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Influence of muscle fatigue on
electromyogram–kinematic correlation
during robot-assisted upper limb training

Azeemsha T Poyil , Volker Steuber and
Farshid Amirabdollahian

Abstract

Introduction: Studies on adaptive robot-assisted upper limb training interactions do not often consider the implica-

tions of muscle fatigue sufficiently.

Methods: To explore this, we initially assessed muscle fatigue in 10 healthy subjects using two electromyogram features,

namely average power and median power frequency, during an assist-as-needed interaction with HapticMaster robot.

Since robotic assistance resulted in a variable fatigue profile across participants, a completely tiring experiment, without

a robot in the loop, was also designed to confirm the results.

Results: A significant increase in average power and a decrease in median frequency were observed in the most active

muscles. Average power in the frequency band of 0.8–2.5Hz and median frequency in the band of 20–450Hz are

potential fatigue indicators. Also, comparing the Spearman’s correlation coefficients (between the electromyogram

average power and the kinematic force) across trials indicated that correlation was reduced as individual muscles

were fatigued.

Conclusions: Confirming fatigue indicators, this study concludes that robotic assistance based on user’s performance

resulted in lesser muscle fatigue, which caused an increase in electromyogram–force correlation. We now intend to

utilise the electromyogram and kinematic features for auto-adaptation of therapeutic human–robot interactions.
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Introduction

A Human–robot interaction (HRI) study is used to
understand, design and evaluate different robotic sys-
tems for use by or with humans, which involves com-

munication between robots and humans.1 Designing a
HRI system requires evaluating the capabilities of
humans and robots, using suitable training and tech-
nologies allowing to produce the desirable interactions

between them. Robotic systems have been used in the
context of exercise/rehabilitation training for many
years. Robots can also help to improve the quality of
life by assisting people with disabilities.2 Assistive

robots can sense, process the sensory information and
perform actions that benefit seniors and people with
disabilities.3 Hence, they can provide support when
access to health care professionals is limited, e.g. out

of hours or due to limited availability. To provide a
purposeful interaction, knowledge of the person

interacting with the robot is an important contributor
to the success of the task. The current study explores
the usability of electromyogram (EMG)-based
features in HRI and the influence of muscle fatigue
on EMG–kinematic correlation.

Muscle fatigue is defined as the decline in the ability
of muscles to generate force/power during a physical
task.4,5 Fatigue is also defined as any exercise or
non-exercise-induced loss in total performance due
to various physiological factors, athlete-reported
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psychological factors or a combination of the two.6

Muscle fatigue usually results in a feeling of tiredness
or forces a person to take rest because of lack of
strength, and it develops gradually during a physical
activity.7 Muscle fatigue is the consequence of a variety
of physiological changes within the working
muscle.5,7–9 Studies have observed that muscle fatigue
is associated with lower median frequencies and higher
amplitudes in EMG signals.10–13 However, this obser-
vation has not been tested sufficiently in the context of
a ‘shared control’ strategy of a robot-assisted system.
A shared control strategy, for example, ‘assist as
needed’ is used in HRI systems,14 that are based on
impedance/admittance control.15 With the help of
this, it is possible to create virtual effects such as
weight, virtual drag or haptic sensation in a rehabilita-
tion training, and the resistive environment can be
adjusted by a robotic algorithm.16 Shared control
with robots has been reported to be helpful for regain-
ing motor skills.16–19

Past studies on EMG–kinematic correlation during
HRIs have mainly concentrated on isometric contrac-
tions (where the length of muscles does not change
during the contractions). However, the current context
of research is related to non-isometric/isotonic muscle
contractions (contractions, which generate force by
changing the length of the involved muscles20).
Similar to the findings by Jenkins et al.,21 the non-
linearity in the relationship between the muscle force
and EMG amplitude during fatigue might probably
affect the correlation coefficient in an isotonic context
as well. As stated by Dideriksen et al.,22 the EMG
signal amplitudes showed an increase when force was
maintained at the target level. But during fatigue (i.e.
beyond task failure), the EMG amplitude started
reducing and the target force could not be maintained
any longer. This indicates that during fatigue, the linear
relation between EMG and force is not completely
clear as it depends on multiple neuro-muscular
conditions.

This paper presents two related studies. At first, a
feasibility study is presented as the first experiment,
which was conducted on healthy individuals to explore
how upper limb muscle fatigue can be estimated using
EMG features (average power and median frequency)
in a robot-assisted environment.23 The experiment used
the HapticMaster (HM) robot to provide assistance
during upper limb tasks, which also allowed users to
be monitored by sensing the user’s hand movements
through its end-effector. In the active-assisted mode
of the HM, the subject has to initiate the activity,
after which the HM robot would assist/guide the sub-
ject for the rest of the movement.24 A self-reported
fatigue questionnaire was used, which showed that
the majority of the participants only reported slight

fatigue after the experiment. A potential trend in sev-
eral EMG features was observed in the robot-assisted
environment, but this was not uniform between partic-
ipants. The correlation between EMG and kinematic
force was also studied to observe how fatigue reflected
in EMG features relates to changes in interaction
forces recorded during the experiment. As the experi-
ment was performed in an active-assisted mode, the
robot provided assistance/guidance to the participant,
and there was less effort from the participants to
move the end-effector along the different segments.
We believe that this could have resulted in a reduction
of muscle fatigue. To ensure that the EMG features
used could indeed identify fatigue correctly, the
second experiment was planned with an inherently
fatiguing set-up without robotic assistance. The second
study confirms the chosen features, allowing to relate to
the observations from the first study.

Background

People with neurological impairments often need to use
extensive rehabilitation training for regaining their lost
motor functions. It has been suggested that exercising
improves a patient’s capacity to undertake physical
activities.25 Studies have shown that repetition and
practice could cause plastic changes in the human
brain and, hence, an improved task performance.26–29

Robots have the potential to improve the recovery pro-
cess in stroke patients as evidenced by regaining func-
tions.30 Robots have the capability to deliver many
repetitions in training exercises and also to record
movements during the interaction. Few studies have
explored kinematic features measured by the robot to
adapt the rehabilitation training environment using
HM robot.24,31,32 However, most rehabilitation robotic
studies do not consider fatigue as a driving parameter
for an adaptive HRI. Since muscle fatigue may place
patients at risk of further injury,33 training under high
levels of fatigue may be avoided by monitoring fatigue
and by adapting the training accordingly.34 Monitoring
fatigue can also provide important feedback needed to
adjust training loads accordingly.6,35 Such a system will
also have potential applications in other HRI contexts
such as robot-assisted muscle training. A system that
can sense the muscular state (for example level of pain
or stiffness) of patients has the potential to improve the
adaptability of the training environment and hence,
increasing the amount of training.

Muscular activation during the robotic interaction
can be obtained through EMG measurements. EMG is
a very useful resource and is being increasingly used by
the research community. It has the potential to provide
a measure of muscle tiredness/fatigue during training
interactions. Few studies have explored the fatigue

2 Journal of Rehabilitation and Assistive Technologies Engineering



state of participants based on EMG signals of the
upper limb during robotic interactions.36,37 However,
the EMG fatigue parameter was only used to cross-
validate the subjective measurement of fatigue. These
studies have mainly suggested that the muscle fatigue
parameters can be detected from upper limb muscles.

During HRIs, the relationship between EMG and
kinematic force measurements has been reported to
be unclear. During dynamic muscle actions, both
linear and non-linear relationships between EMG
amplitudes and resultant force have been identified.21,38

EMG amplitude in isometric muscle contractions is
reported to be directly proportional to the square
root of the resultant force when the motor units
(MUs) are activated independently.39 A linear relation
between EMG and force can occur when full MU is
recruited before the MU firing starts increasing.38

A non-linear relation will start when MU recruitment
and MU firing frequency contribute together. Hence,
different muscles will have different EMG–force rela-
tionships since they have different strategies for MU
recruitment.39 During low levels of muscular force,
both the MU recruitment and the firing rate changes
are used to change muscle force. But during higher
levels of force (approximately more than 30% of max-
imum voluntary contraction value), most of the
muscles MUs remain already recruited.40 In such a
case, the changes in muscle force are caused by a
change in firing rates of MUs.

The power spectrum for force and EMG was
reported to contain the most of the power below
0.5Hz and they were found to be correlated.41

The low-frequency components (low pass filter at
�0.5Hz) of a rectified EMG during constant force
tasks were found to be correlated with the interference
(actual) EMG signals in the frequency band of
35–60Hz. On the other hand, a study by Lin et al.42

on fatigue effects during isometric contractions stated
that the power spectrum of a rectified EMG signal dis-
played a reduction in the gamma EMG oscillations (40–
60Hz of EMG signals) when fatigue occurred. A corre-
lation of EMG signals with exerted force parameters
was also indicated by studies of Yoshitake and
Shinohara,43 but the study concentrated on the steady
sub-maximal force values rather than dynamic and vary-
ing forces. The study stated that the smoothed MU dis-
charge rates were more correlated with the rate of
change of force than with the force parameters directly.
A correlation was also noticed with the low-frequency
component of rectified and smoothed EMG.

Experiment 1

The first experiment was conducted to validate EMG
features and to explore if they could represent the state

of upper limb muscle fatigue in healthy participants

during a robot-assisted experiment.23

Methods

The experiment was designed as in Figure 2. Ethics

approval was obtained from the University of

Hertfordshire (COM/PGT/UH/02002) board of

ethics. Written consent was obtained from all individ-

ual participants included in the study.

Setup. The study used the HM robot as an interaction

tool while performing upper limb reaching tasks. When

the user exerts a force on the HM arm, the device will

react with the proper displacement, from which the

position, velocity and acceleration can be calculated

using a virtual model. The admittance control para-

digm makes the HM robot capable of rendering high

stiffness, near-to-zero friction and zero end-effector

weight, giving a very low-impedance motion.15 HM

measures the applied force using the force sensor in

the end-effector. In this experiment, the robot was con-

figured in an active-assisted mode, where the subject

only had to initiate the activity, after which the HM

robot assisted/guided the subject for continuing the rest

of the movement.24 This mode was initially selected to

create the same environment when a stroke patient

performs upper limb training tasks with robotic assis-

tance. The participants were asked to hold the ball

attached to the end-effector of HM with their right

hand and to move between various points. A Cþþ
code running on a Windows 7 (64 bit) machine using

Visual Studio 2009 was used to configure the virtual

reality (VR) environment and the HM. The VR envi-

ronment was developed with the help of OpenGL

libraries. A simulated 2D environment was created to

offer visual guidance for the planned movement and its

correct execution. A small yellow ball in the VR envi-

ronment represented the robot end-effector and this

was directly mapped to the movement of the end-

effector in the real space.44 Some level of challenge

was introduced for having active participation and

motivating the participants to win over the robot.

A grey coloured cylinder represented the path to be

followed by the robot according to minimum jerk tra-

jectory.24 A red-coloured cylinder represented the

actual path achieved by the robot when the participant

interacted with the environment. When the participant

moved slower than the robot, the red cylinder would

lag behind the grey cylinder. When the participant is

ahead of the robot, the red cylinder would lead the grey

cylinder.44 The user interface also provided provision

for configuring different robotic parameters such as

stiffness, inertia and so on. EMG signals from upper

Poyil et al. 3



limb muscles were collected using a Biometrics Ltd

DataLINK signal acquisition device as in Figure 1.

Protocol. Before starting the experiment, the partici-

pants were given a practice session to become familiar

with the HM operation in the active-assisted mode.

They were asked to hold the gimbal of the HM (its

end-effector) and move according to the trajectory dis-

played on the monitor. The participants were asked to

fill in a questionnaire in the beginning and at the end of

the experiment indicating their fatigue status and diffi-

culty of the task.
Ten right-handed healthy participants of at least

20 years old took part in the experiment. The study

concentrated on the gross movements of upper limbs,

which involve larger muscles like Biceps Brachii (BB),

Triceps Brachii (TB), Anterior Deltoid (DLT) and

Trapezius (TRP). A ‘rectangle’ shaped movement pat-

tern was defined in the XY plane of the VR environ-

ment on a 24" wide LCD monitor as in Figure 2. By

maintaining a 90� abduction angle for the shoulder, the

arm movements were constrained to a plane that is in

line with the shoulder centre of rotation. This position

was thought to help create fatigue for the muscles

around the shoulder, since the hand and the elbow

were positioned at shoulder height.45,46 Participants

were asked to sit straight on a non-rotating chair.

Audio feedback was given regarding the start and

end of each trial. Each trial consisted of 10 iterations,

and one iteration was a sequence of four segmented

movements named S1, S2, S3 and S4 traversing rectan-

gle sides as in Figure 3. The path between a source

point and a destination point is termed a segment.

Each trial lasted around 6min including the 5 sec

break in between iterations. After each trial, there

was a short break period of 1–2min.47 The experiment

was conducted until the subject reported fatigue or

until a maximum of six trials were reached.

Methodology. EMG average power and median frequen-
cy were calculated for each segment. These features
were analysed using IBM SPSS version 22 and
MATLAB. Summary tables were generated by com-
paring the feature values during the first and last
trials for each subject. Correlation between the EMG
and the kinematic data (represented by the 3D
Cartesian force as in Fx, Fy and Fz) was studied after
conducting a mapping between the EMG and kinemat-
ic measurements based on the time and segment infor-
mation from the HM data. In order to do this
mapping, the time-stamp from the HM and EMG log
files were used. Based on this mapping, the EMG and
kinematic data were divided into four segments in a
mapped file. The study was conducted after splitting
the data into small windows. The window size for the
EMG analysis was decided based on the number of
samples per segment of the kinematic data. The sam-
pling rates for EMG (1000Hz) and kinematic data
were different (151 samples per segment). So, before

Figure 1. Experiment 1 setup: HapticMaster, EMG device and
virtual reality environment.

Figure 2. Experiment 1 protocol.

Figure 3. Experiment 1 – Sitting position of participants.
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the correlation study, in order to make the number of

features on both sides equal, each iteration per segment

of EMG data was divided into 151 windows/blocks of

equal length. A few numbers of replications had to be

made at the end of each segment to make the total size

divisible by 151 and thus to make them of equal length.

However, these replications to adjust the window width

would not propagate to the next segment since the total

windows in each iteration of a segment were bounded

by the start and end of the segment. Thus, for each of

the 151 windows, the average power was calculated.

The corresponding raw values of force components

(Fx, Fy and Fz) were low-pass filtered at 0.5Hz for

removing any high-frequency variations.
The objective was to compare how EMG features

and force components varied overtime using correlation

analysis. The features derived from EMG were used to

see if there was a relation with the kinematic force com-

ponents, and it was investigated how the correlation was

affected as the trials progressed. The average power of

EMG and the force components (Fx, Fy and Fz) were

compared segment-wise for each of the four muscles

(TRP, DLT, BB and TB) separately. Since the kinematic

features were not normally distributed, Spearman’s cor-

relation was used for the correlation study. Then, the

correlation was studied between these two features for

each segment separately. The correlation was studied by

considering all the subjects together, and also by consid-

ering the subjects separately. Finally, each trial was con-

sidered separately for each of the subjects, and the

results were then used to assess how the muscle fatigue

would affect the correlation coefficients as the trials

progressed.

Results

The mean values of the potential fatigue indicators

(average power and median frequency of the EMG)

in the first and last trials were compared. The summary

of the results of the EMG analysis is shown in

Table 1.23 The mean value of average power in the

last trial was higher than that in the first trial, and

the mean value of median frequency in the last trial

was lower than the first trial in the majority of the

participants. The answers to the fatigue questionnaire

indicated that there was a slight level of fatigue expe-

rienced by the subjects after the experiment. A majority

of the participants stated that they were ‘somewhat

fatigued’, while one of them was ‘very fatigued’ and

another participant was ‘not fatigued’. The difficulty

level of the experiment was reported as easy/moderate

by most of the participants. All the participants

responded that they could still continue the experiment.

Table 1. Experiment 1: Summary table for EMG average power. The average power for 10 subjects displayed an increase in its
median value as the trials progressed. This was more visible in the TRP and DLT muscles. A ‘1’ indicated that there was an increase in
the average power and a ‘0’ otherwise.

Feature -> EMG average power

Hypothesis ->
The mean value of EMG average power in the first trial is smaller than that of the last trial

(1¼TRUE, 0¼ FALSE)

Methodology ->
Compare the mean values of the parameter between first and last trials to see if there is

an increase. Each trial includes 10 iterations.

Muscles -> TRP DLT BB TB

Segments -> S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4

Subject 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1

Subject 2 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0

Subject 3 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1

Subject 4 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0

Subject 5 0 0 0 0 1 1 1 1 0 0 1 0 1 1 1 1

Subject 6 1 1 1 0 0 1 1 1 0 0 1 0 0 0 0 0

Subject 7 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0

Subject 8 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 0

Subject 9 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0

Subject 10 0 1 1 1 1 1 1 1 0 0 1 1 1 0 1 0

TOTAL 6 7 6 5 6 8 7 7 2 2 7 4 5 3 5 3

Fatigue Score 24 28 15 16

Percentage % 60 70 37.5 40

Poyil et al. 5



The majority of them stated that the duration and the

difficulty level of the experiment were moderate.

Correlation study. A typical amplitude of a force compo-

nent (Fx) for Trial 1 during the different segment

movements is shown in Figure 4. A change in their

sign indicates a change in the direction on the

movements.
Correlation table based on raw force components

and EMG average power considering all the subjects

together, separated by different segments and different

muscles, is described in Table 2. Spearman’s correla-

tion coefficients generated using SPSS showed a weak

or moderate correlation between the EMG and kine-

matic features. The results were similar when individual

subjects were considered for the correlation study.

Figure 4. A typical force component (Fx) measured by
HapticMaster robot during Trial 1 of Subject 8. The colours
represent different segments of movement (S1, S2, S3 and S4).

Table 2. Correlation table based on raw force components and EMG average power for all subjects together. 151 analysis windows
were considered for each segment and each muscle. Spearman’s method was used for the correlation study.

Correlation between raw force components and EMG average power

Segment 1

AvgPower

TRP

AvgPower

DLT

AvgPower

BB

AvgPower

TB

Spearman’s rho Force_X Correlation coefficient –.235a .283a .129a .370a

Sig. (two-tailed) .000 .000 .000 .000

Force_Y Correlation coefficient .229a –.293a –.168a –.419a

Sig. (two-tailed) .000 .000 .000 .000

Force_Z Correlation coefficient .290a –.087a .176a .101a

Sig. (two-tailed) .000 .000 .000 .000

Segment 2

Spearman’s rho Force_X Correlation coefficient .299a .164a –.187a –.492a

Sig. (two-tailed) .000 .000 .000 .000

Force_Y Correlation coefficient .292a .116a –.099a –.471a

Sig. (two-tailed) .000 .000 .000 .000

Force_Z Correlation coefficient .165a .199a .246a .045a

Sig. (two-tailed) .000 .000 .000 .000

Segment 3

Spearman’s rho Force_X Correlation coefficient .118a .259a .038a –.485a

Sig. (two-tailed) .000 .000 .000 .000

Force_Y Correlation coefficient –.034a –.362a –.047a .175a

Sig. (two-tailed) .000 .000 .000 .000

Force_Z Correlation coefficient .136a –.071a .065a 0.001

Sig. (two-tailed) .000 .000 .000 .769

Segment 4

Spearman’s rho Force_X Correlation coefficient .141a –.102a .414a .252a

Sig. (two-tailed) .000 .000 .000 .000

Force_Y Correlation coefficient 0.003 –.105a .378a .262a

Sig. (two-tailed) .504 .000 .000 .000

Force_Z Correlation coefficient .403a .222a .130a .099a

Sig. (two-tailed) .000 .000 .000 .000

aCorrelation is significant at the 0.01 level (two-tailed).
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To see if fatigue caused any changes in the correla-

tion coefficient, the initial and final trials were com-

pared. A summary table was also formed based on

the trend in correlation coefficients as the trials pro-

gressed as shown in Table 3. The hypothesis was that

there would be a decrease in the value of the correlation

coefficient as the trials progressed. A value of ‘1’ indi-

cated that there was a decrease in the correlation in the

last trial compared to the first trial.

Experiment 2

The results of Experiment 1 gave an indication of the

potential of EMG parameters to be used as fatigue

indicators during HRI. However, the robot was config-

ured in ‘active-assisted’ mode and, hence, the addition-

al support resulted in less fatigue. The questionnaires

also stated that there was a low level of fatigue experi-

enced by the participants after the experiment. The

majority of the participants stated that they were

‘somewhat fatigued’. The difficulty level of the experi-

ment was reported as easy/moderate by most of the

participants. All the participants responded that they

could still continue the experiment. This did not allow

the experimenters to fully evaluate the suitability of the

EMG features for fatigue estimation, in the chosen

context of HRI. Hence, it was decided to conduct a

second experiment, designed to be inherently fatiguing,

to verify if the low level of fatigue measured in

Experiment 1 could be mainly due to the robotic assis-

tance. The second experiment, therefore, considered a

similar observation without the aid of a robot and

using a dumbbell instead. The second experiment was

formulated with assistance from colleagues in sports

science studies, involving a biceps curl exercise.

Methods

Setup. The experiment setup included an EMG acqui-

sition device (g.USBamp) from g.tec medical engineer-

ing GmbH, which is a multimodal biosignal amplifier

for multiple electrophysiological signals. An electrode

cable with a clip lead was attached to disposable elec-

trodes to measure EMG signals from three major

upper limb muscles of the participants as shown in

Figure 5. The data acquisition parameters (sampling

rate, channel selection and so on) for the g.USBamp

amplifier were configured using Simulink. Three EMG

electrode channels were configured in bipolar mode

with a sampling frequency of 1200Hz. The measure-

ments were taken during each trial.

Protocol. Twenty (14 males, 6 females) healthy partici-

pants of at least 18 years old with no history of injury

to the upper limb and back were involved in this exper-

iment. Participants were students or staff members of

the University of Hertfordshire or volunteers from out-

side the university. Ethics approval was obtained from

the University of Hertfordshire board of ethics

(Protocol number: COM/PGR/UH/02741). Written

consent was obtained from all individual participants

included in the study. They were asked to sit straight on

a non-rotating chair. Three gross upper limb muscles,

BB, TB and Deltoid were studied and three EMG

Table 3. Summary table based on the trend in correlation coefficients as the trials progressed in segment 1.

Hypothesis: There will be a decrease in the value of correlation coefficient as the trials progress (1¼TRUE, 0¼ FALSE,

NA¼Unknown)

Force_X_LPF Force_Y_LPF Force_Z_LPF

TRP DLT BB TB TRP DLT BB TB TRP DLT BB TB

Subject 1 1 NA 0 NA 1 NA 1 NA 0 1 0 NA

Subject 2 1 1 1 1 1 1 1 NA 1 1 0 1

Subject 3 0 1 NA 1 0 1 NA 1 0 1 0 0

Subject 4 1 1 1 1 1 1 1 1 1 NA 1 NA

Subject 5 1 0 NA 1 1 0 NA 1 1 1 0 1

Subject 6 1 NA 1 1 1 1 1 1 1 1 1 1

Subject 7 0 0 1 1 1 0 0 1 1 1 1 NA

Subject 8 1 1 0 0 1 0 1 0 1 1 0 1

Subject 9 0 1 1 1 0 1 1 1 0 0 1 1

Subject 10 1 1 1 1 1 1 1 1 1 1 1 1

TOTAL 7 6 6 8 8 6 7 7 7 8 5 6

Percentage 70% 60% 60% 80% 80% 60% 70% 70% 70% 80% 50% 60%

Fatigue score 27 28 26

Overall percentage (%) 68% 70% 65%

TRP: Trapezius; DLT: Anterior Deltoid; BB: Biceps Brachii; TB: Triceps Brachii.

Poyil et al. 7



electrodes were attached to the participants’ upper
limb. The task involved biceps curl requiring elbow
flexion and extension movements as directed by visual
instructions on the screen. The instruction also
enforced uniform timing of flexion and extension for
all participants. Participants were asked to hold the
weights/dumbbell using their dominant arm. The
experiment progressed from no weight (Trial 1) to
low-weight (Trial 2), and then high-weight (Trial 3).
The initial trials also helped to warm up the muscles
reducing the risk of injury. A short break period of
1min was given between each experiment trial.

The initial two trials were conducted until a defined
number of iterations was reached. Trial 1 recorded the
relaxed state of muscles, which involved elbow flexion
and extension tasks with no weight. This task was
repeated 10 times continuously, where the starting
time was guided by a ‘Beep’ sound. The beep would
repeat every 10 sec since each iteration was defined to
take 10 sec to complete. In Trial 2, the participants
were asked to hold a small load of 500 g weight,
while performing the elbow flexion and extension
tasks and repeating this 10 times continuously or
until the muscles become fatigued. The start of each
iteration was again signalled by a beep. In Trial 3,
the participants were asked to carry a heavy load
(10 kg for a male participant and 7.5 kg for a female
participant) and this involved elbow flexion and exten-
sion tasks continuously until the muscles were fatigued.

The start of each iteration was signalled by a beep. The
participants were allowed to stop the repetition when
they were highly fatigued or unable to continue. In
addition to the EMG measurements from muscles, a
subjective measurement of fatigue at different stages
was also taken at the end of the experiment using a
questionnaire.

Methodology. Experiment 2 was conducted to verify if
the low level of fatigue in many subjects measured
through EMG fatigue indicators could be mainly due
to the robotic assistance during Experiment 1. EMG
average power was calculated from the measured EMG
data. Two types of analysis were conducted. Initially,
the variations in EMG average power were compared
across trials 1, 2 and 3 in each participant. Second, the
trend in EMG average power within Trial 3 was stud-
ied. Trial 3 was designed to be the most difficult task
that would cause muscle fatigue in the participants. In
both methods, linear regression coefficients were calcu-
lated. Regression line slopes with significant p-values
were used to state if there was a trend in the EMG
feature as the windows/trials progressed.

Since each iteration of flexion/extension tasks lasted
for 10 sec, non-overlapping windows with a length of
10 sec were used to analyse the EMG data. Many par-
ticipants did the first iteration very fast without looking
at the screen or without keeping in sync with the visual
directions on the computer monitor. Hence, during the
analysis, the initial window (10 sec) was skipped.

The collected EMG signals were filtered using an
Infinite Impulse Response (IIR) notch filter to remove
the power line interference at 50Hz. The signals were
then band-pass filtered using two different frequency
bands to explore which of the two EMG frequency
bands was more useful as fatigue indicator. Initially,
for the analysis of average power, the signals were
band-pass filtered in the frequency band 0.8–2.5Hz as
used by Octavia et al.36 However, in contrast to this, in
the current study, the signals were not full-wave recti-
fied, since it was noticed that the rectification process
altered the frequency content of the EMG and the
median frequency analysis would be affected. The
median frequency analysis was done within the whole
frequency band of 20–450 Hz.48,49 A non-overlapping
moving window of 10 sec width corresponding to each
iteration was used for generating each EMG feature
value. The existence of a trend in the EMG features
was studied by performing a linear regression of the
feature values as the analysis windows progressed.
Summary tables were formed based on significant
regression slopes of EMG features. The muscles BB
and TB were studied separately. In the summary table,
a trend in average power or median frequency as the
windows progressed in Trial 3 was marked as a positive

Figure 5. Experiment 2: Setup and electrode locations. The
gross upper limb muscles Biceps Brachii, Triceps Brachii and
Deltoid were studied.
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slope, negative slope or non-significant (NS) slope,
where a positive slope represented an increase in the
EMG feature as the windows progressed, whereas a neg-
ative slope represented a decrease in the EMG feature.

Results

Before the second experiment, most of the participants
reported through a questionnaire that they were not
fatigued. During the experiment, trials 1 and 2 were
completed easily by most of the participants and
Trial 3 was completed with difficulty. During the anal-
ysis, average EMG features across trials 1, 2 and 3 were
compared. The average EMG power of the BB and TB
muscles for Trial 3 was significantly higher compared
to trials 1 and 2 in both male and female participants
(shown in Figure 6). The median EMG frequency of
the BB and TB muscles also displayed a significant dif-
ference between trials (shown in Figure 7). These sig-
nificantly different EMG feature values could be due to
the obvious need for increased muscle force to lift the
heavy dumbbell during Trial 3 or due to muscle fatigue.
Hence, Trial 3 data alone were also analysed to see how
the EMG features varied as the windows progressed
within the trial. Regression lines were plotted within
the trial for different muscles in all the subjects.
We observed a positive trend in average power and a
negative trend in median frequency as the windows
progressed in Trial 3.10–12

The maximum number of iterations during Trial 3
for each subject was also analysed (see Figure 8),

although we understand and note that this also

depends on the muscle strength of the participants.

Male participants. As shown in the summary tables for

male participants, Tables 5 and 6, the majority (92%

and 85.7% for EMG average power and median fre-

quency, respectively) showed indications of fatigue

by the end of Trial 3. This was also supported by

the post-experiment questionnaires. A non-parametric

(Wilcoxon signed-rank) test as in Table 4 indicated

that the fatigue level after Trial 3 (mean rank¼ 7.50)

was rated higher than the fatigue level before starting

the experiment (mean rank¼ 0), Z¼ –3.309, p¼ 0.001.

It showed an increase in the level of fatigue after the

experiment compared to the case before starting the

experiment.
The regression slopes for average power in the fre-

quency band 0.8–2.5Hz were statistically significant

(shown in Figure 6 for a typical participant ‘Subject

5’). However, Subject 4 displayed NS regression

slopes even though the linear regression analysis

appeared to provide a positive slope. Similarly, the

regression slopes for median frequency in the frequency

band of 20–450 Hz (shown in Figure 7) indicated sig-

nificant negative regression slopes for the majority of

the male participants. This was visible more in the BB

and TB muscles than in the DLT muscle.
The answers to the questionnaires stated that 10 out

of 14 male participants were fatigued or very fatigued.

The remaining four male participants reported being

Figure 6. Experiment 2: Regression slope across trials for average power – Subject 5. The regression slopes across Trial 3 showed a
positive trend with significant p-values. The values for trials 1 and 2 were similar and very close to zero, but Trial 3 showed high and
increasing values of average power for the BB and TB muscles as the windows progressed.
EMG: electromyogram; BB: Biceps Brachii; TB: Triceps Brachii.
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‘Somewhat Fatigued’ as explained in the Fatigue Chart
(Figure 9). The female participants reported different
levels of fatigue (two of them reported ‘Very Fatigued’,
one reported ‘Fatigued’, one reported ‘Somewhat
Fatigued’ and another two reported ‘Not Fatigued’).

Female participants. All the female participants displayed
statistically NS regression slopes within Trial 3 (using a
7.5 kg dumbbell) for average EMG power and median
EMG frequency. The average power in the frequency
band of 0.8–2.5Hz in the majority of the female par-
ticipants except for Subject 1 resulted in regression
slopes tending towards positive, but lacking statistical
significance. The case was similar for the regression
slopes of the EMG median frequency in the band of
20–450Hz. In their responses to the questionnaire,
three female participants stated being ‘Fatigued’ or
‘Very Fatigued’, whereas one stated being ‘Somewhat
Fatigued’ and two others stated ‘Not Fatigued’. The
variation in average power during Trial 3 of the exper-
iment was significantly different between the female
and male participants as shown in Figures 10 and 11
for BB and TB muscles, respectively.

Discussion

In Experiment 2, it was observed that the average
EMG power and median EMG frequency after the
tiring exercise represented the upper arm muscle
fatigue. As suggested by muscle physiology, when
there is a development of muscle fatigue, more recruit-
ment of MUs occurs, which results in an increased
EMG amplitude.11,13 However, the aim of
Experiment 2 was not to literally check if the task
resulted in higher fatigue; instead the goal was to
verify if the parameters used in Experiment 1 were

Figure 7. Experiment 2: Regression slope across trials for median frequency – Subject 5. Regression slopes across trials 1–3 showed
a negative trend with significant p-values. The median frequencies for Trial 1 were significantly different compared to Trial 3 for BB and
TB muscles.
BB: Biceps Brachii; TB: Triceps Brachii.

Figure 8. Experiment 2: Iterations during Trial 3 for male and
female participants. The number of iterations of flexion and
extension tasks in Trial 3 were significantly different between
male and female participants. Female participants were asked to
lift a dumbbell of weight 7.5 kg, while the weight lifted by male
participants was 10 kg.
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effective to inform on fatigue. Once this is clear, we can

then deduce that the results from Experiment 1 indicate

that active-assisted robotic-interaction can actually

work as a fatigue-reducing mechanism.
Results indicated that the average power corre-

sponding to each EMG window within trials 1 and 2

did not increase as the task progressed. This could be

because there were only 10 iterations of flexion and

extension in the trials 1 and 2, without holding any

weight and with a weight of 0.5 kg respectively.

Hence, these tasks were easy to execute. In the case

of Trial 3, in the beginning, the EMG signals had an

increased amplitude compared to trials 1 and 2.

However, it was noted that the EMG average power
displayed a further increase from its initial value
within Trial 3 as the iterations progressed, as shown
in Figure 6. Trial 3 iterations were carried out until
the participants were completely exhausted or unable
to continue. This ensured that the majority of the par-
ticipants tried their best to maximise the number of
iterations in Trial 3, which resulted in their gross
upper limb muscles becoming fatigued. The EMG
signals were compared using both frequency bands
0.8–2.5Hz and 20–450 Hz. The average power analysis
of the 20–450 Hz band resulted in less significant results
than 0.8–2.5Hz. This indicates that the amplitude-
based study is better for low-frequency ranges of
EMG as also used in the studies of Octavia et al.36

In female participants, it was noted that the EMG
fatigue indicators (median frequency and average
EMG power) displayed NS regression slopes. Five
out of six female participants reported in the question-
naire that the weight of 7.5 kg during Trial 3 was too
heavy to lift and, hence, could not continue the itera-
tions properly. As noted from the questionnaire and
the recorded videos, it was understood that the heavy-
weight resulted in performing only a small number of
iterations by the majority of the female participants,
which was not sufficient for regression analysis.
Even though the results were NS, the regression
slopes seemed to be moving in a positive direction for
average power and in a negative direction for median
frequency.

In male participants, fatigue charts as shown in
Figure 9 indicated that all the participants have some
level of fatigue after lifting a weight of 10 kg during
Trial 3. The average number of iterations among all
the male subjects was approximately 10 as shown in
Figure 8. Expectedly, there was a statistically signifi-
cant difference between the number of iterations in
male and female participants. Considering the fatigue
indicator based on EMG average power in male par-
ticipants, there was a significant difference between the

Table 4. Wilcoxon signed-ranks test based on the questionnaire response from Experiment 2.

Wilcoxon signed ranks test – Ranks Test statisticsa

N

Mean

rank

Sum of

ranks

Fatigue_Level_Trial_3 –

Fatigue_Level_Initial

Fatigue_Level_Trial_3 –

Fatigue_Level_Initial

Negative ranks 0a 0.00 0.00 Z –3.309b

Positive ranks 14b 7.50 105.00 Asymp. Sig. (two-tailed) 0.001

Ties 0c a. Wilcoxon signed ranks test

Total 14 b. Based on negative ranks.

aFatigue_Level_Trial_3< Fatigue_Level_Initial.
bFatigue_Level_Trial_3> Fatigue_Level_Initial.
cFatigue_Level_Trial_3¼ Fatigue_Level_Initial.

Figure 9. Experiment 2: Fatigue chart for male and female
participants. The responses about the state of fatigue from the
post-experiment questionnaire were analysed separately for
male and female participants. All the male participants reported
some level of fatigue. The female participants reported different
levels of fatigue (2 ‘Very Fatigued’, 1 ‘Fatigued’, 1 ‘Somewhat
Fatigued’ and 2 ‘Not Fatigued’).
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Figure 10. Experiment 2: Box plots for average power during Trial 3 for male and female participants in Biceps Brachii muscles.
The variation in the feature for the female participants (F) was less than that of the male participants (M).
BB: Biceps Brachii.

Figure 11. Experiment 2: Box plots for average power during Trial 3 for male and female participants in Triceps Brachii muscles. The
variation in the feature for the female participants (F) was less than that of the male participants (M).
TB: Triceps Brachii.

12 Journal of Rehabilitation and Assistive Technologies Engineering



initial and final trials as indicated in Figure 6. This
implied that there was a significantly increased muscle
activity due to the larger force required to lift the
higher weight. This increase was observed in all
the participants. However, the progress of the EMG
feature within Trial 3 can offer further information
on how fatigue develops over time and with extraneous
activity.

For the average power in male participants within
Trial 3, the use of frequency band 0.8–2.5Hz resulted
in a summary table as shown in Table 5. The majority
of the male subjects displayed statistically significant
positive slopes with p-value <0.05 as shown in the sum-
mary table. It was noticed that the BB muscle displayed
the highest indication of fatigue in 13 out of 14 male
participants (92.85% of the d cases) compared to the
TB muscle (57%). Both the BB and TB muscles were
expected to play a major role in the flexion/extension
tasks. However, the results for the TB muscles were not
statistically significant in a few subjects, even though
the slopes tended towards the positive direction.
The lesser significance for the TB compared to BB
muscles could be due to the participants resting their
elbow on their laps and thus getting support during the
extension movements. This support could potentially
have resulted in a lesser EMG amplitude in the TB

muscles. One of the male subjects (Subject 4) displayed
unexpected results in terms of both EMG features,
where the BB muscles displayed NS regression slopes.
However, the participant stated being ‘Fatigued’ in the
questionnaire. The smaller significance of EMG fea-
tures from the BB muscles could potentially be
explained by the EMG electrode positions.

Similarly, the summary table based on the EMG
median frequency also displayed significant negative
slopes in 12 out of 14 male subjects as the windows
progressed within Trial 3. While using median EMG
frequency as the fatigue indicator with a frequency
band of 20–450 Hz, the summary table (Table 6)
implies that BB and TB muscles had the maximum
percentage of cases with significant regression slopes
85.71% and 85.71%, respectively. On the other hand,
using the frequency band of 0.8–2.5Hz for calculating
median frequency resulted in a less clear indication of
fatigue, where the BB and TB muscles only had signif-
icant slopes in 71.42% and 71.42% of the cases, respec-
tively. Even though the EMG amplitude values for TB
were affected due to the elbow support during exten-
sion, this did not seem to affect the median frequency
values possibly due to the physiologically different
reason behind the reduction in median frequency.50–52

In comparison to the results for average power, we did

Table 5. Experiment 2: Summary table for average power in male participants. The summary table shows significant regression
slopes for the majority of the male participants as the iterations progressed in Trial 3. This was more significant in BB muscles than TB
muscles. The ‘tick’ sign indicates statistically significant slope with p-values <0.05 and ‘NS’ indicates a non-significant slope. The
reported fatigue and the fatigue score after Trial 3 are also shown. Subject 15 and 17 showed a mismatch in the reported state of
fatigue, hence they are identified with different colours.

Feature -> Average power – Male participants

Hypothesis ->
There is a positive trend in average power as the windows progressed in Trial 3.

(�¼>Positive, – ¼>negative, NS ¼>non-significant)

Methodology ->
Linear regression test on the values of average power considering moving window of 10 sec duration

corresponding to each iteration carrying 10 Kg weight. The EMG was band pass filtered at 0.8–2.5 Hz.

BB muscle TB muscle

Fatigue reported in

questionnaire

Fatigue score

(0–10 scale)

Subject 2 � NS Very fatigued 10

Subject 3 � � Very fatigued 9

Subject 4 NS � Fatigued 5

Subject 5 � � Fatigued 5

Subject 6 � � Very fatigued 8

Subject 7 � NS Very fatigued 8

Subject 9 � NS Very fatigued 10

Subject 11 � � Fatigued 8

Subject 12 � - Somewhat fatigued 9

Subject 15 � NS Somewhat fatigued 10

Subject 16 � NS Somewhat fatigued 6

Subject 17 � � Somewhat fatigued 10

Subject 18 � � Very fatigued 10

Subject 19 � � Fatigued 8

EMG: electromyogram; BB: Biceps Brachii; TB: Triceps Brachii.
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not notice less clear fatigue indication in TB muscles

than for BB muscles while using the median frequency

parameter.
In contrast to the second experiment, the first exper-

iment with robotic assistance had shown that EMG

features in the presence of robotic assistance displayed

only slight indications of muscle fatigue. The horizon-

tal position of the upper limb in parallel to the shoulder

was expected to produce a good level of fatigue.

However, since the HM robot was configured in the

active assisted mode, we had only a limited reported-

fatigue to validate our observations. Participants were

not producing a maximum effort to actively involve in

the interaction; instead many were seeking some assis-

tance from the robot to complete the movements. This

resulted in a less clear indication of fatigue through the

EMG features in the majority of the participants. The

questionnaires also supported this observation since

80% of the participants in Experiment 1 reported

being ‘Somewhat Fatigued’. However, in the majority

of the subjects, the EMG features indicated the pres-

ence of muscle fatigue in the most active upper limb

muscles. The trend in EMG features was more visible

in TRP and DLT muscles in comparison to BB and TB

muscles (Table 1). A possible explanation for these dif-

ferences between muscles is that TRP and DLT muscles

played a more active role in lifting the arm to shoulder

height for performing the tasks, while robot provided

little support for their involvement.
Based on the findings from both experiments, we

believe that EMG features (e.g. median frequency)

can be indicative of fatigue, and the results from the

first experiment could indeed be an indication for suc-

cessful assistance offered by the robot. The results

showed that with robotic assistance, the participants

reported ‘Somewhat Fatigue’, whereas without robotic

assistance, the participants reported high fatigue. The

extent of fatigue with and without assistance varied

significantly. Due to the complex nature of muscle

fatigue, no literature has as yet clearly identified a stan-

dard method to quantify the level of muscle fatigue

based on EMG features. In an effort towards this,

based on our results, we have noted that a baseline

range calculated from statistical significance test (two

times the standard deviation) of the EMG features may

be used to set the threshold to detect muscle fatigue

by checking if a new value of EMG feature lies

within the range.
In order to study how ‘High Fatigue’ could be com-

pared to ‘Fatigued’ and ‘Somewhat Fatigued’, the

fatigue scores reported through the questionnaire in

all the subjects after Trial 3 of Experiment 2 were ana-

lysed. On a scale of 0–10, the participants who reported

a state of ‘High Fatigue’ mostly gave a fatigue score

Table 6. Experiment 2: Summary table for median frequency in male participants. The summary table for median frequency shows
significant negative regression slopes for the majority of the male participants as the iterations progressed in Trial 3 for BB and TB
muscles.

Feature -> Median frequency – Male participants

Hypothesis ->
There is a negative trend in median frequency as the windows progressed in Trial 3.

(�¼>Negative, NS ¼>non significant )

Methodology ->
Linear regression analysis on the values of median frequency considering moving window of 10 sec duration

corresponding to each iteration carrying 10 Kg weight. The EMG was band pass filtered at 20–450 Hz.

Muscles -> BB TB

Subject 2 � NS

Subject 3 NS �

Subject 4 NS �

Subject 5 � �

Subject 6 � NS

Subject 7 � �

Subject 9 � �

Subject 11 � �

Subject 12 � �

Subject 15 � �

Subject 16 � �

Subject 17 � �

Subject 18 � �

Subject 19 � �

EMG: electromyogram; BB: Biceps Brachii; TB: Triceps Brachii.
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between 7 and 10. Two subjects (Subjects 15 and 17)
marked a score of 10 for ‘Somewhat Fatigued’. A score
of 10 must correspond to the highest level of fatigue,
hence this seems incorrect. However, further explora-
tion is required to see for which values of the EMG
features do the muscle state transit from a ‘Fatigued’
state to a ‘High Fatigued’ state and from a ‘Somewhat
Fatigued’ state to a ‘Fatigued’ state. It is also interest-
ing to compare the accuracy of fatigue state identifica-
tion methods when the fatigue thresholds are based on
2*STD range, 3*STD range and so on.

It was commented by some participants that there
was a big weight difference between 0.5 kg and 10 kg.
The difference could have been smaller so as to notice
more gradual progress of fatigue development in the
EMG features. The maximum number of iterations in
Trial 3 was different across the subjects probably
because of the different muscle strengths of the
participants. Hence, the user physiology needs to be
considered while designing training interactions. In a
robot-assisted training interaction, the task difficulty
may be set based on the muscular strength and force
generation capabilities of the participants. This is
addressed in our ongoing study. We also realised that
the dumbbell weight used in Trial 3 for female partic-
ipants could have been selected better so that they
could do more iterations to make the muscles tired
through repetitions rather than making them unable
to lift it or to use compensatory strategies for lifting.
This, however, does not affect the findings of our study,
since the intention here was to verify if the EMG
fatigue indicators can indicate muscle fatigue and to
let us proceed to next stage, regarding how they can
be used to improve robotic adaptation as planned in
our future experiments. The results obtained from the
male participants’ EMG data have indeed verified that
episodic fatigue measurement is possible.

In the correlation study between EMG and force,
the effective kinematic force at the robotic end-
effector was used instead of the force in the near prox-
imity of muscles, where the EMG was measured.
The force was the result of combined action by multiple
upper limb muscles. The study used individual force
components (Fx, Fy and Fz), instead of using the resul-
tant force values. The robotic interaction involved
dynamic muscle contraction tasks, where the length
of muscles changed during different segment move-
ments. It was also noticed that the reaching activities
had a need for different muscles, and hence, the corre-
lation between the EMG and kinematic features
varied based on the type of movement. Hence, the cor-
relation analysis was conducted for different segments
separately.

The correlation results using all the subjects and
trials together gave a similar result as when individual

subjects were studied. Only a weak or moderate corre-
lation was observed in these cases as shown in Table 2.
For example, in Segment 1, the correlation coefficients
for TB muscle against the force components Fx and Fy

were 0.370 and –0.419, respectively. For Segment 2,
this was –0.492 and –0.471, respectively. As per the
rule of thumb for interpreting the size of a correlation
coefficient, we got rho values ranging from 0.1 to 0.5,
which indicated a weak or moderate correlation.53 The
different reaching activities during Experiment 1 have a
need for different muscles, and hence, the correlation
varied for each segment. The upper limb movements
defined in the experiment involved the end-effector
movements in different directions including away-
from-body and towards-the-body movements. So the
force components had both positive and negative
values due to the changes in their directions. The
weak/moderate correlation could be a result of the
robotic assistance received from the Active-Assisted
mode of HM or due to muscle fatigue. However, it
needs to be noted that most of the subjects reported
‘somewhat’ fatigue after the robotic experiment.

In order to confirm this, the correlation results were
analysed for each trial for each subject separately as
shown in Table 3. A gradual change (mostly decrease)
in correlation coefficient was noticed as the trials pro-
gressed (noticed mainly in segments S1, S2 and S3). For
example, as the trials progressed in Segment 1, the cor-
relation coefficients showed a reduction in its value in
68% of the cases for Fx, 70% of the cases for Fy and
65% of the cases for Fz. This decrease in the correlation
as the trials progressed could be an indication of
fatigue. During fatigue, the non-linearity in the corre-
lation between the muscle force and EMG amplitude
might have caused the particular behaviour of correla-
tion coefficients as the trials progressed. This is sup-
ported by the past studies.21,22,38 Previously, the
EMG analysis indicated that DLT and TRP muscles
were more fatigued than the BB and TB muscles. So, it
seems that muscle fatigue affected the correlation
between the EMG and kinematic force since the
fatigued muscles displayed the least correlation in the
majority of the subjects.

The muscles BB and TB did not seem to play a sig-
nificant role in the shoulder position; instead, they
played more role in determining the direction of move-
ment along the four segments. Probably due to this
reason, these muscles were found to have the strongest
EMG–force correlation compared to TRP and DLT
muscles. The TB muscle was found to be the most cor-
related in all the segments, whereas BB muscle was
found to be more correlated in the towards-the-body
and close-to-the-body segment S4.

It was noted that the kinematic force used in the
study was not only representing the human-generated
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force but was representing the interaction force
between the robot and the human. The force required
to be applied by the user to move the robotic
end-effector also depended on the level of assistance
provided by the robot in the active-assisted mode for
different point-to-point movements. This created a
mixed input space that was a combination of the
force generated by the robot (in response to the perfor-
mance of the user) and the force generated by the user.
The robotic assistance worked here when the partici-
pant lagged behind the robot or deviated from the
prescribed path. The participants lagged behind the
robot probably because they were tired or fatigued.
So the primary input here was the user performance
or muscle fatigue. Probably due to the mixed input
space, the EMG–force correlation was not very high
as shown in the results. Interestingly, analysing the
trend in EMG–force correlation as the different trials
progressed gave a better understanding of this topic.
The results showed that as the trials progressed, there
was a decrease in the correlation coefficient for the
involved muscles during the upper limb movements.
This showed that even with the mixed input space,
the analysis of EMG–force correlation was a useful
method to understand the progress of muscle fatigue
during a robot-assisted upper limb interaction.
However, the influence of the mixed input space
needs to be explored further in future work.

Conclusions

The main results of this study indicated an inverse rela-
tionship between the level of muscle fatigue and the
EMG–force correlation. A high fatigue corresponded
to a weaker EMG–force correlation and a low fatigue
corresponded to a stronger correlation. The overall
correlation between the EMG average power and kine-
matic force components was either weak or moderate,
and this could be due to the presence of the HM assis-
tance in the active-assisted mode. The correlation study
also showed that there was a reduction in the correla-
tion coefficient due to the effect of muscle fatigue as the
trials progressed. Hence, the robotic assistance based
on user’s performance, which resulted in a lesser fatigue
in the involved muscles, has caused an increase in the
EMG–force correlation.

The study also confirmed that the formulation of
our first experiment had impacted the observed fatigue,
either via the use of robotic assistance or the type and
duration of activities performed. The results showed
that the EMG features, average power and median fre-
quency, can display a clear indication of fatigue across
the full range of participants. Not all EMG changes
amount to fatigue. However, a statistically significant
increase in the EMG average power or a significant

decrease in the median frequency indicated fatigue,
which was supported by the subjective reporting of
fatigue through the questionnaire. Hence, a two times
standard deviation (2*STD) check of the EMG features
was found to be useful for fatigue detection during train-
ing interactions with a constant load. However, this
method needs to be tested further in training environ-
ments with varying loads, for example during progres-
sive muscle strengthening exercises and adaptive
environments. It was also noted that the lower band
of frequencies (0.8–2.5Hz as used by Octavia et al.36)
was more suitable for the amplitude/average power-
based features than considering the whole band of
20–450 Hz. Interestingly, for the median EMG frequen-
cy as the fatigue indicator, the EMG frequency band of
20–450 Hz was found to provide the best fatigue indica-
tion as compared to the band of 0.8–2.5Hz.

Both the experiments were conducted on healthy par-
ticipants. However, in a real scenario of rehabilitation
training, the patients (for example stroke survivors) will
exhibit reduced muscular or cognitive capabilities. It is
likely that their muscles can easily come to a state of
fatigue even in a robot-assisted environment. The state
of fatigue in the patients can deplete their limited resour-
ces if there is no mechanism to detect this and avoid
them becoming highly fatigued. A fatigue indicator
has the potential to be used to alter the training intensity
by changing the robotic assistance parameters like stiff-
ness, training duration and so on based on the level of
muscle tiredness before damaging their muscles. As indi-
cated by the results, the EMG features (average power
and median frequency) are potential parameters, which
can be used to improve the adaptation of robot-assisted
rehabilitation. Hence, future studies will explore utilising
the fatigue indicators together with user intention54 for
the auto-adaptation of therapeutic HRIs.
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