ORIGINAL ARTICLE

Effects of Percutaneous Coronary Intervention on Death and Myocardial Infarction Stratified by Stable and Unstable Coronary Artery Disease A Meta-Analysis of Randomized Controlled Trials

See Editor's Perspective

BACKGROUND: In patients presenting with ST-segment–elevation myocardial infarction, percutaneous coronary intervention (PCI) reduces mortality when compared with fibrinolysis. In other forms of coronary artery disease (CAD), however, it has been controversial whether PCI reduces mortality. In this meta-analysis, we examine the benefits of PCI in (1) patients post–myocardial infarction (MI) who did not receive immediate revascularization; (2) patients who have undergone primary PCI for ST-segment–elevation myocardial infarction but have residual coronary lesions; (3) patients who have suffered a non–ST-segment–elevation acute coronary syndrome; and (4) patients with truly stable CAD with no recent infarct. This analysis includes data from the recently presented International Study of Comparative Health Effectiveness with Medical and Invasive Approaches (ISCHEMIA) and Complete versus Culprit-Only Revascularization Strategies to Treat Multivessel Disease after Early PCI for STEMI (COMPLETE) trials.

METHODS AND RESULTS: We systematically identified all randomized trials of PCI on a background of medical therapy for the treatment of CAD. The ISCHEMIA trial, presented in November 2019, was eligible for inclusion. Data were combined using a random-effects meta-analysis. The primary end point was all-cause mortality. Forty-six trials, including 37757 patients, were eligible. In the 3 unstable scenarios, PCI had the following effects on mortality: unrevascularized post-MI relative risk (RR) 0.68 (95% CI, 0.45–1.03); *P*=0.07; multivessel disease following ST-segment–elevation myocardial infarction (RR, 0.84 [95% CI, 0.69–1.04]; *P*=0.11); non–ST-segment–elevation acute coronary syndrome (RR, 0.84 [95% CI, 0.72–0.97]; *P*=0.02). Overall, in these unstable scenarios PCI was associated with a significant reduction in mortality (RR, 0.84 [95% CI, 0.75–0.93]; *P*=0.02). In unstable CAD, PCI also reduced cardiac death (RR, 0.69 [95% CI, 0.53–0.90]; *P*=0.007) and MI (RR, 0.74 [95% CI, 0.62–0.90]; *P*=0.002). For stable CAD, PCI did not reduce mortality (RR, 0.98 [95% CI, 0.87–1.11]), cardiac death (RR, 0.89 [95% CI, 0.71–1.12]; *P*=0.33), or MI (RR, 0.96 [95% CI, 0.86–1.08]; *P*=0.54).

CONCLUSIONS: PCI prevents death, cardiac death, and MI in patients with unstable CAD. For patients with stable CAD, PCI shows no evidence of an effect on any of these outcomes.

Liza Chacko, MBBS James P. Howard, MB **BChir** Christopher Rajkumar, **MBBS** Alexandra N. Nowbar, MBBS Christopher Kane, PhD Dina Mahdi, MBChB Michael Foley, MBBS Matthew Shun-Shin, PhD Graham Cole, PhD Sayan Sen, PhD Rasha Al-Lamee, PhD Darrel P. Francis, MD Yousif Ahmad, BMBS

Key Words: acute coronary syndrome Coronary artery disease fibrinolysis myocardial infarction percutaneous coronary intervention

© 2020 The Authors. Circulation: Cardiovascular Quality and Outcomes is published on behalf of the American Heart Association, Inc., by Wolters Kluwer Health, Inc. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution, and reproduction in any medium, provided that the original work is properly cited.

https://www.ahajournals.org/journal/ circoutcomes

6

WHAT IS KNOWN

- Percutaneous coronary intervention (PCI) reduces mortality in patients with ST-segment–elevation myocardial infarction.
- The benefit of PCI in other forms of coronary artery disease has been controversial.

WHAT THE STUDY ADDS

- Three groups of unstable coronary artery disease were identified: patients post-myocardial infarction who did not receive immediate revascularization; patients who have undergone primary PCI for ST-segment-elevation myocardial infarction but have residual coronary lesions; and patients who have suffered a non-ST-segment-elevation acute coronary syndrome.
- PCI prevents death, cardiac death, and myocardial infarction in patients presenting with unstable coronary artery disease.
- In patients with truly stable coronary artery disease, PCI shows no evidence of an effect on any of these outcomes.

n patients presenting with ST-segment–elevation myocardial infarction (STEMI), percutaneous coronary intervention (PCI) reduces mortality when compared with the alternative strategy of fibrinolysis.^{1,2} In other forms of coronary artery disease (CAD), however, it has been controversial whether PCI reduces mortality.

Outside of the setting of an ongoing STEMI lies a broad spectrum of clinical entities. One category is patients who have undergone successful primary PCI for STEMI but have residual coronary lesions (multivessel disease following STE-MI). Another category is patients who have suffered an acute coronary syndrome but without ST-segment elevation (non-ST-segment-elevation acute coronary syndrome [NSTEACS]). A third category is patients who have suffered an acute myocardial infarction (MI) but who have not been immediately revascularized (unrevascularized post-MI), although this is less commonly seen in modern clinical practice. Finally, patients may have truly stable CAD. The first 3 categories (multivessel disease following STEMI, NSTEACS, and unrevascularized post-MI) can together be considered as unstable CAD.

Some previous meta-analytic work in this field³ had considered the unrevascularized post-MI state as stable CAD, despite patients having suffered a recent MI. In the modern era, unrevascularized post-MI patients are no longer considered to be a similar group to patients without a history of MI.

The results of 2 large randomized controlled trials (RCTs) in different CAD settings have recently become available: the COMPLETE trial,⁴ examining PCI for multivessel disease following STEMI, and the International Study of Comparative Health Effectiveness with Medical and Invasive Approaches (ISCHEMIA) trial,⁵ examining PCI for patients with stable CAD.

The purpose of this meta-analysis is to provide an updated, comprehensive assessment of the effect of PCI on mortality and MI, using a modern classification which distinguishes

stable CAD from unstable CAD (multivessel disease following STEMI, NSTEACS, and unrevascularized post-MI).

METHODS

The data that support the findings of this study are available from the corresponding author on reasonable request.

Search Strategy

Four individual search strategies were employed to identify, respectively, trials in unrevascularized post-MI; multivessel disease following STEMI; NSTEACS; and stable CAD. We searched PubMed, EMBASE, Medline, OVID Journals, and CENTRAL (Cochrane Central Register of Controlled Trials) until November 2019 for randomized controlled trials (RCTs) relating to the following keywords: acute coronary syndrome, non-ST elevation myocardial infarction (NSTEMI), ST elevation MI (STEMI), coronary artery disease, ischemic heart disease, optimal medical therapy, conservative therapy, percutaneous coronary intervention, revascularization, and percutaneous transluminal coronary angioplasty. The MESH terms and search strategies are detailed in the Online Appendix in the Data Supplement. We also hand-searched the reference lists of existing meta-analyses and review articles to identify further eligible trials. We also included the ISCHEMIA trial, which was recently presented at the American Heart Association Scientific Sessions. Two independent reviewers performed the search and literature screening (L. Chacko and C. Kane), and this was duplicated by a third author (M. Foley). Any disputes were resolved by a senior author (Y. Ahmad).

Study Categories

We addressed randomized trials of 4 categories of CAD:

- 1. Multivessel disease following STEMI: patients who underwent successful primary PCI for STEMI and had residual coronary lesions, and who were randomized to PCI versus no PCI for those residual lesions.
- 2. NSTEACS: patients who had suffered an acute coronary syndrome but without ST-segment elevation, and were randomized to either invasive or conservative therapy.
- 3. Unrevascularized post-MI: patients who had suffered an acute MI but who had not undergone immediate revascularization. Patients were then randomized to medical therapy or delayed revascularization with PCI. Both STEMI and NSTEMI were considered in this category
- 4. Stable CAD: patients with truly stable coronary artery disease, who did not meet any of the other above categories and were randomized to invasive or conservative therapy.

Inclusion and Exclusion Criteria

Studies were eligible if they randomized patients to PCI versus conservative therapy without PCI and they reported outcomes of mortality and MI. NSTEACS trials were only eligible if they compared invasive versus conservative strategies and not if they compared early versus late invasive strategies. For multivessel disease following STEMI, trials were eligible if they reported clinical outcome data following randomization to complete revascularization with PCI or culprit-only revascularization with medical therapy for the residual CAD. For NSTEACS, trials were included if they randomized patients to invasive or conservative therapy (as no trials made a distinction between PCI and CABG in this setting). For stable CAD, trials in which revascularization could be achieved by either PCI or coronary artery bypass graft were included, with results combined to invasive therapy, and compared with conservative therapy.

End Points

The primary end point is all-cause mortality. The secondary end points are cardiovascular mortality and MI, as prespecified by the individual trials included. We did not differentiate between periprocedural and spontaneous MI. The end points were assessed using at least 1-year follow-up if available, or using the primary publication of each study. Sensitivity analyses using the longest follow-up data available were also performed.

Data Extraction and Analysis

Three authors (L. Chacko, C. Kane, and C. Rajkumar) independently extracted from each trial publication the event counts for all-cause mortality, cardiovascular mortality, and MI. Any disputes were resolved by a senior author (Y. Ahmad). If studies did not provide the event counts, data were extracted from Kaplan-Meier curves by digitization of the survival curves which were combined with the numbers at risk to derive the number of events, using the R package reconstructKM. We performed a random effects meta-analysis of each clinical scenario (unrevascularized post-MI, multivessel disease following STEMI, NSTEACS, and stable CAD). We also considered all unstable CAD grouped together.

Any interaction between the choice of follow-up time and the effect size was explored by fitting a random-effects model using the trial type and trial as nested random effects and the choice of trial time as a moderator. Publication bias was assessed with a Funnel plot, with tests for publication bias only being performed in the event of at least 10 trials being included in an analysis.⁶ Included studies were assessed using the Cochrane Risk of Bias tool.⁷ The risk of bias assessment was conducted in duplicate separately by 2 authors (A.N. Nowbar and D. Mahdi), with disputes resolved by a senior author (Y. Ahmad).

All statistical analyses were performed using the statistical programming environment R with the metafor package. We used the P statistic to assess heterogeneity.⁸ Values are expressed as mean±SD unless otherwise stated. A *P* value of <0.05 was considered statistically significant. Results were reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines⁹ and was prospectively registered at the International Prospective Register of Systematic Reviews (CRD42019148397).

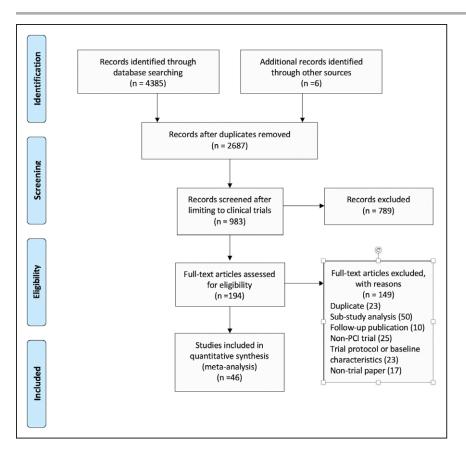
RESULTS

Forty-six RCTs totalling 37757 patients (18793 randomized to invasive therapy and 18964 randomized to conservative therapy) met the search criteria (see Figure 1): 11 trials¹⁰⁻²⁰ (5530 patients; 2759 randomized to invasive therapy and 2771 randomized to conservative therapy) for unrevascularized post-MI; 10 trials^{4,21–29} (7244 patients; 3534 randomized to invasive therapy and 3710 randomized to conservative therapy) for multivessel disease following STEMI; 10 trials^{30–39} (10314 patients; 5150 randomized to invasive therapy and 5164 randomized to conservative therapy) for NSTEACS; and 15 trials^{40–54} (14 669 patients; 7350 randomized to invasive therapy and 7319 randomized to conservative therapy) for stable CAD.

The baseline characteristics of included trials are shown in the Table. The weighted mean-follow-up was 31.3 months overall. For each category, the weighted mean follow-up was 42.4 months for unrevascularized post-MI, 20.2 months for multivessel disease following STEMI, 13.2 months for NSTEACS, and 41.8 months for stable CAD.

Quality Assessment

All included trials were randomized clinical trials. The risk of bias of the included RCTs is shown in Online Table I in the Data Supplement. Overall, 15 trials were graded as high risk of bias.


Publication bias was assessed with funnel plots to address the primary outcome of all-cause mortality (see Appendix and Figures I through IV in the Data Supplement), with symmetry of the plot indicating no clear relationship in lack of publication by size of trial and effect estimate. This was performed for each of the 4 separate classifications of CAD, and trim and fill funnel plots are shown in Figures I through IV in the Data Supplement. The *P* values were nonsignificant for the funnel plots for each category of CAD.

Impact on Mortality

A summary of the results for the effect of PCI on mortality in CAD is shown in Figure 2.

For unrevascularized post-MI, the effect of PCI on mortality was relative risk (RR) of 0.68 (95% CI, 0.45–1.03; *P*=0.07). There was moderate heterogeneity (l^2 =38.7%). For multivessel disease after STEMI, the effect of PCI on mortality was RR, 0.84 (95% CI, 0.69–1.04; *P*=0.11). There was no heterogeneity (l^2 =0.0%). For NSTEACS, the effect of PCI on mortality was RR, 0.84 (95% CI, 0.72–0.97; *P*=0.02). There was no heterogeneity (l^2 =0.0%). When considered together, PCI for unstable CAD led to a 16% reduction in all-cause mortality (RR, 0.84 [95% CI, 0.75–0.93]; *P*=0.001). There was no heterogeneity (l^2 =0.0%).

For stable CAD, there was no effect of PCI on mortality, with RR, 0.98 (95% CI, 0.87–1.1; P=0.75). There was no heterogeneity (l^2 =0.0%).

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart.

PCI indicates percutaneous coronary intervention.

Impact on Cardiovascular Mortality

A summary of the results for the effect of PCI on cardiovascular mortality in CAD is shown in Figure 3.

For unrevascularized post-MI, the effect of PCI on cardiovascular mortality was RR, 0.55 (95% CI, 0.27– 1.13; P=0.010). There was significant heterogeneity (l^2 =56.1%). For multivessel disease following STEMI, there was a significant reduction in cardiovascular mortality with RR, 0.68 (95% CI, 0.47–0.98; P=0.04). There was mild heterogeneity (l^2 =21.8%). For NSTEACS, only 2 trials reported cardiovascular mortality (RR, 0.80 [95% CI, 0.59–1.08]; P=0.14), with no heterogeneity (l^2 =0.0%). When considered together, PCI for unstable CAD led to a 31% reduction in cardiovascular mortality (RR, 0.69 [95% CI, 0.53–0.90]; P=0.007). There was moderate heterogeneity (l^2 =39.4%).

For stable CAD, there was no effect of PCI on cardiovascular mortality, with RR, 0.89 (95% CI, 0.71–1.12; P=0.33). There was no heterogeneity (P=0.0%).

Impact on MI

A summary of the results for the effect of PCI on MI in CAD is shown in Figure 4.

For unrevascularized post-MI, the effect of PCI on MI was RR, 0.76 (95% CI, 0.48–1.20; P=0.24). There was significant heterogeneity (l^2 =57.8%). For

multivessel disease following STEMI, there was a significant reduction in MI with PCI (RR, 0.66 [95% CI, 0.54–0.80]; *P*<0.001). There was no heterogeneity (l^2 =0.0%). For NSTEACS, the effect of PCI on MI was RR (0.83 [95% CI, 0.64–1.06]; *P*=0.136). There was significant heterogeneity (l^2 =66.9%). When considered together, PCI for unstable CAD led to a 26% reduction in MI (RR, 0.74 [95% CI, 0.62–0.90]; *P*=0.002). There was significant heterogeneity (l^2 =66.9%).

For stable CAD, there was no significant effect of PCI on MI, with RR, 0.96 (95% CI, 0.86–1.08; P=0.54). There was minimal heterogeneity (l^2 =2.0%).

Sensitivity Analyses

A sensitivity analysis was performed for trials with longer-term follow-up. The results are shown in Figures V through VII in the Data Supplement. The results were broadly concordant with the primary analysis, although PCI was associated with a reduction in cardiac death at longer-term follow-up (Figure VI in the Data Supplement; RR, 0.81 [95% CI, 0.68–0.97]) and a nonsignificant reduction in MI (Figure VII in the Data Supplement; RR, 0.88 [95% CI, 0.73–1.06]; P=0.17) The P value for interaction for length of follow-up was nonsignificant (P=0.1013 for mortality; P=0.8772 for cardiovascular mortality; and P=0.9717 for MI)

Table. Characteristics of Included Studies

Author	Study Acronym	Year (Index)	Region	N	Mean Age Invasive	Mean Age Conservative	Follow- Up, y	Entry Criteria	Invasive	Conservative	Primary End Points
Ellis et al ¹¹	TOPS	1992	United States, Brazil	87	58 (±9)	56 (±10)	1	Post-STEMI; no post infarct angina or ischemia	PTCA, aspirin	Medical therapy	Change from rest to exercise LVEF
Madsen et al ¹⁸	DANAMI	1997	Denmark	503	56.2 (32–69)	56.4 (24–69)	2.4 (1–4)	Acute MI+thrombolysis	PTCA or CABG	Medical therapy	Mortality, reinfarction, and admission with unstable angina
Dakik et al ¹⁰	n/a	1998	United States	44	52 (±10)	55 (±9)	1 (±0.4)	Post-STEMI/ NSTEMI, large LV perfusion defect	PTCA of IRA±PTCA of ischemic zone artery, medical therapy	Medical therapy	Suppression of myocardial ischemia via SPECT
Horie et al ¹⁵	n/a	1998	Japan	83	61.8 (±11.9)	61.6 (±8.8)	4.2 (±2)	Post-STEMI, persistent ST elevation	PTCA, medical therapy	Medical therapy	CE: cardiac death, recurrent MI, and development of CH
Yousef et al ²⁰	TOAT	2002	United Kingdom	66	57.6 (±11.2)	59.1 (±9.7)	1	Post–STEMI. heart failure, no angina or ischemia on treadmill	PCI of IRA	Medical therapy	Left ventricular ESV
Zeymer et al ¹⁶	ALKK	2003	Germany	300	58.2 (±9.2)	57.5 (±9.8)	4.7 (0–6)	Post-STEMI, IRA amenable to intervention, CCS I–II	PTCA, medical therapy	Medical therapy	CE: survival free of reinfarction, ischemia-driven revascularization, admission with angina
Steg et al ¹⁷	DECOPI	2004	Europe	212	56 (50–66)	58 (50–66)	2.8	Post-STEMI, no ongoing ischemia	PTCA	Medical therapy	CE: cardiac death, MI or ventricular tachyarrhythmia
Hochman et al ¹⁴	OAT	2006	North America, South America, Australia, New Zealand, Europe, Israel	2166	58.6 (±10.8)	58.7 (±11.1)	5.8 (4.5–7.1)	Post-STEMI, heart failure	PCI of IRA, medical therapy	Medical therapy	CE: death, repeat MI, NYHA IV heart failure needing admission
Mahmarian et al ¹⁹	INSPIRE	2006	North America, Lebanon, Singapore, Egypt	205	64 (±11)	63 (±11)	1	Acute MI within prior 10 days, clinically stable	Coronary angiography+ revascularization	Medical therapy	Reducing total and ischemic perfusion defect size
Erne et al ¹²	SWISS II	2007	Switzerland	201	54.4 (±9.1)	56.2 (±8.8)	10.2 (±2.6)	Post-STEMI/ NSTEMI, silent ischemia, 1–2 vessel CAD	PCI	Medical therapy	CE: cardiac death, repeat MI, symptom driven revascularization)
Van Loon et al ¹³	VIAMI	2012	Netherlands	216	60	59	8	Post-STEMI	PCI of IRA, medical therapy	Medical therapy, stress test guided revascularization	CE: death, repeat MI, or unstable angina
Di Mario et al ²¹	HELP AMI	2009	Authors' centers are in UK and Italy	69	63.5 (±12.4)	65.3 (±7.4)	1	STEMI ≥1 nonculprit stenoses	Nonculprit PCI performed during primary PCI procedure	Nonculprit PCI according to physician's discretion based on symptoms and ischemia testing	Repeat revascularization
Politi et al ²²	n/a	2010	All authors' centers are in Italy	263	64.5 (±11.7)	66.5 (±13.2)	2.5 (±1.4)	STEMI ≥2 nonculprit stenoses	2 arms: 1) staged PCI to nonculprit artery, 2) PCI to nonculprit artery during primary PCI procedure	Culprit only PCI. No further revascularization planned	CE: Death, MI, re-hospitalization for ACS and repeat revascularization
Dambrink et al ²³	n/a	2012	Netherlands	121	62 (±10)	61 (±11)	3	STEMI ≥2 nonculprit stenoses (or stenosis in vessel and branch)	PCI to nonculprit artery before discharge if FFR positive	Culprit PCI only. Ischemia-guided revascularization only if symptomatic	Ejection fraction at 6 mo
Wald et al ²⁸	PRAMI	2013	UK	465	62 (32-92)	62 (33-90)	1.92	STEMI ≥1 nonculprit stenosis	PCI to nonculprit artery during primary PCI procedure	PCI to residual stenoses only if refractory angina and objective ischemia test positive	CE: Death, MI, refractory angina

Table. Continued

Author	Study Acronym	Year (Index)	Region	N	Mean Age Invasive	Mean Age Conservative	Follow- Up, y	Entry Criteria	Invasive	Conservative	Primary End Points
Gerschlick et al ²⁴	CvLPRIT	2015	UK	296	64.6 (±11.2)	65.3 (±11.9)	0.99 (0.78–1.0)	STEMI ≥1 nonculprit stenosis	PCI to nonculprit artery during primary PCI procedure	No further revascularization planned	CE: Death, MI heart failure, revascularization
Engstrøm et al ²⁷	DANAMI- 3- PRIMULTI	2015	Denmark	627	64 (37–94)	63 (34–92)	2.25 (1–3.66)	STEMI ≥1 nonculprit stenosis (>50%)	Staged PCI to nonculprit artery if FFR ≤0.80, 2 d later	No further revascularization planned	CE: Death, MI, ischemia-driven revascularization
Zhang et al ²⁶	n/a	2015	Not stated (authors' centers are in China)	428	Not available	Not available	2	STEMI ≥1 nonculprit stenosis	Staged PCI to nonculprit vessels 7–10 d after primary PCI	PCI to nonculprit lesions if evidence of ischemia (symptoms, ECG changes, nuclear study)	All-cause mortality, cardiovascular death, MI
Hamza et al ²⁵	n/a	2016	Not stated (authors' centers are Egypt and USA)	100	56.4 (±11.5)	52.2 (±11.5)	0.5	STEMI ≥1 nonculprit stenosis, diabetes mellitus	PCI to nonculprit lesions either at time of primary PCI or within 72 h	Culprit artery PCI only	CE: Death, MI, ischemia-driven revascularization
Smits et al ²⁹	Compare- Acute	2017	Europe and Asia	885	62 (±10)	61 (±10)	3	STEMI ≥1 non- culprit stenosis	FFR guided nonculprit early revascularization	FFR measurement without revascularization but planned revascularization within 45 d could occur (without knowledge of FFR)	CE: Death, MI, revascularization, cerebrovascular events
Mehta et al ⁴	COMPLETE	2019	North America, Europe, Asia, and Africa	4041	61.6 (±10.7)	62.4 (±10.7)	2.98 (IQR, 2.3–3.69)	STEMI with ≥1 nonculprit angiographically significant lesion	Staged PCI of all nonculprit lesions, medical therapy	No further revascularization unless protocol criteria for crossover met, medical therapy	CE: Cardiovascular death, MI and CE: cardiovascular death, MI, ischemia-driven revascularization
Andersen et al ³⁰	TIMI IIIB	1994	North America	1473	59 (±10)	59 (±10)	1	NSTEMI/UA	Angiography±PCl/ CABG, medical therapy	Medical therapy	CE: Death, repeat MI, unsatisfactory ETT at 6 wk
Wallentin et al ³¹	FRISC II	2000	Sweden, Denmark, Norway	2457	66.0 (40.8– 84.5)	65.3 (37.5– 83.8)	15	NSTEMI	Angiography±PCI/ CABG	Medical therapy, angiography±PCl/ CABG if refractory symptoms or predischarge ischemia	CE: Death and myocardial infarction
Michalis et al ³²	TRUCS	2000	Greece	148	62 (±9)	63 (±10)	1	Unstable angina	Angiography±Cl/ CABG, medical therapy	Medical therapy	In-hospital stabilization. CE: Repeat MI, death, hospital stay duration
Cannon et al ³⁵	TACTICS 18	2001	North America, South America, Germany	2220	62 (±11.4)	62 (±11.9)	0.5	NSTEMI/UA	Angiography±PCl/ CABG, medical therapy	Medical therapy	CE: Death, MI, admission with ACS
Fox et al ³³	RITA 3	2002	UK	1810	63 (±10)	62 (±11)	10	NSTEMI/UA	Angiography PCI/ CABG, medical therapy	Medical therapy	CE: Death, MI, refractory angina and CE death and MI
Spacek et al ³⁴	VINO	2002	Czech Republic	131	65.7 (±10.8)	66.2 (±10.6)	0.5	NSTEMI	Angiography±PCl/ CABG, medical therapy	Medical therapy, angiography±PCI/ CABG, if refractory ischemia	CE: Death or reinfarction

(Continued)

Table. Continued

Author	Study Acronym	Year (Index)	Region	N	Mean Age Invasive	Mean Age Conservative	Follow- Up, y	Entry Criteria	Invasive	Conservative	Primary End Points
de Winter et al ³⁶	ICTUS	2005	Netherlands	1200	62 (29–81)	62 (30–83)	10	NSTEMI	Angiography±PCI/ CABG, medical therapy	Medical therapy	CE: death or spontaneous MI
Savonitto et al ³⁸	n/a	2012	Italy	313	81.8 (±4.4)	81.8 (±4.7)	1	NSTEMI/UA, >75	Angiography±PCI/ CABG, medical therapy	Medical therapy, angiography ±PCI/CABG if refractory ischemia, reinfarction, heart failure, ventricular arrhythmia	CE: Death, MI, stroke, cardiac readmission or bleeding
Tegn et al ³⁹	After 80	2016	Norway	457	84.7 (80–93)	84.9 (80–94)	1.53	NSTEMI, >80 y old	Angiography±PCI/ CABG, medical therapy	Medical therapy	CE: Myocardial infarction, urgent revascularization, stroke, death
Sanchis et al ³⁷	n/a	2016	Spain	106	81 (±5)	83 (±6)	1.9 (0.6– 2.6)	NSTEMI >70, ≥2 comorbidities	Angiography ±PCI/ CABG	Medical therapy	CE: Death, repeat MI, readmission for cardiac cause
Parisi et al ⁴⁰	ACME 1	1992	USA	107	63	62	2.7	SCAD >70% stenosis in proximal coronary artery, stress test with ≥3 mm ST depression in at least 1 lead or filling defect on thallium scan, or MI in past 3 mo	PTCA, aspirin and 1 mo calcium channel blocker	Medical therapy	Exercise testing at 6 mo: time to angina, time to onset 1 mm ST depression, maximal ST segmen depression, maxima work product
Hueb et al ⁴¹	MASS 1	1995	Brazil	214	58 (±7)	58 (±9)	5	SCAD ≥80% proximal LAD stenosis, no other significant stenosis	PTCA/CABG	Medical therapy	CE: Death, MI, refractory angina, CABG in PTCA group
Folland et al ⁴²	ACME 2	1997	USA	101	Not available	Not available	5	SCAD, angina; MI within 3 m, or ≥3 mm horizontal ST depression on exercise testing ≥70% proximal coronary stenosis in 1-2 vessels	PTCA, aspirin, calcium channel blocker for 1 mo	Medical therapy	Angina frequency, change in exercise duration, time to onset of angina, maximal rate- pressure product, percent diameter stenosis of index lesions
Chamberlain et al ⁴⁴	RITA 2	1997	United Kingdom, Ireland	1018	58	58	7	SCAD, ≥50% coronary stenosis (2 views) or ≥70% (1 view) amenable to PTCA	PTCA, medical therapy	Medical therapy	CE: Death and MI
Davies et al ⁴³	ACIP	1997	United Kingdom, North America	558	61 (±8)	61 (±8)	2	SCAD, coronary disease (≥50% stenosis in ≥1 major vessel or branch) amenable to revascularization	PTCA/CABG	Medical therapy (angina guided or ischemia-guided strategies)	Death, MI, recurrent hospitalization for cardiac disease, nonprotocol revascularization
Pitt et al ⁴⁵	AVERT	1999	North America, Europe	341	59 (±0.8)	58 (±0.6)	1.5	SCAD, ≥50% stenosis of at least 1 coronary CCS class ≤II or asymptomatic; Completion of ≥4 min of stress test without ischemia, LDL ≥115 mg/dL, and triglycerides <500 mg/dL	PTCA, atherectomy	Atorvastatin 80 mg	CE: Cardiac death, resuscitation after cardiac arrest, MI, stroke, PCI, CABG, and worsening angina requiring hospitalization

(Continued)

Table. Continued

Author	Study Acronym	Year (Index)	Region	N	Mean Age Invasive	Mean Age Conservative	Follow- Up, y	Entry Criteria	Invasive	Conservative	Primary End Points
Bech et al ⁴⁶	DEFER	2001	Europe, Asia	325	61 (±9)	61 (±11)	16.9 (16–17.5)	SCAD, >50% coronary stenosis, FFR ≥0.75. No evidence of reversible ischemia by noninvasive testing within the previous 2 mo	PCI, medical therapy	Medical therapy	CE: Death, Ml, PC/ CABG, procedural complication
Pfisterer et al ⁴⁷	TIME	2001	Switzerland	305	80 (±3.7)	79.8 (±3.5)	4.1	SCAD, CCS class ≥II on 2 agents, >75 y old	Angiography±PCI/ CABG	Medical therapy	QoL at 6 mo, freedom from death, MI, angina admission, ACS
Hueb et al ⁴⁸	MASS 2	2004	Brazil	408	60 (±9)	60 (±9)	10	SCAD, ≥70% proximal multivessel stenosis ischemia by stress testing or CCS II or III	PCI/CABG, medical therapy	Medical therapy	CE: Death, MI, unplanned revascularization
Hambrecht et al ⁴⁹	n/a	2004	Germany	101	60 (±1)	62 (±1)	1	SCAD, ≤70 y 1 stenosis ≥70% by visual assessment, CCS I–III, ischemia by stress testing	PCI	Exercise training	Clinical symptoms, angina free exercise capacity, myocardial perfusion, cost- effectiveness. CE: cardiac death, stroke, CABG, angioplasty, acute MI, worsening angina
Boden et al ⁵⁰	COURAGE	2007	North America	2287	61.5 (±10.1)	61.8 (±9.7)	7.6 (0–15.3)	SCAD, ≥70% stenosis proximal artery. Inducible ischemia or ST depression/ TWI on resting ECG	PCI, medical therapy	Medical therapy	CE: Death and MI
Nishigaki et al ⁵²	JSAP	2008	Japan	384	64.2 (±7.6)	64.5 (±7.2)	3.3 (2.9– 3.8)	SCAD ≥75% coronary stenosis. Inducible ischemia or ST depression/T- wave inversion on resting ECG	PCI, medical therapy	Medical therapy	CE: Death, ACS, stroke, emergency admission
BARI 2D study group ⁵³	BARI 2D	2009	North and South America, Europe	1605	62.3 (±8.8)	62.4 (±9.0)	5.3	SCAD, ≥50% coronary stenosis with positive stress test or ≥70% coronary with classic angina and type 2 diabetes mellitus	PCI/CABG, medical therapy	Medical therapy	All-cause mortality
De Bruyne et al ^{s1}	FAME 2	2012	Europe, United States	888	63.5 (±9.4)	63.9 (±9.6)	5(4.98– 5.14)	SCAD, >50% coronary stenosis, FFR <0.8	PCI, medical therapy	Medical therapy	CE: Death, MI or unplanned revascularization
Hochman et al ⁵	ISCHEMIA	2019	United States	5179	64 (58–70)	64 (58–70)	3.3	SCAD, moderate to severe ischemia on a stress test	Angiography+PCI/ CABG, medical therapy	Medical therapy	CE: Composite of CV death, MI, resuscitated cardiac arrest, or hospitalization for unstable angina or heart failure

ACME indicates A Comparison of Angioplasty with Medical Therapy in the Treatment of Single-Vessel Coronary Artery Disease; ALKK, Arbeitsgemeinschaft Leitende Kardiologische Krankenhausärzte; AVERT, Atorvastatin versus Revascularization Treatment; BARI, Bypass Angioplasty Revascularization Investigation 2 Diabetes; CABG, coronary artery bypass grafting; CCS, Canadian Cardiovascular Society; CHF, congestive heart failure; COMPLETE, Complete versus Culprit-Only Revascularization Strategies to Treat Multivessel Disease after Early PCI for STEMI trial; CVLPRIT, Complete Versus Lesion-Only Primary PCI trial; CV, cardiovascular; DANAMI, Danish Multicenter Study of Invasive vs. Conservative Treatment of Thrombolyzed ANI; DECOPI, DEsobstruction COronarie en Post-Infarctus; DEFER, Fractional Flow Reserve to Determine the Appropriateness of Angioplasty in Moderate Coronary Stenosis; ESV, end systolic volume; FAME 2, Fractional Flow Reserve to Determine the Appropriateness of Angioplasty in Moderate Coronary Stenosis; ESV, end systolic volume; FAME 2, Fractional Flow Reserve to Determine the Appropriateness of Angioplasty in Moderate Coronary Stenosis; ESV, end systolic volume; FAME 2, Fractional Flow Reserve to Determine the Appropriateness of Angioplasty in Moderate Coronary Stenosis; ESV, end systolic volume; FAME 2, Fractional Flow Reserve to Determine the Appropriateness of Angioplasty in Moderate Coronary Stenosis; ESV, end systolic volume; FAME 2, Fractional Flow reserve; FRISC, Fast Revascularisation during InStability in Coronary artery disease; HELP AMI, HEpacoatTM for cuLPrit or multivessel stenting for Acute Myocardial Infarction; INSPIRE, Adenosine Sestamib Post-Infarction Evaluation; ISCHEMIA, International Study of Comparative Health Effectiveness With Medical and Invasive Approaches; ICTUS, Invasive versus Conservative Treatment in Unstable Coronary Syndromes; IRA, infarct-related artery; JSAP, Japanes Stable Angina Pectoris; LDL, low-density Ipoprotein; UEF, left ventricular ejection fraction; MASS, The

udy and Year	Active Events	N C	Control Events	N		Relative risk [95% (
nstable CAD – Unrevascu						
PS. 1992	0	42	1	45		0.36 [0.01, 8.5
NAMI, 1997	18	503	22	505		0.82 [0.45, 1.5
KIK, 1998	1	21	1	23		1.10 [0.07, 16.4
orie, 1998			5	39		0.18 [0.02, 1.4
	1	44				
DAT, 2002	2	32	1	34		2.13 [0.20, 22.3
.KK, 2003	6	149	17	151		0.36 [0.15, 0.8
ECOPI, 2004	8	109	9	103	⊢_ • <u>÷</u> 1	0.84 [0.34, 2.0
AT, 2006	87	1082	84	1084	⊢ ₽-1	1.04 [0.78, 1.3
SPIRE, 2006	2	104	1	101	⊢ − − − − − − − − − − −	1.94 [0.18, 21.0
VISSI 2, 2007	6	96	22	105		0.30 [0.13, 0.7
AMI, 2012	2	106	3	110		0.69 [0.12, 4.0
nrevascularized post-MI stu	dies (p = 0.07 , Q = 14.			/ = 0.15; I ² = 38.7%)	▲	0.68 [0.45, 1.0
nstable CAD – Multivesse	disease following Si	TEMI				
elp-AMI, 2009	1	52	0	17	↓ · · · · · · · · · · · · · · · · · · ·	1.02 [0.04, 23.9
liti, 2010	10	130	13	84	· · · · · · · · · · · · · · · · · · ·	0.50 [0.23, 1.0
ambrink, 2012	2	79	0	40		 2.56 [0.13, 52.1
AMI, 2013		234	16	231		0.74 [0.36, 1.5
LPRIT, 2015	12		10	146		0.39 [0.12, 1.2
	4	150			· · · · · · · · · · · · · · · · · · ·	0.39 [0.12, 1.2
NAMI 3, 2015	15	313	11	314	, : • • • •	1.37 [0.64, 2.9
ang, 2015	13	215	15	213	. ⊢ •;	0.86 [0.42, 1.7
amza, 2016	1	50	4	50	<	0.25 [0.03, 2.1
mpare ACUTE, 2017	4	295	10	590	⊢−−− −−1	0.80 [0.25, 2.5
mplete, 2019	96	2016	106	2025	H	0.91 [0.70, 1.1
ultivessel disease following	STEMI studies (p = 0.1	1 , Q = 7.30	df = 9, p for heter	ogeneity = 0.61; I ² = 0.0%)	•	0.84 [0.69, 1.0
stable CAD – NSTEACS						
VI IIIB, 1994	18	740	18	733		0.99 [0.52, 1.8
RISC II, 2000	27	1222	48	1234		0.57 [0.36, 0.9
RUCS, 2000	3	76	9	72		0.32 [0.09, 1.1
CTICS 18, 2001					· · · ·	0.94 [0.61, 1.4
	37	1114	39	1106		
TA 3, 2002	60	895	72	915	H=H	0.85 [0.61, 1.1
NO, 2002	2	64	9	67		0.23 [0.05, 1.0
TUS, 2005	15	604	15	596		0.99 [0.49, 2.0
ivonitto, 2012	19	154	22	159	⊢-•;1	0.89 [0.50, 1.5
ter 80, 2016	57	229	62	228	⊢≝⊣	0.92 [0.67, 1.2
inchis, 2016	22	52	26	54	⊢ ∎∺-	0.88 [0.58, 1.3
STEMI studies (p = 0.02, Q	= 8.95, df = 9.00, p for	heterogene	$ity = 0.44; I^2 = 0.0\%$	6)	•	0.84 [0.72, 0.9
stable CAD studies (p =	0.001, Q = 30.88, df = 3	30.00, p for	heterogeneity = 0	0.42; l ² = 0.0%)	•	0.84 [0.75, 0.9
able CAD						
ME 1, 1992	0	105	1	107	▲	0.34 [0.01, 8.3
ASS 1 PCI ONLY, 1995	1	72	ò	72		 3.00 [0.12, 72.4
ME 2, 1997	9	51	10	50		0.88 [0.39, 1.9
TA 2, 1997						1.60 [0.63, 4.1
	11	504	7	514		
CIP, 1997	2	192	20	366	· · · · · · · · · · · · · · · · · · ·	0.19 [0.05, 0.0
/ERT, 1999	1	177	1	164		0.93 [0.06, 14.6
EFER, 2001	2	90	4	91	⊢	0.51 [0.09, 2.0
ME, 2001	13	153	6	148	<u> ∶</u> ∎	2.10 [0.82, 5.3
ASS 2 PCI ONLY, 2004	9	205	3	203		2.97 [0.82, 10.
ambrecht, 2004	õ	50	ō	51	→ → →	1.02 [0.02, 50.4
DURAGE, 2007	85	1149	95	1138		0.89 [0.67, 1.
AP, 2008	6	188	7	191		0.87 [0.30, 2.5
ARI 2D, 2009						0.98 [0.79, 1.2
	155	1176	161	1192		
ME 2, 2012	1	447	3	441		0.33 [0.03, 3.1
CHEMIA, 2019	140	2588	136	2591	H ₽ -1	1.03 [0.82, 1.3
able CAD studies (p = 0.7	9, Q = 14.52, df = 14.0	0, p for het	erogeneity = 0.41;	$l^2 = 0.0\%$)	•	0.98 [0.87, 1.1
						-
						1

Figure 2. The effect of percutaneous coronary intervention (PCI) on all-cause mortality.

Results stratified into unstable coronary artery disease (CAD; unrevascularized post–myocardial infarction [MI],¹⁰⁻²⁰ multivessel disease following ST-segment–elevation myocardial infarction [STEMI],^{4,21-29} non-ST segment–elevation acute coronary syndrome [NSTEACS]³⁰⁻³⁹) and stable CAD.⁴⁰⁻⁵⁴

An additional sensitivity analysis was performed using fixed effects for each of the main outcome measures, with results consistent with the primary analysis (Figures VIII through X in the Data Supplement).

Sensitivity analyses were also performed excluding trials in which CABG could be used as the revascularization strategy, the results of which are shown in Figures XI through XIII in the Data Supplement.

We performed sensitivity analyses excluding trials considered at high risk of bias, the results of which are shown in Figures XIV through XVI in the Data Supplement.

Finally, we also performed a sensitivity analysis in which each one of the trials in the main analysis has

been removed in turn for the outcome of all-cause mortality. The result is shown in Figures XVII through LIX in the Data Supplement.

DISCUSSION

This analysis shows that for unstable CAD subsets, PCI reduces all-cause mortality by 16%, cardiovascular mortality by 31%, and MI by 26%. In contrast, PCI had no impact on these end points in patients with stable CAD. Our analysis incorporates results from 2 large, contemporary RCTs examining the role of PCI in different scenarios of CAD: the COMPLETE trial for multivessel disease in STEMI and the ISCHEMIA trial in stable CAD.

Study and Year	Active Events	Con N	trol Events	Ν				R	elative risk [95%
Unstable CAD – Unrevascular	rized post–MI								
OPS, 1992	0	42	0	45				→	1.07 [0.02, 52.]
DAKIK, 1998	1	21	1	23	H			-	1.10 [0.07, 16.4
lorie, 1998	1	44	4	39					0.22 [0.03, 1.9
LKK, 2003	4	149	14	151		⊢ → →			0.29 [0.10, 0.
ECOPI, 2004	6	109	7	103		H			0.81 [0.28, 2.3
DAT, 2006	58	1082	52	1084		H	H		1.12 [0.78, 1.
NSPIRE, 2006	2	104	1	101		H			1.94 [0.18, 21.
WISSI 2, 2007	3	96	22	105					0.15 [0.05, 0.
Inrevascularized post-MI studie	es (p = 0.10 , Q = 16	.36, df = 7, p for	heterogeneity	= 0.02; I ² = 56.1%	b)	-			0.55 [0.27, 1.
Instable CAD – Multivessel d	lisease following S	TEMI							
oliti, 2010	6	130	10	84		i			0.39 [0.15, 1.
PRAMI, 2013	4	234	10	231		· · · · · · · · · · · · · · · · · · ·	4		0.39 [0.13, 1.
VLPRIT, 2015	2	150	7	146	L		-		0.28 [0.06, 1.
ANAMI 3, 2015	5	313	9	314					0.56 [0.19, 1.
hang, 2015	11	215	14	213					0.78 [0.36, 1.
Compare ACUTE, 2017	3	295	6	590			_		1.00 [0.25, 3.
Complete, 2019	59	295	64	2025		' ; ⊨∎	, ,		0.93 [0.65, 1.
fultivessel disease following ST					2 - 01 8%)		7		0.68 [0.47, 0.
									0.70/0.54
RITA 3, 2002 Savonitto, 2012	55 16 0.44, df = 1.00, p for	895 154 heterogeneity :	74 17 = 0.51; I ² = 0.0%	915 159 6)					0.97 [0.51, 1.
RITA 3, 2002 Savonitto, 2012 NSTEMI studies (p = 0.14 , Q = 0	16 0.44, df = 1.00, p for	154 heterogeneity :	17 = 0.51; l ² = 0.0%	159 6)		⊥= ◆	—		0.97 [0.51, 1. 0.80 [0.59, 1.
RTA 3, 2002 savonitto, 2012 USTEMI studies (p = 0.14 , Q = (Jnstable CAD studies (p = 0.0	16 0.44, df = 1.00, p for	154 heterogeneity :	17 = 0.51; l ² = 0.0%	159 6)		_= _★ _◆			0.97 [0.51, 1. 0.80 [0.59, 1.
RITA 3, 2002 Savonitto, 2012 ISTEMI studies (p = 0.14, Q = 0 Jinstable CAD studies (p = 0.0 Stable CAD	16 0.44, df = 1.00, p for	154 heterogeneity :	17 = 0.51; l ² = 0.0%	159 6)	₽	± [◆			0.97 [0.51, 1. 0.80 [0.59, 1. 0.69 [0.53, 0.
RTA 3, 2002 Savonitto, 2012 ISTEMI studies (p = 0.14 , Q = (Jnstable CAD studies (p = 0.0 Stable CAD NCME 1, 1992	16 0.44, df = 1.00, p for 007, Q = 23.41, df = 0	154 heterogeneity 16.00, p for he 105	17 = 0.51; I ² = 0.0% terogeneity = 0 1	159 6) 1.10; I² = 39.4%) 107	4	÷			0.97 [0.51, 1. 0.80 [0.59, 1. 0.69 [0.53, 0. 0.34 [0.01, 8.
ATTA 3, 2002 Savonitto, 2012 ISTEMI studies (p = 0.14 , Q = 0 Instable CAD studies (p = 0.0 Stable CAD INTA 2, 1992 ATTA 2, 1997	16 0.44, df = 1.00, p for 007, Q = 23.41, df =	154 heterogeneity : 16.00, p for he	17 = 0.51; I ² = 0.0% terogeneity = 0	159 6) .10; I² = 39.4%) 107 514	•	± [◆		4	0.97 [0.51, 1. 0.80 [0.59, 1. 0.69 [0.53, 0. 0.34 [0.01, 8. 1.70 [0.41, 7.
ATTA 3, 2002 iavonitto, 2012 ISTEMI studies (p = 0.14, Q = 0 Instable CAD istable CAD istable CAD i	16 0.44, df = 1.00, p for 007, Q = 23.41, df = 0 5	154 • heterogeneity = 16.00, p for he 105 504 177	17 = 0.51; I ² = 0.09 terogeneity = 0 1 3 1	159 6) 1.10; I ² = 39.4%) 107 514 164	←	±		4	0.97 [0.51, 1. 0.80 [0.59, 1. 0.69 [0.53, 0. 0.34 [0.01, 8. 1.70 [0.41, 7. 0.93 [0.06, 14.
ATA 3, 2002 iavonitto, 2012 ISTEMI studies (p = 0.14, Q = (Instable CAD studies (p = 0.0 Stable CAD ICME 1, 1992 RTA 2, 1997 WERT, 1999 DEFER, 2001	16 0.44, df = 1.00, p for 007, Q = 23.41, df = 0 5 1 1	154 heterogeneity : 16.00, p for he 105 504 177 90	17 = 0.51; I ² = 0.09 terogeneity = 0 1 3 1 2	159 6) 10; I ² = 39.4%) 107 514 164 90	↓ ⊥⊥	±] ◆		4	0.97 [0.51, 1. 0.80 [0.59, 1. 0.69 [0.53, 0. 0.34 [0.01, 8. 1.70 [0.41, 7. 0.93 [0.06, 14. 0.50 [0.05, 5.
RITA 3, 2002 Savonitto, 2012 USTEMI studies (p = 0.14, Q = 6 J nstable CAD studies (p = 0.0 Stable CAD ACME 1, 1992 RITA 2, 1997 WERT, 1999 DEFER, 2001 MASS 2 PCI ONLY, 2004	16 0.44, df = 1.00, p for 007, Q = 23.41, df = 0 5 1 1 9	154 heterogeneity : 16.00, p for het 105 504 177 90 205	17 = 0.51; I ² = 0.0% terogeneity = 0 1 3 1 2 3	159 6) 10; I ² = 39.4%) 107 514 164 90 203	← ⊥ ↓			4	0.97 [0.51, 1. 0.80 [0.59, 1. 0.69 [0.53, 0. 0.34 [0.01, 8. 1.70 [0.41, 7. 0.93 [0.06, 14. 0.50 [0.05, 5. 2.97 [0.82, 10.
ATA 3, 2002 Savonitto, 2012 USTEMI studies (p = 0.14, Q = (Justable CAD studies (p = 0.0 Stable CAD VCME 1, 1992 NTA 2, 1997 VCET, 1999 DEFER, 2001 AASS 2 PCI ONLY, 2004 Hambrecht, 2004	16 0.44, df = 1.00, p for 007, Q = 23.41, df = 0 5 1 1 9 0	154 heterogeneity : 16.00, p for he 105 504 177 90 205 50	$17 = 0.51; f^{2} = 0.09$ terogeneity = 0 1 3 1 2 3 0	159 6) 107 ; I² = 39.4%) 107 514 164 90 203 51	← ⊥⊥ ←			-+ -►	0.97 [0.51, 1. 0.80 [0.59, 1. 0.69 [0.53, 0. 0.34 [0.01, 8. 1.70 [0.41, 7. 0.93 [0.06, 14. 0.50 [0.05, 5. 2.97 [0.82, 10. 1.02 [0.02, 50.
RTA 3, 2002 savonitto, 2012 ISTEMI studies (p = 0.14, Q = 0 Jnstable CAD studies (p = 0.0 Stable CAD VCME 1, 1992 NTA 2, 1997 NVERT, 1999 DEFER, 2001 MASS 2 PCI ONLY, 2004 tambrecht, 2004 20URAGE, 2007	16 0.44, df = 1.00, p for 007, Q = 23.41, df = 0 5 1 1 9 0 23	154 heterogeneity : 16.00, p for he 105 504 177 90 205 50 1149	$17 = 0.51; I^{2} = 0.09$ terogeneity = 0 1 3 1 2 3 0 25	159 6) 1.10; I² = 39.4%) 107 514 164 90 203 51 1138	• •			+ →	0.97 [0.51, 1. 0.80 [0.59, 1. 0.69 [0.53, 0. 0.34 [0.01, 8. 1.70 [0.41, 7. 0.93 [0.06, 14. 0.50 [0.05, 5. 2.97 [0.82, 10. 1.02 [0.02, 50. 0.91 [0.52, 1.
ATA 3, 2002 iavonitto, 2012 ISTEMI studies (p = 0.14, Q = 0 Instable CAD studies (p = 0.0 Stable CAD ICME 1, 1992 ICTR 2, 1997 IVERT, 1999 DEFER, 2001 IAASS 2 PCI ONLY, 2004 Hambrecht, 2004 SURAGE, 2007 SAP, 2008	16 0.44, df = 1.00, p for 007, Q = 23.41, df = 0 5 1 1 9 0 23 2	154 heterogeneity : 16.00, p for het 105 504 177 90 205 50 1149 188	$17 = 0.51; I^{2} = 0.09$ terogeneity = 0 1 3 1 2 3 0 25 3	159 .10; I² = 39.4%) 107 514 164 90 203 51 1138 191	 ↓ ↓			+ ->	0.97 [0.51, 1. 0.80 [0.59, 1. 0.69 [0.53, 0. 1.70 [0.41, 7. 0.93 [0.06, 14, 0.50 [0.05, 5. 2.97 [0.82, 10, 1.02 [0.02, 50, 0.91 [0.52, 1, 0.68 [0.11, 4.
ATTA 3, 2002 iavonitto, 2012 ISTEMI studies (p = 0.14 , Q = (Instable CAD studies (p = 0.0 Stable CAD CCME 1, 1992 NTTA 2, 1997 VERT, 1999 DEFER, 2001 MASS 2 PCI ONLY, 2004 Hambrecht, 2004 COURAGE, 2007 SAP, 2008 FAME 2, 2012	16 0.44, df = 1.00, p for 007, Q = 23.41, df = 0 5 1 1 9 0 23 2 2 1	154 heterogeneity : 16.00, p for het 105 504 177 90 205 50 1149 188 447	$17 = 0.51; f^{2} = 0.09$ terogeneity = 0 1 3 1 2 3 0 25 3 1	159 (a) (b) (c) (c) (c) (c) (c) (c) (c) (c	< ⊥⊥ ↓ ⊥				0.76 [0.54, 1.1 0.97 [0.51, 1.1 0.80 [0.59, 1.1 0.69 [0.53, 0.9 0.34 [0.01, 8.1 1.70 [0.41, 7.1 0.93 [0.06, 14.1 0.50 [0.05, 5. 2.97 [0.82, 10, 1.02 [0.22, 50, 0.91 [0.52, 1.1 0.68 [0.11, 4.1 0.99 [0.06, 3, 1
ATA 3, 2002 avonitto, 2012 JSTEMI studies (p = 0.14 , Q = 0 Stable CAD Stable CAD ACME 1, 1992 ATTA 2, 1997 AVERT, 1999 DEFER, 2001 MASS 2 PCI ONLY, 2004 Hambrecht, 2004 COURAGE, 2007 SAP, 2008 SAME 2, 2012 SCHEMIA, 2019	16 0.44, df = 1.00, p for 007, Q = 23.41, df = 0 5 1 1 9 0 23 2 1 89	154 heterogeneity : 16.00, p for he 105 504 177 90 205 50 1149 188 447 2588	$17 = 0.51; I^{2} = 0.09$ terogeneity = 0 1 3 1 2 3 0 25 3 1 108	159 6) 107 514 164 90 203 51 1138 191 441 2591	 ↓ ↓ ↓ ↓ 			+ →	0.97 [0.51, 1. 0.80 [0.59, 1. 0.69 [0.53, 0. 1.70 [0.41, 7. 0.93 [0.06, 14, 0.50 [0.05, 5. 2.97 [0.82, 10, 1.02 [0.02, 50, 0.91 [0.52, 1. 0.68 [0.11, 4, 0.99 [0.06, 15]
AITA 3, 2002 iavonitto, 2012 ISTEMI studies (p = 0.14 , Q = 0 Instable CAD studies (p = 0.0 Stable CAD IGCME 1, 1992 IITA 2, 1997 IVERT, 1999 VERT, 1999 VERT, 1999 VERT, 2001 MASS 2 PCI ONLY, 2004 tambrecht, 2004 SCHEMIA, 2019 SCHEMIA, 2019	16 0.44, df = 1.00, p for 007, Q = 23.41, df = 0 5 1 1 9 0 23 2 1 89	154 heterogeneity : 16.00, p for he 105 504 177 90 205 50 1149 188 447 2588	$17 = 0.51; I^{2} = 0.09$ terogeneity = 0 1 3 1 2 3 0 25 3 1 108	159 6) 107 514 164 90 203 51 1138 191 441 2591				- - → - 1	0.97 [0.51, 1.4 0.80 [0.59, 1.4 0.69 [0.53, 0.5 0.34 [0.01, 8. 1.70 [0.41, 7, 0.93 [0.06, 15, 5, 2.97 [0.82, 10, 1.02 [0.02, 50, 0.91 [0.52, 1, 0.68 [0.11, 4, 0.99 [0.06, 15; 0.83 [0.63, 1, 1,
Unstable CAD – NSTEACS RITA 3, 2002 Savonitto, 2012 NSTEMI studies (p = 0.14, Q = 0 Unstable CAD studies (p = 0.0 Stable CAD ACME 1, 1992 RITA 2, 1997 AVERT, 1999 DEFER, 2001 MASS 2 PCI ONLY, 2004 Hambrecht, 2004 COURAGE, 2007 ISAP, 2008 FAME 2, 2012 SCHEMIA, 2019 Stable CAD studies (p = 0.30,	16 0.44, df = 1.00, p for 007, Q = 23.41, df = 0 5 1 1 9 0 23 2 1 89	154 heterogeneity : 16.00, p for he 105 504 177 90 205 50 1149 188 447 2588	$17 = 0.51; I^{2} = 0.09$ terogeneity = 0 1 3 1 2 3 0 25 3 1 108	159 6) 107 514 164 90 203 51 1138 191 441 2591				+ → +	0.97 [0.51, 1.4 0.80 [0.59, 1.4 0.69 [0.53, 0.9 0.34 [0.01, 8.3 1.70 [0.41, 7.4 0.93 [0.06, 14, 0.50 [0.05, 5. 2.97 [0.82, 10, 1.02 [0.02, 50, 0.91 [0.52, 1.4 0.68 [0.11, 4.4]

Figure 3. The effect of percutaneous coronary intervention (PCI) on cardiovascular mortality.

Results stratified into unstable coronary artery disease (CAD; unrevascularized post–myocardial infarction [MI],^{10–12,14–17,19} multivessel disease following ST-segment–elevation myocardial infarction [STEMI],^{4,22,24,26–29} non-ST segment–elevation acute coronary syndrome NSTEACS³³) and stable CAD.^{40,44–46,48–52,54}

Effect of PCI in Varying Clinical Syndromes

PCI is established to have a clear benefit in mortality over fibrinolysis, which itself almost halves the mortality of patients with STEMI. There is, therefore, no doubt over the survival benefit of primary PCI at the time of presentation with STEMI. The utility of PCI in other clinical syndromes, however, has been controversial. Outside the context of an ongoing STEMI lies not a simple unitary entity but a broad clinical spectrum.

As the years have passed and technology evolved, there has been an increasingly sophisticated categorization of patients between these groups. For example, in the first decades of angioplasty, a patient who had survived a STEMI to discharge and had subsequently been found to have a positive exercise test would be considered to have stable CAD,¹⁶ in much the same way as a patient with a several year-history of exertional angina. Modern practice, however, would be to consider the unrevascularized post-MI patient as requiring urgent angiography and revascularization if indicated. Doctors in current practice can certainly gain from trials of yesteryear but can do this best when trial patients are contextualized in the relevant part of the modern view of the clinical spectrum. This meta-analysis lays out this context simply and underlines the importance of placing patients in the correct categorization when deciding on whether they may benefit from PCI.

There is no evidence that PCI reduces mortality, cardiovascular mortality or MI in patients who have true stable CAD. Patients who have suffered an MI, however, do derive benefit from PCI. This grouping includes patients with NSTEACS, patients who have been discharged after an unrevascularized MI and also patients who have had PCI for the culprit artery in a STEMI, but who have residual coronary disease. It should be noted that the unrevascularized post-MI cohort is a group of

Study and Year	Active Events	N C	Control Events	N					Relative risk [95%	CI]
Unstable CAD – Unrevascula	rized post–MI									
TOPS, 1992	. 0	42	0	45					► 1.07 [0.02, 52.	
DANAMI, 1997	28	503	53	505		⊢	-		0.53 [0.34, 0.	
DAKIK, 1998	2	21	0	23		- E		-	 5.45 [0.28, 107. 	.47]
Horie, 1998	3	44	7	39			<u> </u>		0.38 [0.11, 1.	.37]
TOAT, 2002	3	32	1	34		⊢		•	 3.19 [0.35, 29. 	.09]
ALKK, 2003	10	149	12	151		H				.89]
DECOPI, 2004	4	109	3	103				—		.49]
OAT, 2006	57	1082	40	1084			[-∎			.12]
INSPIRE, 2006	5	104	7	101					0.69 [0.23, 2.	
SWISSI 2, 2007	11	96	40	105		⊢	-		0.30 (0.16, 0.	
VIAMI, 2012	2	106	2	110				—	1.04 [0.15, 7.	
Unrevascularized post-MI stud	ies (p = 0.24 , Q = 26.3	36, df = 10,	p for heterogeneity	$r = 0.00; I^2 = 57.8$	%)		•		0.76 [0.48, 1.	.20]
Unstable CAD – Multivessel	disease following ST									
Help-AMI, 2009	1	52	1	17			- · ·		0.33 [0.02, 4.	
Politi, 2010	6	130	7	84		⊢ <u>.</u>	•		0.55 [0.19, 1.	
Dambrink, 2012	4	79	0	40		. –			► 4.61 [0.25, 83.	
PRAMI, 2013	7	234	20	231		. <u> </u>			0.35 [0.15, 0.	
CvLPRIT, 2015 DANAMI 3, 2015	2	150	4	146				1	0.49 [0.09, 2. 0.94 [0.47, 1.	.62]
	15	313	16	314						
Zhang, 2015	9	215	14	213					0.64 [0.28, 1. 0.50 [0.05, 5.	.44]
Hamza, 2016	1	50	2	50						
Compare ACUTE, 2017 Complete, 2019	7	295	28	590					0.50 [0.22, 1. 0.68 [0.54, 0.	
Multivessel disease following S	109 TEMI studies (p < 0.0	2016 001, Q = 6.	160 10, df = 9, p for het	2025 erogeneity = 0.73	$I_{1}^{2} = 0.0\%$				0.66 [0.54, 0.	
Unstable CAD – NSTEACS							•			
TIMI IIIB, 1994	38	740	42	733			لأسا		0.90 [0.58, 1.	371
FRISC II, 2000	105	1219	143	1234						.94]
TRUCS, 2000	3	76	3	72		_				.54]
TACTICS 18, 2001	44	1114	66	1106				1		.961
RITA 3, 2002	45	895	56	915						.201
VINO, 2002	2	64	10	67	L					92]
ICTUS, 2005	90	604	59	596			'i Land			.05]
Savonitto, 2012	11	154	17	159		⊢			0.67 [0.32, 1.	
After 80, 2016	39	229	69	228		. · -			0.56 0.40, 0.	
Sanchis, 2016	16	52	11	54				4	1.51 [0.78, 2.	
NSTEMI studies (p = 0.14, Q =	28.31, df = 9.00, p for	r heterogen	eity = 0.00; $I^2 = 66$.	9%)			•		0.83 [0.64, 1.	
Unstable CAD studies (p = 0.	002, Q = 64.78, df = 3	0.00, p for	heterogeneity = 0	.00; I ² = 57.6%)			•		0.74 [0.62, 0.	.90]
Stable CAD										
ACME 1, 1992	5	105	3	107		F		I	1.70 [0.42, 6.	
MASS 1 PCI ONLY, 1995	2	72	2	72		H		—	1.00 [0.14, 6.	
ACME 2, 1997	6	51	6	50				4	0.98 [0.34, 2.	
RITA 2, 1997	21	504	10	514			}	—	2.14 [1.02, 4.	
ACIP, 1997	7	192	18	366					0.74 [0.32, 1	
AVERT, 1999	4	177	5	164		H		-	0.74 [0.20, 2.	
DEFER, 2001	3	90	0	91		H			 7.08 [0.37, 135. 	
TIME, 2001	12	153	17	148		H			0.68 [0.34, 1.	
MASS 2 PCI ONLY, 2004	16	205	10	203			⊢		1.58 [0.74, 3.	.41]
Hambrecht, 2004	1	50	0	51		H		•	 3.06 [0.13, 73. 	
COURAGE, 2007	143	1149	128	1138			HEH		1.11 [0.88, 1.	
JSAP, 2008	3	188	7	191						.66]
BARI 2D, 2009	118	1176	138	1192			HE			.09]
FAME 2, 2012	15	447	14	441			—		1.06 [0.52, 2.	
ISCHEMIA, 2019	206	2588	225	2591			H		0.92 [0.76, 1.	.10]
Stable CAD studies (p = 0.72,	Q = 14.34, df = 14.00), p for het	erogeneity = 0.42;	l ² = 4.9%)			•		0.98 [0.86, 1.	.11]
									_	
					I	1	1	-		
					0.04	0.2	1	5	25	
					Invasive therapy b	oetter < Re	elative risk >	Conversative	therapy better	

Figure 4. The effect of percutaneous coronary intervention (PCI) on myocardial infarction (MI).

Results stratified into unstable coronary artery disease (CAD; unrevascularized post-MI,¹⁰⁻²⁰ multivessel disease following ST-segment–elevation myocardial infarction [STEMI],^{4,21-29} non-ST segment–elevation acute coronary syndrome [NSTEACS]³⁰⁻³⁹) and stable CAD.⁴⁰⁻⁵⁴

trials from a time when STEMI was routinely managed with fibrinolysis and without angiography.

Our analysis underlines that these patients, who have had an unstable event, are distinct, and have specific therapeutic needs.

The ISCHEMIA Trial

This analysis is the first to include the data from the ISCHEMIA trial,⁵⁴ which was recently presented at the American Heart Association Scientific Sessions 2019 in Philadelphia. This trial randomized 5179 patients to invasive or conservative therapy. Revascularization was performed in 80% of patients randomized to invasive therapy, and PCI was the modality used in 74%. There

was no difference in all-cause mortality, cardiovascular mortality or MI between the 2 groups. Procedural MI was increased with invasive therapy, while spontaneous MI was reduced with invasive therapy. The result of these 2 findings was that the net effect on MI is dependent on the timepoint at which it is measured. There is an early penalty in terms of MI with invasive therapy, but the curves cross at the 2-year timepoint and then continue to diverge in favor of invasive therapy. Although the overall effect of invasive therapy on MI was neutral, it is possible that if the curves continue to diverge then there would be a significant benefit of MI observed at longer-term follow-up. Clinicians may wish to counsel their patients regarding this when weighing options of invasive and conservative therapy.

Clinical Implications

There has long been a belief that since heart disease is the leading cause of death worldwide,⁵⁵ PCI might prevent deaths. However, within what we now define as stable CAD, there is no evidence of a net favorable effect on mortality, cardiovascular mortality, or MI. It should be remembered, however, that patients with left main CAD have not been randomized in these trials, and so if there is benefit in them, it would not be found by this meta-analysis.

Clinicians working in a modern environment should be careful to distinguish the generality of stable CAD from the other categories we describe, which we take together here and label unstable CAD, because the mortality impact of PCI differs between these 2 patient groups. This analysis can help provide clinicians with a framework when assessing patients with CAD in their clinical practice. If a patient has an acute coronary syndrome, then PCI can reasonably be offered on the grounds it will improve the clinical outcome of that patient. Similarly, if a patient has residual disease following PCI for a STEMI, that patient is also likely to have their prognosis improved by PCI to residual lesions. If a patient has had an MI but not been revascularized (less common in modern clinical practice), they also might derive prognostic benefit from PCI. For all other patients—that is, those who have truly stable CAD—PCI cannot reasonably be offered on prognostic grounds with the expectation it will reduce MI or prevent death. In this setting, PCI should be reserved for patients who experience angina refractory to medical therapy, in line with clinical guideline recommendations and recent blinded trial data.56

Study Limitations

The ISCHEMIA trial has not yet been published in full. If the full published data differ from the presentation, we will update this analysis accordingly.

The ISCHEMIA trial, along with some others included in our analysis, is not truly a trial of PCI versus medical therapy; rather it is a trial of invasive therapy (angiography with a view to revascularization via PCI or CABG) versus conservative therapy.

We have performed sensitivity analyses excluding ISCHEMIA and other trials which included CABG as a mode of revascularization, or which generally randomized to invasive therapy rather than to PCI, and these plots are shown in the Data Supplement.

Definitions of categories of CAD change over time, in line with changing clinical practice. Previously,¹⁶ the unrevascularized post-MI state may have been considered stable CAD but this has now changed, and therefore, we cannot confidently predict how coronary disease will be categorized in the years to come. Nevertheless, we should always be sensitive to how studies have been grouped because this can influence the results.

MI is less solid in this respect because it is typically only tested for in patients with symptoms, and symptoms themselves are somewhat dependent on perception of patients' clinical status (both by patient and by staff). We did not include angina as an end point because this is vulnerable to perception. As an example of this, the unblinded A Comparison of Angioplasty with Medical Therapy in the Treatment of Single-Vessel Coronary Artery Disease 1 trial⁴⁰ found a 90-second increase in exercise time from plain balloon angioplasty, whereas the similar-sized but blinded ORBITA trial⁵⁷ found only a 16-second increment from modern stenting.

Our primary end point was all-cause mortality as this is the most clinically relevant and bias-resistant end point. Our analysis is, therefore, focused on this mortality end point. Our study also uses MI as a secondary end point, as defined in each constituent trial. The definition of this end point varies substantially across trials. We only included prespecified end points, as these are more resistant to bias. We considered all MI together, so as not to introduce bias through selection (ie, we did not consider periprocedural MI separate from spontaneous MI). We also considered cardiovascular mortality as a secondary end point, although this is more vulnerable to bias than all-cause mortality because it requires adjudication. We did not use any other, nonprespecified end points so as not to introduce bias. Our results for cardiovascular mortality and MI show a higher degree of heterogeneity than our results for all-cause mortality, which is in part a reflection of these factors. Other potential sources of heterogeneity include differences in length of follow-up, pharmacotherapy, invasive therapy (balloons, bare metal stents, drug-eluting stents), and study populations. Our analysis includes trials from 1992 and from 2019, and in that period of time there has been significant advancement in both the in the pharmacological and invasive management of CAD. This is a further source of heterogeneity in such an analysis.

Most trials lacked adequate data, such as hazard ratios, which prevented a meta-analysis of survival data, and so this meta-analysis was performed using the relative risks provided by trials. Such effect sizes are typically more easily influenced by the time point chosen for analysis as they merely represent a single snapshot during follow-up. We provided a sensitivity analyses for longer-term follow-up of those trials which reported it, and the *P* value for interaction was nonsignificant when comparing timepoints.

Our study only addresses RCTs. They typically randomize only a minority of patients. However, this approach of focusing on RCTs is the best method of avoiding consistent bias in one direction or another from unmeasured confounders.

Conclusions

PCI prevents death, cardiac death, and MI in patients with unstable CAD. For patients with stable CAD, PCI shows no evidence of an effect on any of these outcomes.

ARTICLE INFORMATION

Received November 18, 2019; accepted January 21, 2020.

The Data Supplement is available at https://www.ahajournals.org/doi/suppl/10.1161/CIRCOUTCOMES.119.006363.

Correspondence

Yousif Ahmad, MRCP, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, B Block, 2nd floor, Du Cane Rd, London, W12 0NN. Email y.ahmad@imperial.ac.uk

Affiliations

Imperial College London, United Kingdom (L.C., J.H., C.R., A.N.N., C.K., D.M., M.F., M.S.-S., G.C., S.S., R.A.-L., D.P.F., Y.A.); and Columbia University Medical Center, New York (Y.A.).

Sources of Funding

We are grateful for infrastructural support from the Imperial College London and Imperial College Healthcare National Health Service Trust Biomedical Research Centers. D.P. Francis is supported by the British Heart Foundation (FS 04/079). J. Howard is supported by the Wellcome Trust (212183/Z/18/Z).

Disclosures

R. Al-Lamee and S. Sen have received speaker's honoraria from Philips Volcano. The other authors report no conflicts.

REFERENCES

- Keeley EC, Boura JA, Grines CL. Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: a quantitative review of 23 randomised trials. *Lancet.* 2003;361:13–20. doi: 10.1016/S0140-6736(03)12113-7
- Sen S, Davies JE, Malik IS, Foale RA, Mikhail GW, Hadjiloizou N, Hughes A, Mayet J, Francis DP. Why does primary angioplasty not work in registries? Quantifying the susceptibility of real-world comparative effectiveness data to allocation bias. *Circ Cardiovasc Qual Outcomes*. 2012;5:759–766. doi: 10.1161/CIRCOUTCOMES.112.966853
- Pursnani S, Korley F, Gopaul R, Kanade P, Chandra N, Shaw RE, Bangalore S. Percutaneous coronary intervention versus optimal medical therapy in stable coronary artery disease: a systematic review and meta-analysis of randomized clinical trials. *Circ Cardiovasc Interv*. 2012;5:476–490. doi: 10.1161/CIRCINTERVENTIONS.112.970954
- 4. Mehta SR, Wood DA, Storey RF, Mehran R, Bainey KR, Nguyen H, Meeks B, Di Pasquale G, López-Sendón J, Faxon DP, Mauri L, Rao SV, Feldman L, Steg PG, Avezum Á, Sheth T, Pinilla-Echeverri N, Moreno R, Campo G, Wrigley B, Kedev S, Sutton A, Oliver R, Rodés-Cabau J, Stanković G, Welsh R, Lavi S, Cantor WJ, Wang J, Nakamya J, Bangdiwala SI, Cairns JA; COMPLETE Trial Steering Committee and Investigators. Complete revascularization with multivessel PCI for myocardial infarction. *N Engl J Med*. 2019;381:1411–1421. doi: 10.1056/NEJMoa1907775
- Hochman JS. International Study of Comparative Health Effectiveness With Medical and Invasive Approaches: Primary Report of Clinical Outcomes. Presented at: American Heart Association Scientific Sessions; November 16, 2019; Philadelphia, PA, USA.
- The Cochrane Collaboration. Cochrane Handbook for Systematic Reviews of Interventions - 10.4.3.1 Recommendations on Testing for Funnel Plot Asymmetry. The Cochrane Collaboration; 2011. www.handbook.cochrane.org.
- Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, Savovic J, Schulz KF, Weeks L, Sterne JA; Cochrane Bias Methods Group;

Cochrane Statistical Methods Group. The cochrane collaboration's tool for assessing risk of bias in randomised trials. *BMJ*. 2011;343:d5928. doi: 10.1136/bmj.d5928

- 8. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. *Stat Med.* 2002;21:1539–1558. doi: 10.1002/sim.1186
- Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *Ann Intern Med.* 2009;151:264–9, W64. doi: 10.7326/0003-4819-151-4-200908180-00135
- Dakik HA, Kleiman NS, Farmer JA, He ZX, Wendt JA, Pratt CM, Verani MS, Mahmarian JJ. Intensive medical therapy versus coronary angioplasty for suppression of myocardial ischemia in survivors of acute myocardial infarction: a prospective, randomized pilot study. *Circulation*. 1998;98:2017– 2023. doi: 10.1161/01.cir.98.19.2017
- Ellis SG, Mooney MR, George BS, da Silva EE, Talley JD, Flanagan WH, Topol EJ. Randomized trial of late elective angioplasty versus conservative management for patients with residual stenoses after thrombolytic treatment of myocardial infarction. Treatment of Post-Thrombolytic Stenoses (TOPS) Study Group. *Circulation*. 1992;86:1400–1406. doi: 10.1161/01.cir.86.5.1400
- Erne P, Schoenenberger AW, Burckhardt D, Zuber M, Kiowski W, Buser PT, Dubach P, Resink TJ, Pfisterer M. Effects of percutaneous coronary interventions in silent ischemia after myocardial infarction: the SWIS-SI II randomized controlled trial. JAMA. 2007;297:1985–1991. doi: 10.1001/jama.297.18.1985
- van Loon RB, Veen G, Baur LH, Kamp O, Bronzwaer JG, Twisk JW, Verheugt FW, van Rossum AC. Improved clinical outcome after invasive management of patients with recent myocardial infarction and proven myocardial viability: primary results of a randomized controlled trial (VIA-MI-trial). *Trials.* 2012;13:1. doi: 10.1186/1745-6215-13-1
- Hochman JS, Lamas GA, Buller CE, Dzavik V, Reynolds HR, Abramsky SJ, Forman S, Ruzyllo W, Maggioni AP, White H, Sadowski Z, Carvalho AC, Rankin JM, Renkin JP, Steg PG, Mascette AM, Sopko G, Pfisterer ME, Leor J, Fridrich V, Mark DB, Knatterud GL; Occluded Artery Trial Investigators. Coronary intervention for persistent occlusion after myocardial infarction. *N Engl J Med*. 2006;355:2395–2407. doi: 10.1056/NEJMoa066139
- Horie H, Takahashi M, Minai K, Izumi M, Takaoka A, Nozawa M, Yokohama H, Fujita T, Sakamoto T, Kito O, Okamura H, Kinoshita M. Long-term beneficial effect of late reperfusion for acute anterior myocardial infarction with percutaneous transluminal coronary angioplasty. *Circulation*. 1998;98:2377–2382. doi: 10.1161/01.cir.98.22.2377
- Zeymer U, Uebis R, Vogt A, Glunz HG, Vöhringer HF, Harmjanz D, Neuhaus KL; ALKK-Study Group. Randomized comparison of percutaneous transluminal coronary angioplasty and medical therapy in stable survivors of acute myocardial infarction with single vessel disease: a study of the arbeitsgemeinschaft leitende kardiologische krankenhausärzte. *Circulation*. 2003;108:1324–1328. doi: 10.1161/01.CIR.0000087605.09362.0E
- Steg PG, Thuaire C, Himbert D, Carrié D, Champagne S, Coisne D, Khalifé K, Cazaux P, Logeart D, Slama M, Spaulding C, Cohen A, Tirouvanziam A, Montély JM, Rodriguez RM, Garbarz E, Wijns W, Durand-Zaleski I, Porcher R, Brucker L, Chevret S, Chastang C; DECOPI Investigators. DE-COPI (DEsobstruction COronaire en Post-Infarctus): a randomized multicentre trial of occluded artery angioplasty after acute myocardial infarction. *Eur Heart J* 2004;25:2187–2194. doi: 10.1016/j.ehj.2004.10.019
- Madsen JK, Nielsen TT, Grande P, Eriksen UH, Saunamäki K, Thayssen P, Kassis E, Rasmussen K, Haunsø S, Haghfelt T, Fritz-Hansen P, Hjelms E, Paulsen PK, Alstrup P, Arendrup H, Niebuhr-Jørgensen U, Andersen LI; DA-NAMI study group. Revascularization compared to medical treatment in patients with silent vs. symptomatic residual ischemia after thrombolyzed myocardial infarction–the DANAMI study. *Cardiology.* 2007;108:243– 251. doi: 10.1159/000096951
- Mahmarian JJ, Dakik HA, Filipchuk NG, Shaw LJ, Iskander SS, Ruddy TD, Keng F, Henzlova MJ, Allam A, Moyé LA, Pratt CM; INSPIRE Investigators. An initial strategy of intensive medical therapy is comparable to that of coronary revascularization for suppression of scintigraphic ischemia in high-risk but stable survivors of acute myocardial infarction. J Am Coll Cardiol. 2006;48:2458–2467. doi: 10.1016/j.jacc.2006.07.068
- Yousef ZR, Redwood SR, Bucknall CA, Sulke AN, Marber MS. Late intervention after anterior myocardial infarction: effects on left ventricular size, function, quality of life, and exercise tolerance: results of the Open Artery Trial (TOAT Study). J Am Coll Cardiol. 2002;40:869–876. doi: 10.1016/s0735-1097(02)02058-2

- 21. Carlo DM, Mara S, Flavio A, Imad S, Antonio M, Anna P, Emanuela P, Stefano DS, Angelo R, Stefania C, Anna F, Carmelo C, Antonio C, Monzini N, Bonardi MA. Single vs multivessel treatment during primary angioplasty: results of the multicentre randomised HEpacoat[™] for cuLPrit or multivessel stenting for Acute Myocardial Infarction (HELP AMI) Study. *Int J Cardiovasc Intervent*. 2004;6:128–133. doi: 10.1080/14628840310030441
- Politi L, Sgura F, Rossi R, Monopoli D, Guerri E, Leuzzi C, Bursi F, Sangiorgi GM, Modena MG. A randomised trial of target-vessel versus multi-vessel revascularisation in ST-elevation myocardial infarction: major adverse cardiac events during long-term follow-up. *Heart.* 2010;96:662– 667. doi: 10.1136/hrt.2009.177162
- Dambrink JH, Debrauwere JP, van 't Hof AW, Ottervanger JP, Gosselink AT, Hoorntje JC, de Boer MJ, Suryapranata H. Non-culprit lesions detected during primary PCI: treat invasively or follow the guidelines? *EuroIntervention*. 2010;5:968–975. doi: 10.4244/
- 24. Gershlick AH, Khan JN, Kelly DJ, Greenwood JP, Sasikaran T, Curzen N, Blackman DJ, Dalby M, Fairbrother KL, Banya W, Wang D, Flather M, Hetherington SL, Kelion AD, Talwar S, Gunning M, Hall R, Swanton H, McCann GP. Randomized trial of complete versus lesion-only revascularization in patients undergoing primary percutaneous coronary intervention for STEMI and multivessel disease: the CvLPRIT trial. J Am Coll Cardiol. 2015;65:963–972. doi: 10.1016/j.jacc.2014.12.038
- Hamza M, Mahmoud AN, Elgendy IY. A Randomized Trial of complete versus culprit-only revascularization during primary percutaneous coronary intervention in diabetic patients with acute ST elevation myocardial infarction and multi vessel disease: complete versus culprit revascularization in stemi diabetic patients. J Intervent Cardiol. 2016;29:241–247. doi: 10.1111/joic.12293
- 26. Zhang J, Wang Q, Yang H, Ma L, Fu X, Hou W, Feng J, Liu X. [Evaluation of different revascularization strategies for patients with acute myocardial infarction with lesions of multiple coronary arteries after primary percutaneous coronary intervention and its economic evaluation]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2015;27:169–174. doi: 10.3760/cma.j.issn.2095-4352.2015.03.003
- 27. Engstrøm T, Kelbæk H, Helqvist S, Høfsten DE, Kløvgaard L, Holmvang L, Jørgensen E, Pedersen F, Saunamäki K, Clemmensen P, DeBacker O, Ravkilde J, Tilsted H-H, Villadsen AB, Aarøe J, Jensen SE, Raungaard B, Køber L. Complete revascularisation versus treatment of the culprit lesion only in patients with ST-segment elevation myocardial infarction and multivessel disease (DANAMI-3—PRIMULTI): an open-label, randomised controlled trial. *The Lancet*. 2015;386:665–671.
- Wald DS, Morris JK, Wald NJ, Chase AJ, Edwards RJ, Hughes LO, Berry C, Oldroyd KG; PRAMI Investigators. Randomized trial of preventive angioplasty in myocardial infarction. *N Engl J Med.* 2013;369:1115–1123. doi: 10.1056/NEJMoa1305520
- Smits PC, Abdel-Wahab M, Neumann FJ, Boxma-de Klerk BM, Lunde K, Schotborgh CE, Piroth Z, Horak D, Wlodarczak A, Ong PJ, Hambrecht R, Angerås O, Richardt G, Omerovic E; Compare-Acute Investigators. Fractional flow reserve-guided multivessel angioplasty in myocardial infarction. N Engl J Med. 2017;376:1234–1244. doi: 10.1056/NEJMoa1701067
- Anderson HV, Cannon CP, Stone PH, Williams DO, McCabe CH, Knatterud GL, Thompson B, Willerson JT, Braunwald E. One-year results of the Thrombolysis in Myocardial Infarction (TIMI) IIIB clinical trial. A randomized comparison of tissue-type plasminogen activator versus placebo and early invasive versus early conservative strategies in unstable angina and non-Q wave myocardial infarction. J Am Coll Cardiol. 1995;26:1643– 1650. doi: 10.1016/0735-1097(95)00404-1
- Wallentin L, Lagerqvist B, Husted S, Kontny F, Ståhle E, Swahn E. Outcome at 1 year after an invasive compared with a non-invasive strategy in unstable coronary-artery disease: the FRISC II invasive randomised trial. FRISC II Investigators. Fast revascularisation during instability in coronary artery disease. *Lancet*. 2000;356:9–16. doi: 10.1016/s0140-6736(00)02427-2
- Michalis LK, Stroumbis CS, Pappas K, Sourla E, Niokou D, Goudevenos JA, Siogas C, Sideris DA. Treatment of refractory unstable angina in geographically isolated areas without cardiac surgery. Invasive versus conservative strategy (TRUCS study). *Eur Heart J.* 2000;21:1954–1959. doi: 10.1053/euhj.2000.2397
- 33. Fox KA, Poole-Wilson PA, Henderson RA, Clayton TC, Chamberlain DA, Shaw TR, Wheatley DJ, Pocock SJ; Randomized Intervention Trial of unstable Angina Investigators. Interventional versus conservative treatment for patients with unstable angina or non-ST-elevation myocardial infarction: the British Heart Foundation RITA 3 randomised trial. Randomized Intervention Trial of unstable angina. *Lancet*. 2002;360:743–751. doi: 10.1016/s0140-6736(02)09894-x

- 34. Spacek R, Widimský P, Straka Z, Jiresová E, Dvorák J, Polásek R, Karel I, Jirmár R, Lisa L, Budesínský T, Málek F, Stanka P. Value of first day angiography/angioplasty in evolving non-ST segment elevation myocardial infarction: an open multicenter randomized trial. The VINO Study. *Eur Heart J*. 2002;23:230–238. doi: 10.1053/euhj.2001.2735
- 35. Cannon CP, Weintraub WS, Demopoulos LA, Vicari R, Frey MJ, Lakkis N, Neumann FJ, Robertson DH, DeLucca PT, DiBattiste PM, Gibson CM, Braunwald E; TACTICS (Treat Angina with Aggrastat and Determine Cost of Therapy with an Invasive or Conservative Strategy)–Thrombolysis in Myocardial Infarction 18 Investigators. Comparison of early invasive and conservative strategies in patients with unstable coronary syndromes treated with the glycoprotein Ilb/Illa inhibitor tirofiban. N Engl J Med. 2001;344:1879–1887. doi: 10.1056/NEJM200106213442501
- 36. de Winter RJ, Windhausen F, Cornel JH, Dunselman PH, Janus CL, Bendermacher PE, Michels HR, Sanders GT, Tijssen JG, Verheugt FW; Invasive versus Conservative Treatment in Unstable Coronary Syndromes (IC-TUS) Investigators. Early invasive versus selectively invasive management for acute coronary syndromes. *N Engl J Med.* 2005;353:1095–1104. doi: 10.1056/NEJMoa044259
- 37. Sanchis J, Núñez E, Barrabés JA, Marín F, Consuegra-Sánchez L, Ventura S, Valero E, Roqué M, Bayés-Genís A, Del Blanco BG, Dégano I, Núñez J. Randomized comparison between the invasive and conservative strategies in comorbid elderly patients with non-ST elevation myocardial infarction. *Eur J Intern Med.* 2016;35:89–94. doi: 10.1016/j. ejim.2016.07.003
- 38. Savonitto S, Cavallini C, Petronio AS, Murena E, Antonicelli R, Sacco A, Steffenino G, Bonechi F, Mossuti E, Manari A, Tolaro S, Toso A, Daniotti A, Piscione F, Morici N, Cesana BM, Jori MC, De Servi S; Italian Elderly ACS Trial Investigators. Early aggressive versus initially conservative treatment in elderly patients with non-ST-segment elevation acute coronary syndrome: a randomized controlled trial. *JACC Cardiovasc Interv*. 2012;5:906–916. doi: 10.1016/j.jcin.2012.06.008
- 39. Tegn N, Abdelnoor M, Aaberge L, Endresen K, Smith P, Aakhus S, Gjertsen E, Dahl-Hofseth O, Ranhoff AH, Gullestad L, Bendz B; After Eighty study investigators. Invasive versus conservative strategy in patients aged 80 years or older with non-ST-elevation myocardial infarction or unstable angina pectoris (After Eighty study): an openlabel randomised controlled trial. *Lancet.* 2016;387:1057–1065. doi: 10.1016/S0140-6736(15)01166-6
- Parisi AF, Folland ED, Hartigan P. A comparison of angioplasty with medical therapy in the treatment of single-vessel coronary artery disease. Veterans affairs ACME Investigators. N Engl J Med. 1992;326:10–16. doi: 10.1056/NEJM199201023260102
- Hueb WA, Bellotti G, de Oliveira SA, Arie S, de Albuquerque CP, Jatene AD, Pileggi F. The Medicine, Angioplasty or Surgery Study (MASS): a prospective, randomized trial of medical therapy, balloon angioplasty or bypass surgery for single proximal left anterior descending artery stenoses. J Am Coll Cardiol. 1995;26:1600–1605. doi: 10.1016/0735-1097(95)00384-3
- 42. Folland ED, Hartigan PM, Parisi AF. Percutaneous transluminal coronary angioplasty versus medical therapy for stable angina pectoris: outcomes for patients with double-vessel versus single-vessel coronary artery disease in a Veterans Affairs Cooperative randomized trial. Veterans affairs ACME investigatorS. J Am Coll Cardiol. 1997;29:1505–1511. doi: 10.1016/s0735-1097(97)00097-1
- Davies RF, Goldberg AD, Forman S, Pepine CJ, Knatterud GL, Geller N, Sopko G, Pratt C, Deanfield J, Conti CR. Asymptomatic Cardiac Ischemia Pilot (ACIP) study two-year follow-up: outcomes of patients randomized to initial strategies of medical therapy versus revascularization. *Circulation*. 1997;95:2037–2043. doi: 10.1161/01.cir.95.8.2037
- 44. Coronary angioplasty versus medical therapy for angina: the second Randomised Intervention Treatment of Angina (RITA-2) trial. *Lancet*. 1997;350:461–468.
- Bertram P, David W, Virgil BW. Aggressive lipid-lowering therapy compared with angioplasty in stable coronary artery disease. N Engl J Med. 1999;7.
- Bech GJ, De Bruyne B, Pijls NH, de Muinck ED, Hoorntje JC, Escaned J, Stella PR, Boersma E, Bartunek J, Koolen JJ, Wijns W. Fractional flow reserve to determine the appropriateness of angioplasty in moderate coronary stenosis: a randomized trial. *Circulation*. 2001;103:2928–2934. doi: 10.1161/01.cir.103.24.2928
- 47. TIME Investigators. Trial of invasive versus medical therapy in elderly patients with chronic symptomatic coronary-artery disease (TIME): a randomised trial. *Lancet*. 2001;358:951–957. doi: 10.1016/S0140-6736(01)06100-1

- Hueb W, Soares PR, Gersh BJ, César LA, Luz PL, Puig LB, Martinez EM, Oliveira SA, Ramires JA. The medicine, angioplasty, or surgery study (MASS-II): a randomized, controlled clinical trial of three therapeutic strategies for multivessel coronary artery disease: one-year results. J Am Coll Cardiol. 2004;43:1743–1751. doi: 10.1016/j.jacc.2003.08.065
- Hambrecht R, Walther C, Möbius-Winkler S, Gielen S, Linke A, Conradi K, Erbs S, Kluge R, Kendziorra K, Sabri O, Sick P, Schuler G. Percutaneous coronary angioplasty compared with exercise training in patients with stable coronary artery disease: a randomized trial. *Circulation*. 2004;109:1371– 1378. doi: 10.1161/01.CIR.0000121360.31954.1F
- Boden WE, O'Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ, Knudtson M, Dada M, Casperson P, Harris CL, Chaitman BR, Shaw L, Gosselin G, Nawaz S, Title LM, Gau G, Blaustein AS, Booth DC, Bates ER, Spertus JA, Berman DS, Mancini GB, Weintraub WS; COURAGE Trial Research Group. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med. 2007;356:1503–1516. doi: 10.1056/NEJMoa070829
- De Bruyne B, Pijls NH, Kalesan B, Barbato E, Tonino PA, Piroth Z, Jagic N, Möbius-Winkler S, Mobius-Winckler S, Rioufol G, Witt N, Kala P, MacCarthy P, Engström T, Oldroyd KG, Mavromatis K, Manoharan G, Verlee P, Frobert O, Curzen N, Johnson JB, Jüni P, Fearon WF; FAME 2 Trial Investigators. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. *N Engl J Med*. 2012;367:991–1001. doi: 10.1056/NEJMoa1205361
- 52. Nishigaki K, Yamazaki T, Kitabatake A, Yamaguchi T, Kanmatsuse K, Kodama I, Takekoshi N, Tomoike H, Hori M, Matsuzaki M, Takeshita A, Shimbo T, Fujiwara H; Japanese Stable Angina Pectoris Study Investigators. Percutaneous coronary intervention plus medical therapy reduces the incidence of acute coronary syndrome more effectively than initial medical therapy only among patients with low-risk coronary artery disease a randomized, comparative, multicenter study. *JACC Cardiovasc Interv.* 2008;1:469–479. doi: 10.1016/j.jcin.2008.08.002
- BARI 2D Study Group, Frye RL, August P, Brooks MM, Hardison RM, Kelsey SF, MacGregor JM, Orchard TJ, Chaitman BR, Genuth SM, Goldberg SH,

Hlatky MA, Jones TL, Molitch ME, Nesto RW, Sako EY, Sobel BE. A Randomized Trial of therapies for type 2 diabetes and coronary artery disease. *N Engl J Med*. 2009;360:2503–2515. doi: 10.1056/NEJMoa0805796

- 54. Hochman JS, Reynolds HR, Bangalore S, O'Brien SM, Alexander KP, Senior R, Boden WE, Stone GW, Goodman SG, Lopes RD, Lopez-Sendon J, White HD, Maggioni AP, Shaw LJ, Min JK, Picard MH, Berman DS, Chaitman BR, Mark DB, Spertus JA, Cyr DD, Bhargava B, Ruzyllo W, Wander GS, Chernyavskiy AM, Rosenberg YD, Maron DJ; ISCHEMIA Research Group. Baseline Characteristics and risk profiles of participants in the ISCHEMIA Randomized Clinical Trial. JAMA Cardiol. 2019;4:273–286. doi: 10.1001/jamacardio.2019.0014
- Nowbar AN, Gitto M, Howard JP, Francis DP, Al-Lamee R. Mortality from ischemic heart disease: Analysis of data from the World Health Organization and coronary artery disease risk factors From NCD Risk Factor Collaboration. *Circ Cardiovasc Qual Outcomes*. 2019;12:e005375. doi: 10.1161/CIRCOUTCOMES.118.005375
- 56. Al-Lamee RK, Shun-Shin MJ, Howard JP, Nowbar AN, Rajkumar C, Thompson D, Sen S, Nijjer S, Petraco R, Davies J, Keeble T, Tang K, Malik I, Bual N, Cook C, Ahmad Y, Seligman H, Sharp ASP, Gerber R, Talwar S, Assomull R, Cole G, Keenan NG, Kanaganayagam G, Sehmi J, Wensel R, Harrell FE Jr, Mayet J, Thom S, Davies JE, Francis DP. Dobutamine stress echocardiography ischemia as a predictor of the placebo-controlled efficacy of percutaneous coronary intervention in stable coronary artery disease: The stress echocardiography-stratified analysis of ORBITA. *Circulation*. 2019;140:1971–1980. doi: 10.1161/CIRCULATIONAHA.119.042918
- 57. Al-Lamee R, Thompson D, Dehbi HM, Sen S, Tang K, Davies J, Keeble T, Mielewczik M, Kaprielian R, Malik IS, Nijjer SS, Petraco R, Cook C, Ahmad Y, Howard J, Baker C, Sharp A, Gerber R, Talwar S, Assomull R, Mayet J, Wensel R, Collier D, Shun-Shin M, Thom SA, Davies JE, Francis DP; ORBITA investigators. Percutaneous coronary intervention in stable angina (ORBI-TA): a double-blind, randomised controlled trial. *Lancet.* 2018;391:31–40. doi: 10.1016/S0140-6736(17)32714-9