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Abstract. In this paper a multi-drug Chemotherapy Schedule Opti-
misation Problem (CSOP) is subject to Local Optima Network (LON)
analysis. LONs capture global patterns in fitness landscapes. CSOPs
have not previously been subject to fitness landscape analysis. We fill
this gap: LONs are constructed and studied for meaningful structure.
The CSOP formulation presents novel challenges and questions for the
LON model because there are infeasible regions in the fitness landscape
and an unknown global optimum; it also brings a topic from healthcare
to LON analysis. Two LON Construction algorithms are proposed for
sampling CSOP fitness landscapes: a Markov-Chain Construction Algo-
rithm and a Hybrid Construction Algorithm. The results provide new
insight into LONs of highly-constrained spaces, and into the proficiency
of search operators on the CSOP. Iterated Local Search and Memetic
Search, which are the foundations for the LON algorithms, are found to
markedly out-perform a Genetic Algorithm from the literature.
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1 Introduction

Local Optima Networks (LONs) [1] are used to study fitness landscapes. Analysis
of them provides insight into how optimisation problems and search algorithms
interact together. LONs capture global patterns at the Local Optima Level
(LOL) in landscapes and have mostly been extracted for benchmark combinato-
rial optimisation problems such as NK Landscapes [1–3], the Quadratic Assign-
ment Problem (QAP) [4–6], and the Travelling Salesman Problem (TSP) [7–9].

Studies in non-benchmark problem domains have been sparse and have con-
sisted of computational protein modelling [10] and feature selection [11]. These
were steps towards bringing LON analysis to unmapped real-world problems.
This type of case study, demonstrating LON efficacy, is needed for convincing
possible industry collaborators. Large and highly-constrained problems should
ideally be used in case studies (by ‘large’ we mean hundreds of dimensions), in
pursuit of simulating environments typical of real-world optimisation problems.
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Chemotherapy Schedule Optimisation Problems (CSOPs) [12] have been the
subject of several research papers in evolutionary computation [13–17]. One in-
stance was formulated to reflect real-life chemotherapy drug response closely [13]
and the tumour shrinkage model used in the fitness function has been subject to
extensive clinical testing [18]. The instance, alongside other CSOP formulations,
has not been subject to fitness landscape analysis (although some authors have
made passing remarks about CSOP landscapes [19,20]).

We conduct a first fitness landscape analysis on CSOP, focussing on the LOL
with the use of LONs. Two LON Construction algorithms are proposed — the
first has Iterated Local Search (ILS) as its foundation; the second has Memetic
Search (MS) as the foundation. LONs are then produced and their attributes
and fitness distributions are compared. A study of the feasibility trajectories in
the LONs is also presented. Later on, algorithm performance results suggest our
search algorithms (ILS and MS) outperform a GA from the literature for the
CSOP. In summary, the present work contributes in the following ways:

1. First fitness landscape analysis of CSOP, lending to new insights of the
problem interacting with search operators;

2. The presence of infeasible solutions in the landscapes is new to LON research;
3. Two LON Construction algorithms for the CSOP are proposed (which can

also be easily applied to an arbitrary binary-encoded problem).
4. Two search algorithms are offered which outperform a GA from the literature

(ILS and MS; a separate MS has been used on a CSOP formulation before
but with different fitness function, constraints, and solution encoding [19]).

1.1 Background

We use a multi-drug CSOP which was initially formulated and described in
1998 [13] and then further studied in later research [14–17, 21]. As asserted in
the original paper, a multi-drug CSOP can have a binary representation where
each gene, i, is set iff a particular concentration of a particular drug (of number
n) is administered at a particular time interval (t, from within defined time
intervals). As suggested in the literature [21], we set the number of drugs n = 10
and the number of time intervals for doses, t, also at 10. There are four allowed
concentrations for each drug, p = 4, giving each binary solution a length of 400,
i.e. n× t× p. The number of possible solutions, and the size of the configuration
space, is extremely large at 2ntp i.e. 2400.

1.2 Fitness Function

We consider curative chemotherapy treatment here, meaning tumour eradication
is the aim. This is the primary (and only) objective. For this single-objective
case, fitness is calculated with respect to the chemotherapy schedule minimising
tumour size (in number of cells). This is done through maximising the combined
effect of drugs in the schedule against the tumour. In considering the tumour’s
shrinkage response, a mathematical function is needed. The most popular model



in the literature is called the Gompertz Growth Model [18], which has a linear
cell-loss effect and has been validated by significant clinical experiments. The
formula is given in Equation 1:
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Cij {H(t− ti)−H(t− ti+1)}
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with the components as follows: N(t) is the cancerous cell count at time
interval t; λ and θ are parameters pertaining to tumour growth; H(t) is the
Heaviside step function; kj denotes the efficacy of chemotherapy drugs; and Cij

is the concentration levels of the drugs administered.
The actual fitness function is quite complex, including penalties based on

feasibility distances, and in the interest of space we refer the interested reader to
a comprehensive description [13] (pp. 106-107). In essence, initial fitness is calcu-
lated with respect to the total impact on the tumour for the treatment schedule.
Individual impacts for each drug are known. The objective is to maximise the
combined impact of all the drugs in the schedule (at the specified concentra-
tions, and at the specified time-slots). The maximisation of this will minimise
the tumour.

Following the drug impact fitness calculation, the solution is checked for
constraint violations and the fitness is penalised accordingly (see [13] for details).
Any violation will result in a fitness below zero. A feasible solution has fitness
zero or above.

The constraints are as follows: the tumour is not allowed above a particular
size; the maximum cumulative dose of drugs cannot exceeded the specified limits
for each individual drug; and the limit on toxic chemotherapy side-effects cannot
be exceeded (for each time interval). In all cases the magnitude of the violation
is captured through proportional subtraction from the fitness sum.

Mathematically the fitness function is subject to these constraints:

1. Maximum allowable cumulative Ccum dosage for each drug:

g1(c) =

{
Ccum j −

n∑
i=1

Cij ≥ 0
... ∀ j ∈ 1, d

}
(2)

2. Maximum allowable size of the tumour, i.e. number of cancerous cells, N :

g2(c) =

{
Nmax −N(ti) ≥ 0

...∀ i ∈ 1, n

}
(3)

3. A threshold for the known toxic side-effects of using multiple drugs in chemother-
apy treatment:

g3(c) =

Cs−ek −
d∑

j=1

ηkjCij ≥ 0
...∀i ∈ 1, n,∀ k ∈ 1,m

 (4)



In the constraint seen in Equation 4, the variables ηkj are the known possi-
bility of harming the kth organ (for example, the heart) through administering
the jth drug.

1.3 Evolutionary Search Algorithms

Evolutionary algorithms have been used with success for CSOPs; in partic-
ular, Genetic Algorithms (GAs) have dominated [13, 21–23], although other
approaches have been utilised, such as Estimation of Distribution Algorithms
[15, 17]; Simulated Annealing variants [23, 24]; Memetic Algorithm (MA) [19];
and Evolutionary Strategies [23,25]. A GA from the literature [17] is used as the
foundation for the Hybrid LON Construction algorithm proposed here (detailed
later in Section 2.2) and is also used later on in conducting optimisation on the
problem to collect search difficulty information.

2 Methodology

This section describes the LON Construction algorithms proposed for studying
CSOP fitness landscapes. Our aim is examining the topological features form-
ing when optimisation search operators are moving on the CSOP configuration
space. The particular focus is on global-scale local optima connectivity patterns.

2.1 Markov-Chain LON Construction Algorithm

To align with existing LON Construction algorithms for benchmark domains
such as TSP and QAP [6, 26, 27] we instrument an algorithm using Iterated
Local Search (ILS) as the vehicle. ILS is naturally suited to constructing LONs:
each iteration identifies a transformation between local optima and this can
straightforwardly be added as an edge to a LON. We refer to the ILS-driven
LON Construction algorithm as Markov-Chain LON Construction — to avoid
confusion, because ILS is also used later on to collect difficulty information about
the CSOP.

Markov-Chain LON Construction tracks thirty independent ILS runs, which
begin from random solutions. The local search is best-improvement and uses
one-flip neighbourhood. Perturbation flips thirty bits. Improving local optima
are always accepted; 10% of the time, worsening local optima are accepted too.
All accepted local optima are added as LON nodes and the transformation is
logged as a LON edge (if the edge exists already, the weight is incremented).
Runs terminate after 1000 iterations. Parameters were chosen in response to
observations about preliminary runs.

Nodes and edges from the thirty runs are joined together to form a single LON
for the problem. Our initial intention was to mirror parameter choices in previ-
ous LON Construction works [27] but those choices were for much smaller search
space sizes and the computation was therefore more feasible for their circum-
stance. The complete process for Markov-Chain LON Construction is provided
in Algorithm 1.



Algorithm 1 Markov-Chain LON Construction
1: Search space S, Fitness function f ,
2: Perturbation strength k, Stopping threshold t, Number of runs r
3: runs← 0
4: repeat
5: Choose initial random solution s0 ∈ S
6: l ← LocalSearch(s0)
7: i← 0
8: repeat
9: s′ ← Perturbation(l1, k)

10: l2 ← LocalSearch(s′)
11: if f(l2) ≤ f(l1) then
12: l1 ← l2
13: end if
14: LON = LON + nodes(l1, l2)
15: LON = LON + edge(l1 −→ l2)
16: i← i+ 1
17: until i ≥ t return l
18: runs← r + 1
19: until runs ≥ r

2.2 Hybrid LON Construction Algorithm

Genetic Algorithms (GAs) have been successful in finding good approximate
solutions in CSOP [16]; it follows that a GA is a reasonable foundation for
CSOP LON Construction. When LON Construction algorithms share operators
with successful heuristics, the constructed LONs should infer future landscapes
that might be induced during genuine optimisation.

Our LON Construction algorithm originates from a generational GA from the
literature [14]. By definition LONs contain only local optima. GAs, of course,
do not guarantee local optima in the population, which necessitates the addi-
tion of local search to the algorithm, resulting in a Memetic Search (MS). The
Memetic Search-driven LON tracking process is hereafter referred to by Hybrid
LON Construction, to differentiate from a MS used later for collecting problem
difficulty information.

The algorithmic process for creating the LON is as follows. The algorithm
runs for 100 generations; at each generation the fittest 10% of offspring are
subject to local search to produce local optima. To deem a node a local optimum,
one-flip best-improvement hill-climbing is applied for 100 iterations. The nodes
are added to the LON and are put into the next generation. The set of local
optima are then deterministically recombined with one another. The offspring
are possibly mutated according to the mutation rate, before being subject to
local search. All four local optima (parent one and two, child one and two) are
then added as nodes to the LON. Similarly, four edges are added to the network:
from parent one to child one; parent one to child two; parent two to child one;
and parent two to child two.



Algorithm 2 Hybrid LON Construction: Part 1
1: procedure Hybrid LON Construction(population size ps, generations
g, percent fittest individuals pf , mutation probability mp, crossover proba-
bility cp, length evolution path lp, search space S, fitness function f)

2: LON = ∅ . local optima network
3: P = randomPopulation(S, ps) . Initial random population
4: fit = SelectFittest(P , pf , f) . fittest individuals
5: iterations = 0 . counter for generations completed
6: repeat
7: P = GeneticProcess(P , ps)
8: fit = SelectFittest(P , pf)
9: for sol ∈ fit do

10: sol = HillClimb(sol)
11: end for
12: for mom ∈ fit do
13: for dad ∈ fit do
14: child1, child2 = MemeticEvolution(mom, dad)
15: iterations = iterations + 1
16: end for
17: end for
18: until iterations ≥ g
19: for mom ∈ LON do
20: for dad ∈ LON do
21: steps = 0
22: repeat
23: child1, child2 = MemeticEvolution(mom, dad)
24: mom, dad = child1, child2
25: steps = steps + 1
26: until steps ≥ lp
27: end for
28: end for
29: end procedure

After all generations are complete, LON nodes undergo another evolution-
ary process. For each pairwise combination of nodes, the following is repeated
ten times: the solutions are deterministically recombined with one another; the
offspring are probabilistically subject to mutation; the offspring are subject to
local search. They are added as LON nodes, and transformations from parent to
child are added as edges. After this, the locally-optimised offspring become the
parents for the next iteration of the same process. The steps repeat ten times.
In this way, each pair of original LON nodes (from the 100-generation MS) are
the ancestors in a ten-generation evolutionary trajectory. This was a deliberate
design choice to facilitate LONs containing sequences of evolution for local op-
tima. Without this, the LON would consist of many isolated pairs of nodes and
would be difficult to study for meaningful structure. The complete process for
the Hybrid LON Construction algorithm is shown in Algorithms 2 and 3.



Algorithm 3 Hybrid LON Construction: Part 2
1: procedure GeneticProcess(P , ps)
2: repeat
3: mom, dad = Selection(P )
4: if cp then
5: child1, child2 = Crossover(mom, dad)
6: end if
7: if mp then
8: child1, child2 = Mutation(child1, child2)
9: end if

10: P [mom] = child1
11: P [dad] = child2
12: until iterations ≥ ps/2
13: end procedure

1: procedure MemeticEvolution(mom, dad)
2: child1, child2 = Crossover(mom, dad)
3: if mp then
4: child1, child2 = Mutation(child1, child2)
5: end if
6: child1, child2 = HillClimb(child1, child2)
7: LON = LON + nodes(child1, child2)
8: LON = LON + edges({mom −→ child1}, {mom −→ child2}, {dad −→
child1}, {dad −→ child2})

9: return child1, child2
10: end procedure

3 Visualisations

Visual analysis of LONs can provide an abstracted view of the Local Optima
Level, which is a multi-dimensional complex system. Sometimes, patterns ob-
servable in visual analysis help to explain search algorithm performance on the
associated combinatorial problem.

Markov-Chain LON Construction and Hybrid LON Construction algorithms
produce networks with thousands of nodes. For meaningful visualisation, pruned
sub-networks are constructed. The ‘elite’ nodes of the LONs are chosen for this.
For the Markov-Chain LON, these are nodes in the top 2% of the fitness distri-
bution. The Hybrid LON has more nodes, so only the top 0.05% are visualised.
It follows that this lifts the veil on the most promising regions reached by the
algorithms.

Figure 1 shows plots for two LONs of the same CSOP. The top Figure is the
LON constructed by the Markov-Chain method; on the bottom was constructed
with the Hybrid method. Edges encode sequences of search operations. On the



Fig. 1. Top 2% of local optima which were sampled using Markov-Chain LON Con-
struction (top) and top 0.05% sampled during Hybrid LON Construction (bottom).
Pseudo-global optima (i.e. the best in that particular sample for the purposes of this
visualisation) are shown in red; all other local optima are grey. For the Markov-Chain
LON, the highest fitness is 1.707677. For the Hybrid LON, it is 1.707826.

higher LON, the sequence is perturbation −→ local search; on the bottom, re-
combination −→ probabilistic random mutation −→ local search. Nodes with
the highest fitness in that sample are red; all other local optima are grey.

Examining the Figure, Markov-Chain is the sparser network of the two. There
are neat sequences of local optima and nodes typically have one incoming edge
and one outgoing edge. The sequences are separate, in that they do not have
bridges connecting them. The highest-fitness node is located within a sequence.
The visual analysis of this implies that this fitness would only be reached if
the search arrived by happenstance on that particular sequence of local optima.



The Hybrid LON is denser and instead of linear sequences, clusters of nodes
are seen. Some clusters are connected to other clusters and some are isolated.
Many distinct solutions with the pseudo-optimal fitness are found by the Hybrid
(look at the red nodes) and these are found in different clusters. The presence of
clusters instead of linear sequences hints that at lower fitness levels (not shown)
the clusters would be larger and more opportunity to connect to a pseudo-
optimum would be found when comparing to the Markov-Chain LON.

4 Experimental Setup

4.1 Markov-Chain LON Construction: Details

As stipulated in Section 2.1, Markov-Chain LON Construction algorithm is an
Iterated Local Search (ILS) framework. As such, local search handles intensifi-
cation and perturbation mechanism contributes diversification. The local search
uses a bit-flip operator and best-improvement as a pivot rule. A solution is
deemed a local optimum at the end of 100 iterations. Perturbation is 30 bit-flips
and improving local optima are always accepted. Deteriorating local optima are
accepted 10% of the time. Runs terminate after 1000 iterations. Thirty indepen-
dent runs are conducted, with each accepted local optimum added as a LON
node and each transformation between two local optima added as a LON edge.
The parameters are shown in Table 1.

Table 1. Markov-Chain LON Construction parameter settings

Parameter value

Local iterations 100
Global iterations 1000
Pivot rule Best
Local search 1 bit-flips
Perturbation 30 bit-flips
Number of runs 30

Iterated Local Search. The ILS process from Markov-Chain LON Construc-
tion is modified (without any LON logging) and is proposed for optimisation of
CSOP. We use it in collecting algorithm performance information. The algorith-
mic setting remains the same except the best-improvement rule changes to the
best of 100.

4.2 Hybrid LON Construction: Details

Hybrid LON Construction is instrumented on top of a competitive GA for the
domain [13]. A previous study using statistical inference found that only two GA



parameters were significant on this CSOP when solutions are binary-encoded:
crossover probability φ′ and mutation probability φ′′ [21]. Our values for those
parameters are the ones they recommended (φ′=0.614, φ′′=0.198); the others
are from a related study [14] (which used integer encoding for the problem), in
the absence of reported values in the binary-encoded study. A random starting
population of 76 individuals, all binary strings with n = 400, is created. Elitism
is implemented for the fittest two individuals; the selection method is linear
roulette-wheel (parents are selected with probability proportionate to their fit-
ness ranking); selection pressure is seven; and there are six points of crossover,
with the crossover type being uniform. We added local search, making the al-
gorithm memetic. The local search was best-improvement, using single bit-flips,
and for 100 iterations. This is applied to the best 10% of individuals at each
generation. Those individuals are added as LON nodes, recombined, and the
trajectories from parent to child are taken as LON edges. After 100 generations,
pairwise combinations of LON nodes are recursively recombined 10 times: off-
spring from the first recombination are subject to local search and then become
the parents for the next. Nodes and edges are added to the LON during this
process.

Memetic Search. A variant of the MS framework described in the previous
Section (without any LON logging) is also proposed here for optimisation on the
CSOP. In our study we use it to collect algorithm performance information. The
percentage of individuals locally optimised at each generation becomes 5%; the
best-improvement local search becomes first-improvement; and the local search
operator becomes ten bit-flips instead of one. All parameter settings for the GA
component remain the same. 100 generations are allowed.

4.3 Unknown Global Optimum

For this problem the global optimum is not known. In previous LON research,
there has always been a known optimum fitness. To simulate this for our problem,
we conduct several runs of the MS and ILS and take the highest obtained fitness
across all runs to be the pseudo-optimal fitness. This value is 1.71.

5 Results

5.1 The Hybrid LON

The Hybrid LON Construction network has 124,497 nodes and 1,264,500 edges,
giving an edge-to-node ratio of 10:1. The average fitness is 0.909698, which at
above zero is a feasible solution and is around 53% of the pseudo-optimal fitness
stipulated in Section 4.3. The maximum fitness is 1.707826, which is within
0.001% of the pseudo-optimal fitness. The minimum fitness (of a local optimum
in the sample) is -106.717. There are 217 different solutions with the pseudo-
optimal fitness. The vast majority — 93.6% — of the local optima are feasible
solutions.



Around 14.5% of edges in the LON represent no fitness change; 43.6% are
improving fitness; and 41.8% have deteriorating fitness.

The assortativity coefficient of a network is the Pearson’s correlation for
the degrees of connected nodes. In the Hybrid -constructed LON, it stands at
0.794687. This implies that it is likely for a node to connect to nodes which have
similar degree.

The median degree for a node in the LON is 10; the mean is 20.31; the
75% quantile is 16; and the maximum is very large at 179,154. Most nodes
have relatively low degree (≤ 16) and only 0.1% of nodes have degree ≥ 241.
The presence of a single node with excessively high degree (179154) hints at a
hub-and-spoke system being present in a section of the LON.

5.2 The Markov-Chain LON

The Markov-Chain LON Construction models an adaptive walk through the
LOL. There are 11,393 nodes and 209,489 edges in the sample, for an edge-to-
node ratio of approximately 20:1. The average sampled fitness is 0.638913 —
around 37% of the pseudo-optimal fitness. This is noticeably lower than the av-
erage fitness in the Hybrid LON. The maximum fitness is 1.707677, which is
lower than both the pseudo-optimal fitness and the maximum fitness in the Hy-
brid LON but is still within 0.002% of the pseudo-optimal value. The minimum
is -61.6745, which is approximately twice as fit as the lowest in the Hybrid LON.
This makes sense given the unguided nature of selection in the Hybrid algorithm
compared to the guided walk of the Markov-Chain process.

In the LON, around 64% of edges are deteriorating (that is, they orient
towards a worse fitness); 26% are improving; and around 9% direct towards equal
fitness. The majority are deteriorating even though deteriorating moves are only
accepted 10% of the time. This fact hints at the scarcity of improving moves
on the local optima level manifesting under these operators. Let us compare the
percentages with those present in the Hybrid LON (43.6% improving and 41.8%
deteriorating, as we recall); a judicious conclusion is that the recombination −→
local search sequence of the Hybrid algorithm has more evolvability potential on
the LOL than the perturbation −→ local search sequence of the Markov-Chain
algorithm.

The assortativity coefficient is 0.996704, which stipulates that nodes are
highly likely to be connected to nodes which have the same degree as them.
This is evidence against the presence of a ‘hub-and-spoke’ network structure in
this LON because that phenomenon is defined by heterogeneous degree distri-
bution. The median degree in the LON is 34; the mean is close by at around 37;
the 75% quantile is 52; and the maximum degree is 526. Only 0.01% of nodes
have degree ≥ 128. The range of values in the degree distribution is much less
extreme than was present in the Hybrid LON.



5.3 A Study of Feasibility in LONs

The existence of infeasible solutions in CSOP fitness landscapes brings new pos-
sibilities for the features calculated from the LONs. One consideration is the
proportion of LON nodes which are infeasible. In the Hybrid LON Construction
object, 93.6% of nodes are feasible (meaning they have fitness above 0.0000); the
Markov-Chain LON Construction object has 86.2% feasible nodes. This implies
that the former more heavily exploits feasible regions at the level of local op-
tima. Another detail that can be studied for the LONs is the notion of feasibility
gradient. This is the change in fitness feasibility that a LON edge encodes. An
edge could be oriented from an infeasible local optimum towards a feasible local
optimum, which is a desirable situation. The distribution of feasibility gradi-
ents in the LON therefore captures the ability of the LON algorithm to escape
infeasible regions.

Table 2. Percentage of Markov-Chain LON edges in terms of feasibility gradient

orientation percentage

infeasible −→ feasible ≈77%
infeasible −→ infeasible ≈14%
feasible −→ feasible ≈5%
feasible −→ infeasible ≈4%

Table 3. Percentage of Hybrid LON edges in terms of feasibility gradient

parameter value

feasible −→ feasible ≈84.8%
infeasible −→ feasible ≈7.7%
infeasible −→ infeasible ≈4.1%
feasible −→ infeasible ≈3.4%

In Table 2 are indications of the feasibility gradients (in percentage terms)
of the edges of the sampled Markov-Chain LON. These must be viewed with
the consideration that the algorithm used to construct the edges always accepts
improving local optima, but also accepts deteriorating local optima 10% of the
time. Encouragingly, the large majority (77%) of edges orient from infeasible
to feasible local optima. That implies the operator sequence often succeeds in
traversing portals out of infeasible regions. Transformations from feasible −→
feasible are much fewer at approximately 5% of total edges. This perhaps implies
that the operator sequence is not great at exploiting within the feasible regions
in the search space.



Table 3 shows the feasibility gradient percentages seen in the Hybrid LON.
Here a vast majority (84.8%) of the orientations are from feasible −→ feasible.
This hints the operator sequence is proficient at intensification within promising
areas in the search space. The percentage of directions from infeasible −→ fea-
sible is small, which could also be important — maybe the algorithm struggles
to escape infeasible areas. It could be, however, that this small percentage is
born from the fact that the number of infeasible nodes in the network is low.
A surprisingly low percentage (3.4%) lead from feasible −→ infeasible solutions.
This is interesting, because there is no acceptance condition for nodes during
the construction. It seems recombining already-fit solutions before refining the
offspring with local search results in fit solutions.

5.4 Newly Proposed Optimisation Algorithms

As described in Sections 4.1 and 4.2 we propose and use modified versions of
our ILS and MS frameworks to conduct optimisation on the CSOP and compare
algorithm performances, alongside the GA from the literature [21]. Tables 4
and 5 summarise distributions for the obtained fitness (averaged over 100 runs)
for each algorithm variant. Table 4 displays algorithm results when not enforcing
a fitness evaluation budget; Table 5 shows results from the versions which were
budgeted 50 000 fitness evaluations. Each row is an algorithm variant. Indications
of the variant are found in the algorithm and seeded columns. By seeded, we
mean that for these runs a specific solution was seeded into the algorithms.
The solution was not chosen due to good fitness (in fact, the fitness is infeasible
and heavily-penalised) but rather to provide the same solution across algorithms
for 100 runs. In the case of GA and MA, this solution was one individual in the
starting populations; for the ILS, it served as the starting solution. As asserted in
Section 4.3, we assume the pseudo-optimal fitness value of 1.71 for the purposes
of this study.

Table 4. Averaged obtained fitness over 100 runs of the algorithms. In the case of the
EAs, this is the best fitness in the population. No computational budget is specified.

algorithm seeded minimum 1st quantile median mean 3rd quantile maximum

ILS no -25.43 -7.39 -2.09 -4.49 -0.48 1.66
GA no -71 556.39 -97.64 -32.15 -3738.60 -11.67 0.40
MS no 1.46 1.70 1.71 1.70 1.71 1.71
ILS yes -62.54 -6.61 -1.87 -4.86 -0.31 1.67
GA yes -137 600.69 -212.50 -32.79 -4084.30 -7.55 -0.19
MS yes 1.45 1.70 1.71 1.68 1.71 1.71

Across budgeted and non-budgeted runs, seeded and unseeded runs, the Ge-
netic Algorithm (GA) is definitely the least competent at obtaining fit (or even
feasible) solutions. This can be seen by, for example, comparing the median of



Table 5. Averaged obtained fitness over 100 runs of the algorithms. In the case of the
EAs, this is the best fitness in the population. The computational budget for each run
is 50 000 function evaluations.

algorithm seeded minimum 1st quantile median mean 3rd quantile maximum

ILS no -55.89 -10.22 -4.26 -7.38 -0.64 1.66
GA no -235 584.20 -2538.16 -75.86 -12 476.17 -32.63 -4.07
MS no 1.15 1.46 1.66 1.59 1.68 1.70
ILS yes -46.84 -6.25 -1.96 -4.18 0.15 1.44
GA yes -271 039.28 -4572.31 -63.20 -10 765.08 -27.74 1.19
MS yes 1.31 1.45 1.67 1.60 1.68 1.70

the GA rows with the median of the MS or ILS rows in either of Table 4 or
Table 5. Sometimes the difference in fitness is several orders of magnitude — see
for example the algorithm comparison available minimum columns.

The MS performs by far the best of the three algorithms. In all cases (bud-
geted and unbudgeted, seeded and unseeded), 100% of the runs ended with a
feasible fitness found in the population. That is shown in the third and sixth rows
of both tables. The best ILS runs (the maximum rows) ended with a desirable
fitness although the majority ended with infeasible fitness. It is of note, however,
that the distributions comprise fitness values which are ‘almost’ feasible in many
cases. The deduction seems to be that the success (or lack thereof) of ILS on
this CSOP depends on the starting position. The ‘almost’ feasible fitness values,
we argue, are the dead-ends of sub-optimal massif centrals or funnels.

The success of the MS tells us that using all of: recombination, random muta-
tion, and guided local search together works in harmony with this configuration
space to guide the search to promising feasible regions. The genetic algorithm’s
vast range of obtained fitnesses suggests a lack of reliability. Sometimes a feasible
solution may be found (a previous paper found that it was around 5% of runs
given 100 generations [14]) but other times a population filled with individuals
of severely penalised fitness may be obtained. Contrarily, the MA appears to
be rather uniformly consistent: all of the total 400 runs ended with a feasible
fitness, and this was also always ≥ 1.15.

The consistency of the ILS lies somewhere between the performances of the
GA and the MS: although often the end fitness is infeasible, the range of values
in the distributions is tight compared to the GA and are usually between -10 and
+1.66. ILS solutions could be seeded to a different highly-exploitative algorithm
to finish the job.

6 Conclusions

This work has pursued modelling a problem from healthcare with LONs. Doing
so brought the added complications of infeasible regions in the fitness landscapes,
which is new for LON analysis. Two algorithms were offered for the purpose of



constructing LONs for CSOP: Markov-Chain LON Construction and Hybrid
LON Construction. An examination of the feasibility gradients within the LONs
revealed that an ILS framework (i.e. the Markov-Chain algorithm) may be bet-
ter at finding portals out of infeasible regions but lack in local optima-level
exploitative power when in a promising region. MS (i.e. the Hybrid algorithm)
appears very proficient in exploitation within feasible areas but did not boast
many escapes from infeasible areas. This provides insight into how CSOP inter-
acts with sequences of search operators. We showed that our MS and our ILS
outperformed the GA from the literature, even when mandating an equal fitness
function budget for the algorithms. We stipulate that the selection process of
the GA does not have sufficient exploitative power (perhaps due to the small
population size) and this can be brought by adding local search. Importantly,
the best results are obtained using the recombination and random mutation of
the GA together with a guided local search. It follows that the former bring in-
novation and diversification, while the latter brings intensification and facilitates
propagation of good genes.
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