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Abstract—Neural activity results in chemical changes in the
extracellular environment such as variation in pH or potas-
sium/sodium ion concentration. Higher signal to noise ratio make
neurochemical signals an interesting biomarker for closed-loop
neuromodulation systems. For such applications, it is impor-
tant to reliably classify pH signatures to control stimulation
timing and possibly dosage. For example, the activity of the
subdiaphragmatic vagus nerve (sVN) branch can be monitored
by measuring extracellular neural pH. More importantly, gut
hormone cholecystokinin (CCK)-specific activity on the sVN can
be used for controllably activating sVN, in order to mimic the
gut-brain neural response to food intake. In this paper, we present
a convolutional neural network (CNN) based classification system
to identify CCK-specific neurochemical changes on the sVN,
from non-linear background activity. Here we present a novel
feature engineering approach which enables, after training, a
high accuracy classification of neurochemical signals using CNN.

I. INTRODUCTION

Closed-loop neuromodulation systems are the next genera-
tion frontier in neuromodulatory devices. The benefits include
improved therapeutic, clinical and engineering outcomes such
as improved amelioration of symptoms, possibly better re-
sponse to neuroplasticity and adaption, improved compliance,
lower power consumption and longer battery lifetimes in
implant [1]. Furthermore, closed-loop neuromodulation offers
the oppurtunity to develop a more personalised approach to-
wards neuromodulation therapies. However, a significant step
towards achieving an effective closed-loop system is selection
of an appropriate symptomatic biomarker [2]. It has also been
shown to offer better therapeutic outcome [1], [3].

Neurochemical signals can be further classified into those
originating from ions such as potassium (K+), sodium (Na+)
and those originating from neurotransmitters such as dopamine
serotonin etc. The former is directly to linked to electrical
neural activity and can be observed in Central Nervous System
(CNS) and Peripheral Nervous System (PNS). The latter is
generally observed in CNS, more specifically in the presence
of cell bodies where inter-neuron response transmission oc-
curs. More research has been performed in observing neu-
rotransmitters compared to ionic responses with the primary
reason being difficulty in fabricating implantable, penetrating,
ion-selective microelectrodes until recently [2].

Fig. 1. A neural network can be used to accurately detect neurochemical
response and predict target biomarker concentration followed by indication
on whether to start stimulation or not.

While performing neurochemical recording in vivo, both
linear and non-linear background signals have been observed
with various background subtraction techniques being used
previously [4], [5]. The next step after background subtraction
is response classification. This is a binary classification stage
where the response is determined to be originating from the
target physiological biomarker, in this case CCK, or not. Based
on the outcome of this classification, the next level consists of
multi-level classification where the concentration of hormone
is determined based on response characteristics.

Previous papers have explored modelling the relationship
between neurochemical levels and stimulation parameters [6].
In this paper, a neural network based classification system
is described while considering various trade-offs and data
preparation techniques. After drift removal, the pre-processed
signal is labelled and used to train a neural network. The net-
work is then optimised and used to perform classification. The
precision and recall results for this network are presented. This
paper focusses primarily on a methodology for identifying and
enhancing features for noisy neurochemical signals.

In this paper, Section II provides a brief introduction into
existing closed-loop systems, our analysis of a suitable neural



network architecture for classification of timeseries signals
such as those described in this paper and the functional units
of an implant processing unit.

II. BACKGROUND

A. Neurochemical Changes in the Vagus Nerve

The vagus nerve innervates the subdiaphragmatic region
on the ventral and dorsal gut regions. It links the gut to
the brain and plays a crucial role in appetite control through
interaction of several gut hormones [7]. It is well-established
that cholecystokinin (CCK), secreted in the intestines, plays
a crucial role in anorectic effects through the vagus nerve
[8], [9]. In the experiments described in this paper, CCK is
used to activate signalling in the vagus nerve by intravenous
injection. This results in activation of the vagus nerve resulting
in changes in neurochemical pH.

B. Closed Loop Systems

A closed-loop system consists of sensors/electrodes fol-
lowed by data acquisition, pre-processing, possible dimen-
sionality reduction followed by decision and stimulation dose
tuning unit. The ultimate goal of a closed-loop system is to
accurately and autonomously answer when? and how much?
to stimulate. Closed-loop systems can be divided into different
types, depending on functionality and type of control feedback.
These are responsive: a partial closed-loop system where
one of the two questions (when?, how much?) is answered
on the basis of a single physiological biomarker and a pre-
determined threshold of this biomarker, adaptive: where a
single biomarker is monitored but both when? and how
much? are answered, complete closed-loop: where multiple
biomarkers are monitored and considered to deliver closed-
loop functionality [2], [10].

In order to implement autonomous detection, algorithms
need to be trained using an experimental dataset [11], [5],
[2]. The training step is performed on in vivo or in vitro
data. A variety of different algorithms have been used pre-
viously [11], [5], [2]. These include machine learning (ML)
algorithms such as principal component regression (PCR),
which is a combination of principal component analysis and
linear regression. Artificial Neural networks (ANN) have been
investigated previously in for neurotransmitter release due to
electrical stimulation [11], [6]. ANN were used to model both
the relationship between stimulation-evoked dopamine release
and vice-versa [6].

III. METHODOLOGY

This section describes the methodology for training and
validating a CNN for classification of neurochemical data.
It consists of data preparation, labelling and optimisation for
training and validation of the CNN. The experimental data
consisted of neurochemical pH recorded in vivo consisting
of one saline injection and four CCK injections of different
dosages (50, 100, 300, 1000 pmol/kg) [12].

Fig. 3. (A)The drift in raw sensor data was removed using a technique
described earlier [4]. The outliers were removed using the modified z-score
process [13].

A. Data Preparation

The raw neurochemical data consisted of biomarker induced
neurochemical changes, background neurochemical activity
and electrode drift. The raw data is pre-processed to remove
drift using the technique described in [4]. After drift removal,
the outliers were identified and removed. For outlier removal
a modified z-score process was used, first described in [13]
(Figure III-A). This was used to remove biased scaling due to
very large data values.

After outlier removal, the data was partitioned into temporal
windows of 15 seconds with an overlap of about 5 seconds.
Following this the data was normalised to be such that its value
was between 0 and 1. The normalisation was done using the
following formula.

ynorm =
yi − ymin

ymax − ymin
(1)

The data was then labelled either 1 or 0 depending on
whether the datapoint was part of CCK-induced neurochemical
response or not, respectively (See Figure III-A).

B. Class size Imbalance

Class imbalance is a common issue in ML-based classifica-
tion problems, where the objects belonging to one class exceed
the number of objects in other classes. This problem can be
solved through either creation or oversampling of minority
class objects or undersampling of the majority class. In this
paper, the number of datapoints which are not part of the
CCK-induced response far outnumber those which originate
from the CCK-induced response. Hence, we use Synthetic
Minority Oversampling Technique (SMOTE) to deal with this
issue [14]. In this case, SMOTE was applied to the data, post-
windowing, such that there are equal number of positives (1)
and negatives (0) in the training dataset.

C. Model Training and Validation

A training data set of N experiments were prepared and
provided to models generated using Keras 2.2.4 with Ten-
sorFlow 1.13.1 as a backend [15]. The model was provided
with a training data tensor of shape (Nwindows, Lwindows, 1),
where Nwindows is the number of training windows, Lwindows

is the length of each window. After a model architecture was
selected, batches of training data were used to train the model.
The batch size is used to determine the number of times per



Fig. 2. Different steps used to train and cross-validate a CNN for detection and classification of neurochemical response.

epoch, the weights are updated. After one complete run of
training a model i.e epoch, the model was cross-validated on
a cross-validation dataset. If the model performed better than
the previous one, then the model was saved to be used later.

In order to prevent plateauing of model performance, a
learning rate scheduler was used. Models in which the per-
formance did not improve after 10 epochs had their learning
rate halved. Models which did not improve after 40 epochs
were discarded to reduce training time.

D. Model Architecture and Hyperparameter Optimisation

After completion of training and validation, objective eval-
uation of different model hyperparameters and architectures
was validated with the same validation experiments using k-
fold cross validation. Various model architectures, activation
functions were tried ranging from dense neural networks
to convolutional and recurrent neural networks were imple-
mented using open-source Neural Network Intelligence (NNI),
Microsoft. Smaller changes were made further to manually
improve model performance.

TABLE I
MODEL PARAMETERS OF CNN USED IN THIS PAPER

Parameters Values
Convolutional Layers 4
Channels per layer 16

Kernels per Channel 3
Stride Length 1

Dropout Fraction 0.2
Activation Function ReLU

Optimisation Adam [16]
Batch Size 64

IV. RESULTS

A number of different parameters were tried to achieve
optimal results with regards to training time and correct
classification results.

Fig. 4. An optimal batch side is chosen based on optimal validation loss
values.

A. Network Parameters: Batch Size, Window Length, Dropout
Rate

1) Batch Size: There is a trade-off involved in the selection
of batch size. If a large batch size is chosen i.e updating
weights happens less frequently per epoch has less perfor-
mance overhead compared to a small batch size. The impact
of different batch sizes is seen in Figure 4. Figure 4 shows the
model performance (validation loss) vs training time for each
batch size. A batch size of 64 indicates optimal performance
with fast training time and good model performance.

2) Window Length: The length of training windows were
varied to determine an optimal window size. This is significant
because it will help determine how early a CCK response is
detected. A window length of 10 seconds with an overlap
of 8 seconds is found to be optimal. Shorter time windows
does not allow enough temporal features to be captured, hence
model performance drops. Longer windows results in excess
data bleeding in from the non-CCK areas.

3) Dropout rate: Dropout is a tool used for regularisation
by randomly deactivating a proportion of neurons in a model



during each training step [17]. This is performed to reduce
overfitting and also to prevent neurons from relying too heavily
on specific features. This also means readjustment of neuron
weights as neurons with connections to dropped-out neurons
will have to rely heavily on existing neurons. The effect on
validation loss due to dropout is shown in Figure 5. A dropout
of 20% was chosen as an optimal value.

Fig. 5. The effect of different dropout rates show the effect on validation
loss (A) and training loss (B). This is used to determine an optimal value for
droput rate while training the model.

B. Overall Performance and Improvements : Precision and
Recall

The overall performance of the final model (parameters
shown in Table I) indicates an accuracy of 93.27% (fraction
of correct predictions compared to total predictions). This
was achieved with a minimum validation loss of 0.186. The
optimisation algorithm used for the CNN was ADAM. A
sample of prediction accuracy of the model is shown in Figure
6 and overall results shown in Table II i.e number of correct
calls (CC), false negatives (FN) and false positives (FP).

TABLE II
PRECISION AND RECALL RESULTS ON ENTIRE CROSS-VALIDATION

DATASET

Predicted Label Non CCK Event CCK Event
Target Label

Non CCK Event 23010 (CC) 204 (FP)
CCK Event 1151 (FN) 502 (CC)

V. CONCLUSION

This paper describes data pre-processing steps, feature en-
hancement, development and optimisation of a convolutional
neural network model for detecting neurochemical changes
in a real-time application. The advantage of using a CNN is
that it ensures early, more accurate detection of neurochemical
changes. Although the model successfully detects neurochem-
ical changes, however the accuracy, to some extent, is affected
by class-size imbalance for real-time detection. Hence, there
is a need either for better quality training data or additional
feature information which can further improve the accuracy of
the model.

Fig. 6. (A) A cross-validation, experimental data set is labelled as shown. (B)
Shows the datapoints predicted by the CNN model for different concentrations
of intravenously injected CCK.
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