puts the interesting elements to visit at the end of

the iterator (last), and a random ordering (random).

Our worst case task is an Ordered Patrol (Section V-B.3)

because at runtime the Iterator may continuously offer last

the next patrol location to be visited according to plan. This

forces the plan to iterate over all locations every time before

go.next. We simulated the Ordered Patrol of 3 locations as

in [28] with variable amount of discrete locations.

Our best case task is a Cover task as one iteration over

the whole location universe suffices to complete the task.



(a) Patrol trajectories (b) Patrol loop time (c) Cover time of N locations (d) Cover time vs disc. size

Fig. 4: (a) Patrol trajectories for different discretization sizes using last sorter. (b) Loop duration for Ordered Patrol varying

total number of locations and sorting criteria. (c) Proportional overhead for Cover task varying number of locations to cover,

universe of locations fixed at 713. (d) Duration of covering 61 locations varying total locations. Note: The error bars are

three times the estimated standard error of the mean, and can be smaller than the symbol. Ideal duration is calculated using

the minimum flight distance needed for the mission using constant speed, ignoring the UAV’s movement restrictions.

Of course, the order in which locations to be covered are

offered may produce more or less efficient coverage paths.

We simulated a cover task with variable amount of discrete

locations and contiguous locations to be covered.

For the Ordered Patrol task, we depict in Figure 4b the

time to visit all locations once for an increasing location

universe size. Each data point is the average over 30 simula-

tions for a particular sorting criteria. For the Cover task, we

show in Figure 4c how cover time increases as the number of

locations to cover does. Mission duration (up to 3 hours each)

required limiting experimentation to 6 samples per sorting

criteria and size. Finally, we depict how the size of location

universe impacts mission duration when requiring to cover

61 locations (Figure 4d).

Figure 4b shows that degradation seems linear in the

number of total locations and that the three sorting strategies

make little difference in relative terms when comparing the

overall mission duration to the ideal mission duration. The

overhead for 700 000 locations is at most 88% over an ideal

patrol mission. Figure 4a exemplifies why the the UAV’s

trajectory between the three locations to patrol degrades. As

the universe of locations increases, so does the distance the

UAV is flying in a straight line while iterating over all these

locations to get the next patrollable location.

In contrast, Figure 4c shows that sorting based on tra-

jectory distance makes a big difference and provides near

constant proportional overhead (60%) when increasing the

size of region to cover. Figure 4d also shows relevance of

the sorting criteria and near constant duration covering a 61
location size while increasing the universe of locations.

VI. RELATED WORK

The state explosion problem in temporal mission plan-

ning has been addressed in various ways. i) Improved

online/offline motion planning (e.g., [9], [29], [30], [31]) is

orthogonal to our approach and can be introduced within

our hybrid layer replacing the Sorter and Motion Planner

components. We do not compare empirically against these

approaches, rather we show that even simple sorting and

motion strategies already yield reasonable results. ii) Ad-

vances in synthesis efficiency (e.g., [32], [33], [34]) are

also orthogonal. An iterator abstraction can be used with

a variety of approaches to synthesis to scale task planning

orders of magnitude beyond what can be achieved when all

universally quantified locations must be explicitly referred

to. iii) Alternative strategies for integrating task and motion

planning. The distinctive feature of the strategy presented

in this paper is the use of an Iterator coupled with run-

time motion planning. In [10] a plan outline is manually

constructed without explicit naming of locations, later to be

filled offline by an SMT solver. Scale is limited by the solver,

which depends on the number of locations. Indeed, as in

another SMT-based approach [22] reported cases are below

800 discrete locations. In [7] robot’s paths are produced

for LTL specifications by solving constrained reachability

problems, but total complexity depends on the number of

locations. [1], [3] combine task and motion requirements in

a GR(1) specification. Complexity of GR(1) is polynomial

respect to the state space which grows combinatorially to

the number of locations. [35] propose a highly hierarchical

approach which is able to solve large complex workspaces,

but requires domain-dependent choices for the hierarchy.

In all these approaches, increasing the number of uni-

versally quantified locations beyond a couple of thousand

implies not being able to compute a plan. In contrast, in

our approach, the increase in locations does not impede

producing a plan, albeit with degraded mission trajectories

due to runtime motion planning.

VII. CONCLUSIONS

We propose iterator-based task planning to provide con-

stant synthesis complexity with respect to the number of

discrete locations universally quantified in a task specifi-

cation. Iterator-based plans run on a hybrid control layer

that performs runtime motion planning. We show that simple

location prioritisation and motion planning strategies suffice

to provide adequate mission behaviour for iterator-based

plans both in simulated and real UAV missions.
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