
 
 

New bioprocess technologies underpinning 

future manufacture of magnetosome products 

 

By 

Hong Li 

 

 

A thesis submitted to the University of Birmingham 

For the degree of 

DOCTOR OF PHILOSOPHY 

 

 

 

School of Chemical Engineering 

College of Engineering and Physical Sciences 

October 2018



 
 
 
 

 
 
 
 
 

University of Birmingham Research Archive 
 

e-theses repository 
 
 
This unpublished thesis/dissertation is copyright of the author and/or third 
parties. The intellectual property rights of the author or third parties in respect 
of this work are as defined by The Copyright Designs and Patents Act 1988 or 
as modified by any successor legislation.   
 
Any use made of information contained in this thesis/dissertation must be in 
accordance with that legislation and must be properly acknowledged.  Further 
distribution or reproduction in any format is prohibited without the permission 
of the copyright holder.  
 
 
 



i 
 

 

Abstract 

Magnetic support based separations in biotechnological applications was initiated in the late 

1970’s. Since then, magnetic supports have been widely applied in the laboratory and 

increasingly at process scales in hugely diverse applications. To date most of these have 

employed artificial chemically synthesized magnetic particles, but interest in naturally 

occurring magnetic materials made biologically is growing. Magnetosomes are one such 

example. These are needle-like chains of single-domain permanently magnetic membrane-

wrapped crystals that act as a compass to allow magnetotactic bacteria navigate along 

geomagnetic field lines in search of optimal environmental oxygen levels. Their unique 

characteristics convey numerous advantages over chemically manufactured magnetic 

particles in biomedical and biotechnological settings, but future widespread application 

requires the development of commercial scale intensified high-yielding manufacturing 

platforms for magnetosome-based products. 

 

Against the above the overall aim of this work has been to advance new bioprocess 

technologies underpinning future manufacture of magnetosome products.  

 

The starting point for this work was to develop a battery of flow cytometric tools for analysing 

the growth, viability, physiology of magnetotactic bacteria (Magnetospirillum 

gryphiswaldense MSR-1 was selected as a model organism) and their biomineralization of 

magnetic iron minerals. Specifically, methods for the determination of cellular concentration, 

cell size distribution, single-cell physiology and time dependent changes in intracellular PHA 

content and the chelatable iron pool were advanced.  
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The next study was the development of a simple pH-stat fermentation strategy for production 

of M. gryphiswaldense MSR-1 and magnetosomes. Growth conditions were optimised with 

respect to biomass concentration, cellular magnetism (indicative of magnetosome 

production) and intracellular iron concentration using the previously developed flow 

cytometry analytics. High biomass and cellular iron contents of 4.2 g dry cell weight per litre 

and 33.1 milligrams per gram dry cell weight respectively were obtained.  

 

The final piece of work describes the systematic advance of a fully scalable platform for 

extraction, recovery and purification of magnetosomes. The approach comprises single pass 

disruption of exponential phase Magnetospirillum gryphiswaldense MSR-1 cells in a 

commercial high pressure homogenizer, recovery and partial purification of magnetosomes 

by high gradient magnetic fishing in an automated ‘state-of-the-art’ magnetic separator, and 

final purification by magnetic micellar aqueous two phase separation. A magnetosome yield 

of nearly 45% was achieved, with 98.5% and >99% removal of polyhydroxyalkanoate and 

protein respectively. The process developed affords the potential for ‘end-to-end’ continuous 

manufacture.    
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CHAPTER 1 
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1.1 Project overview 

The extraction of biopharmaceuticals from blood and tissues is costly in terms of both labour 

and equipment, because of low purification power and low product yields in downstream 

processing steps. Magnetic separation techniques, especially via magnetic affinity 

adsorbents is a highly promising approach, which can extract proteins in serum efficiently 

with advantages including fast loading and washing flowrates, and easy removal of 

impurities. 

 

The whole project is funded by European Research Area Industrial Biotechnology (ERA-IB) 

and the aim is the “recovery of high value proteins from serum by innovative direct capture 

techniques”, called ProSeCa in one word, which applies the production of protein based 

veterinary medicines from horse sera, via chemical, biological, or mixed biological/chemical 

magnetic supports. This research focuses on manufacturing biological magnetic particles 

produced by magnetotactic bacteria (MTB), with the aim of producing those particles with 

lipid bilayer formation wrapped on each single particle, and separating those particles from 

other impurities in the bacteria using scalable methods with an efficient purification factor 

and high yield, whilst keeping the lipid bilayer on the particles intact to maintain the proteins 

in situ. 

 

1.2 Biomolecule Adsorption by synthetic functionalized magnetic particles 

Downstream processing (DSP) describes the recovery and purification operations that follow 

biochemical reactions, animal and plant cell culture and agriculture synthesis. The main 

purpose of DSP is to purify a given product and achieve a certain concentration (Thomas, 

1998). The issues of low yield efficiency and high cost of downstream processing from raw 

materials to the final products are a direct consequence of the traditional applications of 
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using separated, sequential unit operations, including cell broth separation, target molecule 

isolation from cells or cell free broth, and selective operations for target molecule purification 

(Hubbuch, 2002). Those operations perform limited functions or even just a single function. 

Manufacturers of biopharmaceutical products are facing inevitable pressures to reduce cost 

and improve purification efficiency in terms of time and yield, since the purification of a 

biopharmaceutical product can often account for 80% of the total production costs (Thomas, 

1998). Thus, new technologies with functions of process reduction, yield improvement, plant 

size reduction and cost savings are significant. It is clear that the key to reduce the costs of 

downstream processing is to cut the number of employed unit operations.  

 

The techniques include affinity tangential flow filtration, which combine the separation and 

concentration of biological molecules and affinity interactions of high value target molecules 

(Grzenia et al., 2008), and new porous-chromatography methods including bi-layered 

chromatography for size-exclusion  on the shell and ion-exchange in the middle to achieve 

filtration and molecule capture functions together (Karnchanasri, 2013), and temperature-

controlled chromatography to enhance protein adsorption affinity (Cao et al., 2015). 

 

The techniques also include non-porous magnetic-support adsorption, which can recover 

products from a crude feedstock with high flowrate. The applications include magnetic 

adsorbents with high gradient magnetic fishing (Franzreb et al., 2006; Hausmann et al., 

2000), and magnetic adsorbents with aqueous two-phase system separation (Fischer et al., 

2013). Those magnetic particle based separations become attractive in large-scale 

applications due to their characters of fast, gentle and compatible with complex biological 

suspensions and low-cost with magnetic based particles. 
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1.2.1 Magnetic separation history 

Magnetic separation techniques possess attractive properties of high speed processes and 

highly selective removal from feedstocks. Interest in magnetism is long-standing: the name 

comes from the ancient Greek town of Magnesia, and the magnetic phenomenon was first 

described by Thales of Miletus in about 550 BC; the Chinese are reputed to have used the 

directional properties of magnets in 1st century BC. However, it was not until 1845 that 

Faraday discovered that all substances are, to varying degrees, susceptible to the influence 

of a magnetic field (Svoboda, 1987). The first patents on devices for separation and handling 

of magnetically susceptible solids for mineral applications appeared at the very beginning of 

20th century. The spectrum of materials that could be handled by such early magnetic 

equipment was limited to relatively coarse (i.e. large) and moderately strongly magnetic 

materials; it was not until the 1960s that instruments capable of handling very small and 

weakly magnetic species began to emerge. Since then, progress in both the development 

and application of magnetic separation technology has been nothing short of spectacular. 

Magnetic separation technology is now of huge economic importance in many large-scale 

process industries (e.g. clay, minerals and nuclear processing) and also finds applications in 

municipal and industrial waste treatment (e.g. the Sirofloc process, which uses electrostatic 

adsorption to remove negatively-charged impurities, such as colour, bacteria, viruses and 

nucleic acids; (Moffat et al., 1994)). It has been firstly used to remove dissolved and colloidal 

biological material in waste water treatment in the 1940s (Pieter et al., 1991). But the 

technology did not attract other groups until Peter Dunnill and Malcolm Lilly at University 

College London (UCL) employed micron-sized functionalised magnetic adsorbents for 

enzyme immobilisation from crude feedstock in the early 1970s (Dunnill and Lilly, 1974; P J 

Halling and Dunnill, 1980; Robinson et al., 1973). The first commercially available supports 

of Enzacryl FEO-(M) and Magnogel appeared in the late 1970s (Franzreb et al., 2006). 
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1.2.2 Magnetic support materials 

Commercial production of functionalized magnetic supports for use in biotechnological 

applications was initiated in the late 1970’s. Since then, a bewildering array of magnetic 

nanoparticle (50-600 nm, mostly 50-200 nm), microparticle (0.25-10 µm, mostly 0.8-5 µm) 

and macroparticle (>>10 µm) support materials have become available (Mair et al., 2009; 

Plačková et al., 2017; Tsao and Lee, 2016).  

 

In small-scale medico-diagnostic applications, high-cost, low-capacity, single-use particles 

can be employed. For large-scale applications, however, adsorbents should : (i) be cheap 

and easy to manufacture in bulk quantities; (ii) possess sufficiently high specific surface 

areas to ensure satisfactory target-binding capacities; (iii) exhibit low nonspecific binding; (iv) 

be physically and chemically robust, easy to clean and reusable; and (v) be homogeneous 

with respect to size, shape, density and magnetic susceptibility, on a batch-to-batch basis 

(Bechstein et al., 2015; Franzreb et al., 2006; Gomes et al., 2018). 

 

The simplest magnetic support materials used in bioprocessing was naked iron oxide 

particles, such as magnetite. Due to their very low cost, such materials have been 

extensively used in large-scale wastewater treatment for the nonspecific, reversible 

adsorption of cells and/or organic materials (Pieters et al. 1991). However, for use as a 

selective separation phase, the surface of the magnetic particle must be correctly covered 

and functionalized with an appropriated ligand. 

1.2.3 Magnetic adsorbent particles for biomolecules purification 

Adsorbents for protein separations generally use expensive and robust synthetic ligands, in 

order to achieve functions of chromatographic media, such as affinity, ionic exchange and 

hydrophobic interactions. 
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High binding capacities have been described extensively among magnetic adsorbent 

particles. Franzreb and co-workers reported that they attained a binding capacity of 180 mg 

g-1 magnetic beads for His6-tagged green fluorescent protein (GFP-His6) through 

iminodiacetic acid charged with Cu2+ ions (IDA-Cu2+) on poly(methacrylate-divinylbenzene) 

(PMA-DVB) particles from E. coli homogenate (Franzreb, 2003). Another report announced 

that a binding capacity of 218.7 mg g-1 for bovine haemoglobin (BHb) through IDA-Cu2+ 

ligands on poly(glycidyl methacrylate) (PGMA) particles was possible (Ma et al., 2005). 

Meyer and co-workers reported that they used magnetic micro-ion exchangers (MMIX) 

beads with sulphite ligands to purify lactoferrin, and found the binding capacity of 334.6 mg 

g-1 from pure lactoferrin, and 12.6 mg g-1 from whey (Meyer et al., 2007). Thomas’ group 

completed the research of recovery of lactoferrin and lactoperoxidase from crude whey by 

employing polyacrylic acid (pAAc) functionalised magnetic polyvinyl alcohol (M-PVA) 

particles, and achieved binding capacities of 585 and 685 mg g-1, respectively (Brown et al., 

2013). 

 

In recent years, the requirement of blood-derived proteins has grown quickly, while the 

production could not meet the need (Gomes et al., 2018). Odabaşi and Denizli employed 

poly(2-hydroxyethyl methacrylate) (PHEMA) based particles with DNA functionalisation to 

extract human IgG from systemic lupus erythematosus patient plasma, and realised a 

binding capacity of 47.5 mg g-1 (Odabaşi and Denizli, 2001). Another magnetic adsorbents 

used for human IgG purification was described by Ӧzturk and co-workers. They applied 

poly(2-hydroxyethyl methacrylate ethylene glycol dimethacrylate) (PHEMA-EGDMA) with 3-

(2-imidazolin-1-yl) propyl-triethoxysilane (IMEO) ligands, and reached a binding capacity of 

55 mg g-1(Öztürk et al., 2007). The recent paper for immunoglobulin purification was 

reported by Gomes and co-workers (Gomes et al., 2018). They used polyglutaraldehyde 
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(PG) coated, 4-mercaptoethylpyridine (MEP) linked superparamagnetic adsorbents to 

achieve a binding capacity of 214 mg g-1. Müller and co-workers reported that they employed 

M-PVA based particles and achieved 3.2 mg g-1 of binding capacity on the glycoprotein 

equine chorionic gonadotropin (eCG) from horse serum (Müller et al., 2015). Table 1.1 

presents a summary of biopharmaceutical proteins purified by magnetic adsorbents, and all 

the magnetic materials employed in those examples given in the table were synthetic.  

Table 1.1. Summary of protein purification with magnetic adsorbents. 

Target protein Base particle 
Coating 

/Encapsulation 
Ligand Source Reference 

Trypsin 
Cation deficient 

magnetite
*
 

PGAF Benzamidine 
Porcine 

pancreatin 

(Hubbuch and 

Thomas, 

2002) 

Lactoperoxidase 
Cation deficient 

magnetite 
PGAF -SO3

-
 Whey 

(Heebøll‐

Nielsen et al., 

2004) 

Lactoperoxidase Magnetite PVA pAAc Whey 
(Brown et al., 

2013) 

Lactoferrin Magnetite MMIX -SO3
-
 Whey 

(Meyer et al., 

2007) 

GFP-His6 Magnetite PVA IDA-Cu
2+ 

E. coli 

homogenate 

(Franzreb, 

2003) 

GFP-His6 
Cation deficient 

magnetite 
PGAF IDA-Cu

2+
 

E. coli 

homogenate 

(Franzreb, 

2003) 

GFP-His6 Magnetite PMA-DVB IDA-Cu
2+

 
E. coli 

homogenate 

(Franzreb, 

2003) 

Mouse IgG2b Magnetite EPPTMS Protein A 
Cell culture 

supernatant 

(Holschuh and 

Schwämmle, 

2005) 

Mouse IgG2a Magnetite PMA-DVB Protein A Mouse ascites 
(Liu et al., 

2004) 

Rabbit IgG Magnetite
?
 Cellulose Protein A Aqueous 

solution and 

(Cao et al., 

2007) 
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rabbit serum 

Human IgG1 Magnetite
?
 

PMMA-NIPPAm-

AAc 
COOH 

CHO cell 

culture 

supernatant 

(Borlido et al., 

2013) 

Human IgG Magnetite PEDMAH MAH 

Aqueous 

solution and/or 

human plasma 

(Özkara et al., 

2004) 

Human IgG Magnetite PHEMA-EGDMA IMEO 

Aqueous 

solution and/or 

human plasma 

(Öztürk et al., 

2007) 

IgG Magnetite Agarose ABI Mimetic serum 
(Gu et al., 

2016) 

Human IgG Magnetite
?
 PHEMA DNA 

Systemic lupus 

erythematosus 

patient plasma 

(Odabaşi and 

Denizli, 2001) 

Human IgG Magnetite PVAc-DVB 
2-mercapto-

nicotinic acid 
Human serum 

(Qian et al., 

2010) 

Rat IgG 
Cation deficient 

magnetite 
PGAF MEP 

Rabbit 

antiserum 

(Gomes, 

2006) 

Ig 
Cation deficient 

magnetite 
PGAF MEP 

Rabbit 

antiserum 

(Gomes et al., 

2018) 

Con. A 
Cation deficient 

magnetite 
PGAF Dextran 

Jack bean 

extract 

(Heebøll-

Nielsen et al., 

2004) 

Interferon α-2b Magnetite PVA 
Anti-IFN α-

2b IgG 

Pseudomonas 

sp. Strain VG-

84 crude cell 

lysate 

(Cao et al., 

2006) 

eCG Magnetite PVA DEAP 
Pre-purified 

horse serum 

(Müller et al., 

2015) 

* Impurity magnetite (magnetite/maghemite combination) contains substantial amounts of impurities, especially 

lepidocrocite (γ-FeOOH) and possibly ferrihydrite (Hubbuch, 2002). 

? Base particles not described in detail 

PGAF polyglutaraldehyde-coated aminosilanised ferrites, PVA polyvinyl alcohol, PMA-DVB poly(methacrylate-

divinylbezene), EPPTMS 3-(2,3-epoxypropoxy)-propyltrimethoxysilane, PMMA-NIPAAm-AAc poly(methyl 

methacrylate) core N-isoproylacrylamide-co-acrylic acid shell, PEDMAH poly(ethylene glycol dimethacrylate-N-
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methacryloyl-L-histidinemethylester), PHEMA-EGDMA poly(2-hydroxyethyl methacrylate ethylene glycol 

dimethacrylate), PVAc-DVB poly(vinyl acetate-divinylbenzene), APTES-PGA 3-aminopropyltriethoxysilane 

polyglutaraldehyde, MMIX magnetic micro-ion exchangers, GFP-His6 His6-tagged green fluorescent protein, eCG 

equine chorionic gonadotropin, IDA-Cu
2+

 iminodiacetic acid charged with Cu
2+

 ions, MAH methacryloly-L-

histidinemethylester, IMEO 3-(2-imidazoline-1-yl) propyl-triethoxysilane, MEP mercaptoethylpyridine, DEAP N,N-

diethyl-1,3-propanediamine, pAAc polyacrylic acid, ABI 5-aminobenzimidazol 

 

Those magnetic adsorbents were composed of magnetic core materials which were 

produced by encapsulation (P. J. Halling and Dunnill, 1980; Moffat et al., 1994) or infiltration 

(Hirschbein et al., 1982; Mosbach and Andersson, 1977), then the magnetic cores were 

coated in a variety of ways to accept ligand attachment, such as the examples in Table 1.1. 

All the coated particles possessed a diverse range of particle size, ligand density, specific 

surface area, magnetic properties, etc. Thus, attention shifted to biological ways to produce 

magnetic particles, and many researchers have focused on MTB as a potential replacement 

of synthetic production of magnetic particles, since the particles can be produced in similar 

size, and magnetic properties, and possess high specific surface area and concentrated 

ligand density. 

 

1.3 Magnetic particles in magnetotactic bacteria 

1.3.1 Magnetic field and magnetism 

Magnetism is a class of physical phenomena that are mediated by magnetic field. In physics, 

several different types of magnetism are distinguished, including diamagnetism, 

paramagnetism, ferromagnetism, ferrimagnetism and superparamagnetism. Materials that 

exhibit ferromagnetism are attracted towards the magnetic field lines when placed in a 

magnetic field, and the induced force (magnetic moment) experienced is dependent on the 

strength and direction of the magnetic field. If an alternating magnetic field is applied to a 

ferromagnetic material, there will be a magnetization trace loop called a hysteresis loop 
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(shown as a grey area in Fig. 1.1) which can be used as magnetic “memory”. Ferrimagnetic 

materials display some magnetic moments that point in opposite directions but the opposing 

moments are smaller when an external magnetic field is applied. Paramagnetic materials 

respond linearly to an applied magnetic field and show weaker magnetic properties than 

ferromagnetic substances. Materials that oppose the applied magnetic field are said to be 

diamagnetic. Superparamagnetism is a property that the magnetic response to a supplied 

magnetic field is stronger than normal paramagnetic materials, but it does not exhibit 

magnetic memory. Superparamagnetic properties arise when the crystal size of 

ferromagnetic materials is below 3-50 nm (Marghussian, 2015). Some forms of magnetism 

are shown in Figure 1.1. 

 

1.3.2 Significance and features of iron in organisms 

MTB were first observed in marine sediments (Blakemore, 1975), and contained solid iron in 

the organisms with weak magnetic fields (0.1 gauss) (Frankel et al., 1979) that has been 

demonstrated in geomagnetic orientation (Frankel et al., 1979). The MTB can move at a 

speed nearly twice as fast as E. coli, although they are larger with less flagellar proteins 

(Sharma et al., 2008). The ability to be aligned and actively swim along the geomagnetic 

field or other magnetic fields has been discovered in intracellularly structured magnetic 

nanoparticles (Bazylinski and Wiliams, 2006), called mangetosomes, which are mostly nano-

sized crystals of magnetic iron (magnetite (Fe3O4) or greigite (Fe3S4)), surrounded by a lipid 

bi-layer (Fe3S4) (Flies et al., 2005; Heywood et al., 1990; Lang et al., 2009; Schüler, 1999). 

Magnetite magnetosomes are the most widespread mineral produced by MTB (Moisescu et 

al., 2008), and is the only magnetic particle found in freshwater system among all MTB 

(Faivre et al., 2008).  
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Figure 1.1. Magnetisation vs. field strength curves for 

ferro-, para- and superparamagnetic materials. 

Figure 1.2. Single domain magnetic field of a single 

magnetic nanoparticle. 

 

The magnetosome crystals are mostly found in a range of 35-120 nm (Bazylinski et al., 

1994; Schüler, 2008; Vali and Kirschvink, 1990), except the very large ones which can reach 

up to 250 nm and are synthesized by uncultured coccus (Lins et al., 2006). Bacterial 

magnetosomes in the narrow range have been proven to be permanent, single-domain 

magnets at ambient temperature (Bazylinski and Frankel, 2004). In this range, particles were 

described to be stable single-domain (SSD) ferromagnets (Yoza et al., 2003) (Fig. 1.2) and  

thus, the magnetosomes possessed high magnetic coercivity (Baumgartner et al., 2013). 

Blakemore and Frankel (1981) first demonstrated that the magnetic particles were oriented 

in the {1 1 1} magnetic easy axis along the chain direction within the cell. This uniaxial 

geometry results in a magnetic dipole (Fischer et al., 2008), where it is believed this 

alignment permits the summation of individual magnetic moments of each particle, 

maximising the total cellular magnetic response (Uebe and Schüler, 2016). A number of 

reports have detailed varied morphologies of magnetosome crystals in MTB by transmission 

electron microscopy (TEM) (Lefèvre et al., 2011). The crystal shapes reported include 

rectangular (Schüler and Frankel, 1999), cubo-octahedral (Bazylinski et al., 1994; Lefèvre et 

al., 2011), elongated prismatic (Schüler, 2008; Schüler and Frankel, 1999) and bullet shaped 

(Bazylinski et al., 1994; Lefèvre et al., 2011) morphologies, and most of them are arranged 
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in one or multiple chains, which are parallel to each other and fixed to the shape of the cells 

(Lefèvre et al., 2011).  

 

1.3.3 Formation of magnetic nanoparticles in magnetotactic bacteria 

The mechanism of magnetosome formation has been researched by many groups (Faivre et 

al., 2008; Grünberg et al., 2004; Klumpp and Faivre, 2012; Matsunaga et al., 2007; Nguyen 

et al., 2016; Scheffel et al., 2008; Tanaka et al., 2011; Yang et al., 2010). Bazylinski and 

Schübbe (2007) reported that the mechanism of magnetosome formation could be a series 

procedure including vesicle formation, iron uptake and transportation, and biologically 

controlled biomineralization. Yan and co-workers (2017) modelled the magnetosome 

formation into 4 steps: First, free iron including Fe2+ and Fe3+ are taken into the cells; 

Second, the magnetosome membrane forms and iron is transferred into the magnetosome 

membrane; Third, iron is biomineralized and localised on the inner side of magnetosome 

membrane; Fourth, every single magnetosome is aligned by a filament protein to control 

magnetosome chain assembly (Fig. 1.3).  
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Figure 1.3. Possible magnetite crystal formation steps. 
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Those steps include: (i), magnetosome membrane that compromises a proteinaceous 

phospholipid bilayer from cytoplasmic membrane (Gorby et al., 1988; Katzmann et al., 2010) 

by invagination is formed and MamB is a critical component of this process (Uebe and 

Schüler, 2016), a specifically denoted magnetosome protein by letter. (ii), at the same time, 

extracellular iron in both ferric and ferrous types is imported into the cytoplasm by 

transporters, and then transported into magnetosome membrane vesicles (probably by Mam 

B and MamM for Fe2+, and MamH and MamZ 

for Fe3+ (Frankel et al., 1983; Raschdorf et al., 

2013; Uebe et al., 2011)). (iii), nucleation of 

magnetite crystals occurs when soluble iron 

start to form crystalline iron phases. This 

happens in a narrow redox range (Fe3+ and 

Fe2+ are present at a ratio of 2/1), and high 

oxygen levels and oxidized carbon source are 

avoided (Heyen and Schüler, 2003; Katzmann 

et al., 2013; Li et al., 2014a, 2012; Y. Li et al., 

2013). (iv), magnetosomes are arranged into 

linear chains that maximise the total magnetic 

response of the cell aligned cytoskeletal 

filaments which are formed by MamK 

(Grünberg et al., 2001; Schübbe et al., 2003). MamJ, an interacting partner of MamK has 

been confirmed as a connector that attaches magnetosomes to MamK, since 

magnetosomes magnetosomes aggregate by magnetic attraction and detach from MamK in 

the strains that is lack in MamJ (Scheffel et al., 2006; Scheffel and Schüler, 2007). However, 

there are still unclear factors in the steps of magnetosome formation. Although a significant 

accumulation of soluble iron has been observed in the magnetosomal vesicles recently 

Figure 1.4. TEM image of M. gryphiswaldense 

strain MSR-1 with a magnetosome chain 

(black arrow). 
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(Werckmann et al., 2017), and then the nucleation occurs at the interface with the 

magnetosome membrane, as small nascent crystals in the lumen of magnetosome 

membrane vesicles have been found (Katzmann et al., 2010; Komeili et al., 2006), it is still 

not clear that how magnetite has been formed. MamE, Mam M and MamO are the candidate 

regulators, since magnetite biomineralization was abolished when those proteins were 

deleted in M. magneticum AMB-1 and M. gryphiswaldense MSR-1 mutant strains (Lohße et 

al., 2014; Murat et al., 2010; Uebe et al., 2011; Yang et al., 2010). Only one single crystal is 

formed in each magnetosome membrane vesicle and the crystal size distribution is also well 

controlled. Several single-deletion mutants of MTB have been described that smaller 

magnetite crystals were produced, including MamN, MamF or MamD-lack strains (Uebe and 

Schüler, 2016), but the factors that regulate crystal size are not well understood, as well as 

the optimal number of magnetite crystals. One of the reasons could be that only a limited 

number of MTB have been isolated (about 20) (Yan et al., 2017), such as M. magneticum 

AMB-1 (Matsunaga et al., 1991), M. gryphiswaldense MSR-1 (Schüler et al., 1999), M. 

magnetotacticum MS-1 (Maratea and Blakemore, 1981) and Magnetospira thiophila MMS-1 

(Williams et al., 2012). Figure 1.4 shows a transmission electron microscopic (TEM) image 

of MTB with a magnetosome chain. 

 

1.3.4 Potential applications of magnetosomes 

After the discovery of MTB, it was not long that researchers turned to exploit their physical, 

magnetic and biomolecular applications. There are reports regarding the applications of 

magnetotactic bacteria, or magnetosomes, such as wastewater treatment, pathogen 

detection, cancer treatment and protein purification (Ali et al., 2018; Alphandéry et al., 2009; 

Chen et al., 2014; Lang and Schüler, 2006). 

 



15 
 

1.3.4.1 Wastewater treatment 

MTB have been considered as bio-adsorbents for heavy metal removal and recovery from 

wastewater since early 1990’s (Ali et al., 2018). The adsorption process of heavy metals has 

been studied to understand the removal mechanism. Different types of adsorption isotherms 

and kinetic models were investigated, and almost all of the studies supported Langmuir 

isotherm and pseudo-second-order kinetic mode (Ali et al., 2018; Cai et al., 2011; Song et 

al., 2008; Wang et al., 2011). Normally this type of adsorption is fast and reversible, and the 

equilibrium to adsorb Cu(II), Ag(I), Cr (VI) and Au(III) is achieved in 10 minutes (Cai et al., 

2011; J. Li et al., 2013; Qu et al., 2014; Song et al., 2007; Wang et al., 2011). This may be 

due to the high specific surface area of the magnetosome membrane.  

 

1.3.4.2 Pathogen detection and drug delivery 

Due to the magnetosome membrane containing a large amount of amine and hydroxyl 

groups, it is promising to modify the surface of membrane in the application of pathogen 

detection (Peng et al., 2014). It has been reported that magnetosome-antibody complex 

combined with immunofluorescence have been effectively applied to detect the pathogenic 

bacteria (Nakamura et al., 1993). Rabbit anti-MO-1 cell polyclonal antibody decorated 

magnetosomes have also been employed for staphylococcus aureus isolation successfully 

as well (Chen et al., 2014). Since magnetosomes contain large amount of membrane 

proteins, it is also possible to conjugate drugs such as doxorubicin to the surface of 

magnetosomes (Sun et al., 2008; Sun et al., 2007) and deliver the drugs to its destination by 

magnetic field. 
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1.3.4.3 Cancer treatment 

Magnetosomes, apart from the application of doxorubicin delivery discussed above, are also 

good candidates for cancer treatment by using their magnetic hyperthermia (Alphandéry, 

2014). In the magnetic hyperthermia procedure, tumour cells are destroyed completely, or 

reduced in size within the temperature range of 37-45°C (Alphandéry et al., 2012; Hamdous 

et al., 2017; Lee et al., 2015; Mathuriya, 2016). The research group has focused on heat 

production by extracted magnetosome chains (Alphandéry et al., 2011), and the specific 

absorption rate (SAR) generated hysteresis loss is much larger than that has been reported 

from superparamagnetic nanoparticles (Brusentsov et al., 2001; Ma et al., 2004). Alpandéry 

and co-workers have used  about 1 mg extracted magnetosome chains from M. magneticum 

AMB-1 bacteria to produce heat and eliminate breast cancer cells successfully under the 

skin of a mouse (Alphandéry et al., 2011), and found out that the efficiency of heat 

production by chains of magnetosomes was higher than the heat produced by aggregated 

magnetosomes without a magnetosome membrane (Alphandéry et al., 2012).  

 

A new method of therapeutic hyperthermia for cancer treatment by magnetosomes has been 

studied recently, called photothermal therapy. This therapy requires a near-infrared (NIR) 

light to generate heat, instead of providing an alternating magnetic field. Chen and co-

workers noticed that magnetosomes can convert the energy of 808 nm near-infrared (NIR) 

light into heat rapidly (Chen et al., 2016). A further research illustrated that the NIR light at 

808 nm with magnetic targeting can induce a complete tumour elimination in vivo (Wang et 

al., 2018). Plan Sangnier and co-workers (2018) compared the heat production results in 

vitro and in vivo by adding a magnetic field and NIR light at 808 nm on magnetosomes, and 

demonstrated that by achieving the same temperature elevation, photothermia required 

lower concentration of magnetosomes, indicating that photothermia revealed more efficient 

performance against cancer treatment. 
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1.3.4.4 Gene research 

Bacterial magnetite nanoparticles have been applied as gene carriers and detectors of 

nucleic acids (Maruyama et al., 2004; Ota et al., 2003; Tanaka et al., 2003). Matsunaga and 

co-workers reported that these nanoparticles can be employed as genus specific 

oligonucleotide probes in order to detect cyanobacterial DNA as DNA microarray 

(Matsunaga et al., 2001). mRNA isolation and DNA extraction by oligo-modified 

magnetosomes have also been reported (Sode et al., 1993). Additionally, the purification of 

DNA with dendrimer-modified magnetosomes magnetic nanoparticles were 7-11 times 

higher compared with man-made magnetic particles (Yoza et al., 2003). Magnetosomes 

have also been compared with artificial magnetic particles for enzyme immobilisation, and 

Matsunaga and co-workers reported that the amount of immobilized enzyme on 

magnetosomes was 40-100 times higher than that on man-made magnetic particles 

(Matsunaga et al., 1996). 

 

1.3.4.5 Protein immobilisation and purification 

Because of the membrane covered on magnetic nanoparticles, another biotechnological 

applications of magnetosome are based on immobilisation of proteins, peptides and 

enzymes (Lang and Schüler, 2006). They also reported the localisation of fusion proteins on 

magnetosomes is MamC by tagging green fluorescent protein (Lang and Schüler, 2008), 

and demonstrated the promising functionalisation of magnetosomes for protein purification in 

the future. 

 

It has been reported that extracted magnetosomes can immobilise 40-100 times more than 

man-made Zn-Fe magnetic particles for glucose oxidase and uricase immobilisation 
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(Matsunaga et al., 1996). Immunoassays have also been researched using magnetosomes. 

One method of immunoglobulin immobilisation was that magnetosomes was first conjugated 

with antibodies, and then the antibody-magnetosome conjugates were employed to bind 

immunoglobulin, and the sensitivity of immunoglobulin determination was 4-10 times higher 

than previous reported methods (Nakamura et al., 1993). Another report for human insulin 

determination was reported by Tanaka and Matsunaga (2000). The authors used antibody-

protein A-magnetosome complexes to detect human insulin, and found that the 

immunoreaction was as sensitive as gas chromatography-mass spectrometry (GC-MS) or 

liquid chromatography-mass spectrometry (LC-MS) method including the ability to examine 

multiple samples in a single assay. 17β-estradiol (E2) can be tested in half an hour in a 

detectable concentration of 20 ppt by employing anti-E2 monoclonal antibody immobilised 

magnetosomes (Tanaka et al., 2004b). As it is feasible to functionalised protein A and 

antibodies on the biologically magnetic nanoparticles, the applications for protein 

purifications using magnetosomes is particularly promising. 

 

Thus, unique properties of magnetosomes, not normally associated with chemically 

synthesized magnetic nanoparticles, of narrow size distribution, permanent ferromagnetic 

character uniform morphology, fast absorption rate on metal ions, high heating capacity by 

magnetic field and NIR light and high specific surface area make them hugely attractive 

prospects for biotechnology and healthcare applications. 

 

1.4 Production and purification of biological magnetic nanoparticles 

It is recognised that the widespread application of magnetosomes will, to a large extent, 

depend on the development of intensified high yielding manufacturing platforms for 

magnetotactic bacteria (Jacob and Suthindhiran, 2016; Yan et al., 2012). After biomass 
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collection from fermentation, the extraction of magnetosomes has also been researched in 

many groups, but most of the reports showed limited scale of extraction, and the yields of 

magnetosomes were not very clear (Alphandéry et al., 2011; Gorby et al., 1988; Grünberg et 

al., 2001; Xiang et al., 2007). 

 

1.4.1 MTB biomass manufacture and magnetosome production 

As the purely separated MTB strains are limited (Yan et al., 2017), there are very limited 

choices for magnetosome production. Blakemore and co-workers firstly reported that M. 

magnetotacticum did not grow in medium with free exchange to air (Blakemore et al., 1979). 

M. magneticum  AMB-1 has studied to produces magnetosomes only under microaerobic 

condition (O2 ≤ 1%) (Yang et al., 2001), although early investigation reported that the 

magnetic bacteria can grow under aerobic condition (Matsunaga et al., 1991). Schüler and 

Baeuerlein (1997) have grown Magnetospirillum gryphiswaldense MSR-1 in pure culture and 

received a cell yield of 0.40 g L-1 in dry weight. They also cultured MSR-1 cells in batch 

fermentation in 5-L bioreactor starting from oxygen saturated condition, and found out that 

magnetic particles can only form when oxygen concentration decreased to 2-7 µM (less than 

3 % saturation), although free iron can be taken from medium at the beginning of the 

experiment (Schuler and Baeuerlein, 1998). Heyen and Schüler (2003) optimised media 

called flask standard medium (FSM) using L-lactate and ferric citrate as carbon source and 

iron source, respectively, and enhanced growth conditions under oxystat condition for M. 

gryphiswaldense MSR-1 in flask and bioreactor. They reported that MSR-1 had high oxygen 

tolerance (0.25-150 mbar), but magnetosomes only can be produced when oxygen 

concentration was less than 20 mbar (2 % saturation), and got a maximum yield of 6.3 mg 

magnetite L-1 day-1. 
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Sun and co-workers successfully employed a 42-L fermentor to produce M. gryphiswaldense 

in 60-h cultivation(Sun et al., 2008). They employed lactate and ferric citrate as carbon and 

iron sources, respectively, and kept pH stable at 7.0 by using 10% HCl during fermentation. 

They measured concentration of lactate every 2 h in the fermentation and kept its 

concentration constant by adding a substrate containing lactate, ammonium sulphate and 

ferric citrate, and achieved optical density at 565 nm (OD565) 7.24, which was 2.17 gram of 

dry cell weight (DCW) per litre, and attained a yield of magnetosomes 41.7 mg L-1 in dry 

weight, or 16.7 mg L-1 day-1. Another publication of culture of M. gryphiswaldense MSR-1 

worked on feeding strategy in 42-L fed-batch fermentation (Zhang et al., 2011). They 

optimised the feed which contained lactate and ferric chloride as carbon and iron sources, 

respectively, and achieved magnetosome yield of 356.52 mg L-1 (178.26 mg L-1 day-1) after 

44-h cultivation, while the OD565 was 42. Schüler’s group recently reported a magnetosome 

overproduction method by genomic amplification of biosynthesis-related gene clusters and 

increased magnetosome production 2.2 times more than their previous achievement (Lohße 

et al., 2016). This research makes a promising outlook of biological magnetic nanoparticles 

in the future. 

 

Apart from cultivation of M. gryphiswaldense MSR-1, other strains of MTB have not been 

widely reported in pilot scale production, because Heyen and Schüler (2003) have reported 

that M. gryphiswaldense strain MSR-1 had the highest oxygen tolerance, and highest 

magnetosome yield under the same cultural condition, compared with M. magnetotacticum, 

M. magneticum, although Silva and co-workers have investigated Magnetovibrio blakemorei 

strain MV-1 in 5-L bioreactor and achieved magnetite concentration of 64.35 mg L-1, or a 

yield of 16.09 mg L-1 day-1 (Silva et al., 2013). Table 1.2 shows a summary of magnetosome 

production. 
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Table 1.2 Yields of cells and magnetosomes summary 

Strain Culture time (h) Cell yield (g L
-1

) Magnetosome yield (mg L
-1

) Reference 

MS-1 96-144 0.4* / (Noguchi et al., 1999) 

MSR-1 40 4.76 / (Yang et al., 2013) 

MS-1 48 0.32 3.4 (Yang et al., 2001) 

AMB-1 48 0.48 4.7 (Heyen and Schüler, 2003) 

MSR-1 30 0.40 7.9 (Heyen and Schüler, 2003) 

AMB-1 96 0.58 14.8 (Yang et al., 2001) 

MSR-1 60 2.17 41.7 (Sun et al., 2008) 

MV-1 96 / 64.35 (Silva et al., 2013) 

MSR-1 44 9.16 356.52 (Zhang et al., 2011) 

* Wet weight, whilst the others are dry weights. 

 

1.4.2 Magnetosome release and recovery 

1.4.2.1 Cell disruption and magnetosome release 

Cell disruption is the first important step for collecting biomolecular nanoparticles from 

magnetotactic bacteria, after cell harvest and collection. The purpose of cell disruption is to 

break the cell wall and/or membrane, or open gates to allow the target extracts to be 

released. There are many different methods for disruption. Mechanically, cells can be 

disrupted by liquid shear force which is generated by pressure or mechanical wave acting on 

liquid. This includes ultrasonication, French press, and bead mill. Another mechanical cell 

disruption techniques employs solid shear on frozen cells by high pressure compression of a 

mixture of ice crystals, especially in dry ice to ~243 K (Hughes et al., 1971). non-

mechanically, there are chemical, enzymatic and physical ways for cell lysis (Theodossiou et 

al., 1997). Chemical lysis includes the employments of acids, alkalis, organic solvents and 
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surfactants. Enzymatic lysis employs the characters that enzymes, such as glycosidases, 

proteases and cellulases, are able to hydrolyse the wall of microbial cells. Physical lysis, 

such as cold osmotic shock and freeze-thawing, can be a potential method for animal cells, 

but not for microorganisms which have tough cell walls. 

 

Sonication is a general and mature technique for cell disruption. Kobayashi and co-workers 

(2006) used a probe sonicator and compared several different pulse frequency to approach 

the Magnetospirillum magnetotacticum strain MS-1 by separating the same batch of cells in 

several aliquots and using different procedures, such as different frequencies for different 

operation times with and without treatment of sodium dodecyl sulphate (SDS). In order to 

check the efficacy of cell disruption in different methods, they examined the homogenate 

after disruption by TEM. Finally they believed that 200 pulses of 8 s each time without SDS 

was a good choice, because stronger or longer sonication, or SDS detergent lead to 

breakage of the magnetosome membrane and agglomeration of magnetosomes. 

 

Alphandéry and co-workers employed an ultrasonic bath to disrupt Magnetospirillum 

magneticum AMB-1 (Alphandéry et al., 2009). They looked at a range of sonication time 

from 60 to 180 min at 30 W for breaking AMB-1 bacteria and they found 120 min to be the 

optimisation operation in another paper  (Alphandéry et al., 2012). For sonication less than 

60 min, the bacteria were not lysed efficiently, and for more than 180 min, agglomeration 

was observed which meant the membrane of magnetosomes was broken. Compare with 

probe sonication, cell disruption with ultrasonic bath takes much longer time to reach the 

similar disruption efficiency. This may be the frequency provided by ultrasonic bath is much 

lower than that supplied by probe sonicator, thus a much lower shear force was offered to 

the cell suspension. 
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Another series of methods which used French press at about 20,000 psi to disrupt cells is 

more generally accepted and used by researchers. The method can be first found in a paper 

written by Gorby and co-workers (1988). They harvested Aquaspirillum magnetotacticum 

MS-1 by centrifugation at 5000g and washed the pellets three times with 10 mM HEPES 

buffer containing 10 μg ml-1 phenylmethylsulfonyl fluoride (PMSF) which is a protease 

inhibitor, then they passed the cells through a French press three times at 18000 psi at a 

concentration of 1012 cells in 30 ml buffer. Similar disruption methods using a French press 

have been reported by other groups. For example, Schüler’s group has employed French 

press at 20000 psi for three cycles to disrupt Magnetospirillum gryphiswaldense MSR-1 at a 

cell concentration of 10 g cells in wet weight in 50 ml HEPES buffer containing 0.1 mM 

PMSF (Grünberg et al., 2004). Ginet and co-workers employed French press for 3 times 

under a pressure of 1000 psi, but the concentration of cell suspension used for disruption 

was not very clear (Ginet et al., 2011). Another case which applied French press at 1000 psi 

for AMB-1 cell disruption has been reported, and the concentration of cell suspension was 1 

g wet cell weight (WCW) in 10 ml HEPES buffer (Xiang et al., 2007). 

 

The Chemical strategies for cell disruption have been reported a great deal, but it was 

difficult to find out the papers of chemical cell disruption of MTB. In early period, Neu and 

Heppel, (1965) reported a chemical disruption method by using 1 mM EDTA and 20% 

sucrose to give osmotic shock to E. coli for 10 min incubation. The result showed that the 

osmotic shock was efficient to release proteins in periplasm compared with ultrasonication, 

but not efficient to release proteins and DNA in cytoplasm. 

 

Later, some researchers reported that they used a mixture of 1 mM EDTA, 20% sucrose and 

500 µg ml-1 lysozyme to do the cell fractionation in large scale of cells from 5 l of culture 

(French et al., 1996). The release of some enzymes in periplasm by the compounds was 

higher compared with release by sonication, which meant that the compounds can release 
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periplasm proteins which were entrapped by peptidoglycan matrix. The efficacy of protein 

release in periplasm when incubating E. coli with water and sucrose separately had a higher 

protein release in a further research than the release while incubating the cells with sucrose 

only (Pierce et al., 1997). They also found a relation between the amount of lysozyme and 

DCW to optimise the protein release. 

 

Other studies tested different combined chemicals to disrupt gram negative cells by using 

guanidine-HCl and/or Triton X-100 (Hettwer and Wang, 1989).They found that in a high 

concentration of guanidine (4 M), proteins in cytoplasm could be released about 50%.Triton 

X-100 cannot release proteins in cytoplasm by itself. But a combination of 0.1 M guanidine 

and 1-2 % of Triton X-100 could release similar amount of proteins from cytoplasm. The 

experiment showed that the 0.1 M guanidine open “gates” for Triton to go into the cells to 

inner membrane and disrupt it, although no changes could be seen in the outer membrane 

by TEM. This combination provided a very good strategy which contained a low 

concentration of guanidine to keep proteins active. 

 

Research into MTB disruption by chemical means is very limited. This is largely because 

only chemicals most widely employed for disrupting other cell types (namely Triton, 

guanidine hydrochloride, EDTA and SDS) have been trialled thus far, and these have proved 

most damaging to magnetosome structures, i.e. solubilising the membranes and embedded 

magnetosome proteins coating individual magnetic crystals, leading to gross disruption of 

chain configuration and loss of magnetic memory (Grünberg et al., 2004; Kobayashi et al., 

2006).  
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1.4.2.2 Magnetosome recovery after cell disruption 

Magnetosome extraction is another important step for obtaining pure magnetosomes. The 

methods generally exploit the magnetic properties of the particle magnetization. According to 

the theoretically magnetic force, some researchers claimed that the effective magnetic field 

should be 1-10 T, and the problem was it was very difficult to collect magnetic materials from 

large volumes of solution (George et al., 1983). Some reports employed very low power 

centrifugation after cell disruption (Borg et al., 2015; Grünberg et al., 2004; Uebe et al., 

2011) to separate cell debris from magnetic nanoparticles. Then the supernatant went 

through a magnetic cartridge called a magnetic cell sorter (MACS) made by Miltenyi 

(Bergisch Gladbach, Germany) which has been firstly designed in the application of 

magnetic cell separation (Miltenyi et al., 1990) (Fig. 1.5a). Magnetosomes were kept on the 

columns when an Nd-Fe-B permanent magnet was around the column, while the soluble 

proteins cannot be retained. Then the magnetic nanoparticles were flushed off after the 

magnet was removed (Fig 1.5b). The eluted magnetosomes were centrifuged by high speed 

ultracentrifugation at more than 200,000 g through a sucrose cushion (60% [w/w]) to spin 

magnetosomes down and leave the residue of proteins on the surface (Grünberg et al., 

Figure 1.5. Magnetic cartridge for magnetic separation. (a), principle of magnetic separation (Miltenyi et 

al., 1990), (b), MACS cartridge and working stand (this work). 

(a) (b) 
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2004; Lang and Schüler, 2008; Uebe et al., 2011) in the final separation step. Other 

researchers employed serial washing steps for magnetosome recovery after magnetosomes 

were released from disrupted cells. Xiang and co-workers used 0.5 T Nd-Fe-B magnet after 

cell disruption, and took out the supernatant from the sample after magnetic particles were 

collected on one side of a tube, and then replaced same buffer into the sample with 10 times 

repeat (Xiang et al., 2007). Similar recovery methods have been reported by Alphandéry and 

co-workers (Alphandéry et al., 2012). They used a neodymium magnet (0.1-1 T) and 

separated the magnetosomes in homogenates after 10-20 times of washing steps. Gorby 

has reported the use of a 2 kG radar magnet to separate magnetosomes by 10 times 

washing steps, and then another 10 times washing steps after diluting the suspension in 100 

times with a buffer containing 1 M NaCl for protein removal (Gorby et al., 1988). 

 

One approach utilised a high-gradient magnetic filter (HGMF) that consisted of a 

ferromagnetic matrix and increases the volume of the chamber between the two poles of the 

magnet (George et al., 1983). Another publication mentioned two methods for magnetosome 

extraction (Setchell, 1985). The author mentioned a rotating drum magnetic separator which 

was similar to a continuous drum filter system to purify the magnetosomes. This method 

could approach very large quantity of magnetic particles and resulted in very concentrated 

solid contained solutions. But, if high yield of magnetosomes, or high purity was required, 

then high gradient magnetic separators (HGMS) provides a suitable option. Guo and co-

workers published a route of magnetosome release and extraction in pilot scale (Guo et al., 

2011). They have shortened the whole purification process and successfully managed to 

extract magnetosomes produced in a batch of 6-L M. gryphiswaldense culture in 2-5 days. 

All those methods mentioned in this paragraph have shown scalable magnetosome recovery 

potential, but no yield or purification factor has been reported. 
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As outlined above, it is clear that the data of magnetosome extraction and recovery is very 

limited. The efficiency of magnetosome release from MTB and the yield of magnetosome 

recovery requires further work. The situation of magnetosome chain configuration should 

also be considered during the whole production route. Thus, in this research, a completely 

scalable route of magnetosome production and purification was investigated, with 

consideration of the production of impurities such as PHA, the magnetosome chain 

configuration, magnetosome yield and purification factor. 

 

1.5 Outline of the work 

In this research, we employed M. gryphiswaldense strain MSR-1 to produce biomolecular 

magnetic nanoparticles, magnetosomes, and tried to understand the physiology and 

metabolism of the cells. Specifically, methods for the determination of cellular concentration, 

cell size distribution, single-cell physiology and time dependent changes in intracellular PHA 

content and the chelatable iron pool were advanced.  

 

The next study was the development of a simple pH-stat fermentation strategy for production 

of M. gryphiswaldense MSR-1 and magnetosomes. Growth conditions were optimised with 

respect to biomass concentration, cellular magnetism (indicative of magnetosome 

production) and intracellular iron concentration using the previously developed flow 

cytometry analyses, and high biomass with high intracellular iron were obtained. 

 

The final piece of work describes systematic advance of a fully scalable platform for 

extraction, recovery and purification of magnetosomes. The approach comprises single pass 

disruption of exponential phase Magnetospirillum gryphiswaldense MSR-1 cells in a 

commercial high pressure homogenizer, recovery and partial purification of magnetosomes 
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by high gradient magnetic fishing in an automated ‘state-of-the-art’ magnetic separator, and 

final purification by magnetic micellar aqueous two-phase separation. 

 

By doing this, the work can contribute towards the development of industrially relevant 

processes for biomolecular magnetic particle manufacturing, hence developing the next 

generation of bio-based magnetic nanoparticles. 
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2.1 Introduction 

Magnetic nanomaterials are increasingly important products with myriad applications in 

diverse settings including but not limited to environmental pollution control, information and 

energy storage (Frey et al., 2009), catalysis (Schatz et al., 2010), biotechnological (Fischer 

et al., 2013; Franzreb et al., 2006; Frey et al., 2009) and especially biomedical research 

(Frey et al., 2009; Pankhurst et al., 2009; Rui et al., 2010; Wilhelm et al., 2016). While most 

are produced by chemical means there is growing interest in harnessing the cellular 

machinery of certain naturally occurring bacteria (Alphandéry, 2014; Arakaki et al., 2008; 

Jacob and Suthindhiran, 2016; Yan et al., 2012) to generate useful magnetic, and other 

metallic nanoparticle materials, biologically. In this context, ‘magnetosomes’, magnetic 

nanoparticle based organelles naturally contained within magnetotactic bacteria (MTB), are 

particularly important (Barber-Zucker and Zarivach, 2017; Bazylinski and Frankel, 2004; 

Lang and Schüler, 2006; Pollithy et al., 2011; Pósfai et al., 2013; Uebe and Schüler, 2016). 

In most MTB, magnetosomes are arranged in one or more highly ordered ‘compass needle-

like’ chains of single-domain permanently ferrimagnetic magnetite (Fe3O4) or greigite (Fe3S4) 

crystals (35–120 nm diameter) each wrapped in a phospholipid bilayer membrane containing 

a unique set of magnetosome specific proteins, i.e. distinct from those of cytoplasmic and 

outer membranes (Bazylinski and Frankel, 2004; Lang and Schüler, 2006; Raschdorf et al., 

2013). These internal structures within MTB function as navigational devices essential for 

magnetotaxis (Frankel, 1984). Unique properties of magnetosomes, not normally associated 

with chemically synthesized magnetic nanoparticles, of narrow size distribution, uniform 

morphology, high crystal purity, permanent magnetic character, high heating capacity, low 

aggregation tendency, ready dispersion in aqueous solution, facile functionalization, high 

biocompatibility, low toxicity and high specific absorption rates (Jacob and Suthindhiran, 

2016; Yan et al., 2012) make them especially attractive prospects for biotech and healthcare 

applications, i.e. in immunoassays (Wacker et al., 2007), magnetic affinity cell sorting 

(Yoshino et al., 2008), magnetic resonance imaging (Boucher et al., 2017), drug and gene 
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delivery (Tang et al., 2012) and cancer therapy (Felfoul et al., 2016; Jacob and Suthindhiran, 

2016). 

 

It is recognised that future widespread application of magnetosomes will, to a large extent, 

depend on the development of intensified high yielding manufacturing platforms for 

magnetosomes (Jacob and Suthindhiran, 2016; Uebe and Schüler, 2016; Yan et al., 2012). 

Fundamental to this are appropriate means for analysing MTB growth, viability, physiology 

and biomineralization of magnetic iron minerals, in order to understand and optimise 

magnetosome formation at any scale, from initial small (millilitre) studies on strain isolation 

and cultivability in the laboratory, and pilot scale manufacture (10–100 L), to fully fledged 

commercial production in cubic metre scale bioreactors. Qualitative evidence of 

magnetosome production within MTB can be obtained by observing a shimmering effect in 

cell suspensions mounted on magnetic stirrer plates, and black coloration of cell 

suspensions and/or colonies on agar plates, while magneto-spectrophotometric assay of 

cellular magnetism (Cmag) of suspended cells provides a rapid indirect measure of cellular 

magnetosome content (Lefèvre et al., 2009; Zhao et al., 2007). Quantitative determination of 

magnetosome content in cells and during subsequent recovery and purification operations 

usually involves measurement of iron content by means of atomic absorption spectrometry 

(dependent on species and cultivation conditions magnetosomes account for 80 to 99.5% of 

the total cell-bound iron in magnetic cells (Frankel, 1984; Grünberg et al., 2004; Heyen and 

Schüler, 2003), combined with imaging of magnetosomes by transmission electron 

microscopy. Recent work indicates the importance of monitoring physiological stress 

indicators to identify optimal conditions for magnetosome formation (Yang et al., 2013), and 

the utility of transcriptome analysis for comparing magnetosome forming and non-forming 

conditions in MTB (Wang et al., 2016). Other analytical methods especially pertinent to pilot- 

and large-scale magnetosome production and downstream processing from high biomass 

MTB fermentations include the tracking of polyhydroxyalkanoates (PHA) granules. Here, 
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PHA formation diverts cellular resources from growth, lowering yields, and high levels of 

PHA would be likely to be a troublesome contaminant of magnetosome preparations. 

Current procedures for the determination of PHA content employ lengthy procedures 

involving solvent extraction, derivatization and gas chromatography (Wang et al., 2016). 

 

With the exception of at line optical density and Cmag measurements all of the 

aforementioned techniques are labour intensive and/or time consuming. The development of 

analytical methods is essential for the development of robust production processes, itself a 

requirement for industrialisation implementation. It is desirable that such methods will be 

rapid, requiring small volumes of samples and provide data of cellular parameters without 

the need of further growth, thus giving a ‘snapshot’ of the current physiological state of the 

cells. The flow cytometry (FCM) methods applied in this study fulfil these requirements. FCM 

has previously been applied previously for rapid analysis of microbial physiology (Geng et 

al., 2014) and expression of auto-fluorescent proteins (Lagendijk et al., 2010), monitoring 

recombinant protein production (Sevastsyanovich et al., 2009) and for investigating 

population heterogeneities in cultures. In FCM, multiple physical characteristics of single 

particles suspended in a fluid can be measured concurrently as they flow through a beam of 

light. FCM is a fast single-cell analysis technique well suited to collection of large datasets 

(tens of thousands of cells can be analysed) and allows determination of light scatter 

(relative size and granularity/internal complexity) and fluorescence properties of individual 

cells and thus determination of population heterogeneity. An important advantage of FCM is 

that it does not rely upon microbial growth for analysis of cell viability. ‘Viable but non-

culturable’ (VBNC) cells exist within most microbial cell populations (Taimur Khan et al., 

2010), but growth-based methods for determining viable cell numbers (total viable counts 

generating colony forming unit, CFU data) will not detect the VBNC phenotype, thus total 

viable cell concentrations are underestimated. FCM does not share this limitation. MTB grow 

very slowly on agar plates, for example, M. gryphiswaldense MSR-1 forms colonies after 7–
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10 days (Heyen and Schüler, 2003). Regardless of cell type FCM analysis can be performed 

in a matter of seconds. Moreover, when combined with carefully selected mixtures of 

fluorescent probes FCM can be employed to determine the physiological state of single 

cells. 

 

Reports on the application of FCM to MTB are few in number (Lang et al., 2009; Lang and 

Schüler, 2008) and the full power of the technique has not exploited in any case. FCM has 

been used for analysing gene expression in M. gryphiswaldense MSR-1 (Lang and Schüler, 

2008), and in the development of new expression systems for the same species (Lang et al., 

2009). Green fluorescent protein (GFP) was used as a reporter in both studies, i.e. for 

magnetosomal localization and expression of GFP tagged magnetosome proteins under 

magnetite forming conditions (Lang and Schüler, 2008); and for identification of promoters 

(fused to GFP) for efficient gene expression (Lang et al., 2009). 

 

In this work, we present a battery of FCM methods tailored a priori to the study of M. 

gryphiswaldense MSR-1 and other MTB, and applicable to cells grown in liquid cultures and 

on agar plates. Specifically, we describe methods for determination of cellular concentration, 

cell size distribution, single-cell physiology and relative changes over time of intracellular 

contents of PHA and the chelatable iron pool. 

 

2.2 Materials and methods 

2.2.1 Strains, growth media and culture conditions 

Magnetospirillum gryphiswaldense MSR-1 was obtained from Leibniz-DSMZ (Deutsche 

Sammlung van Mikroorganismen und Zellkulturen GmbH) and used in all experiments. 
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Unless otherwise indicated all chemicals were from Sigma-Aldrich Chemical Company Ltd 

(Gillingham, Dorset, UK). M. gryphiswaldense MSR-1 cells were grown on solid activated 

charcoal agar (ACA) plates and in liquid media. ACA plates contained 3 g L-1 activated 

charcoal. 15 g L−1 agar (Formedium, Hunstanton, Norfolk, UK), 0.1 g L−1 yeast extract, 3 g 

L−1 soybean peptone, 3 g L−1 sodium pyruvate, 0.34 g L−1 NaNO3, 0.1 g L−1 KH2PO4, 0.15 g 

L−1 MgSO4·7H2O and 2.38 g L−1 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid 

(HEPES) buffer in MiliQ water. The pH was adjusted to 7.0 with sodium hydroxide (Heyen 

and Schüler, 2003) before autoclaving. After autoclaving iron(III) citrate (final concentration 

of 500 μM) and 1.4-dithiothreitol (DTT; final concentration of 1 mM) were aseptically added 

to the plate mix before pouring (Schultheiss and Schüler, 2003). Set ACA plates were 

incubated at 30 °C in 12-plates anaerobic jars with one Anaerocult®C sachet (Merck 

Chemicals Ltd, Beeston Notts, UK) to achieve microaerobic conditions. Liquid cultures of M. 

gryphiswaldense MSR-1 were routinely grown in a shaking incubator (30 °C, 150 rpm) using 

a flask standard medium (FSM) composed of 0.1 g L−1 yeast extract, 3 g L−1 soybean 

peptone, 3.5 g L−1 potassium l-lactate, 100 μM iron(III) citrate, 0.34 g L−1 NaNO3, 0.1 g L−1 

KH2PO4, 0.15 g L−1 MgSO4·7H2O, 5 mL L−1 of EDTA-chelated trace element mixture (Widdel 

and Bak, 1992) and 2.38 g L−1 HEPES buffer in deionized water; the whole adjusted to pH 

7.0 prior to sterilization in an autoclave. Cells were grown at 30 °C in a shaking incubator at 

150 rpm. O2-limiting cultures were grown in tightly sealed screw cap 50 mL Falcon tubes 

with variable headspace volumes (10–40 mL), whereas aerobic cultivations were performed 

with 50 mL of media in 250 mL shake flasks allowing free air exchange. Non-magnetic cells 

were cultured in FSM without iron (FSM-Fe−) for a minimum of three sequential sub-cultures 

in an attempt to eliminate all trace of the metal. Magnetic cells were obtained from cultures 

grown in bioreactor experiments under controlled conditions using a growth strategy adapted 

from previous works (Heyen and Schüler, 2003; Sun et al., 2008; Yang et al., 2013). 
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2.2.2 Flow cytometry (FCM) 

 

Table 2.1. Fluorescent dyes used in this study. With the exception of Pyr-546 (Photonic Solutions, Ohio, USA) 

the listed dyes were acquired from Fisher Scientific (Loughborough, Leics, UK). The cited working concentrations 

were adapted from previous studies and/or optimised in this work. 

Fluorescent dye 

 

Excitation 

λmax, 

abs (nm) 

Emission 

λmax, fl 

(nm) 

Stock 

concentration 

Solvent Working 

concentration 

Fluorescence 

channel 

Bis-(1,3-dibutylbarbituric 

Acid) Trimethine Oxonol 

(BOX) 

490 516 10 mg mL
-1

 

 

DMSO 

 

100 ng mL
-1 

 

FL1 (green) 

Phen Green™ SK (PG-

SK) 

525 580 1 mM DMSO 5 μM FL1 (green) 

Propidium iodide (PI) 533 617 200 μg mL
-1

 H2O 100 ng mL
-1 

FL3 (red) 

Pyrromethene-546 (Pyr-

546) 

493 519 0.1 mg mL
-1

 DMSO 0.5 μg mL
-1 

FL1 (green) 

Syto
®
9* 483 503 5 mM DMSO 1 μM N/A 

Syto
®
62 652 676 5 mM DMSO 0.4 μM FL4 (far red) 

 

*Syto® 9 was only used for fluorescence microscopy assays. N/A = not applicable. 

 

Bacterial samples taken directly from agar plates or liquid cultures were resuspended in 

phosphate-buffered saline (PBS) and then analysed directly in a BD Accuri C6 flow 

cytometer (Becton, Dickinson and Company, Oxford, UK) for cell size and granularity, or 

after staining with various fluorescent dyes (see Table 2.1) using protocols developed and 

detailed in the Results and Discussion. During FCM on fluorescently labelled cells, samples 

were excited using a 488 nm solid-state laser and fluorescence was detected using two 

different filters, i.e.: a 533/30 BP filter (FL1-A) for bis (1.3-dibutybarbituric acid) trimethine 
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oxonol (referred to here as bis-oxonol or BOX), pyrromethene-546 (Pyr-546) and phen 

green™ SK (PG-SK); and a 670 LP filter (FL3-A) for propidium iodide (PI). Syto®62 was 

excited with a 640 nm solid-state laser and detected through a 675/25 BP filter (FL4-A). 

 

2.2.3 Analytical methods 

Culture optical densities were recorded at a wavelength of 565 nm (OD565) in an Evolution 

300 UV-Vis spectrophotometer (Thermo Fisher Scientific, Hemel Hempstead, Herts, UK) 

controlled by Thermo Scientific™ VISIONpro™ software. 

 

Cellular magnetic response (Cmag) values of cultures were determined immediately after 

OD565 measurements using a purpose-built magnetic measurement system mounted within 

the spectrophotometer. In common with previous magneto-spectrophotometry apparatus 

(Lefèvre et al., 2009; Zhao et al., 2007) our system features two pairs of Helmholtz coils 

arranged around the cuvette holder, one pair perpendicular to the light beam and the other 

in line with it. Each pair of coils is energized in turn, and the OD565 is measured in each 

condition. Magnetic cells will align with the magnetic field and thus orient in line with or 

perpendicular to the light beam; the optical density will therefore change between the two 

conditions. Non-magnetic cells do not align with the magnetic field, thus the optical density 

does not change on switching the field orientation. Cmag values for culture samples are 

calculated by dividing the OD565 values of suspensions of cells aligned parallel to the light 

beam by those obtained when the same cells are perpendicularly aligned. Cmag values 

greater than unity reflect the presence of magnetic cells. 
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Cellular morphology was routinely examined by light microscopy using an Olympus BX50 

optical microscope (Olympus Corporation, Tokyo, Japan). Images were captured using a 

MotiCam 1 (800 × 600 pixel) camera (Microscope Systems Limited, Glasgow, UK) and 

processed with Motic Images Plus 2.0 software (Motic Europe S.L.U., Barcelona, Spain). 

 

Cells stained with fluorescent probes were observed and imaged using a Zeiss Axiolab 

microscope (Carl Zeiss Ltd., Cambridge, UK) fitted with a Zeiss AxioCam ICm1 camera, and 

the images were processed in auto-exposure mode with the aid of Zeiss ZEN Lite 2012 

software. Samples were excited with a Zeiss VHW 50f-2b ultraviolet light source and a 520 

LP filter was employed for detection of fluorescence from Syto® 9 and pyrromethene-546 

(Pyr-546). 

 

2.3 Results and discussions 

2.3.1 Morphological difference between cell growth on plates and in suspension 

FCM analysis was employed to monitor cell size and optical complexity of M. 

gryphiswaldense MSR-1 by means of light scattering. In FCM, light scatter is collected at two 

different angles: in the direction of the laser path (forward light scatter, FSC); and orthogonal 

to it (side scatter, SSC). For spherical particles (e.g. of latex), FSC correlates with the 

logarithm of particle diameter (Day et al., 2002). For cells and other non-spherical particles, 

changes in FSC are roughly indicative of changes in cell size. When applied to cells, SSC 

measures ‘granularity’ (Lee et al., 2004), a parameter that includes optical complexity 

caused by particulate material contained within the cell. Figure 2.1 shows the results of 

comparative FCM scatter and light microscopic analyses of MSR-1 cells cultured on ACA 

plates (resuspended in PBS) and in the liquid medium FSM. Clear differences in the 

heterogeneity of cell populations cultured in FSM (Fig. 2.1a) cf. those grown on ACA (Fig. 
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2.1b) can be discerned from the scatter patterns of FSC vs. SSC dot plots (Fig. 2.1a and b). 

Larger cells are represented by high FSC-A values (y-axis) whereas more granular cells are 

characterized by higher SSC-A (x-axis) values. Cells grown in liquid FSM appear less 

heterogeneous, smaller and less granular than those grown on ACA plates. Moreover, 

differences in particle size distribution and cell shape of suspension and plate grown MSR-1 

cells are respectively inferred from ‘Count vs FSC-A’ histograms and light microscopy, with 

plategrown cells appearing more polydisperse in size (Fig. 2.1c) and filamentous (Fig. 2.1e) 

compared to liquid-grown cells (Fig. 2.1d). 

 

2.3.2 Determination of cell concentration by FCM 

FCM analysis was also used as a rapid method for determining cell concentrations in shake 

flask experiments. In auto-calibration mode and operating at a medium flow rate of 35 

 

Figure 2.1. Analysis of M. gryphiswaldense MSR-1 using FSM and light microscopy. Scatter plots (Forward 

scatter, FSC-A vs. Side scatter, SSC-A) of cells cultured (a) in liquid FSM and (b) on ACA plates; (c) comparison 

of individual particle count vs FSC-A plots for plate (red trace) and liquid (blue trace) grown cells; light 

microscope images of (d) liquid and (e) plate grown cells. 
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μL·min−1 a strong correlation (R2 > 0.94) between OD565 and FCM event counts was 

observed for MSR-1 cells (Fig. 6.1a) with 1 OD565 equivalent to 1.16 × 109 cells mL−1. This 

relationship is strikingly different to Schultheiss and Schüler’s (Schultheiss and Schüler, 

2003) correlation of OD565 with CFU, i.e. 1 OD565 equivalent to 3.3 × 108 CFU mL−1 and likely 

reflects an important advantage of FCM over CFU counting, namely its ability to detect 

viable but non-culturable cells (VBNC). We also used Syto®62, a permeant DNA dye, to 

stain MSR-1 cells and so distinguish them from noise particles of similar size; with Syto®62-

stained cells a similar correlation was found between OD565 and cell count (OD565 = 1.03 × 

109 cells mL−1; Fig. 6.1b). 

 

2.3.3 Use of FCM to determine MSR-1 membrane polarization and cellular death 

Two fluorescent probes were used to monitor the respiratory potential and death of M. 

gryphiswaldense MSR-1 cells using FCM. BOX (DiBac4 (Franzreb et al., 2006); bis-(1,3-

dibutylbarbituric acid) trimethine oxonol) is a green lipophilic fluorescent probe that can only 

enter cells if their membranes are depolarized (Nebe-Von-Caron et al., 2000). Healthy cells 

possess intact polarized cytoplasmic membranes, which are impermeant to BOX (BOX−). In 

contrast, cells with depolarised cytoplasmic membranes (whether injured, stressed or dead) 

permit BOX access and fluoresce green (BOX+). PI (propidium iodide), a nucleic acid 

intercalator, is excluded by the intact membrane of viable cells (PI−), but is taken up by dead 

cells with red fluorescence (PI+) (Nebe-von-Caron et al., 2000). Staining procedures were 

optimised using actively growing M. gryphiswaldense cells, starving cells and dead cells 

killed with ethanol. Fig. 2.2 shows the two-colour fluorescence dot plots of MSR-1 cells co- 

stained with BOX and PI (fluorescence being detected on FL1-A and FL3-A channels, 

respectively). The fluorescence patterns from actively growing magnetic cells (Fig. 2.2a) and 
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Figure 2.2. Viability analysis of MSR-1 cells using FCM. MSR-1 cells were co-stained with BOX (fluorescence 

measured on FL1-A channel, y axis) and PI (fluorescence measured on FL3-A channel, x axis). Key: (a) actively 

growing magnetic cells; (b) starving magnetic cells; (c) actively growing non-magnetic cells; (d) starving 

nonmagnetic cells; and (e) cells incubated with absolute ethanol for 10 minutes, centrifuged and then 

resuspended in phosphate buffered saline. The numbers of cells in each of the four quadrants of all plots are 

indicated in red font and are expressed as percentages of the total population. 
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non-magnetic cells (Fig. 2.2c) were strikingly alike; i.e.: 86–90% of the cell populations were 

‘healthy’, staining negatively with both fluorescent markers (BOX− PI−, Quadrant 1); 5–8% 

were ‘injured’, staining positively with BOX, but negatively with PI (BOX+ PI−, Quadrant 2); 

and 3–4% were dead (BOX+ PI+, Quadrant 3). The fluorescence patterns from starving 

magnetic (Fig. 2.2b) and non-magnetic (Fig. 2.2d) MSR-1 cells were comparable with one 

another, but indicated noticeably fewer healthy populations (31–39% healthy, ~40% injured, 

19–26% dead) than those of actively growing cells (~90% healthy, 5–8% injured, <3% dead). 

The low healthy population in starving cultures suggests the presence of large numbers of 

VBNC cells. This confirms the observation that the correlation between OD565 and cells 

mL−1 as measured by FCM is different to the correlation between OD565 and CFU mL−1 

(Schultheiss and Schüler, 2003) due to the presence of VBNC cells. Only 5% of the positive 

control population, i.e. cells killed with ethanol, were healthy MSR-1 cells (Fig. 2.2e). 

 

2.3.4 Accumulation of PHA aggregates in MSR-1 

It has been widely reported that limiting nitrogen and O2 availability under carbon excess 

results in high-level accumulation of polyhydroxyalkanoates (PHA) in several species of 

bacteria (Ban et al., 2010; García-Torreiro et al., 2016; Kessler and Witholt, 2001; 

Schultheiss et al., 2005; Ward et al., 1977). Ban et al., (2010) specifically examined the 

effect of hydrogen metabolism on cell growth and magnetosome synthesis in M. 

gryphiswaldense MSR-1 concluding that in MTBs PHA formation occurs under conditions of 

excess reducing power. Liu and co-workers (Liu et al., 2008) succeeded in isolating an 

MSR-1 mutant capable of higher level magnetosome production and lower PHA 

accumulation than the wild type, indicating a possible link between the formation of PHA and 

magnetosomes in this bacterium. In more recent work, genomic excision of the phbCAB 

operon in MSR-1 was shown to abolish PHA granule formation albeit at the expense of 

much reduced growth (Raschdorf et al., 2014). Collectively, the above findings hint at the 
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existence of an energy competition between the processes of PHA and magnetosome 

formation. Here we have used FCM to investigate PHA accumulation within individual 

bacteria of starved non-magnetic and magnetic MTB cultures. Cells were stained with the 

lipophilic dye 1,3,5,7,8-pentamethylpyrromethene-difluoroborate complex (pyrromethene-

546 or Pyr-546) which on entering bacteria stains PHA green (Vizcaino-Caston et al., 2016). 

Previous studies have shown that Pyr-546 fluorescence correlates to intracellular PHA 

content (Kacmar et al., 2006) and is superior to Nile red as a dye for PHA. After incubating 

for various times (10–300 s) samples were immediately analysed by FCM. Figure 2.3 shows 

that when used at a concentration of 0.5 μg·mL−1 the timeframe for Pyr-546 penetration and  

full staining of intracellular PHA was less than 1 min after adding the dye and analysing the 

sample. No further enhancement in fluorescence occurred between 70 and 300 s exposure 

to Pyr-546 for both non-magnetic (Fig. 2.3a) and magnetic (Fig. 2.3b) cells. This said, FCM 

analysis reveals salient differences in the PHA content of magnetic and non-magnetic MSR-

 

Figure 2.3. Analysis of PHA content using FCM. Fluorescence intensity histograms of starved (a) non-

magnetic and (b) magnetic cells after staining with Pyr-546 (0.5 μg·mL
−1

) for various times. The numbers ‘1’ & 

‘2’ marked on the inserts and the fluorescence micrographs correspond to magnetic and  non-magnetic cells, 

respectively to identify those with low and high PHA content. The scale bars indicate a length of 5 μm (N.B. All 

colourful traces superimpose on one another). 
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1, for example, revealing the presence of two discrete populations with low (Fig. 2.3b, 

labelled ‘1’) and high (Fig. 2.3b, labelled ‘2’) PHA content in magnetic cells cf. just a single 

‘high PHA’ population in non-magnetic cells (Fig. 2.3a marked ‘2’). Fluorescence microscopy 

images of cells containing different quantities of Pyr-546 stained PHA are shown in Fig. 2.3. 

Similarly to our findings, recent studies performed with Cupriavidus necator observed sub-

populations with more and less PHA (Vizcaino-Caston et al., 2016). Other works with 

Pseudomonas putida have recently observed an asymmetric PHA distribution during cell 

division under carbon limiting conditions suggesting that this could be explained by different 

cellular growth rates, distinct ability to degrade PHA or uneven distribution of PHA granules 

to daughter cells (Karmann et al., 2017). 

 

2.3.5 Measurement of intracellular chelatable iron 

The intracellular pool of chelatable iron is considered a critical component in the 

biomineralization of magnetosomes. Recent studies in M. gryphiswaldense MSR-1 suggest 

that at least some of the iron transport for magnetite synthesis occurs through two copies of 

the ferrous iron transporter FeoB which is common to most bacteria. Strains lacking feoB1 

(Rong et al., 2008) and feoB2 (Rong et al., 2012) were found to have lower magnetite 

contents than the wild type. Deletion of the iron response regulator, Fur, which activates 

feoB1 and feoB2 also resulted in reduced magnetosome formation (Uebe et al., 2010). All 

the above studies compare magnetosome production of wild type and ‘deficient’ strains, but 

do not provide dynamic measurements of iron transport in MSR-1. Moreover, it is well known 

that biomineralization depends not only on iron, but also on O2 availability (Heyen and 

Schüler, 2003; Schüler and Baeuerlein, 1998). 
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Typically, magnetosome production is quantified off-line (by measuring the iron content in 

cells using atomic absorption spectroscopy), and is backed up by visualization of 

magnetosomes under the transmission electron microscope. In both cases sample 

preparation and analysis are laborious and time consuming. Therefore there is clearly need 

of rapid new methods to interrogate and quantify magnetosome production and 

biomineralization in MTBs, as well as inform the development and optimization of large-scale 

magnetosome production strategies in bioreactors. It is this context that we developed a 

FCM based method for detecting chelatable iron in M. gryphiswaldense MSR-1 cells using 

phen green™ SK (PG-SK), whose fluorescence is quenched by metal ions including Fe2+ 

and Fe3+. PG-SK has been previously used to study iron transporters (Große et al., 2006) 

and efflux systems in E. coli as well as applied to studies in human cell lines for iron, copper 

and silver uptake (Xu et al., 2012; Zhao et al., 2014). 

 

Figure 2.4. Analysis of intracellular iron by FCM. Fluorescence intensity histograms of non-magnetic MSR-1 cells 

growth in FSM-Fe
-
 after staining: (a) with various concentrations of PG-SK for 600 s at 30 °C (N.B. the 5 and 10 

µM traces superimpose on each other); (b) for various times with 10 μM PG-SK at 30 °C (N.B. all traces 

superimpose on one another); and (c) at various temperatures using 10 μM PG-SK for 600 s. 

 

Non-magnetic MSR-1 cells grown aerobically in FSM-Fe− (without iron) were stained with 

PG-SK. The staining procedure was partially optimized with respect to staining time (600–

900 s) and PG-SK concentration (0.2–10 μM) at three different temperatures (22, 27 and 30 

°C). The highest fluorescence was observed at a PG-SK concentration of 5 μM after 10 
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minutes of incubation (Fig. 2.4a). Doubling the PG-SK concentration did not enhance the 

fluorescence intensity of stained MSR-1 cells further (Fig. 2.4a). Extending the time of 

staining incubation did not response a higher fluorescence, so longer staining times were not 

needed (Fig. 2.4b). Peak fluorescence intensity was similar at all staining temperatures 

employed (Fig. 2.4c). 

 

2.3.6 Physiological changes of cells cultured with limited O2 availability 

The effect of O2 limitation on growth and cellular magnetism of MSR-1 cells was investigated 

indirectly by varying the volume of headspace provided (i.e. 20%, 40%, 60%, and 80%) in 

tightly sealed 50 mL Falcon tubes. In all experiments the initial OD565 was 0.086 ± 0.004. 

After 48 h in culture, OD565 and Cmag values were recorded (Fig. 2.5a). Two clear and 

opposite trends were observed: biomass production paralleled the increase in headspace 

volume, and therefore O2 availability, conversely, the magnetism of M. gryphiswaldense 

MSR-1 cells dropped dramatically from strongly magnetic (Cmag = 2) at 20% (v/v) headspace 

to very weakly magnetic (Cmag = 1.1 at 60% (v/v) headspace). These results are in 

agreement with findings from previous studies (Heyen and Schüler, 2003). Fig. 2.5b shows 

corresponding FCM analyses for relative quantification of intracellular iron and PHA content 

as a function of headspace volume. The highest intracellular PHA accumulation was 

observed in cells cultured in tubes with the lowest O2 availability (i.e. lowest headspace 

volume of 20%). Increased PHA formation during O2 limitation has previously been reported 

(Kessler and Witholt, 2001). Conversely, cells cultured at high O2 concentrations (80% 

headspace volume) had the lowest PG-SK fluorescence among the tested conditions and 

thus the highest free iron concentration. Microarray data showed that iron transporter feoB1 

is upregulated aerobically (Wang et al., 2016), suggesting that iron transport into cells is 

highest aerobically.  
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Staining cells grown with different headspace volumes with PI and BOX (Fig. 2.6c) revealed 

that overall cell health was highest with 20% headspace and lowest with 80% headspace 

volume. PI was also used for analysis of physiology of MSR-1 cells from 

ACA agar plates; this indicated that 15–20% of cells on plates were dead (PI+), whilst in a 

previous research by Wyre (2015), the dead E. coli remained below 10% (PI+) throughout 

Figure 2.5. Effect of O2 limitation on physiology. MSR-1 cultures were grown in tubes with different 

headspace volumes for 48 h. (a) OD
565

 (grey square) and cellular magnetism (C
mag

; black square). Error bars 

are standard deviation. (b) Fluorescence of cells stained with PG-SK (black circle) and Pyr-546 (grey circle) 

as measured using FCM. Error bars are coefficient of variation. (c) Viability as determined using FCM and 

staining with PI and BOX; percentage of healthy (black bars), injured (pale grey bars) and dead (white bars) 

cells are shown. Experiments were performed in triplicate. 
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the 16-week experiment. This highlights the difficulty in transferring MSR-1 cultures from 

single colonies to liquid cultures and emphasises the need to use a large amount of cells for 

setting up liquid cultures.  

 

2.3.7 Physiological characterization of MSR-1 in shake flask experiments with free air 

exchange 

To gain new insight into M. gryphiswaldense MSR-1 physiology during the shift from O2-

limited to aerobic conditions, we transferred cells grown under O2-limited conditions to O2-

rich conditions with or without the supplementation of iron. Magnetic cells grown in FSM 

batch medium and using a pH-stat feeding strategy in an O2-limited bioreactor were 

aseptically transferred to non-baffled shake flasks containing fresh media, either FSM or 

FSM without Fe (FSM-Fe−), and grown in O2 rich conditions (free air exchange) at 30°C on 

an orbital shaker (150 rpm). OD565 and Cmag were monitored immediately before (t = 0 h) and 

24 or 48 h after transfer and intracellular free iron and cellular PHA content were measured 

and compared to the pre-transfer culture using FCM (Fig. 2.6). After O2-limited growth in the 

bioreactor, and at the point of transfer to shake flasks (t = 0 h), MSR-1 cells were moderately 

magnetic (Cmag = 1.71). Strong Pyr-546 fluorescence (Fig. 2.6b, 0 h) and electron and 

fluorescence microscopy (Fig. 6.2) confirmed that cells contained large quantities of PHA. 

After transfer to aerobic conditions, cells grew better in the presence of iron (FSM) compared 

to the absence (FSM-Fe−). After 24 h, Cmag rose slightly from 1.71 to 1.84 (although variation 

was high at 24 h), but then dropped to 1.46 at 48 h. Cultures grown in FSM had >3 fold 

decreased Pyr-546 fluorescence at 24 h and 48 h, indicating a decrease in PHA content, 

suggesting that growth utilised PHA as a substrate; FSC and SSC values also dropped (Fig. 

2.6c), indicative of decreasing cell size and potentially corroborating loss of PHA granules. 

The impact of PHA utilisation on cell morphology has previously been reported in C. necator 

(Tian et al., 2005) and Pseudomonas oleovorans (Ruiz et al., 2001). In addition, in a parallel 
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experiment, TEM analysis and fluorescence microscopy with Pyr-546 stained cells allow 

comparison of PHA detection methods (Fig. 6.3). 

 

Figure 2.6. Physiology of magnetic cells during shift to aerobic conditions. MSR-1 cells grown under 

O2-limited conditions in a bioreactor were transferred to O2-sufficient conditions with either iron-

containing (FSM) or iron-lacking (FSM-Fe−) media. (a) OD565 (grey squares) and Cmag value (black 

squares). Error bars are standard deviation; cells were taken from a single bioreactor into three 

replicate flasks for each condition. (b) Mean fluorescence intensity of cells stained with 0.5 μg·mL−1 

pyrromethene-546 (Pyr546) (grey circles) or 5 μM phen green™ SK (PG-SK) (black circles). Error bars 

are covariance. (c) Forward scatter (FSC, grey triangles) and side scatter (SSC, black triangles) of cells 

as determined by FCM. Error bars are covariance. 25 000 events were analysed per sample by FCM. 
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After transfer of magnetic cells to culture medium lacking iron citrate (FSM-Fe−), very little 

growth ensued (OD565 ~ 0.3; Fig. 2.6a), likely due to dilution of magnetosome content per 

cell during cell division (Uebe and Schüler, 2016). Cmag fell steadily (reaching 1.2 after 48 h; 

Fig. 2.6a). Pyr-546 fluorescence dropped to 65% of its pre-transfer value (Fig. 2.6b), 

reflecting low PHA utilisation, whereas FSC and SSC increased, indicating an increase in 

cell size and granularity (Fig. 2.6c).  

 

PG-SK fluorescence dropped over time for cultures grown in FSM but not in the absence of 

iron; as expected, this reflects an increase in chelatable iron concentration in cells grown in 

the presence of iron, but not in the absence. Headspace volume experiments revealed an 

increase in intracellular iron concentration under more aerobic conditions in the presence of 

iron (Fig. 2.5). As with the regulation of intracellular iron concentrations in response to O2, 

high extracellular iron concentrations were shown to increase the expression of the feo iron 

transporters (Wang et al., 2013). 

 

FCM analysis of viability, intracellular chelatable iron and PHA, employing PI/BOX, PG-SK 

and Pyr-546 dyes respectively provides valuable insight on the effects of O2 and iron levels 

on the growth, magnetosome and PHA production of MTBs. The data are rapidly obtained, 

does not require growth of MTBs on agar plates, and when used together with similarly fast 

measurements of optical density and Cmag can be useful in the design of growth strategies 

for production of magnetosome rich cells. 

2.4 Conclusions 

In this study, we have used the FCM tool to understand how M. gryphiswaldense cells grew 

slower under limited O2 conditions, but the iron taken into the cells under this condition has 

been mineralised to form magnetosomes, whilst the iron taken under sufficient O2 conditions 
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has not been solidified in the cells. PHA granules can only be consumed under sufficient O2 

conditions and PHA accumulation was very obvious under limited O2 conditions. Thus, 

magnetosome production is only available in oxygen-limiting conditions. 

In conclusion, we have demonstrated a series of fast analytical methods with FCM in the 

cultivation of M. gryphiswaldense both in liquid culture and on agar plates. We can employ 

FCM analyses to monitor cell size distribution, physiology, relative change to the intracellular 

contents of PHA and chelatable iron over the time of the cultivation with optimised, 

qualitative staining procedures. This study substantially simplifies monitoring strategies for 

the fermentation of M. gryphiswaldense. 
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3.1 Introduction 

Magnetotactic bacteria (MTB) are a phylogenetically diverse group of bacteria that are able 

to synthesize magnetosomes; sub-cellular nanoscale organelles that comprise chains of 

crystals of magnetite or greigite (depending upon the species of MTB), with each crystal 

coated in a biological phospholipid membrane containing membrane proteins (Arakaki et al., 

2008; Heyen and Schüler, 2003). Magnetosomes represent an attractive alternative to 

existing commercially available chemically-synthesized magnetic nanoparticles, the 

synthesis of which usually requires: extreme temperature conditions (∼320 °C in the “heat 

up” method); organic solvents; and subsequent complex in vitro surface modification steps 

for grafting biomolecules to the particle surface (Laurent et al., 2008). Chemical synthesis of 

magnetic nanoparticles with a narrow size range and at large scale is also difficult (Bakhshi 

et al., 2016; Galloway et al., 2013; Ling et al., 2015). Magnetosomes therefore have several 

advantageous properties: they are ferrimagnetic; have a narrow size distribution; are coated 

in organic material, preventing aggregation (Arakaki et al., 2008; Heyen and Schüler, 2003); 

and can be functionalized in vivo using genetic engineering tools, allowing one-step 

manufacture of functionalized particles (Borg et al., 2015). 

 

Magnetosomes have been utilized in a wide range of biotechnological and healthcare 

applications, such as: contrast agents for magnetic resonance imaging; development of 

immunoassays; cell sorting and cancer therapy (Dasdag, 2014; Mathuriya, 2015; Wacker et 

al., 2007; Yoshino et al., 2008). However, availability of magnetosomes in sufficient 

quantities for these applications is problematic due to the low magnetosome yield of 

naturally occurring MTB species. Magnetospirillum gryphiswaldense is an MTB that has 

been subject of considerable research and can be cultured at higher cell densities than other 

MTB species; strain MSR-1 also generates up to 4% of its dry cell weight as magnetosomes 
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(Grünberg et al., 2004). Recent studies have optimized fermentations and employed genetic 

engineering approaches to improve magnetosome yields. Nevertheless, further improvement 

of MTB biomass and magnetosome yields remains a key objective in the field. 

 

The optimised pH range for the cultivation of M. gryphiswaldense is 7.0-7.5 (Gorby et al., 

1988; Heyen and Schüler, 2003; Lang and Schüler, 2008; Zhang et al., 2011), and the 

production of magnetosomes in M. gryphiswaldense occurs under oxygen-limited conditions; 

magnetite biomineralization is induced only below a threshold value of 20 mbar O2 and 

optimum conditions for magnetosome formation were found at pO2=0.25mbar (Heyen and 

Schüler, 2003). In order to achieve such conditions, pH-stat was employed because both the 

hydrogen consumption and carbon dioxide release occur in the fermentation to increase pH 

in the medium, and sophisticated control regimes employed gas blenders to supply mixtures 

of nitrogen and air containing 1% O2 to maintain microaerobic conditions (Heyen and 

Schüler, 2003). This strategy requires supplying relatively high gas flow rates (0.1–3 L 

min−1), leading to potential foaming in bioreactors and consequent use of antifoams, which 

may impair growth (Routledge, 2012). The complexity of gas blending and expense of very 

sensitive pO2 probes renders scaleup difficult and unattractive. In other studies, the 

fermenter was supplied with air and the pO2 was maintained between 0 and 1% by 

regulating airflow and agitation through cascade control (Zhang et al., 2011); alternatively, 

highly sensitive pO2 probes were employed for accurate monitoring of absolute values of O2 

in the parts per billion range (Yang et al., 2013). However, using cascade control to maintain 

pO2 set-point is likely to cause oscillations in dissolved oxygen concentration resulting in 

unstable pO2 in the fermenter (Montague et al., 1989). Therefore, design of methods for 

growth of MTB in bioreactors must pay particular attention to the stable control of dissolved 

oxygen concentration. Efforts should also be made to employ control that can be scaled up 

for eventual industrial production of MTB. 
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In addition to oxygen concentration, denitrification pathways have been shown to be 

important for magnetosome formation (Li et al., 2014b, 2012; Y. Li et al., 2013). Magnetite 

biomineralization has been linked to dissimilatory nitrate reduction to dinitrogen gas, 

employing a periplasmic Nap nitrate reductase, cytochrome cd1-dependent NirS nitrite 

reductase, a NorBC nitric oxide reductase and NosZ N2O reductase (Li et al., 2012; Y. Li et 

al., 2013). The highest expression of denitrification- related genes coincided with conditions 

permitting maximum magnetite synthesis (Li et al., 2012). Both oxygen and nitrate are used 

as electron acceptors under microaerobic conditions, the former being reduced by a high 

affinity cbb3-type terminal oxidase (Li et al., 2014b). A homologue of the oxygen-sensing 

transcription regulator FNR, MgFnr, regulates these processes and thus is important for 

magnetosome synthesis (Li et al., 2014b). 

 

The physiology of M. gryphiswaldense has not been sufficiently studied in high-cell density 

cultures and so little is known about the parameters that limit biomass and magnetosome 

yields. For other organisms, yields are determined by factors such as media formulation, 

feeding strategy, bioreactor mixing and/or oxygen availability. Typically, for M. 

gryphiswaldense, shake flask cultures with limited control of process parameters yield 

biomass equivalent to an OD565 of 1–2 (Heyen and Schüler, 2003; Schüler and Baeuerlein, 

1998) and therefore, findings from such shake flask cultures are not transferrable to 

bioreactor cultures, where biomass concentrations are around 10-fold higher. So far, M. 

gryphiswaldense MSR-1 has been the most studied strain in bioreactor experiments (Ali et 

al., 2017; Uebe and Schüler, 2016). Zhang and co-workers (Zhang et al., 2011) examined 

the increase of osmotic potential as a function of media composition. Yang et al., (2013) 

investigated physiological and metabolic stress parameters, such as reducing power and 

ATP content, to reveal conditions for magnetosome formation. More recently, transcriptome 
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analysis was used to compare magnetosome forming and non-forming conditions in M. 

gryphiswaldense in fermentation experiments (Wang et al., 2016). Under aerobic condition, 

genes expressed for nutrient metabolism, iron uptake, energy generation, such as liv, feo, 

and cta are up-regulated. Whilst under microaerobic condition, expression of nap, nir, nor 

and nos is up-regulated for dissimilarity denitrification pathway to provide additional energy 

required for magnetosome synthesis for enhancing motility and colonization abilities. Thus, a 

study of nitrate concentration in M. gryphiswaldense cultivation is very attractive. 

 

In the previous chapter, new processes for analysis of MTB growth, physiology, magnetic 

iron biomineralisation and PHA content, were developed. In this chapter, the development of 

a simple pH-stat based fermentation, that affords growth of M. gryphiswaldense MSR-1 to 

high cell densities, is described.  Flow cytometry methods developed in Chapter 2 combined 

with stress parameters (cell morphology, aspects of metabolism, and the accumulation of 

intracellular polyhydroxyalkanoate (PHA)) were employed to investigate the impact of 

different concentrations of lactate and nitrate on cell growth and magnetosome formation, 

with a view to developing better understanding of the physiology and metabolism of MTB. 

Such knowledge is essential for industrial production of magnetosome-based products in 

MTB, given that it underpins the commercial development of future magnetosome-related 

applications (Heyen and Schüler, 2003; Lohße et al., 2016; Zhang et al., 2011). 

 

3.2 Materials and methods 

3.2.1 Strains, growth media and culture conditions 

Magnetospirillum gryphiswaldense MSR-1 was obtained from Deutsche Sammlung von 

Mikroorganismen und Zellkulturen GmbH (DSMZ, Germany) and used for all experiments. 

Unless indicated otherwise, all chemicals were purchased from Sigma-Aldrich (Poole, UK). 
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Cryostocks of M. gryphiswaldense in 5% DMSO were routinely grown in flask standard 

medium (FSM) comprising: 3.5 g L−1 potassium L-lactate; 100 μM iron citrate (C6H5FeO7); 

0.1 g L−1 KH2PO4; 0.15 g L−1 MgSO4·7H2O; 2.38 g L−1 HEPES; 0.34 g L−1 NaNO3; 0.1 g L−1 

yeast extract; 3 g L−1 soy bean peptone; and 5 mL L−1 EDTA-chelated trace element solution 

(EDTA-TES (Widdel and Bak, 1992)) replacing MnCl2 to MnSO4·H2O. EDTA-TES contained: 

5.2 g L−1 EDTA disodium salt; 2.1 g L−1 FeSO4·7H2O; 30 mg L−1 H3BO3; 85.4 mg L−1 

MnSO4·H2O; 190 mg L−1 CoCl2 g L−1; 4 mg L−1 NiCl2·6H2O; 2 mg L−1 CuCl2·2H2O; 44 mg L−1 

ZnSO4·7H2O and 36 mg L−1 Na2MoO4·2H2O. Pre-cultures used for bioreactor inoculation 

were grown in FSM without iron source. The pH of FSM was adjusted to 7.0 with NaOH 

(Heyen and Schüler, 2003). Cells were grown at 30°C in flat-bottomed flasks in an orbital 

shaker incubator operated at 150 rpm. 

 

The batch medium for bioreactor experiments consisted of FSM without iron citrate and the 

feed solution contained: 50–200 g L−1 lactic acid; 3–25 g L−1 NaNO3; 18 mL L−1 25–28% 

NH3·H2O; 6 g L−1 yeast extract; 2.4 g L−1 MgSO4·7H2O; 6 g L−1 K2HPO4·3H2O; 70 mL L−1 

Mineral Elixir and 2 g L−1 FeCl3·6H2O. The mineral elixir (pH 7) contained: 1.5 g L−1 

nitrilotriacetic acid; 3 g L−1 MgSO4·7H2O; 0.5 g L−1 MnSO4·2H2O; 1 g L−1 NaCl; 0.1 g L−1 

FeSO4·7H2O; 0.18 g L−1 CoSO4·7H2O; 0.1 g L−1 CaCl2·2H2O; 0.18 g L−1 ZnSO4·7H2O; 0.01 g 

L−1 CuSO4·5H2O; 0.02 g L−1 KAl(SO4)2·12H2O; 0.01 g L−1 H3BO3; 0.01 g L−1 Na2MoO4·2H2O; 

0.03 g L−1 NiCl2·6H2O and 0.3 mg L−1 Na2SeO3·5H2O. 

 

3.2.2 Bioreactor set up 

An Electrolab (Tewkesbury, UK) Fermac 310/60 5-L jar bioreactor equipped with 4 baffles 

and an agitator with 2 six-bladed Rushton turbines was used. Aeration was achieved by 

sparging air from below the lower impeller at a rate of 0 – 100 mL min−1, through a reusable, 
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autoclavable 0.22-μm filter (Sartorius). Dissolved oxygen in the medium (pO2) was 

measured online using a D150 Oxyprobe (Broadley James). Agitation was maintained at 

100–500 rpm. pH was measured using an F-695 FermProbe (Broadley James) and was 

controlled at a set-point of 7 ± 0.05 with the automated addition of an acidic feeding solution. 

Off-gas passed through a condenser, autoclavable 0.22-μm filter (Sartorius, Goettingen, 

Germany) and HEPA filter (Millipore, Darmstadt, Germany). The temperature was 

maintained at 30 °C by a heating jacket and cold U-tube. Routine operational conditions 

were developed in this study and are detailed in the Results and Discussion section. 

 

3.2.3 Flow cytometry 

Table 3.1. Fluorescent dyes used in this study. With the exception of Pyr-546 (Photonic Solutions, Ohio, USA) 

the listed dyes were acquired from Fisher Scientific (Loughborough, Leics, UK). The cited working concentrations 

were adapted from previous work (Fernández-Castané et al., 2017) and/or optimised in this study. 

Fluorescent dye 

 

Excitation 

λmax, 

abs (nm) 

Emission 

λmax, fl 

(nm) 

Stock 

concentration 

Solvent Working 

concentration 

Fluorescence 

channel 

Bis-(1,3-dibutylbarbituric 

Acid) Trimethine Oxonol 

(BOX) 

490 516 10 mg mL
-1

 

 

DMSO 

 

100 ng mL
-1 

 

FL1 (green) 

Phen Green™ SK (PG-

SK) 

525 580 1 mM DMSO 5 μM FL1 (green) 

Propidium iodide (PI) 533 617 200 μg mL
-1

 H2O 100 ng mL
-1 

FL3 (red) 

Pyrromethene-546 (Pyr-

546) 

493 519 0.1 mg mL
-1

 DMSO 0.5 μg mL
-1 

FL1 (green) 

 

Bacteria were analyzed using a BD Accuri C6 flow cytometer (BD Biosciences, UK). 

Samples were taken from the bioreactor, resuspended in phosphate-buffered saline (PBS) 

and stained with dyes listed in Table 3.1. Samples were excited with a 488 nm and forward 

scatter (FSC) and side scatter (SSC) and fluorescence data collected (Table 3.1). Dyes were 
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used for fluorescence assays and with the exception of Pyr546 (Photonic solutions, Ohio, 

USA) were purchased from Thermo Fisher Scientific (UK). 

 

3.2.4 Analytical methods 

Culture optical densities at 565 nm (OD565) were measured using a spectrophotometer 

(Evolution 300 UV–vis, Thermo Scientific, UK). Data were collected using VISIONpro 

software. Magnetic response (Cmag) of cells was measured immediately after OD565 using a 

magnetic measurement system built into the spectrophotometer, based on devices 

described in the literature (Lefèvre et al., 2009; Zhao et al., 2007). Briefly, 2 pairs of 

Helmholtz coils were arranged around the cuvette holder, one pair perpendicular to the light 

beam and the other pair in line with the light beam. Each pair of coils was energized in turn 

(producing a magnetic flux density of 1.9mT at the centre of the cuvette) and the optical 

density (OD565) measured in each state. Magnetic cells align with the magnetic field and thus 

are either oriented in line with the light beam, or perpendicular to it, thereby changing the 

optical density measurement. Non-magnetic cells do not move when the magnetic field is 

changed, so their optical density is identical in both states. The Cmag is calculated by dividing 

the OD565 value measured when cells are aligned parallel to the light beam by that obtained 

when cells are aligned perpendicular to the light beam. For dry cell weight (DCW) 

determination, 1 mL samples, prepared in triplicate, were centrifuged and washed three 

times with MilliQ water, followed by overnight incubation at 105 °C. 

 

Fluorescence microscopy (Zeiss Axiolab) was used to observe stained cells with fluorescent 

probes. Images were acquired using an AxioCam ICm1 camera and processed using ZEN 

Lite 2012 software in auto exposure mode. Samples were excited using an ultraviolet light 

source (Zeiss VHW 50f-2b) and fluorescence was detected using a 520 L P filter. 
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3.2.4.1 Nitrate and nitrite assays 

Nitrate concentration was determined using the Szechrome NAS reagent system 

(Polysciences inc., USA) according to manufacturer’s instructions. Briefly, a working reagent 

was prepared comprising 5 g L−1 Szechrome NAS reagent dissolved in a 1:1 mixture of 85–

86% (v/v) H3PO4 and 95–97% H2SO4. Samples were diluted 40-fold before analysis, 

prepared in duplicate, and 50 μL portions were pipetted into 1 cm light path cuvettes, before 

adding 950 μL of working reagent and incubating for 1 h. Absorbance was read at 570 nm in 

a spectrophotometer (Evolution 300, Thermo Scientific, USA). 

 

Nitrite concentration was determined using the Greiss reagent kit system (Promega, USA) 

according to manufacturer’s instructions. Samples were diluted 20-fold for analysis, prepared 

in duplicate, and absorbance was read at 560 nm in a plate reader. 

 

3.2.4.2 Lactic acid assay 

Extracellular L-lactic acid concentration was measured using an Llactic acid kit (Megazyme, 

Ireland) according to manufacturer’s instructions. Samples were diluted 40-fold for analysis 

in duplicate, and reactions were prepared at total volumes of 1 mL in 1 cm light path 

cuvettes. Absorbance was measured at 340 nm before and after an incubation time of 10 

min. 

 

3.2.4.3 Iron concentration 

Flame atomic absorption spectroscopy was performed as an offline analysis to study the 

intracellular and extracellular iron concentrations within the bioreactor. Iron was determined 
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at 248.3 nm using a single element iron hollow cathode lamp (SMI-LabHut Ltd.) operated at 

a current of 30 mA with an acetylene/air flame (0.7 L min−1 acetylene and 4.0 L min−1 air) in a 

Perkin Elmer AAnalyst 300 Atomic Absorption Spectrometer (USA). Sample preparation was 

done in triplicates as described elsewhere (Heyen and Schüler, 2003). Briefly, 500 μL nitric 

acid (70% v/v) was used to solubilize the iron in the form of magnetite pellets and incubated 

at 98 °C for 2 h with shaking at 300 rpm, whereas 10 μL were employed for supernatant 

samples. 

 

3.2.4.4 Transmission electron microscopy 

Cell pellets were centrifuged at 14,000 rpm for 3 min, resuspended in 1 mL of 2.5% (v/v) 

glutaraldehyde in 0.1 M potassium phosphate solution (pH 7.2) and incubated for 1 h. A 

series of washing steps with increasing alcohol concentration (50–100% v/v) followed. 

Sedimented cells from the last dehydration step were embedded in resin by infiltration of the 

pellet with a solution containing 50% (v/v) Mollenhauer (Mollenhauer, 1964) resin in 

propylene oxide (Agar Scientific) on a rotator (Type N, TAAB) operated at 4 rpm for 12 h in a 

fume cupboard, followed by curing in undiluted Mollenhauer resin at 60 °C for another 48 h. 

Thin sections (120 nm) were cut from the resin block using diamond knives on a Reichert-

Jung UltraCut Ultramicrotome. The cut sections were examined using a JEOL 1200EX TEM 

electron microscope operated at 80 kV, in the transmission mode, with the beam current at 

60 μA, and TEM images were collected. 

 

3.3 Results and discussions 

This study investigated the production of magnetosomes in M. gryphiswaldense MSR-1 in 

bioreactors upon variation of environmental conditions and feed composition (lactic acid and 

sodium nitrate concentration). Magnetosome biomineralization has been shown to occur 
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under microaerobic conditions (Heyen and Schüler, 2003) and previous studies performed in 

bioreactors demonstrated that optimal process conditions to obtain high biomass and 

magnetosome yields were achieved by balancing O2 and nutrient supply (Heyen and 

Schüler, 2003; Zhang et al., 2011). Here, a relatively simple intensified fermentation strategy 

was developed using flow cytometry (FCM) to study changes in cell physiology and 

morphology, PHA accumulation, and intracellular chelatable iron concentration. First, 

scoping fermentations were carried out to define a routine fed-batch pH-stat growth strategy. 

The pH-stat strategy was first used by Zhang et al. (Zhang et al., 2011) for M. 

gryphiswaldense growth; an acidic feeding solution containing nutrients including lactic acid 

as a carbon and energy source was supplied into the medium to maintain the pH set-point of 

7. Next, the effect of the lactic acid concentration in the feed solution on bacterial growth and 

physiology was evaluated. Finally, the effect of the concentration of sodium nitrate in the 

feed solution was evaluated. Taken together, a development pathway to intensified 

bioreactor cultures of M. gryphiswaldense MSR-1 is provided that could be scaled up in 

future work. 

 

3.3.1 A simple fermentation strategy to grow magnetosome-producing M. 

gryphiswaldense MSR-1 

Preliminary experiments were used to determine the routine operational conditions of the 

pH-stat strategy. In these experiments, cellular magnetosome content was determined by 

measuring intracellular iron content using atomic absorption spectroscopy (AAS). In previous 

works, magnetosome production has been measured employing methods to determine dry 

weight of magnetosomes (Zhang et al., 2011) using the protocol described by Xiang et al., 

(2007), or AAS of purified magnetosomes. Alternatively, magnetosome yields have been 

calculated by measuring iron in media and subsequent mass balances (Sun et al., 2008), or 

by means of inductively coupled plasma optical emission spectroscopy (Yang et al., 2013). 
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Therefore, such variation in analytical methodologies to determine magnetosome production 

must be considered when comparing studies. 

 

First, the effect of air supply to the culture (0 – 100 mL min−1) and different stirring rates in 

the bioreactor (100–500 rpm) were evaluated. Setting air flow rates above 10 mL min−1 and 

stirring above 300 rpm at the beginning of the fermentation prevented the pO2 from dropping 

to 0%, and thus the low oxygen tension required for magnetosome formation could not be 

achieved. The position of the two impellers in the bioreactor was optimized to minimize 

foaming; the upper impeller was placed 2 cm below the liquid/air interface with the lower 

impeller placed 3 cm below the upper impeller. Together with the low aeration rates, this 

suppressed foaming and therefore prevented the requirement for antifoam, which can inhibit 

growth (Routledge, 2012). 

 

Supply of oxygen and iron was investigated in two sets of two-stage fermentations, with the 

aim of temporally separating biomass and magnetosome formation, as is common practice 

in fermentations generating recombinant proteins, where growth and protein production are 

temporally separated (Overton, 2014). First, M. gryphiswaldense MSR-1 was grown 

aerobically (150–400 rpm stirring, 10 mL min−1 airflow, control of pO2 to>10% by varying 

stirrer speed, pH-stat feeding mode) in FSM medium containing a total iron concentration of 

7.7 mg L−1 (5.6 mg L−1 supplied as ferric citrate (C6H5FeO7) and 2.1 mg L−1 supplied as 

FeSO4 in the EDTA trace element solution) to an OD565 of around 6, which took 60 h. The 

bioreactor was then purged continuously with nitrogen gas (0.4 – 0.6 L min−1) in order to 

rapidly decrease the pO2 to ‘zero’, aiming to reach conditions suitable for magnetosome 

production. This switch from aerobic to anaerobic conditions increased the iron content of 

the cells (determined using AAS) from 2 to 8.7 mg of iron per gram DCW, but cell growth 
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ceased under anaerobic conditions. Previous studies carried out by Heyen and Schüler, 

(2003) growing MSR-1 under aerobic conditions in medium containing 100 μM ferric citrate 

determined basal levels of intracellular iron up to 10.8 mg g−1 of DCW; these cells were 

classed as only weakly magnetic, probably due to oxygen limitation caused by high biomass 

concentrations. Therefore, our basal cellular iron contents are comparable to previous 

reports (Heyen and Schüler, 2003), indicating either formation of small quantities of 

magnetosomes, or more likely, non-magnetosome intracellular iron that could be stored by 

bacterioferritin under aerobic conditions (Wang et al., 2016). 

 

Next, MSR-1 was grown under oxygen-limited conditions (pO2 ≤ 0.4%) using pH-stat mode 

for 54 h to an OD565 of around 4.3 in FSM without the addition of ferric citrate (this medium 

contained 2.1 mg of Fe2+ L−1, supplied as EDTA-TES). Then, a pulse of ferric chloride was 

added to the feed solution to bring the final concentration of Fe3+ to 414 mg L−1; the feed 

also contained 1.4 mg of Fe2+ L−1, supplied as Mineral Elixir). This caused a dramatic 

cessation of cell growth after 3 h; the final biomass concentration achieved was OD565 ∼6.4, 

and cellular iron concentration increased from 3.1 to 6.1 mg g−1 DCW after a total 

fermentation time of 71 h. These two scoping studies demonstrated that rapid changes in 

oxygen concentration or iron concentration were detrimental to overall process performance, 

thereby directing design of culture methods without such changes. 

 

Following these initial scoping experiments, routine fermentation conditions were established 

as follows. Stirring rate was maintained at 250 rpm throughout. Bioreactor experiments were 

started without any air supply so that the drop in pO2 occurred within ca. 24 h of fermentation 

and reached ‘zero’ at an OD565 of 1 – 1.5. Air supply was started ∼2 h after reaching a pO2 

of 0% at a flow rate of 3 mL min−1; airflow rate was subsequently increased by 1 mL min−1 for 
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every 1 unit increase in OD565. This aeration strategy allowed cultures to start growing 

aerobically, then gradually adapt to the decreasing pO2, finally resulting in oxygen-limited 

conditions suitable for magnetosome formation. All the other fermentation conditions are 

described in the Materials and Methods section. Fig. 6.4 shows an example of changes in 

OD565, stirrer speed, pH, pO2 and airflow over a representative pH-stat fermentation. 

 

Our growth strategy employs a simple set up approach, minimizes the use of complex 

control parameters, and eliminates the need for gas blending. This method permitted 

biomass concentrations comparable to previously reported work to be attained (Yang et al., 

2013), and to the best of our knowledge only one academic research group (Yang et al., 

2013; Zhang et al., 2011) has recorded significantly higher MTB biomass yields, i.e. OD565 

values of 30.4 and 43 in 7.5 L and 42 L bioreactors, respectively. 

 

3.3.2 Optimisation of lactic acid supply in the feed solution 

The use of lactate or lactic acid as a carbon source has been widely studied in M. 

gryphiswaldense bioreactor experiments. Heyen and Schüler, (2003) used flask standard 

medium (FSM) and large scale medium (LSM) containing 27mM potassium lactate as a 

carbon source in batch experiments. 15mM sodium lactate was used in optimized 

fermentation medium (OFM) by Sun and co-workers (Sun et al., 2008) and Li et al., (2012) in 

batch and fed-batch experiments, respectively. Zhang and co-workers (Zhang et al., 2011) 

sought to reduce accumulation of Na+ and Cl− ions in the media, which were thought to 

inhibit growth. They used sodium lactate in the batch medium and three formulations of feed 

solution for pH-stat experiments with different concentrations of lactic acid or sodium lactate 

as carbon source, and NH4Cl or ammonium hydroxide as nitrogen source. They showed that 

the osmotic potential was maintained throughout the fermentation (100 mmol kg-1) using 
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Feed C, which contained 100 g L-1 lactic acid and 18 mL L-1 ammonium hydroxide, allowing 

achievement of the highest biomass concentration of M. gryphiswaldense MSR-1 to date 

(equivalent to OD565 = 30.4 in a 7.5 L bioreactor). 

 

The Feed C of Zhang et al., (2011) was used as a starting point to assess the effect of lactic 

acid concentration in the feed. Three oxygen-limited fermentations were performed with 50, 

100 or 200 g L−1 lactic acid in the feed. The pHs of the feeds were 3.65, 3.05 and 2.65, 

respectively. As a consequence, the most acidic feed required less volume to maintain the 

pH set point (7.0 ± 0.05) during pH-stat growth. An aerobic fermentation was also carried out 

with 100 g L−1 lactic acid feed. Fig. 6.5 shows the relationship between the quantity of feed 

solution added to bioreactors in pH-stat mode and the biomass concentration in g DCW·L-1; 

a linear regression was fitted to data where cells were actively growing, with R2 values of 

0.94–0.99. The calculated feeding rates were respectively 131.4, 17.8 and 1.63 mL1 of feed 

per g DCW L-1 for the 50, 100 and 200 g L-1 lactic acid oxygen-limited experiments. The 

aerobic experiment resulted in a feeding rate of 2.92 mL of feed for every g DCW per litre. 

The lactic acid concentration decreased over the oxygen-limited fermentations employing 

100 and 200 g L-1 lactic acid, whereas it rose during the 50 g L-1 lactic acid feed 

fermentation. This observation is relevant when considering the required volume of feeding 

solution, that in turn affects the production costs in an industrial setting. Significantly more 

100 g L-1 lactic acid feed was required for oxygen-limited growth than needed for aerobic 

growth. It should be noted that feed requirements are a function of pH increases in the 

fermenter and do not correlate directly to lactic acid demand as a carbon source; this 

                                                
1
 The mass of lactic acid added into the bioreactors were 6.57, 1.78, and 0.33 g for the feed of 50, 100, and 200 

g L
-1

, respectively. 
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reinforces the need to optimize lactic acid concentration in the feed, to balance pH 

maintenance, minimize cost and prevent accumulation of excess carbon source or other 

nutrients. Growth curves (Fig. 3.1a) show that OD565 was highest in the culture grown with 

Fig. 3.1. Comparison of oxygen-limited and aerobic fermentations conducted with different feed lactic acid 

concentrations. Plots show (a) OD
565

, (b) growth rates ln (OD), and (c) cellular magnetic response, C
mag

 

versus time. 
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50 g L−1 lactic acid feed. Specific growth rates were calculated (Table 3.2) and it was 

observed that maximum specific growth rate (μmax) occurred at the early stage of the 

fermentation and within the first 24 h of culture in all microaerobic experiments, whereas 

growth rate remained roughly constant over the exponential phase in the aerobic experiment 

(Fig. 3.1b).  

 

Cellular magnetism (Cmag) was also measured to determine the response to cells to 

magnetic fields. Specific growth rates (Table 3.2) were generally higher for the period before 

(μb) than the period after (μa) the point at which the highest Cmag value was reached in 

oxygen-limited cultures (Fig. 3.1c). When comparing the aerobic and oxygen-limited 

fermentations carried out with the same feed composition, the latter showed a higher growth 

rate at the beginning and a quick decrease after 40 h, whilst the aerobic fermentation 

showed a roughly constant growth rate until 50 h of cultivation (Fig. 3.1b). Our results 

showed lower μ values than reported previously for use of pH-stat mode; this may reflect 

differences in growth and operational strategies to maintain oxygen-limited conditions and/or 

media composition. 

Table 3.2 Comparison of bioprocess parameters for culture with varying feed lactic acid concentration. 

Lactic acid concentration in feed (g L
-1

) µmax (h
-1

) µ
b
 (h

-1
) µ

a
 (h

-1
) YX/S

b 
YX/S

a
 

50 0.12 0.056 0.051 0.15 0.26 

100 0.09 0.069 0.02 0.23 0.23 

200 0.1 0.07 -0.003 0.23 0.02 

100 (Aerobic) 0.07 0.058* 0.14* 

Key: μ
b
 and μ

a
 correspond to the growth rate before and after reaching maximum Cmag, and YX/S

b
 and YX/S

b
 are 

the corresponding yield coefficients; *values correspond to the exponential phase. 
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Our total fermentation time varied between 70–94 h as opposed to 44 h reported by Zhang 

and co-workers (Zhang et al., 2011) to reach an OD565 of 30.4; our maximum OD565 value 

was 15.5. However, maximum specific growth rates from our work (0.09 – 0.12 h−1) are only 

slightly lower than μ values obtained from oxystat experiments performed in previous studies 

with M. gryphiswaldense, which were ≈0.13 h−1 under microaerobic conditions, where OD565 

values of<1.5 were reached (Heyen and Schüler, 2003). 

Table 3.3. Maximum biomass (OD565), iron concentration and Cmag measurements for fermentations presented in 

Fig. 3.1. 

Maximum value Lactic acid concentration (g L
-1

) 

50 100 200 

OD565 15.5 10.3 8.5 

Iron concentration (mg L
-1

) 53.5±1.2 19.4±0.2 56.8±0.3 

Iron/DCW (mg g
-1

) 14.8±0.7 12.2±0.3 33.1±1.0 

Cmag 1.79 2.35 2.56 

For iron concentration values, mean values from 3 measurements are stated ± standard deviation. 

 

Biomass to substrate yields for cultures were calculated both before (Yx/s 
b) and after (Yx/s 

a) 

reaching their maximum Cmag values (Table 3.2). Comparison of Yx/s 
b within the oxygen-

limited cultures revealed that the 50 g L−1 lactic acid feed yielded less biomass per mass of 

supplied lactic acid than the 100 or 200 g L−1 feeds. Yx/s 
a values reflect the fact that the 

biomass increased after the oxygen-limited 50 and 100 g L−1 fermentations reached 

maximum Cmag. The 200 g L−1 experiment did not increase in biomass after reaching 

maximum Cmag. 
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Maximum biomass and magnetosome productivity for those fermentations are compared in 

the oxygen-limited experiments in Table 3.3. The amount of lactic acid in the feed solution 

inversely correlated to final biomass. The highest volumetric and specific magnetosome 

production, as determined by AAS, was achieved in the 200 g L−1 feed experiment, yielding 

56.8 mg iron L−1 and 33.1 mg iron g−1 DCW, respectively. The highest Cmag (2.56) was 

observed in the 200 g L−1 feed experiment and the lowest with 50 g L−1 feed, whilst the 

lowest iron amount in vivo was observed in the 100 g L-1 feed experiment. This illustrated 

that cellular iron content and Cmag did not correlate perfectly well with one another. TEM 

images (Fig. 3.2a–d) showed that cells harvested from the 50 g L−1 feed culture did not 

contain magnetosomes, or had short magnetosome chains, whereas longer chains were 

found in bacteria from the 100 g L−1 and 200 g L−1 feed fermentations. Additionally, as Cmag 

depends on changes in light scattering (as detailed in the Materials and Methods section), 

other parameters aside from the content of magnetosome chains, e.g. cell 

shape/morphology, likely influence the Cmag value. Thus, the measurement of iron 

concentration should be solid iron, but not the total intracellular iron. This can be achieved by 

measuring the pellet samples after cell disruption operations, which we did in Chapter 4. 

Figure 3.2. Transmission electron micrographs of bacteria from oxygen-limited and aerobic fermentations 

conducted with different feed lactic acid concentrations. The length of each scale bar is 0.5 μm. 

a b 

c d 
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Maximum Cmag values were achieved at an OD565 of 5–8 depending on the experiment (Fig. 

3.1c), but in all cases did not correspond to the point of maximum biomass concentration. 

This observation can be compared with previous studies where highest Cmag values were 

achieved at OD565 values of 2–5 in pH-stat cultures (Wang et al., 2016; Yang et al., 2013). 

Our results demonstrate the importance of not only the chemical nature of the carbon 

source, which has been previously described by other research groups, but also its 

concentration within the feed. While the 50 g lactic acid L−1 feed culture resulted in the 

highest biomass achieved using our growth strategy, the highest cellular iron content and 

Cmag were obtained using the highest lactic acid feed concentration of 200 g L−1. Therefore, a 

compromise between biomass and magnetosome production must be considered in 

industrial settings. 

 

3.3.3 Application of flow cytometry to monitor physiology 

Flow cytometry (FCM) was recently used by our group as a rapid, single-cell technique to 

study the physiology of MTB during growth in flasks (Fernández-Castané et al., 2017). In the 

present study, we have applied FCM to analyse and optimize fermentations. Propidium 

Iodide (PI) is a red DNA dye widely used to detect dead bacteria; the intact membrane of 

viable bacteria excludes PI, therefore live cells are PI− and dead cells are PI+. DiBAC4(3) 

(Bis-(1,3-Dibutylbarbituric Acid) Trimethine Oxonol), commonly referred to as Bis-oxonol 

(BOX), is a green lipophilic dye that enters the cell only if the membrane is depolarized 

(Nebe-von-Caron et al., 2000) allowing determination of cellular respiration. Co-staining with 

PI and BOX therefore permits detection of three physiological states: ‘healthy’ (PI− BOX−); 

‘injured’ (PI− BOX+; the cells are intact but are depolarized); and ‘dead’ (PI+ BOX+). 
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Co-staining with PI and BOX showed similar results in experiments with different feed lactic 

acid concentrations (Fig. 3.3). It was observed that between 85–90% of cells were healthy at 

the start of fermentation. This relatively low proportion of healthy cells may reflect the use of 

a late stationary phase inoculum as is observed with E. coli (TW Overton, unpublished data). 

The size of the healthy population increased over time, reaching nearly 99% after ∼27 h, 

roughly coinciding with the increase in Cmag from 1 to 2.5 between 20 h and 35 h. 

Subsequently the healthy population dropped to 80 – 85% corresponding to the period (35–

72 h), where growth slowed and Cmag fell to<2.25. The proportion of injured cells (PI− BOX+) 

was highest when the healthy population was lowest, whereas the proportion of dead cells 

(PI+ BOX+) remained low (1–5%) throughout the fermentation. 

 

3.3.4 Application of flow cytometry to monitor cell size, shape and PHA accumulation 

Cell size and optical complexity were monitored by FCM by means of light scattering. Light 

scattered by cells is measured by two detectors: forward scatter (FSC), measured in line 

Fig. 3.3. Assessment of bacterial physiology using FCM. Bacteria from an oxygenlimited pH-stat culture with 

200 g L
−1

 lactic acid and 6 g L
−1

 sodium nitrate in the feed were stained with PI and B and analysed by 

FCM. The percentages of cells within three differently stained populations, i.e. PI
-
/BOX

-
 (‘healthy’), PI

-
/BOX

+
 

(‘injured’) and PI
+
/BOX

+
 (‘dead’), are plotted. 
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with the illuminating laser beam, broadly correlates with cell size; side scatter (SSC), 

measured orthogonally to the laser beam, indicates the granularity or optical complexity of 

cells (Day et al., 2002). Comparison of FSC and SSC data for cultures with different lactic 

acid feed concentrations revealed that the largest increases in both FSC and SSC were 

noted for cultures fed with lactic acid at 50 g L−1 and the smallest were observed when a 

feed concentration 200 g L−1 was employed (Fig. 3.4a–c). TEM micrographs confirm 

differences in cell size and granularity; cells fed with 50 g L−1 of lactic acid (Fig. 3.2a) 

exhibited a rounder shape with large white inclusions, resembling PHA aggregates as 

reported by Bresan, Liu and their co-workers, respectively (Bresan et al., 2016; Liu et al., 

2008) whereas cells fed with 100 g L−1 (Fig. 3.2b) and 200 g L−1 lactic acid (Fig. 3.2c) were 

more elongated. 

 

Given that TEM (Fig. 3.2) revealed that cells fed with different concentrations of lactic acid 

contained differing amounts of PHA granules, FCM was used to determine cellular PHA 

accumulation by staining of the cells with the green lipophilic dye Pyrromethene-546  

(Pyr546; Fig. 3.4d) (Bañuelos Prieto et al., 2004; Vizcaino-Caston et al., 2016). As with the 

FSC and SSC data (Fig. 3.4b-c), Pyr546 fluorescence (and thus PHA concentration per cell) 

was highest for cells fed with 50 g L−1 lactic acid and lowest for 200 g L−1 lactic acid feed. 

The correlation between SSC and Pyr546 fluorescence is plotted in Fig. 3.4e. Fig. 3.4d also 

shows fluorescence micrographs of cells taken from the end of each fermentation stained 

with Pyr546, corroborating FCM and TEM data. The increased quantity of PHA in cells 

grown with 50 g L−1 lactic acid would also explain why the Yx/s values for this culture were 

lower than those recorded with the higher lactic acid feed concentrations (Table 3.1). 

Histograms of Pyr546 fluorescence (shown in Fig. 6.6) demonstrate, that for cultures fed 

with 50 and 100 g L−1 lactic acid, a narrow normal distribution was found, meaning that all 

cells within the culture exhibited similar levels of PHA accumulation. In contrast, cells fed 
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with 200 g L−1 lactic acid displayed bimodal distribution at two time-points (19–22 h and 74–

96 h), indicating two populations within the culture, one PHA-rich, the other comparatively 

PHA-poor. 

 

 

The formation of PHA aggregates in MTB has been previously reported. PHA is generated 

when there is an excess of carbon source compared to another nutrient, frequently nitrogen. 

As the 50 g L−1 lactic acid feed experiment had the highest quantity of carbon source added 

to the bioreactor, and lactic acid was seen to accumulate in the medium, it is logical that 

highest PHA accumulation occurred under these conditions. In addition, excess reducing 

Figure 3.4. Flow cytometry analysis of scatter and PHA content of cells grown with different feed lactic 

acid concentrations. Samples taken from oxygen-limited pHstat fermentations with different feed lactic 

acid concentrations were analyzed by measurement of OD565 and FCM. Twenty-five thousand data points 

were collected for each sample and mean values are represented. Panels show OD565 (a), forward 

scatter, FSC (b), side scatter, SSC (c), and fluorescence post-staining with Pyr546 (d) plotted against 

time; and Pyr546 fluorescence vs. SSC (e). The insets in (d) show fluorescence micrographs of cells at 

the end of each fermentation after staining with Pyr546. 
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power in MTB is consumed through PHA formation and hydrogen release (Ban et al., 2010); 

this phenomenon has been observed in several studies under different culture conditions 

(Schultheiss et al., 2005). In this work, we demonstrate for the first time the formation of PHA 

in M. gryphiswaldense high-cell density bioreactor cultures. Our results are in agreement 

with previously reported studies regarding the energy competition between PHA and 

magnetosome formation (Raschdorf et al., 2014), the 200 g L−1 lactic acid feed experiment 

resulting in the highest magnetosome production (33.1 mg iron g−1 DCW) and lowest PHA 

formation. 

 

3.3.5 Nitrate enhances cell growth 

Previous studies reported that magnetosome formation and denitrification occur 

simultaneously under oxygen-limited conditions (Li et al., 2014b). The nitrate concentration 

has been optimized for media used in shake-flask experiments, but to the best of our 

knowledge no research has focused on the optimal supply of nitrate in relatively high cell 

density M. gryphiswaldense bioreactor cultures. Hence, we optimized the supply of sodium 

nitrate into the feed solution using 100 g L−1 lactic acid as a carbon source in pH-stat 

cultures. 

 

Fig. 3.5a–d show plots of OD565, pO2, medium nitrate and nitrite concentrations versus time 

in culture for oxygen-limited experiments conducted with feed solutions containing 3, 6 or 25 

g L−1 NaNO3. The lactic acid concentration in the feed was 100 g L−1 for each experiment. 

For comparison, an experiment was also performed under aerobic conditions (pO2>30%) 
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with 6 g L-1 NaNO3 in the feed. The nitrate concentration did not vary significantly during the 

Figure 3.5. Comparison of oxygen-limited and aerobic fermentations conducted with different feed nitrate 

concentrations. Panels show OD565 (a), pO2 (b), and nitrate (c) and nitrite (d) concentrations plotted against 

time. Samples were measured in duplicate for nitrate and nitrite analysis and in triplicate for analysis of iron 

content. Mean values are plotted. 
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aerobic experiment, remaining around 4 mM during the exponential phase and decreasing to 

2.6 mM at the end of the fermentation (Fig. 3.5c). The concentration of NO3
- initially present 

in FSM was 4 mM (0.34 g L-1) and, despite 54 mmol of NO3
- being added to the fermenter 

during feeding (768 mL of feed was added), the NO3
- concentration was steady (Fig. 3.5c). 

Nitrite concentration was also very low throughout, except for the last sampling point (15.6 

μM NO2
-). This suggests concurrent denitrification and aerobic respiration; this has 

previously been observed by Li et al. (Fernández-Castané et al., 2017). For oxygen-limited 

growth, nitrate was rapidly utilized when the pO2 decreased to zero (Fig. 3.5b), and 

remained at very low concentrations in all experiments (Fig. 3.5c). In each case, nitrite 

concentrations transiently increased (Fig. 3.5d) following the onset of nitrate utilization (Fig. 

3.5c), then decreased; nitrite concentration rose slightly during the course of some 

fermentations (Fig. 3.5d). 

 

The effect of nitrate concentration in the feed had an impact on several bioprocess 

parameters (Table 3.4). Maximum growth rate (μmax) was comparable for all cultures, 

whereas higher biomass concentration was achieved in the culture fed with 25 g L−1 sodium 

nitrate. The maximum growth rate was observed within the first few hours of oxygen-limited 

cultures. Growth rates before the point at which maximum Cmag was achieved (μb) did not 

show a clear correlation with nitrate concentration; however, all cultures had significantly 

decreased growth rates after the peak Cmag. Biomass to substrate yields (Yx/s) before the 

time of maximum Cmag showed similar values except for the experiment with 3 g L−1 NaNO3. 

FCM analysis (Fig. 6.7) shows that cells from cultures with the lowest nitrate feed 

concentration accumulated the most PHA, and had higher FSC and SSC (indicating a 

change in morphology) than cells grown at higher nitrate concentrations. 
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Table 3.4. Comparison of bioprocess parameters for cultures with varying feed sodium nitrate concentration. 

NaNO3 concentration in feed (g L
-1

) μmax (h
-1

) μ
b
 (h

-1
) μ

a
 (h

-1
) Yx/s

b
 Yx/s

a
 

3  0.08 0.047 0.018 0.55 0.3 

6  0.09 0.069 0.02 0.23 0.23 

25  0.08 0.052 0.015 0.26 0.23 

6 (Aerobic) 0.07 0.058* 0.14* 

 

Key: μ
b
 and μ

a
 correspond to the growth rate before and after reaching maximum Cmag, and Yx/s

b
 and Yx/s

a
 are the 

corresponding yield coefficients; *values correspond to the exponential phase. 

 

Table 3.5. Peak biomass (OD565), iron concentration and Cmag measurements for pH stat cultures presented in 

Fig. 3.5. 

Maximum value 

NaNO3 concentration (g L
-1

) 

3 6 25 

OD565  10.7 10.3 16.6 

Iron concentration (mg L
-1

) 19.2±0.2 19.4±0.3 54.3±0.4 

Iron/DCW (mg g
-1

) 14.1±0.3 12.2±1.0 16.4±0.35 

Cmag 2.58 2.35 2.14 

For iron concentration values, mean values from 3 measurements are stated ± standard deviation. 

 

Correlation of biomass and magnetosome production with nitrate supply was also 

investigated as shown in Table 3.5. The highest concentration of nitrate in the feed resulted 

in highest biomass concentration and quantity of cellular iron per litre of culture. However, 

Cmag values were>2.1 for all 3 nitrate concentrations, indicating highly magnetic cultures. 

Overall, whereas high feed nitrate concentration did not significantly increase the Cmag of 

bacteria, it did generate higher biomass concentration, and thus more magnetosomes per 

unit volume. Our results indicate that if pH-stat mode is used, NaNO3 should be included in 

the feed solution to allow enhancement of magnetosome and biomass production. Future 
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work could determine if higher nitrate concentrations are able to support higher biomass 

concentrations. 

 

3.4 Conclusions 

We have developed a simple strategy for production of M. gryphiswaldense MSR-1 by 

employing a pH-stat operational mode adapted from previous studies. The advantage of this 

strategy is that it does not require tight and sophisticated control tools (gas blending, 

extremely sensitive oxygen probes) to achieve efficient biomass and magnetosome 

production. Biomass concentrations were obtained comparable to the highest published 

values to date (Yang et al., 2013; Zhang et al., 2011) using comparable analytical 

techniques. The concentration of two key nutrients in the feed solution, lactic acid and nitrate 

was also investigated. Lower concentrations of lactic acid in the feed increased final biomass 

concentration, whereas a high concentration increased cellular magnetism. There is 

therefore a need to balance the production of biomass and magnetosomes in the design and 

operation of these fermentation processes. The highest nitrate concentration tested (25 g 

L−1) gave rise to the highest biomass concentration. 

 

Flow cytometry has been shown to be a useful analytical strategy for the determination of 

bacterial physiology, morphology and PHA content, which can be used to guide process 

development. Bacterial ‘health’ was steady throughout fermentations. Cellular PHA content 

was shown to be inversely correlated to feed lactic acid concentration, and also correlated 

with scatter measurements. 
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Our study represents significant progress towards the implementation of rapid analytical 

techniques that will aid in the manufacture magnetosomes in industrial settings, itself a 

prerequisite of the application of magnetosomes in clinical and biotechnological applications. 

In conclusion, our work provides the research community with a relatively simple method to 

produce large amounts of magnetosomes using in M. gryphiswaldense MSR-1 grown in 

bioreactors. 
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CHAPTER 4  

 

A fully scalable platform for the production and purification of 

magnetosomes from Magnetospirillum gryphiswaldense MSR-1 
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4.1 Introduction 

Magnetosomes are nanometer-sized magnetic particles made by magnetotactic bacteria 

(MTB) under microaerobic conditions (Heyen and Schüler, 2003) with a size range of 35 – 

120 nm, and are structured as chains within cells (Blakemore, 1975; Schüler, 2008). They 

are comprised of a core made of magnetite (Fe3O4) or greigite (Fe3S4) crystals (Lang, 2009), 

coated in a lipid bilayer containing a specific set of transmembrane proteins (Arakaki et al., 

2008; Yan et al., 2012), with each coated particle unit connected side-by-side by a long 

filament of specific actin-like proteins (Uebe and Schüler, 2016) running the full length of the 

chain. The magnetosome membrane proteins (MMPs) can be used as anchors for the co-

expression of fusion proteins using genetic engineering techniques (Bird et al., 2015). This, 

combined with several other unique properties conveying salient advantages over the use of 

chemically manufactured magnetic particles, means that magnetosomes have diverse 

potential in applications in biotechnology and medicine (see e.g.:( Alphandéry et al., 2011; 

Matsunaga et al., 2001; Mériaux et al., 2015; Tanaka et al., 2004a; Yoza et al., 2003). 

However, to realise such future applications widely requires development of commercial 

scale manufacturing platforms for magnetosome-based products. Previous chapters 

described the development of:  

(i) a collection of new process analytical methods for assessing MTB growth, viability, 

physiology, biomineralization of magnetic iron minerals and changes in PHA content 

(Chapter 2); and  

(ii) a robust pH-stat fermentation strategy appropriate for production of Magnetospirillum 

gryphiswaldense MSR-1 and magnetosomes therein (Chapter 3).  

This work details experiments aimed at advancing a fully scalable integrated manufacturing 

platform for production, extraction, recovery and purification of magnetosomes. Specifically 

we investigate:  
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(i) cellular magnetic response, magnetosome size distribution, relative PHA content, and cell 

morphology during a pH-stat fermentation;  

(ii) disruption of 20% (w/v) suspensions of centrifugally harvested M. gryphiswaldense MSR-

1 in an industrial high pressure homogenizer (and small scale small scale ultrasonic devices) 

focussing on efficiency of magnetosome extraction and impact of the disruption process on 

magnetosome chain length, and influence of time in culture on the aforementioned 

parameters;  

(iii) operating limits of bar magnets and commercial high gradient magnetic separator 

(HGMS) filter cartridges commonly employed for magnetosome purification, but specifically 

designed for selection of lymphocytes using dilute suspensions of (0.5 – 5% w/v) disrupted 

M. gryphiswaldense MSR-1   suspensions; 

(iv) application of a ‘state-of-the-art’ rotor-stator HGMS for the recovery and partial 

purification of magnetosomes from 20% (w/v) disrupted MSR-1 cells; and finally 

(v) a novel scalable alternative to traditional small scale sucrose density gradient 

centrifugation for final purification, namely magnetic micellar aqueous two-phase extraction. 

 

4.2 Materials and methods 

4.2.1 Strains, growth media and culture conditions 

Magnetospirillum gryphiswaldense MSR-1 was obtained from Deutsche Sammlung von 

Mikroorganismen und Zellkulturen GmbH (DSMZ, Germany) and used for all experiments. 

Unless indicated otherwise, all chemicals were purchased from Sigma-Aldrich (Poole, 

Dorset, UK). Cryostocks of M. gryphiswaldense in 5% (v/v) DMSO were routinely grown in 

flask standard medium (FSM): 3.5 g L-1 potassium l-lactate; 100 µM iron citrate; 0.1 g L-1 

KH2PO4; 0.15 g L-1 MgSO4·7H2O; 2.38 g L-1 HEPES; 0.34 g L-1 NaNO3; 0.1 g L-1 yeast 

extract; 3 g L-1 soy bean peptone; and 1 mL L-1 EDTA-chelated trace element solution 
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(EDTA-TES; (Widdel and Bak, 1992) replacing MnCl2 for MnSO4·H2O. EDTA-TES 

contained: 5.2 g L-1 EDTA disodium salt; 2.1 g L-1 FeSO4·7H2O; 30 mg L-1 H3BO3; 85.4 mg L-

1 MnSO4·H2O; 190 mg L-1 CoCl2; 4 mg L-1 NiCl2·6H2O; 2 mg L-1 CuCl2·2H2O; 44 mg L-1 

ZnSO4·7H2O and 36 mg L-1 Na2MoO4·2H2O. Pre-cultures used for bioreactor inoculation 

were grown in FSM without iron source. The pH of FSM was adjusted to 7.0 with NaOH 

(Heyen and Schüler, 2003). Cells were grown at 30°C in a shaking incubator at 150 rpm.  

 

The batch medium for bioreactor experiments consisted of FSM without iron citrate and feed 

solution contained: 50 – 200 g L-1 lactic acid; 3 – 25 g L-1 NaNO3; 18 mL L-1 25 – 28% 

NH3·H2O; 6 g L-1 yeast extract; 2.4 g L-1 MgSO4·7H2O; 6 g L-1 K2HPO4·3H2O; 70 mL L-1 

Mineral Elixir and 2 g L-1 FeCl3·6H2O. The mineral elixir (pH 7) contained: 1.5 g L-1 

nitrilotriacetic acid; 3 g L-1 MgSO4·7H2O; 0.5 g L-1 MnSO4·2H2O; 1 g L-1 NaCl; 0.1 g L-1 

FeSO4·7H2O; 0.18 g L-1 CoSO4·7H2O; 0.1 g L-1 CaCl2·2H2O; 0.18 g L-1 ZnSO4·7H2O; 0.01 g 

L-1 CuSO4·5H2O; 0.02 g L-1 KAl(SO4)2·12H2O; 0.01 g L-1 H3BO3; 0.01 g L-1 Na2MoO4·2H2O; 

0.03 g L-1 NiCl2·6H2O and 0.3 g L-1 Na2SeO3·5H2O. 

 

4.2.2 Cell harvesting and disruption 

MSR-1 cells were harvested using a Beckman centrifuge (Beckman J2-21) at 7,500 gav for 

20 min, with a temperature control set at 4oC. Supernatant was removed and cells were 

stored at -20ºC for further use. 

 

In cell disruption process, cells were first thawed at 4°C, and then suspended with 50 mM 

HEPES buffer, pH 8.0, to a final wet cell concentration of 20% (w/v).  
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Small scale disruptions were performed using 6 mL portions of cell suspension contained in 

15 mL Falcon tubes. Cells were either: disrupted on ice using a Status US70 ultrasonic (20 

kHz, 60 W) probe sonicator (Philip Harris Scientific, Lichfield, Staffs, UK) operated in ten 

bursts of 1 min duration (50% duty cycle) at 70% amplitude (power) with 1 min cooling of the 

probe in ice cold water between bursts; or treated in an L&R Ultrasonics 55 W T-9 ultrasonic 

bath (L&R Manufacturing Company, Kearny, NJ, USA) for 0.5 to 2 h.  

 

High-pressure homogenization trials were initially conducted with 50 mL volumes of cell 

suspension using a 0.75 kW TS Bench Top High Pressure Cell Disruptor (Constant Systems 

Ltd, Daventry, Northants, UK) operated at various disruption pressures, P (5 – 20 kpsi) using 

1 – 5 discrete passes, N. In later experiments larger quantities of cell suspension (250 mL) 

were subjected to a single pass at 10 kpsi.  

 

4.2.3 Lab-scale recovery of magnetosomes  

At small scale magnetosomes were recovered from disrupted cell suspensions using 

permanent bar magnets either with or without commercial HGMS cartridges intended for 

magnetic affinity cell sorting, MACS (Miltenyi et al., 1990). 

 

MACS® LS separation columns2  (Miltenyi Biotech GmbH, Germany) vertically positioned 

within a 0.5 T MidiMACS™ separator (Miltenyi Biotech GmbH, Germany) or between two 1.2 

– 1.4 T  ‘50 x 15 x 15 mm’ Neodymium-Iron-Boron (NdFeB) block magnets (Q-50-15-15-N, 

Supermagnete, Gottmadingen, Germany), were equilibrated with 12 mL of 10 mM HEPES 

buffer pH 8.0, before loading with  2 mL or 5 mL volumes of varying concentrations (0.5 – 

5% w/v) of MTB homogenate (corresponding to the application of 10 – 250 mg of weight cell 

                                                
2
A plastic syringe set-up featuring: a 1.2 mL syringe packed with a matrix of coated non-porous ferromagnetic 

spheres, creating a void volume of 0.4 mL; an 8 mL buffer reservoir; and a manual plunger.  
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mass). After the loading step, columns were washed in situ with a further 6 mL of 

equilibration buffer, before removing to ‘zero field’ and flushing with a further 12 mL of the 

same buffer.  

 

Block magnets were also used to recover magnetosomes without using MACS cartridges. In 

this case single ‘60 x 30 x 15’ mm NdFeB magnet (Q-60-30-15-N, Supermagnete) were 

placed against vertically positioned 50 mL Falcon tubes containing 25 mL of 20% (w/v) MTB 

homogenates for 0.5 – 1 h. The cloudy cell debris containing bulk phases were carefully 

aspirated off using a pipette, before adding 25 mL of 10 mM HEPES pH 8.0 buffer, removing 

from the magnet and resuspending the wet magnetic cakes with the aid of a vortex mixer. 

This procedure was repeated a further 9 times.  

 

Fractions collected from all of the above procedures were retained for analysis of iron and 

protein contents and in some cases TEM analysis and were stored at 4 or -20ºC as 

appropriate.  

 

4.2.4 Description and general operation of the bioHGMF system 

The magnetic separator model ‘chemagic 15 Durchfluss-Separator Birmingham’ 

(PerkinElmer chemagen Technologie GmbH, Baesweiler, Germany) employed in this study 

is based on Franzreb and Reichert’s (2006) patented ‘rotor-stator’ magnetic filter system. It 

is an improved version of the earlier similarly sized ProMagic system used by Brown et al. 

(2013)3 and was developed specifically for the Birmingham team through a cooperative 

development involving M. Franzreb (Karlsruhe Institute of Technology, Eggenstein‐

                                                
3
Larger ‘rotor-stator’ magnetic separator prototypes have been used for demonstration of HGMF at technical 

scales (Müller et al., 2015;  Garcia et al., 201) and cGMP rotor-stator HGMS are now available (Ebeler et al., 
2018; https://www.andritz.com/products-en/group/separation/disc-drum-filters/hgms-high-gradient-magnetic-
separator). 

https://www.andritz.com/products-en/group/separation/disc-drum-filters/hgms-high-gradient-magnetic-separator
https://www.andritz.com/products-en/group/separation/disc-drum-filters/hgms-high-gradient-magnetic-separator
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Leopoldshafen, Germany), ABBIS® bio process automation / Vulkan TechnicMaschinen-

Konstruktions GmbH/ (Wiesbaum, Germany) and PerkinElmer chemagen Technologie 

GmbH (Baesweiler, Germany).   

 

The main components of the bioHGMF system are described below and identified in Fig. 

4.1a. 

 Duran bottles of various size as reservoirs for feedstock, wash/elution buffer and CIP 

solution, and for collecting fractions. 

 A variable speed bidirectional peristaltic pump.  

 Two computer-controlled six-way valves for regulating liquid flow within the HGMF rig. 

 An air-cooled ‘ON/OFF’ 0.28 T solenoid electromagnet equipped with bore temperature 

measurement. 

 A separator chamber within the magnet bore housing a specially designed ‘rotor-stator’ 

magnetic filter arrangement (Figs 4.1c & 1d) coupled to a variable speed motor. The 

‘rotor-stator’ filter (internal diameter = 60 mm; working volume = 250 mL) features a 

rotating shaft mounted with densely perforated discs interlocked with a two-part stationary 

assembly of densely perforated discs, to create an alternating arrangement of rotatable 

and fixed filter disks, spaced 3 mm apart (Fig. 4.1c & d) which play the role of matrix 

wires employed in conventional HGMS systems. According to the manufacturer, the 

magnetic filter capacity is sufficient to handle >25 g of chemically synthesized magnetic 

M-PVA supports.4  

 A hollow copper coil between the separator chamber and the magnet bore for ‘active 

cooling’ with chilled (4ºC) tap water (Fig. 4.1b). 

                                                
4
In studies, employing a slightly smaller ‘rotor-stator’ filter operated close to its maximum holding capacity of ~20 

g of M-PVA particles particle loss was estimated at just 0.1% per full operating cycle (Brown et al., 2013). 
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 A laptop computer equipped with TwinCAT IO control software (Beckhoff Automation 

Gmbh & Co KG, Verl, Germany) and Altova Authentic® protocol editing software (Altova 

GmbH, Vienna, Austria). Once programmed, the computer was able to record the 

temperature of the magnet, and control: the switching of the valve positions; the speed 

and direction of the pump; rotation of the rotor; and switching the magnet ‘ON’ and ‘OFF’ 

as required. 

 

A schematic overview of the steps involved in magnetosome processing by HGMF system is 

presented in Fig. 4.2. To capture magnetosomes requires pumping disrupted M. 

gryphiswaldense suspensions to filter with the magnetic field switched ‘ON’ (Fig. 4.2. 

LOADING). Magnetosomes are strongly attracted to the magnetized surfaces of the 

perforated steel discs and are therefore retained within the filter, whereas cell debris and 

other non-magnetic components pass unhindered and are collected. Cell debris and other 

biological materials (loosely adsorbed or entrained within the magnetosome filter cake and 

suspended within the interstitial fluid after the loading phase) are displaced in subsequent 

washing steps performed in situ (Fig. 4.2, WASHING). For each of these, wash buffer (50 

mM HEPES pH 8.0) is pumped to the filter, the magnetic field is then switched ‘OFF’ and the 

filter discs connected to the central motor driven shaft are rotated at 600 rpm (50% rotor 

power). The strong shear forces generated in the interfacial regions between the rotating 

and the fixed filter discs are sufficient to detach, resuspend and wash magnetosomes. At the 

end of each washing cycle magnetosomes are recaptured within the filter by turning the 

stirrer ‘OFF’ and magnetic field back ‘ON’, and the washings are collected. On completing 

the last wash cycle magnetosomes were recovered from the rotor-stator filter in elution and 

flushing cycles by resuspending with wash buffer with the stirrer ‘ON’ and field ‘OFF’, and 

then displaced from the filter chamber with the aid of the system’s peristaltic pump (Fig. 4.2, 

ELUTION & FLUSH). Detailed descriptions of the HGMF experiments conducted are in the 

following section. 
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4.2.5 Recovery of magnetosomes from disrupted M. gryphiswaldense MSR-1 cells by 

HGMF 

Prior to commencing HGMF, ice cooled (4ºC) 50 mM HEPES buffer pH 8.0 was recirculated 

through the whole system for 5 min at 14.4 L h-1 at’ zero field’ with stirrer ‘OFF’. Following 

system equilibration 250 mL of cell homogenised (prepared by single pass disruption of a 

20% (w/v) suspension of exponential phase Magnetospirillum gryphiswaldense MSR-1 in 50 

mM HEPES buffer pH8.0 at 10 kpsi) was applied to the filter at a flow rate of either 0.6 or 3.6 

L h-1 with the magnetic field turned ‘ON’ and stirrer ‘OFF’. Magnetosomes were captured in 

the magnetized filter, whereas magnetosome-depleted feedstock passed through (Fig. 4.2, 

LOADING), and was collected as the ‘non-retained’ fraction. In some experiments the non-

retained fraction was reloaded onto the magnetic filter multiple times in order to boost 

magnetosome recovery from the feedstock and increase the mass of magnetosomes 

retained.  

 

With the field still ‘ON’, 250 mL of 50 mM HEPES buffer, pH 8.0, was then pumped through 

the filter (at either 0.6 L h-1 for 25 min or 3.6 L h-1  for 5 min in order to flush out any residual 

of feedstock and fill the filter and lines with wash buffer (Fig. 4.2, WASHING, left). The output 

from the rig was collected (‘Wash 1’), before stopping the pump and resuspending the 

magnetosome particles in wash buffer by switching the magnetic field ‘OFF and the stirrer 

‘ON’ for 1 min at 600 rpm (Fig. 4.2, WASHING, right). Recollection of magnetosomes was 

initiated by switching the stirrer ‘OFF’ and the magnetic field back ‘ON’ for 1 min without 

pumping the process stream around the recycle loop; before initiating the next cycle by 

continuing collection of the washings at a flow rate of 0.6 or 3.6 L h-1 for 2 min (Fig. 4.2, 

WASHING, left). This washing regime as carried out three times, and the washes from the 

cycles were collected separately.  
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The first of two to five sequential elution cycles was then performed by pumping 300 mL of 

50 mM HEPES pH 8.0 buffer into the filter at 7.2 L h-1 for 2.5 min at ‘zero field’ without 

stirring (Fig. 4.2, ELUTION, left). Eluting magnetosomes were collected in 100 mL aliquots. 

The flow was then shut off flow and the stirrer switched back ‘ON’ for 2 min at 600 rpm (Fig. 

4.2, ELUTION, right) in preparation for the next elution cycle. In some experiments after 

completing the last elution cycle the filter chamber was flushed copiously with 720 mL 

portions of 50 mM HEPES buffer pH 8.0 at 7.2 L h-1 at ‘zero field’ without stirring until the 

flushed liquid was clear (Fig. 4.2, FLUSH). If not, pumping was stopped and the stirrer was 

switched ‘ON’ for 1 min at ‘zero field’, before performing a second flush cycle. All 

experiments runs concluded with cleaning-in-place (CIP) using 300 mL of 20% (v/v) ethanol 

for cell debris detachment delivered at 7.2 L h-1 with the stirrer switched ‘OFF’ (Fig. 4.2, CIP). 

Periodic measurements of the temperature of liquid streams (waste and product) exiting the 

rig during operation (2 – 4 h duration) were conducted off-line with an infrared Volcraft® IR 

260-8S thermometer (Conrad Electronic SE, Wenberg-Köblitz, Germany). Fractions issuing 

from the runs were collected on ice. The volumes were recorded, small aliquots from each 

were removed for immediate analysis of protein and iron contents and preparation of 

samples for TEM, and the rest was stored at -20º C until required.  

 

4.2.6 Further purification by density gradient centrifugation  

Following partial purification at lab and HGMF scales magnetosome enriched samples (1 L 

containing 30 –35 mg of iron) were further purified by layering onto 4 mL cushions of 60% 

(w/v) sucrose in 10 mM HEPES buffer pH 8.0 contained in 10 mL Oak Ridge High-Speed 
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Figure 4.1. Durchflussseparator. (a) Annotated photograph of the chemagic 15 ‘rotor-stator’ magnetic separator set-up employed in this work. (b) Schematic of the filter 

chamber’s active cooling system (in reality the coil winding density is greater than illustrated). (c) Disassembled filter showing perforated filter discs mounted on a rotating shaft 

and two part stationary perforated filter assembly. (d) Close-up of rotating filter discs showing the perforations. 
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Figure 4.2. Schematic illustrations of the bioHGMF set-up employed in this study (see text for details). The equipment layout, general operation cycles and status of 

components (pump, magnet and rotor) and flow paths at the different stages are shown. 
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PPCO screw-cap round-bottomed centrifuge tubes (Model 3119-0010, Thermo Fisher 

Scientific, Loughborough, Leics, UK), before centrifuging at 50,000 gav in the fixed angle 

rotor ‘model 12111’ (10 × 10 mL) of a Sigma 3K30 centrifuge (Sigma Laborzentrifugen 

GmbH, Osterode am Harz, Germany) for 2.5 h at 4°C. After centrifugation, the ‘light’ sucrose 

top phases were carefully removed using a Pasteur pipette, and ‘heavy’ magnetosome 

particles collected at the bottoms of the tubes, were resuspended in 10 mM HEPES buffer 

pH 8.0. 

 

4.2.7 Magnetic aqueous two-phase extraction 

Eluate fractions from HGMF experiments were employed for evaluation of magnetic aqueous 

two-phase extraction as a low cost scalable alternative to lab-based sucrose density gradient 

centrifugation. Two different aqueous two-phase systems were explored, i.e.: a classical 

PEG/phosphate combination (120 g L-1 PEG 8000 / 0.36 M K2HPO4 + 0.25 M KH2PO4, pH 

8.0) (Divyashree et al., 2009); and a micellar aqueous two-phase system (15% – 20% w/v 

Eumulgin ES in 50 mM sodium phosphate, pH 7.0) used previously for demonstration of a 

continuous magnetic extraction process (Fischer et al., 2013). Two and half millilitre eluate 

samples containing 60 – 70 mg of iron were loaded on top of 10 mL of each mixed ATPS 

contained in Falcon® 6-well (i.d. = 34.6 mm, depth = 20 mm) flat-bottom cell culture plates 

(Corning, B.V. Life Sciences, Amsterdam, The Netherlands), which were immediately sealed 

and placed on top of a powerful Nd-Fe-B permanent magnet block (1.32 – 1.37 T, 

110×89×19.5 mm; Supermagnete) before transferring to an incubator (MaxQ™ 4000 

Benchtop Model SHKE4000-8C; Thermo Fisher Scientific, Loughborough, Leics, UK) without 

shaking, held at temperatures between 25 and 31°C. One hour later5 the plate and magnet 

were carefully retrieved from the incubator and the separated phases were rapidly 

                                                
5
Preliminary experiments confirmed at least 0.5 h was required to meet the target temperature. 
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transferred (<5 min)6 into different containers for subsequent determination of iron, protein, 

and PHA contents, and preparation for TEM analysis. 

 

4.2.8 Analytical methods 

Optical density: Culture optical densities at 565 nm (OD565) were measured using a 

spectrophotometer (Evolution 300 UV-Vis, Thermo Scientific, UK) and data was collected 

using VISIONpro software.  

 

Cellular magnetism: Immediately after recording an optical density value the magnetic 

response of cells (Cmag) was measured on the same sample using a magnetic measurement 

system mounted within the spectrophotometer and built around its cuvette holder. For details 

of the Cmag monitoring system refer to Chapter 2 and Fernández-Castané et al. (2017). 

 

Flow cytometry: A BD Accuri C6 flow cytometer (Becton, Dickinson and Company, Oxford, 

UK) was used to analyse bacteria and cell homogenates and determine efficiencies of cell 

disruption. Samples were resuspended in phosphate-buffered saline (PBS) and stained with 

SYTO™ 62. Samples were excited with a 488 nm solid-state laser. Forward scatter (FSC), 

side scatter (SSC) and fluorescence data were collected as detailed earlier (Chapters 2 & 3; 

Fernández-Castané et al., 2017, 2018). 

 

Determination of protein content: Protein contents were determined using Pierce™ BCA 

Protein Assay Kits (Thermo Fisher Scientific, Loughborough, UK) and a Biochrom® Anthos 

                                                
6
These experiments were performed during a hot summer when the ambient temperature in the lab exceeded 

25ºC; thus significant drops in temperature within the timeframe of phase recovery were unlikely.  
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Zenyth 340 microplate reader (Biochrom Ltd, Cambridge, Cambs, UK). For the 

measurements of total protein content (i.e. soluble plus insoluble) equal volumes of 2 M 

NaOH were mixed with turbid samples, and then heated at 99°C for 10 min before analysis. 

 

Determination of iron content: Flame Atomic Absorption Spectroscopy (FAAS) was 

employed to determine iron contents in cell homogenates and in fractions collected during 

magnetosome recovery. A single element iron (248.3 nm) hollow cathode lamp (SMI-LabHut 

Ltd, Gloucester, Glos, UK) operated at a current of 30 mA with an acetylene (0.7 L min-1) / 

air (4.0 L min-1) flame in a Perkin Elmer AAnalyst 300 Atomic Absorption Spectrometer 

(Waltham, MA, USA). Sample preparation was done in triplicates as described previously 

(Chapter 3; (Heyen and Schüler, 2003; Fernández-Castané et al., 2018). 

 

Transmission electron microscopy (TEM):  Cell pellets or magnetosome containing samples 

were prepared for TEM by centrifuging at 16,873 gav for 3 min in the FA-45-18-11 fixed angle 

(45º) rotor of an Eppendorf model 5418 centrifuge (Eppendorff, Hamburg, Germany), 

resuspending in 1 mL of 2.5% (v/v) glutaraldehyde in 0.1 M potassium phosphate, pH 7.2, 

and incubating for 1 h on a TAAB R052 rotator mixer (TAAB Laboratories Ltd,  Reading, 

Berks, UK) at 4 rpm. The glutaraldehyde-fixed samples were subsequently dehydrated by 

sequential resuspension for 15 min each in increasing concentrations of ethanol in water 

(2×50%, 2×70%, 2×90% v/v) and twice in pure ethanol followed by twice in propylene oxide. 

Sedimented material from the last dehydration step were embedded in Mollenhauer (1964) 

resin by infiltration of the pellet with a solution containing 50% (v/v) Embed-812 (Electron 

Microscopy Sciences, Hatfield, PA, USA) in propylene oxide for 12 h on a rotator at 4 rpm in 

fume cupboard, followed by curing in undiluted Mollenhauer resin at 60ºC for 48 h on a 

rotator in a fume cupboard. Thin sections (120 nm) were cut from the resin block using 

diamond knives on a Reichart-Jung Ultracut Ultramicrotome (Leica Microsystems GmbH, 
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Wetzlar, Geramny). The cut sections were examined using a JEOL 1200EX TEM electron 

microscope (Jeol Ltd, Akishima, Japan) operated at 80 kV, in the transmission mode, with 

the beam current at 60 μA. Magnetosome chain lengths were determined by analysing TEM 

images. Size distributions for each sample were represented by plots of ‘% Cumulative mass 

undersize vs. Number of crystal units per chain’, from which a characteristic median chain 

length, L50, can be obtained. At least 800 magnetosome crystal units or 65 chains of 

magnetosomes were counted per sample.   

 

PHA assay: PHA content in samples was determined using a fluorescence based assay.  

Pyrromethene-546 (Pyr-546) working solution (0.1 mg mL-1) was added to 20% (w/v) 

suspended cells in 50 mM HEPES buffer pH 8.0 prior to disruption to a final concentration of 

2 μg mL-1. Fluorescence was measured with Mithras LB 940 microplate reader (Berthold 

Technologies, Bad Wildbad, Germany). 

 

4.3 Results and discussion 

4.3.1 Magnetosome chain length influences Cmag 

Bioprocessing of magnetosomes starts with their biosynthesis during fermentation; changes 

in fermentation parameters gives rise to changes in the number, size and arrangement of 

magnetosomes within MTB. These differences would likely influence subsequent 

downstream processing of magnetosomes. It has been previously reported that the magnetic 

response (Cmag) of M. gryphiswaldense MSR-1 cells depends on the magnetosome content 

and arrangement (Schüler, 2008; Schüler et al., 1995; Schüler and Baeuerlein, 1998). In 

bioreactor experiments, the maximum Cmag values occurred before maximum biomass 

concentration was achieved (Fernandez-Castane et al., 2018; Wang et al., 2016; Yang et al., 

2013). It has also been reported that higher Cmag values correspond to longer magnetosome 
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chains (Katzmann et al., 2013); therefore fermentation harvest time influences 

magnetosome chain length (Sun et al., 2011). Katzmann and co-workers observed that the 

length of magnetosome chains also varies with changing oxygen and growth temperature 

(Katzmann et al., 2013).  

 

In this study, to characterise the starting material for our magnetosome bioprocessing route, 

we determined the number of magnetosomes and chain length in M. gryphiswaldense MSR-

1 cells sampled at different time points (71.5, 112.5, 162.5 and 211.5 h) from a high cell 

density culture (Fig. 4.3a). TEM imaging and manual visual analysis (see Analytical 

Methods) were used to determine the size distributions of magnetosome chains (Fig. 4.3b).  

 

Cmag values peaked during exponential phase before 71.5 h into the fermentation, and 

gradually dropped thereafter, whilst OD565 and intracellular iron concentration continued to 

rise (Fig. 4.3a). Magnetosome chain length was also the highest at 71.5 h among the four 

time points, and decreased progressively with time (Fig. 4.3b). For example, the maximum 

chain length in cells at 71.5 h was 32 crystal units, but it dropped to 10 after 211.5 h 

cultivation, 50% of the chains (mass basis) were between 8 and 18 units long at 71.5 h cf. 3 

– 6.5 units at 211.5 h, and the median chain length fell from 12.5 to 4 crystal units.   

These findings are consistent with previously reported transitions in cell shape and size from 

elongated to shorter rounder aspect on moving from exponential to stationary phase 

(Chapter 2; Fernández-Castané et al., 2017), increased PHA accumulation (Fig. 4.4; 

Chapter 2; Fernández-Castané et al., 2017), and observations that magnetosome length is 

tightly correlated with cell length (Staniland et al., 2010; Katzmann et al., 2011).  
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Figure 4.3. Influence of fermentation time during pH stat cultivation of M. gryphiswaldense MSR-1 on: (a) OD565 

(white pentagons), Cmag (grey pentagon), and intracellular iron concentration (black pentagons); and (b) 

magnetosome chain length (grey hexagons of four different sizes reflecting different time points, i.e. the largest 

for 71.5 h, second largest for 112.5 h, second smallest for 162.5 h, and the smallest for 211.5 h in culture). At 

least 70 magnetosome chains were counted at each time point, and the size distributions (b) are presented by 

plots of ‘% cumulative mass undersize vs. number of units per chain’.  

4.3.2 Comparison of magnetosome release methods 

Several small scale mechanical methods have been employed for disruption of MTB, 

including French Pressing7 (Ginet et al., 2011; Gorby et al., 1988; Grünberg et al., 2001; 

                                                
7
French pressure cell has been widely employed in MTB disruption, but pressures used for disruption vary widely 

between the different studies. 
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Xiang et al., 2007), probe (Kobayashi et al., 2006)  and bath8 based ultrasound methods 

(Alphandéry et al. 2009; Alphandéry et al. 2011; Alphandéry et al. 2012), but far little 

attention has been paid to development of standardized/optimised procedures, nor to 

comparative head-to-head evaluations of different methods on the basis of the disruption 

 

 

 

 

 

 

 

 

Figure 4.4. TEM images of exponential phase (71.5 h) and stationary phase (162.5 h) M. gryphiswaldense MSR-

1 cells. Each scale bar represents 0.5 µm. 

efficiency and impact of the disruption process on the size distribution of released 

magnetosome chains. In this study we have performed a systematic examination of the 

disruption of M. gryphiswaldense MSR-1 cells with: a Constant Systems Cell Disruptor 

CSCD),9 which forces samples at high velocity through a specially designed valve assembly: 

                                                
8
Alphandéry and co-workers (2009, 2011, 2012) reported the use of ultrasonic bath at 30 W between 2 – 3 h to 

disrupt the cells and subsequently, release magnetosomes from Magnetospirillum magneticum AMB-1 followed 
by ten washing steps to purify the magnetic nanoparticles. 
9
A small industrial high-pressure homogenizer. 

Cells in exponential phase 

Cells in stationary phase 
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cells are disrupted by different forces produced by interactions between the fluid and solid 

walls of the valve unit (Ayazi Shamlou et al., 1995; Middelberg, 1995; Kleining and 

Middelberg, 1996, 1998); and two lab-scale ultrasonic devices – an ultrasonic bath and a 

probe sonicator. A wet cell concentration of 20% (w/v) used in previous reports (Grünberg et 

al., 2004; Lang and Schüler, 2008) was also employed in this work. At this biomass 

concentration, the iron concentration was between 300 – 400 mg L-1. Initial studies 

employed cells harvested at the stationary phase of growth. Cell disruption efficiency before 

Figure 4.5. Comparison of ultrasonic bath, probe sonication and CSCD for disruption of 20% (w/v) 

suspensions of stationary phase M. gryphiswaldense MSR-1 cells. Plots show intact cell concentration (white 

symbols) and disruption efficiency (grey symbols) vs. (a) time of lab scale ultrasonic treatments; and (b) 

number of discrete passes at various operating pressures (5–20 kpsi) in the CSCD. Key: no disruption 

(hexagons); ultrasonic bath (down triangles and dotted line); probe sonicator (diamonds); 5 kpsi (squares 

and dashed line), 10 kpsi CSCD (circles and dash-dotted line) and 20 kpsi (up-triangles and solid unbroken 

line) in the CSCD.  
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and after different disruption treatments was determined using flow cytometry to count the 

number of cells stained with the DNA dye, SYTO™ 62, per millilitre. Figures 4.5a and 4.5b 

compare the efficiency of disruption of stationary phase MSR-1 cells by the three apparatus. 

Unsurprisingly probe sonication demonstrated the highest efficiency of >95% after a 10 min 

treatment (Fig. 4.5a), whilst the ultrasonic bath was the least efficient, breaking only 20% 

cells after 2 h (Fig. 4.5a). CSCD disruption efficiency was tested at P = 5, 10, 20 kpsi whilst 

varying N.  

 

The kinetics of CSCD disruption of stationary phase M. gryphiswaldense MSR-1 

approximates to first order. A single pass through the disruptor disruption efficiency ruptured 

~50% of the cells at 10 kpsi, two passes increased breakage to ~75%, and with every 

subsequent pass breakage increased, reaching >90% at N = 5 (Fig. 4.5b). Figure 4.6 

compares size distributions of magnetosome chains before and after release from stationary 

and exponential phase MSR-1 cells by CSCD disruption at various combination of P and N, 

and Figures 4.7a and 4.7b show derivative plots of median chain length, L50 measured in 

crystal units, versus disruption efficiency and N, respectively. Though the largest size of 

magnetosome chain in intact stationary phase cells was 23 crystal units long, ~75% were 

below 15 crystal units, and the median magnetosome chain length, L50 was 11.5 crystal 

units. Exponential phase cells contained some longer magnetosomes (20% between 17 and 

32 units length), but the L50 of exponential phase cells was slightly smaller than that of the 

stationary phase cells (i.e. 11 cf. 11.5) (Fig. 4.7). With increasing P and N the size 

distribution curves gradually shifted left to smaller chains and became increasingly steep 

(Fig. 4.6), providing clear evidence that chains of magnetosomes in intact cells were 

fractured into shorter and shorter chains during the cell disruption process (see Fig. 6.9 for 
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supporting TEM images). Scrutiny of ‘L50 vs disruption efficiency’ plots (Fig. 4.7a) for 

  

Figure 4.6. Effect of number of discrete passes, N and operating pressure, P, during disruption of 20% (w/v) 

suspensions of stationary and exponential phase M. gryphiswaldense MSR-1 cells in the CSCD on resulting 

magnetosome size distribution. Data are plotted as ‘% Cumulative mass undersize vs. number of units per 

chain’. At least 65 chains of magnetosomes were counted. Panels show operation at (a) 5 kpsi, (b) 10 kpsi, 

and (c) 20 kpsi. Key: intact stationary phase cells (grey hexagons); stationary phase cells after 3, 4 and 5 

passes at 5 kpsi (grey squares decreasing in size with increasing N), stationary phase cells after 2, 3, and 4 

passes at 10 kpsi (grey circles decreasing in size with increasing N), and stationary phase cells after 2, 3, 

and 4 passes at 20 kpsi (grey up-triangles decreasing in size with increasing N); intact exponential phase 

cells (grey pentagons); and exponential phase cells after 1 pass at 10 kpsi (grey stars). 
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stationary phase cells reveals a clear trend, i.e. increasing disruption efficiency leads to 

progressive reduction in median magnetosome chain length. Moreover, over the range of 

pressures used (5 – 20 kpsi) plots of ‘L50 vs N’ (Fig. 4.7b) imply chain degradation in the 

CSCD is a first order process.  To achieve efficient magnetosome recovery requires high 

disruption efficiencies of >80%, but under such conditions the L50 drops from 11.5 crystal 

units in the intact cell to below 5. Clearly, in the case of stationary phase cells there is a 

need to trade-off the degree of cell disruption and consequent recovery of magnetosomes 

from the cell against chain degradation inflicted during the disruption process. This does not 

a 

b 

Figure 4.7. Dependence of median magnetosome chain length, L
50

 on (a) disruption efficiency and (b) 

variation in N and P, during disruption of 20% (w/v) suspensions of stationary and exponential phase M. 

gryphiswaldense MSR-1 cells. Key: intact stationary cells (grey hexagon); stationary phase cells after 10 min 

of probe sonication (grey diamond); stationary phase cells after 5 kpsi (grey squares), 10 kpsi (grey circles) 

and 20 kpsi (grey up-triangles) CSCD disruption; intact exponential phase cells (grey pentagon); and 

exponential phase cells after a single pass CSCD disruption at 10 kpsi (grey stars). 
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apply to exponential phase cells, which proved much easier to disrupt, i.e. one pass at 10 

kpsi resulted in a disruption efficiency of 92% and small reduction in L50 from 11 (in intact 

cells) to 7.6 units long (Fig. 4.7a). Figure 4.8 investigates protein and iron release from 

stationary phase MSR-1 cells as functions of cell disruption efficiency. The release of protein 

follows first order kinetics, but iron release appears biphasic in nature, i.e. in the first phase 

(5 – 70% disruption) substantially hindered cf. protein release, in the second phase (>70% 

disruption) becoming increasing less so. This finding is understandable. Unlike much smaller 

sized proteins, release of much larger magnetosome chains from damaged cells is likely 

hindered. Increasing extents of disruption and concomitant reduction in chain length 

however, remove this barrier and so facilitate magnetosome escape. Beyond 70% disruption 

magnetome chains are reduced to increasingly small sizes (L50 = 5 and 3.8 units at 70% and 

97% disruption respectively) thus magnetosome escape becomes easier, approaching the 

ease with which proteins are released (see Fig. 6.10). As noted earlier (Fig. 4.7a) 

exponential phase MSR-1 cells are much easier to disrupt than stationary phase cells. The 

quantities of protein (Fig. 4.9a) and iron (Fig. 4.9b) released from exponential phase cells in 

a single pass through the CSCD at 10 kpsi matched those released from stationary phase 

cells exposed to 5 passes at twice the operating pressure (Fig. 4.9a), and the 

magnetosomes released were significantly larger; compare size distribution profiles (Figs 

4.6b and 4.6c) and L50 values (Fig. 4.7). Earlier reports established that the kinetics of 

disruption of unicellular microorganisms in industrial high pressure homogenizers follow first-

order kinetics (Follows et al., 1971; Keshavarz-Moore et al., 1990a). Later studies showed 

that disruption kinetics in high pressure homogenizers depend on the type of microorganism, 

the conditions under which it is grown, the cell’s age, wall strength, shape and size 

(Keshavarz-Moore et al., 1990b; Ayazi Shamlou et al., 1995; Siddiqi et al., 1995). For 

example, when E. coli is grown on a synthetic medium it is more easily disrupted than when 

grown on complex medium, and S. cerevisiae cells become increasingly more difficult to 

break on moving from exponential through to late stationary phase (Siddiqi et al., 1995). The 

observation here that a single pass of exponential phase M. gryphiswaldense MSR-1 cells at 
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a moderate pressure achieves near complete cell rupture shares similarities with Keshavarz-

Moore and co-workers (1990b) study of a disruption of the filamentous fungus Rhizopus 

nigricans, who  observed virtually complete release of soluble protein after the first pass at 

10 MPa (<1.5 kpsi), with no increase in the amount of protein released at 50 MPa (7.25 

kpsi). Against the above, the easier disruption of exponential phase MSR-1 cells cf. their 

stationary phase counterparts most likely reflects a more elongated shape and weaker wall 

structures. 

 

Of the lab-based ultrasonic treatments previously used by others, 10 min of probe sonication 

delivered the most complete rupture of stationary phase cells (97%) releasing 87% of the 

magnetosomal iron (Fig. 4.8), but inflicted the greatest damage on magnetosome chains 

reducing L50 to just 3.8 crystal units (Fig. 4.7a), whilst 2 h in the ultrasonic bath released too 

few magnetosomes (16% of the total; Fig. 4.8) from stationary phase cells for accurate size 

distribution analysis.  

 

Figure 4.8. Dependence of protein (white symbols) and iron (black symbols) release on disruption efficiency 

of stationary phase M. gryphiswaldense MSR-1 cells. Key: ultrasonic bath treatment (down-triangles); 10 min 

probe sonication (diamonds); and 1 – 5 discrete passes through the CSCD at 5 kpsi (squares), 10 kpsi 

(circles) and 20 kpsi (up-triangles). 
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For reasons of scalability, ease of disruption and reduced chain degradation, in all 

subsequent downstream process development work (high gradient magnetic fishing and 

magnetic aqueous two-phase extraction) we employed exponential phase M. 

gryphiswaldense MSR-1 cells disrupted at 10 kpsi in a single pass through the CSCD. 

However, for small scale evaluations of MACS and bar magnet separations samples 

generated from the disruption experiments just described were employed (i.e. stationary 

phase cells disrupted in ultrasonic devices, exponential and stationary phase cells broken in 

the CSCD). 

 

Figure 4.9. Dependence of (a) protein and (b) iron release on variation in N and P, during disruption of 

20% (w/v) suspensions of stationary and exponential phase M. gryphiswaldense MSR-1 cells in the 

CSCD. Key: protein release (white symbols); iron release (black symbols); stationary phase cells after 

disruption at 5 kpsi (squares), 10kpsi (circles) and 20 kpsi (triangles); and exponential phase cells 

after disruption at 10 kspi (star). 
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4.3.3 Magnetosome recovery from CSCD homogenate by employing MACS cartridges 

Magnetic-activated cell sorting (MACS) cartridges, comprising a cartridge filled with 

magnetic beads and a permanent magnet generating a 0.5 T magnetic field. MACS have 

been used for multiple applications such as separation of a large amount of cells (Miltenyi et 

al., 1990), rare cells from complex animal tissue (Lee and Lufkin, 2012) and have been used 

for magnetosome recovery (Grunberg et al., 2001; Uebe et al., 2011). However, to the best 

of our knowledge, no study has addressed the retention capacity and efficiency of such a 

technology. Hence, we performed a series of preliminary experiments to evaluate non-

retained iron (washing steps), the recovery of magnetosomes (elution steps), and trapped 

iron after elution steps. We compared recovery yields from homogenates disrupted from 

stationary and exponential phase cells, trapped iron in MACS cartridges after elution, and 

elution efficiency calculated by the ratio of eluate and the sum of eluate and trapped iron 

(Fig. 4.10). 

 

For MACS cartridge experiments, cell homogenates were diluted to ≤ 50 grams of wet cell 

weight per litre to avoid blockage of the cartridge. As shown in Fig. 4.10, the percentage of 

iron lost during cartridge loading (grey bars) increased at lower biomass concentrations. 

When 5 mL of homogenate having a cell concentration of 5 g L-1 (25 mg cells in wet weight) 

was loaded onto the cartridges, on average 30 % of the loaded iron was not retained on the 

columns in all the four experiments. When increasing the amount of disrupted cells loaded to 

the MACS column to 250 mg wet weight, iron yields were around 60 %, however, the cell 

homogenate from ultrasonic bath blocked the column. The elution yields (black bars) 

increased when the amount of biomass loaded increased, but it did not reach to a higher 

level. The non-retained iron in washing steps decreased when the amount of loaded cell 

homogenate increased, but the mass balance can’t be reached when higher concentrations 

of cells were employed. For example, 13.6 % of iron was not retained in the column when 

bar magnets of 1.4 T were attached to the column, and 64.4 % of iron was collected in the 
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elution fraction after removing those bar magnets. Despite this, there was still 22.0 % of iron 

kept on the column that could not be eluted or washed out. This is hypothesised to be that 

cell debris cannot flow through the holes among the magnetic beads packed in the cartridge 

which kept the solid iron in the packed cartridge. A comparison between a commercial 

magnet and a bar magnet was done to evaluate the retention of magnetosomes (the second 

and the third experiments). Results showed that there was not a significant difference in 

recovery yield when the loading amount was the same. The comparison between different 

loaded samples after diverse disruption methods did not show yield or mass balance 

alteration either, except the homogenate after an ultrasonic bath. This is hypothesised to be 

due to the cell disruption efficiency using an ultrasonic bath was as low as 20%, therefore, 

numerous intact cells remained (i.e. much bigger than cell debris particles), which enhanced 

the trapping of solid iron in MACS cartridges. The elution efficiency was used to calculate the 

percentage of eluted iron retained on the MACS cartridges after washing steps. This 

illustrates that the more biomass loaded onto the columns, the lower the elution efficiency is 

(Fig. 4.11). Results showed that nearly 100% elution efficiency was achieved when 10 mg 

wet weight of disrupted cells was loaded (2 mL of 5 g L-1 sample). 

 

According to our results, we considered that MACS cartridges have limited capacity in terms 

of the number of magnetosomes applied before the filters behave as depth filters, trapping 

biological material. Thus, sample dilution is necessary before loading the homogenate to 

MACS cartridges after cell disruption, however, this increases the working volume in the 

recovery steps. The maximum amount of cell debris that could be loaded onto a cartridge 

was determined to be 5 ml at a diluted concentration of 50 g L-1. In this cell concentration, 

the iron amount is 0.5 mg, which means only 0.3 mg of the iron could be collected after each 

MACS cartridge. Moreover, the eluate contained cell debris which was blocked in the 

columns but eluted by flushing pressure. Thus, because of the non-scalable nature of the 

column, we moved to other magnetic recovery strategies. 
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Figure 4.10. Effect of biomass loading on magnetosome (iron) recovery from MACS filters challenged with variously prepared 20% (w/v) M. gryphiswaldense MSR-1 homogenates. Key: non-

retained iron recovered during loading and washing of magnetized MACS filters (grey bars); iron eluted from MACS filters at ‘zero field’ (black bars); and trapped iron (white bars). 
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4.3.4 Employment of bar magnet for the recovery of magnetosomes from homogenate 

Another magnetic separation method that is commonly applied for the small-scale recovery 

of magnetosomes is serial washing. In Serial washing, a bar magnet is used to hold 

magnetic particles by placing it next to the container of homogenate and remove all the other 

non-magnetic debris after cell disruption. Using bar magnets and a series of washes 

represents a cost-effective alternative to the MACS cartridges. Bar magnets were employed 

to extract magnetosomes from homogenate after cells were disrupted using 10 washes of 10 

mM Tris·HCl buffer (Alphandéry et al. 2011; Alphandéry et al. 2012). However, this strategy 

presents several limitations such as scalability, time consumption, and the necessity of 

manual operation. 

 

Figure 4.11. Dependence of magnetosome (iron) elution efficiency at ‘zero field’ on prior biomass loading of 

magnetized MACS filters. Elution efficiencies are calculated from the four data sets presented in Fig. 4.10. Key: 

stationary phase cells disrupted in an ultrasonic bath (2h, 55 W) and loaded on MACS filters in a 0.5 T field 

(grey down-triangles); stationary phase cells disrupted in the CSCD (P = 5 kpsi, N = 3) and loaded on MACS 

filters in 0.5 T (grey squares) or 1.4 T (dark grey squares) fields; and exponential phase cells disrupted in the 

CSCD (P = 10 kpsi, N = 1) and loaded on MACS filters in a 0.5 T field (grey stars). 
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Before each washing step (especially the first three washing steps after homogenisation), 60 

minutes was required to let magnetic particles move toward the wall of the container next to 

the bar magnet. This might be because of the high viscosity of homogenate when it contains 

a large amount of cell debris. Unexpectedly, magnetosome loss still occurred, especially 

over the first three washing steps when a large amount of cell debris was contained in the 

homogenate (Table 4.1), which indicated that a longer time was required between each 

washing step.  

Table 4.1. Comparison of magnetosome (iron) loss during washing steps after lab based ultrasonic and CSCD 

disruption of 20% (w/v) stationary phase M. gryphiswaldense MSR-1 cells. Errors indicate standard deviation, σn-

1 (n = 3).  

  Magnetosome loss (%) 

Washing steps Ultrasonic bath (2 h) Probe sonication 

(10 min) 

CSCD 

(P = 10 kpsi, N = 3) 

    

1 20.5±0.4 7.8±0.2 14.3±1.3 

2 16.0±1.3 1.8±0.4 7.5±0.9 

3 15.6±0.9 1.1±0.2 8.4±0.1 

4 11.2±0.6 0.6±0.1 3.4±0.2 

5 10.4±0.4 0.2±0.1 1.0±0.1 

6 3.8±0.14 0.2±0.0 0.7±0.0 

7 3.5±0.12 0.1±0.0 0.3±0.0 

8 1.4±0.08 0 0.4±0.0 

9 0.7±0.0 0 0.2±0.0 

10 0 0 0 

Total loss (%) 59.2 11.5 31.7 

Total recovery (%) 40.8 88.5 68.3 

 

 

The amount of iron lost was greatest after cellular disruption using an ultrasonic bath, and 

the least using a probe sonicator. The magnetic response to a supplied magnetic field from 
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the strongest to the weakest from different cell disruption methods should be: ultrasonic bath 

> Constant System Cell Disruptor> probe sonication, depending on the chain length (from 

the longest to the shortest (Fig. 4.7a)). In contrast to this, the yield of magnetosomes 

showed that the highest yield was achieved after the release by probe sonication, whilst the 

lowest yield was observed after that by the ultrasonic bath. The reason might be variation in 

cell debris size, as bigger cell debris will interfere with the motion of magnetosomes towards 

the magnet.  

Figure 4.12. TEM images of magnetosomes from stationary phase M. gryphiswaldense MSR-1 cells following 

disruption in the CSCD (P = 10 kpsi, N = 3) and sequential purification on a magnet block and by sucrose 

gradient centrifugation. Each scale bar represents 0.5 µm  

 

TEM pictures were taken after washing stages to illustrate the purification efficiency of 

washing steps (Fig. 4.12, left). Clear magnetosome chains can be observed as well as single 

magnetosomes and PHA aggregates. This demonstrates the advantage of limiting the 

production of PHA in fermentation. Also, some studies have demonstrated that there were 

proteins associated with PHA granules (Bresan et al., 2016; Jendrossek and Pfeiffer, 2014; 

Wahl et al., 2012) which may bind to magnetosome surface proteins. Thus, a density 

Magnetosomes after 
magnetic purification 

 Magnetosomes after 
gradient centrifugation 

PHA granules 

Cell debris 

Magnetosomes 
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gradient centrifugation (sucrose cushion) step was successfully used to remove PHA (Fig. 

4.12, right). 

 

As serial washing is a manual, time consuming, non-scalable method, presenting relatively 

low iron recovery and non-efficient PHA separation method, we used high gradient magnetic 

fishing (HGMF; Figs 4.1 and 4.2) for magnetosome purification. 

 

4.3.5 Magnetosome recovery by HGMF 

High gradient magnetic fishing was designed as a protein purification method by using 

magnetic adsorbent particles (Hubbuch et al., 2001). It allows adsorption, washing, elution 

and cleaning of the supports to be conducted in semi-continuous multi-cycle processing 

(Franzreb et al., 2006). Here we used HGMF to try to hold the released magnetosomes 

when the magnetic field is on and wash off impurities such as cell debris and proteins. 

Homogenate (250 mL) containing magnetosomes and cell debris prepared with one cycle in 

the high pressure homogeniser of exponential phase cells at 10 kpsi was loaded into the 

chamber of the rotor-stator at a flowrate of 3.6 L h-1 when the magnetic field was on. After 

being washed three times, 53.6% (20.5 mg) of solid iron was washed out, and then 21.8% 

(8.4 mg) solid iron was assembled in elution fractions. An additional 10.8 mg of solid iron 

was collected from the rotor-stator upon cleaning, although that iron could not be flushed out 

with HEPES buffer. Detailed results for magnetosome recovery in the single load cycle of 

HGMF are shown in Fig. 4.14 (Run 1) and Table 4.2a. We considered the iron measured 

had originated from magnetosomes because we only measured the iron in the pellet.  This 

suggests that the solid iron that was spun down was only from magnetic particles, and the 

free iron was in the supernatant. The purification factor was calculated from the ratio of iron 

to protein contents in every fraction divided by the iron/protein ratio in the homogenate 
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before every experiment. The purification factor in this single experiment reached 8.9, and 

the average purification factor of the first four elution fractions was 7.9. 

Table 4.2. Purification tables for the recovery of magnetosomes in HGMF operations. (a) single cycle of HGMF 

with high loading and washing flowrates (3.6 L h
-1

) (Run 1), (b) multiple loading cycles of HGMF with high loading 

and washing flowrates (3.6 L h
-1

) (Run 2), (c) single cycle of HGMF with low loading and washing flowrates (0.6 L 

h
-1

) (Run 3), (d) reload of non-retained fractions from (c), single cycle of HGMF with low loading and washing 

flowrates (0.6 L h
-1

), (e) single cycle of HGMF with a low loading flowrate (0.6 L h
-1

), and high washing flowrate 

(3.6 L h
-1

) (Run 4). 

Table 4.2a. single cycle of HGMF with high loading and washing flowrates (3.6 L h
-1

) (Run 1) 

Fraction Iron (mg) Protein (mg) Purification factor Yield (%) 

Homogenate 38.3±0.3 2200±27 1.0 100 

Non-retained 14.1±0.2 1312±36 0.5 36.7 

Wash 1 2.4±0.1 483±12 0.3 6.1 

Wash 2 2.7±0.1 275±25 0.5 6.9 

Wash 3 1.5±0.1 101±19.8 0.8 3.8 

Elution fraction 1 3.6±0.0 27.7±0.5 7.4 9.3 

Elution fraction 2 1.9±0.1 17.0±1.2 6.6 5.1 

Elution fraction 3 1.5±0.0 9.8±0.2 8.9 3.9 

Elution fraction 4 1.0±0.2 6.3±1.8 8.8 2.5 

Elution fraction 5 0.4±0.0 11.5±3.6 1.9 1.0 

Combined elutions 8.4 72.2 6.7 21.8 

Trapped 4.2 82.6 2.9 10.8 

Mass balance (%) 86.2 105.7   

 

 

To absorb more solid iron on the rotor-stator filter and increase the yield of magnetosomes in 

elution fractions, multiple load cycles of HGMF were applied for magnetosome recovery in a 

subsequent experiment (Fig. 4.13a). Figure 4.13b illustrates the iron concentration of non-

retained fractions after each loading steps. The iron concentration was reduced from 58.3 

mg L-1 to 23.7 mg L-1, then after the next 9 more loading steps, the iron concentration 
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decreased to 16.9 mg L-1. During these 10 loading steps, the loading volume (250 mL) was 

kept constant. After 3 washes, 47.5% (13.3 mg) of solid iron was washed out, while in the 

elution fractions, 41% of iron had been collected (Table 4.2b). 

 

The effect of multiple load cycles HGMF enhanced the performance of the rotor-stator filter 

compared to the single load HGMF, but the yield was only about 40% after a long operation 

time (Fig. 4.14, Run 2 and Table 4.2b). Thus, we evaluated another method to keep the 

magnetosomes in the filter during the washing steps, to reduce the flowrate of loading and 

washing steps. 

Figure 4.13. Impact of recycle loading during HGMF on magnetosome recovery. Plots show (a) 

magnetosome recovery vs. number of loading steps, and (b) iron concentration profile in the non-retained 

fraction during reloading. 
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Table 4.2b. Multiple loading cycles of HGMF with high loading and washing flowrates (3.6 L h
-1

) (Run 2) 

Fraction Iron (mg) Protein (mg) Purification factor Yield (%) 

Homogenate 28.0 ±0.2 2898±43 1.0 100 

Non-retained 6.6±0.2 1680±24 0.6 23.6 

Wash 1 2.6±0.0 435±9 0.2 9.4 

Wash 2 2.3±0.0 309±11 0.6 8.2 

Wash 3 1.8±0.2 157±3 1.0 6.3 

Elutions fraction 1-3 3.0±0.0 296±6 1.9 10.7 

Elutions fraction 4-6 5.1±0.2 72.2±5.9 3.4 18.2 

Elutions fraction 7-9 2.3±0.1 32.2±3.5 4.2 8.2 

Combined elutions 10.4 401 2.7 37.1 

Flushed out 1.1±0.2 87.7±3.2 1.3 3.9 

Total recovery 11.5 489 2.4 41.0 

Trapped 2.3 110 2.2 8.4 

Mass balance (%) 96.9 109.7   

 

 

First, we changed the flowrate of both loading and washing steps from 3.6 L h-1 to 0.6 L h-1, 

whereas the flowrate of the elution steps was kept at 7.2 L h-1 (Fig. 4.14, Run 3 and Table 

4.2c)). In this cycle of HGMF, only 9.4% of solid iron was washed out before the elution step, 

and 70.5% of iron was collected in the elution fractions. However, 20% of the 

magnetosomes remained in the chamber of the ‘rotor-stator’ after elution. Therefore to 

increase the magnetosome yield by collecting more magnetosomes within the filter, the non-

retained homogenate and wash fractions were re-applied and another cycle of HGMF was 

conducted. After this cycle, another 7.3 mg of solid iron, which was 8.8% of total iron loaded 

in the first cycle of HGMF, has been gathered in the elution fractions (Fig. 4.14, Run 3 and 

Table 4.2d). Thus, 79.3% of solid iron was collected in those two single cycle HGMFs. 

However, a purification factor of just 1.6 (Table 4.2c) illustrates that protein impurities cannot 
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be washed out from the rotor-stator chamber efficiently after the washing flowrate was 

reduced to 0.6 L h-1. Figure 4.14 (Run 3) demonstrates that proteins were not only flushed 

out in washing steps but also at the beginning of the elution.  The loading and washing steps 

in the first single cycle of HGMF took 100 min, which was much longer than the multiple load 

cycles of HGMF mentioned above (51 min). Moreover, the second single cycle of HGMF only 

collected 8.8% of total solid iron, but a lot of time was spent during the loading step. This is 

because the loaded volume had increased due to the washing steps in the first cycle. The 

unexpectedly high purification factor in the second single cycle of HGMF illustrated that 

magnetosome proteins had degraded during a long time of rotor-stator operation, because 

agglomerated magnetosomes on the magnetic filter were visible to the naked eye. 

 

Table 4.2c Single cycle of HGMF with low loading and washing flowrates (0.6 L h
-1

) (Run 3) 

Fraction Iron (mg) Protein (mg) Purification factor Yield (%) 

Homogenate 82.9±0.2 2222±54 1.0 100 

Non-retained 0 16.8±0.6 N/A 0 

Wash 1 4.2±0.0 536±17 0.2 5.0 

Wash 2 2.0±0.0 494±31 0.1 2.4 

Wash 3 1.7±0.0 338±18 0.1 2.0 

Elutions fraction 1-3 6.0±0.10 340±20 0.5 7.2 

Elutions fraction 4-6 10.3±0.1 214±7 1.3 12.4 

Elutions fraction 7-9 10.9±0.2 118±7 2.5 13.1 

Elutions fraction 10-12 10.3±0.1 71.3±3.9 3.9 12.4 

Elutions fraction 13-17 11.2±0.1 61.1±3.5 4.8 13.5 

Combined elution 48.7 804 1.6  

Flushed out 9.9±0.1 82.6±1.9 3.2 11.9 

Total recovery 58.5 886.4 1.8 70.5 

Mass balance (%) 80.0 102.2   
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Run 1 Run 2 Run 3 Run 4 

Figure 4.14. Tracking of magnetosomes, protein and PHA during HGMF of 20% (w/v) disrupted M. gryphiswaldense MSR-1 cells. Key: Run 1 – single cycle of HGMF with 

high loading and washing flowrates (3.6 L h-1); Run 2 – multiple load cycles of HGMF with high loading and washing flowrate (3.6 L h-1; Run 3 – single cycle of HGMF with 

low loading and washing flowrates (0.6 L h-1); and Run 4 – single cycle of HGMF with low loading flowrate (0.6 L h-1, but high washing flowrate (3.6 L h-1). The solid lines 

indicate the flowrate used, and the dashed lines indicate a purification factor equal to 1.  
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Table 4.2d. Reload of non-retained fractions from (c) 

Fraction Iron (mg) Protein (mg) Purification factor Yield (%) 

Reload 6.5±0.0 1282±16 0.9 N/A 

Non-retained & wash 1 3.6±0.3 821±7 0.8 N/A 

Wash 2 0.6±0.1 175±15 0.6 N/A 

Wash 3 0.3±0.0 80.3±2.4 0.7 N/A 

Elution 1 3.2±0.0 110±2 5.1 N/A 

Elution 2 1.4±0.0 30.1±0.8 8.2 N/A 

Elution 3 1.9±0.1 43.9±2.3 7.4 N/A 

Combined elution 7.3 202 6.6 N/A 

Flushed out 0.8±0.0 18.0±2.3 7.4 N/A 

Trapped 2.6 16.0 28.6 N/A 

Mass balance in total (%) 97.4 98.2   

 

With the aim of improving the removal of protein impurities and the capture of solid iron at 

the same time, another single cycle of HGMF was performed. The flowrate of loading step 

was still 0.6 L h-1, but for the washing steps, the flowrate was increased to 3.6 L h-1 (Fig. 

4.14, Run 4 and Table 4.2e). In this cycle, magnetosome loss before elution was 35.1%, 

while the yield of magnetosomes in elution steps was 50.3%, equating to an elution 

efficiency from the filter of 78%. Moreover, the magnetosomes were purified 3.3 fold with 

respect to protein (Table 4.2e). 

 

In this series of HGMF experiments, the best overall increase in magnetosome purity was 

achieved in the first single cycle HGMF run (Table 2a, Run 1), i.e. the purification factors for 

the combined elution pool, and elution fractions 3 and 4 were 6.7, 8.8 and 8.9 respectively, 

but the magnetosomes yield (combined elutions 1 – 5) was only <22%. Because of the high 

flowrate used in loading and washing steps, cell debris and other impurities (soluble protein 

and insoluble materials) were effectively flushed out of the filter, however, there was also a 

loss of magnetosomes. To compensate for this, multiple-load-cycle HGMF was employed to 
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boost the filter’s magnetosome loading, whilst keeping a high flowrate (3.6 L h-1) during 

loading and washing stages for effective displacement of non-magnetic impurities. Figure 

4.13b shows that the iron concentration in the first non-retained fraction was 22 mg L-1 cf. 58 

mg L-1 in the load, thus the rotor-stator filter captured 59% of the solid iron in the first loading 

cycle. However, only an extra 12% was recovered over the next 9 cycles. As the volumes of 

each cycle were the same, we conclude that the use of multiple loading cycles is not an 

effective way to improve magnetosome capture within the filter. Meanwhile, compared with 

the single cycle HGMF, the ratio of flushed proteins has reduced, which caused the 

purification factors in the elution fractions to be lower. The highest purification factor in Fig. 

4.14 (Run 2) was 4.7, therefore, another alternative for enhancing magnetosome capture, 

reducing the flowrate of load and wash steps to 0.6 L h-1, was attempted (Fig. 4.14, Run 3; 

Table 4.2c). After reducing the flowrate, magnetosome loss before elution steps was 

decreased to 9.4%, but only 62.3% of the protein was flushed out at the same time. The 

protein maintained in the chamber of the rotor-stator resulted in reducing the purification 

factors in elution fractions. The elution fraction with the highest purification factor was 5.8, 

and the purification factors of first 4 elution fractions were lower than 1 (Fig. 4.14, Run 3). 

Thus, the purification efficiency needed to be improved, although the yield of magnetosomes 

in elution fractions was as high as 70.5%. 

 

Two methods of enhancing the purification factor have been considered after the 

aforementioned HGMF experiments. First, increasing the buffer volume in washing steps, 

and second, increasing the flowrate in washing steps. 

 

The experiment of single load cycle HGMF with a low flowrate loading and washing steps 

took 100 min, so if the volume of wash steps had been enlarged, the time spent on the steps 

before elution would be longer. Furthermore, the purification factor of the trapped 
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magnetosomes on the rotor-stator filter after the second single load cycle HGMF shows that 

the magnetosome proteins have degraded after a long time of operation. Thus, increasing 

the flowrate of washing steps was used to improve the purification factor in elution fractions. 

 

Table 4.2e. single cycle of HGMF with a low loading flowrate (0.6 L h
-1

), and high washing flowrate (3.6 L h
-1

) 

(Run 4) 

Fraction Iron (mg) Protein (mg) Purification factor Yield (%) 

Homogenate 38.4±0.1 3302±53 1.0 100 

Non-retained 0.4±0.0 80.2±42.7 0.4 1.0 

Wash 1 6.1±0.1 1229±46 0.4 16.0 

Wash 2 4.4±0.2 925±8 0.4 11.6 

Wash 3 2.5±0.1 423±36 0.5 6.5 

Elutions fraction 1-3 3.0±0.3 204±4 1.3 7.9 

Elutions fraction 4-6 8.3±0.5 107±7 6.8 21.5 

Elutions fraction 7-9 3.8±0.1 60.8±10.8 5.7 9.8 

Elutions fraction 10-13 1.9±0.2 57.2±5.6 3.2 4.8 

Combined elutions 17.0 428 3.4 44.1 

Flushed out 2.4±0.1 71.4±0.0 2.9 6.2 

Total recovery 19.3 500 3.3 50.3 

Trapped 5.2 135 3.4 13.5 

Mass balance (%) 98.9 99.5   

 

 

In the single load cycle of HGMF (Run 4; Table 4.2e) in which flowrates for loading and 

washing were 0.6 L h-1 and 3.6 L h-1, respectively, 35.1% of solid iron and 80.5% of proteins 

were lost before elution. The efficient removal of protein conveyed better purification 

efficiency in elution steps, and the highest purification factor was 8.4 in the 5th elution 

fraction (Fig. 4.14, Run 4), which was close to the value achieved in the first single load 

cycle HGMF. The yield of magnetosomes was 50.3%, which was a good yield with efficient 
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removal of impure proteins. In Run 2 and Run 3, the highest purification factors were 4.7 and 

5.8 in the 9th and the 15th elution fraction, respectively. However, the most efficiently iron-

eluted fractions were the 4th or 5th among Run 2, 3 and 4. This result indicates that iron-rich 

elution fractions in Run 2 and 3 contained large amounts of proteins, whilst the highest 

purification factors appeared nearly the end of those elution steps with low iron 

concentration. In Run 4, both the highest iron concentration and purification factor turned up 

in the 5th elution fraction and most of the purification factors in the elution fractions 

afterwards were higher than 3. Thus, Run 4 increased the purification factor in the elution 

step, and collected a relatively high magnetosome yield. 

 

After magnetosome extraction with HGMF, further purification of the elution fractions was 

needed to remove PHA and other residual impurities. Fluorescence data in Fig. 4.14 (Run 4) 

illustrates that PHA cannot be washed out just as efficiently as protein impurities. In the 

loading and washing steps of HGMF, 52% of PHA was flushed out, and 36.9% of PHA was 

collected in elution fractions (Fig. 4.14, Run 4). Fig. 15 (left) indicates that a large amount of 

PHA contained in the elution fractions after HGMF (Run 4). This result, along with TEM 

images (Fig. 4.12), demonstrates that PHA granules and magnetosomes were co-eluted. 

 

4.3.6 Magnetosome purification using ATPS after HGMF 

Although sucrose gradient centrifugation removed PHA from magnetosome samples 

previously recovered from cell homogenate on a bar magnet (Fig. 4.12), it is not a scalable 

technique. Accordingly, for the task of separating magnetosomes from residual PHA and cell 

debris, a magnetically enhanced density based separation approach was explored. Figure 

4.16 shows a schematic illustration of the principles of this methodology. A classical method 

adapted from Divyashree et al. (2009) with PEG/phosphate combination was tested first.  
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Table 4.3. PHA and magnetosomes partitioning in the magnetic PEG 8000-potassium phosphate aqueous two-

phase system. Key: sample 1: 20% (w/v) MSR-1 homogenate of exponential phase MSR-1 cells prepared by 

disruption in the CSCD (P = 10 kpsi , N = 1) ; sample 2: 10 – fold diluted ‘sample 1’ homogenate; sample 3: 

mixed elution fractions after HGMF; sample 4: 10-fold diluted ‘sample 3’mixed elution fractions after HGMF. All 

the iron concentrations mentioned above were measured before centrifugation. 

Samples 
Iron concentration in 

samples (mg·L
-1

) 

PHA in top 

phase (%) 

PHA at 

interphase (%) 

Iron in bottom 

phase (%) 

Iron at 

interphase (%) 

1 318.8 90.6 0 16.2 0 

2 31.88 91.9 0 32.3 0 

3 32.40 92.4 0 43.7 0 

4 3.24 92.5 0 54.1 0 

 

Table 4.3 shows different amounts of PHA that were applied and magnetosome separation 

in a system containing PEG 8000 and potassium phosphate. Results indicate that more than 

90% of PHA remained after HGMF stage, which is stained by Pyr-546 can be separated 

from the bottom phase, but magnetosomes cannot be captured into the bottom phase 

efficiently by a permanent magnet. Given that magnetosome yield from HGMF elution 

fraction was only 43.7%, and that yield was increased insufficiently up to 54.1% after the 

loaded amount of iron was reduced to one tenth. We also tried to load homogenate 

containing a similar amount of iron into the ATPS after cell disruption by high pressure 

homogeniser to the sample taken from mixed HGMF elution fractions and diluted fractions 

but the iron yield in the bottom phase was only 16.2% and 32.3%, respectively.  

 

Then, another aqueous two-phase system, Eumulgin ES, employed by Fischer and co-

workers (2013), which has been reported to successfully separate magnetic nanoparticles 

under a magnetic field with a separation efficiency of >87%, was employed. Table 4.4 
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demonstrates that the permanent magnet can efficiently capture magnetic nanoparticles at 

the bottom of the ATPS. Both magnetosome yields with 15 and 20% (w/v) Eumulgin ES 

were >95% (96.3% and 97.7%, respectively), and >90% of PHA was separated into 

interphase and top phase at 29°C. Moreover, iron was measured in the interphase of 

samples 1 & 3 resulting in separation of PHA efficient (93.8% and 94.7%, respectively) at 

25°C. Fischer and Franzreb, (2011) reported that in the Eumulgin ES - 50 mM sodium 

phosphate system, pH 7.0, the cloud point for phase separation was 24.5°C. This explains 

the higher loss of PHA to the interphase at 25 cf. 29ºC (Table 4.4). TEM micrographs before 

(Fig. 4.15, left) and after (Fig. 4.15, right) purification with 15% (w/v) Eumulgin ES - sodium 

phosphate ATPS at 29°C highlight the efficacy of this step in removing cell debris and PHA. 

Table 4.4. PHA and magnetosome partitioning in the Eumulgin-sodium phosphate (50 mM) magnetic micellar 

aqueous two-phase system and during sucrose gradient centrifugation. The iron concentration before 

centrifugation was 34.1 mg L
-1

 in all the samples. 

Samples 
Temperature 

(°C) 
pH 

PHA in top 

phase (%) 

PHA at 

interphase (%) 

Iron in bottom 

phase (%) 

Iron at 

interphase (%) 

20% (w/v) 

Eumulgin ES 

25 7.0 62.6 31.2 87.6 10.0 

29 7.0 74.2 15.7 97.7 0 

15% (w/v) 

Eumulgin ES 

25 7.0 75.5 19.2 88.7 2.0 

29 7.0 89.2 6.8 96.3 0 

60% (w/v) Sucrose 4 8.0 89.2 0 71.7 0 

 

In order to determine the reason for the observed differences in the yield between the two 

different ATPS employed, a series of density measurements were completed. Table 4.5 

indicates that the densities of the bottom phases in Eumulgin and sodium phosphate system 

were 1.07±0.07 and 1.09±0.02 g mL-1 at 25 and 29°C, respectively, which were lower than 

that of other chemicals we measured. The density of the bottom phase in ATPS containing 

PEG8000 was 1.35 g mL-1, which was even higher than the 60% (w/v) sucrose solution. 

Thus, in the PEG8000 - potassium phosphate ATPS, the buoyancy applied from the bottom 
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phase resisted magnetic nanoparticles being attracted to the bottom of the plates, although a 

1.37 T permanent magnet was placed underneath.  

 

Figure 4.15. TEM images of magnetosomes from exponential phase M. gryphiswaldense MSR-1 cells following 

disruption in the CSCD (P = 10 kpsi, N = 1) and sequential purification by HGMF (Run 4) and magnetic micellar 

aqueous two-phase separation using a 15% (w/v) Eumulgin ES-sodium phosphate, pH 7.0 system at 29ºC. Each 

scale bar represents 0.5 µm. 

 

Table 4.5 also illustrates that the density of the top phases of Eumulgin ES - sodium 

phosphate were between 0.94 – 0.97 g mL-1, which means more than 60% of PHA granules 

produced by Magnetospirillum gryphiswaldense MSR-1 cells were lower than 0.94 g mL-1. 

The sum of PHA in top phases and interphases were all more than 90%, thus of the density 

of PHA should be less than 1.07 g mL-1, which also proved that PHA can be kept beyond 

sucrose cushion, and the bottom phase of PEG8000 - potassium phosphate ATPS. Since 

PHA granules can be separated efficiently, and iron yield was higher than 90%, the mixture 

of 15% (w/v) Eumulgin ES - 50 mM sodium phosphate system, pH 7.0 was considered. 29°C 

was used for incubation as the efficiency of phase separation for this system at this 

temperature showed the best results. By using this method, the iron yield was 96.3% in the 

bottom phase, and removal of PHA granules into the top phase was 96%. The yield of iron 

Mixed elution fractions after 
HGMF (Run 4) 

Magnetosomes after 
ATPS with Eumulgin 

PHA 
granules 

Magnetosomes 
PHA granules 

Magnetosomes 
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after HGMF and aqueous two-phase separation was 48.5% (45% after adding the cell 

disruption efficiency of 92%), and the PHA removed was 98.5% after these two procedures. 

Since the density gradient of the two phases is much smaller than that when 

PEG8000/phosphate system was used, the efficiency of magntosome separation by using 

Eumulgin/phosphate after cell disruption directly has not been evaluated. 

 

For the magnetosome separation from PHA, both sucrose gradient centrifugation and ATPS 

have been successfully employed, and the results indicate that both of them can separate 

PHA efficiently. By using a sucrose cushion, a high-speed centrifuge is required, and the 

amount of purified magnetosomes is limited by equipment. In contrast, ATPS is easier to 

scale-up, cost-effective and relatively time-saver, comparing with sucrose cushion. The yield 

of iron recovery using proper ATPS is higher than sucrose gradient centrifugation. 

Table 4.5. Density of single phase in every ATPS, including 15% (w/v) Eumulgin ES in 50 mM sodium phosphate, 

pH 7.0, 20% (w/v) Eumulgin ES in 50 mM sodium phosphate, pH 7.0, 12% (w/v) PEG8000 in the mixture of 0.36 

M K2HPO4 and 0.25 M KH2PO4,pH 8.0, and 60% (w/v) sucrose. 

Samples Temperature Density (g mL
-1

) Volume ratio 

 (°C) Top phase Bottom phase (Top/bottom) 

20%(w/v) Eumulgin ES 
25 0.95±0.04 1.07±0.07 0.94 

29 0.94±0.21 1.07±0.06 0.67 

15% (w/v) Eumulgin ES 
25 0.96±0.01 1.09±0.02 0.47 

29 0.97±0.02 1.08±0.02 0.28 

PEG/Phosphate 

60% (w/v) Sucrose 

29 1.03±0.14 1.35±0.09 0.77 

4 1.30±0.01 N/A 

 

Our aqueous two-phase separation with Eumulgin ES – sodium phosphate and a permanent 

magnet indicates that our work is very promising to scale up, according to the research of 

Fischer and co-workers (2013). They demonstrated that they employed a technical-scale 
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‘continuous magnetic extraction’ process with a Eumulgin ES – sodium phosphate aqueous 

two-phase system and a permanent magnet to extract nano-scaled magnetic adsorbents 

from a crude E. coli cell extract with a flowrate of 9 L h-1. The separation device was effective 

for continuous separation of a wide range of magnetic particle sorbents (from 2 µm diameter 

to 25 nm). The system employed by Fischer is described in Appendix 6.11. 

 

 

 

 

4.4 Conclusions 

The overarching aim of this chapter has been to advance a fully scalable platform for the 

production and purification of magnetosomes from M. gryphiswaldense MSR-1 and, by 

Nd-B-Fe  
magnet 

Magnetosomes 

in bottom phase 

(phosphate rich)  

PHA in top phase 

(Eumulgin rich) 

29C, 1 h 

Figure 4.16. Schematic illustration of the magnetic micellar aqueous two-phase extraction approach used to 

separate magnetosomes from PHA. 
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extension, other magnetotactic bacteria. The platform comprises the following linked steps: 

fermentation of the magnetotactic bacterium; centrifugal recovery of the cells; mechanical 

disruption to release the magnetosome chains; subsequent capture and partial purification of 

the magnetosomes in a ‘rotor-stator’ high-gradient magnetic separator; and finally, 

purification/polishing of the magnetosomes free of PHA granules using an aqueous micellar 

two-phase system we have employed previously for continuous magnetic particle based 

processing (Fischer et al. 2013).  Specifically, we have shown that maximum cellular 

magnetism, long magnetosome chain lengths and lower PHA contents are favoured during 

the exponential phase of growth, and further that single pass disruption of such cells in an 

industrial high pressure homogenizer at moderate pressure ensures effective magnetosome 

release with minimal attritive damage. While the use of small commercial HGMS filter 

cartridges intended for lymphocytes separations is inappropriate for magnetosome 

purifications from unclarified cell disruptates, as magnetosome recovery is strongly 

compromised by trapped biomass, a ‘state-of-art’ rotor-stator HGMS proved effective for this 

task. Finally, we have demonstrated that a new scalable operation ‘magnetically enhanced 

micellar aqueous two-phase extraction (Fischer et al., 2013), is a viable alternative to 

sucrose density gradient centrifugation for removing stubborn PHA granule impurities from 

magnetosome preparations. Even in its current unoptimized form the process was able to 

deliver a magnetosome yield of 45% whilst removing ca. 99% and >99% of the original PHA 

and protein contents. It is completely justified, because all of the unit operations in the 

process can be operated continuously, the two new operations HGMF and ATPS were 

designed to be continuous from outset.   
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CHAPTER 5  

 

General Conclusions and future work 
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In this study we have developed flow cytometry (FCM) tools allowing the rapid analyses of 

cell physiology, morphology and polyhydroxyalkanoate (PHA) content of Magnetospirillum 

gryphiswaldense MSR-1. We used these new tools to optimise high efficiency biomass and 

magnetosome production by optimising the feed substances in fermentations. Finally, we 

developed methods for the extraction and purification of magnetosomes via a scalable 

process including homogenisation, high gradient magnetic separation and aqueous two-

phase separation.  

 

In Chapter 1, the current state of upstream and downstream processing of magnetosomes 

was reviewed. The lack of tools for monitoring cell physiology, morphology, PHA and free 

iron content during MSR-1 cultivation was addressed in Chapter 2 using FCM, allowing rapid 

monitoring of cell cultivation. This work simplifies measurement of fermentation parameters, 

in order to assess if cells are healthy, producing magnetosomes, and making PHA granules. 

This assessment is very important to guide the design and operation of fermentations, 

allowing harvest of cultures at relatively high biomass concentrations containing large 

numbers of magnetosomes but low PHA content, which can reduce the difficulty of the work 

in downstream processing. Further studies of the correlation between mean Phen Green 

fluorescence measured by FCM and quantitative iron measurements in liquid and solid 

phases within the cells should be calculated by mass balance, in order to determine if the 

iron taken from the substrate is being biomineralized quickly within cells. 

 

L-lactic acid has been employed as both carbon source for cell growth and acid for pH 

adjustment in fermentation. Thus, in order to increase biomass yield from the substrate and 

reduce the production of PHA, the optimisation of the concentration of lactic acid in the feed 

solution has been studied. Since the feed both regulates pH and provides carbon source, 

this work was essential to ensure balanced control of pH and supply of nutrients supporting 
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growth. The Cmag values did not perfectly correlate to magnetosome production, especially 

when large amounts of PHA granules were produced, which changed the cell morphology. 

Thus, the measurement of intracellular solid iron, and not total ionic and solid iron, should be 

performed during the cell cultivation. This can be achieved quickly by using chemical lysis or 

probe sonication to disrupt cell samples efficiently before atomic absorption spectroscopy 

measurement.  

 

The importance of nitrate concentration in the feed has also been studied. The 

magnetosome formation and denitrification in MSR-1 cells occur simultaneously under 

oxygen-limited conditions (Chapter 2), and the improvements of biomass and intracellular 

iron concentration have been achieved after employing nitrate in the feed solution. Clearly, 

the nitrate was consumed and ran out after 40 h in the fermentation experiments under 

microaerobic conditions. Thus, it is clear that further studies on the effects of low nitrate 

concentration during fermentation on magnetosome formation, and the impact of higher 

nitrate concentration on the accumulation of nitrite, are potentially interesting. Moreover, the 

influence of reducing power during magnetosome formation and cell growth should also be 

considered. 

 

The purpose of the downstream processing in this study was to obtain pure magnetosomes 

while maintaining their chain configuration. Thus, the scalable downstream processing 

techniques for magnetosome extraction and purification started with optimising fermentation 

and cell harvest time. Next, cell disruption was optimised to allow high disruption efficiency 

but low damage of magnetosome chain configuration. But chain breakage by the shear force 

from the rotor-stator magnetic separator and by the detergents from aqueous two-phase 

separation should also be characterised in the future. The cell disruption graphs did not 

standardise a first order disruption model, because three different pressures on cell 
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disruption is not available to present a precise linear relationship between disruption 

pressure against release by Hetherington’s relationship (Hetherington et al., 1971). Thus, 

more disruption pressures of cell disruption with Constant System Cell Disruptor (CSCD) 

should be investigated. The purity of purified magnetosomes should also be studied. 

Polyacrylamide gel electrophoresis (PAGE) or polymerase chain reaction (PCR) 

amplification can be used for DNA and RNA detection. Tachypleus amebocyte lysate (TAL) 

can be employed to measure endotoxin concentrations. 

 

In the future, the process for functionalization of purified magnetosomes with different 

ligands such as 4-mercaptothylpyridine hydrochloride (4-MEP HCl), equine chorionic 

gonadotropin specific antibodies (anti-eCG) and protein A should be studied for 

immunoglobulin and glycoprotein purifications (Gomes et al., 2018; Müller et al., 2015). 

Given the large specific surface area, the application of magnetosome adsorbents is very 

promising. 

 

 



132 
 

CHAPER 6  

 

Appendix 
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6.1 Correlation of cell concentration to OD565 

 

Figure 6.1. Correlation between culture OD565 and cells mL-1 measured using FCM. (a) Non-stained cells (b) 

cells stained with Syto62. 
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6.2 Influence of oxygen and iron limitation on PHA production 

 

 

Figure 6.2. (a) TEM micrograph of M. gryphiswaldense MSR-1 cells harvested from an O2-limited bioreactor. 

Note the magnetosome chains (black) and PHA aggregates (white globules). Fluorescence images of Pyr-546 

stained MSR-1 cells: (b) harvested from an O2-limited bioreactor and after 48 h growth on (c) FSM and (d) FSM-

Fe
–
 medium. The scale bars indicate a length of 2.5 μm. For the preparations of samples for TEM and TEM 

imaging, the reader is referred to Chapter 3 (3.2.4.4) and 4 (4.2.8). 
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6.3 Comparison of fluorescence microscopy and TEM images of magnetic cells 

during shift to aerobic conditions. 

 

 

Figure 6.3. Comparison of fluorescence microscopy and TEM images of magnetic cells during shift to aerobic 

conditions. MSR-1 cells grown under O2-limited conditions in a bioreactor were transferred to O2-sufficient 

conditions with either iron-containing (FSM) or iron-lacking (FSM-Fe
-
) media. Fluorescence images of Pyr-546 

stained MSR-1 cells: (a) harvested from an O2-limited bioreactor and after 48 h growth on (b) FSM and (c) FSM-

Fe
-
 medium; the scale bars indicate a length of 5 μm. TEM micrographs of MSR-1 cells: (d) harvested from an 

O2-limited bioreactor and after 48 h growth on (e) FSM and (f) FSM-Fe
–
 medium. For the preparations of samples 

for TEM and TEM imaging, the reader is referred to Chapter 3 (3.2.4.4) and 4 (4.2.8). 
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6.4 A representative pH-stat fermentation 

 

Figure 6.4. A representative pH-stat fermentation. MSR-1 was grown in FSM medium with a feed comprising 100 

g L
-1

 lactic acid and 25 g L
-1

 sodium nitrate. Other parameters as explained in Results and Discussion and 

Materials and Methods sections. 
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6.5 Biomass production in relation to feed volume from different concentration 

of carbon source 

 

Figure 6.5. Correlation between feed volume supplied and biomass concentration. Oxygen-limited cultures with 

feed lactic acid concentrations of 50 g L
-1

 (white squares), 100 g L
-1

 (gray squares), and 200 g L
-1

 (black 

squares); aerobic culture with feed lactic acid concentration of 100 g L
-1

 (white circles). 
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6.6 Fluorescence intensity of samples with different concentration of carbon 

source at different time of cultivation 

 

 

Figure 6.6. Fluorescence intensity histograms of samples collected at 0 h (start of fermentations), 19–22 h, 38–44 

h or 74–96 h (end of fermentation) of oxygen-limited cultures containing 50, 100 or 200 g L
-1

 lactic acid in the 

feeding solution.  
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6.7 FCM and Cmag analyses with cultivations in different nitrate concentration 

 

Figure 6.7. FCM and Cmag analysis of cells grown with different feed sodium nitrate concentrations. Plots show 

side scatter, SSC (a), forward scatter, FSC (b); fluorescence of Pyr546-stained cells (c), and Cmag values (d) 

plotted against time. For FCM 25,000 data points were collected for each sample and mean values are 

represented. Symbols: oxygen-limited pH-stat cultures with feed NaNO3 concentrations of 3 g L
-1

 (white down-

triangles), 6 g L
-1

 (gray down-triangles) and 25 g L
-1

 (black down-triangles). 
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6.8 Protein curve calibration for analyses in Chapter 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8. Calibration curves used for calculation of protein concentration with BCA assay at 562 nm. (a) Soluble 

protein calibration curve, (b) whole protein calibration curve. 
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6.9 TEM images of disruptions with CSCD 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9. TEM images following disruption of stationary phase M. gryphiswaldense MSR-1 cells in the CSCD 

using different combinations of P and N. 

 

 

 

 

 

 

P = 20 kpsi, N = 2 P = 20 kpsi, N = 4  

P = 5 kpsi,  N = 3  P = 10 kpsi, N = 1 
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6.10 Normalised magnetosome release from stationary phase cells 

 

Figure 6.10. Normalised magnetosome release from stationary phase M. gryphiswaldense MSR-1 cells vs. 

disruption efficiency.  Normalising the fitted iron release curve by the protein release curve provides a measure of 

the ease with which magnetosomes escape cf. protein. Maximum iron and protein release values of 9.11 and 

352.77 mg g
-1 

DCW respectively were determined by extrapolating the fit curves to 100% disruption efficiency. 

The curve demonstrates that the ease of magnetosome release increases linearly from 5 to 70% disruption 

efficiency (reaching 40% of the protein release) and exponentially thereafter to equivalence (i.e. 1.0) at 100% 

disruption efficiency.  
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6.11 Continuous magnetic extraction system 

 

 

 

 

 

 

 

Figure 6.11. Schematic illustration of the continuous magnetic extraction process and the component part 

(Fischer et al., 2013). 

A suspension containing magnetic adsorbents and E. coli extract is mixed well in a 

temperature contolled tank. Then the suspension is pumped into the separation chamber 

with a constant feed rate. After the phase separation, the top phase and the bottom phase 

are collected separately into different containers. In this separation system, magnetic 

particles are collected in the top phase, and the soluble proteins from E. coli extract are 

maintained in the bottom phase. 
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